WO2023203686A1 - Controller and ventilation system - Google Patents

Controller and ventilation system Download PDF

Info

Publication number
WO2023203686A1
WO2023203686A1 PCT/JP2022/018305 JP2022018305W WO2023203686A1 WO 2023203686 A1 WO2023203686 A1 WO 2023203686A1 JP 2022018305 W JP2022018305 W JP 2022018305W WO 2023203686 A1 WO2023203686 A1 WO 2023203686A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
ventilation
air volume
main control
detection device
Prior art date
Application number
PCT/JP2022/018305
Other languages
French (fr)
Japanese (ja)
Inventor
維哉 川村
広嗣 友松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018305 priority Critical patent/WO2023203686A1/en
Publication of WO2023203686A1 publication Critical patent/WO2023203686A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/52Air quality properties of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide

Definitions

  • the present disclosure relates to a controller that controls a ventilation device, and a ventilation system that includes the controller and the ventilation device.
  • a ventilation system in which a ventilation device is equipped with a carbon dioxide sensor that detects the concentration of carbon dioxide in a room (see, for example, Patent Document 1).
  • the ventilation device disclosed in Patent Document 1 includes a carbon dioxide sensor in a passage within the main body for discharging air to the outside.
  • the carbon dioxide sensor is connected by wire to a controller, and the controller controls the ventilation device based on the detection results of the carbon dioxide sensor.
  • a carbon dioxide sensor placed inside a ventilation system makes it possible to detect the concentration of carbon dioxide inside the ventilation system, but the concentration of carbon dioxide inside the ventilation system is based on the concentration of carbon dioxide at the location where a person is in the room. does not necessarily match. Therefore, there has been a demand for air conditioning that is appropriate for the air quality in the area where people are located indoors.
  • the carbon dioxide sensor is connected to the controller by wire, so wiring work is required at the time of installation. Furthermore, installing a ventilation system equipped with a carbon dioxide sensor may be costly.
  • the present disclosure has been made in order to solve the above-mentioned problems, and provides a controller that enables air conditioning according to the air quality in the area where people are located indoors, reducing the workload and cost at the time of introduction. and ventilation systems.
  • the controller includes a wireless communication unit that performs wireless communication with an environment detection device that detects a concentration of carbon dioxide in a room and acquires the concentration from the environment detection device, and a ventilation device that ventilates the room. and a main control section that performs control based on the concentration obtained from the environment detection device.
  • a ventilation system includes an environment detection device that detects the concentration of carbon dioxide in a room, a ventilation device that ventilates the room, and wireless communication with the environment detection device to acquire the concentration from the environment detection device. and a controller that controls the ventilation device based on the obtained concentration.
  • the controller acquires the indoor carbon dioxide concentration from the environmental sensing device through wireless communication.
  • the controller controls the ventilation device based on the concentration. Therefore, the ventilation system can perform air conditioning according to the air quality in the area where a person is located in the room. Furthermore, it is possible to reduce the burden of wiring work and reduce costs when introducing a ventilation system.
  • FIG. 1 is a block diagram illustrating a ventilation system according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram showing an example of indoor installation of a ventilation device, an air conditioner, a controller, and a carbon dioxide sensor according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining a ventilation device in Embodiment 1.
  • FIG. FIG. 2 is a block diagram illustrating a configuration example of a controller according to Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating first environment information displayed by the display unit in Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating second environment information displayed by the display unit in the first embodiment.
  • 1 is a diagram illustrating a hardware configuration of a controller according to Embodiment 1.
  • FIG. 5 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a ventilation system according to a second embodiment.
  • FIG. 2 is a block diagram showing a configuration example of a controller according to Embodiment 2.
  • FIG. 3 is a diagram illustrating a hardware configuration of a controller according to a second embodiment.
  • FIG. 7 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to Embodiment 2.
  • FIG. 1 is a block diagram illustrating a ventilation system according to a first embodiment.
  • the ventilation system 100 includes a ventilation device 1, an air conditioner 2, a controller 3, and a carbon dioxide sensor 4.
  • FIG. 2 is a schematic diagram showing an example of indoor installation of a ventilation device, an air conditioner, a controller, and a carbon dioxide sensor according to the first embodiment.
  • the ventilation device 1 is installed indoors and ventilates the room. It is preferable that the ventilation device 1 is a total heat exchange type ventilation device, and hereinafter, in the first embodiment, the ventilation device 1 will be described as a total heat exchange type ventilation device.
  • FIG. 3 is a schematic diagram for explaining the ventilation device in Embodiment 1.
  • the ventilation device 1 includes a first ventilation blower 10A, a second ventilation blower 10B, and a total heat exchanger 11 inside a housing 1H.
  • the white arrow in FIG. 3 indicates the direction of air flow. Further, each of the broken line and the dashed-dotted line indicates a path through which air flows.
  • the first ventilation blower 10A guides outside air OA into the ventilation device 1, and sends out the led outside air OA into the room as supply air SA.
  • the second ventilation blower 10, as shown by the dashed line in FIG. 3 guides indoor air as return air RA to the ventilation device 1, and sends the guided return air RA into the room as exhaust EA.
  • the total heat exchanger 11 exchanges heat between the outside air OA drawn into the ventilation device 1 by the ventilation blower 10 and the return air RA.
  • the outside air OA is warmed and sent into the room as the supply air SA.
  • the return air RA is cooled and sent outside as exhaust air EA.
  • the ventilation device 1 in the first embodiment may be provided with a ventilation concentration sensor 12 that detects the concentration of carbon dioxide in the return air RA within the ventilation device 1.
  • the ventilation concentration sensor 12 is an example of a ventilation concentration detection device that detects the concentration of carbon dioxide in the return air RA that has flowed into the ventilation apparatus 1.
  • the ventilation device 1 may be provided with an outside temperature/humidity sensor 13 that detects the temperature and humidity of the outside air OA introduced into the ventilation device 1.
  • the ventilation device 1 may be provided with a supply air temperature sensor 14 that detects the temperature of the supply air SA into the room.
  • the outside temperature/humidity sensor 13 is an example of an outside temperature/humidity detection device that detects the temperature and humidity of outside air OA flowing into the ventilation system 1 .
  • the supply air temperature sensor 14 is an example of a supply air temperature detection device that detects the temperature of the supply air SA.
  • the air conditioner 2 performs air conditioning of indoor air. That is, the air conditioner 2 adjusts both or one of indoor temperature and humidity.
  • the air conditioner 2 includes an indoor unit 20 and an outdoor unit 21.
  • the indoor unit 20 includes an indoor blower (not shown) inside a casing forming an outer shell, and indoor air is sucked into the indoor unit 20 by the indoor blower and then blown out.
  • the indoor unit 20 and the outdoor unit 21 are connected by refrigerant piping (not shown), and refrigerant circulates inside. The air sucked into the indoor unit 20 exchanges heat with the refrigerant that has exchanged heat with outside air in the outdoor unit 21, and then is blown into the room, thereby air-conditioning the room.
  • the controller 3 controls the ventilation device 1 and the air conditioner 2. In the first embodiment, the controller 3 controls the ventilation device 1 and the outdoor unit 21 via the indoor unit 20. Further, in the first embodiment, the controller 3 transmits a control signal for controlling the ventilation device 1, the indoor unit 20, and the outdoor unit 21 to the indoor unit 20 through wired communication. However, the controller 3 may transmit the control signal to the indoor unit 20 by wireless communication.
  • the controller 3 may directly control the ventilation device 1.
  • the controller 3 may transmit a control signal for controlling the ventilation device 1 to the ventilation device 1 via wired communication.
  • the controller 3 may transmit the control signal to the ventilator 1 by wireless communication.
  • the controller 3 may directly control the indoor unit 20 or may control the indoor unit 20 via the ventilation device 1.
  • the carbon dioxide sensor 4 detects the concentration of carbon dioxide in the room.
  • the carbon dioxide sensor 4 performs wireless communication with the controller 3 and transmits the detected concentration to the controller 3.
  • an application program that links the controller 3 and the carbon dioxide sensor 4 is installed in the controller 3 and the carbon dioxide sensor 4.
  • the carbon dioxide sensor 4 transmits the detection result to the controller 3 according to the application program.
  • the controller 3 processes the detection results obtained from the carbon dioxide sensor 4 according to the application program.
  • Carbon dioxide sensor 4 is portable.
  • the carbon dioxide sensor 4 is an example of an environment detection device that obtains, by measurement or the like, a value that is an index indicating the indoor environmental condition.
  • FIG. 4 is a block diagram showing a configuration example of the controller according to the first embodiment.
  • the controller 3 includes an input section 30 , a wireless communication section 31 , a clock section 32 , a main control section 33 , and a display section 34 .
  • the input unit 30 is, for example, a button or a touch panel, and accepts input instructions from the user.
  • the wireless communication unit 31 performs wireless communication with the carbon dioxide sensor 4 and periodically acquires detection results from the carbon dioxide sensor 4.
  • the clock section 32 measures time.
  • the main control unit 33 controls both or one of the ventilation device 1 and the air conditioner 2 based on instructions input to the input unit 30. If the concentration acquired by the wireless communication unit 31 is equal to or higher than the first threshold concentration during the first time period, the main control unit 33 sets the ventilation air volume, which is the air volume by the ventilation device 1, to the first ventilation air volume or higher.
  • the ventilation device 1 is controlled as follows. That is, the main control unit 33 transmits a control signal instructing the ventilation air volume to be equal to or higher than the first ventilation air volume to the ventilation device 1 via the indoor unit 20, and the ventilation device 1 performs ventilation in accordance with the control signal. Increase the air volume to the 1st ventilation air volume or higher.
  • the first time is predetermined, and is, for example, 7 minutes.
  • the first threshold concentration is predetermined, and is, for example, 750 [ppm], 800 [ppm], 1000 [ppm], or 1400 [ppm]. Even if the first threshold concentration can be changed among 750 [ppm], 800 [ppm], 1000 [ppm], 1400 [ppm], etc. by inputting to the controller 3 via the input unit 30, etc. good.
  • the first ventilation air volume is predetermined, and is, for example, the upper limit of the ventilation air volume by the ventilation device 1. Note that when the first ventilation air volume is set to the upper limit ventilation air volume, the main control unit 33 controls the ventilation device 1 to set the ventilation air volume to the first ventilation air volume.
  • the main control unit 33 may change the control content of the air conditioner 2 while the ventilation air volume of the ventilation device 1 is equal to or higher than the first ventilation air volume. Specifically, when the air conditioner 2 is performing heating operation, the main control unit 33 may control the air conditioner 2 to make the temperature higher than the temperature set by the user. For example, when the user inputs into the controller 3 an instruction for heating operation at a set temperature of 22 [°C], the main control unit 33 instructs the air conditioner 2 to perform heating operation to set the temperature to 23 to 24 [°C]. You can also have it executed.
  • the main control unit 33 sets the ventilation air volume by the ventilation device 1 to the first ventilation air volume or higher, so that the ventilation will be promoted, and indoor air quality will be improved more quickly.
  • the main control unit 33 of the first embodiment performs the following processing in order to quickly improve the air quality. If the concentration detected by the carbon dioxide sensor 4 is equal to or higher than the first threshold concentration during the second time period, the main control unit 33 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume.
  • the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume.
  • the adjusted air volume refers to the air volume from the indoor unit 20.
  • the second time is longer than the first time and is predetermined. The second time is, for example, 15 minutes.
  • the main control unit 33 causes the air conditioner 2 to perform a process of stirring the indoor air. You may run it. Specifically, the main control unit 33 may change the direction of the air from the indoor unit 20. For example, the main control unit 33 may adjust the direction of a louver (not shown) so that the air is blown diagonally downward or downward from the indoor unit 20. Alternatively, the main control unit 33 may rotate the louver and change the orientation of the louver from the vertical direction over time. Note that the louver is for controlling the direction of the wind from the indoor unit 20, and is provided at the air outlet from the indoor unit 20. The air agitation process by the indoor unit 20 can eliminate the imbalance in the distribution of carbon dioxide indoors.
  • the main control unit 33 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume
  • the main control unit 33 continues for a third time after the concentration of carbon dioxide becomes less than the second threshold concentration.
  • concentration is less than the second threshold concentration
  • the ventilation device 1 is controlled to reduce the ventilation air volume to the second ventilation air volume or less.
  • the third time is predetermined.
  • the third time may be equal to or different from the first time, and is shorter than the second time.
  • the third time is, for example, 7 minutes.
  • the second threshold concentration is predetermined and is equal to or lower than the first threshold concentration, and is, for example, 750 [ppm]. However, the second threshold concentration is less than or equal to the first threshold concentration.
  • the second ventilation air volume is predetermined, is smaller than the first ventilation air volume, and is, for example, the lower limit of the ventilation air volume by the ventilation device 1. Note that when the second ventilation air volume is set to the lower limit ventilation air volume, the main control unit 33 controls the ventilation device 1 to set the ventilation air volume to the second ventilation air volume.
  • the main control unit 33 controls: The indoor unit 20 may be controlled so that the adjusted air volume is set to the set adjusted air volume. Alternatively, the main control unit 33 may control the indoor unit 20 to adjust the indoor temperature based on the set temperature, or may control the indoor unit 20 to adjust the indoor humidity based on the set humidity. Good too. Accordingly, the main control unit 33 may change the adjusted air volume. In addition, the main control unit 33 may control the indoor unit 20 so that the adjusted air volume is equal to or less than a predetermined second adjusted air volume.
  • the set adjusted air volume is the adjusted air volume that the user inputs into the controller 3 via the input unit 30.
  • the set temperature is the temperature that the user inputs to the controller 3 via the input unit 30
  • the set humidity is the humidity that the user inputs to the controller 3 via the input unit 30.
  • the main control unit 33 continuously controls the ventilation air volume for a third time when the concentration obtained by the wireless communication unit 31 is less than the third threshold concentration instead of when the concentration is less than the second threshold concentration.
  • the ventilation device 1 may be controlled so that the ventilation air volume is equal to or less than the second ventilation air volume.
  • the third threshold concentration is predetermined and is lower than the second threshold concentration, for example, 500 [ppm] or less.
  • the main control unit 33 When the concentration of carbon dioxide is less than the third threshold concentration and when the adjusted air volume by the indoor unit 20 is equal to or higher than the first adjusted air volume, the main control unit 33 causes the adjusted air volume to become the set adjusted air volume.
  • the indoor unit 20 may also be controlled.
  • the main control unit 33 may control the indoor unit 20 to adjust the indoor temperature based on the set temperature, or may control the indoor unit 20 to adjust the indoor humidity based on the set humidity. Good too.
  • the main control unit 33 may control the indoor unit 20 so that the adjusted air volume is equal to or less than a predetermined second adjusted air volume.
  • the display unit 34 displays environmental information indicating the indoor environmental condition or guidance information for improving the environmental condition on the screen according to instructions from the main control unit 33.
  • the environment information includes the following first environment information and second environment information.
  • the first environmental information is information indicating the magnitude relationship between the concentration detected by the carbon dioxide sensor 4 and the first threshold concentration.
  • the second environmental information is information indicating the time course of the concentration detected by the carbon dioxide sensor 4. The environment information will be described in detail below with reference to FIGS. 5 and 6.
  • FIG. 5 is a diagram illustrating the first environment information displayed by the display unit in the first embodiment.
  • the first threshold concentration is 750 [ppm].
  • the direction pointed by the white arrow in FIG. 5 indicates the time direction, and FIG. 5 shows a case where the indoor carbon dioxide concentration changes from less than the first threshold concentration to more than the first threshold concentration.
  • the starting point of the white arrow in FIG. 5 shows the first environmental information when the indoor carbon dioxide concentration is less than the first threshold concentration, and the position pointed to by the white arrow shows The first environmental information is shown when the first environmental information is equal to or higher than the first threshold concentration.
  • the display unit 34 changes the color of the text indicating the concentration of carbon dioxide to the color of the text indicating other contents.
  • the background color of the text indicating the density is the same as the background color of the text indicating other contents.
  • the other contents include the contents of the indoor environmental condition other than the concentration of carbon dioxide, the contents input to the controller 3, and the like, for example, "indoor 27.0 degrees Celsius” and “settings” in FIG. Temperature: 19.0°C.”
  • the display unit 34 displays the color of the text indicating the concentration of carbon dioxide and the color of the text indicating the concentration.
  • Each of the background colors is inverted from the color described above if the concentration of carbon dioxide was less than a first threshold concentration. That is, the display unit 34 displays the color of the text indicating the concentration of carbon dioxide in the same color as the background color of the text indicating other content, and the background color of the text indicating the concentration is the same as the color of the text indicating other content. Expressed the same as.
  • FIG. 6 is a diagram illustrating the second environment information displayed by the display unit in the first embodiment.
  • the horizontal axis in FIG. 4 represents time, and the vertical axis represents the concentration of carbon dioxide detected by the carbon dioxide sensor 4.
  • the first threshold concentration is 800 [ppm]
  • the second threshold concentration is 750 [ppm].
  • the display unit 34 may display dashed lines on the screen that indicate each of the first threshold density and the second threshold density in FIG. 6 . Note that the display unit 34 may indicate each of the first threshold concentration and the second threshold concentration using a straight line, a dashed-dotted line, a dashed-two dotted line, or the like instead of the broken line in FIG.
  • the concentration of carbon dioxide reaches the first threshold concentration of 800 [ppm] at time t1, and continues to rise from time t1 to time t2, and is equal to or higher than the first threshold concentration. Assuming that the time from time t1 to time t2 is the first time, as described above, at time t2, the main control unit 33 controls the ventilation device 1 so that the ventilation air volume is equal to or greater than the first ventilation air volume. After time t2, the concentration of carbon dioxide decreases, and at time t3, the concentration of carbon dioxide is the first threshold concentration.
  • the main control unit 33 sets the ventilation air volume of the ventilation device 1 to the first ventilation air volume or more at the time when the second time has passed from time t1.
  • the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume.
  • the concentration of carbon dioxide is the second threshold concentration of 750 [ppm].
  • the concentration of carbon dioxide is less than the second threshold concentration.
  • the main control unit 33 controls the ventilation device 1 so that the ventilation air volume becomes equal to or less than the second ventilation air volume. In this case, if the adjusted air volume is equal to or higher than the first adjusted air volume at time t5, the main control unit 33 controls the indoor unit 20 so that the adjusted air volume is set to the set adjusted air volume, the second adjusted air volume, or the like.
  • the time or elapsed time indicating each point in FIG. 6 may or may not be displayed on the display unit 34.
  • the dashed-dotted lines indicating each time point shown in FIG. 6 may or may not be displayed by the display unit 34.
  • the display unit 34 may represent each time point using a straight line, a broken line, a two-dot chain line, or the like instead of the one-dot chain line.
  • the guidance information includes the following first to fourth guidance information.
  • the first guidance information is information that guides the user to open both or one of the windows and doors in the room, such as textual information such as "Please open the window for ventilation.” or prompting to open the window. Mark et al.
  • the main control unit 33 controls the display unit 34 to display first guidance information if the concentration detected by the carbon dioxide sensor 4 is higher than the first threshold concentration during the first guidance necessity determination time. Good too.
  • the first guidance necessity determination time is longer than the first time or longer than the second time.
  • the second guidance information is information that prompts cleaning of the filter in the ventilation system, for example, text information such as "The filter is dirty. Please clean it.” or filter cleaning. It is a mark etc. that encourages the following.
  • the main control unit 33 controls the display unit 34 to display second guidance information if the concentration detected by the carbon dioxide sensor 4 is higher than the first threshold concentration during the second guidance necessity determination time. Good too.
  • the second guidance necessity determination time is longer than the first time or longer than the second time.
  • the second guidance necessity determination time may be equal to or different from the first guidance necessity determination time.
  • the third guidance information is information that prompts repair or inspection of the carbon dioxide sensor 4.
  • the third guidance information is, for example, text information such as "Please check whether there is a problem with the sensor.” or a mark that urges repair or inspection of the carbon dioxide sensor 4.
  • the main control unit 33 may control the display unit 34 to display the third guide information in the following cases.
  • the main control unit 33 determines whether there is a correlation between the concentration of carbon dioxide detected by the ventilation concentration sensor 12 and the concentration of carbon dioxide detected by the carbon dioxide sensor 4. If the main control unit 33 determines that there is no correlation between the concentration obtained by the ventilation concentration sensor 12 and the concentration obtained by the carbon dioxide sensor 4, the main control unit 33 causes the third guide information to be displayed.
  • the display unit 34 may also be controlled.
  • the fourth guide information is information that prompts a change in the position of the carbon dioxide sensor 4.
  • the fourth guide information is, for example, text information such as "The sensor is not in an appropriate position, so please move it.” or a mark that urges the carbon dioxide sensor 4 to be moved.
  • the main control unit 33 may acquire position information indicating the position of the carbon dioxide sensor 4, and may control the display unit 34 to display the fourth guide information based on the position information. Note that the main control unit 33 can obtain position information using the following three methods. First, the first method will be explained.
  • the carbon dioxide sensor 4 detects not only the concentration of carbon dioxide but also both or one of indoor temperature and humidity.
  • the main control unit 33 controls the indoor unit 20 to blow air into the room.
  • the main control unit 33 then acquires position information indicating the position of the carbon dioxide sensor 4 based on both or one of the temperature and humidity detected by the carbon dioxide sensor 4 before and after air is blown from the indoor unit 20 .
  • the main control unit 33 acquires position information indicating the position of the carbon dioxide sensor 4 from changes in the temperature detected by the carbon dioxide sensor 4 before and after air is blown from the indoor unit 20 .
  • Each radio wave communication device receives radio waves from the carbon dioxide sensor 4 through wireless communication.
  • One of the three or more radio wave communication devices may be included in the controller 3, and in this case, the wireless communication section 31 corresponds to the one radio wave communication device.
  • the ventilation system 100 may include three or more controllers 3, and each controller 3 may include a respective radio wave communication device. In this case, the wireless communication section 31 of each controller corresponds to each radio wave communication device.
  • the main control unit 33 acquires position information indicating the position of the carbon dioxide sensor 4 based on the intensity of radio waves received from the carbon dioxide sensor 4 by each of the three or more radio wave communication devices.
  • the main control unit 33 acquires position information indicating the position of the carbon dioxide sensor 4 based on the intensity of the radio waves received by the wireless communication unit 31 from the carbon dioxide sensor 4 and the following identifying information.
  • the identification information is information indicating the position of the carbon dioxide sensor 4 in the horizontal direction, and is, for example, information based on GPS (Global Positioning System).
  • the main control unit 33 can estimate the position of the carbon dioxide sensor 4 from the floor based on the intensity of the radio wave and the identification information.
  • the main control unit 33 may change the first threshold density based on the position information. This will be explained in detail below. Below, the position where carbon dioxide is arranged may be described as an arrangement position. The main control unit 33 sets the first threshold concentration to be different depending on whether the height of the arrangement position from the floor is a first height or a second height different from the first height. Good too. Note that the floor surface refers to the indoor floor surface. Here, it is assumed that the second height is larger than the first height. Since carbon dioxide is heavier than oxygen, nitrogen, etc. contained in the air, it is thought that the lower the position from the floor, the higher the carbon dioxide concentration.
  • the main control unit 33 sets the first threshold concentration when the height from the floor of the arrangement position is the first height to the first threshold concentration when the height from the floor of the arrangement position is the second height.
  • the concentration may be higher than the first threshold concentration. That is, the main control unit 33 may increase the first threshold concentration as the arrangement position is lower from the floor surface. Alternatively, the main control unit 33 may increase the first threshold density by a predetermined amount when the height of the arrangement position is less than or equal to the threshold height.
  • the display unit 34 displays each of first environment information, second environment information, first guide information, second guide information, third guide information, and fourth guide information for each predetermined display area on the screen. May be displayed. In addition, the display unit 34 displays all or part of the first environment information, second environment information, first guide information, second guide information, third guide information, and fourth guide information in the same display area on the screen. may be displayed at different times. For example, the display unit 34 displays each of the first environment information and the second environment information in a predetermined first display area on the screen at different timings, and displays the first guide information, the second guide information, and the third guide information. The information and the fourth guide information may each be displayed on the screen in a second display area different from the first display area at different timings.
  • the portion of the display section 34 that displays the first environment information is an example of a first environment display section.
  • the portion of the display section 34 that displays the second environment information is an example of a second environment display section.
  • the portion of the display section 34 that displays the first guidance information is an example of a first guidance display section.
  • the portion of the display section 34 that displays the second guidance information is an example of a second guidance display section.
  • the portion of the display section 34 that displays the third guidance information is an example of a third guidance display section.
  • the portion of the display section 34 that displays the fourth guidance information is an example of a fourth guidance display section.
  • FIG. 7 is a diagram illustrating the hardware configuration of the controller according to the first embodiment.
  • the controller 3 includes a processor 50, a memory 51, a wireless communication interface circuit 52, a clock device 53, a first input interface circuit 54, an input device 55, a first output interface circuit 56, a second output interface circuit 57, and a display device 58.
  • the processor 50, the memory 51, the wireless communication interface circuit 52, the clock device 53, the first input interface circuit 54, the first output interface circuit 56, and the second output interface circuit 57 are connected to each other by a bus 59.
  • the processor 50 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the memory 51 is, for example, ROM (Read Only Memory) or RAM (Random Access Memory).
  • the clock device 53 is, for example, an RTC (Real Time Clock).
  • the input device 55 is, for example, a button or a touch panel, and is connected to the processor 50, the memory 51, etc. via the first input interface circuit 54 and the bus 59.
  • the display device 58 is, for example, a liquid crystal display or a CRT (Cathode Ray Tube), and is connected to the processor 50, the memory 51, etc. via the second output interface circuit 57 and the bus 59.
  • the indoor unit 20 is connected to the first output interface circuit 56 . Note that the ventilation device 1 may be connected to the first output interface circuit 56 together with the indoor unit 20 or instead of the indoor unit 20.
  • the functions of the input section 30 can be realized by the input device 55 and the first input interface circuit 54.
  • the functions of the wireless communication section 31 can be realized by the wireless communication interface circuit 52.
  • the function of the timekeeping section 32 can be realized by a timekeeping device 53.
  • the functions of the main control section 33 can be realized by the processor 50, the memory 51, and the first output interface circuit 56.
  • the functions of the display section 34 can be realized by a display device 58 and a second output interface circuit 57.
  • the controller 3 may transmit a control signal to the indoor unit 20 or the ventilation device 1 etc. by wireless communication. Contains a communication interface circuit.
  • the controller 3 may transmit a control signal to one of the indoor unit 20 and the ventilation device 1 by wired communication, and transmit the control signal to the other by wireless communication.
  • the controller 3 Along with the first output interface circuit 56, other wireless communication interface circuits are included.
  • the function of the clock unit 32 may be realized by software using the processor 50 and the memory 51.
  • the clock unit 32 may measure time by receiving time information indicating the time from the outside.
  • the function of the timer 32 can be realized by a communication interface circuit that receives information from the outside.
  • controller 3 may be realized by dedicated hardware such as a CPLD (Complex Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • FIG. 8 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to the first embodiment.
  • the wireless communication unit 31 of the controller 3 acquires the concentration of carbon dioxide from the carbon dioxide sensor 4.
  • the main control unit 33 determines whether the concentration acquired by the wireless communication unit 31 in step S1 is equal to or higher than the first threshold concentration.
  • the ventilation system 100 moves the process to step S9.
  • step S2 When the concentration acquired by the wireless communication unit 31 in step S1 is equal to or higher than the first threshold concentration (step S2: YES), the main control unit 33 determines that the concentration equal to or higher than the first threshold concentration is equal to or higher than the first threshold concentration in step S3. It is determined whether or not the above information has been obtained continuously. If the concentration equal to or higher than the first threshold concentration has not been continuously obtained for the first time or longer (step S3: NO), the ventilation system 100 returns the process to step S1. If the concentration equal to or higher than the first threshold concentration is continuously obtained for the first time or longer (step S3: YES), in step S4 the main control unit 33 determines whether the ventilation air volume is equal to or higher than the first ventilation air volume. Determine whether or not.
  • step S4 If the ventilation air volume is equal to or greater than the first ventilation air volume (step S4: YES), the ventilation system 100 moves the process to step S6. If the ventilation air volume is less than the first ventilation air volume (step S4: NO), in step S5, the ventilation device 1 increases the ventilation air volume to the first ventilation air volume or more based on the control signal from the controller 3. In step S6, the main control unit 33 determines whether a concentration equal to or higher than the first threshold concentration has been continuously obtained for a second time or longer. If the concentration equal to or higher than the first threshold concentration is not continuously obtained for the second time period or more (step S6: NO), the ventilation system 100 returns the process to step S1. If the concentration equal to or higher than the first threshold concentration is continuously obtained for the second time or longer (step S6: YES), in step S7 the main control unit 33 determines whether the adjusted air volume is equal to or higher than the first adjusted air volume. Determine whether or not.
  • step S7 If the adjusted air volume is equal to or greater than the first adjusted air volume (step S7: YES), the ventilation system 100 returns the process to step S1. If the adjusted air volume is less than the first adjusted air volume (step S7: NO), the indoor unit 20 increases the adjusted air volume to the first adjusted air volume or higher based on the control signal from the controller 3 in step S8. After the process in step S8, the ventilation system 100 returns the process to step S1.
  • step S9 the main control unit 33 determines whether the concentration acquired by the wireless communication unit 31 in step S1 is less than the second threshold concentration. If the concentration acquired by the wireless communication unit 31 in step S1 is equal to or higher than the second threshold concentration (step S9: NO), the ventilation system 100 returns the process to step S1. If the concentration acquired by the wireless communication unit 31 in step S1 is less than the second threshold concentration (step S9: YES), in step S10 the main control unit 33 determines that the concentration less than the second threshold concentration is It is determined whether or not the above information has been obtained continuously. If the concentration below the first threshold concentration is not continuously obtained for the third time or more (step S10: NO), the ventilation system 100 returns the process to step S1.
  • step S11 the main control unit 33 determines whether the ventilation air volume is equal to or higher than the first ventilation air volume. Determine whether or not. Note that, in step S11, the main control unit 33 determines whether the current ventilation air volume is equal to or greater than the first ventilation air volume by performing the process of step S5 before step S1.
  • step S11: NO If the ventilation air volume is less than the first ventilation air volume (step S11: NO), the ventilation system 100 moves the process to step S13. If the ventilation air volume is greater than or equal to the first ventilation air volume (step S11: YES), in step S12, the ventilation apparatus 1 reduces the ventilation air volume to the second ventilation air volume or less based on the control signal from the controller 3. In step S13, the main control unit 33 determines whether the adjusted air volume is equal to or greater than the first adjusted air volume.
  • step S13: NO If the adjusted air volume is less than the first adjusted air volume (step S13: NO), the ventilation system 100 returns the process to step S1. If the adjusted air volume is greater than or equal to the first adjusted air volume (step S13: YES), the indoor unit 20 changes the adjusted air volume based on the control signal from the controller 3 in step S14. The adjusted air volume changes to a set adjusted air volume, an air volume that is equal to or less than the second adjusted air volume, or the like. After the process in step S14, the ventilation system 100 returns the process to step S1.
  • FIG. 8 shows that the processes in steps S6 to S8 are performed after the processes in steps S3 to S5, the processes in steps S3 to S5 and the processes in steps S6 to S8 are performed in parallel. may be performed. Alternatively, the processes in steps S6 to S8 may be executed before the processes in steps S3 to S5. In this case, if it is determined in step S6 that the concentration equal to or higher than the first threshold concentration has not been continuously obtained for the second time period or more, the ventilation system 100 moves the process to step S3. Furthermore, if the adjusted air volume is equal to or greater than the first adjusted air volume in step S7, the ventilation system 100 moves the process to step S3.
  • FIG. 8 shows that the processing of steps S13 to S14 is performed after the processing of steps S11 to S12, the processing of steps S11 to S12 and the processing of steps S13 to S14 are performed in parallel. may be performed. Alternatively, the processes in steps S13 and S14 may be executed before the processes in steps S11 and S12. In this case, if it is determined in step S13 that the adjusted air volume is less than the first adjusted air volume, the ventilation system 100 moves the process to step S11.
  • the controller 3 includes a wireless communication section 31 and a main control section 33.
  • the wireless communication unit 31 performs wireless communication with an environment detection device that detects the concentration of carbon dioxide in the room, and receives the concentration from the environment detection device.
  • the main control unit 33 controls the ventilation device 1 that ventilates the room based on the concentration obtained from the environment detection device.
  • the controller 3 acquires the indoor carbon dioxide concentration from the environment detection device through wireless communication. Then, the controller 3 controls the ventilation device 1 based on the concentration. Therefore, the ventilation system 100 can perform air conditioning according to the air quality in the area where a person is located indoors. Furthermore, it is possible to reduce the burden of wiring work and reduce costs when introducing the ventilation system 100.
  • the main control unit 33 in the first embodiment sets the ventilation air volume, which is the air volume for ventilation, in advance when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the first time.
  • the ventilation device 1 is controlled so that the air volume is equal to or higher than the first ventilation air volume. As a result, ventilation is promoted in a state where the indoor air quality is deteriorated, so that the indoor air quality can be quickly improved.
  • the main control unit 33 in the first embodiment controls the indoor unit 20 of the air conditioner 2 that adjusts both or one of indoor temperature and humidity.
  • the main control unit 33 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the second time period.
  • the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume.
  • the main control unit 33 controls the indoor unit 20 so that the adjusted air volume is equal to or higher than the first adjusted air volume. By doing so, it becomes easier and faster to improve indoor air quality.
  • the main control unit 33 in the first embodiment controls the ventilation device 1 via the indoor unit 20. Thereby, the number of parts of the controller 3 can be reduced. Moreover, when the controller 3 controls the indoor unit 20 by wired communication, the wiring work between the ventilation device 1 and the controller 3 is omitted, so that the wiring work is simplified.
  • the main control unit 33 in the first embodiment controls the ventilation device to reduce the ventilation air volume to the second ventilation air volume or less when the concentration detected by the environment detection device is less than the second threshold concentration during the third time period. Control 1. Since the main control unit 33 sets the ventilation air volume to the second ventilation air volume or less when the indoor air quality has improved, the ventilation system 100 can save energy.
  • the main control unit 33 in the first embodiment determines the first threshold concentration when the height from the floor of the arrangement position of the environment sensing device is the first height, and the first threshold concentration when the height from the floor of the arrangement position is the first height.
  • the second height is higher than the first threshold concentration when the second height is larger than the first height.
  • Carbon dioxide is heavier than nitrogen, oxygen, etc., and tends to stay near the floor.
  • the main control unit 33 determines the first threshold concentration when the height of the arrangement position is a first height smaller than the second height, and the first threshold concentration when the height of the arrangement position is a second height.
  • the ventilation system 100 can provide ventilation in accordance with the location of the environmental sensing device.
  • the controller 3 further includes a first environment display section.
  • the first environment display section displays first environment information indicating a magnitude relationship between the concentration detected by the boundary detection device and the first threshold concentration. This allows the user to quickly and easily recognize the state of indoor air quality.
  • the controller 3 further includes a second environment display section.
  • the second environment display section displays second environment information indicating the temporal change in concentration detected by the environment detection device. This allows the user to easily recognize temporal changes in indoor air quality.
  • the controller 3 further includes a first guide display section.
  • the first guidance display section displays first guidance information for guiding the user to open both or one of a window and a door in the room.
  • the main control unit 33 controls the first guidance display unit to display the first guidance information when the concentration detected by the environment detection device is higher than the first threshold concentration during the first guidance necessity determination time. do. This allows the user to quickly recognize deterioration in air quality and the need for ventilation.
  • the controller 3 further includes a second guide display section.
  • the second guide display section displays second guide information urging cleaning inside the ventilation device.
  • the main control unit 33 controls the second guidance display unit to display second guidance information if the concentration detected by the environment detection device is higher than the first threshold concentration during the second guidance necessity determination time. do.
  • the user can recognize that there is a possibility that the inside of the ventilation device 1 needs to be cleaned when the indoor air quality deteriorates. For example, in a case where the air quality is not improved by ventilation by using the ventilation device 1 or by opening a window, the user can immediately recognize that cleaning inside the ventilation device 1 is necessary.
  • the controller 3 further includes a third guide display section.
  • the third guidance display section displays third guidance information urging repair or inspection of the environment detection device.
  • the ventilation device 1 includes a ventilation concentration detection device that detects the concentration of carbon dioxide in the indoor air that has flowed into the ventilation device 1.
  • the main control unit 33 is configured to display third guidance information when there is no correlation between the concentration of carbon dioxide detected by the ventilation concentration detection device and the concentration of carbon dioxide detected by the environment detection device. Controls the third guide display section.
  • the concentration of carbon dioxide in the ventilation device 1 and the concentration of carbon dioxide indoors are correlated. However, if the detection results of the ventilation concentration detection device and the environment detection device do not correlate, it is possible that an abnormality has occurred in the environment detection device. In such a case, the third guide display section displays the third guide information, so that the user can quickly and easily recognize the possibility of an abnormality in the environment detection device. Then, the user can quickly request repair of the environment detection device.
  • the controller 3 further includes a fourth guide display section.
  • the fourth guidance display section displays fourth guidance information that prompts the user to change the position of the environment sensing device.
  • the ventilation device 1 includes a ventilation concentration detection device that detects the concentration of carbon dioxide in the air that has flowed into the ventilation device 1.
  • the main control unit 33 is configured to display fourth guidance information when there is no correlation between the concentration of carbon dioxide detected by the ventilation concentration detection device and the concentration of carbon dioxide detected by the environment detection device. Controls the fourth guide display section.
  • the concentration of carbon dioxide in the ventilation device 1 and the concentration of carbon dioxide indoors are correlated. However, if the detection results of the ventilation concentration detection device and the environment detection device do not correlate, there may be a problem with the placement position of the environment detection device.
  • the environmental sensing device For example, if the environmental sensing device is placed at a location away from where people are indoors, such as near the entrance of the room, the environmental sensing device will detect a concentration of carbon dioxide that is lower than the concentration of carbon dioxide at the location where people are. may be detected. This may result in inadequate ventilation.
  • the fourth guide display section displays the fourth guide information, so that the user can quickly and easily recognize the necessity of moving the environment sensing device. By moving the environment detection device, the environment detection device can accurately detect the concentration of carbon dioxide at the location where a person is present. Therefore, the ventilation system 100 can perform ventilation according to the indoor air quality.
  • the environment detection device in Embodiment 1 detects both or one of indoor temperature and humidity.
  • the main control unit 33 causes the indoor unit 20 to blow air into the room.
  • the main control unit 33 acquires position information indicating the position of the environment detection device based on both or one of the temperature and humidity detected by the environment detection device before and after the air is blown from the indoor unit 20. Thereby, the main control unit 33 can determine whether the location of the environment sensing device is appropriate based on the location information.
  • the fourth guide display section can display fourth guide information with higher accuracy.
  • the environment detection device in the first embodiment wirelessly communicates with three or more radio wave communication devices placed indoors.
  • the main control unit 33 acquires position information based on the strength of radio waves received by each of the three or more radio wave communication devices from the environment detection device. Thereby, the main control unit 33 can determine whether the location of the environment sensing device is appropriate based on the location information.
  • the fourth guide display section can display fourth guide information with higher accuracy.
  • the ventilation system 100 includes an environment detection device, a ventilation device 1, and a controller 3.
  • the environmental sensing device detects the concentration of carbon dioxide in the room.
  • the ventilation device 1 ventilates the room.
  • the controller 3 performs wireless communication with the environment detection device, acquires the concentration from the environment detection device, and controls the ventilation device 1 based on the acquired concentration.
  • the controller 3 acquires the indoor carbon dioxide concentration from the environment detection device through wireless communication. Then, the controller 3 controls the ventilation device 1 based on the concentration. Therefore, the ventilation system 100 can perform air conditioning according to the air quality in the area where a person is located indoors. Furthermore, it is possible to reduce the burden of wiring work and reduce costs when introducing the ventilation system 100.
  • the controller 3 sets the ventilation air volume, which is the air volume for ventilation, to the first ventilation air volume when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the first time.
  • the ventilation system 1 is controlled so as to achieve the above. As a result, ventilation is promoted in a state where the indoor air quality is deteriorated, so that the indoor air quality can be quickly improved.
  • the ventilation system 100 further includes an indoor unit 20 of the air conditioner 2 that adjusts both or one of indoor temperature and humidity.
  • the controller 3 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the second time period.
  • the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume. Even if the indoor air quality deteriorates and it takes time to improve the air quality with the ventilation device 1 alone, the controller 3 controls the indoor unit 20 so that the adjusted air volume is equal to or higher than the first adjusted air volume. Accordingly, the ventilation system 100 can quickly improve indoor air quality.
  • the controller 3 controls the ventilation device 1 to make the ventilation air volume equal to or less than the second ventilation air volume when the concentration detected by the environment detection device is less than the second threshold concentration during the third time period. control. Since the controller 3 sets the ventilation air volume to the second ventilation air volume or less when the indoor air quality has improved, the ventilation system 100 can save energy.
  • the display section 34 of the controller 3 displays the first environment information to the second environment information and the first guide information to the fourth guide information.
  • all or part of the first environment information to second environment information and the first guide information to fourth guide information may be displayed on the user's communication terminal device together with the display section 34 or in place of the display section 34. It may be displayed by Note that the communication terminal device is a smartphone, a tablet terminal, or the like.
  • the communication terminal device displays all or part of the first environment information to second environment information and the first guide information to fourth guide information, the communication terminal device and the controller 3 are not able to communicate with each other. be.
  • An application program for processing information received from the controller 3 is installed in the communication terminal device.
  • the communication terminal device When the communication terminal device displays both or one of the first environment information and the second environment information, the communication terminal device receives a request to view the first environment information and the second environment information from the user. Based on the viewing request, the communication terminal device transmits request information to the controller 3 requesting the communication terminal device to transmit both or one of the first environment information and the second environment information. The controller 3 transmits both or one of the first environment information and the second environment information to the communication terminal device according to the request information, and the communication terminal device transmits both or the received first environment information and second environment information. Show one side.
  • the controller 3 When the communication terminal device displays all or part of the first guide information to the fourth guide information, the controller 3 causes the display unit 34 to display all or part of the first guide information to the fourth guide information. When the above-mentioned conditions are satisfied, all or part of the first guide information to fourth guide information is transmitted to the communication terminal device. Then, the communication terminal device displays all or part of the received first guide information to fourth guide information.
  • Embodiment 2 the ventilation system 100 according to the second embodiment will be described in detail.
  • the same reference numerals are given to the same components as those in the first embodiment.
  • descriptions of configurations similar to those in the first embodiment, functions similar to those in the first embodiment, etc. will be omitted unless there are special circumstances.
  • FIG. 9 is a block diagram illustrating a ventilation system according to the second embodiment.
  • the ventilation system 100 in the second embodiment further includes a human sensor 6.
  • a human sensor 6 As shown in FIG. 9 , a case in which the human sensor 6 is provided in the indoor unit 20 will be described below as an example, but the human sensor 6 may also be provided in the ventilation device 1 .
  • the human sensor 6 detects the presence of a person indoors.
  • the human sensor 6 may be a sensor capable of detecting the number of people in the room, such as a thermograph, for example, but may also be a sensor capable of detecting the position of a person in the room.
  • the human sensor 6 transmits the detection result to the controller 3.
  • the human sensor 6 transmits the detection result to the controller 3 directly or via the indoor unit 20 or the like.
  • the human sensor 6 is an example of a human detection device.
  • FIG. 10 is a block diagram showing a configuration example of a controller according to the second embodiment.
  • the controller 3 of the second embodiment further includes an acquisition unit 35 in addition to the configuration of the controller 3 of the first embodiment.
  • the acquisition unit 35 periodically acquires detection results from the human sensor 6.
  • the acquisition unit 35 acquires the detection result from the human sensor 6 directly or via the indoor unit 20 or the like.
  • the acquisition unit 35 may acquire the detection result from the human sensor 6 by wired communication or by wireless communication. It's okay.
  • the main control unit 33 acquires the number of people in the room from the detection results acquired by the acquisition unit 35. The main control unit 33 then determines whether the number of people in the room has increased. When the number of people increases, the main control unit 33 controls the ventilation device 1 to increase the ventilation air volume from the current value in accordance with the increase in the number of people. Instead of controlling the ventilation system 1 to increase the ventilation air volume from the current value according to the increase in the number of people in the room, the main control unit 33 determines whether the number of people is equal to or more than a predetermined threshold number of people. If it is determined whether or not the number of people is equal to or greater than the threshold number of people, the ventilation device 1 may be controlled to make the ventilation air volume equal to or greater than the first ventilation air volume.
  • the main control unit 33 controls the ventilation device 1 to increase the ventilation air volume from the current value according to the increase in the number of people in the room, and determines whether the number of people is equal to or higher than the threshold number of people. If the number of people is equal to or greater than the threshold number of people, the ventilation device 1 may be controlled to make the ventilation air volume equal to or greater than the first ventilation air volume.
  • the main control unit 33 controls the ventilation system 1 to make the ventilation air volume equal to or higher than the first ventilation air volume even if the concentration of carbon dioxide is less than the first threshold concentration. control.
  • the ventilation system 100 can prevent deterioration of indoor air quality.
  • the main control unit 33 performs the following process in place of or in addition to the ventilation air volume control process described above when the number of people in the room increases or the number of people is equal to or greater than the threshold number of people. It can be anything. That is, the main control unit 33 may lower the first threshold concentration according to an increase in the number of people. In this case, the main control unit 33 stores the number of people concentration correspondence information that associates the number of people with the concentration of carbon dioxide, and associates the first threshold concentration with the number of people in the room in the number of people concentration correspondence information. It may be changed to a different concentration. Note that the density in the number of people density correspondence information is lower as the number of people increases.
  • the number of people concentration correspondence information is predetermined by learning using AI (Artificial Intelligence), experimentation, or the like.
  • the main control unit 33 may lower the first threshold concentration when the number of people in the room is equal to or greater than the threshold number of people. In this case, when the number of people in the room is equal to or greater than the threshold number of people, the main control unit 33 increases the first threshold concentration by a predetermined value from the first threshold concentration when the number of people in the room is less than the threshold number of people. It may be lowered.
  • the main control unit 33 may control the indoor unit 20 to increase the adjusted air volume from the current value in accordance with the increase in the number of people in the room.
  • the main control unit 33 determines whether the number of people in the room is equal to or greater than the threshold number of people, and if the number of people is equal to or greater than the threshold number of people, controls the indoor unit 20 to make the adjusted air volume equal to or higher than the first adjusted air volume. You may.
  • the main control unit 33 increases the adjusted air volume according to the increase in the number of people and/or changes the adjusted air volume to more than the first adjusted air volume when the number of people is equal to or more than the threshold number of people.
  • the air conditioner 2 may be caused to perform the air agitation process as described above.
  • the main control unit 33 determines whether there is a correlation between the number of people based on the detection result of the human sensor 6 and the concentration detected by the carbon dioxide sensor 4, and if there is no correlation between the number of people and the concentration
  • the display section 34 may be controlled to display both or one of the third guide information and the fourth guide information.
  • the main control unit 33 determines whether the air conditioner 2 is operating or not. You may. When the air conditioner 2 is operating, windows etc. are often not open. Even though the number of people in the room has increased under such conditions, if there is no correlation between the number of people in the room and the concentration detected by the carbon dioxide sensor 4, the placement position of the carbon dioxide sensor 4 may be The case may be that the person is far away from the current location, or there is an abnormality in the carbon dioxide sensor 4.
  • the main control unit 33 detects that there is no correlation between the number of people in the room and the concentration detected by the carbon dioxide sensor 4. If not, the display unit 34 may be controlled to display both or one of the third guide information and the fourth guide information.
  • the main control unit 33 causes the display unit 34 to display fourth guidance information. may be controlled.
  • FIG. 11 is a diagram illustrating the hardware configuration of the controller according to the second embodiment.
  • the controller 3 according to the second embodiment further includes a second input interface circuit 60 in addition to the configuration illustrated in FIG.
  • the second input interface circuit 60 is connected to the processor 50, memory 51, etc. via a bus 59.
  • the human sensor 6 is connected to the second input interface circuit 60 either directly or via the indoor unit 20 .
  • the functions of the acquisition unit 35 can be realized by the second input interface circuit 60.
  • FIG. 12 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to the second embodiment.
  • the processing from step S21 to step S23 shown in FIG. 12 is executed in parallel to the processing from step S1 to step S14 shown in FIG.
  • the acquisition unit 35 acquires the detection result from the human sensor 6.
  • the main control unit 33 determines whether the number of people in the room has increased. That is, the main control unit 33 determines whether the number of people based on the detection result obtained from the human sensor 6 in the current step S21 is greater than the number of people based on the detection result obtained from the human sensor 6 in the previous step S21.
  • step S22 determines whether or not. If the number of people in the room has not increased (step S22: NO), the ventilation system 100 returns the process to step S21.
  • step S22: YES the ventilation device 1 increases the ventilation air volume based on the control signal from the main control unit 33 in step S23. After the process in step S23, the ventilation system 100 returns the process to step S21.
  • the main control unit 33 in the second embodiment controls the ventilation device 1 to increase the ventilation air volume when the number of people increases based on the detection result by the person detection device that detects the presence of people in the room.
  • the ventilation system 100 prevents deterioration of indoor air quality by causing the ventilation device 1 to increase the ventilation air volume according to the increase in the number of people before the concentration of carbon dioxide reaches the first threshold concentration. becomes possible.
  • the controller 3 further includes a third guidance display section that displays third guidance information that prompts repair or inspection of the environment sensing device.
  • the main control unit 33 controls the third guidance display unit to display third guidance information when there is no correlation between the number of people based on the detection result of the human detection device and the concentration detected by the environment detection device. do. There is a correlation between the number of people in the room and the concentration of carbon dioxide in the room, but if there is no correlation between the number of people in the room and the concentration measured by the environmental detection device, there may be an abnormality in the environmental detection device. . In such a case, the third guidance display section displays the third guidance information, thereby allowing the user to recognize the possibility of an abnormality in the environment detection device. Then, the user can promptly request repair of the environment sensing device.
  • the controller 3 further includes a fourth guide display section that displays fourth guide information that prompts the user to change the position of the environment sensing device.
  • the main control unit 33 controls the fourth guidance display unit to display fourth guidance information when no environment detection device is placed within a threshold range from the position of the person detected by the person detection device. This allows the user to easily recognize the necessity of moving the environment sensing device. By disposing the environmental detection device at a position where the concentration of carbon dioxide in the room is higher, the ventilation system 100 can quickly and appropriately improve the indoor air quality.
  • the controller 3 further includes a fourth guide display section that displays fourth guide information that prompts the user to change the position of the environment sensing device. If there is no correlation between the number of people based on the detection result of the person detection device that detects the presence of people in the room and the concentration detected by the environment detection device, the main control unit 33 transmits fourth guidance information.
  • the fourth guidance display unit is controlled to display the information. There is a correlation between the number of people in the room and the concentration of carbon dioxide in the room, but if there is no correlation between the number of people in the room and the concentration measured by the environmental detection device, the environment detection device should be placed in a location where there are no people. There is a possibility that the concentration of carbon dioxide is relatively low indoors.
  • the fourth guidance display section displays the fourth guidance information, thereby allowing the user to easily recognize the necessity of moving the environment sensing device.
  • the environmental detection device By disposing the environmental detection device at a location where the concentration of carbon dioxide is high, such as a location where a person is present, the ventilation system 100 can quickly and appropriately improve the indoor air quality.
  • the ventilation system 100 further includes a person detection device that detects the presence of a person indoors.
  • the controller 3 controls the ventilation device 1 to increase the ventilation air volume when the number of people increases based on the detection result by the person detection device.
  • the concentration of carbon dioxide in the room gradually increases.
  • the ventilation system 100 prevents deterioration of indoor air quality by causing the ventilation device 1 to increase the ventilation air volume according to the increase in the number of people before the concentration of carbon dioxide reaches the first threshold concentration. becomes possible.
  • the ventilation system 100 includes the air conditioner 2 has been described as an example, but the ventilation system 100 may not include the air conditioner 2. In this case, the ventilation system 100 does not perform the processing of steps S6 to S8 and the processing of steps S13 to S14 shown in FIG. 8.
  • the controller 3 according to Embodiments 1 and 2 may further include a lighting device. Instead of displaying the guidance information on the display section 34, or in addition to displaying the guidance information, the lighting device lights up or blinks in response to instructions from the main control section 33, thereby displaying the first to fourth guidance information.
  • Various types of guidance may be provided corresponding to all or part of the information.
  • Both or one of the carbon dioxide sensor 4 and the ventilation concentration sensor 12 of Embodiments 1 and 2 may have a function as a refrigerant leak sensor.
  • the main control unit 33 determines that the refrigerant has leaked when the concentration of the refrigerant detected by the function is equal to or higher than the refrigerant threshold concentration.
  • the refrigerant threshold concentration is set higher than the first threshold concentration so that it is not determined that the refrigerant has leaked due to an increase in the concentration of carbon dioxide.
  • the first threshold concentration is 1000 [ppm]
  • the refrigerant threshold concentration is 2000 [ppm] or more and 3000 [ppm] or less.
  • the indoor unit 20 of Embodiments 1 and 2 may be provided with an indoor concentration sensor that detects the concentration of carbon dioxide in the air that has flowed into the indoor unit 20 from the room.
  • the indoor concentration sensor is an example of an indoor concentration detection device that detects the concentration of carbon dioxide in indoor air that has flowed into the indoor unit 20.
  • Only one ventilation device 1 may be installed in a large space, and in this case, air is ventilated over a wide area through one duct, and each of the ventilation concentration sensor 12 and the carbon dioxide sensor 4 Detection results may become uncorrelated.
  • the main control unit 33 can detect the detection result by the indoor concentration sensor together with the detection result by the ventilation concentration sensor 12, or instead of the detection result by the ventilation concentration sensor 12. It may be determined whether the detection result correlates with the detection result by the carbon dioxide sensor 4. Then, if the detection result by the indoor concentration sensor does not correlate with the detection result by the carbon dioxide sensor 4, the display section 34 may be controlled to display the above-mentioned third guide information or fourth guide information.
  • Embodiments 1 and 2 have been described above, the content of the present disclosure is not limited to the embodiments, and includes conceivable equivalent ranges. Furthermore, the configurations and modifications thereof described in Embodiments 1 and 2 can be combined with each other as long as the functions and operations are not impaired.
  • Ventilation system 2 Air conditioner, 3 Controller, 4 Carbon dioxide sensor, 6 Human sensor, 10A First ventilation blower, 10B Second ventilation blower, 11 Total heat exchanger, 12 Ventilation concentration sensor, 13 Outside temperature Humidity sensor, 14 Supply air temperature sensor, 20 Indoor unit, 21 Outdoor unit, 30 Input unit, 31 Wireless communication unit, 32 Timing unit, 33 Main control unit, 34 Display unit, 35 Acquisition unit, 50 Processor, 51 Memory, 52 Wireless communication interface circuit, 53 Timing device, 54 First input interface circuit, 55 Input device, 56 First output interface circuit, 57 Second output interface circuit, 58 Display device, 59 Bus, 60 Second input interface circuit, 100 Ventilation System, t1, t2, t3, t4, t5 time points.

Abstract

This ventilation system has an environment detection device, a ventilation device, and a controller. The environment detection device detects the concentration of carbon dioxide in a room. The ventilation device ventilates the room. The controller is provided with a wireless communication unit and a main control unit. The wireless communication unit communicates wirelessly with the environment detection device and acquires the concentration from the environment detection device. The main control unit controls the ventilation device on the basis of the concentration acquired from the environment detection device.

Description

コントローラおよび換気システムController and ventilation system
 本開示は、換気装置を制御するコントローラ、および、当該コントローラと当該換気装置とを含む換気システムに関するものである。 The present disclosure relates to a controller that controls a ventilation device, and a ventilation system that includes the controller and the ventilation device.
 従来、室内の二酸化炭素の濃度を検知する二酸化炭素センサを換気装置に備えた換気システムが知られている(例えば、特許文献1参照)。特許文献1の換気装置は、本体内の、空気を室外へ放出するための通路に二酸化炭素センサを備える。当該二酸化炭素センサはコントローラと有線接続され、当該コントローラは二酸化炭素センサの検知結果に基づいて換気装置の制御を行う。 Conventionally, a ventilation system is known in which a ventilation device is equipped with a carbon dioxide sensor that detects the concentration of carbon dioxide in a room (see, for example, Patent Document 1). The ventilation device disclosed in Patent Document 1 includes a carbon dioxide sensor in a passage within the main body for discharging air to the outside. The carbon dioxide sensor is connected by wire to a controller, and the controller controls the ventilation device based on the detection results of the carbon dioxide sensor.
特開2018-119752号公報Japanese Patent Application Publication No. 2018-119752
 換気装置内に配置された二酸化炭素センサによって、当該換気装置内の二酸化炭素の濃度の検知が可能となるが、換気装置内の二酸化炭素の濃度は、室内における人が居る位置の二酸化炭素の濃度と一致するとは限らない。そのため、室内における人が位置する領域での空気質に応じた空調が望まれていた。 A carbon dioxide sensor placed inside a ventilation system makes it possible to detect the concentration of carbon dioxide inside the ventilation system, but the concentration of carbon dioxide inside the ventilation system is based on the concentration of carbon dioxide at the location where a person is in the room. does not necessarily match. Therefore, there has been a demand for air conditioning that is appropriate for the air quality in the area where people are located indoors.
 また、従来の環境システムでは、二酸化炭素センサがコントローラと有線接続されるため、導入時における配線作業が必要であった。更に、二酸化炭素センサが搭載された換気装置の導入にはコストがかかる場合があった。 Furthermore, in conventional environmental systems, the carbon dioxide sensor is connected to the controller by wire, so wiring work is required at the time of installation. Furthermore, installing a ventilation system equipped with a carbon dioxide sensor may be costly.
 本開示は、上記課題を解決するためになされたものであり、室内における人が位置する領域での空気質に応じた空調を可能にし、導入時における作業負担の軽減、およびコスト軽減を図るコントローラおよび換気システムを提供することを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and provides a controller that enables air conditioning according to the air quality in the area where people are located indoors, reducing the workload and cost at the time of introduction. and ventilation systems.
 本開示に係るコントローラは、室内の二酸化炭素の濃度を検知する環境検知装置と無線通信を行い、前記環境検知装置から前記濃度を取得する無線通信部と、前記室内を換気する換気装置を、前記環境検知装置から取得した前記濃度に基づいて制御する主制御部と、を備えるものである。 The controller according to the present disclosure includes a wireless communication unit that performs wireless communication with an environment detection device that detects a concentration of carbon dioxide in a room and acquires the concentration from the environment detection device, and a ventilation device that ventilates the room. and a main control section that performs control based on the concentration obtained from the environment detection device.
 本開示に係る換気システムは、室内の二酸化炭素の濃度を検知する環境検知装置と、前記室内を換気する換気装置と、前記環境検知装置と無線通信を行い、前記環境検知装置から前記濃度を取得し、取得した前記濃度に基づいて前記換気装置を制御するコントローラと、を有するものである。 A ventilation system according to the present disclosure includes an environment detection device that detects the concentration of carbon dioxide in a room, a ventilation device that ventilates the room, and wireless communication with the environment detection device to acquire the concentration from the environment detection device. and a controller that controls the ventilation device based on the obtained concentration.
 本開示に係るコントローラおよび換気システムによれば、コントローラは、無線通信によって環境検知装置から室内の二酸化炭素の濃度を取得する。そして、コントローラは、当該濃度に基づいて換気装置を制御する。従って、換気システムは、室内における人が位置する領域での空気質に応じた空調が可能になる。また、換気システムの導入時における、配線作業の負担軽減と、コスト軽減とが可能になる。 According to the controller and ventilation system according to the present disclosure, the controller acquires the indoor carbon dioxide concentration from the environmental sensing device through wireless communication. The controller then controls the ventilation device based on the concentration. Therefore, the ventilation system can perform air conditioning according to the air quality in the area where a person is located in the room. Furthermore, it is possible to reduce the burden of wiring work and reduce costs when introducing a ventilation system.
実施の形態1に係る換気システムを例示するブロック図である。1 is a block diagram illustrating a ventilation system according to Embodiment 1. FIG. 実施の形態1における換気装置と空気調和機とコントローラと二酸化炭素センサの、室内における設置例を示す模式図である。FIG. 2 is a schematic diagram showing an example of indoor installation of a ventilation device, an air conditioner, a controller, and a carbon dioxide sensor according to the first embodiment. 実施の形態1における換気装置について説明するための模式図である。FIG. 2 is a schematic diagram for explaining a ventilation device in Embodiment 1. FIG. 実施の形態1に係るコントローラの構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a controller according to Embodiment 1. FIG. 実施の形態1における表示部が表示する第1環境情報を例示する図である。FIG. 3 is a diagram illustrating first environment information displayed by the display unit in Embodiment 1. FIG. 実施の形態1における表示部が表示する第2環境情報を例示する図である。FIG. 6 is a diagram illustrating second environment information displayed by the display unit in the first embodiment. 実施の形態1に係るコントローラのハードウェア構成を例示する図である。1 is a diagram illustrating a hardware configuration of a controller according to Embodiment 1. FIG. 実施の形態1に係る換気システムによる換気処理の流れを例示するフローチャートである。5 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to the first embodiment. 実施の形態2に係る換気システムを例示するブロック図である。FIG. 2 is a block diagram illustrating a ventilation system according to a second embodiment. 実施の形態2に係るコントローラの構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a controller according to Embodiment 2. FIG. 実施の形態2に係るコントローラのハードウェア構成を例示する図である。3 is a diagram illustrating a hardware configuration of a controller according to a second embodiment. FIG. 実施の形態2に係る換気システムによる換気処理の流れを例示するフローチャートである。7 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to Embodiment 2. FIG.
 以下、図面を参照し、実施の形態に係るコントローラおよび換気システムについて詳述する。 Hereinafter, a controller and a ventilation system according to an embodiment will be described in detail with reference to the drawings.
 実施の形態1.
 図1は、実施の形態1に係る換気システムを例示するブロック図である。換気システム100は、換気装置1と空気調和機2とコントローラ3と二酸化炭素センサ4とを有する。図2は、実施の形態1における換気装置と空気調和機とコントローラと二酸化炭素センサの、室内における設置例を示す模式図である。換気装置1は、室内に設置され、室内の換気を行う。換気装置1は、全熱交換型の換気装置であることが望ましく、以下、実施の形態1では、換気装置1を全熱交換型の換気装置であるとして説明する。
Embodiment 1.
FIG. 1 is a block diagram illustrating a ventilation system according to a first embodiment. The ventilation system 100 includes a ventilation device 1, an air conditioner 2, a controller 3, and a carbon dioxide sensor 4. FIG. 2 is a schematic diagram showing an example of indoor installation of a ventilation device, an air conditioner, a controller, and a carbon dioxide sensor according to the first embodiment. The ventilation device 1 is installed indoors and ventilates the room. It is preferable that the ventilation device 1 is a total heat exchange type ventilation device, and hereinafter, in the first embodiment, the ventilation device 1 will be described as a total heat exchange type ventilation device.
 図3は、実施の形態1における換気装置について説明するための模式図である。換気装置1は、筐体1Hの内部に、第1換気用送風機10Aと第2換気用送風機10Bと全熱交換器11とを備える。図3における白抜きの矢印は、空気の流通方向を指す。また、破線と一点鎖線の各々は、空気が流れる経路を示す。第1換気用送風機10Aは、図3の破線に示されるように、外気OAを換気装置1内に導き、導いた当該外気OAを給気SAとして室内に送り出す。第2換気用送風機10は、図3の一点鎖線に示されるように、室内の空気を還気RAとして換気装置1に導き、導いた還気RAを排気EAとして室内に送り出す。全熱交換器11は、換気用送風機10が換気装置1内に吸入した外気OAと還気RAとの間で熱交換させる。これにより、外気OAの温度が還気RAの温度より低い場合には、外気OAは温められて給気SAとして室内に送り出される。一方、還気RAは冷やされて排気EAとして室外に送り出される。 FIG. 3 is a schematic diagram for explaining the ventilation device in Embodiment 1. The ventilation device 1 includes a first ventilation blower 10A, a second ventilation blower 10B, and a total heat exchanger 11 inside a housing 1H. The white arrow in FIG. 3 indicates the direction of air flow. Further, each of the broken line and the dashed-dotted line indicates a path through which air flows. As shown by the broken line in FIG. 3, the first ventilation blower 10A guides outside air OA into the ventilation device 1, and sends out the led outside air OA into the room as supply air SA. The second ventilation blower 10, as shown by the dashed line in FIG. 3, guides indoor air as return air RA to the ventilation device 1, and sends the guided return air RA into the room as exhaust EA. The total heat exchanger 11 exchanges heat between the outside air OA drawn into the ventilation device 1 by the ventilation blower 10 and the return air RA. As a result, when the temperature of the outside air OA is lower than the temperature of the return air RA, the outside air OA is warmed and sent into the room as the supply air SA. On the other hand, the return air RA is cooled and sent outside as exhaust air EA.
 実施の形態1における換気装置1には、換気装置1内の還気RAにおける二酸化炭素の濃度を検知する換気濃度センサ12が設けられてもよい。換気濃度センサ12は、換気装置1内に流入した還気RAにおける二酸化炭素の濃度を検知する換気濃度検知装置の例である。換気装置1には、換気装置1内に導かれた外気OAの温度と湿度を検知する外気温湿度センサ13が設けられてもよい。また、換気装置1には、室内への給気SAの温度を検知する給気温度センサ14が設けられてもよい。外気温湿度センサ13は、換気装置1内に流入した外気OAの温度と湿度とを検知する外気温湿度検知装置の例である。給気温度センサ14は、給気SAの温度を検知する給気温度検知装置の例である。 The ventilation device 1 in the first embodiment may be provided with a ventilation concentration sensor 12 that detects the concentration of carbon dioxide in the return air RA within the ventilation device 1. The ventilation concentration sensor 12 is an example of a ventilation concentration detection device that detects the concentration of carbon dioxide in the return air RA that has flowed into the ventilation apparatus 1. The ventilation device 1 may be provided with an outside temperature/humidity sensor 13 that detects the temperature and humidity of the outside air OA introduced into the ventilation device 1. Further, the ventilation device 1 may be provided with a supply air temperature sensor 14 that detects the temperature of the supply air SA into the room. The outside temperature/humidity sensor 13 is an example of an outside temperature/humidity detection device that detects the temperature and humidity of outside air OA flowing into the ventilation system 1 . The supply air temperature sensor 14 is an example of a supply air temperature detection device that detects the temperature of the supply air SA.
 図1および図2の参照に戻る。空気調和機2は、室内の空気の空調を行う。すなわち、空気調和機2は、室内の気温および湿度のうちの両方または一方を調節する。空気調和機2は、室内機20と室外機21とを含む。室内機20は、外郭を形成する筐体内に不図示の室内送風機を備え、当該室内送風機によって、室内の空気が室内機20内に吸い込まれ、その後、吹き出される。室内機20と室外機21とは不図示の冷媒配管によって接続され、内部に冷媒が循環する。室内機20に吸い込まれた空気が、室外機21で外気と熱交換した冷媒と熱交換した後、室内に吹き出されることにより、室内が空調される。 Referring back to FIGS. 1 and 2. The air conditioner 2 performs air conditioning of indoor air. That is, the air conditioner 2 adjusts both or one of indoor temperature and humidity. The air conditioner 2 includes an indoor unit 20 and an outdoor unit 21. The indoor unit 20 includes an indoor blower (not shown) inside a casing forming an outer shell, and indoor air is sucked into the indoor unit 20 by the indoor blower and then blown out. The indoor unit 20 and the outdoor unit 21 are connected by refrigerant piping (not shown), and refrigerant circulates inside. The air sucked into the indoor unit 20 exchanges heat with the refrigerant that has exchanged heat with outside air in the outdoor unit 21, and then is blown into the room, thereby air-conditioning the room.
 コントローラ3は、換気装置1と空気調和機2とを制御する。実施の形態1では、コントローラ3は、室内機20を介して、換気装置1および室外機21を制御する。また、実施の形態1では、コントローラ3は、有線通信によって、換気装置1と室内機20と室外機21を制御するための制御信号を室内機20に送信する。ただし、コントローラ3は、無線通信によって室内機20に制御信号を送信してもよい。 The controller 3 controls the ventilation device 1 and the air conditioner 2. In the first embodiment, the controller 3 controls the ventilation device 1 and the outdoor unit 21 via the indoor unit 20. Further, in the first embodiment, the controller 3 transmits a control signal for controlling the ventilation device 1, the indoor unit 20, and the outdoor unit 21 to the indoor unit 20 through wired communication. However, the controller 3 may transmit the control signal to the indoor unit 20 by wireless communication.
 コントローラ3は、換気装置1を直接的に制御してもよい。この場合には、コントローラ3は、換気装置1を制御するための制御信号を、有線通信によって換気装置1に送信してもよい。あるいは、コントローラ3は、無線通信によって当該制御信号を換気装置1に送信してもよい。コントローラ3は、換気装置1を直接的に制御する場合には、室内機20を直接的に制御してもよいし、換気装置1を介して室内機20を制御してもよい。 The controller 3 may directly control the ventilation device 1. In this case, the controller 3 may transmit a control signal for controlling the ventilation device 1 to the ventilation device 1 via wired communication. Alternatively, the controller 3 may transmit the control signal to the ventilator 1 by wireless communication. When controlling the ventilation device 1 directly, the controller 3 may directly control the indoor unit 20 or may control the indoor unit 20 via the ventilation device 1.
 二酸化炭素センサ4は、室内の二酸化炭素の濃度を検知する。二酸化炭素センサ4は、コントローラ3と無線通信を行い、検知した濃度をコントローラ3に送信する。なお、コントローラ3と二酸化炭素センサ4には、コントローラ3と二酸化炭素センサ4とを紐付けるアプリケーションプログラムがインストールされている。二酸化炭素センサ4は、当該アプリケーションプログラムに従って、検知結果をコントローラ3に送信する。コントローラ3は、当該アプリケーションプログラムに従って、二酸化炭素センサ4から取得した検知結果を処理する。二酸化炭素センサ4は、ポータブルである。二酸化炭素センサ4は、室内の環境状態を示す指標となる値を測定などによって取得する環境検知装置の一例である。 The carbon dioxide sensor 4 detects the concentration of carbon dioxide in the room. The carbon dioxide sensor 4 performs wireless communication with the controller 3 and transmits the detected concentration to the controller 3. Note that an application program that links the controller 3 and the carbon dioxide sensor 4 is installed in the controller 3 and the carbon dioxide sensor 4. The carbon dioxide sensor 4 transmits the detection result to the controller 3 according to the application program. The controller 3 processes the detection results obtained from the carbon dioxide sensor 4 according to the application program. Carbon dioxide sensor 4 is portable. The carbon dioxide sensor 4 is an example of an environment detection device that obtains, by measurement or the like, a value that is an index indicating the indoor environmental condition.
 コントローラ3は、二酸化炭素センサ4から取得した濃度に基づいて換気装置1と空気調和機2とを制御する。以下、コントローラ3について詳述する。図4は、実施の形態1に係るコントローラの構成例を示すブロック図である。コントローラ3は、入力部30と無線通信部31と計時部32と主制御部33と表示部34とを備える。入力部30は、例えば、ボタンまたはタッチパネル等であって、ユーザからの指示の入力を受け付ける。無線通信部31は、二酸化炭素センサ4と無線通信を行い、二酸化炭素センサ4から検知結果を定期的に取得する。計時部32は、時間を計測する。 The controller 3 controls the ventilation device 1 and the air conditioner 2 based on the concentration obtained from the carbon dioxide sensor 4. The controller 3 will be explained in detail below. FIG. 4 is a block diagram showing a configuration example of the controller according to the first embodiment. The controller 3 includes an input section 30 , a wireless communication section 31 , a clock section 32 , a main control section 33 , and a display section 34 . The input unit 30 is, for example, a button or a touch panel, and accepts input instructions from the user. The wireless communication unit 31 performs wireless communication with the carbon dioxide sensor 4 and periodically acquires detection results from the carbon dioxide sensor 4. The clock section 32 measures time.
 主制御部33は、入力部30に入力された指示に基づいて、換気装置1および空気調和機2の両方または一方を制御する。主制御部33は、無線通信部31が取得した濃度が、第1時間の間、第1閾値濃度以上である場合には、換気装置1による風量である換気風量を第1換気風量以上にするよう換気装置1を制御する。すなわち、主制御部33は、換気風量を第1換気風量以上にするよう指示する制御信号を、室内機20を介して換気装置1に送信し、換気装置1は、当該制御信号に応じて換気風量を第1換気風量以上にする。なお、第1時間は、予め定められており、例えば7[分]である。第1閾値濃度は、予め定められており、例えば、750[ppm]、800[ppm]、1000[ppm]、または1400[ppm]である。第1閾値濃度は、入力部30を介したコントローラ3への入力などによって、750[ppm]、800[ppm]、1000[ppm]、および1400[ppm]等のうちで変更可能であってもよい。第1換気風量は、予め定められており、換気装置1による換気風量のうち、例えば上限の換気風量である。なお、第1換気風量を当該上限の換気風量とする場合には、主制御部33は、換気風量を第1換気風量とするよう換気装置1を制御する。 The main control unit 33 controls both or one of the ventilation device 1 and the air conditioner 2 based on instructions input to the input unit 30. If the concentration acquired by the wireless communication unit 31 is equal to or higher than the first threshold concentration during the first time period, the main control unit 33 sets the ventilation air volume, which is the air volume by the ventilation device 1, to the first ventilation air volume or higher. The ventilation device 1 is controlled as follows. That is, the main control unit 33 transmits a control signal instructing the ventilation air volume to be equal to or higher than the first ventilation air volume to the ventilation device 1 via the indoor unit 20, and the ventilation device 1 performs ventilation in accordance with the control signal. Increase the air volume to the 1st ventilation air volume or higher. Note that the first time is predetermined, and is, for example, 7 minutes. The first threshold concentration is predetermined, and is, for example, 750 [ppm], 800 [ppm], 1000 [ppm], or 1400 [ppm]. Even if the first threshold concentration can be changed among 750 [ppm], 800 [ppm], 1000 [ppm], 1400 [ppm], etc. by inputting to the controller 3 via the input unit 30, etc. good. The first ventilation air volume is predetermined, and is, for example, the upper limit of the ventilation air volume by the ventilation device 1. Note that when the first ventilation air volume is set to the upper limit ventilation air volume, the main control unit 33 controls the ventilation device 1 to set the ventilation air volume to the first ventilation air volume.
 なお、換気風量の上昇によって、以下の問題が生じ得る。すなわち、空気調和機2によって温度と湿度のうちの両方または一方が調節された室内の空気が、換気風量の上昇によって室外に送り出されることにより、ユーザの快適性が低下する虞がある。このような事態を防止するため、主制御部33は、換気装置1の換気風量が第1換気風量以上である間、空気調和機2の制御内容を変更してもよい。具体的には、主制御部33は、空気調和機2が暖房運転を行っている場合には、ユーザによる設定温度よりも高い気温にするよう空気調和機2を制御してもよい。例えば、ユーザが設定温度22[℃]の暖房運転の指示をコントローラ3に入力した場合には、主制御部33は、気温を23~24[℃]にするための暖房運転を空気調和機2に実行させてもよい。 In addition, the following problems may occur due to an increase in ventilation air volume. That is, indoor air whose temperature and/or humidity have been adjusted by the air conditioner 2 is sent outside due to an increase in the ventilation air volume, which may reduce user comfort. In order to prevent such a situation, the main control unit 33 may change the control content of the air conditioner 2 while the ventilation air volume of the ventilation device 1 is equal to or higher than the first ventilation air volume. Specifically, when the air conditioner 2 is performing heating operation, the main control unit 33 may control the air conditioner 2 to make the temperature higher than the temperature set by the user. For example, when the user inputs into the controller 3 an instruction for heating operation at a set temperature of 22 [°C], the main control unit 33 instructs the air conditioner 2 to perform heating operation to set the temperature to 23 to 24 [°C]. You can also have it executed.
 さて、室内の二酸化炭素の濃度が、第1時間の間、第1閾値濃度以上である場合において、主制御部33が、換気装置1による換気風量を第1換気風量以上とすることによって、室内の換気が促進され、室内の空気質の改善の迅速化が図られる。しかし、室内における二酸化炭素の発生量が多い場合など、室内環境によっては、空気質が迅速に改善されない場合もあり得る。実施の形態1の主制御部33は、このような場合であっても、空気質を迅速に改善するため、以下の処理を行うものである。主制御部33は、二酸化炭素センサ4が検知した濃度が、第2時間の間、第1閾値濃度以上である場合には、換気風量を第1換気風量以上にするよう換気装置1を制御した状態で、調節風量を第1調節風量以上にするよう室内機20を制御する。ここで、調節風量とは、室内機20からの風量を指す。第2時間は、第1時間よりも長い時間であって、予め定められている。第2時間は、例えば15[分]である。 Now, when the concentration of carbon dioxide in the room is equal to or higher than the first threshold concentration during the first time, the main control unit 33 sets the ventilation air volume by the ventilation device 1 to the first ventilation air volume or higher, so that the ventilation will be promoted, and indoor air quality will be improved more quickly. However, depending on the indoor environment, such as when a large amount of carbon dioxide is generated indoors, air quality may not be improved quickly. Even in such a case, the main control unit 33 of the first embodiment performs the following processing in order to quickly improve the air quality. If the concentration detected by the carbon dioxide sensor 4 is equal to or higher than the first threshold concentration during the second time period, the main control unit 33 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume. In this state, the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume. Here, the adjusted air volume refers to the air volume from the indoor unit 20. The second time is longer than the first time and is predetermined. The second time is, for example, 15 minutes.
 主制御部33は、二酸化炭素センサ4が検知した濃度が、第1時間または第2時間の間、第1閾値濃度以上である場合には、室内の空気の攪拌させる処理を空気調和機2に実行させてもよい。具体的には、主制御部33は、室内機20からの風向を変更させてもよい。例えば、主制御部33は、室内機20から斜め下方向または下方向に風が吹き出されるよう、不図示のルーバの向きを調節してもよい。あるいは、主制御部33は、ルーバを回動させて、鉛直方向からのルーバの向きを時間変化させてもよい。なお、ルーバとは、室内機20からの風向を制御するためのものであって、室内機20からの空気の吹出口に設けられたものである。室内機20による空気の攪拌処理により、室内における二酸化炭素の分布の偏りが解消し得る。 If the concentration detected by the carbon dioxide sensor 4 is equal to or higher than the first threshold concentration during the first or second time period, the main control unit 33 causes the air conditioner 2 to perform a process of stirring the indoor air. You may run it. Specifically, the main control unit 33 may change the direction of the air from the indoor unit 20. For example, the main control unit 33 may adjust the direction of a louver (not shown) so that the air is blown diagonally downward or downward from the indoor unit 20. Alternatively, the main control unit 33 may rotate the louver and change the orientation of the louver from the vertical direction over time. Note that the louver is for controlling the direction of the wind from the indoor unit 20, and is provided at the air outlet from the indoor unit 20. The air agitation process by the indoor unit 20 can eliminate the imbalance in the distribution of carbon dioxide indoors.
 主制御部33は、換気風量を第1換気風量以上にするよう換気装置1の制御などを行った後に二酸化炭素の濃度が第2閾値濃度未満になってから継続して第3時間の間、濃度が第2閾値濃度未満である場合には、換気風量を第2換気風量以下にするよう換気装置1を制御する。第3時間は、予め定められている。第3時間は、第1時間と等しくともよいし、異なってもよく、第2時間よりも短い。第3時間は、例えば7[分]である。第2閾値濃度は、予め定められており、第1閾値濃度以下であって、例えば750[ppm]などである。ただし、第2閾値濃度は、第1閾値濃度以下である。第2換気風量は、予め定められており、第1換気風量よりも小さく、換気装置1による換気風量のうち、例えば下限の換気風量である。なお、第2換気風量を当該下限の換気風量とする場合には、主制御部33は、換気風量を第2換気風量とするよう換気装置1を制御する。 After the main control unit 33 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume, the main control unit 33 continues for a third time after the concentration of carbon dioxide becomes less than the second threshold concentration. When the concentration is less than the second threshold concentration, the ventilation device 1 is controlled to reduce the ventilation air volume to the second ventilation air volume or less. The third time is predetermined. The third time may be equal to or different from the first time, and is shorter than the second time. The third time is, for example, 7 minutes. The second threshold concentration is predetermined and is equal to or lower than the first threshold concentration, and is, for example, 750 [ppm]. However, the second threshold concentration is less than or equal to the first threshold concentration. The second ventilation air volume is predetermined, is smaller than the first ventilation air volume, and is, for example, the lower limit of the ventilation air volume by the ventilation device 1. Note that when the second ventilation air volume is set to the lower limit ventilation air volume, the main control unit 33 controls the ventilation device 1 to set the ventilation air volume to the second ventilation air volume.
 主制御部33は、継続して第3時間の間、二酸化炭素の濃度が第2閾値濃度未満である場合であって、室内機20による調節風量が第1調節風量以上である場合には、調節風量を設定調節風量にするよう室内機20を制御してもよい。あるいは、主制御部33は、設定温度に基づいて室内の気温を調節するよう室内機20を制御してもよいし、設定湿度に基づいて室内の湿度を調節するよう室内機20を制御してもよい。そして、これによって、主制御部33は調節風量を変化させてもよい。この他、主制御部33は、調節風量を、予め定められた第2調節風量以下にするよう室内機20を制御してもよい。ここで、上記設定調節風量とは、ユーザが入力部30を介してコントローラ3に入力した調節風量である。また、設定温度とは、ユーザが入力部30を介してコントローラ3に入力した温度であり、設定湿度とは、ユーザが入力部30を介してコントローラ3に入力した湿度である。 If the concentration of carbon dioxide is lower than the second threshold concentration and the adjusted air volume by the indoor unit 20 is equal to or higher than the first adjusted air volume for the third continuous time, the main control unit 33 controls: The indoor unit 20 may be controlled so that the adjusted air volume is set to the set adjusted air volume. Alternatively, the main control unit 33 may control the indoor unit 20 to adjust the indoor temperature based on the set temperature, or may control the indoor unit 20 to adjust the indoor humidity based on the set humidity. Good too. Accordingly, the main control unit 33 may change the adjusted air volume. In addition, the main control unit 33 may control the indoor unit 20 so that the adjusted air volume is equal to or less than a predetermined second adjusted air volume. Here, the set adjusted air volume is the adjusted air volume that the user inputs into the controller 3 via the input unit 30. Furthermore, the set temperature is the temperature that the user inputs to the controller 3 via the input unit 30, and the set humidity is the humidity that the user inputs to the controller 3 via the input unit 30.
 主制御部33は、継続して第3時間の間、濃度が第2閾値濃度未満である場合に代え、無線通信部31が取得した濃度が第3閾値濃度未満である場合において、換気風量を第2換気風量以下にするよう換気装置1を制御してもよい。第3閾値濃度は、予め定められており、第2閾値濃度よりも低く、例えば500[ppm]以下の濃度である。  The main control unit 33 continuously controls the ventilation air volume for a third time when the concentration obtained by the wireless communication unit 31 is less than the third threshold concentration instead of when the concentration is less than the second threshold concentration. The ventilation device 1 may be controlled so that the ventilation air volume is equal to or less than the second ventilation air volume. The third threshold concentration is predetermined and is lower than the second threshold concentration, for example, 500 [ppm] or less.​
 主制御部33は、二酸化炭素の濃度が第3閾値濃度未満である場合であって、室内機20による調節風量が第1調節風量以上である場合には、調節風量を設定調節風量にするよう室内機20を制御してもよい。あるいは、主制御部33は、設定温度に基づいて室内の気温を調節するよう室内機20を制御してもよいし、設定湿度に基づいて室内の湿度を調節するよう室内機20を制御してもよい。この他、主制御部33は、調節風量を、予め定められた第2調節風量以下にするよう室内機20を制御してもよい。 When the concentration of carbon dioxide is less than the third threshold concentration and when the adjusted air volume by the indoor unit 20 is equal to or higher than the first adjusted air volume, the main control unit 33 causes the adjusted air volume to become the set adjusted air volume. The indoor unit 20 may also be controlled. Alternatively, the main control unit 33 may control the indoor unit 20 to adjust the indoor temperature based on the set temperature, or may control the indoor unit 20 to adjust the indoor humidity based on the set humidity. Good too. In addition, the main control unit 33 may control the indoor unit 20 so that the adjusted air volume is equal to or less than a predetermined second adjusted air volume.
 表示部34は、主制御部33からの指示に従って、室内の環境状態を示す環境情報、または、環境状態の改善のための案内情報を画面上に表示する。環境情報としては、以下の第1環境情報と第2環境情報が挙げられる。第1環境情報は、二酸化炭素センサ4が検知した濃度と、第1閾値濃度との間の大小関係を示す情報である。第2環境情報は、二酸化炭素センサ4が検知した濃度の時間的推移を示す情報である。以下、図5および図6を参照して、環境情報について詳述する。 The display unit 34 displays environmental information indicating the indoor environmental condition or guidance information for improving the environmental condition on the screen according to instructions from the main control unit 33. The environment information includes the following first environment information and second environment information. The first environmental information is information indicating the magnitude relationship between the concentration detected by the carbon dioxide sensor 4 and the first threshold concentration. The second environmental information is information indicating the time course of the concentration detected by the carbon dioxide sensor 4. The environment information will be described in detail below with reference to FIGS. 5 and 6.
 図5は、実施の形態1における表示部が表示する第1環境情報を例示する図である。図5では、第1閾値濃度を750[ppm]とする。図5の白抜き矢印が指す方向は、時間方向を示し、図5には、室内の二酸化炭素の濃度が第1閾値濃度未満から第1閾値濃度以上となった場合が示されている。図5における白抜き矢印の起点には、室内の二酸化炭素の濃度が第1閾値濃度未満である場合における第1環境情報が示され、白抜き矢印が指す位置には、室内の二酸化炭素の濃度が第1閾値濃度以上である場合における第1環境情報が示されている。 FIG. 5 is a diagram illustrating the first environment information displayed by the display unit in the first embodiment. In FIG. 5, the first threshold concentration is 750 [ppm]. The direction pointed by the white arrow in FIG. 5 indicates the time direction, and FIG. 5 shows a case where the indoor carbon dioxide concentration changes from less than the first threshold concentration to more than the first threshold concentration. The starting point of the white arrow in FIG. 5 shows the first environmental information when the indoor carbon dioxide concentration is less than the first threshold concentration, and the position pointed to by the white arrow shows The first environmental information is shown when the first environmental information is equal to or higher than the first threshold concentration.
 図5に示すように、二酸化炭素の濃度が第1閾値濃度未満の740[ppm]である場合には、表示部34は、二酸化炭素の濃度を示す文字の色を、他の内容を示す文字の色と同一に表し、当該濃度を示す文字の背景色を、他の内容を示す文字の背景色と同一に表す。なお、当該他の内容とは、二酸化炭素の濃度以外の室内の環境状態の内容、および、コントローラ3に入力された内容等であって、図5における例えば「室内 27.0℃」および「設定温度 19.0℃」等の内容である。 As shown in FIG. 5, when the concentration of carbon dioxide is 740 [ppm], which is less than the first threshold concentration, the display unit 34 changes the color of the text indicating the concentration of carbon dioxide to the color of the text indicating other contents. The background color of the text indicating the density is the same as the background color of the text indicating other contents. Note that the other contents include the contents of the indoor environmental condition other than the concentration of carbon dioxide, the contents input to the controller 3, and the like, for example, "indoor 27.0 degrees Celsius" and "settings" in FIG. Temperature: 19.0°C.”
 図5に示すように、二酸化炭素の濃度が第1閾値濃度以上の750[ppm]である場合には、表示部34は、二酸化炭素の濃度を示す文字の色と、当該濃度を示す文字の背景色の各々を、二酸化炭素の濃度が第1閾値濃度未満であった場合の上述の色から反転させる。すなわち、表示部34は、二酸化炭素の濃度を示す文字の色を、他の内容を示す文字の背景色と同一に表し、当該濃度を示す文字の背景色を、他の内容を示す文字の色と同一に表す。表示部34による図5に示すような第1環境情報の表示によって、ユーザは室内の空気質を迅速且つ容易に認識可能になる。 As shown in FIG. 5, when the concentration of carbon dioxide is 750 [ppm], which is equal to or higher than the first threshold concentration, the display unit 34 displays the color of the text indicating the concentration of carbon dioxide and the color of the text indicating the concentration. Each of the background colors is inverted from the color described above if the concentration of carbon dioxide was less than a first threshold concentration. That is, the display unit 34 displays the color of the text indicating the concentration of carbon dioxide in the same color as the background color of the text indicating other content, and the background color of the text indicating the concentration is the same as the color of the text indicating other content. Expressed the same as. By displaying the first environmental information as shown in FIG. 5 on the display unit 34, the user can quickly and easily recognize the indoor air quality.
  図6は、実施の形態1における表示部が表示する第2環境情報を例示する図である。図4における横軸は時間を表し、縦軸は二酸化炭素センサ4が検知した二酸化炭素の濃度を表す。図6では、第1閾値濃度を800[ppm]とし、第2閾値濃度を750[ppm]とする。表示部34は、図6において第1閾値濃度と第2閾値濃度の各々を示す破線を画面上に示してもよい。なお、表示部34は、第1閾値濃度と第2閾値濃度の各々を、図6の破線に代えて、直線、一点鎖線、または二点鎖線などで示してもよい。 FIG. 6 is a diagram illustrating the second environment information displayed by the display unit in the first embodiment. The horizontal axis in FIG. 4 represents time, and the vertical axis represents the concentration of carbon dioxide detected by the carbon dioxide sensor 4. In FIG. 6, the first threshold concentration is 800 [ppm], and the second threshold concentration is 750 [ppm]. The display unit 34 may display dashed lines on the screen that indicate each of the first threshold density and the second threshold density in FIG. 6 . Note that the display unit 34 may indicate each of the first threshold concentration and the second threshold concentration using a straight line, a dashed-dotted line, a dashed-two dotted line, or the like instead of the broken line in FIG.
 図6では、時点t1において二酸化炭素の濃度が、第1閾値濃度の800[ppm]となり、時点t1から時点t2まで二酸化炭素の濃度は上昇し続け、第1閾値濃度以上である。時点t1から時点t2までの時間を第1時間とすると、上述したように、時点t2において主制御部33は、換気風量が第1換気風量以上となるよう換気装置1を制御する。時点t2以降において二酸化炭素の濃度は低下し、時点t3において二酸化炭素の濃度は第1閾値濃度である。時点t1から時点t3までの時間が第2時間以上である場合には、時点t1から第2時間が経過した時点において主制御部33は、換気装置1の換気風量を第1換気風量以上とした状態で、調節風量が第1調節風量以上となるよう室内機20を制御する。時点t4において二酸化炭素の濃度は、第2閾値濃度の750[ppm]である。そして、時点t4より後では、二酸化炭素の濃度は第2閾値濃度未満である。時点t4から時点t5までの時間を第3時間とすると、時点t5において主制御部33は、換気風量が第2換気風量以下となるよう換気装置1を制御する。この場合において時点t5で調節風量が第1調節風量以上である場合には、主制御部33は、調節風量を設定調節風量または第2調節風量等にするよう室内機20を制御する。 In FIG. 6, the concentration of carbon dioxide reaches the first threshold concentration of 800 [ppm] at time t1, and continues to rise from time t1 to time t2, and is equal to or higher than the first threshold concentration. Assuming that the time from time t1 to time t2 is the first time, as described above, at time t2, the main control unit 33 controls the ventilation device 1 so that the ventilation air volume is equal to or greater than the first ventilation air volume. After time t2, the concentration of carbon dioxide decreases, and at time t3, the concentration of carbon dioxide is the first threshold concentration. If the time from time t1 to time t3 is the second time or more, the main control unit 33 sets the ventilation air volume of the ventilation device 1 to the first ventilation air volume or more at the time when the second time has passed from time t1. In this state, the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume. At time t4, the concentration of carbon dioxide is the second threshold concentration of 750 [ppm]. After time t4, the concentration of carbon dioxide is less than the second threshold concentration. Assuming that the time from time t4 to time t5 is a third time, at time t5, the main control unit 33 controls the ventilation device 1 so that the ventilation air volume becomes equal to or less than the second ventilation air volume. In this case, if the adjusted air volume is equal to or higher than the first adjusted air volume at time t5, the main control unit 33 controls the indoor unit 20 so that the adjusted air volume is set to the set adjusted air volume, the second adjusted air volume, or the like.
 図6における各時点を示す時刻または経過時間等は、表示部34によって表示されてもよいし、表示されなくともよい。図6に示す各時点を示す一点鎖線は、表示部34によって表示されてもよいし、表示されなくともよい。なお、表示部34は、当該一点鎖線に代え、直線、破線、または二点鎖線などで各時点を表してもよい。 The time or elapsed time indicating each point in FIG. 6 may or may not be displayed on the display unit 34. The dashed-dotted lines indicating each time point shown in FIG. 6 may or may not be displayed by the display unit 34. Note that the display unit 34 may represent each time point using a straight line, a broken line, a two-dot chain line, or the like instead of the one-dot chain line.
 次に、表示部34が表示する案内情報について説明する。案内情報としては、以下の第1案内情報~第4案内情報が挙げられる。第1案内情報は、室内の窓および扉の両方または一方を開くよう案内する情報であって、例えば、「窓を開けて換気を行って下さい。」などの文字情報、または、窓開けを促すマーク等である。主制御部33は、第1案内要否判断時間の間、二酸化炭素センサ4が検知した濃度が第1閾値濃度より高い場合には、第1案内情報を表示するよう表示部34を制御してもよい。第1案内要否判断時間は、第1時間以上または第2時間以上である。 Next, the guidance information displayed by the display unit 34 will be explained. The guidance information includes the following first to fourth guidance information. The first guidance information is information that guides the user to open both or one of the windows and doors in the room, such as textual information such as "Please open the window for ventilation." or prompting to open the window. Mark et al. The main control unit 33 controls the display unit 34 to display first guidance information if the concentration detected by the carbon dioxide sensor 4 is higher than the first threshold concentration during the first guidance necessity determination time. Good too. The first guidance necessity determination time is longer than the first time or longer than the second time.
 第2案内情報は、換気装置内の例えばフィルタなどの清掃を促す情報で案内する情報であって、例えば、「フィルタが汚れています。清掃して下さい。」などの文字情報、または、フィルタ清掃を促すマーク等である。主制御部33は、第2案内要否判断時間の間、二酸化炭素センサ4が検知した濃度が第1閾値濃度より高い場合には、第2案内情報を表示するよう表示部34を制御してもよい。第2案内要否判断時間は、第1時間以上または第2時間以上である。第2案内要否判断時間は、第1案内要否判断時間と等しくともよいし、異なってもよい。 The second guidance information is information that prompts cleaning of the filter in the ventilation system, for example, text information such as "The filter is dirty. Please clean it." or filter cleaning. It is a mark etc. that encourages the following. The main control unit 33 controls the display unit 34 to display second guidance information if the concentration detected by the carbon dioxide sensor 4 is higher than the first threshold concentration during the second guidance necessity determination time. Good too. The second guidance necessity determination time is longer than the first time or longer than the second time. The second guidance necessity determination time may be equal to or different from the first guidance necessity determination time.
 第3案内情報は、二酸化炭素センサ4の修理または点検を促す情報である。第3案内情報は、例えば、「センサに問題がないか確認して下さい。」などの文字情報、または、二酸化炭素センサ4の修理もしくは点検を促すマーク等である。主制御部33は、以下の場合において、第3案内情報を表示するよう表示部34を制御してもよい。主制御部33は、上記換気濃度センサ12によって検知された二酸化炭素の濃度と、二酸化炭素センサ4によって検知された二酸化炭素の濃度との間の相関の有無を判定する。そして、主制御部33は、換気濃度センサ12によって得られた濃度と、二酸化炭素センサ4によって得られた濃度との間に相関がないと判定した場合には、第3案内情報を表示するよう表示部34を制御してもよい。 The third guidance information is information that prompts repair or inspection of the carbon dioxide sensor 4. The third guidance information is, for example, text information such as "Please check whether there is a problem with the sensor." or a mark that urges repair or inspection of the carbon dioxide sensor 4. The main control unit 33 may control the display unit 34 to display the third guide information in the following cases. The main control unit 33 determines whether there is a correlation between the concentration of carbon dioxide detected by the ventilation concentration sensor 12 and the concentration of carbon dioxide detected by the carbon dioxide sensor 4. If the main control unit 33 determines that there is no correlation between the concentration obtained by the ventilation concentration sensor 12 and the concentration obtained by the carbon dioxide sensor 4, the main control unit 33 causes the third guide information to be displayed. The display unit 34 may also be controlled.
 第4案内情報は、二酸化炭素センサ4の位置の変更を促す情報である。第4案内情報は、例えば、「センサの位置が適切ではないので、移動させて下さい。」などの文字情報、または、二酸化炭素センサ4の移動を促すマーク等である。主制御部33は、二酸化炭素センサ4の位置を示す位置情報を取得し、位置情報に基づいて第4案内情報を表示するよう表示部34を制御してもよい。なお、主制御部33は、以下の3つの方法によって位置情報を得ることができる。まず、1つ目の方法について説明する。二酸化炭素センサ4は、二酸化炭素の濃度以外にも、室内の気温および湿度のうちの両方または一方を検知するものとする。主制御部33は、室内に送風するよう室内機20を制御する。そして、主制御部33は、室内機20からの送風前後において二酸化炭素センサ4が検知した気温または湿度の両方または一方に基づいて、二酸化炭素センサ4の位置を示す位置情報を取得する。例えば、主制御部33は、室内機20からの送風前後において二酸化炭素センサ4が検知した気温の変化から、二酸化炭素センサ4の位置を示す位置情報を取得する。 The fourth guide information is information that prompts a change in the position of the carbon dioxide sensor 4. The fourth guide information is, for example, text information such as "The sensor is not in an appropriate position, so please move it." or a mark that urges the carbon dioxide sensor 4 to be moved. The main control unit 33 may acquire position information indicating the position of the carbon dioxide sensor 4, and may control the display unit 34 to display the fourth guide information based on the position information. Note that the main control unit 33 can obtain position information using the following three methods. First, the first method will be explained. The carbon dioxide sensor 4 detects not only the concentration of carbon dioxide but also both or one of indoor temperature and humidity. The main control unit 33 controls the indoor unit 20 to blow air into the room. The main control unit 33 then acquires position information indicating the position of the carbon dioxide sensor 4 based on both or one of the temperature and humidity detected by the carbon dioxide sensor 4 before and after air is blown from the indoor unit 20 . For example, the main control unit 33 acquires position information indicating the position of the carbon dioxide sensor 4 from changes in the temperature detected by the carbon dioxide sensor 4 before and after air is blown from the indoor unit 20 .
 次に、2つ目の方法について説明する。ここでは、室内に3つ以上の電波通信装置が配置されるものとする。各電波通信装置は、無線通信によって二酸化炭素センサ4から電波を受信する。3つ以上の電波通信装置の1つはコントローラ3に含まれてもよく、この場合には、無線通信部31が当該1つの電波通信装置に相当する。換気システム100は、コントローラ3を3つ以上有するものでもよく、各コントローラ3が各電波通信装置を備えてもよい。この場合には、各コントローラの無線通信部31が各電波通信装置に相当する。主制御部33は、3つ以上の電波通信装置の各々が二酸化炭素センサ4から受信した電波の強度に基づいて、二酸化炭素センサ4の位置を示す位置情報を取得する。 Next, the second method will be explained. Here, it is assumed that three or more radio wave communication devices are arranged indoors. Each radio wave communication device receives radio waves from the carbon dioxide sensor 4 through wireless communication. One of the three or more radio wave communication devices may be included in the controller 3, and in this case, the wireless communication section 31 corresponds to the one radio wave communication device. The ventilation system 100 may include three or more controllers 3, and each controller 3 may include a respective radio wave communication device. In this case, the wireless communication section 31 of each controller corresponds to each radio wave communication device. The main control unit 33 acquires position information indicating the position of the carbon dioxide sensor 4 based on the intensity of radio waves received from the carbon dioxide sensor 4 by each of the three or more radio wave communication devices.
 次に、3つ目の方法について説明する。主制御部33は、無線通信部31が二酸化炭素センサ4から受信した電波の強度と、以下の特定用情報とによって二酸化炭素センサ4の位置を示す位置情報を取得する。特定用情報は、二酸化炭素センサ4の水平方向における位置を示す情報であって、例えば、GPS(Global Positioning System)による情報である。当該電波の強度と特定用情報とによって、主制御部33は、二酸化炭素センサ4の床面からの位置を推定できる。 Next, the third method will be explained. The main control unit 33 acquires position information indicating the position of the carbon dioxide sensor 4 based on the intensity of the radio waves received by the wireless communication unit 31 from the carbon dioxide sensor 4 and the following identifying information. The identification information is information indicating the position of the carbon dioxide sensor 4 in the horizontal direction, and is, for example, information based on GPS (Global Positioning System). The main control unit 33 can estimate the position of the carbon dioxide sensor 4 from the floor based on the intensity of the radio wave and the identification information.
 主制御部33は、位置情報に基づいて第1閾値濃度を変化させてもよい。以下、このことについて具体的に説明する。二酸化炭素が配置された位置を、以下では、配置位置と記載する場合もある。主制御部33は、配置位置の床面からの高さが、第1高さである場合と、当該第1高さと異なる第2高さである場合とで、第1閾値濃度を異ならせてもよい。なお、床面とは、室内の床面を指す。ここでは、第2高さを第1高さよりも大きいとする。二酸化炭素は、空気に含まれる酸素および窒素等より重いため、床面から低い位置ほど、二酸化炭素濃度が高くなると考えられる。そのため、主制御部33は、配置位置の床面からの高さが第1高さである場合の第1閾値濃度を、配置位置の床面からの高さが第2高さである場合の第1閾値濃度よりも高くしてもよい。すなわち、主制御部33は、配置位置が床面から低い位置であるほど、第1閾値濃度を高くしてもよい。あるいは、主制御部33は、配置位置の高さが閾値高さ以下である場合には、第1閾値濃度を予め定められた分だけ高くしてもよい。 The main control unit 33 may change the first threshold density based on the position information. This will be explained in detail below. Below, the position where carbon dioxide is arranged may be described as an arrangement position. The main control unit 33 sets the first threshold concentration to be different depending on whether the height of the arrangement position from the floor is a first height or a second height different from the first height. Good too. Note that the floor surface refers to the indoor floor surface. Here, it is assumed that the second height is larger than the first height. Since carbon dioxide is heavier than oxygen, nitrogen, etc. contained in the air, it is thought that the lower the position from the floor, the higher the carbon dioxide concentration. Therefore, the main control unit 33 sets the first threshold concentration when the height from the floor of the arrangement position is the first height to the first threshold concentration when the height from the floor of the arrangement position is the second height. The concentration may be higher than the first threshold concentration. That is, the main control unit 33 may increase the first threshold concentration as the arrangement position is lower from the floor surface. Alternatively, the main control unit 33 may increase the first threshold density by a predetermined amount when the height of the arrangement position is less than or equal to the threshold height.
 表示部34は、画面上における予め定められた表示領域毎に、第1環境情報、第2環境情報、第1案内情報、第2案内情報、第3案内情報、および第4案内情報の各々を表示してもよい。また、表示部34は、第1環境情報、第2環境情報、第1案内情報、第2案内情報、第3案内情報、および第4案内情報の全部または一部を、画面上の同じ表示領域に異なるタイミングで表示してもよい。例えば、表示部34は、第1環境情報および第2環境情報の各々を画面上における予め定められた第1表示領域に異なるタイミングで表示し、第1案内情報、第2案内情報、第3案内情報、および第4案内情報の各々を、画面上における、第1表示領域と異なる第2表示領域に異なるタイミングで表示してもよい。表示部34における第1環境情報を表示する部分は、第1環境表示部の例である。表示部34における第2環境情報を表示する部分は、第2環境表示部の例である。表示部34における第1案内情報を表示する部分は、第1案内表示部の例である。表示部34における第2案内情報を表示する部分は、第2案内表示部の例である。表示部34における第3案内情報を表示する部分は、第3案内表示部の例である。表示部34における第4案内情報を表示する部分は、第4案内表示部の例である。 The display unit 34 displays each of first environment information, second environment information, first guide information, second guide information, third guide information, and fourth guide information for each predetermined display area on the screen. May be displayed. In addition, the display unit 34 displays all or part of the first environment information, second environment information, first guide information, second guide information, third guide information, and fourth guide information in the same display area on the screen. may be displayed at different times. For example, the display unit 34 displays each of the first environment information and the second environment information in a predetermined first display area on the screen at different timings, and displays the first guide information, the second guide information, and the third guide information. The information and the fourth guide information may each be displayed on the screen in a second display area different from the first display area at different timings. The portion of the display section 34 that displays the first environment information is an example of a first environment display section. The portion of the display section 34 that displays the second environment information is an example of a second environment display section. The portion of the display section 34 that displays the first guidance information is an example of a first guidance display section. The portion of the display section 34 that displays the second guidance information is an example of a second guidance display section. The portion of the display section 34 that displays the third guidance information is an example of a third guidance display section. The portion of the display section 34 that displays the fourth guidance information is an example of a fourth guidance display section.
 以下、実施の形態1に係るコントローラ3のハードウェア構成について述べる。図7は、実施の形態1に係るコントローラのハードウェア構成を例示する図である。コントローラ3は、プロセッサ50とメモリ51と無線通信インターフェース回路52と計時装置53と第1入力インターフェース回路54と入力装置55と第1出力インターフェース回路56と第2出力インターフェース回路57と表示装置58とを含む。なお、プロセッサ50とメモリ51と無線通信インターフェース回路52と計時装置53と第1入力インターフェース回路54と第1出力インターフェース回路56と第2出力インターフェース回路57とは、互いにバス59によって接続されている。プロセッサ50は、例えば、CPU(Central Processing Unit)またはMPU(Micro Processing Unit)等である。メモリ51は、例えば、ROM(Read Only Memory)またはRAM(Random Access Memory)等である。計時装置53は、例えばRTC(Real Time Clock)などである。入力装置55は、例えば、ボタンまたはタッチパネル等であり、第1入力インターフェース回路54とバス59とを介して、プロセッサ50およびメモリ51等に接続されている。表示装置58は、例えば、液晶ディスプレイまたはCRT(Cathode Ray Tube)等であり、第2出力インターフェース回路57とバス59とを介して、プロセッサ50およびメモリ51等に接続されている。第1出力インターフェース回路56には、室内機20が接続されている。なお、第1出力インターフェース回路56には、室内機20と共に、または、室内機20に代え、換気装置1が接続されてもよい。 Hereinafter, the hardware configuration of the controller 3 according to the first embodiment will be described. FIG. 7 is a diagram illustrating the hardware configuration of the controller according to the first embodiment. The controller 3 includes a processor 50, a memory 51, a wireless communication interface circuit 52, a clock device 53, a first input interface circuit 54, an input device 55, a first output interface circuit 56, a second output interface circuit 57, and a display device 58. include. Note that the processor 50, the memory 51, the wireless communication interface circuit 52, the clock device 53, the first input interface circuit 54, the first output interface circuit 56, and the second output interface circuit 57 are connected to each other by a bus 59. The processor 50 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). The memory 51 is, for example, ROM (Read Only Memory) or RAM (Random Access Memory). The clock device 53 is, for example, an RTC (Real Time Clock). The input device 55 is, for example, a button or a touch panel, and is connected to the processor 50, the memory 51, etc. via the first input interface circuit 54 and the bus 59. The display device 58 is, for example, a liquid crystal display or a CRT (Cathode Ray Tube), and is connected to the processor 50, the memory 51, etc. via the second output interface circuit 57 and the bus 59. The indoor unit 20 is connected to the first output interface circuit 56 . Note that the ventilation device 1 may be connected to the first output interface circuit 56 together with the indoor unit 20 or instead of the indoor unit 20.
 入力部30の機能は、入力装置55と第1入力インターフェース回路54とによって実現できる。無線通信部31の機能は、無線通信インターフェース回路52によって実現できる。計時部32の機能は、計時装置53によって実現できる。主制御部33の機能は、プロセッサ50とメモリ51と第1出力インターフェース回路56とによって実現できる。表示部34の機能は、表示装置58と第2出力インターフェース回路57とによって実現できる。なお、コントローラ3は、室内機20または換気装置1等に対し、無線通信によって制御信号を送信してもよく、この場合には、コントローラ3は、第1出力インターフェース回路56に代えて他の無線通信インターフェース回路を含む。コントローラ3は、室内機20および換気装置1の一方に対し、有線通信によって制御信号を送信し、他方に対し、無線通信によって制御信号を送信してもよく、この場合には、コントローラ3は、第1出力インターフェース回路56と共に、他の無線通信インターフェース回路を含む。計時部32の機能は、プロセッサ50とメモリ51とによって、ソフトウェアにより実現してもよい。計時部32は、時刻を示す時刻情報を外部から受信することによって時間を計測してもよい。この場合には、計時部32の機能は、外部から情報を受信する通信インターフェース回路によって実現できる。 The functions of the input section 30 can be realized by the input device 55 and the first input interface circuit 54. The functions of the wireless communication section 31 can be realized by the wireless communication interface circuit 52. The function of the timekeeping section 32 can be realized by a timekeeping device 53. The functions of the main control section 33 can be realized by the processor 50, the memory 51, and the first output interface circuit 56. The functions of the display section 34 can be realized by a display device 58 and a second output interface circuit 57. Note that the controller 3 may transmit a control signal to the indoor unit 20 or the ventilation device 1 etc. by wireless communication. Contains a communication interface circuit. The controller 3 may transmit a control signal to one of the indoor unit 20 and the ventilation device 1 by wired communication, and transmit the control signal to the other by wireless communication. In this case, the controller 3 Along with the first output interface circuit 56, other wireless communication interface circuits are included. The function of the clock unit 32 may be realized by software using the processor 50 and the memory 51. The clock unit 32 may measure time by receiving time information indicating the time from the outside. In this case, the function of the timer 32 can be realized by a communication interface circuit that receives information from the outside.
 コントローラ3の全部または一部の機能は、上述の他、CPLD(Complex Programmable Logic Device)またはFPGA(Field Programmable Gate Array)等、専用のハードウェアによって実現してもよい。 In addition to the above, all or part of the functions of the controller 3 may be realized by dedicated hardware such as a CPLD (Complex Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
 以下、図8を参照し、実施の形態1に係る換気システム100による換気処理の流れについて説明する。図8は、実施の形態1に係る換気システムによる換気処理の流れを例示するフローチャートである。ステップS1においてコントローラ3の無線通信部31は、二酸化炭素センサ4から二酸化炭素の濃度を取得する。ステップS2において主制御部33は、ステップS1で無線通信部31が取得した濃度が第1閾値濃度以上か否かを判定する。ステップS1で無線通信部31が取得した濃度が第1閾値濃度未満である場合には(ステップS2:NO)、換気システム100は処理をステップS9に移す。 Hereinafter, with reference to FIG. 8, the flow of ventilation processing by the ventilation system 100 according to the first embodiment will be described. FIG. 8 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to the first embodiment. In step S1, the wireless communication unit 31 of the controller 3 acquires the concentration of carbon dioxide from the carbon dioxide sensor 4. In step S2, the main control unit 33 determines whether the concentration acquired by the wireless communication unit 31 in step S1 is equal to or higher than the first threshold concentration. When the concentration acquired by the wireless communication unit 31 in step S1 is less than the first threshold concentration (step S2: NO), the ventilation system 100 moves the process to step S9.
 ステップS1で無線通信部31が取得した濃度が第1閾値濃度以上である場合には(ステップS2:YES)、ステップS3において主制御部33は、第1閾値濃度以上の濃度が、第1時間以上、継続して得られたか否かを判定する。第1閾値濃度以上の濃度が、第1時間以上、継続して得られていない場合には(ステップS3:NO)、換気システム100は処理をステップS1に戻す。第1閾値濃度以上の濃度が、第1時間以上、継続して得られた場合には(ステップS3:YES)、ステップS4において主制御部33は、換気風量が第1換気風量以上であるか否かを判定する。 When the concentration acquired by the wireless communication unit 31 in step S1 is equal to or higher than the first threshold concentration (step S2: YES), the main control unit 33 determines that the concentration equal to or higher than the first threshold concentration is equal to or higher than the first threshold concentration in step S3. It is determined whether or not the above information has been obtained continuously. If the concentration equal to or higher than the first threshold concentration has not been continuously obtained for the first time or longer (step S3: NO), the ventilation system 100 returns the process to step S1. If the concentration equal to or higher than the first threshold concentration is continuously obtained for the first time or longer (step S3: YES), in step S4 the main control unit 33 determines whether the ventilation air volume is equal to or higher than the first ventilation air volume. Determine whether or not.
 換気風量が第1換気風量以上である場合には(ステップS4:YES)、換気システム100は処理をステップS6に移す。換気風量が第1換気風量未満である場合には(ステップS4:NO)、ステップS5において換気装置1は、コントローラ3からの制御信号に基づいて、換気風量を第1換気風量以上に上昇させる。ステップS6において主制御部33は、第1閾値濃度以上の濃度が、第2時間以上、継続して得られたか否かを判定する。第1閾値濃度以上の濃度が、第2時間以上、継続して得られていない場合には(ステップS6:NO)、換気システム100は処理をステップS1に戻す。第1閾値濃度以上の濃度が、第2時間以上、継続して得られた場合には(ステップS6:YES)、ステップS7において主制御部33は、調節風量が第1調節風量以上であるか否かを判定する。 If the ventilation air volume is equal to or greater than the first ventilation air volume (step S4: YES), the ventilation system 100 moves the process to step S6. If the ventilation air volume is less than the first ventilation air volume (step S4: NO), in step S5, the ventilation device 1 increases the ventilation air volume to the first ventilation air volume or more based on the control signal from the controller 3. In step S6, the main control unit 33 determines whether a concentration equal to or higher than the first threshold concentration has been continuously obtained for a second time or longer. If the concentration equal to or higher than the first threshold concentration is not continuously obtained for the second time period or more (step S6: NO), the ventilation system 100 returns the process to step S1. If the concentration equal to or higher than the first threshold concentration is continuously obtained for the second time or longer (step S6: YES), in step S7 the main control unit 33 determines whether the adjusted air volume is equal to or higher than the first adjusted air volume. Determine whether or not.
 調節風量が第1調節風量以上である場合には(ステップS7:YES)、換気システム100は処理をステップS1に戻す。調節風量が第1調節風量未満である場合には(ステップS7:NO)、ステップS8において室内機20は、コントローラ3からの制御信号に基づいて、調節風量を第1調節風量以上に上昇させる。ステップS8の処理後、換気システム100は処理をステップS1に戻す。 If the adjusted air volume is equal to or greater than the first adjusted air volume (step S7: YES), the ventilation system 100 returns the process to step S1. If the adjusted air volume is less than the first adjusted air volume (step S7: NO), the indoor unit 20 increases the adjusted air volume to the first adjusted air volume or higher based on the control signal from the controller 3 in step S8. After the process in step S8, the ventilation system 100 returns the process to step S1.
 ステップS9において主制御部33は、ステップS1で無線通信部31が取得した濃度が第2閾値濃度未満であるか否かを判定する。ステップS1で無線通信部31が取得した濃度が第2閾値濃度以上である場合には(ステップS9:NO)、換気システム100は処理をステップS1に戻す。ステップS1で無線通信部31が取得した濃度が第2閾値濃度未満である場合には(ステップS9:YES)、ステップS10において主制御部33は、第2閾値濃度未満の濃度が、第3時間以上、継続して得られたか否かを判定する。第1閾値濃度未満の濃度が、第3時間以上、継続して得られていない場合には(ステップS10:NO)、換気システム100は処理をステップS1に戻す。第1閾値濃度未満の濃度が、第3時間以上、継続して得られた場合には(ステップS10:YES)、ステップS11において主制御部33は、換気風量が第1換気風量以上であるか否かを判定する。なお、ステップS11において主制御部33は、ステップS1の前にステップS5の処理が行われることによって、現時点の換気風量が第1換気風量以上となっているか否かを判定する。 In step S9, the main control unit 33 determines whether the concentration acquired by the wireless communication unit 31 in step S1 is less than the second threshold concentration. If the concentration acquired by the wireless communication unit 31 in step S1 is equal to or higher than the second threshold concentration (step S9: NO), the ventilation system 100 returns the process to step S1. If the concentration acquired by the wireless communication unit 31 in step S1 is less than the second threshold concentration (step S9: YES), in step S10 the main control unit 33 determines that the concentration less than the second threshold concentration is It is determined whether or not the above information has been obtained continuously. If the concentration below the first threshold concentration is not continuously obtained for the third time or more (step S10: NO), the ventilation system 100 returns the process to step S1. If the concentration below the first threshold concentration is continuously obtained for the third time or more (step S10: YES), in step S11 the main control unit 33 determines whether the ventilation air volume is equal to or higher than the first ventilation air volume. Determine whether or not. Note that, in step S11, the main control unit 33 determines whether the current ventilation air volume is equal to or greater than the first ventilation air volume by performing the process of step S5 before step S1.
 換気風量が第1換気風量未満である場合には(ステップS11:NO)、換気システム100は処理をステップS13に移す。換気風量が第1換気風量以上である場合には(ステップS11:YES)、ステップS12において換気装置1は、コントローラ3からの制御信号に基づいて、換気風量を第2換気風量以下に低下させる。ステップS13において主制御部33は、調節風量が第1調節風量以上であるか否かを判定する。 If the ventilation air volume is less than the first ventilation air volume (step S11: NO), the ventilation system 100 moves the process to step S13. If the ventilation air volume is greater than or equal to the first ventilation air volume (step S11: YES), in step S12, the ventilation apparatus 1 reduces the ventilation air volume to the second ventilation air volume or less based on the control signal from the controller 3. In step S13, the main control unit 33 determines whether the adjusted air volume is equal to or greater than the first adjusted air volume.
 調節風量が第1調節風量未満である場合には(ステップS13:NO)、換気システム100は処理をステップS1に戻す。調節風量が第1調節風量以上である場合には(ステップS13:YES)、ステップS14において室内機20は、コントローラ3からの制御信号に基づいて調節風量を変更する。調節風量は、設定調節風量、または、第2調節風量以下の風量等に変化する。ステップS14の処理後、換気システム100は処理をステップS1に戻す。 If the adjusted air volume is less than the first adjusted air volume (step S13: NO), the ventilation system 100 returns the process to step S1. If the adjusted air volume is greater than or equal to the first adjusted air volume (step S13: YES), the indoor unit 20 changes the adjusted air volume based on the control signal from the controller 3 in step S14. The adjusted air volume changes to a set adjusted air volume, an air volume that is equal to or less than the second adjusted air volume, or the like. After the process in step S14, the ventilation system 100 returns the process to step S1.
 図8では、ステップS3~ステップS5の処理の後に、ステップS6~ステップS8の処理が行われる内容を示したが、ステップS3~ステップS5の処理と、ステップS6~ステップS8の処理は、並行して行われてもよい。あるいは、ステップS3~ステップS5の処理前に、ステップS6~ステップS8の処理が実行されてもよい。この場合においてステップS6で第1閾値濃度以上の濃度が、第2時間以上、継続して得られていないと判定された場合には、換気システム100は処理をステップS3に移す。また、ステップS7において調節風量が第1調節風量以上である場合には、換気システム100は処理をステップS3に移す。 Although FIG. 8 shows that the processes in steps S6 to S8 are performed after the processes in steps S3 to S5, the processes in steps S3 to S5 and the processes in steps S6 to S8 are performed in parallel. may be performed. Alternatively, the processes in steps S6 to S8 may be executed before the processes in steps S3 to S5. In this case, if it is determined in step S6 that the concentration equal to or higher than the first threshold concentration has not been continuously obtained for the second time period or more, the ventilation system 100 moves the process to step S3. Furthermore, if the adjusted air volume is equal to or greater than the first adjusted air volume in step S7, the ventilation system 100 moves the process to step S3.
 図8では、ステップS11~ステップS12の処理の後に、ステップS13~ステップS14の処理が行われる内容を示したが、ステップS11~ステップS12の処理と、ステップS13~ステップS14の処理は、並行して行われてもよい。あるいは、ステップS11~ステップS12の処理前に、ステップS13~ステップS14の処理が実行されてもよい。この場合においてステップS13で調節風量が第1調節風量未満であると判定された場合には、換気システム100は処理をステップS11に移す。 Although FIG. 8 shows that the processing of steps S13 to S14 is performed after the processing of steps S11 to S12, the processing of steps S11 to S12 and the processing of steps S13 to S14 are performed in parallel. may be performed. Alternatively, the processes in steps S13 and S14 may be executed before the processes in steps S11 and S12. In this case, if it is determined in step S13 that the adjusted air volume is less than the first adjusted air volume, the ventilation system 100 moves the process to step S11.
 以下、実施の形態1に係るコントローラ3と換気システム100による効果について述べる。実施の形態1に係るコントローラ3は、無線通信部31と主制御部33とを備える。無線通信部31は、室内の二酸化炭素の濃度を検知する環境検知装置と無線通信を行い、環境検知装置から濃度を受信する。主制御部33は、室内を換気する換気装置1を、環境検知装置から取得した濃度に基づいて制御する。 Hereinafter, the effects of the controller 3 and ventilation system 100 according to the first embodiment will be described. The controller 3 according to the first embodiment includes a wireless communication section 31 and a main control section 33. The wireless communication unit 31 performs wireless communication with an environment detection device that detects the concentration of carbon dioxide in the room, and receives the concentration from the environment detection device. The main control unit 33 controls the ventilation device 1 that ventilates the room based on the concentration obtained from the environment detection device.
 上記構成によれば、コントローラ3は、無線通信によって環境検知装置から室内の二酸化炭素の濃度を取得する。そして、コントローラ3は、当該濃度に基づいて換気装置1を制御する。従って、換気システム100は、室内における人が位置する領域での空気質に応じた空調が可能になる。また、換気システム100の導入時における、配線作業の負担軽減と、コスト軽減とが可能になる。 According to the above configuration, the controller 3 acquires the indoor carbon dioxide concentration from the environment detection device through wireless communication. Then, the controller 3 controls the ventilation device 1 based on the concentration. Therefore, the ventilation system 100 can perform air conditioning according to the air quality in the area where a person is located indoors. Furthermore, it is possible to reduce the burden of wiring work and reduce costs when introducing the ventilation system 100.
 実施の形態1における主制御部33は、環境検知装置が検知した濃度が、第1時間の間、第1閾値濃度以上である場合には、換気のための風量である換気風量を予め定められた第1換気風量以上にするよう換気装置1を制御する。これにより、室内の空気質が悪化した状態において換気が促進されるため、室内の空気質の速やかな向上が可能になる。 The main control unit 33 in the first embodiment sets the ventilation air volume, which is the air volume for ventilation, in advance when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the first time. The ventilation device 1 is controlled so that the air volume is equal to or higher than the first ventilation air volume. As a result, ventilation is promoted in a state where the indoor air quality is deteriorated, so that the indoor air quality can be quickly improved.
 実施の形態1における主制御部33は、室内の気温および湿度のうちの両方または一方を調節する空気調和機2の室内機20を制御する。主制御部33は、環境検知装置が検知した濃度が、第2時間の間、第1閾値濃度以上である場合には、換気風量を第1換気風量以上にするよう換気装置1を制御した状態で、調節風量を第1調節風量以上にするよう室内機20を制御する。室内の空気質が悪化して、換気装置1のみでは空気質の改善に時間がかかる場合であっても、主制御部33が、調節風量を第1調節風量以上とするよう室内機20を制御することにより、室内の空気質の改善の容易化と迅速化が図られる。 The main control unit 33 in the first embodiment controls the indoor unit 20 of the air conditioner 2 that adjusts both or one of indoor temperature and humidity. The main control unit 33 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the second time period. Then, the indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume. Even if the indoor air quality deteriorates and it takes time to improve the air quality with the ventilation device 1 alone, the main control unit 33 controls the indoor unit 20 so that the adjusted air volume is equal to or higher than the first adjusted air volume. By doing so, it becomes easier and faster to improve indoor air quality.
 実施の形態1における主制御部33は、室内機20を介して換気装置1を制御する。これにより、コントローラ3の部品数を低減することができる。また、コントローラ3が有線通信によって室内機20を制御する場合には、換気装置1とコントローラ3との間の配線作業が省略されるため、配線作業の簡易化が図られる。 The main control unit 33 in the first embodiment controls the ventilation device 1 via the indoor unit 20. Thereby, the number of parts of the controller 3 can be reduced. Moreover, when the controller 3 controls the indoor unit 20 by wired communication, the wiring work between the ventilation device 1 and the controller 3 is omitted, so that the wiring work is simplified.
 実施の形態1における主制御部33は、環境検知装置が検知した濃度が、第3時間の間、第2閾値濃度未満である場合には、換気風量を第2換気風量以下にするよう換気装置1を制御する。室内の空気が改善した状態などにおいて主制御部33が、換気風量を第2換気風量以下とするため、換気システム100の省エネルギー化が可能になる。 The main control unit 33 in the first embodiment controls the ventilation device to reduce the ventilation air volume to the second ventilation air volume or less when the concentration detected by the environment detection device is less than the second threshold concentration during the third time period. Control 1. Since the main control unit 33 sets the ventilation air volume to the second ventilation air volume or less when the indoor air quality has improved, the ventilation system 100 can save energy.
 実施の形態1における主制御部33は、環境検知装置の配置位置の床面からの高さが第1高さである場合の第1閾値濃度を、配置位置の床面からの高さが、第1高さよりも大きい第2高さである場合の第1閾値濃度よりも高くする。二酸化炭素は窒素および酸素等に比べて重く、床に近い位置に滞留しやすい。主制御部33が、配置位置の高さが第2高さよりも小さい第1高さである場合の第1閾値濃度を、配置位置の高さが第2高さである場合の第1閾値濃度よりも大きくするため、換気システム100は、環境検知装置の位置に即した換気が可能になる。 The main control unit 33 in the first embodiment determines the first threshold concentration when the height from the floor of the arrangement position of the environment sensing device is the first height, and the first threshold concentration when the height from the floor of the arrangement position is the first height. The second height is higher than the first threshold concentration when the second height is larger than the first height. Carbon dioxide is heavier than nitrogen, oxygen, etc., and tends to stay near the floor. The main control unit 33 determines the first threshold concentration when the height of the arrangement position is a first height smaller than the second height, and the first threshold concentration when the height of the arrangement position is a second height. , the ventilation system 100 can provide ventilation in accordance with the location of the environmental sensing device.
 実施の形態1に係るコントローラ3は、第1環境表示部を更に備える。第1環境表示部は、境検知装置が検知した濃度と、第1閾値濃度との間の大小関係を示す第1環境情報を表示する。これにより、ユーザは、室内の空気質の状態を迅速且つ容易に認識可能になる。 The controller 3 according to the first embodiment further includes a first environment display section. The first environment display section displays first environment information indicating a magnitude relationship between the concentration detected by the boundary detection device and the first threshold concentration. This allows the user to quickly and easily recognize the state of indoor air quality.
 実施の形態1に係るコントローラ3は、第2環境表示部を更に備える。第2環境表示部は、環境検知装置が検知した濃度の時間的推移を示す第2環境情報を表示する。これにより、ユーザは、室内の空気質の時間的推移を容易に認識可能になる。 The controller 3 according to the first embodiment further includes a second environment display section. The second environment display section displays second environment information indicating the temporal change in concentration detected by the environment detection device. This allows the user to easily recognize temporal changes in indoor air quality.
 実施の形態1に係るコントローラ3は、第1案内表示部を更に備える。第1案内表示部は、室内の窓および扉の両方または一方を開くよう案内するための第1案内情報を表示する。主制御部33は、環境検知装置が検知した濃度が、第1案内要否判断時間の間、第1閾値濃度より高い場合には、第1案内情報を表示するよう第1案内表示部を制御する。これにより、ユーザは、空気質の悪化と換気の必要性とを速やかに認識可能になる。 The controller 3 according to the first embodiment further includes a first guide display section. The first guidance display section displays first guidance information for guiding the user to open both or one of a window and a door in the room. The main control unit 33 controls the first guidance display unit to display the first guidance information when the concentration detected by the environment detection device is higher than the first threshold concentration during the first guidance necessity determination time. do. This allows the user to quickly recognize deterioration in air quality and the need for ventilation.
 実施の形態1に係るコントローラ3は、第2案内表示部を更に備える。第2案内表示部は、換気装置内の清掃を促す第2案内情報を表示する。主制御部33は、環境検知装置が検知した濃度が、第2案内要否判断時間の間、第1閾値濃度より高い場合には、第2案内情報を表示するよう第2案内表示部を制御する。これにより、ユーザは、室内の空気質が悪化した場合において、換気装置1内の清掃の必要の可能性があることを認識できる。例えば、換気装置1または窓開け等による換気によっても空気質の改善がない場合などにおいて、ユーザは、速やかに換気装置1内の清掃が必要であることを認識できる。 The controller 3 according to the first embodiment further includes a second guide display section. The second guide display section displays second guide information urging cleaning inside the ventilation device. The main control unit 33 controls the second guidance display unit to display second guidance information if the concentration detected by the environment detection device is higher than the first threshold concentration during the second guidance necessity determination time. do. Thereby, the user can recognize that there is a possibility that the inside of the ventilation device 1 needs to be cleaned when the indoor air quality deteriorates. For example, in a case where the air quality is not improved by ventilation by using the ventilation device 1 or by opening a window, the user can immediately recognize that cleaning inside the ventilation device 1 is necessary.
 実施の形態1に係るコントローラ3は、第3案内表示部を更に備える。第3案内表示部は、環境検知装置の修理または点検を促す第3案内情報を表示する。換気装置1は、換気装置1に流入した室内の空気における二酸化炭素の濃度を検知する換気濃度検知装置を備える。主制御部33は、換気濃度検知装置によって検知された二酸化炭素の濃度と、環境検知装置によって検知された二酸化炭素の濃度との間に相関がない場合には、第3案内情報を表示するよう第3案内表示部を制御する。換気装置1内の二酸化炭素の濃度と、室内の二酸化炭素の濃度とは相関する。しかし、換気濃度検知装置と環境検知装置の各検知結果が相関しない場合には、環境検知装置に異常が発生した可能性が考えられる。このような場合において第3案内表示部が第3案内情報を表示することによって、ユーザは、環境検知装置の異常の可能性を迅速且つ容易に認識することができる。そして、ユーザは、環境検知装置の修理の依頼などを速やかに行うことが可能になる。 The controller 3 according to the first embodiment further includes a third guide display section. The third guidance display section displays third guidance information urging repair or inspection of the environment detection device. The ventilation device 1 includes a ventilation concentration detection device that detects the concentration of carbon dioxide in the indoor air that has flowed into the ventilation device 1. The main control unit 33 is configured to display third guidance information when there is no correlation between the concentration of carbon dioxide detected by the ventilation concentration detection device and the concentration of carbon dioxide detected by the environment detection device. Controls the third guide display section. The concentration of carbon dioxide in the ventilation device 1 and the concentration of carbon dioxide indoors are correlated. However, if the detection results of the ventilation concentration detection device and the environment detection device do not correlate, it is possible that an abnormality has occurred in the environment detection device. In such a case, the third guide display section displays the third guide information, so that the user can quickly and easily recognize the possibility of an abnormality in the environment detection device. Then, the user can quickly request repair of the environment detection device.
 実施の形態1に係るコントローラ3は、第4案内表示部を更に備える。第4案内表示部は、環境検知装置の位置の変更を促す第4案内情報を表示する。換気装置1は、換気装置1に流入した空気における二酸化炭素の濃度を検知する換気濃度検知装置を備える。主制御部33は、換気濃度検知装置によって検知された二酸化炭素の濃度と、環境検知装置によって検知された二酸化炭素の濃度との間に相関がない場合には、第4案内情報を表示するよう第4案内表示部を制御する。換気装置1内の二酸化炭素の濃度と、室内の二酸化炭素の濃度とは相関する。しかし、換気濃度検知装置と環境検知装置の各検知結果が相関しない場合には、環境検知装置の配置位置に問題がある可能性が考えられる。例えば、環境検知装置が、室内の出入口近くなど、室内において人が居る位置から離れた位置に配置されている場合には、環境検知装置は、人が居る位置における二酸化炭素の濃度よりも低い濃度を検知する可能性がある。これにより、適切な換気が行われない虞がある。このような場合において第4案内表示部が第4案内情報を表示することによって、ユーザは、環境検知装置の移動の必要性を迅速且つ容易に認識することができる。そして、環境検知装置の移動によって、環境検知装置は、人が居る位置における二酸化炭素の濃度を精度良く検知可能になる。従って、換気システム100は、室内の空気質に応じた換気が可能になる。 The controller 3 according to the first embodiment further includes a fourth guide display section. The fourth guidance display section displays fourth guidance information that prompts the user to change the position of the environment sensing device. The ventilation device 1 includes a ventilation concentration detection device that detects the concentration of carbon dioxide in the air that has flowed into the ventilation device 1. The main control unit 33 is configured to display fourth guidance information when there is no correlation between the concentration of carbon dioxide detected by the ventilation concentration detection device and the concentration of carbon dioxide detected by the environment detection device. Controls the fourth guide display section. The concentration of carbon dioxide in the ventilation device 1 and the concentration of carbon dioxide indoors are correlated. However, if the detection results of the ventilation concentration detection device and the environment detection device do not correlate, there may be a problem with the placement position of the environment detection device. For example, if the environmental sensing device is placed at a location away from where people are indoors, such as near the entrance of the room, the environmental sensing device will detect a concentration of carbon dioxide that is lower than the concentration of carbon dioxide at the location where people are. may be detected. This may result in inadequate ventilation. In such a case, the fourth guide display section displays the fourth guide information, so that the user can quickly and easily recognize the necessity of moving the environment sensing device. By moving the environment detection device, the environment detection device can accurately detect the concentration of carbon dioxide at the location where a person is present. Therefore, the ventilation system 100 can perform ventilation according to the indoor air quality.
 実施の形態1における環境検知装置は、室内の気温および湿度のうちの両方または一方を検知する。主制御部33は、室内機20に室内への送風を行わせる。主制御部33は、室内機20からの送風前後において環境検知装置が検知した上記気温および湿度のうちの両方または一方に基づいて、環境検知装置の位置を示す位置情報を取得する。これにより、主制御部33は、当該位置情報に基づいて、環境検知装置の位置が適切かを判定することができる。そして、第4案内表示部は、より精度の高い第4案内情報を表示することができる。 The environment detection device in Embodiment 1 detects both or one of indoor temperature and humidity. The main control unit 33 causes the indoor unit 20 to blow air into the room. The main control unit 33 acquires position information indicating the position of the environment detection device based on both or one of the temperature and humidity detected by the environment detection device before and after the air is blown from the indoor unit 20. Thereby, the main control unit 33 can determine whether the location of the environment sensing device is appropriate based on the location information. The fourth guide display section can display fourth guide information with higher accuracy.
 実施の形態1における環境検知装置は、室内に配置された3つ以上の電波通信装置と無線通信する。主制御部33は、3つ以上の電波通信装置の各々が環境検知装置から受信した電波の強度に基づいて位置情報を取得する。これにより、主制御部33は、当該位置情報に基づいて、環境検知装置の位置が適切かを判定することができる。そして、第4案内表示部は、より精度の高い第4案内情報を表示することができる。 The environment detection device in the first embodiment wirelessly communicates with three or more radio wave communication devices placed indoors. The main control unit 33 acquires position information based on the strength of radio waves received by each of the three or more radio wave communication devices from the environment detection device. Thereby, the main control unit 33 can determine whether the location of the environment sensing device is appropriate based on the location information. The fourth guide display section can display fourth guide information with higher accuracy.
 実施の形態1に係る換気システム100は、環境検知装置と換気装置1とコントローラ3とを有する。環境検知装置は、室内の二酸化炭素の濃度を検知する。換気装置1は、室内を換気する。コントローラ3は、環境検知装置と無線通信を行い、環境検知装置から濃度を取得し、取得した濃度に基づいて換気装置1を制御する。 The ventilation system 100 according to the first embodiment includes an environment detection device, a ventilation device 1, and a controller 3. The environmental sensing device detects the concentration of carbon dioxide in the room. The ventilation device 1 ventilates the room. The controller 3 performs wireless communication with the environment detection device, acquires the concentration from the environment detection device, and controls the ventilation device 1 based on the acquired concentration.
 上記構成によれば、コントローラ3は、無線通信によって環境検知装置から室内の二酸化炭素の濃度を取得する。そして、コントローラ3は、当該濃度に基づいて換気装置1を制御する。従って、換気システム100は、室内における人が位置する領域での空気質に応じた空調が可能になる。また、換気システム100の導入時における、配線作業の負担軽減と、コスト軽減とが可能になる。 According to the above configuration, the controller 3 acquires the indoor carbon dioxide concentration from the environment detection device through wireless communication. Then, the controller 3 controls the ventilation device 1 based on the concentration. Therefore, the ventilation system 100 can perform air conditioning according to the air quality in the area where a person is located indoors. Furthermore, it is possible to reduce the burden of wiring work and reduce costs when introducing the ventilation system 100.
 実施の形態1に係るコントローラ3は、環境検知装置が検知した濃度が、第1時間の間、第1閾値濃度以上である場合には、換気のための風量である換気風量を第1換気風量以上にするよう換気装置1を制御する。これにより、室内の空気質が悪化した状態において換気が促進されるため、室内の空気質の速やかな向上が可能になる。 The controller 3 according to the first embodiment sets the ventilation air volume, which is the air volume for ventilation, to the first ventilation air volume when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the first time. The ventilation system 1 is controlled so as to achieve the above. As a result, ventilation is promoted in a state where the indoor air quality is deteriorated, so that the indoor air quality can be quickly improved.
 実施の形態1に係る換気システム100は、室内の気温および湿度のうちの両方または一方を調節する空気調和機2の室内機20を更に有する。コントローラ3は、環境検知装置が検知した濃度が、第2時間の間、第1閾値濃度以上である場合には、換気風量を第1換気風量以上にするよう換気装置1を制御した状態で、調節風量を第1調節風量以上にするよう室内機20を制御する。室内の空気質が悪化して、換気装置1のみでは空気質の改善に時間がかかる場合であっても、コントローラ3が、調節風量を第1調節風量以上とするよう室内機20を制御することにより、換気システム100は、室内の空気質の改善を迅速に行うことができる。 The ventilation system 100 according to the first embodiment further includes an indoor unit 20 of the air conditioner 2 that adjusts both or one of indoor temperature and humidity. The controller 3 controls the ventilation device 1 to make the ventilation air volume equal to or higher than the first ventilation air volume when the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during the second time period. The indoor unit 20 is controlled so that the adjusted air volume is equal to or higher than the first adjusted air volume. Even if the indoor air quality deteriorates and it takes time to improve the air quality with the ventilation device 1 alone, the controller 3 controls the indoor unit 20 so that the adjusted air volume is equal to or higher than the first adjusted air volume. Accordingly, the ventilation system 100 can quickly improve indoor air quality.
 実施の形態1に係るコントローラ3は、環境検知装置が検知した濃度が、第3時間の間、第2閾値濃度未満である場合には、換気風量を第2換気風量以下にするよう換気装置1を制御する。室内の空気が改善した状態などにおいてコントローラ3が換気風量を第2換気風量以下とするため、換気システム100は省エネルギー化を図ることができる。 The controller 3 according to the first embodiment controls the ventilation device 1 to make the ventilation air volume equal to or less than the second ventilation air volume when the concentration detected by the environment detection device is less than the second threshold concentration during the third time period. control. Since the controller 3 sets the ventilation air volume to the second ventilation air volume or less when the indoor air quality has improved, the ventilation system 100 can save energy.
 実施の形態1では、コントローラ3の表示部34が、第1環境情報~第2環境情報、および、第1案内情報~第4案内情報を表示する例について示した。しかし、第1環境情報~第2環境情報と第1案内情報~第4案内情報とのうちの全部または一部は、表示部34と共に、または、表示部34に代えて、ユーザの通信端末装置によって表示されてもよい。なお、当該通信端末装置は、スマートフォンまたはタブレット端末等である。通信端末装置が、第1環境情報~第2環境情報と第1案内情報~第4案内情報とのうちの全部または一部を表示する場合には、通信端末装置とコントローラ3とは通信可能である。そして、通信端末装置には、コントローラ3から受信した情報を処理するためのアプリケーションプログラムがインストールされている。 In the first embodiment, an example has been described in which the display section 34 of the controller 3 displays the first environment information to the second environment information and the first guide information to the fourth guide information. However, all or part of the first environment information to second environment information and the first guide information to fourth guide information may be displayed on the user's communication terminal device together with the display section 34 or in place of the display section 34. It may be displayed by Note that the communication terminal device is a smartphone, a tablet terminal, or the like. When the communication terminal device displays all or part of the first environment information to second environment information and the first guide information to fourth guide information, the communication terminal device and the controller 3 are not able to communicate with each other. be. An application program for processing information received from the controller 3 is installed in the communication terminal device.
 通信端末装置が第1環境情報および第2環境情報の両方または一方を表示する場合には、通信端末装置は、ユーザから、第1環境情報および第2環境情報の閲覧要求を受け付ける。そして、通信端末装置は、当該閲覧要求に基づいて、第1環境情報および第2環境情報の両方または一方を通信端末装置に送信するよう要求する要求情報をコントローラ3に送信する。コントローラ3は、要求情報に応じて、第1環境情報および第2環境情報の両方または一方を通信端末装置に送信し、通信端末装置は、受信した第1環境情報および第2環境情報の両方または一方を表示する。通信端末装置が第1案内情報~第4案内情報の全部または一部を表示する場合には、コントローラ3は、表示部34が第1案内情報~第4案内情報の全部または一部を表示するための上述の条件が満たされた場合において、第1案内情報~第4案内情報の全部または一部を通信端末装置に送信する。そして、通信端末装置は、受信した第1案内情報~第4案内情報の全部または一部を表示する。 When the communication terminal device displays both or one of the first environment information and the second environment information, the communication terminal device receives a request to view the first environment information and the second environment information from the user. Based on the viewing request, the communication terminal device transmits request information to the controller 3 requesting the communication terminal device to transmit both or one of the first environment information and the second environment information. The controller 3 transmits both or one of the first environment information and the second environment information to the communication terminal device according to the request information, and the communication terminal device transmits both or the received first environment information and second environment information. Show one side. When the communication terminal device displays all or part of the first guide information to the fourth guide information, the controller 3 causes the display unit 34 to display all or part of the first guide information to the fourth guide information. When the above-mentioned conditions are satisfied, all or part of the first guide information to fourth guide information is transmitted to the communication terminal device. Then, the communication terminal device displays all or part of the received first guide information to fourth guide information.
 実施の形態2.
 以下、実施の形態2に係る換気システム100について詳述する。なお、実施の形態2では、実施の形態1における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態2において、実施の形態1における構成と同様の構成、および、実施の形態1における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 2.
Hereinafter, the ventilation system 100 according to the second embodiment will be described in detail. In addition, in the second embodiment, the same reference numerals are given to the same components as those in the first embodiment. Furthermore, in the second embodiment, descriptions of configurations similar to those in the first embodiment, functions similar to those in the first embodiment, etc. will be omitted unless there are special circumstances.
 図9は、実施の形態2に係る換気システムを例示するブロック図である。実施の形態2における換気システム100は、更に人感センサ6を有する。図9に示すように、以下では、人感センサ6が室内機20に設けられる場合を例に挙げて説明するが、人感センサ6は換気装置1に設けられてもよい。人感センサ6は、室内における人の存在を検知する。なお、人感センサ6は、例えばサーモグラフィのように、室内の人数を検知可能なものであってもよいが、室内における人の位置も検知可能なものであってもよい。人感センサ6は、検知結果をコントローラ3に送信する。人感センサ6は、直接的に、または、室内機20等を介して、コントローラ3に検知結果を送信する。人感センサ6は、人検知装置の一例である。 FIG. 9 is a block diagram illustrating a ventilation system according to the second embodiment. The ventilation system 100 in the second embodiment further includes a human sensor 6. As shown in FIG. 9 , a case in which the human sensor 6 is provided in the indoor unit 20 will be described below as an example, but the human sensor 6 may also be provided in the ventilation device 1 . The human sensor 6 detects the presence of a person indoors. Note that the human sensor 6 may be a sensor capable of detecting the number of people in the room, such as a thermograph, for example, but may also be a sensor capable of detecting the position of a person in the room. The human sensor 6 transmits the detection result to the controller 3. The human sensor 6 transmits the detection result to the controller 3 directly or via the indoor unit 20 or the like. The human sensor 6 is an example of a human detection device.
 図10は、実施の形態2に係るコントローラの構成例を示すブロック図である。実施の形態2のコントローラ3は、実施の形態1のコントローラ3の構成に加え、更に取得部35を備える。取得部35は、定期的に人感センサ6から検知結果を取得する。取得部35は、直接的に、または、室内機20等を介して、人感センサ6から検知結果を取得する。取得部35が直接的に人感センサ6から検知結果を取得する場合には、取得部35は、人感センサ6から検知結果を、有線通信によって取得してもよいし、無線通信によって取得してもよい。 FIG. 10 is a block diagram showing a configuration example of a controller according to the second embodiment. The controller 3 of the second embodiment further includes an acquisition unit 35 in addition to the configuration of the controller 3 of the first embodiment. The acquisition unit 35 periodically acquires detection results from the human sensor 6. The acquisition unit 35 acquires the detection result from the human sensor 6 directly or via the indoor unit 20 or the like. When the acquisition unit 35 directly acquires the detection result from the human sensor 6, the acquisition unit 35 may acquire the detection result from the human sensor 6 by wired communication or by wireless communication. It's okay.
 主制御部33は、取得部35が取得した検知結果から、室内の人数を取得する。そして、主制御部33は、室内の人数が増加したか否かを判定する。主制御部33は、人数が増加した場合には、人数の増加分に応じて、換気風量を現時点の値から上昇させるよう換気装置1を制御する。主制御部33は、室内における人数の増加分に応じて、換気風量を現時点の値から上昇させるよう換気装置1を制御することに代えて、当該人数が予め定められた閾値人数以上であるか否かを判定し、当該人数が閾値人数以上である場合には、換気風量を第1換気風量以上にするよう換気装置1を制御してもよい。あるいは、主制御部33は、室内における人数の増加分に応じて、換気風量を現時点の値から上昇させるよう換気装置1を制御すると共に、当該人数が閾値人数以上であるか否かを判定し、当該人数が閾値人数以上である場合には、換気風量を第1換気風量以上にするよう換気装置1を制御してもよい。 The main control unit 33 acquires the number of people in the room from the detection results acquired by the acquisition unit 35. The main control unit 33 then determines whether the number of people in the room has increased. When the number of people increases, the main control unit 33 controls the ventilation device 1 to increase the ventilation air volume from the current value in accordance with the increase in the number of people. Instead of controlling the ventilation system 1 to increase the ventilation air volume from the current value according to the increase in the number of people in the room, the main control unit 33 determines whether the number of people is equal to or more than a predetermined threshold number of people. If it is determined whether or not the number of people is equal to or greater than the threshold number of people, the ventilation device 1 may be controlled to make the ventilation air volume equal to or greater than the first ventilation air volume. Alternatively, the main control unit 33 controls the ventilation device 1 to increase the ventilation air volume from the current value according to the increase in the number of people in the room, and determines whether the number of people is equal to or higher than the threshold number of people. If the number of people is equal to or greater than the threshold number of people, the ventilation device 1 may be controlled to make the ventilation air volume equal to or greater than the first ventilation air volume.
 なお、室内に人が居る場合には、時間の経過と共に二酸化炭素が上昇し、人数が多ければ多いほど、二酸化炭素の濃度の上昇速度が大きくなる。室内の人数が増加した場合、または、当該人数が閾値人数以上である場合における主制御部33による上記制御処理は、現時点において室内の二酸化炭素の濃度が第1閾値濃度以上でなくとも、今後、第1閾値濃度以上となる可能性があることから、現時点の二酸化炭素の濃度に関係なく実行される。例えば、室内の人数が閾値人数以上である場合には、主制御部33は、二酸化炭素の濃度が第1閾値濃度未満であっても、換気風量を第1換気風量以上にするよう換気装置1を制御する。これにより、換気システム100は、室内の空気質の悪化を未然に抑制することができる。 Note that when there are people in the room, carbon dioxide increases over time, and the more people there are, the faster the carbon dioxide concentration increases. The above control process by the main control unit 33 when the number of people in the room increases or when the number of people is equal to or higher than the threshold number of people will be performed in the future even if the concentration of carbon dioxide in the room is not equal to or higher than the first threshold concentration at present. Since there is a possibility that the concentration will be higher than the first threshold value, it is executed regardless of the current concentration of carbon dioxide. For example, when the number of people in the room is equal to or higher than the threshold number of people, the main control unit 33 controls the ventilation system 1 to make the ventilation air volume equal to or higher than the first ventilation air volume even if the concentration of carbon dioxide is less than the first threshold concentration. control. Thereby, the ventilation system 100 can prevent deterioration of indoor air quality.
 主制御部33は、室内の人数が増加した場合、または、当該人数が閾値人数以上である場合における上述の換気風量の制御処理に代え、または、換気風量の制御処理と共に、以下の処理を行うものでもよい。すなわち、主制御部33は、人数の増加に応じて、第1閾値濃度を低くしてもよい。この場合には、主制御部33は、人数と、二酸化炭素の濃度とを対応付けた人数濃度対応情報を記憶し、第1閾値濃度を、当該人数濃度対応情報において室内の人数と対応付けられた濃度に変更してもよい。なお、人数濃度対応情報における濃度は、人数が多いほど低い。人数濃度対応情報は、AI(Artificial Intelligence)による学習、または実験等によって予め定められている。主制御部33は、室内の人数が閾値人数以上である場合において、第1閾値濃度を低くしてもよい。この場合には、主制御部33は、室内の人数が閾値人数以上である場合において、人数が閾値人数未満であった際の第1閾値濃度から予め定められた値だけ、第1閾値濃度を低下させてもよい。 The main control unit 33 performs the following process in place of or in addition to the ventilation air volume control process described above when the number of people in the room increases or the number of people is equal to or greater than the threshold number of people. It can be anything. That is, the main control unit 33 may lower the first threshold concentration according to an increase in the number of people. In this case, the main control unit 33 stores the number of people concentration correspondence information that associates the number of people with the concentration of carbon dioxide, and associates the first threshold concentration with the number of people in the room in the number of people concentration correspondence information. It may be changed to a different concentration. Note that the density in the number of people density correspondence information is lower as the number of people increases. The number of people concentration correspondence information is predetermined by learning using AI (Artificial Intelligence), experimentation, or the like. The main control unit 33 may lower the first threshold concentration when the number of people in the room is equal to or greater than the threshold number of people. In this case, when the number of people in the room is equal to or greater than the threshold number of people, the main control unit 33 increases the first threshold concentration by a predetermined value from the first threshold concentration when the number of people in the room is less than the threshold number of people. It may be lowered.
 主制御部33は、室内の人数の増加分に応じて、調節風量を現時点の値から上昇させるよう室内機20を制御してもよい。主制御部33は、室内の人数が閾値人数以上であるか否かを判定し、当該人数が閾値人数以上である場合には、調節風量を第1調節風量以上にするよう室内機20を制御してもよい。主制御部33は、人数が増加分に応じて調節風量を上昇させる場合と、人数が閾値人数以上である際に調節風量を第1調節風量以上に変化させる場合の両方または一方の場合において、上述のような空気の攪拌処理を空気調和機2に実行させてもよい。 The main control unit 33 may control the indoor unit 20 to increase the adjusted air volume from the current value in accordance with the increase in the number of people in the room. The main control unit 33 determines whether the number of people in the room is equal to or greater than the threshold number of people, and if the number of people is equal to or greater than the threshold number of people, controls the indoor unit 20 to make the adjusted air volume equal to or higher than the first adjusted air volume. You may. The main control unit 33 increases the adjusted air volume according to the increase in the number of people and/or changes the adjusted air volume to more than the first adjusted air volume when the number of people is equal to or more than the threshold number of people. The air conditioner 2 may be caused to perform the air agitation process as described above.
 主制御部33は、人感センサ6の検知結果に基づく人数と、二酸化炭素センサ4が検知した濃度との間の相関の有無を判定し、当該人数と当該濃度との間の相関がない場合には、第3案内情報および第4案内情報の両方または一方を表示するよう表示部34を制御してもよい。 The main control unit 33 determines whether there is a correlation between the number of people based on the detection result of the human sensor 6 and the concentration detected by the carbon dioxide sensor 4, and if there is no correlation between the number of people and the concentration In this case, the display section 34 may be controlled to display both or one of the third guide information and the fourth guide information.
 主制御部33は、人感センサ6の検知結果に基づく人数と、二酸化炭素センサ4が検知した濃度との間の相関がない場合には、空気調和機2が運転しているか否かを判定してもよい。空気調和機2が運転している場合には、窓などは開いていないことが多い。このような状態で室内の人数が増加したにも関わらず、室内の人数と、二酸化炭素センサ4が検知した濃度との間に相関がない場合には、二酸化炭素センサ4の配置位置が、人が居る位置から離れている場合、または、二酸化炭素センサ4に異常がある場合が考えられる。そのため、主制御部33は、室内の人数が増加し、且つ、空気調和機2が運転している場合であって、室内の人数と、二酸化炭素センサ4が検知した濃度との間に相関がない場合には、第3案内情報と第4案内情報の両方または一方を表示するよう表示部34を制御してもよい。 If there is no correlation between the number of people based on the detection result of the human sensor 6 and the concentration detected by the carbon dioxide sensor 4, the main control unit 33 determines whether the air conditioner 2 is operating or not. You may. When the air conditioner 2 is operating, windows etc. are often not open. Even though the number of people in the room has increased under such conditions, if there is no correlation between the number of people in the room and the concentration detected by the carbon dioxide sensor 4, the placement position of the carbon dioxide sensor 4 may be The case may be that the person is far away from the current location, or there is an abnormality in the carbon dioxide sensor 4. Therefore, when the number of people in the room increases and the air conditioner 2 is operating, the main control unit 33 detects that there is no correlation between the number of people in the room and the concentration detected by the carbon dioxide sensor 4. If not, the display unit 34 may be controlled to display both or one of the third guide information and the fourth guide information.
 主制御部33は、人感センサ6が検知した人の位置から予め定められた閾値範囲以内に、二酸化炭素センサ4が配置されていない場合には、第4案内情報を表示するよう表示部34を制御してもよい。 If the carbon dioxide sensor 4 is not located within a predetermined threshold range from the position of the person detected by the human sensor 6, the main control unit 33 causes the display unit 34 to display fourth guidance information. may be controlled.
 以下、実施の形態2に係るコントローラ3のハードウェア構成について述べる。図11は、実施の形態2に係るコントローラのハードウェア構成を例示する図である。実施の形態2に係るコントローラ3は、図7に例示する構成に加え、更に第2入力インターフェース回路60を含む。当該第2入力インターフェース回路60は、バス59によってプロセッサ50およびメモリ51等と接続される。第2入力インターフェース回路60には、人感センサ6が、直接的に、または、室内機20を介して、接続される。取得部35の機能は、第2入力インターフェース回路60によって実現できる。 Hereinafter, the hardware configuration of the controller 3 according to the second embodiment will be described. FIG. 11 is a diagram illustrating the hardware configuration of the controller according to the second embodiment. The controller 3 according to the second embodiment further includes a second input interface circuit 60 in addition to the configuration illustrated in FIG. The second input interface circuit 60 is connected to the processor 50, memory 51, etc. via a bus 59. The human sensor 6 is connected to the second input interface circuit 60 either directly or via the indoor unit 20 . The functions of the acquisition unit 35 can be realized by the second input interface circuit 60.
 以下、図12を参照し、実施の形態2に係る換気システム100による換気処理の流れについて説明する。図12は、実施の形態2に係る換気システムによる換気処理の流れを例示するフローチャートである。図12に示すステップS21~ステップS23の処理は、図8に示すステップS1~ステップS14の処理と並行して実行される。ステップS21において取得部35は、人感センサ6から検知結果を取得する。ステップS22において主制御部33は、室内の人数が増加したか否かを判定する。すなわち、主制御部33は、今回のステップS21で人感センサ6から得られた検知結果に基づく人数が、前回のステップS21で人感センサ6から得られた検知結果に基づく人数よりも多いか否かを判定する。室内の人数が増加していない場合には(ステップS22:NO)、換気システム100は処理をステップS21に戻す。室内の人数が増加した場合には(ステップS22:YES)、ステップS23において換気装置1は、主制御部33からの制御信号に基づいて、換気風量を上昇させる。ステップS23の処理後、換気システム100は処理をステップS21に戻す。 Hereinafter, with reference to FIG. 12, the flow of ventilation processing by the ventilation system 100 according to the second embodiment will be described. FIG. 12 is a flowchart illustrating the flow of ventilation processing by the ventilation system according to the second embodiment. The processing from step S21 to step S23 shown in FIG. 12 is executed in parallel to the processing from step S1 to step S14 shown in FIG. In step S21, the acquisition unit 35 acquires the detection result from the human sensor 6. In step S22, the main control unit 33 determines whether the number of people in the room has increased. That is, the main control unit 33 determines whether the number of people based on the detection result obtained from the human sensor 6 in the current step S21 is greater than the number of people based on the detection result obtained from the human sensor 6 in the previous step S21. Determine whether or not. If the number of people in the room has not increased (step S22: NO), the ventilation system 100 returns the process to step S21. When the number of people in the room increases (step S22: YES), the ventilation device 1 increases the ventilation air volume based on the control signal from the main control unit 33 in step S23. After the process in step S23, the ventilation system 100 returns the process to step S21.
 以下、実施の形態2に係るコントローラ3および換気システム100による効果について述べる。実施の形態2における主制御部33は、室内の人の存在を検知する人検知装置による検知結果に基づく人数が増加した場合には、換気風量を上昇させるよう換気装置1を制御する。室内の人数が増加した場合には、室内の二酸化炭素の濃度は次第に上昇していく。二酸化炭素の濃度が第1閾値濃度となる前に、人数の増加に応じて、換気装置1が換気風量を上昇させることにより、換気システム100は、室内の空気質の悪化を未然に抑制することが可能になる。 Hereinafter, the effects of the controller 3 and ventilation system 100 according to the second embodiment will be described. The main control unit 33 in the second embodiment controls the ventilation device 1 to increase the ventilation air volume when the number of people increases based on the detection result by the person detection device that detects the presence of people in the room. When the number of people in the room increases, the concentration of carbon dioxide in the room gradually increases. The ventilation system 100 prevents deterioration of indoor air quality by causing the ventilation device 1 to increase the ventilation air volume according to the increase in the number of people before the concentration of carbon dioxide reaches the first threshold concentration. becomes possible.
 実施の形態2に係るコントローラ3は、環境検知装置の修理または点検を促す第3案内情報を表示する第3案内表示部を更に備える。主制御部33は、人検知装置の検知結果に基づく人数と、環境検知装置が検知した濃度との間に相関がない場合には、第3案内情報を表示するよう第3案内表示部を制御する。室内の人数と、室内の二酸化炭素の濃度は相関するが、当該人数と、環境検知装置による濃度との間に相関関係が見られない場合には、環境検知装置に異常がある可能性がある。このような場合において第3案内表示部が第3案内情報を表示することにより、ユーザは環境検知装置の異常の可能性を認識することができる。そして、ユーザは、速やかに環境検知装置の修理を依頼することができる。 The controller 3 according to the second embodiment further includes a third guidance display section that displays third guidance information that prompts repair or inspection of the environment sensing device. The main control unit 33 controls the third guidance display unit to display third guidance information when there is no correlation between the number of people based on the detection result of the human detection device and the concentration detected by the environment detection device. do. There is a correlation between the number of people in the room and the concentration of carbon dioxide in the room, but if there is no correlation between the number of people in the room and the concentration measured by the environmental detection device, there may be an abnormality in the environmental detection device. . In such a case, the third guidance display section displays the third guidance information, thereby allowing the user to recognize the possibility of an abnormality in the environment detection device. Then, the user can promptly request repair of the environment sensing device.
 実施の形態2に係るコントローラ3は、環境検知装置の位置の変更を促す第4案内情報を表示する第4案内表示部を更に備える。主制御部33は、人検知装置が検知した人の位置から閾値範囲以内に環境検知装置が配置されていない場合には、第4案内情報を表示するよう第4案内表示部を制御する。これにより、ユーザは、環境検知装置の移動の必要性を容易に認識可能になる。そして、室内における二酸化炭素の濃度がより高い位置に環境検知装置が配置されることによって、換気システム100は、室内の空気質を迅速且つ適切に向上させることができる。 The controller 3 according to the second embodiment further includes a fourth guide display section that displays fourth guide information that prompts the user to change the position of the environment sensing device. The main control unit 33 controls the fourth guidance display unit to display fourth guidance information when no environment detection device is placed within a threshold range from the position of the person detected by the person detection device. This allows the user to easily recognize the necessity of moving the environment sensing device. By disposing the environmental detection device at a position where the concentration of carbon dioxide in the room is higher, the ventilation system 100 can quickly and appropriately improve the indoor air quality.
 実施の形態2に係るコントローラ3は、環境検知装置の位置の変更を促す第4案内情報を表示する第4案内表示部を更に備える。主制御部33は、室内における人の存在を検知する人検知装置の検知結果に基づく人の数と、環境検知装置が検知した濃度との間に相関がない場合には、第4案内情報を表示するよう第4案内表示部を制御する。室内の人数と、室内の二酸化炭素の濃度は相関するが、当該人数と、環境検知装置による濃度との間に相関関係が見られない場合には、環境検知装置の配置位置が人のいない位置など、室内において二酸化炭素の濃度が比較的低い位置である可能性がある。このような場合において第4案内表示部が第4案内情報を表示することによって、ユーザは環境検知装置の移動の必要性を容易に認識可能になる。そして、環境検知装置が、人が居る位置など、二酸化炭素の濃度が高い位置に配置されることによって、換気システム100は、室内の空気質を迅速且つ適切に向上させることができる。 The controller 3 according to the second embodiment further includes a fourth guide display section that displays fourth guide information that prompts the user to change the position of the environment sensing device. If there is no correlation between the number of people based on the detection result of the person detection device that detects the presence of people in the room and the concentration detected by the environment detection device, the main control unit 33 transmits fourth guidance information. The fourth guidance display unit is controlled to display the information. There is a correlation between the number of people in the room and the concentration of carbon dioxide in the room, but if there is no correlation between the number of people in the room and the concentration measured by the environmental detection device, the environment detection device should be placed in a location where there are no people. There is a possibility that the concentration of carbon dioxide is relatively low indoors. In such a case, the fourth guidance display section displays the fourth guidance information, thereby allowing the user to easily recognize the necessity of moving the environment sensing device. By disposing the environmental detection device at a location where the concentration of carbon dioxide is high, such as a location where a person is present, the ventilation system 100 can quickly and appropriately improve the indoor air quality.
 実施の形態2に係る換気システム100は、室内の人の存在を検知する人検知装置を更に有する。コントローラ3は、人検知装置による検知結果に基づく人数が増加した場合には、換気風量を上昇させるよう換気装置1を制御する。室内の人数が増加した場合には、室内の二酸化炭素の濃度は次第に上昇していく。二酸化炭素の濃度が第1閾値濃度となる前に、人数の増加に応じて、換気装置1が換気風量を上昇させることにより、換気システム100は、室内の空気質の悪化を未然に抑制することが可能になる。 The ventilation system 100 according to the second embodiment further includes a person detection device that detects the presence of a person indoors. The controller 3 controls the ventilation device 1 to increase the ventilation air volume when the number of people increases based on the detection result by the person detection device. When the number of people in the room increases, the concentration of carbon dioxide in the room gradually increases. The ventilation system 100 prevents deterioration of indoor air quality by causing the ventilation device 1 to increase the ventilation air volume according to the increase in the number of people before the concentration of carbon dioxide reaches the first threshold concentration. becomes possible.
 実施の形態1~実施の形態2では、換気システム100が空気調和機2を有する場合を例に挙げて説明したが、換気システム100は、空気調和機2を含まないものでもよい。この場合には、換気システム100は、図8に示すステップS6~ステップS8の処理と、ステップS13~ステップS14の処理とを行わない。 In Embodiments 1 and 2, the case where the ventilation system 100 includes the air conditioner 2 has been described as an example, but the ventilation system 100 may not include the air conditioner 2. In this case, the ventilation system 100 does not perform the processing of steps S6 to S8 and the processing of steps S13 to S14 shown in FIG. 8.
 実施の形態1~実施の形態2に係るコントローラ3は、更に照明装置を備えてもよい。照明装置は、表示部34による案内情報の表示に代え、または、案内情報の表示と共に、主制御部33からの指示に応じて、点灯または点滅を行うことによって、第1案内情報~第4案内情報の全部または一部に対応する各種案内を行ってもよい。 The controller 3 according to Embodiments 1 and 2 may further include a lighting device. Instead of displaying the guidance information on the display section 34, or in addition to displaying the guidance information, the lighting device lights up or blinks in response to instructions from the main control section 33, thereby displaying the first to fourth guidance information. Various types of guidance may be provided corresponding to all or part of the information.
 実施の形態1~実施の形態2の二酸化炭素センサ4および換気濃度センサ12の両方または一方は、冷媒漏洩センサとしての機能を有してもよい。主制御部33は、当該機能により検知された冷媒の濃度が冷媒閾値濃度以上である場合には、冷媒が漏洩したと判定する。なお、冷媒閾値濃度は、二酸化炭素の濃度の上昇によって冷媒が漏洩したと判定されないよう、上記第1閾値濃度よりも高いものとする。具体的には、第1閾値濃度が1000[ppm]である場合には、冷媒閾値濃度は2000[ppm]以上であって、3000[ppm]以下の濃度などである。 Both or one of the carbon dioxide sensor 4 and the ventilation concentration sensor 12 of Embodiments 1 and 2 may have a function as a refrigerant leak sensor. The main control unit 33 determines that the refrigerant has leaked when the concentration of the refrigerant detected by the function is equal to or higher than the refrigerant threshold concentration. Note that the refrigerant threshold concentration is set higher than the first threshold concentration so that it is not determined that the refrigerant has leaked due to an increase in the concentration of carbon dioxide. Specifically, when the first threshold concentration is 1000 [ppm], the refrigerant threshold concentration is 2000 [ppm] or more and 3000 [ppm] or less.
 実施の形態1~実施の形態2の室内機20には、室内から室内機20内に流入した空気における二酸化炭素の濃度を検知する室内濃度センサが設けられてもよい。室内濃度センサは、室内機20内に流入した室内の空気における二酸化炭素の濃度を検知する室内濃度検知装置の例である。換気装置1は、広い空間に一つだけ設けられる場合があり、この場合には、1つのダクトを介して広範囲における空気を換気することになり、換気濃度センサ12と二酸化炭素センサ4の各々の検知結果が相関しなくなり得る。このような場合において室内機20に室内濃度センサが設けられることにより、主制御部33は、換気濃度センサ12による検知結果と共に、または、換気濃度センサ12による検知結果に代えて、室内濃度センサによる検知結果が、二酸化炭素センサ4による検知結果と相関するかを判定してもよい。そして、室内濃度センサによる検知結果が、二酸化炭素センサ4による検知結果と相関しない場合には、上述の第3案内情報または第4案内情報を表示するよう表示部34を制御してもよい。 The indoor unit 20 of Embodiments 1 and 2 may be provided with an indoor concentration sensor that detects the concentration of carbon dioxide in the air that has flowed into the indoor unit 20 from the room. The indoor concentration sensor is an example of an indoor concentration detection device that detects the concentration of carbon dioxide in indoor air that has flowed into the indoor unit 20. Only one ventilation device 1 may be installed in a large space, and in this case, air is ventilated over a wide area through one duct, and each of the ventilation concentration sensor 12 and the carbon dioxide sensor 4 Detection results may become uncorrelated. In such a case, by providing the indoor concentration sensor in the indoor unit 20, the main control unit 33 can detect the detection result by the indoor concentration sensor together with the detection result by the ventilation concentration sensor 12, or instead of the detection result by the ventilation concentration sensor 12. It may be determined whether the detection result correlates with the detection result by the carbon dioxide sensor 4. Then, if the detection result by the indoor concentration sensor does not correlate with the detection result by the carbon dioxide sensor 4, the display section 34 may be controlled to display the above-mentioned third guide information or fourth guide information.
 以上、実施の形態について説明したが、本開示の内容は、実施の形態に限定されるものではなく、想定しうる均等の範囲を含む。また、実施の形態1~実施の形態2で説明した構成およびその変形例は、機能及び動作を阻害しない範囲で、互いに組み合わせることができる。 Although the embodiments have been described above, the content of the present disclosure is not limited to the embodiments, and includes conceivable equivalent ranges. Furthermore, the configurations and modifications thereof described in Embodiments 1 and 2 can be combined with each other as long as the functions and operations are not impaired.
 1 換気装置、2 空気調和機、3 コントローラ、4 二酸化炭素センサ、6 人感センサ、10A 第1換気用送風機、10B 第2換気用送風機、11 全熱交換器、12 換気濃度センサ、13 外気温湿度センサ、14 給気温度センサ、20 室内機、21 室外機、30 入力部、31 無線通信部、32 計時部、33 主制御部、34 表示部、35 取得部、50 プロセッサ、51 メモリ、52 無線通信インターフェース回路、53 計時装置、54 第1入力インターフェース回路、55 入力装置、56 第1出力インターフェース回路、57 第2出力インターフェース回路、58 表示装置、59 バス、60 第2入力インターフェース回路、100 換気システム、t1、t2、t3、t4、t5 時点。 1 Ventilation system, 2 Air conditioner, 3 Controller, 4 Carbon dioxide sensor, 6 Human sensor, 10A First ventilation blower, 10B Second ventilation blower, 11 Total heat exchanger, 12 Ventilation concentration sensor, 13 Outside temperature Humidity sensor, 14 Supply air temperature sensor, 20 Indoor unit, 21 Outdoor unit, 30 Input unit, 31 Wireless communication unit, 32 Timing unit, 33 Main control unit, 34 Display unit, 35 Acquisition unit, 50 Processor, 51 Memory, 52 Wireless communication interface circuit, 53 Timing device, 54 First input interface circuit, 55 Input device, 56 First output interface circuit, 57 Second output interface circuit, 58 Display device, 59 Bus, 60 Second input interface circuit, 100 Ventilation System, t1, t2, t3, t4, t5 time points.

Claims (16)

  1.  室内の二酸化炭素の濃度を検知する環境検知装置と無線通信を行い、前記環境検知装置から前記濃度を取得する無線通信部と、
     前記室内を換気する換気装置を、前記環境検知装置から取得した前記濃度に基づいて制御する主制御部と、
     を備えるコントローラ。
    a wireless communication unit that performs wireless communication with an environmental sensing device that detects the concentration of carbon dioxide in the room and acquires the concentration from the environmental sensing device;
    a main control unit that controls a ventilation device that ventilates the room based on the concentration obtained from the environment detection device;
    A controller comprising:
  2.  前記主制御部は、
     前記環境検知装置が検知した前記濃度が、予め定められた第1時間の間、予め定められた第1閾値濃度以上である場合には、換気のための風量である換気風量を予め定められた第1換気風量以上にするよう前記換気装置を制御する、請求項1に記載のコントローラ。
    The main control unit includes:
    If the concentration detected by the environment detection device is equal to or higher than a predetermined first threshold concentration for a predetermined first time, the ventilation air volume, which is the air volume for ventilation, is adjusted to a predetermined value. The controller according to claim 1, wherein the controller controls the ventilation device so that the ventilation air volume is equal to or higher than a first ventilation air volume.
  3.  前記主制御部は、
     前記室内の気温および湿度のうちの両方または一方を調節する空気調和機の室内機を制御し、
     前記環境検知装置が検知した前記濃度が、前記第1時間よりも長い第2時間の間、前記第1閾値濃度以上である場合には、前記換気風量を前記第1換気風量以上にするよう前記換気装置を制御した状態で、前記気温および湿度のうちの両方または一方を調節するための調節風量を、予め定められた第1調節風量以上にするよう前記室内機を制御する、請求項2に記載のコントローラ。
    The main control unit includes:
    controlling an indoor unit of an air conditioner that adjusts both or one of indoor temperature and humidity;
    If the concentration detected by the environment detection device is equal to or higher than the first threshold concentration during a second time period that is longer than the first time period, the ventilation air volume is set to be equal to or higher than the first ventilation air volume. 3. The indoor unit according to claim 2, wherein the indoor unit is controlled so that the adjusted air volume for adjusting both or one of the temperature and humidity is equal to or higher than a predetermined first adjusted air volume while the ventilation device is controlled. Controller listed.
  4.  前記主制御部は、
     前記室内機を介して前記換気装置を制御する、請求項3に記載のコントローラ。
    The main control unit includes:
    The controller according to claim 3, which controls the ventilation device via the indoor unit.
  5.  前記主制御部は、
     前記環境検知装置が検知した前記濃度が、予め定められた第3時間の間、前記第1閾値濃度よりも低い第2閾値濃度未満である場合には、前記換気風量を、前記第1換気風量よりも小さい第2換気風量以下にするよう前記換気装置を制御する、請求項2~請求項4のいずれか一項に記載のコントローラ。
    The main control unit includes:
    If the concentration detected by the environment detection device is less than a second threshold concentration, which is lower than the first threshold concentration, for a predetermined third time period, the ventilation air volume is changed to the first ventilation air volume. The controller according to any one of claims 2 to 4, wherein the controller is configured to control the ventilation device so that the ventilation air volume is equal to or less than a second ventilation air volume, which is smaller than the second ventilation air volume.
  6.  前記主制御部は、
     前記室内の人の存在を検知する人検知装置による検知結果に基づく人数が増加した場合には、前記換気風量を上昇させるよう前記換気装置を制御する、請求項2~請求項5のいずれか一項に記載のコントローラ。
    The main control unit includes:
    Any one of claims 2 to 5, wherein the ventilation device is controlled to increase the ventilation air volume when the number of people increases based on a detection result by a person detection device that detects the presence of a person in the room. The controller described in section.
  7.  前記主制御部は、
     前記環境検知装置が配置された位置である配置位置の、前記室内の床面からの高さが、第1高さである場合の前記第1閾値濃度を、前記配置位置の前記床面からの高さが、前記第1高さよりも大きい第2高さである場合の前記第1閾値濃度よりも高くする、請求項2~請求項6のいずれか一項に記載のコントローラ。
    The main control unit includes:
    The first threshold concentration when the height from the floor of the room at the placement position where the environmental detection device is placed is a first height, The controller according to any one of claims 2 to 6, wherein the height is higher than the first threshold concentration when the height is a second height larger than the first height.
  8.  前記環境検知装置が検知した前記濃度と、前記第1閾値濃度との間の大小関係を示す第1環境情報を表示する第1環境表示部を更に備える、請求項2~請求項7のいずれか一項に記載のコントローラ。 Any one of claims 2 to 7, further comprising a first environment display unit that displays first environment information indicating a magnitude relationship between the concentration detected by the environment detection device and the first threshold concentration. The controller described in paragraph 1.
  9.  前記環境検知装置が検知した前記濃度の時間的推移を示す第2環境情報を表示する第2環境表示部を更に備える、請求項2~請求項8のいずれか一項に記載のコントローラ。 The controller according to any one of claims 2 to 8, further comprising a second environment display section that displays second environment information indicating a temporal change in the concentration detected by the environment detection device.
  10.  前記室内の窓および扉の両方または一方を開くよう案内するための第1案内情報を表示する第1案内表示部を更に備え、
     前記主制御部は、
     前記環境検知装置が検知した前記濃度が、前記第1時間以上の第1案内要否判断時間の間、前記第1閾値濃度より高い場合には、前記第1案内情報を表示するよう前記第1案内表示部を制御する、請求項2~請求項9のいずれか一項に記載のコントローラ。
    further comprising a first guidance display section that displays first guidance information for guiding the user to open both or one of the windows and doors in the room;
    The main control unit includes:
    If the concentration detected by the environment detection device is higher than the first threshold concentration during a first guidance necessity determination time that is longer than the first time, the first guide information is displayed. The controller according to any one of claims 2 to 9, which controls a guide display section.
  11.  前記換気装置内の清掃を促す第2案内情報を表示する第2案内表示部を更に備え、
     前記主制御部は、
     前記環境検知装置が検知した前記濃度が、前記第1時間以上の第2案内要否判断時間の間、前記第1閾値濃度より高い場合には、前記第2案内情報を表示するよう前記第2案内表示部を制御する、請求項2~請求項10のいずれか一項に記載のコントローラ。
    further comprising a second guide display section that displays second guide information urging cleaning inside the ventilation device,
    The main control unit includes:
    If the concentration detected by the environment detection device is higher than the first threshold concentration during the second guidance necessity determination time that is longer than the first time, the second guide information is displayed. The controller according to any one of claims 2 to 10, which controls a guide display section.
  12.  前記環境検知装置の修理または点検を促す第3案内情報を表示する第3案内表示部を更に備え、
     前記主制御部は、
     前記換気装置に流入した前記室内の空気における二酸化炭素の濃度を検知する換気濃度検知装置によって検知された二酸化炭素の濃度と、前記環境検知装置によって検知された二酸化炭素の濃度との間に相関がない場合、および、前記室内における人の存在を検知する人検知装置の検知結果に基づく前記人の数と、前記環境検知装置が検知した前記濃度との間に相関がない場合のうちの両方または一方の場合には、前記第3案内情報を表示するよう前記第3案内表示部を制御する、請求項1~請求項11のいずれか一項に記載のコントローラ。
    further comprising a third guidance display unit that displays third guidance information prompting repair or inspection of the environment detection device;
    The main control unit includes:
    There is a correlation between the concentration of carbon dioxide detected by a ventilation concentration detection device that detects the concentration of carbon dioxide in the indoor air flowing into the ventilation device and the concentration of carbon dioxide detected by the environment detection device. and there is no correlation between the number of people based on the detection result of a person detection device that detects the presence of people in the room and the concentration detected by the environment detection device; or In one case, the controller according to any one of claims 1 to 11 controls the third guidance display section to display the third guidance information.
  13.  前記環境検知装置の位置の変更を促す第4案内情報を表示する第4案内表示部を更に備え、
     前記主制御部は、
     前記換気装置に流入した前記室内の空気における二酸化炭素の濃度を検知する換気濃度検知装置によって検知された二酸化炭素の濃度と、前記環境検知装置によって検知された二酸化炭素の濃度との間に相関がない場合、および、前記室内における人の位置を検知する人検知装置が検知した人の位置から、予め定められた閾値範囲以内に前記環境検知装置が配置されていない場合のうちの両方または一方の場合には、前記第4案内情報を表示するよう前記第4案内表示部を制御する、請求項1~請求項12のいずれか一項に記載のコントローラ。
    further comprising a fourth guidance display unit that displays fourth guidance information prompting a change in the position of the environment sensing device;
    The main control unit includes:
    There is a correlation between the concentration of carbon dioxide detected by a ventilation concentration detection device that detects the concentration of carbon dioxide in the indoor air flowing into the ventilation device and the concentration of carbon dioxide detected by the environment detection device. and/or the case where the environment sensing device is not located within a predetermined threshold range from the position of the person detected by the person detection device that detects the position of the person in the room. The controller according to any one of claims 1 to 12, wherein the controller controls the fourth guide display section to display the fourth guide information in the case where the fourth guide information is displayed.
  14.  前記環境検知装置は、
     前記室内の気温および湿度のうちの両方または一方を検知し、
     前記主制御部は、
     前記室内の気温および湿度のうちの両方または一方を調節する空気調和機の室内機に、前記室内への送風を行わせ、
     前記室内機からの送風前後において前記環境検知装置が検知した前記気温および湿度のうちの両方または一方に基づいて、前記環境検知装置の位置を示す位置情報を取得する、請求項13に記載のコントローラ。
    The environment sensing device includes:
    Detecting both or one of temperature and humidity in the room,
    The main control unit includes:
    causing an indoor unit of an air conditioner that adjusts both or one of indoor temperature and humidity to blow air into the room;
    The controller according to claim 13, wherein the controller acquires position information indicating the position of the environment detection device based on both or one of the temperature and humidity detected by the environment detection device before and after air is blown from the indoor unit. .
  15.  前記環境検知装置は、前記室内に配置された3つ以上の電波通信装置と無線通信し、
     前記主制御部は、
     前記3つ以上の電波通信装置の各々が前記環境検知装置から受信した電波の強度に基づいて、前記環境検知装置の位置を示す位置情報を取得する、請求項13に記載のコントローラ。
    The environment detection device wirelessly communicates with three or more radio wave communication devices arranged in the room,
    The main control unit includes:
    The controller according to claim 13, wherein each of the three or more radio wave communication devices acquires position information indicating the position of the environment sensing device based on the intensity of radio waves received from the environment sensing device.
  16.  室内の二酸化炭素の濃度を検知する環境検知装置と、
     前記室内を換気する換気装置と、
     前記環境検知装置と無線通信を行い、前記環境検知装置から前記濃度を取得し、取得した前記濃度に基づいて前記換気装置を制御するコントローラと、
     を有する換気システム。
    an environmental detection device that detects the concentration of carbon dioxide indoors;
    a ventilation device that ventilates the room;
    a controller that performs wireless communication with the environmental sensing device, acquires the concentration from the environmental sensing device, and controls the ventilation device based on the acquired concentration;
    Ventilation system with.
PCT/JP2022/018305 2022-04-20 2022-04-20 Controller and ventilation system WO2023203686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018305 WO2023203686A1 (en) 2022-04-20 2022-04-20 Controller and ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018305 WO2023203686A1 (en) 2022-04-20 2022-04-20 Controller and ventilation system

Publications (1)

Publication Number Publication Date
WO2023203686A1 true WO2023203686A1 (en) 2023-10-26

Family

ID=88419595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018305 WO2023203686A1 (en) 2022-04-20 2022-04-20 Controller and ventilation system

Country Status (1)

Country Link
WO (1) WO2023203686A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137212A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Air conditioning control system
JP2016070600A (en) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 Ventilation support device, program
WO2017081721A1 (en) * 2015-11-09 2017-05-18 三菱電機株式会社 Air-conditioning control system
JP2017117411A (en) * 2015-12-25 2017-06-29 ホシデン株式会社 Carbon dioxide concentration notification device
WO2019058519A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Ventilation device
WO2019077718A1 (en) * 2017-10-19 2019-04-25 三菱電機株式会社 Heat exchanging ventilation device
JP2020200998A (en) * 2019-06-11 2020-12-17 三菱電機株式会社 Ventilator and ventilation system
WO2021064844A1 (en) * 2019-10-01 2021-04-08 三菱電機株式会社 Ventilation device, ventilation system, and ventilation control method
JP2021060134A (en) * 2019-10-03 2021-04-15 三菱電機株式会社 Control device and control method
JP3232288U (en) * 2021-03-19 2021-06-03 国立大学法人山口大学 Carbon dioxide concentration monitor
KR20210084816A (en) * 2019-12-30 2021-07-08 신한대학교 산학협력단 Adaptive Moving Air Cleaning System
WO2021235139A1 (en) * 2020-05-18 2021-11-25 パナソニックIpマネジメント株式会社 Air conditioning system, building, and program
WO2022071460A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Air-conditioning and ventilation system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137212A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Air conditioning control system
JP2016070600A (en) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 Ventilation support device, program
WO2017081721A1 (en) * 2015-11-09 2017-05-18 三菱電機株式会社 Air-conditioning control system
JP2017117411A (en) * 2015-12-25 2017-06-29 ホシデン株式会社 Carbon dioxide concentration notification device
WO2019058519A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Ventilation device
WO2019077718A1 (en) * 2017-10-19 2019-04-25 三菱電機株式会社 Heat exchanging ventilation device
JP2020200998A (en) * 2019-06-11 2020-12-17 三菱電機株式会社 Ventilator and ventilation system
WO2021064844A1 (en) * 2019-10-01 2021-04-08 三菱電機株式会社 Ventilation device, ventilation system, and ventilation control method
JP2021060134A (en) * 2019-10-03 2021-04-15 三菱電機株式会社 Control device and control method
KR20210084816A (en) * 2019-12-30 2021-07-08 신한대학교 산학협력단 Adaptive Moving Air Cleaning System
WO2021235139A1 (en) * 2020-05-18 2021-11-25 パナソニックIpマネジメント株式会社 Air conditioning system, building, and program
WO2022071460A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Air-conditioning and ventilation system
JP3232288U (en) * 2021-03-19 2021-06-03 国立大学法人山口大学 Carbon dioxide concentration monitor

Similar Documents

Publication Publication Date Title
US11054161B2 (en) Damper fault detection
CN107576021B (en) Wall-hanging air conditioner indoor unit and its control method
JP4952722B2 (en) Air conditioning blowing panel, air conditioning control system and air conditioning control method provided with the air conditioning blowing panel
WO2016032186A1 (en) Temperature control method and apparatus
CN109154449B (en) Air conditioner control device, air conditioner and air conditioning system
CN107631423A (en) A kind of air-conditioner control method and air conditioner based on position of human body
US20110189938A1 (en) Ventilation control apparatus
CN106989483A (en) Air blowing control method, system and the air conditioner of air conditioner
CN105546748B (en) Air-conditioning control method and device
JP6105246B2 (en) Air conditioner and air conditioning system
CN105485852B (en) Air conditioning control method and device based on shell temperature
CN105465966A (en) Air conditioner blowing control method and device
WO2017183083A1 (en) Air-conditioning system
JP6924613B2 (en) Air conditioners, terminals and air conditioning systems
CN105571066A (en) Air supply control method and device of air conditioner
JP7004508B2 (en) Air conditioning control device, air conditioner, air conditioning system, air conditioning control method and program
CN106352476A (en) Control method and device for evaporator self-cleaning process of air conditioner
KR20100136829A (en) Interior environment system and method of individually controlling the equipment for adjusting the surroundings
CN113906260B (en) Air conditioner control device and air conditioner control system
CN110878981A (en) Air conditioner and control method thereof
CN107969143B (en) Determination support device, determination support method, and recording medium
CN115461580A (en) Air conditioning system, building, and program
CN107120808A (en) Air conditioner and its indoor set control method and computer-readable recording medium
WO2023203686A1 (en) Controller and ventilation system
KR20110019925A (en) System for controlling air-conditioning of subway coach using carbon dioxide concentration, and method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938488

Country of ref document: EP

Kind code of ref document: A1