WO2023203669A1 - Work-performing aerial vehicle - Google Patents

Work-performing aerial vehicle Download PDF

Info

Publication number
WO2023203669A1
WO2023203669A1 PCT/JP2022/018266 JP2022018266W WO2023203669A1 WO 2023203669 A1 WO2023203669 A1 WO 2023203669A1 JP 2022018266 W JP2022018266 W JP 2022018266W WO 2023203669 A1 WO2023203669 A1 WO 2023203669A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
work
abnormality
flying
operation control
Prior art date
Application number
PCT/JP2022/018266
Other languages
French (fr)
Japanese (ja)
Inventor
坂野倫祥
丸山一人
後野剛志
別府俊之
本多充
新穂友志
冨田裕貴
山田浩平
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to PCT/JP2022/018266 priority Critical patent/WO2023203669A1/en
Publication of WO2023203669A1 publication Critical patent/WO2023203669A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting

Definitions

  • the present invention relates to a work aircraft.
  • Patent Document 1 discloses an aircraft support device equipped with a spraying device for spraying pesticides and the like as an example of agricultural work.
  • the aircraft support device described in Patent Document 1 includes a position information acquisition unit that acquires the position of the aircraft, a dispersion information acquisition unit that acquires information regarding dispersion, and a display unit that displays the area and surroundings of the field. We are prepared. This display section displays the movement trajectory of the aircraft and also displays the spraying range over which the spraying device has sprayed. This facilitates work management.
  • the flying vehicle described in Patent Document 1 does not take into account support when an abnormality occurs in the flying vehicle.
  • a work aircraft is a work aircraft that includes a flying object, at least one sensor, and a control device having at least one arithmetic processing unit, wherein the control device receives input from the sensor. and can execute an operation control process for controlling the operation of the work aircraft and an abnormality determination process for determining the presence or absence of an abnormality based on the input from the sensor, When it is determined in the determination process that there is an abnormality, the operation control process is executed in an abnormality mode.
  • control program controls a work flying object that includes a flying object, at least one sensor, and a control device that is capable of receiving input from the sensor and has at least one arithmetic processing device.
  • a possible control program when executed, includes an operation control process that controls the operation of the work aircraft, and an abnormality determination process that determines the presence or absence of an abnormality based on the input from the sensor.
  • the arithmetic processing unit can be caused to execute the operation control process, and when it is determined that there is an abnormality in the abnormality determination process, the arithmetic processing apparatus is caused to execute the operation control process in an abnormality mode.
  • the abnormality mode of the operation control process includes processing for identifying a point where the work aircraft can make an emergency landing.
  • a work aircraft in which an abnormality has occurred can be forced to land at an appropriate location.
  • the work aircraft further include an impact mitigation device capable of alleviating the impact applied to the ground when the work aircraft contacts the ground.
  • the impact mitigation device includes a separation device that can separate the work aircraft into a plurality of parts.
  • the work aircraft can be separated into a plurality of small parts before the work aircraft contacts the ground. This reduces the weight of each part that comes into contact with the ground, reducing damage to the field.
  • the work aircraft further include a notification device that can notify the outside of the work aircraft of the abnormality when it is determined that there is an abnormality in the abnormality determination process.
  • the manager of the work aircraft can recognize abnormalities at an early stage.
  • a working aircraft includes, as one aspect, a working device that can perform a predetermined work, and a connection that is connectable to the flying object at one end and connectable to the working device at the other end.
  • the device further includes a body.
  • a certain distance can be provided between the flying object and the working device. This can prevent, for example, the airflow for providing propulsion to the flying object from interfering with the work of the working device.
  • the connecting body is configured to be able to actively change the relative position between the flying body and the working device that are connected via the connecting body, and the abnormality mode of the control process includes a process of controlling the connecting body to actively change the relative position between the flying body and the working device.
  • the posture of the working device can be adjusted to recover from the abnormality or suppress the effects of the abnormality.
  • the abnormality mode of the operation control process includes a process of stopping the operation of the work device.
  • the highest part of the work aircraft belongs to the work device.
  • the altitude at which the aircraft flies does not become excessively high, so even if the work aircraft makes an emergency landing, damage to the field can be suppressed.
  • the work flying vehicle according to the present invention includes a plurality of the flying objects
  • the abnormality determination process is capable of determining the presence or absence of an abnormality for each of the plurality of flying objects
  • the operation control process includes:
  • the abnormality mode includes a process of separating an individual among the plurality of flying objects that has been determined to have an abnormality from the work flying object.
  • the abnormality mode of the operation control process includes a process of connecting another aircraft to the work aircraft to replace the separated individual.
  • the plurality of flight vehicles include a main flight vehicle and other subsidiary flight vehicles, and the subsidiary flight vehicle controls the main flight vehicle.
  • the abnormality mode of the operation control process is a process of causing one of the subordinate aircraft to function as a new main aircraft when the separated individual is the main aircraft. It is preferable to include.
  • interlock control in a work aircraft in which a plurality of aircraft are controlled in conjunction with each other, interlock control can be continuously executed before and after separating some of the aircraft.
  • the operation control process recognizes at least one of the position and attitude of the work aircraft based on at least one of the position and attitude of the main aircraft.
  • the abnormal mode of the operation control process includes a recognition process, and in the recognition process, at least one of the position and attitude of the work aircraft is based on at least one of the position and attitude of the new main aircraft. It is preferable to include a process of updating the recognition process so that the recognition process can be performed in accordance with the above-mentioned recognition process.
  • the operation control process includes a process of sequentially controlling the operation of the work aircraft according to a pre-input operation plan, and the operation control process includes the abnormal mode of the operation control process.
  • the method includes a process of evaluating the influence of separating the individual determined to have an abnormality from the work aircraft, and updating the operation plan based on the evaluation.
  • the work flying vehicle according to the present invention includes a plurality of the flying objects, and the abnormality determination process is capable of determining the presence or absence of an abnormality for each of the plurality of flying objects, and the operation control process includes:
  • the abnormality mode includes a process of reducing the output of an individual among the plurality of flying objects that is determined to have an abnormality or stopping the individual, and a process of reducing the flight of the individual other than the one that is determined to have an abnormality.
  • the method includes a treatment for increasing body output.
  • the operation of the flight vehicle in which the abnormality has occurred is suppressed or stopped to suppress the influence of the abnormality, and the operation of the flight vehicle in which the abnormality has occurred is suppressed.
  • the operation of the work aircraft can be continued using
  • the work aircraft according to the present invention further includes a buoyancy body, and the magnitude of the buoyancy force that the buoyancy body receives in the air is greater than or equal to the gravitational force that the work flight vehicle receives on the earth. is preferred.
  • the buoyancy of the buoyant body makes it possible to keep the working flying object in the air or suppress the speed when descending to the ground.
  • the aircraft can generate a propulsive force that propels the work aircraft downward, and the magnitude of the propulsive force is greater than or equal to the buoyancy. It is preferable that it can be done.
  • FIG. 1 is a perspective view showing a first embodiment of a working aircraft.
  • FIG. 1 is a block diagram showing a first embodiment of a work aircraft.
  • FIG. 3 is a plan view showing a second embodiment of the working aircraft.
  • FIG. 3 is a side view showing a second embodiment of the work aircraft.
  • FIG. 6 is a front view showing another embodiment of the work aircraft.
  • a first embodiment of a work aircraft according to the present invention will be described with reference to the drawings. Below, an example will be described in which the working aircraft according to the present invention is applied to a working flying vehicle 1 that includes a flying vehicle 2 and a seedling planting device 3 (an example of a working device).
  • a working flying vehicle 1 includes a flying vehicle 2 and a seedling planting device 3 (FIG. 1).
  • the flying object 2 and the seedling planting device 3 are connected by four connecting bodies 4. While the working flying vehicle 1 is flying, the seedling planting device 3 connected to the connecting body 4 assumes a posture suspended from the flying vehicle 2. In this attitude, the work aircraft 1 can bring the seedling planting device 3 into contact with the field and cause the seedling planting device 3 to perform seedling planting work (an example of a predetermined work).
  • the direction of arrow F in FIG. 1 is referred to as "front” and the direction of arrow R is referred to as "rear” unless otherwise specified.
  • the aircraft 2 includes a propulsion device 21, a power plant 22, a separation device 23 (an example of a shock mitigation device), an aircraft control device 24 (an example of a control device), a communication device 25, and a sensor group 26 (at least one sensor). example) (Fig. 1, Fig. 2).
  • the propulsion device 21 is implemented as two main wings 21a and one tail fin 21b.
  • the power plant 22 is implemented as a gasoline-driven engine and a fuel tank for supplying fuel to the engine.
  • the flying object 2 operates the propulsion device 21 using the driving force generated by the power unit 22, and flies using the propulsive force generated by the propulsion device 21.
  • the propulsion device 21 is implemented as two main wings 21a and one tail fin 21b.
  • the two main wings 21a can change their posture between a propulsion mode in which the rotor blades are arranged facing forward and a hovering mode in which the rotor blades are arranged upward.
  • the propulsion mode the flying object 2 can be easily propelled forward, and in the hovering mode, the flying object 2 can be easily stopped without changing its horizontal position.
  • the separation device 23 is a device that can actively disassemble the flying object 2 into multiple parts.
  • the separating device 23 separates the flying object 2 into a plurality of parts according to a control signal from the flying object control device 24.
  • This measure is implemented as a measure to reduce the impact exerted on the ground when the work flying object 1 contacts the ground. For example, if the propulsion device 21 breaks down and it is difficult for the work aircraft 1 to continue flying, the work aircraft 1 will make an emergency landing in a field; This may cause damage to the field. Therefore, if the separation device 23 is activated just before the work aircraft 1 contacts the ground to separate the aircraft 2 into a plurality of small parts, the weight of each part that contacts the ground will be reduced. Damage to fields can be suppressed.
  • the aircraft control device 24 is implemented as a computer having an arithmetic processing unit 24a and a storage device 24b.
  • the flying object control device 24 is configured to be able to receive input signals from a sensor group 26 provided on the flying object 2, and to output signals for controlling each part of the flying object 2.
  • the communication device 25 is a communication device that enables communication between the flight object control device 24 and a device provided outside the flight object 2.
  • the aircraft control device 24 can communicate with the work control device 34 of the seedling planting device 3 via the communication device 25.
  • the flying object control device 24 can also communicate with a computer P, a smartphone S, etc., which constitute a field management system that manages the field where the working flying object 1 performs work, via the mobile phone network N, for example. It is possible to notify the field management system that an abnormality has occurred in the work aircraft 1. That is, the combination of the aircraft control device 24 and the communication device 25 can function as a notification device that can notify the outside of the work aircraft of an abnormality.
  • the sensor group 26 includes a satellite positioning device 26a, an altimeter 26b, an accelerometer 26c, a tilt sensor 26d, a tachometer 26e of the propulsion device 21, and a fuel tank level gauge 26f (FIG. 4).
  • sensors that are not related to the description of this embodiment are not shown, and this does not mean that the sensor group 26 does not include sensors other than those listed above.
  • the aircraft control device 24 and the communication device 25 which are electronic devices, have a self-diagnosis function, and can transmit an abnormality signal when they are in an abnormal state. Therefore, it can be said that the flying object control device 24 and the communication device 25 also have a function as a sensor.
  • the satellite positioning device 26a receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, generates positioning data indicating the position of the flying object 2 based on the received signal, and transmits it to the flying object control device 24. do.
  • GNSS Global Navigation Satellite System
  • GPS, QZSS, Galileo, GLONASS, BeiDou, etc. can be used.
  • the altimeter 26b generates altitude data indicating the altitude of the current location of the work aircraft 1, and transmits it to the aircraft control device 24.
  • the accelerometer 26c generates acceleration data indicating the acceleration of the work aircraft 1, and transmits it to the aircraft control device 24.
  • the tilt sensor 26d generates tilt data indicating the tilt of the working flying vehicle 1, and transmits it to the flying vehicle control device 24.
  • the tachometer 26e is provided for each of the two main wings 21a and one tail wing 21b that constitute the propulsion device 21.
  • the tachometer 26e generates rotation speed data indicating the respective rotation speeds of the two main wings 21a and one tail fin 21b, and transmits it to the aircraft control device 24.
  • the liquid level gauge 26f is provided in the fuel tank that constitutes the power plant 22, and detects the liquid level of the fuel stored in the fuel tank.
  • the liquid level gauge 26f generates liquid level data indicating the liquid level of the fuel and transmits it to the aircraft control device 24.
  • One end side 41 of the connecting body 4 is connected to the lower surface side of the flying object 2 in the flight state.
  • the seedling planting device 3 includes a seedling platform 31, a planting device 32, a connected member 33, a work control device 34, and a communication device 35 (FIGS. 1 and 2).
  • the seedling planting device 3 is a device that can cut out some of the seedlings from the sheet seedlings placed on the seedling table 31 and plant the cut seedlings in a field by the operation of the planting device 32.
  • the driving force of the planting device 32 is supplied as electric power from a battery (not shown).
  • the connected member 33 is a member configured to be connectable to the other end side 42 of the connecting body 4.
  • the connection structure between the connected member 33 and the other end side 42 of the connecting body 4 is, for example, such that the connected member 33 has a socket shape and the other end side 42 of the connecting body 4 has a plug shape. This can be achieved by inserting the other end side 42 into the connected member 33 and fitting it.
  • the connected member 33 and the other end side 42 of the connecting body 4 are detachable. Therefore, the seedling planting device 3 is detachable from the aircraft 2.
  • Four connected members 33 are provided, which corresponds to the four connecting bodies 4 provided.
  • two connected members 33a provided on the front side of the seedling planting device 3 and two connected members 33b provided on the rear side are as follows: The structure is different from each other. The meaning of this will be explained later.
  • Each of the four connected members 33 is provided with a sensor (not shown) that can detect whether the other end side 42 of the connecting body 4 is inserted.
  • the output of the sensor is input to the work control device 34.
  • the work control device 34 is implemented as a computer having an arithmetic processing unit and a storage device.
  • the work control device 34 is configured to be able to receive input signals from various instruments provided in the seedling planting device 3 and to output signals for controlling each part of the seedling planting device 3. ing.
  • the work control device 34 can recognize whether the other end side 42 of the connecting body 4 is inserted into each connected member 33 based on input from a sensor provided on the connected member 33.
  • Instruments that can be installed in the seedling planting device 3 include instruments that indicate the operating status of the entire seedling planting device 3 (speed meter, inclinometer, etc.), instruments that indicate the status of the seedling platform 31 (weight scale, optical sensor, etc.). ), instruments (tachometer, battery level gauge, etc.) that indicate the operating state of the planting device 32 are exemplified, but are not limited thereto.
  • the communication device 35 is a communication device that enables communication between the work control device 34 and a device provided outside the aircraft 2. It is possible to communicate with the aircraft control device 24 of the aircraft 2 via the work control device 34 and the communication device 35 . Further, the work control device 34 can communicate via the mobile phone network N with a computer P, a smartphone S, etc. that constitute a field management system that manages the field where the work aircraft 1 performs work.
  • the connecting body 4 is a member whose one end 41 is connected to the flying object 2 and the other end 42 is connected to the seedling planting device 3. Since the flying object 2 and the seedling planting device 3 are connected via the connecting body 4, the seedling planting device 3 connected to the connecting body 4 can fly while the working flying object 1 is flying. Take a pull-up position from body 2.
  • Four connecting bodies 4 are provided, and the seedling planting device 3 is suspended and supported at four points.
  • the two connecting bodies 4a provided on the front side of the flying object 2 are configured in a rope shape.
  • a winch 41a is provided on one end side 41 of these two connecting bodies 4a and is capable of winding up and letting out the rope-shaped connecting bodies 4a.
  • the relative position between the flying object 2 and the seedling planting device 3, which are connected via the connecting body 4a can be actively changed.
  • the winch 41a in the direction of winding up the connecting body 4a, the length of the unwound connecting body 4a is made shorter than the two connecting bodies 4b on the rear side of the aircraft, so that the seedling planting device 3 can be You can achieve a posture where the front part is higher than the rear part.
  • the ground surface of the field is an uphill slope along the traveling direction of the working aircraft 1, the seedling planting device 3 can be moved along the slope.
  • the power for operating the winch 41a can be supplied from the aircraft 2.
  • the power may be supplied from the power device 22, or may be supplied from a power source (not shown) provided separately from the power device 22.
  • the separate power source may be of the same type as the power device 22 (an engine in this embodiment), or may be of a different type (such as a battery in this embodiment).
  • the operation of the winch 41a can be controlled by either the aircraft control device 24 or the work control device 34.
  • the two connecting bodies 4b provided on the rear side of the flying object 2 are configured in a rod shape.
  • the lengths of these two connecting bodies 4b cannot be changed, and therefore the relative positions of the flying object 2 and the seedling planting device 3, which are connected via the connecting bodies 4b, cannot be actively changed.
  • the posture in which the seedling planting device 3 is suspended and supported can be regulated within a certain range.
  • the other end side 42 of the connecting body 4 is configured to be connectable to the connected member 33 of the seedling planting device 3.
  • the connection structure between the connected member 33 and the other end side 42 of the connecting body 4 is such that the connected member 33 has a socket shape and the other end side 42 of the connecting body 4 has a plug shape. This can be realized by a method of inserting and fitting the other end side 42 of the connecting body 4 into the connected member 33.
  • the member to be connected 33 and the other end side 42 of the connecting body 4 are removable, so that the seedling planting device 3 is removable from the aircraft 2 .
  • the two connecting bodies 4a provided on the front side of the aircraft 2 and the two connecting bodies 4b provided on the rear side have a structure on the other end side 42a, 42b. different from each other. Furthermore, as described above, among the four connected members 33, two connected members 33a are provided on the front side of the seedling planting device 3, and two connected members 33b are provided on the rear side. The structures are different from each other.
  • the structures of the two types of connected members 33a, 33b and the two types of other end sides 42a, 42b are a combination of the front side connected member 33a and the other end side 42a of the connecting body 4a, and Both can be fitted to each other in the combination of the connected member 33b on the rear side and the other end side 42b of the connecting body 4b, and are configured so that they cannot be fitted if the combination is incorrect.
  • the relative position of the flying object 2 and the seedling planting device 3 can be regulated to a relative position where the forward sides of the flying object 2 and the seedling planting device 3 coincide.
  • Control of the work aircraft 1 is performed by the aircraft control device 24 and the work control device 34.
  • the control of the work flying object 1 may be performed autonomously by the flying object control device 24 and the work control device 34, or may be performed according to a manual operation from a user.
  • the human operation may be input from a device such as a controller (not shown), a computer P, a smartphone S, etc. that constitute the field management system.
  • the flying object control device 24 performs operation control processing to control the operation of the working flying object 1, abnormality determination processing to determine the presence or absence of an abnormality based on input from the sensor group 26, and the position and attitude of the working flying object 1. It is possible to perform recognition processing.
  • the operation control process is a process for controlling the operation of the work aircraft 1. More specifically, in the operation control process, the operation of the flying object 2 and the operation of the seedling planting device 3 are controlled. Among these, control of the operation of the flying object 2 is realized by operating each part of the flying object 2 based on signals output from the flying object control device 24. On the other hand, control of the operation of the seedling planting device 3 is realized by operating each part of the seedling planting device 3 based on a signal output from the work control device 34. However, in this embodiment, the control of the seedling planting device 3 connected to the flying object 2 is performed by the work control device 34 that operates based on a signal transmitted from the flying object control device 24. That is, the aircraft control device 24 indirectly controls the seedling planting device 3. Therefore, the flying object control device 24 functions as a control device that centrally controls the operation of the entire working flying object 1.
  • the operation control process is executed in either normal mode or abnormal mode.
  • the normal mode is a mode that is executed when it is determined that there is no abnormality in the abnormality determination process, and operates the aircraft 2 and the seedling planting device 3 so that the work aircraft 1 can carry out the seedling planting work.
  • This mode allows you to
  • the abnormality mode is a mode that is executed when it is determined that there is an abnormality in the abnormality determination process, and is a mode that is executed when it is determined that there is an abnormality in the abnormality determination process. This is a mode in which the body 2 and the seedling planting device 3 are operated.
  • the abnormality determination process is a process for determining whether or not an abnormality has occurred in the work aircraft 1. More specifically, the presence or absence of an abnormality is determined based on input from the sensor group 26 to the aircraft control device 24 . Note that the presence or absence of an abnormality may be determined based on input from a sensor provided in the seedling planting device 3. Examples of types of abnormalities determined to occur in the abnormality determination process are shown below.
  • the propulsion device When at least one of the respective rotational speeds of the two main wings 21a and one tail wing 21b, which are specified based on the rotational speed data input from the tachometer 26e, is outside a predetermined control range, the propulsion device It is determined that an abnormality has occurred in which 21 is out of order.
  • the flying object control device 24 When the flying object control device 24 is transmitting an abnormality signal, it is determined that an abnormality has occurred in the form of some kind of abnormality occurring in the flying object control device 24.
  • the abnormality mode of the operation control process includes a process of identifying a location where the work aircraft 1 can make an emergency landing.
  • the aircraft control device 24 identifies a suitable spot for the forced landing of the work aircraft 1 based on the layout of the field received from the field management system.
  • a suitable spot for the emergency landing of the work aircraft 1 is, for example, an open space where crops are not planted, a sufficient distance from buildings or roads, a place where the work aircraft 1 can move from its current position under its own power. A point that satisfies conditions such as being within reach by flight.
  • the abnormality mode of the operation control process includes a process of activating the separation device 23 immediately before the work aircraft 1 makes an emergency landing.
  • the separation device 23 just before the working flying object 1 contacts the ground and separating the flying object 2 into a plurality of small parts the weight of each part that comes into contact with the ground is reduced, making it easier to use in the field. Damage caused can be suppressed.
  • the abnormality mode of the operation control process includes a process of notifying the outside of the work aircraft 1 that an abnormality has occurred. For example, when it is determined in the abnormality determination process that some kind of abnormality exists, the flying object control device 24 notifies the field management system that an abnormality has occurred in the working flying object 1.
  • the abnormality mode of the operation control process is a process of operating the winch 41a to actively change the relative position between the flying object 2 and the seedling planting device 3, which are connected via the connecting body 4a. including.
  • the winch 41a is not operated. By adjusting the attitude of the seedling planting device 3, collapse of the flight attitude can be suppressed.
  • the abnormality mode of the operation control process includes a process of stopping the operation of the seedling planting device 3. If the movable part of the seedling planting device 3 is operating when the working aircraft 1 makes an emergency landing, there is a risk of causing unexpected damage to the field. Therefore, by stopping the operation of the seedling planting device 3 in advance before the working aircraft 1 makes an emergency landing, damage to the field can be suppressed.
  • the recognition process is a process of recognizing the position and attitude of the work aircraft 1. Specifically, the current position and current altitude of the work aircraft 1 are specified based on the positioning data input from the satellite positioning device 26a and the altitude data input from the altimeter 26b. Further, the current attitude of the work aircraft 1 is specified based on the acceleration data input from the accelerometer 26c and the tilt data input from the tilt sensor 26d.
  • the control of the work aircraft 1 described above is realized by a control program executed by the aircraft control device 24. That is, the control program according to the present embodiment, when executed by the arithmetic processing unit 24a of the aircraft control device 24, causes the arithmetic processing unit 24a to execute the above-mentioned operation control processing, abnormality determination processing, and recognition processing.
  • This is a program that allows you to Note that the control program is stored in the storage device 24b of the aircraft control device 24.
  • the working flying vehicle 5 according to this embodiment includes four flying vehicles 6 and one combine harvester 7 (FIGS. 3 and 4).
  • the difference is that in the first embodiment, there is one flying object, but in this embodiment, four flying objects (that is, a plurality of flying objects) are provided.
  • the flying object 2 has two main wings 21a and one tail 21b
  • the flying object 6 according to this embodiment has four rotary wings 61.
  • the highest altitude part of the work aircraft 5 belongs to the combine harvester 7. Specifically, in the flight state of the work aircraft 5, the altitude of the ceiling portion 71 of the cabin of the combine harvester 7 from the ground surface G is higher than the altitude of the rotor blade 61 of the aircraft 6 from the ground surface G. With this configuration, the altitude at which the flying object 6 flies does not become excessively high, so even if the working flying object 5 makes an emergency landing, damage to the field can be suppressed.
  • Each of the four flying bodies 6 is provided with a flying body control device.
  • the flying object control device according to this embodiment has the same functions as the flying object control device 24 according to the first embodiment. Furthermore, in this embodiment, the flying object control devices provided in the four flying objects 6 communicate with each other to control the flight of the working flying object 5 as a whole. Further, the abnormality determination process is executed for each of the four aircraft 6. That is, the presence or absence of an abnormality can be determined independently for each of the four aircraft 6.
  • one of the four flying bodies 6, 6A is the main flying body, and the other three flying bodies are auxiliary flying bodies.
  • the aircraft control device provided on the main flight object 6A executes overall control
  • the flight object control devices of the sub-aircraft objects 6B, 6C, and 6D execute the overall control.
  • the current position and current altitude of the work aircraft 5 are recognized based on the current position and current altitude of the main aircraft 6A.
  • the flight vehicle control devices provided in the four flight vehicles 6 are configured so that they can all function as both the main flight vehicle and the slave flight vehicle.
  • the position and altitude recognized as the current position and current altitude of the work aircraft 5 in the recognition process do not necessarily need to match the current position and current altitude of the main aircraft 6A.
  • the position and altitude of the virtual point located at the center of the four aircraft 6 are specified based on the current position and current altitude of the main aircraft 6A, and the position and altitude of the virtual point are Based on this, the current position and current altitude of the work aircraft 5 are recognized.
  • the abnormality mode of the operation control process includes a process of separating an individual among the plurality of flying objects 6 that is determined to have an abnormality from the work flying object 5 (hereinafter referred to as a separation process). For example, when it is determined that an abnormality has occurred in the flying object 6D, the connecting body connecting the flying object 6D and the combine harvester 7 is disconnected from the combine harvester 7. The subsequent flight of the working flying vehicle 5 is carried out by three flying vehicles 6A, 6B, and 6C. Note that the aircraft 6D is forced to land.
  • the flight of the work aircraft 5, which would normally be carried out by the four flying bodies 6, is now borne by the three flying bodies 6A, 6B, and 6C, so that the work aircraft 5 can be flown stably.
  • the working flying object 5 is controlled so as not to move at least in the horizontal direction. This suppresses the load to a minimum when the output is decreasing.
  • the working flying object 5 waits for the arrival of another flying object 6 to replace the separated individual (flying object 6D).
  • another flying object 6 arrives a process of connecting the other flying object 6 to the working flying object 5 is performed.
  • the work aircraft 5 returns to the normal state, and the operation control process returns to the normal mode.
  • the operation control process for the work aircraft 5 includes processing for sequentially controlling the operation of the work aircraft 5 according to the operation plan (work content, flight route, etc.) input in advance from the field management system.
  • This operation plan is determined taking into account the ability of the work aircraft 5 in its normal state, so in the state after the flight object 6D is detached as described above, the ability of the work aircraft 5 is insufficient, There is a possibility that we will not be able to carry out our operating plan. Therefore, the abnormality mode of the operation control process includes a process of evaluating the effect of separating the aircraft 6D on the performance of the work aircraft 5 and updating the operation plan based on the evaluation. The updated driving plan may be sent to the field management system.
  • the main aircraft 6A when it is determined that an abnormality has occurred in the main aircraft 6A, the main aircraft 6A is separated and one of the secondary aircraft 6B, 6C, and 6D (for example, the secondary aircraft 6B) to function as a new main aircraft.
  • the flight control of the work aircraft 5 as a whole is supervised by the aircraft control device installed in the main aircraft 6A, but if the main aircraft 6A is simply separated, the flight of the work aircraft 5 as a whole is controlled. You will be unable to control it. Therefore, by performing a process of changing the main flying object from the flying object 6A to the flying object 6B, the entire working flying object 5 can be appropriately controlled even after the flying object 6A is separated.
  • the recognition process for the work aircraft 5 is updated so that the current position and current altitude of the work aircraft 5 are recognized based on the new current position and current altitude of the main aircraft 6B.
  • the abnormality mode of the operation control process includes a process of reducing the output of an individual among the plurality of flying objects 6 that is determined to be abnormal, or a process of stopping the individual, and a process of stopping the individual that is determined to be abnormal.
  • the subsequent flight of the working flying vehicle 5 is carried out by three flying vehicles 6A, 6B, and 6C. Therefore, the outputs of the three aircraft units 6A, 6B, and 6C are increased.
  • whether the separation process or the output adjustment process is selected depends on the content of the determined abnormality, the current position of the work aircraft 5, the state of the field, the content of the work that has been performed and will be performed, the date and time, and the weather.
  • the selection is made according to various conditions such as:
  • Non-limiting examples of work devices in the work aircraft according to the present invention include, in addition to the seedling planting device 3 and combine harvester 7 exemplified above, a snow removal device capable of performing snow removal work, and a snow removal device capable of performing chemical spraying work.
  • Examples include a warning device, a tiller having a drill-like drive unit capable of cultivating a field, and the like.
  • the working flying object 8 includes a flying object 81, a harvesting device 82, and a buoyant body 83.
  • the buoyant force that the buoyant body 83 receives in the air is greater than the gravitational force that the buoyant body 83 receives on the earth. That is, the buoyancy body 83 alone has a buoyancy force greater than gravity, and generates an upward force in the air.
  • an upward force can be applied to the entire working aircraft 8, and the load on the entire working aircraft 8 that needs to be supported by the propulsive force of the flying object 81 can be alleviated.
  • the flying object 81 when the flying object 81 is operated to generate a propulsive force capable of propelling the working flying object 8 downward, the working flying object 8 receives a downward propulsive force from the flying object 81 and an upward thrust from the buoyancy body 83.
  • the propulsive force can be made to be counterbalanced. This makes it easier to accurately control the rising or descending speed of the work aircraft 8 at a low speed when it takes off or lands.
  • the buoyant body 83 may be implemented in the form of a hot air balloon, a balloon filled with a gas having a specific gravity lower than air, such as helium, or the like.
  • the embodiment including such a buoyant body may be combined with other embodiments including the first and second embodiments.
  • the aspect of the flying vehicle in the working flying vehicle according to the present invention is not limited. That is, flying objects in other aspects than those exemplified in the first embodiment and the second embodiment may also be employed as flying objects according to the present invention.
  • the mode of connecting the flying vehicle and the working device is not limited to the mode using a connecting body.
  • the connecting body may be provided as a part of the flying object, or may be provided as a detachable member separate from the flying object.
  • the number of connectors may be singular or plural.
  • there is a mode in which the relative position between the aircraft and the work device can be actively changed (connection body 4a in the above embodiment), and a mode in which it is not changeable (in the above embodiment, the connection body 4a). body 4b) may be arbitrarily combined.
  • the plurality of buoyancy generating mechanisms may be configured so that their operational sounds can be canceled out.
  • the operation of the main wing 21a and the tail wing 21b may be controlled so that they cancel out the operating sounds of each other.
  • either the flying object, the working device, or the subunit may be equipped with a noise reduction device that generates a sound (noise canceling sound) that cancels the operating sound of the buoyancy generation mechanism.
  • the muffler may be configured to generate noise canceling sound based on a control amount sent to the buoyancy generating mechanism.
  • Each device constituting the work aircraft according to the present invention may be designed so that it can be used between various types of work aircraft.
  • the structure of the connecting portion between the connecting body and the working device can be made common.
  • the present invention can be used, for example, in a work aircraft that can perform various tasks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To achieve a work-performing aerial vehicle that can take appropriate measures when an abnormality occurs. [Solution] Provided is a work-performing aerial vehicle comprising an aerial vehicle 2, at least one sensor 26, and a control device 24 with at least one computational processing device 24a, wherein the control device 24 is capable of receiving input from the sensor 26 and is capable of executing an operation control process to control the operation of the work-performing aerial vehicle and an abnormality determination process to determine the presence or absence of an abnormality on the basis of input from the sensor 26, and operation control process is executed in an abnormality mode when an abnormality is determined to be present in the abnormality determination process.

Description

作業飛行体work aircraft
 本発明は、作業飛行体に関する。 The present invention relates to a work aircraft.
 近年、ドローン等の飛行体を用いた農作業の効率化が検討されている。特許文献1には、農作業の一例として農薬などを散布する散布装置が搭載された飛行体の支援装置が開示されている。 In recent years, efforts have been made to improve the efficiency of agricultural work using flying vehicles such as drones. Patent Document 1 discloses an aircraft support device equipped with a spraying device for spraying pesticides and the like as an example of agricultural work.
 特許文献1に記載の飛行体の支援装置は、飛行体の位置を取得する位置情報取得部と、散布に関する情報を取得する散布情報取得部と、圃場の領域および周囲を表示する表示部とを備えている。この表示部は、飛行体の移動軌跡を表示するとともに、散布装置が散布した散布範囲を表示する。これにより、作業管理を容易化している。 The aircraft support device described in Patent Document 1 includes a position information acquisition unit that acquires the position of the aircraft, a dispersion information acquisition unit that acquires information regarding dispersion, and a display unit that displays the area and surroundings of the field. We are prepared. This display section displays the movement trajectory of the aircraft and also displays the spraying range over which the spraying device has sprayed. This facilitates work management.
国際公開第2020/137242号International Publication No. 2020/137242
 特許文献1に記載された飛行体では、飛行体に異常が生じた場合の支援については考慮されていなかった。 The flying vehicle described in Patent Document 1 does not take into account support when an abnormality occurs in the flying vehicle.
 そこで、異常が発生したときに適切な措置を講じうる作業飛行体の実現が求められる。 Therefore, there is a need to create a work aircraft that can take appropriate measures when an abnormality occurs.
 本発明に係る作業飛行体は、飛行体と、少なくとも一つのセンサと、少なくとも一つの演算処理装置を有する制御装置と、を備える作業飛行体であって、前記制御装置は、前記センサからの入力を受付可能であり、かつ、前記作業飛行体の運転を制御する運転制御処理、および、前記センサからの前記入力に基づいて異常の有無を判定する異常判定処理、を実行可能であり、前記異常判定処理において異常があると判定されているときは、前記運転制御処理が異常時モードで実行されることを特徴とする。 A work aircraft according to the present invention is a work aircraft that includes a flying object, at least one sensor, and a control device having at least one arithmetic processing unit, wherein the control device receives input from the sensor. and can execute an operation control process for controlling the operation of the work aircraft and an abnormality determination process for determining the presence or absence of an abnormality based on the input from the sensor, When it is determined in the determination process that there is an abnormality, the operation control process is executed in an abnormality mode.
 また、本発明に係る制御プログラムは、飛行体と、少なくとも一つのセンサと、前記センサからの入力を受付可能であるとともに少なくとも一つの演算処理装置を有する制御装置と、を備える作業飛行体を制御可能な制御プログラムであって、実行されたときに、前記作業飛行体の運転を制御する運転制御処理、および、前記センサからの前記入力に基づいて異常の有無を判定する異常判定処理、を、前記演算処理装置に実行させることができ、前記異常判定処理において異常があると判定されたときは、前記演算処理装置に、前記運転制御処理を異常時モードで実行させることを特徴とする。 Further, the control program according to the present invention controls a work flying object that includes a flying object, at least one sensor, and a control device that is capable of receiving input from the sensor and has at least one arithmetic processing device. A possible control program, when executed, includes an operation control process that controls the operation of the work aircraft, and an abnormality determination process that determines the presence or absence of an abnormality based on the input from the sensor. The arithmetic processing unit can be caused to execute the operation control process, and when it is determined that there is an abnormality in the abnormality determination process, the arithmetic processing apparatus is caused to execute the operation control process in an abnormality mode.
 これらの構成によれば、異常の有無を判定可能であるとともに、異常が存在する場合に、特有の異常時モードでの制御を行うことができる。これによって、作業飛行体に何らかの異常が発生したときに、通常時とは異なる動作をさせて、適切な措置を講じうる。 According to these configurations, it is possible to determine the presence or absence of an abnormality, and when an abnormality exists, it is possible to perform control in a specific abnormality mode. As a result, when any abnormality occurs in the work aircraft, it is possible to cause the work aircraft to operate differently from normal operations and take appropriate measures.
 以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the scope of the present invention is not limited to the preferred embodiments described below.
 本発明に係る作業飛行体は、一態様として、前記運転制御処理の前記異常時モードは、前記作業飛行体が不時着可能な地点を特定する処理を含むことが好ましい。 In one aspect of the work aircraft according to the present invention, it is preferable that the abnormality mode of the operation control process includes processing for identifying a point where the work aircraft can make an emergency landing.
 この構成によれば、異常が生じた作業飛行体を適切な地点に不時着させることができる。 According to this configuration, a work aircraft in which an abnormality has occurred can be forced to land at an appropriate location.
 本発明に係る作業飛行体は、一態様として、前記作業飛行体が地面に接触したときに、当該地面に与える衝撃を緩和しうる衝撃緩和装置をさらに備えることが好ましい。 As one aspect of the work aircraft according to the present invention, it is preferable that the work aircraft further include an impact mitigation device capable of alleviating the impact applied to the ground when the work aircraft contacts the ground.
 この構成によれば、不時着などによって作業飛行体が地面に接触するときに、当該地面の損傷を抑制しうる。したがって、圃場などの損傷を抑制しうる。 According to this configuration, when the work aircraft contacts the ground due to an emergency landing or the like, damage to the ground can be suppressed. Therefore, damage to fields etc. can be suppressed.
 本発明に係る作業飛行体は、一態様として、前記衝撃緩和装置は、前記作業飛行体を複数の部分に分離可能な分離装置を含むことが好ましい。 In one aspect of the work aircraft according to the present invention, it is preferable that the impact mitigation device includes a separation device that can separate the work aircraft into a plurality of parts.
 この構成によれば、作業飛行体が地面に接触する前に、作業飛行体を複数の小さなパーツに分離させることができる。これによって地面に接触するパーツの一つあたりの重量が小さくなるため、圃場に与える損傷を抑制しうる。 According to this configuration, the work aircraft can be separated into a plurality of small parts before the work aircraft contacts the ground. This reduces the weight of each part that comes into contact with the ground, reducing damage to the field.
 本発明に係る作業飛行体は、一態様として、前記異常判定処理において異常があると判定されたときに前記作業飛行体の外部に当該異常を報知可能な報知装置をさらに備えることが好ましい。 As one aspect of the work aircraft according to the present invention, it is preferable that the work aircraft further include a notification device that can notify the outside of the work aircraft of the abnormality when it is determined that there is an abnormality in the abnormality determination process.
 この構成によれば、作業飛行体の管理者が早期に異常を認識できる。 According to this configuration, the manager of the work aircraft can recognize abnormalities at an early stage.
 本発明に係る作業飛行体は、一態様として、所定の作業を実施可能な作業装置と、一端側において前記飛行体と接続可能であり、かつ他端側で前記作業装置と接続可能である接続体と、をさらに備えることが好ましい。 A working aircraft according to the present invention includes, as one aspect, a working device that can perform a predetermined work, and a connection that is connectable to the flying object at one end and connectable to the working device at the other end. Preferably, the device further includes a body.
 この構成によれば、飛行体と作業装置との間に一定の距離を設けることができる。これによって、たとえば、飛行体に推進力を与えるための気流が作業装置の作業を妨げることを防ぎうる。 According to this configuration, a certain distance can be provided between the flying object and the working device. This can prevent, for example, the airflow for providing propulsion to the flying object from interfering with the work of the working device.
 本発明に係る作業飛行体は、一態様として、前記接続体は、当該接続体を介して接続される前記飛行体と前記作業装置との相対位置を能動的に変更可能に構成され、前記運転制御処理の前記異常時モードは、前記接続体を制御して、前記飛行体と前記作業装置との相対位置を能動的に変更させる処理を含むことが好ましい。 In one aspect of the work aircraft according to the present invention, the connecting body is configured to be able to actively change the relative position between the flying body and the working device that are connected via the connecting body, and the Preferably, the abnormality mode of the control process includes a process of controlling the connecting body to actively change the relative position between the flying body and the working device.
 この構成によれば、異常を検知したときに、作業装置の姿勢を調整して、当該異常から復帰する、または当該異常の影響を抑制することができる。 According to this configuration, when an abnormality is detected, the posture of the working device can be adjusted to recover from the abnormality or suppress the effects of the abnormality.
 本発明に係る作業飛行体は、一態様として、前記運転制御処理の前記異常時モードは、前記作業装置の運転を停止させる処理を含むことが好ましい。 In one aspect of the work aircraft according to the present invention, it is preferable that the abnormality mode of the operation control process includes a process of stopping the operation of the work device.
 この構成によれば、異常を検知したときに、当該異常の影響を抑制しうる。 According to this configuration, when an abnormality is detected, the influence of the abnormality can be suppressed.
 本発明に係る作業飛行体は、一態様として、飛行状態において、前記作業飛行体のうち最も高度が高い部分は、前記作業装置に属することが好ましい。 In one aspect of the work aircraft according to the present invention, it is preferable that in a flight state, the highest part of the work aircraft belongs to the work device.
 この構成によれば、飛行体が飛行する高度が過度に高くなることがないので、仮に作業飛行体が不時着する場合であっても、圃場の損傷を抑制しうる。 According to this configuration, the altitude at which the aircraft flies does not become excessively high, so even if the work aircraft makes an emergency landing, damage to the field can be suppressed.
 本発明に係る作業飛行体は、一態様として、複数の前記飛行体を備え、前記異常判定処理は、複数の前記飛行体のそれぞれについて、異常の有無を判定可能であり、前記運転制御処理の前記異常時モードは、複数の前記飛行体のうち、異常があると判定された個体を前記作業飛行体から切り離させる処理を含むことが好ましい。 In one aspect, the work flying vehicle according to the present invention includes a plurality of the flying objects, and the abnormality determination process is capable of determining the presence or absence of an abnormality for each of the plurality of flying objects, and the operation control process includes: Preferably, the abnormality mode includes a process of separating an individual among the plurality of flying objects that has been determined to have an abnormality from the work flying object.
 この構成によれば、正常な飛行体のみを用いて作業飛行体の運転を継続できる。 According to this configuration, operation of the work aircraft can be continued using only normal aircraft.
 本発明に係る作業飛行体は、一態様として、前記運転制御処理の前記異常時モードは、切り離した前記個体に替わる他の前記飛行体を前記作業飛行体に接続させる処理を含むことが好ましい。 In one aspect of the work aircraft according to the present invention, it is preferable that the abnormality mode of the operation control process includes a process of connecting another aircraft to the work aircraft to replace the separated individual.
 この構成によれば、異常が生じた飛行体を正常な飛行体で置き換えて、作業飛行体を正常状態に復帰させることができる。 According to this configuration, it is possible to replace the abnormal flying object with a normal flying object and return the working flying object to the normal state.
 本発明に係る作業飛行体は、一態様として、複数の前記飛行体は、一基の主飛行体と、その他の従飛行体とを含み、前記従飛行体は、前記主飛行体の制御に連動して制御され、前記運転制御処理の前記異常時モードは、切り離した前記個体が前記主飛行体である場合に、前記従飛行体のうちの一基を新たな主飛行体として機能させる処理を含むことが好ましい。 In one aspect of the work flight vehicle according to the present invention, the plurality of flight vehicles include a main flight vehicle and other subsidiary flight vehicles, and the subsidiary flight vehicle controls the main flight vehicle. The abnormality mode of the operation control process is a process of causing one of the subordinate aircraft to function as a new main aircraft when the separated individual is the main aircraft. It is preferable to include.
 この構成によれば、複数の飛行体が連動して制御される態様の作業飛行体において、一部の飛行体を切り離す前後において継続して連動制御を実行できる。 According to this configuration, in a work aircraft in which a plurality of aircraft are controlled in conjunction with each other, interlock control can be continuously executed before and after separating some of the aircraft.
 本発明に係る作業飛行体は、一態様として、前記運転制御処理は、前記作業飛行体の位置および姿勢の少なくとも一つを、前記主飛行体の位置および姿勢の少なくとも一つに基づいて認識する認識処理を含み、前記運転制御処理の前記異常時モードは、前記認識処理において、前記作業飛行体の位置および姿勢の少なくとも一つが、前記新たな主飛行体の位置および姿勢の少なくとも一つに基づいて認識されるように、前記認識処理を更新する処理を含むことが好ましい。 In one aspect of the work aircraft according to the present invention, the operation control process recognizes at least one of the position and attitude of the work aircraft based on at least one of the position and attitude of the main aircraft. The abnormal mode of the operation control process includes a recognition process, and in the recognition process, at least one of the position and attitude of the work aircraft is based on at least one of the position and attitude of the new main aircraft. It is preferable to include a process of updating the recognition process so that the recognition process can be performed in accordance with the above-mentioned recognition process.
 この構成によれば、複数の飛行体が連動して制御される態様の作業飛行体において、一部の飛行体を切り離す前後において継続して作業飛行体の位置および姿勢の少なくとも一つを正しく認識できる。 According to this configuration, in a work aircraft in which a plurality of aircraft are controlled in conjunction, at least one of the position and attitude of the work aircraft is continuously and correctly recognized before and after separating some of the aircraft. can.
 本発明に係る作業飛行体は、一態様として、前記運転制御処理は、あらかじめ入力された運転計画に従って、前記作業飛行体の運転を順次制御する処理を含み、前記運転制御処理の前記異常時モードは、異常があると判定された前記個体を前記作業飛行体から切り離させることによる影響を評価するとともに、当該評価に基づいて前記運転計画を更新する処理を含むことが好ましい。 In one embodiment of the work aircraft according to the present invention, the operation control process includes a process of sequentially controlling the operation of the work aircraft according to a pre-input operation plan, and the operation control process includes the abnormal mode of the operation control process. Preferably, the method includes a process of evaluating the influence of separating the individual determined to have an abnormality from the work aircraft, and updating the operation plan based on the evaluation.
 この構成によれば、複数の飛行体が連動して制御される態様の作業飛行体において、一部の飛行体を切り離すことによる作業飛行体の能力の変化を、運転計画に反映できる。 According to this configuration, in a work aircraft in which a plurality of aircraft are controlled in conjunction with each other, changes in the performance of the work aircraft due to separation of some of the aircraft can be reflected in the operation plan.
 本発明に係る作業飛行体は、一態様として、複数の前記飛行体を備え、前記異常判定処理は、複数の前記飛行体のそれぞれについて、異常の有無を判定可能であり、前記運転制御処理の前記異常時モードは、複数の前記飛行体のうち、異常があると判定された個体の出力を低下させる、または当該個体を停止させる処理と、異常があると判定された前記個体以外の前記飛行体の出力を上昇させる処理と、を含むことが好ましい。 In one aspect, the work flying vehicle according to the present invention includes a plurality of the flying objects, and the abnormality determination process is capable of determining the presence or absence of an abnormality for each of the plurality of flying objects, and the operation control process includes: The abnormality mode includes a process of reducing the output of an individual among the plurality of flying objects that is determined to have an abnormality or stopping the individual, and a process of reducing the flight of the individual other than the one that is determined to have an abnormality. Preferably, the method includes a treatment for increasing body output.
 この構成によれば、複数の飛行体が連動して制御される態様の作業飛行体において、異常が生じた飛行体の運転を抑制または停止して異常の影響を抑制するとともに、他の飛行体を用いて作業飛行体の運転を継続できる。 According to this configuration, in a work flight vehicle in which a plurality of flight vehicles are controlled in conjunction, the operation of the flight vehicle in which the abnormality has occurred is suppressed or stopped to suppress the influence of the abnormality, and the operation of the flight vehicle in which the abnormality has occurred is suppressed. The operation of the work aircraft can be continued using
 本発明に係る作業飛行体は、一態様として、浮力体をさらに備え、前記浮力体が空気中において受ける浮力の大きさは、前記作業飛行体が地球上において受ける重力の大きさ以上であることが好ましい。 In one aspect, the work aircraft according to the present invention further includes a buoyancy body, and the magnitude of the buoyancy force that the buoyancy body receives in the air is greater than or equal to the gravitational force that the work flight vehicle receives on the earth. is preferred.
 この構成によれば、飛行体に何らかの異常が生じた場合であっても、浮力体の浮力によって作業飛行体を空中に留める、または地上に降下する際の速度を抑制することが可能になる。 According to this configuration, even if some abnormality occurs in the flying object, the buoyancy of the buoyant body makes it possible to keep the working flying object in the air or suppress the speed when descending to the ground.
 本発明に係る作業飛行体は、一態様として、前記飛行体は、前記作業飛行体を下向きに推進させる推進力を発生させることができ、前記推進力の大きさを、前記浮力の大きさ以上にすることができることが好ましい。 In one aspect of the work aircraft according to the present invention, the aircraft can generate a propulsive force that propels the work aircraft downward, and the magnitude of the propulsive force is greater than or equal to the buoyancy. It is preferable that it can be done.
 この構成によれば、作業飛行体が離陸または着陸するときの上昇または下降速度を、低い速度で精密に制御しやすくなる。 According to this configuration, it becomes easy to precisely control the ascending or descending speed when the work aircraft takes off or lands at a low speed.
 本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the invention will become clearer from the following description of exemplary and non-limiting embodiments, written with reference to the drawings.
作業飛行体の第一の実施形態を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of a working aircraft. 作業飛行体の第一の実施形態を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of a work aircraft. 作業飛行体の第二の実施形態を示す平面図である。FIG. 3 is a plan view showing a second embodiment of the working aircraft. 作業飛行体の第二の実施形態を示す側面図である。FIG. 3 is a side view showing a second embodiment of the work aircraft. 作業飛行体の他の実施形態を示す正面図である。FIG. 6 is a front view showing another embodiment of the work aircraft.
〔第一の実施形態〕
 本発明に係る作業飛行体の第一の実施形態について、図面を参照して説明する。以下では、本発明に係る作業飛行体を、飛行体2と苗植付装置3(作業装置の例)とを備える作業飛行体1に適用した例について説明する。
[First embodiment]
A first embodiment of a work aircraft according to the present invention will be described with reference to the drawings. Below, an example will be described in which the working aircraft according to the present invention is applied to a working flying vehicle 1 that includes a flying vehicle 2 and a seedling planting device 3 (an example of a working device).
(作業飛行体の構成)
 まず、本実施形態に係る作業飛行体1の装置構成について説明する。本実施形態に係る作業飛行体1は、飛行体2と苗植付装置3とを備える(図1)。飛行体2と苗植付装置3との間は、四つの接続体4によって接続されている。作業飛行体1が飛行している状態において、接続体4に接続された苗植付装置3が飛行体2から懸垂する姿勢を取る。作業飛行体1は、この姿勢において、苗植付装置3を圃場に接触させて、苗植付装置3に苗植付け作業(所定の作業の例)を実施させることができる。なお、以下の説明において前後方向について言及するときは、特記しない限り、図1の矢印Fの方向を「前」といい、矢印Rの方向を「後」という。
(Composition of work aircraft)
First, the device configuration of the work aircraft 1 according to this embodiment will be explained. A working flying vehicle 1 according to this embodiment includes a flying vehicle 2 and a seedling planting device 3 (FIG. 1). The flying object 2 and the seedling planting device 3 are connected by four connecting bodies 4. While the working flying vehicle 1 is flying, the seedling planting device 3 connected to the connecting body 4 assumes a posture suspended from the flying vehicle 2. In this attitude, the work aircraft 1 can bring the seedling planting device 3 into contact with the field and cause the seedling planting device 3 to perform seedling planting work (an example of a predetermined work). Note that when referring to the front-rear direction in the following description, the direction of arrow F in FIG. 1 is referred to as "front" and the direction of arrow R is referred to as "rear" unless otherwise specified.
 飛行体2は、推進装置21、動力装置22、分離装置23(衝撃緩和装置の例)、飛行体制御装置24(制御装置の例)、通信装置25、およびセンサ群26(少なくとも一つのセンサの例)を有する(図1、図2)。本実施形態では、推進装置21は、二つの主翼21aおよび一つの尾翼21bとして実装されている。また動力装置22は、ガソリン駆動のエンジンおよび当該エンジンに燃料を供給するための燃料タンクとして実装されている。飛行体2は、動力装置22が発生させる駆動力によって推進装置21を運転し、推進装置21によって生み出される推進力によって飛行する。 The aircraft 2 includes a propulsion device 21, a power plant 22, a separation device 23 (an example of a shock mitigation device), an aircraft control device 24 (an example of a control device), a communication device 25, and a sensor group 26 (at least one sensor). example) (Fig. 1, Fig. 2). In this embodiment, the propulsion device 21 is implemented as two main wings 21a and one tail fin 21b. Further, the power plant 22 is implemented as a gasoline-driven engine and a fuel tank for supplying fuel to the engine. The flying object 2 operates the propulsion device 21 using the driving force generated by the power unit 22, and flies using the propulsive force generated by the propulsion device 21.
 本実施形態では、推進装置21は、二つの主翼21aおよび一つの尾翼21bとして実装されている。二つの主翼21aは、回転翼が前方に向けて配置される推進モードと、回転翼が上方に向けて配置されるホバリングモードと、にわたって姿勢変更可能である。推進モードでは、飛行体2を前方に向けて推進させやすく、ホバリングモードでは飛行体2の水平位置を変更させずに停滞させやすい。 In this embodiment, the propulsion device 21 is implemented as two main wings 21a and one tail fin 21b. The two main wings 21a can change their posture between a propulsion mode in which the rotor blades are arranged facing forward and a hovering mode in which the rotor blades are arranged upward. In the propulsion mode, the flying object 2 can be easily propelled forward, and in the hovering mode, the flying object 2 can be easily stopped without changing its horizontal position.
 分離装置23は、飛行体2を複数のパーツに分解する措置を能動的に実施可能な装置である。分離装置23は、飛行体制御装置24からの制御信号に従って、飛行体2を複数のパーツに分離させる。この措置は、作業飛行体1が地面に接触したときに、地面に与える衝撃を緩和するための措置として実施される。たとえば、推進装置21が故障して作業飛行体1の飛行を継続することが困難な場合に、作業飛行体1が圃場に不時着することになるが、このときに作業飛行体1が不時着する衝撃により圃場が損傷するおそれがある。そこで、作業飛行体1が地面に接触する直前に分離装置23を作動させて、飛行体2を複数の小さなパーツに分離させると、地面に接触するパーツの一つあたりの重量が小さくなるため、圃場に与える損傷を抑制しうる。 The separation device 23 is a device that can actively disassemble the flying object 2 into multiple parts. The separating device 23 separates the flying object 2 into a plurality of parts according to a control signal from the flying object control device 24. This measure is implemented as a measure to reduce the impact exerted on the ground when the work flying object 1 contacts the ground. For example, if the propulsion device 21 breaks down and it is difficult for the work aircraft 1 to continue flying, the work aircraft 1 will make an emergency landing in a field; This may cause damage to the field. Therefore, if the separation device 23 is activated just before the work aircraft 1 contacts the ground to separate the aircraft 2 into a plurality of small parts, the weight of each part that contacts the ground will be reduced. Damage to fields can be suppressed.
 飛行体制御装置24は、演算処理装置24aと記憶装置24bとを有するコンピュータとして実装される。飛行体制御装置24は、飛行体2に設けられたセンサ群26からの信号の入力を受付可能であるととともに、飛行体2の各部を制御するための信号を出力可能に構成されている。 The aircraft control device 24 is implemented as a computer having an arithmetic processing unit 24a and a storage device 24b. The flying object control device 24 is configured to be able to receive input signals from a sensor group 26 provided on the flying object 2, and to output signals for controlling each part of the flying object 2.
 通信装置25は、飛行体制御装置24と、飛行体2の外部に設けられた装置との間での通信を可能にするための通信装置である。飛行体制御装置24は、通信装置25を介して、苗植付装置3の作業制御装置34と通信可能である。また、飛行体制御装置24は、携帯電話網Nを経由して、作業飛行体1が作業を実施する圃場を管理する圃場管理システムを構成するコンピュータPやスマートフォンSなどとも通信可能であり、たとえば圃場管理システムに対して作業飛行体1において異常が発生していることを報知できる。すなわち、飛行体制御装置24と通信装置25との組合せは、作業飛行体の外部に異常を報知可能な報知装置として機能しうる。 The communication device 25 is a communication device that enables communication between the flight object control device 24 and a device provided outside the flight object 2. The aircraft control device 24 can communicate with the work control device 34 of the seedling planting device 3 via the communication device 25. The flying object control device 24 can also communicate with a computer P, a smartphone S, etc., which constitute a field management system that manages the field where the working flying object 1 performs work, via the mobile phone network N, for example. It is possible to notify the field management system that an abnormality has occurred in the work aircraft 1. That is, the combination of the aircraft control device 24 and the communication device 25 can function as a notification device that can notify the outside of the work aircraft of an abnormality.
 センサ群26は、衛星測位装置26a、高度計26b、加速度計26c、傾きセンサ26d、推進装置21の回転計26e、燃料タンクの液位計26fを含む(図4)。ただし、本実施形態の説明に関係しないセンサについては図示していないのみであって、センサ群26として上記に列挙した以外のセンサが備えられていないわけではない。また、電子機器である飛行体制御装置24および通信装置25は自己診断機能を有しており、自身が異常状態にある場合には異常信号を発信可能である。したがって、飛行体制御装置24および通信装置25も、センサとしての機能を有するといえる。 The sensor group 26 includes a satellite positioning device 26a, an altimeter 26b, an accelerometer 26c, a tilt sensor 26d, a tachometer 26e of the propulsion device 21, and a fuel tank level gauge 26f (FIG. 4). However, sensors that are not related to the description of this embodiment are not shown, and this does not mean that the sensor group 26 does not include sensors other than those listed above. Further, the aircraft control device 24 and the communication device 25, which are electronic devices, have a self-diagnosis function, and can transmit an abnormality signal when they are in an abnormal state. Therefore, it can be said that the flying object control device 24 and the communication device 25 also have a function as a sensor.
 衛星測位装置26aは、人工衛星からのGNSS(Global Navigation Satellite System)の信号を受信して、受信した信号に基づいて飛行体2の位置を示す測位データを生成し、飛行体制御装置24へ送信する。GNSSとしては、GPS、QZSS、Galileo、GLONASS、BeiDou、などを利用可能である。 The satellite positioning device 26a receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, generates positioning data indicating the position of the flying object 2 based on the received signal, and transmits it to the flying object control device 24. do. As GNSS, GPS, QZSS, Galileo, GLONASS, BeiDou, etc. can be used.
 高度計26bは、作業飛行体1の現在地の高度を示す高度データを生成し、飛行体制御装置24へ送信する。 The altimeter 26b generates altitude data indicating the altitude of the current location of the work aircraft 1, and transmits it to the aircraft control device 24.
 加速度計26cは、作業飛行体1の加速度を示す加速度データを生成し、飛行体制御装置24へ送信する。 The accelerometer 26c generates acceleration data indicating the acceleration of the work aircraft 1, and transmits it to the aircraft control device 24.
 傾きセンサ26dは、作業飛行体1の傾きを示す傾きデータを生成し、飛行体制御装置24へ送信する。 The tilt sensor 26d generates tilt data indicating the tilt of the working flying vehicle 1, and transmits it to the flying vehicle control device 24.
 回転計26eは、推進装置21を構成する二つの主翼21aおよび一つの尾翼21bのそれぞれについて設けられている。回転計26eは、二つの主翼21aおよび一つの尾翼21bのそれぞれの回転数を示す回転数データを生成し、飛行体制御装置24へ送信する。 The tachometer 26e is provided for each of the two main wings 21a and one tail wing 21b that constitute the propulsion device 21. The tachometer 26e generates rotation speed data indicating the respective rotation speeds of the two main wings 21a and one tail fin 21b, and transmits it to the aircraft control device 24.
 液位計26fは、動力装置22を構成する燃料タンクに設けられており、燃料タンクに貯蔵されている燃料の液位を検知する。液位計26fは、燃料の液位を示す液位データを生成し、飛行体制御装置24へ送信する。 The liquid level gauge 26f is provided in the fuel tank that constitutes the power plant 22, and detects the liquid level of the fuel stored in the fuel tank. The liquid level gauge 26f generates liquid level data indicating the liquid level of the fuel and transmits it to the aircraft control device 24.
 飛行体2の、飛行状態における下面側には、接続体4の一端側41が接続されている。 One end side 41 of the connecting body 4 is connected to the lower surface side of the flying object 2 in the flight state.
 苗植付装置3は、苗載台31、植付装置32、被接続部材33、作業制御装置34、および通信装置35を有する(図1、図2)。苗植付装置3は、苗載台31に載置されたシート苗の一部の苗を切り出して、植付装置32の動作によって切り出した苗を圃場に植え付けることができる装置である。本実施形態では、植付装置32の駆動力はバッテリ(不図示)からの電力として供給される。 The seedling planting device 3 includes a seedling platform 31, a planting device 32, a connected member 33, a work control device 34, and a communication device 35 (FIGS. 1 and 2). The seedling planting device 3 is a device that can cut out some of the seedlings from the sheet seedlings placed on the seedling table 31 and plant the cut seedlings in a field by the operation of the planting device 32. In this embodiment, the driving force of the planting device 32 is supplied as electric power from a battery (not shown).
 被接続部材33は、接続体4の他端側42と接続可能に構成されている部材である。被接続部材33と接続体4の他端側42との接続構造は、たとえば、被接続部材33をソケット状に、接続体4の他端側42をプラグ状にそれぞれ構成し、接続体4の他端側42を被接続部材33に挿入して嵌着する方法によって実現されうる。被接続部材33と、接続体4の他端側42とは、着脱自在である。したがって、苗植付装置3は飛行体2に対して着脱自在である。 The connected member 33 is a member configured to be connectable to the other end side 42 of the connecting body 4. The connection structure between the connected member 33 and the other end side 42 of the connecting body 4 is, for example, such that the connected member 33 has a socket shape and the other end side 42 of the connecting body 4 has a plug shape. This can be achieved by inserting the other end side 42 into the connected member 33 and fitting it. The connected member 33 and the other end side 42 of the connecting body 4 are detachable. Therefore, the seedling planting device 3 is detachable from the aircraft 2.
 被接続部材33は、四つ設けられており、これは接続体4が四つ設けられていることに対応している。ここで、四つの被接続部材33のうち、苗植付装置3の前方側に設けられている二つの被接続部材33aと、後方側に設けられている二つの被接続部材33bと、は、構造が互いに異なる。このことの意味については後述する。 Four connected members 33 are provided, which corresponds to the four connecting bodies 4 provided. Here, among the four connected members 33, two connected members 33a provided on the front side of the seedling planting device 3 and two connected members 33b provided on the rear side are as follows: The structure is different from each other. The meaning of this will be explained later.
 四つの被接続部材33のそれぞれには、接続体4の他端側42が挿入されているか否かを検知可能なセンサ(不図示)が設けられている。当該センサの出力は、作業制御装置34に入力される。 Each of the four connected members 33 is provided with a sensor (not shown) that can detect whether the other end side 42 of the connecting body 4 is inserted. The output of the sensor is input to the work control device 34.
 作業制御装置34は、演算処理装置と記憶装置とを有するコンピュータとして実装される。作業制御装置34は、苗植付装置3に設けられた様々な計器からの信号の入力を受付可能であるととともに、苗植付装置3の各部を制御するための信号を出力可能に構成されている。たとえば、作業制御装置34は、被接続部材33に設けられたセンサからの入力に基づいて、それぞれの被接続部材33に接続体4の他端側42が挿入されているか否かを認識できる。 The work control device 34 is implemented as a computer having an arithmetic processing unit and a storage device. The work control device 34 is configured to be able to receive input signals from various instruments provided in the seedling planting device 3 and to output signals for controlling each part of the seedling planting device 3. ing. For example, the work control device 34 can recognize whether the other end side 42 of the connecting body 4 is inserted into each connected member 33 based on input from a sensor provided on the connected member 33.
 苗植付装置3に設けられうる計器としては、苗植付装置3全体の運転状態を示す計器(速度計、傾斜計など)、苗載台31の状態を示す計器(重量計、光学センサなど)、植付装置32の運転状態を示す計器(回転計、バッテリ残量計など)が例示されるが、これらに限定されない。 Instruments that can be installed in the seedling planting device 3 include instruments that indicate the operating status of the entire seedling planting device 3 (speed meter, inclinometer, etc.), instruments that indicate the status of the seedling platform 31 (weight scale, optical sensor, etc.). ), instruments (tachometer, battery level gauge, etc.) that indicate the operating state of the planting device 32 are exemplified, but are not limited thereto.
 通信装置35は、作業制御装置34と、飛行体2の外部に設けられた装置との間での通信を可能にするための通信装置である。作業制御装置34、通信装置35を介して、飛行体2の飛行体制御装置24と通信可能である。また、作業制御装置34は、携帯電話網Nを経由して、作業飛行体1が作業を実施する圃場を管理する圃場管理システムを構成するコンピュータPやスマートフォンSなどとも通信可能である。 The communication device 35 is a communication device that enables communication between the work control device 34 and a device provided outside the aircraft 2. It is possible to communicate with the aircraft control device 24 of the aircraft 2 via the work control device 34 and the communication device 35 . Further, the work control device 34 can communicate via the mobile phone network N with a computer P, a smartphone S, etc. that constitute a field management system that manages the field where the work aircraft 1 performs work.
 接続体4は、一端側41が飛行体2に、他端側42が苗植付装置3に、それぞれ接続されている部材である。飛行体2と苗植付装置3とが接続体4を介して接続されていることによって、作業飛行体1が飛行している状態において、接続体4に接続された苗植付装置3が飛行体2から懸垂する姿勢を取る。接続体4は四つ設けられており、苗植付装置3を四点で懸垂支持する。 The connecting body 4 is a member whose one end 41 is connected to the flying object 2 and the other end 42 is connected to the seedling planting device 3. Since the flying object 2 and the seedling planting device 3 are connected via the connecting body 4, the seedling planting device 3 connected to the connecting body 4 can fly while the working flying object 1 is flying. Take a pull-up position from body 2. Four connecting bodies 4 are provided, and the seedling planting device 3 is suspended and supported at four points.
 四つの接続体4のうち、飛行体2の前方側に設けられている二つの接続体4aは、ロープ状に構成されている。そして、これらの二つの接続体4aの一端側41には、ロープ状の接続体4aを巻取りおよび繰出し可能なウインチ41aが設けられている。 Of the four connecting bodies 4, the two connecting bodies 4a provided on the front side of the flying object 2 are configured in a rope shape. A winch 41a is provided on one end side 41 of these two connecting bodies 4a and is capable of winding up and letting out the rope-shaped connecting bodies 4a.
 ウインチ41aを動作させて、ロープ状の接続体4aの繰出し量を調整することで、接続体4aを介して接続される飛行体2と苗植付装置3との相対位置を能動的に変更できる。たとえば、接続体4aを巻き上げる方向にウインチ41aを動作させて、繰出されている接続体4aの長さを飛行体の後方側の二つの接続体4bより短くすることで、苗植付装置3の前方部分が後方部分より上に上がった姿勢を実現できる。この姿勢を取れば、作業飛行体1の進行方向に沿って圃場の地表面が登り斜面になっている場合に、苗植付装置3を当該斜面に沿って進行させることができる。 By operating the winch 41a and adjusting the amount of payout of the rope-like connecting body 4a, the relative position between the flying object 2 and the seedling planting device 3, which are connected via the connecting body 4a, can be actively changed. . For example, by operating the winch 41a in the direction of winding up the connecting body 4a, the length of the unwound connecting body 4a is made shorter than the two connecting bodies 4b on the rear side of the aircraft, so that the seedling planting device 3 can be You can achieve a posture where the front part is higher than the rear part. By adopting this attitude, if the ground surface of the field is an uphill slope along the traveling direction of the working aircraft 1, the seedling planting device 3 can be moved along the slope.
 ウインチ41aを動作させるための動力は、飛行体2から供給されうる。当該動力は、動力装置22から供給されてもよいし、動力装置22とは別体に設けられた動力源(不図示)から供給されてもよい。この場合、別体の動力源は、動力装置22と同じ方式(本実施形態ではエンジン)であってもよいし、別の方式(本実施形態の例ではバッテリなど)であってもよい。また、ウインチ41aの動作は、飛行体制御装置24および作業制御装置34のいずれかによって制御されうる。 The power for operating the winch 41a can be supplied from the aircraft 2. The power may be supplied from the power device 22, or may be supplied from a power source (not shown) provided separately from the power device 22. In this case, the separate power source may be of the same type as the power device 22 (an engine in this embodiment), or may be of a different type (such as a battery in this embodiment). Further, the operation of the winch 41a can be controlled by either the aircraft control device 24 or the work control device 34.
 一方、四つの接続体4のうち、飛行体2の後方側に設けられている二つの接続体4bは、棒状に構成されている。これらの二つの接続体4bは、長さの変更が不可能であり、したがって接続体4bを介して接続される飛行体2と苗植付装置3との相対位置を能動的には変更できない。これによって、苗植付装置3が懸垂支持される姿勢を一定の範囲に規制できる。 On the other hand, among the four connecting bodies 4, the two connecting bodies 4b provided on the rear side of the flying object 2 are configured in a rod shape. The lengths of these two connecting bodies 4b cannot be changed, and therefore the relative positions of the flying object 2 and the seedling planting device 3, which are connected via the connecting bodies 4b, cannot be actively changed. Thereby, the posture in which the seedling planting device 3 is suspended and supported can be regulated within a certain range.
 接続体4の他端側42は、苗植付装置3の被接続部材33と接続可能に構成されている。前述のように、被接続部材33と接続体4の他端側42との接続構造は、たとえば、被接続部材33をソケット状に、接続体4の他端側42をプラグ状にそれぞれ構成し、接続体4の他端側42を被接続部材33に挿入して嵌着する方法によって実現されうる。被接続部材33と接続体4の他端側42とは着脱自在であり、これによって、苗植付装置3は飛行体2に対して着脱自在である。 The other end side 42 of the connecting body 4 is configured to be connectable to the connected member 33 of the seedling planting device 3. As described above, the connection structure between the connected member 33 and the other end side 42 of the connecting body 4 is such that the connected member 33 has a socket shape and the other end side 42 of the connecting body 4 has a plug shape. This can be realized by a method of inserting and fitting the other end side 42 of the connecting body 4 into the connected member 33. The member to be connected 33 and the other end side 42 of the connecting body 4 are removable, so that the seedling planting device 3 is removable from the aircraft 2 .
 四つの接続体4のうち、飛行体2の前方側に設けられている二つの接続体4aと、後方側に設けられている二つの接続体4bとは、他端側42a、42bの構造が互いに異なる。また、前述のように、四つの被接続部材33のうち、苗植付装置3の前方側に設けられている二つの被接続部材33aと、後方側に設けられている二つの被接続部材33bとは、構造が互いに異なる。ここで、二種類の被接続部材33a、33bおよび二種類の他端側42a、42bの構造は、いずれも前方側の被接続部材33aと接続体4aの他端側42aとの組合せ、および、いずれも後方側の被接続部材33bと接続体4bの他端側42bとの組合せ、において互いに嵌着可能であり、組合せを違えると嵌着できないように構成されている。これによって、飛行体2と苗植付装置3との相対位置を、飛行体2と苗植付装置3との前方が一致する相対位置に規制できる。 Among the four connecting bodies 4, the two connecting bodies 4a provided on the front side of the aircraft 2 and the two connecting bodies 4b provided on the rear side have a structure on the other end side 42a, 42b. different from each other. Furthermore, as described above, among the four connected members 33, two connected members 33a are provided on the front side of the seedling planting device 3, and two connected members 33b are provided on the rear side. The structures are different from each other. Here, the structures of the two types of connected members 33a, 33b and the two types of other end sides 42a, 42b are a combination of the front side connected member 33a and the other end side 42a of the connecting body 4a, and Both can be fitted to each other in the combination of the connected member 33b on the rear side and the other end side 42b of the connecting body 4b, and are configured so that they cannot be fitted if the combination is incorrect. Thereby, the relative position of the flying object 2 and the seedling planting device 3 can be regulated to a relative position where the forward sides of the flying object 2 and the seedling planting device 3 coincide.
(作業飛行体の制御)
 次に、本実施形態に係る作業飛行体1の制御について説明する。作業飛行体1の制御は、飛行体制御装置24および作業制御装置34によって実施される。なお、作業飛行体1の制御は、飛行体制御装置24および作業制御装置34によって自律的に実施されてもよいし、使用者からの人為操作に従って実施されてもよい。人為操作は、コントローラ(不図示)、圃場管理システムを構成するコンピュータPやスマートフォンSなど、といった装置から入力されうる。
(Control of work aircraft)
Next, control of the work aircraft 1 according to this embodiment will be explained. Control of the work aircraft 1 is performed by the aircraft control device 24 and the work control device 34. Note that the control of the work flying object 1 may be performed autonomously by the flying object control device 24 and the work control device 34, or may be performed according to a manual operation from a user. The human operation may be input from a device such as a controller (not shown), a computer P, a smartphone S, etc. that constitute the field management system.
 飛行体制御装置24は、作業飛行体1の運転を制御する運転制御処理、センサ群26からの入力に基づいて異常の有無を判定する異常判定処理、ならびに、作業飛行体1の位置および姿勢を認識する認識処理、を実行可能である。 The flying object control device 24 performs operation control processing to control the operation of the working flying object 1, abnormality determination processing to determine the presence or absence of an abnormality based on input from the sensor group 26, and the position and attitude of the working flying object 1. It is possible to perform recognition processing.
 運転制御処理は、作業飛行体1の運転を制御する処理である。より具体的には、運転制御処理において、飛行体2の運転の制御と、苗植付装置3の運転の制御とが行われる。このうち、飛行体2の運転の制御は、飛行体制御装置24から出力される信号に基づいて飛行体2の各部が動作することによって実現される。一方、苗植付装置3の運転の制御は、作業制御装置34から出力される信号に基づいて苗植付装置3の各部が動作することによって実現される。ただし、本実施形態においては、飛行体2と接続されている状態の苗植付装置3の制御は、飛行体制御装置24から送信される信号に基づいて動作する作業制御装置34が実施する。すなわち、飛行体制御装置24が間接的に苗植付装置3の制御を実施する。したがって、飛行体制御装置24は、作業飛行体1全体の運転を統括して制御する制御装置として機能する。 The operation control process is a process for controlling the operation of the work aircraft 1. More specifically, in the operation control process, the operation of the flying object 2 and the operation of the seedling planting device 3 are controlled. Among these, control of the operation of the flying object 2 is realized by operating each part of the flying object 2 based on signals output from the flying object control device 24. On the other hand, control of the operation of the seedling planting device 3 is realized by operating each part of the seedling planting device 3 based on a signal output from the work control device 34. However, in this embodiment, the control of the seedling planting device 3 connected to the flying object 2 is performed by the work control device 34 that operates based on a signal transmitted from the flying object control device 24. That is, the aircraft control device 24 indirectly controls the seedling planting device 3. Therefore, the flying object control device 24 functions as a control device that centrally controls the operation of the entire working flying object 1.
 運転制御処理は、通常時モードおよび異常時モードのいずれかのモードで実行される。
通常時モードは、異常判定処理において異常がないと判定されているときに実行されるモードであり、作業飛行体1が苗植付け作業を実施できるように飛行体2および苗植付装置3を動作させるモードである。異常時モードは、異常判定処理において異常があると判定されているときに実行されるモードであり、何らかの異常が発生している作業飛行体1が外部に悪影響を与えることを回避できるように飛行体2および苗植付装置3を動作させるモードである。
The operation control process is executed in either normal mode or abnormal mode.
The normal mode is a mode that is executed when it is determined that there is no abnormality in the abnormality determination process, and operates the aircraft 2 and the seedling planting device 3 so that the work aircraft 1 can carry out the seedling planting work. This mode allows you to The abnormality mode is a mode that is executed when it is determined that there is an abnormality in the abnormality determination process, and is a mode that is executed when it is determined that there is an abnormality in the abnormality determination process. This is a mode in which the body 2 and the seedling planting device 3 are operated.
 異常判定処理は、作業飛行体1に異常が生じているか否かを判定する処理である。より具体的には、センサ群26からの飛行体制御装置24への入力に基づいて異常の有無を判定する。なお、苗植付装置3に設けられたセンサからの入力に基づいて異常の有無を判定してもよい。異常判定処理において異常が生じていると判定される類型について、以下に例示する。 The abnormality determination process is a process for determining whether or not an abnormality has occurred in the work aircraft 1. More specifically, the presence or absence of an abnormality is determined based on input from the sensor group 26 to the aircraft control device 24 . Note that the presence or absence of an abnormality may be determined based on input from a sensor provided in the seedling planting device 3. Examples of types of abnormalities determined to occur in the abnormality determination process are shown below.
 衛星測位装置26aから入力される測位データに基づいて特定される作業飛行体1の現在位置が、作業対象の圃場の範囲を逸脱しているときは、飛行計画から逸脱している態様の異常が生じていると判定される。 When the current position of the work aircraft 1, which is specified based on the positioning data input from the satellite positioning device 26a, deviates from the range of the field to be worked on, an abnormality in a manner that deviates from the flight plan is detected. It is determined that this has occurred.
 高度計26bから入力される高度データに基づいて特定される作業飛行体1の現在高度が、法令など(たとえば日本国における航空法)で定められている飛行可能な高度範囲を逸脱しているときは、飛行計画から逸脱している態様の異常が生じていると判定される。 When the current altitude of the work aircraft 1, which is specified based on the altitude data input from the altimeter 26b, deviates from the flightable altitude range stipulated by laws and regulations (for example, the Civil Aviation Law in Japan). , it is determined that an abnormality that deviates from the flight plan has occurred.
 回転計26eから入力される回転数データに基づいて特定される二つの主翼21aおよび一つの尾翼21bのそれぞれの回転数のうち少なくとも一つが、所定の管理範囲を逸脱しているときは、推進装置21が故障している態様の異常が生じていると判定される。 When at least one of the respective rotational speeds of the two main wings 21a and one tail wing 21b, which are specified based on the rotational speed data input from the tachometer 26e, is outside a predetermined control range, the propulsion device It is determined that an abnormality has occurred in which 21 is out of order.
 液位計26fから入力される回転数データに基づいて特定される燃料の液位が、所定の閾値を下回っているときは、燃料の残量が少ない態様の異常が生じていると判定される。 When the fuel level specified based on the rotational speed data input from the level gauge 26f is below a predetermined threshold value, it is determined that an abnormality in which the remaining amount of fuel is low has occurred. .
 飛行体制御装置24が異常信号を発信しているときは、飛行体制御装置24に何らかの異常が生じている態様の異常が生じていると判定される。 When the flying object control device 24 is transmitting an abnormality signal, it is determined that an abnormality has occurred in the form of some kind of abnormality occurring in the flying object control device 24.
 通信装置25が異常信号を発信しているときは、通信障害の態様の異常が生じていると判定される。 When the communication device 25 is transmitting an abnormality signal, it is determined that an abnormality in the form of a communication failure has occurred.
 運転制御処理の異常時モードにおいて実行される制御の内容について、以下に例示する。 The details of the control executed in the abnormality mode of the operation control process are illustrated below.
 第一の例として、運転制御処理の異常時モードは、作業飛行体1が不時着可能な地点を特定する処理を含む。飛行体制御装置24は、圃場管理システムから受信した圃場の配置図に基づいて、作業飛行体1の不時着に適した地点を特定する。ここで、作業飛行体1の不時着に適した地点とは、たとえば、作物が植え付けられていない空地である、建物や道路などからの離間距離が十分にある、作業飛行体1が現在位置から自力飛行により到達できる範囲にある、などの条件を満たす地点をいう。 As a first example, the abnormality mode of the operation control process includes a process of identifying a location where the work aircraft 1 can make an emergency landing. The aircraft control device 24 identifies a suitable spot for the forced landing of the work aircraft 1 based on the layout of the field received from the field management system. Here, a suitable spot for the emergency landing of the work aircraft 1 is, for example, an open space where crops are not planted, a sufficient distance from buildings or roads, a place where the work aircraft 1 can move from its current position under its own power. A point that satisfies conditions such as being within reach by flight.
 第二の例として、運転制御処理の異常時モードは、作業飛行体1が不時着する直前に分離装置23を作動させる処理を含む。作業飛行体1が地面に接触する直前に分離装置23を作動させて、飛行体2を複数の小さなパーツに分離させることによって、地面に接触するパーツの一つあたりの重量が小さくなり、圃場に与える損傷を抑制しうる。 As a second example, the abnormality mode of the operation control process includes a process of activating the separation device 23 immediately before the work aircraft 1 makes an emergency landing. By activating the separation device 23 just before the working flying object 1 contacts the ground and separating the flying object 2 into a plurality of small parts, the weight of each part that comes into contact with the ground is reduced, making it easier to use in the field. Damage caused can be suppressed.
 第三の例として、運転制御処理の異常時モードは、異常が発生していることを作業飛行体1の外部に報知する処理を含む。たとえば、異常判定処理において何らかの異常が存在すると判定されたときに、飛行体制御装置24は、圃場管理システムに対して作業飛行体1において異常が発生していることを報知する。 As a third example, the abnormality mode of the operation control process includes a process of notifying the outside of the work aircraft 1 that an abnormality has occurred. For example, when it is determined in the abnormality determination process that some kind of abnormality exists, the flying object control device 24 notifies the field management system that an abnormality has occurred in the working flying object 1.
 第四の例として、運転制御処理の異常時モードは、ウインチ41aを動作させて接続体4aを介して接続される飛行体2と苗植付装置3との相対位置を能動的に変更する処理を含む。たとえば、二つの主翼21aの一方の回転数が低下する異常が検出されているときは、左右の揚力のバランスが悪くなって作業飛行体1の飛行姿勢が大きく崩れうるが、ウインチ41aを動作させて苗植付装置3の姿勢を調整することによって、飛行姿勢の崩れを抑制しうる。 As a fourth example, the abnormality mode of the operation control process is a process of operating the winch 41a to actively change the relative position between the flying object 2 and the seedling planting device 3, which are connected via the connecting body 4a. including. For example, when an abnormality is detected in which the rotational speed of one of the two main wings 21a decreases, the balance between the left and right lift forces becomes poor and the flight attitude of the work aircraft 1 may collapse significantly, but the winch 41a is not operated. By adjusting the attitude of the seedling planting device 3, collapse of the flight attitude can be suppressed.
 第五の例として、運転制御処理の異常時モードは、苗植付装置3の運転を停止させる処理を含む。作業飛行体1が不時着する際に苗植付装置3の可動部が動作していると、圃場に思わぬ損傷を与えるおそれがある。そこで、作業飛行体1が不時着する前にあらかじめ苗植付装置3の運転を停止させることによって、圃場に与える損傷を抑制する。 As a fifth example, the abnormality mode of the operation control process includes a process of stopping the operation of the seedling planting device 3. If the movable part of the seedling planting device 3 is operating when the working aircraft 1 makes an emergency landing, there is a risk of causing unexpected damage to the field. Therefore, by stopping the operation of the seedling planting device 3 in advance before the working aircraft 1 makes an emergency landing, damage to the field can be suppressed.
 認識処理は、作業飛行体1の位置および姿勢を認識する処理である。具体的には、衛星測位装置26aから入力される測位データおよび高度計26bから入力される高度データに基づいて、作業飛行体1の現在位置および現在高度が特定される。また、加速度計26cから入力される加速度データおよび傾きセンサ26dから入力される傾きデータに基づいて、作業飛行体1の現在の姿勢が特定される。 The recognition process is a process of recognizing the position and attitude of the work aircraft 1. Specifically, the current position and current altitude of the work aircraft 1 are specified based on the positioning data input from the satellite positioning device 26a and the altitude data input from the altimeter 26b. Further, the current attitude of the work aircraft 1 is specified based on the acceleration data input from the accelerometer 26c and the tilt data input from the tilt sensor 26d.
 上記の説明した作業飛行体1の制御は、飛行体制御装置24によって実行される制御プログラムによって実現される。すなわち、本実施形態に係る制御プログラムは、飛行体制御装置24の演算処理装置24aによって実行されたときに、上記の運転制御処理、異常判定処理、および認識処理を、演算処理装置24aに実行させることができるプログラムである。なお、当該制御プログラムは、飛行体制御装置24の記憶装置24bに記憶されている。 The control of the work aircraft 1 described above is realized by a control program executed by the aircraft control device 24. That is, the control program according to the present embodiment, when executed by the arithmetic processing unit 24a of the aircraft control device 24, causes the arithmetic processing unit 24a to execute the above-mentioned operation control processing, abnormality determination processing, and recognition processing. This is a program that allows you to Note that the control program is stored in the storage device 24b of the aircraft control device 24.
〔第二の実施形態〕
 本発明に係る作業飛行体の第二の実施形態について、図面を参照して説明する。以下では、本発明に係る作業飛行体を、四基の飛行体6と一基のホイールコンバイン7(作業装置の例。以下、単にコンバイン7という。)とを備える作業飛行体5に適用した例について説明する。なお、上記の第一の実施形態と共通する部分については、説明を簡素化または省略する。
[Second embodiment]
A second embodiment of the work aircraft according to the present invention will be described with reference to the drawings. In the following, an example in which the work aircraft according to the present invention is applied to a work aircraft 5 comprising four flying vehicles 6 and one wheel combine 7 (an example of a working device; hereinafter simply referred to as the combine 7). I will explain about it. Note that the description of parts common to the first embodiment described above will be simplified or omitted.
 本実施形態に係る作業飛行体5は、四基の飛行体6と一基のコンバイン7とを備える(図3、図4)。ここで、第一の実施形態では一基であった飛行体が、本実施形態では四基(すなわち複数)備えられている点に違いがある。また、飛行体2が二つの主翼21aおよび一つの尾翼21bを有する態様であったのに対し、本実施形態に係る飛行体6は、四つの回転翼61を有する態様である。 The working flying vehicle 5 according to this embodiment includes four flying vehicles 6 and one combine harvester 7 (FIGS. 3 and 4). Here, the difference is that in the first embodiment, there is one flying object, but in this embodiment, four flying objects (that is, a plurality of flying objects) are provided. Furthermore, while the flying object 2 has two main wings 21a and one tail 21b, the flying object 6 according to this embodiment has four rotary wings 61.
 作業飛行体5の飛行状態において、作業飛行体5のうち最も高度が高い部分は、コンバイン7に属する。具体的には、作業飛行体5の飛行状態において、コンバイン7のキャビンの天井部分71の地表面Gからの高度は、飛行体6の回転翼61の地表面Gからの高度より高い。この構成により、飛行体6が飛行する高度が過度に高くなることがないので、仮に作業飛行体5が不時着する場合であっても、圃場の損傷を抑制しうる。 In the flight state of the work aircraft 5, the highest altitude part of the work aircraft 5 belongs to the combine harvester 7. Specifically, in the flight state of the work aircraft 5, the altitude of the ceiling portion 71 of the cabin of the combine harvester 7 from the ground surface G is higher than the altitude of the rotor blade 61 of the aircraft 6 from the ground surface G. With this configuration, the altitude at which the flying object 6 flies does not become excessively high, so even if the working flying object 5 makes an emergency landing, damage to the field can be suppressed.
 四基の飛行体6には、それぞれ飛行体制御装置が設けられている。本実施形態に係る飛行体制御装置は、第一の実施形態に係る飛行体制御装置24と同様の機能を有する。さらに、本実施形態では、四基の飛行体6に設けられた飛行体制御装置どうしが相互に通信し、作業飛行体5全体としての飛行を制御する。また、異常判定処理は、四基の飛行体6のそれぞれについて実行される。すなわち、四基の飛行体6のそれぞれについて独立に、異常の有無を判定可能である。 Each of the four flying bodies 6 is provided with a flying body control device. The flying object control device according to this embodiment has the same functions as the flying object control device 24 according to the first embodiment. Furthermore, in this embodiment, the flying object control devices provided in the four flying objects 6 communicate with each other to control the flight of the working flying object 5 as a whole. Further, the abnormality determination process is executed for each of the four aircraft 6. That is, the presence or absence of an abnormality can be determined independently for each of the four aircraft 6.
 ここで、四基の飛行体6のうちの一基の飛行体6Aは主飛行体であり、他の三基の飛行体は従飛行体である。作業飛行体5全体としての飛行の制御は、主飛行体6Aに設けられた飛行体制御装置が全体を統括する制御を実行し、従飛行体6B、6C、および6Dの各飛行体制御装置は、主飛行体6Aに設けられた飛行体制御装置から送信される制御信号に従って、主飛行体6Aの制御に連動して制御される。たとえば、作業飛行体5における認識処理では、作業飛行体5の現在位置および現在高度は、主飛行体6Aの現在位置および現在高度に基づいて認識される。ただし、四基の飛行体6に設けられている飛行体制御装置は、いずれも主飛行体としても従飛行体としても機能できるように構成されている。なお、認識処理において作業飛行体5の現在位置および現在高度として認識される位置および高度は、必ずしも主飛行体6Aの現在位置および現在高度と一致する必要はない。たとえば図3に示す例では、四基の飛行体6の中心に位置する仮想点の位置および高度が主飛行体6Aの現在位置および現在高度に基づいて特定され、当該仮想点の位置および高度に基づいて作業飛行体5の現在位置および現在高度が認識される。 Here, one of the four flying bodies 6, 6A, is the main flying body, and the other three flying bodies are auxiliary flying bodies. To control the flight of the work aircraft 5 as a whole, the aircraft control device provided on the main flight object 6A executes overall control, and the flight object control devices of the sub-aircraft objects 6B, 6C, and 6D execute the overall control. , is controlled in conjunction with the control of the main aircraft 6A in accordance with a control signal transmitted from an aircraft control device provided on the main aircraft 6A. For example, in the recognition process for the work aircraft 5, the current position and current altitude of the work aircraft 5 are recognized based on the current position and current altitude of the main aircraft 6A. However, the flight vehicle control devices provided in the four flight vehicles 6 are configured so that they can all function as both the main flight vehicle and the slave flight vehicle. Note that the position and altitude recognized as the current position and current altitude of the work aircraft 5 in the recognition process do not necessarily need to match the current position and current altitude of the main aircraft 6A. For example, in the example shown in FIG. 3, the position and altitude of the virtual point located at the center of the four aircraft 6 are specified based on the current position and current altitude of the main aircraft 6A, and the position and altitude of the virtual point are Based on this, the current position and current altitude of the work aircraft 5 are recognized.
 本実施形態に係る運転制御処理の異常時モードは、複数の飛行体6のうち、異常があると判定された個体を作業飛行体5から切り離させる処理(以下、切り離し処理という。)を含む。たとえば、飛行体6Dに異常が生じていると判定されたときに、飛行体6Dとコンバイン7とを接続している接続体について、コンバイン7との接続を解除させる。その後の作業飛行体5の飛行は、飛行体6A、6B、および6Cの三基で担う。なお、飛行体6Dは不時着させる。 The abnormality mode of the operation control process according to the present embodiment includes a process of separating an individual among the plurality of flying objects 6 that is determined to have an abnormality from the work flying object 5 (hereinafter referred to as a separation process). For example, when it is determined that an abnormality has occurred in the flying object 6D, the connecting body connecting the flying object 6D and the combine harvester 7 is disconnected from the combine harvester 7. The subsequent flight of the working flying vehicle 5 is carried out by three flying vehicles 6A, 6B, and 6C. Note that the aircraft 6D is forced to land.
 このとき、本来は四基の飛行体6によって担われる作業飛行体5の飛行が飛行体6A、6B、および6Cの三基によって担われている状態になるので、作業飛行体5を安定に飛行させるための出力が不足する可能性がある。そのため、運転制御処理の異常時モードでは、コンバイン7に接続されている飛行体6の数が正常時より少ない場合に、作業飛行体5を少なくとも水平方向に移動させないように制御する。これによって、出力が低下している状態における負荷を最低限に抑制する。 At this time, the flight of the work aircraft 5, which would normally be carried out by the four flying bodies 6, is now borne by the three flying bodies 6A, 6B, and 6C, so that the work aircraft 5 can be flown stably. There may be insufficient output to Therefore, in the abnormal mode of the operation control process, when the number of flying objects 6 connected to the combine harvester 7 is smaller than in normal times, the working flying object 5 is controlled so as not to move at least in the horizontal direction. This suppresses the load to a minimum when the output is decreasing.
 上記の状態において、作業飛行体5は、切り離した個体(飛行体6D)に替わる他の飛行体6の到着を待つ。他の飛行体6が到着すると、当該他の飛行体6を作業飛行体5に接続させる処理を行う。これによって、作業飛行体5が正常状態に復帰し、運転制御処理が通常時モードに復帰する。 In the above state, the working flying object 5 waits for the arrival of another flying object 6 to replace the separated individual (flying object 6D). When another flying object 6 arrives, a process of connecting the other flying object 6 to the working flying object 5 is performed. As a result, the work aircraft 5 returns to the normal state, and the operation control process returns to the normal mode.
 なお、作業飛行体5の運転制御処理は、圃場管理システムからあらかじめ入力された運転計画(作業内容や飛行経路など)に従って、作業飛行体5の運転を順次制御する処理を含む。この運転計画は、作業飛行体5の正常状態における能力を考慮して決定されているので、上記のように飛行体6Dを切り離した後の状態においては、作業飛行体5の能力が不足し、当所の運転計画を遂行できない可能性がある。そこで、運転制御処理の異常時モードは、飛行体6Dを切り離したことによる作業飛行体5の能力への影響を評価するとともに、当該評価に基づいて運転計画を更新する処理を含む。更新された運転計画は、圃場管理システムに送信されてもよい。 Note that the operation control process for the work aircraft 5 includes processing for sequentially controlling the operation of the work aircraft 5 according to the operation plan (work content, flight route, etc.) input in advance from the field management system. This operation plan is determined taking into account the ability of the work aircraft 5 in its normal state, so in the state after the flight object 6D is detached as described above, the ability of the work aircraft 5 is insufficient, There is a possibility that we will not be able to carry out our operating plan. Therefore, the abnormality mode of the operation control process includes a process of evaluating the effect of separating the aircraft 6D on the performance of the work aircraft 5 and updating the operation plan based on the evaluation. The updated driving plan may be sent to the field management system.
 また、別の例として、主飛行体6Aに異常が生じていると判定されたときには、主飛行体6Aを切り離すとともに、従飛行体6B、6C、および6Dのうちの一基(たとえば従飛行体6B)を新たな主飛行体として機能させる処理を行う。前述の通り、作業飛行体5全体としての飛行の制御が、主飛行体6Aに設けられた飛行体制御装置によって統括されているところ、単に主飛行体6Aを切り離すと、作業飛行体5全体の制御を行えなくなってしまう。そこで、主飛行体を飛行体6Aから飛行体6Bに変更する処理を行うことで、飛行体6Aを切り離した後にも作業飛行体5全体の制御が適切に行われるようにする。この場合、作業飛行体5の現在位置および現在高度が、新たな主飛行体6Bの現在位置および現在高度に基づいて認識されるように、作業飛行体5に係る認識処理が更新される。 As another example, when it is determined that an abnormality has occurred in the main aircraft 6A, the main aircraft 6A is separated and one of the secondary aircraft 6B, 6C, and 6D (for example, the secondary aircraft 6B) to function as a new main aircraft. As mentioned above, the flight control of the work aircraft 5 as a whole is supervised by the aircraft control device installed in the main aircraft 6A, but if the main aircraft 6A is simply separated, the flight of the work aircraft 5 as a whole is controlled. You will be unable to control it. Therefore, by performing a process of changing the main flying object from the flying object 6A to the flying object 6B, the entire working flying object 5 can be appropriately controlled even after the flying object 6A is separated. In this case, the recognition process for the work aircraft 5 is updated so that the current position and current altitude of the work aircraft 5 are recognized based on the new current position and current altitude of the main aircraft 6B.
 また、本実施形態に係る運転制御処理の異常時モードは、複数の飛行体6のうち、異常があると判定された個体の出力を低下させる、または当該個体を停止させる処理と、異常があると判定された個体以外の飛行体6の出力を上昇させる処理(以下、出力調整処理という。)と、を含む。たとえば、飛行体6Dに異常が生じていると判定されたときに、飛行体6Dの出力を低下させるか、または飛行体6Dを停止させる。その後の作業飛行体5の飛行は、飛行体6A、6B、および6Cの三基で担う。そのため、飛行体6A、6B、および6Cの三基については、出力を上昇させる。 Furthermore, the abnormality mode of the operation control process according to the present embodiment includes a process of reducing the output of an individual among the plurality of flying objects 6 that is determined to be abnormal, or a process of stopping the individual, and a process of stopping the individual that is determined to be abnormal. This includes a process of increasing the output of the flying object 6 other than the individual determined to be (hereinafter referred to as an output adjustment process). For example, when it is determined that an abnormality has occurred in the flying object 6D, the output of the flying object 6D is reduced or the flying object 6D is stopped. The subsequent flight of the working flying vehicle 5 is carried out by three flying vehicles 6A, 6B, and 6C. Therefore, the outputs of the three aircraft units 6A, 6B, and 6C are increased.
 ここで、切り離し処理および出力調整処理のいずれが選択されるかは、判定された異常の内容、作業飛行体5の現在位置、圃場の状態、実施済みおよび実施予定の作業の内容、日時、天候などの諸条件に応じて選択される。 Here, whether the separation process or the output adjustment process is selected depends on the content of the determined abnormality, the current position of the work aircraft 5, the state of the field, the content of the work that has been performed and will be performed, the date and time, and the weather. The selection is made according to various conditions such as:
〔その他の実施形態〕
 最後に、本発明に係る作業飛行体のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
[Other embodiments]
Finally, other embodiments of the work aircraft according to the present invention will be described. Note that the configurations disclosed in each of the embodiments below can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction occurs.
 本発明に係る作業飛行体における作業装置の非限定的な例としては、上記に例示した苗植付装置3およびコンバイン7の他に、除雪作業を実施可能な除雪装置、薬剤散布作業を実施可能な薬剤散布装置、収穫作業を実施可能な収穫装置、搬送作業を実施可能な搬送装置、草刈作業を実施可能な草刈装置、不法侵入者や害獣などに対して警報を発する警報作業を実施可能な警報装置、圃場を耕耘可能なドリル状の駆動部を有する耕耘装置、などが例示される。 Non-limiting examples of work devices in the work aircraft according to the present invention include, in addition to the seedling planting device 3 and combine harvester 7 exemplified above, a snow removal device capable of performing snow removal work, and a snow removal device capable of performing chemical spraying work. chemical spraying equipment, harvesting equipment that can perform harvesting work, transport equipment that can perform transport work, grass cutting equipment that can perform grass cutting work, and alarm work that can issue warnings against illegal trespassers, vermin, etc. Examples include a warning device, a tiller having a drill-like drive unit capable of cultivating a field, and the like.
 図5に示す例では、作業飛行体8が、飛行体81と、収穫装置82と、浮力体83と、を備える。このとき、浮力体83が空気中において受ける浮力は、浮力体83が地球上において受ける重力より大きい。すなわち浮力体83は、単独では重力より浮力が大きく、空気中において上向きの力を生ずる。これによって、作業飛行体8全体に上向きの力を与え、飛行体81の推進力によって支持する必要がある作業飛行体8全体の荷重を緩和しうる。また、この態様において、作業飛行体8を下向きに推進させうる推進力を発生させるように飛行体81を運転すると、作業飛行体8において、飛行体81による下向きの推進力と浮力体83による上向きの推進力とが拮抗するようにできる。これによって、作業飛行体8が離陸または着陸するときの上昇または下降速度を、低い速度で精密に制御しやすくなる。 In the example shown in FIG. 5, the working flying object 8 includes a flying object 81, a harvesting device 82, and a buoyant body 83. At this time, the buoyant force that the buoyant body 83 receives in the air is greater than the gravitational force that the buoyant body 83 receives on the earth. That is, the buoyancy body 83 alone has a buoyancy force greater than gravity, and generates an upward force in the air. As a result, an upward force can be applied to the entire working aircraft 8, and the load on the entire working aircraft 8 that needs to be supported by the propulsive force of the flying object 81 can be alleviated. In addition, in this embodiment, when the flying object 81 is operated to generate a propulsive force capable of propelling the working flying object 8 downward, the working flying object 8 receives a downward propulsive force from the flying object 81 and an upward thrust from the buoyancy body 83. The propulsive force can be made to be counterbalanced. This makes it easier to accurately control the rising or descending speed of the work aircraft 8 at a low speed when it takes off or lands.
 なお、浮力体83は、熱気球や、ヘリウムなどの空気より比重が小さい気体を封入した風船などの態様で実装されうる。このような浮力体を備える態様を、第一および第二の実施形態を含む他の実施形態と組み合わせてもよい。 Note that the buoyant body 83 may be implemented in the form of a hot air balloon, a balloon filled with a gas having a specific gravity lower than air, such as helium, or the like. The embodiment including such a buoyant body may be combined with other embodiments including the first and second embodiments.
 本発明に係る作業飛行体における飛行体の態様は、限定されない。すなわち、第一の実施形態および第二の実施形態で例示した態様の他の態様の飛行体も、本発明に係る飛行体として採用されうる。 The aspect of the flying vehicle in the working flying vehicle according to the present invention is not limited. That is, flying objects in other aspects than those exemplified in the first embodiment and the second embodiment may also be employed as flying objects according to the present invention.
 本発明に係る作業飛行体が作業装置を備える場合、飛行体と作業装置とを接続する態様は、接続体を用いる態様に限定されない。また、接続体を用いる態様とする場合、接続体は、飛行体の一部として設けられていてもよいし、飛行体と別体の着脱可能な部材として設けられていてもよい。また、接続体は、単数であっても複数であってもよい。なお、接続体が複数設けられる場合、飛行体と作業装置との相対位置を能動的に変更可能な態様(上記の実施形態では接続体4a)と、変更不能な態様(上記の実施形態では接続体4b)とを、任意に組み合わせてよい。 When the working aircraft according to the present invention includes a working device, the mode of connecting the flying vehicle and the working device is not limited to the mode using a connecting body. Further, in the case of using a connecting body, the connecting body may be provided as a part of the flying object, or may be provided as a detachable member separate from the flying object. Moreover, the number of connectors may be singular or plural. In addition, when a plurality of connecting bodies are provided, there is a mode in which the relative position between the aircraft and the work device can be actively changed (connection body 4a in the above embodiment), and a mode in which it is not changeable (in the above embodiment, the connection body 4a). body 4b) may be arbitrarily combined.
 本発明に係る作業飛行体において、複数の浮力生成機構が、作動音を打ち消しあうことができるように構成されてもよい。たとえば、上記の第一の実施形態において、主翼21aおよび尾翼21bが互いに作動音を打ち消すように動作制御されてもよい。また、飛行体、作業装置、およびサブユニットのいずれかに、浮力生成機構の作動音を打ち消す音(ノイズキャンセリング音)を発生する消音装置が備えられていてもよい。当該消音装置は、浮力生成機構へ送られる制御量に基づいてノイズキャンセル音を生成するように構成されてもよい。 In the work aircraft according to the present invention, the plurality of buoyancy generating mechanisms may be configured so that their operational sounds can be canceled out. For example, in the first embodiment described above, the operation of the main wing 21a and the tail wing 21b may be controlled so that they cancel out the operating sounds of each other. Further, either the flying object, the working device, or the subunit may be equipped with a noise reduction device that generates a sound (noise canceling sound) that cancels the operating sound of the buoyancy generation mechanism. The muffler may be configured to generate noise canceling sound based on a control amount sent to the buoyancy generating mechanism.
 本発明に係る作業飛行体を構成する各装置は、様々な形態の作業飛行体の間で流用可能なように設計されてもよい。たとえば、上記の第一および第二の実施形態において、接続体と作業装置(苗植付装置3およびコンバイン7)との接続部分の構造を共通化しうる。 Each device constituting the work aircraft according to the present invention may be designed so that it can be used between various types of work aircraft. For example, in the first and second embodiments described above, the structure of the connecting portion between the connecting body and the working device (seedling planting device 3 and combine harvester 7) can be made common.
 その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 Regarding other configurations, it should be understood that the embodiments disclosed in this specification are illustrative in all respects, and the scope of the present invention is not limited thereto. Those skilled in the art will easily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Therefore, other embodiments that are modified without departing from the spirit of the present invention are naturally included within the scope of the present invention.
 本発明は、たとえば種々の作業を実施可能な作業飛行体に利用できる。 The present invention can be used, for example, in a work aircraft that can perform various tasks.
 1   :作業飛行体(第一の実施形態)
 2   :飛行体(第一の実施形態)
 21  :推進装置
 21a :主翼
 21b :尾翼
 22  :動力装置
 23  :分離装置
 24  :飛行体制御装置
 24a :演算処理装置
 24b :記憶装置
 25  :通信装置
 26  :センサ群
 26a :衛星測位装置
 26b :高度計
 26c :加速度計
 26d :傾きセンサ
 26e :回転計
 26f :液位計
 3   :苗植付装置
 31  :苗載台
 32  :植付装置
 33  :被接続部材
 34  :作業制御装置
 35  :通信装置
 4   :接続体
 41  :接続体の一端側
 41a :ウインチ
 42  :接続体の他端側
 5   :作業飛行体(第二の実施形態)
 6   :飛行体(第二の実施形態)
 61  :回転翼
 7   :ホイールコンバイン(コンバイン)
 71  :天井部分
 8   :作業飛行体(他の実施形態)
 81  :飛行体(他の実施形態)
 82  :収穫装置
 83  :浮力体
 
1: Working aircraft (first embodiment)
2: Aircraft (first embodiment)
21: Propulsion device 21a: Main wing 21b: Tail fin 22: Power device 23: Separation device 24: Flight object control device 24a: Arithmetic processing device 24b: Storage device 25: Communication device 26: Sensor group 26a: Satellite positioning device 26b: Altimeter 26c : Accelerometer 26d : Tilt sensor 26e : Rotation meter 26f : Level gauge 3 : Seedling planting device 31 : Seedling stand 32 : Planting device 33 : Connected member 34 : Work control device 35 : Communication device 4 : Connection body 41: One end side of the connecting body 41a: Winch 42: Other end side of the connecting body 5: Working aircraft (second embodiment)
6: Aircraft (second embodiment)
61: Rotary blade 7: Wheel combine (combiner)
71: Ceiling part 8: Working aircraft (other embodiments)
81: Aircraft (other embodiments)
82: Harvesting device 83: Buoyant body

Claims (18)

  1.  飛行体と、少なくとも一つのセンサと、少なくとも一つの演算処理装置を有する制御装置と、を備える作業飛行体であって、
     前記制御装置は、
     前記センサからの入力を受付可能であり、かつ、
     前記作業飛行体の運転を制御する運転制御処理、および、前記センサからの前記入力に基づいて異常の有無を判定する異常判定処理、を実行可能であり、
     前記異常判定処理において異常があると判定されているときは、前記運転制御処理が異常時モードで実行される作業飛行体。
    A work aircraft comprising a flying object, at least one sensor, and a control device having at least one arithmetic processing unit,
    The control device includes:
    capable of accepting input from the sensor, and
    It is possible to execute an operation control process that controls the operation of the work aircraft, and an abnormality determination process that determines the presence or absence of an abnormality based on the input from the sensor,
    A work aircraft in which the operation control process is executed in an abnormality mode when it is determined in the abnormality determination process that there is an abnormality.
  2.  前記運転制御処理の前記異常時モードは、前記作業飛行体が不時着可能な地点を特定する処理を含む請求項1に記載の作業飛行体。 The work aircraft according to claim 1, wherein the abnormality mode of the operation control process includes processing for identifying a location where the work aircraft can make an emergency landing.
  3.  前記作業飛行体が地面に接触したときに、当該地面に与える衝撃を緩和しうる衝撃緩和装置をさらに備える請求項1または2に記載の作業飛行体。 The work aircraft according to claim 1 or 2, further comprising an impact mitigation device capable of mitigating the impact exerted on the ground when the work aircraft contacts the ground.
  4.  前記衝撃緩和装置は、前記作業飛行体を複数の部分に分離可能な分離装置を含む請求項3に記載の作業飛行体。 The work aircraft according to claim 3, wherein the impact mitigation device includes a separation device capable of separating the work aircraft into a plurality of parts.
  5.  前記異常判定処理において異常があると判定されたときに前記作業飛行体の外部に当該異常を報知可能な報知装置をさらに備える請求項1~4のいずれか一項に記載の作業飛行体。 The work aircraft according to any one of claims 1 to 4, further comprising a notification device capable of notifying the outside of the work aircraft of an abnormality when it is determined that there is an abnormality in the abnormality determination process.
  6.  所定の作業を実施可能な作業装置と、
     一端側において前記飛行体と接続可能であり、かつ他端側で前記作業装置と接続可能である接続体と、をさらに備える請求項1~5のいずれか一項に記載の作業飛行体。
    A work device capable of carrying out a predetermined work;
    The working aircraft according to any one of claims 1 to 5, further comprising a connecting body connectable to the flying object at one end and connectable to the working device at the other end.
  7.  前記接続体は、当該接続体を介して接続される前記飛行体と前記作業装置との相対位置を能動的に変更可能に構成され、
     前記運転制御処理の前記異常時モードは、前記接続体を制御して、前記飛行体と前記作業装置との相対位置を能動的に変更させる処理を含む請求項6に記載の作業飛行体。
    The connecting body is configured to be able to actively change the relative position of the flying object and the working device that are connected via the connecting body,
    7. The working aircraft according to claim 6, wherein the abnormality mode of the operation control process includes a process of controlling the connecting body to actively change the relative position between the flying object and the working device.
  8.  前記運転制御処理の前記異常時モードは、前記作業装置の運転を停止させる処理を含む請求項6または7に記載の作業飛行体。 The work aircraft according to claim 6 or 7, wherein the abnormality mode of the operation control process includes a process of stopping the operation of the work device.
  9.  飛行状態において、前記作業飛行体のうち最も高度が高い部分は、前記作業装置に属する請求項6~8のいずれか一項に記載の作業飛行体。 The work aircraft according to any one of claims 6 to 8, wherein the highest altitude part of the work aircraft belongs to the work device in a flight state.
  10.  複数の前記飛行体を備え、
     前記異常判定処理は、複数の前記飛行体のそれぞれについて、異常の有無を判定可能であり、
     前記運転制御処理の前記異常時モードは、複数の前記飛行体のうち、異常があると判定された個体を前記作業飛行体から切り離させる処理を含む請求項1~9のいずれか一項に記載の作業飛行体。
    comprising a plurality of the flying objects,
    The abnormality determination process is capable of determining the presence or absence of an abnormality for each of the plurality of flying objects,
    10. The abnormality mode of the operation control process includes processing for separating an individual determined to be abnormal among the plurality of flying objects from the work flying object. working aircraft.
  11.  前記運転制御処理の前記異常時モードは、切り離した前記個体に替わる他の前記飛行体を前記作業飛行体に接続させる処理を含む請求項10に記載の作業飛行体。 The work aircraft according to claim 10, wherein the abnormality mode of the operation control process includes a process of connecting another of the aircraft to replace the separated individual to the work aircraft.
  12.  複数の前記飛行体は、一基の主飛行体と、その他の従飛行体とを含み、
     前記従飛行体は、前記主飛行体の制御に連動して制御され、
     前記運転制御処理の前記異常時モードは、切り離した前記個体が前記主飛行体である場合に、前記従飛行体のうちの一基を新たな主飛行体として機能させる処理を含む請求項10または11に記載の作業飛行体。
    The plurality of flight vehicles include one main flight vehicle and other subsidiary flight vehicles,
    The slave flight vehicle is controlled in conjunction with the control of the main flight vehicle,
    11. The abnormality mode of the operation control process includes processing for causing one of the subordinate aircraft to function as a new main aircraft when the separated individual is the main aircraft. 12. The working aircraft according to 11.
  13.  前記運転制御処理は、前記作業飛行体の位置および姿勢の少なくとも一つを、前記主飛行体の位置および姿勢の少なくとも一つに基づいて認識する認識処理を含み、
     前記運転制御処理の前記異常時モードは、前記認識処理において、前記作業飛行体の位置および姿勢の少なくとも一つが、前記新たな主飛行体の位置および姿勢の少なくとも一つに基づいて認識されるように、前記認識処理を更新する処理を含む請求項12に記載の作業飛行体。
    The operation control process includes a recognition process that recognizes at least one of the position and attitude of the work aircraft based on at least one of the position and attitude of the main aircraft,
    The abnormal mode of the operation control process is such that in the recognition process, at least one of the position and attitude of the work aircraft is recognized based on at least one of the position and attitude of the new main aircraft. The work aircraft according to claim 12, further comprising a process of updating the recognition process.
  14.  前記運転制御処理は、あらかじめ入力された運転計画に従って、前記作業飛行体の運転を順次制御する処理を含み、
     前記運転制御処理の前記異常時モードは、異常があると判定された前記個体を前記作業飛行体から切り離させることによる影響を評価するとともに、当該評価に基づいて前記運転計画を更新する処理を含む請求項10~13のいずれか一項に記載の作業飛行体。
    The operation control process includes a process of sequentially controlling the operation of the work aircraft according to a pre-input operation plan,
    The abnormality mode of the operation control process includes a process of evaluating the impact of separating the individual determined to have an abnormality from the work aircraft, and updating the operation plan based on the evaluation. The working aircraft according to any one of claims 10 to 13.
  15.  複数の前記飛行体を備え、
     前記異常判定処理は、複数の前記飛行体のそれぞれについて、異常の有無を判定可能であり、
     前記運転制御処理の前記異常時モードは、
     複数の前記飛行体のうち、異常があると判定された個体の出力を低下させる、または当該個体を停止させる処理と、
     異常があると判定された前記個体以外の前記飛行体の出力を上昇させる処理と、を含む請求項1~9のいずれか一項に記載の作業飛行体。
    comprising a plurality of the flying objects,
    The abnormality determination process is capable of determining the presence or absence of an abnormality for each of the plurality of flying objects,
    The abnormality mode of the operation control process is
    A process of reducing the output of an individual determined to be abnormal among the plurality of flying objects or stopping the individual;
    The work aircraft according to any one of claims 1 to 9, further comprising: increasing the output of the aircraft other than the individual that is determined to have an abnormality.
  16.  浮力体をさらに備え、
     前記浮力体が空気中において受ける浮力の大きさは、前記作業飛行体が地球上において受ける重力の大きさ以上である請求項1~15のいずれか一項に記載の作業飛行体。
    Further equipped with a buoyant body,
    The work flying vehicle according to any one of claims 1 to 15, wherein the magnitude of the buoyant force that the buoyancy body receives in the air is greater than the magnitude of the gravity that the work flying vehicle receives on the earth.
  17.  前記飛行体は、前記作業飛行体を下向きに推進させる推進力を発生させることができ、
     前記推進力の大きさを、前記浮力の大きさ以上にすることができる請求項16に記載の作業飛行体。
    The flying vehicle is capable of generating a propulsive force that propels the working flying vehicle downward,
    The work aircraft according to claim 16, wherein the magnitude of the propulsive force can be greater than the magnitude of the buoyant force.
  18.  飛行体と、少なくとも一つのセンサと、前記センサからの入力を受付可能であるとともに少なくとも一つの演算処理装置を有する制御装置と、を備える作業飛行体を制御可能な制御プログラムであって、
     実行されたときに、前記作業飛行体の運転を制御する運転制御処理、および、前記センサからの前記入力に基づいて異常の有無を判定する異常判定処理、を、前記演算処理装置に実行させることができ、
     前記異常判定処理において異常があると判定されたときは、前記演算処理装置に、前記運転制御処理を異常時モードで実行させる制御プログラム。
     
    A control program capable of controlling a work aircraft, comprising an aircraft, at least one sensor, and a control device capable of receiving input from the sensor and having at least one arithmetic processing unit,
    When executed, causing the arithmetic processing device to execute an operation control process that controls the operation of the work aircraft, and an abnormality determination process that determines the presence or absence of an abnormality based on the input from the sensor. is possible,
    A control program that causes the arithmetic processing unit to execute the operation control process in an abnormality mode when it is determined that there is an abnormality in the abnormality determination process.
PCT/JP2022/018266 2022-04-20 2022-04-20 Work-performing aerial vehicle WO2023203669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018266 WO2023203669A1 (en) 2022-04-20 2022-04-20 Work-performing aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018266 WO2023203669A1 (en) 2022-04-20 2022-04-20 Work-performing aerial vehicle

Publications (1)

Publication Number Publication Date
WO2023203669A1 true WO2023203669A1 (en) 2023-10-26

Family

ID=88419445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018266 WO2023203669A1 (en) 2022-04-20 2022-04-20 Work-performing aerial vehicle

Country Status (1)

Country Link
WO (1) WO2023203669A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047694A1 (en) * 2016-02-03 2019-02-14 Israel Aerospace Industries Ltd. Aerial platforms for aerial spraying and methods for controlling the same
JP2019051809A (en) * 2017-09-14 2019-04-04 ソフトバンク株式会社 Failure drop response type haps
JP2019111871A (en) * 2017-12-21 2019-07-11 株式会社クボタ Agricultural multicopter
WO2020116442A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Moving body
JP2020199812A (en) * 2019-06-06 2020-12-17 イームズロボティクス株式会社 Unmanned flight body, control method of unmanned flight body, and program
JP2020199818A (en) * 2019-06-07 2020-12-17 有限会社渥美不動産アンドコーポレーション Delivery system, flying body, and controller
JP2021028247A (en) * 2017-09-25 2021-02-25 積水メディカル株式会社 Specimen collection system using drone
JP2021179742A (en) * 2020-05-12 2021-11-18 ソフトバンク株式会社 System, moving body, program, and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047694A1 (en) * 2016-02-03 2019-02-14 Israel Aerospace Industries Ltd. Aerial platforms for aerial spraying and methods for controlling the same
JP2019051809A (en) * 2017-09-14 2019-04-04 ソフトバンク株式会社 Failure drop response type haps
JP2021028247A (en) * 2017-09-25 2021-02-25 積水メディカル株式会社 Specimen collection system using drone
JP2019111871A (en) * 2017-12-21 2019-07-11 株式会社クボタ Agricultural multicopter
WO2020116442A1 (en) * 2018-12-05 2020-06-11 株式会社ナイルワークス Moving body
JP2020199812A (en) * 2019-06-06 2020-12-17 イームズロボティクス株式会社 Unmanned flight body, control method of unmanned flight body, and program
JP2020199818A (en) * 2019-06-07 2020-12-17 有限会社渥美不動産アンドコーポレーション Delivery system, flying body, and controller
JP2021179742A (en) * 2020-05-12 2021-11-18 ソフトバンク株式会社 System, moving body, program, and method

Similar Documents

Publication Publication Date Title
US8540183B2 (en) Aerovehicle system including plurality of autogyro assemblies
US9038941B2 (en) Towable autogyro system having repositionable mast responsive to center of gratvity calculations
US9187173B2 (en) Towable autogyro having a re-positionable mast
JP2019194078A (en) Flying body and method for controlling flying body
US10502584B1 (en) Mission monitor and controller for autonomous unmanned vehicles
JP3201100U (en) Multi-rotor variable pitch helicopter
WO2020137554A1 (en) Drone, method of controlling drone, and drone control program
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
WO2023203669A1 (en) Work-performing aerial vehicle
WO2023203676A1 (en) Work-performing aerial vehicle
KR20240011797A (en) Long line loiter apparatus, system and method
JP2022097963A (en) Observation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938472

Country of ref document: EP

Kind code of ref document: A1