WO2023203654A1 - Microphone - Google Patents

Microphone Download PDF

Info

Publication number
WO2023203654A1
WO2023203654A1 PCT/JP2022/018228 JP2022018228W WO2023203654A1 WO 2023203654 A1 WO2023203654 A1 WO 2023203654A1 JP 2022018228 W JP2022018228 W JP 2022018228W WO 2023203654 A1 WO2023203654 A1 WO 2023203654A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
microphone
magnet
soft material
magnetic sensor
Prior art date
Application number
PCT/JP2022/018228
Other languages
French (fr)
Japanese (ja)
Inventor
成高 鈴木
和洋 小川
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to PCT/JP2022/018228 priority Critical patent/WO2023203654A1/en
Priority to PCT/JP2023/013665 priority patent/WO2023203996A1/en
Publication of WO2023203654A1 publication Critical patent/WO2023203654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00

Definitions

  • the present invention relates to a microphone.
  • acoustic components such as speakers and microphones have been known to have a waterproof and pressure-resistant structure.
  • acoustic components such as speakers and microphones have been known to have a waterproof and pressure-resistant structure.
  • a flexible sheet for example, by making the space inside the casing airtight using a flexible sheet to make it waterproof, and by equalizing the pressure applied to the front and back sides of the diaphragm, there is no possibility that the diaphragm will be deformed or damaged.
  • Patent Document 1 A technique for suppressing this is known (Patent Document 1).
  • the present invention was devised in view of the above-mentioned problems, and an object of the present invention is to provide a compact microphone structure that has waterproof and pressure-resistant performance without impairing its acoustic performance even when the surrounding environment changes.
  • the microphone according to this application example includes a vibrating body, a magnet that is in direct or indirect contact with the vibrating body and can be vibrated by sound waves, and a magnet that is provided at a position separated from the outside of the microphone. and a magnetic sensor that detects magnetic force fluctuations due to vibrations and outputs the magnetic force fluctuations as an electrical signal.
  • the vibrating body is made of a soft material, the magnet is laminated on the upper surface, and the magnetic sensor is separated from the outside of the microphone by laminating the soft material on the magnetic sensor. It is preferable.
  • the microphone according to this application example further includes a diaphragm laminated on the magnet.
  • the soft material preferably encapsulates a liquid.
  • the microphone according to this application example preferably further includes a case that has a height greater than the height of the soft material in the loading direction of the soft material and the magnet, and that encloses the soft material.
  • the vibrating body is made of a soft material
  • the microphone further includes a case in which the soft material is laminated on an upper surface and the magnetic sensor is enclosed therein to separate the microphone from the outside, and the magnetic sensor includes:
  • the case may include an NVC diamond sensor, a green LED light emitting unit that inputs light to the NVC diamond sensor, and a light receiving unit that is connected to a side facing the upper surface of the case and can detect light emission from the NVC diamond sensor. preferable.
  • the vibrating body is made of a soft material
  • the microphone further includes a case in which the soft material is laminated on a side surface and the magnetic sensor is enclosed in the case to separate the microphone from the outside, and the magnetic sensor includes:
  • the case may include an NVC diamond sensor, a green LED light emitting section connected to a side perpendicular to the side surface of the case, and a green LED light emitting section inputting light to the NVC diamond sensor, and a light receiving section capable of detecting light emission from the NVC diamond sensor. preferable.
  • the microphone according to this application example further includes a first case and a second case, and the vibrating body is arranged inside the first case and the second case.
  • the magnetic sensor is a diaphragm sandwiched between the first case and the second case, and the magnetic sensor is attached to either the first case or the second case, and is subjected to waterproof and pressure-resistant treatment. Therefore, it is preferable that the microphone be separated from the outside of the microphone.
  • the side of the diaphragm that faces the first case communicates with the outside of the first case via a hole provided in the first case
  • the side of the diaphragm that faces the second case communicates with the outside of the first case through a hole provided in the first case.
  • the side facing the case communicates with the outside of the second case via a hole provided in the second case.
  • the microphone according to this application example preferably includes a base plate and a microphone unit disposed on the base plate, and the microphone unit preferably has the configuration described in (1).
  • the present invention it is possible to provide a compact microphone structure that has waterproof and pressure-resistant performance without deteriorating its acoustic performance even when the surrounding environment changes.
  • FIG. 1 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a first embodiment.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a first modification of the first embodiment.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a second modified example microphone of the first embodiment.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a second embodiment.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a modification of the second embodiment.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a third embodiment.
  • FIG. 1 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a first embodiment.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a first modification of the first embodiment.
  • FIG. 7 is a vertical cross-section
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a modified example of the third embodiment.
  • FIG. 7 is a left perspective view showing the configuration of a microphone according to a fourth embodiment. It is a right perspective view which shows the structure of the microphone of 4th Embodiment.
  • FIG. 9 is a sectional view taken along the line AA in FIG. 9 and a partially enlarged view thereof.
  • FIG. 9 is a sectional view taken along the line BB in FIG. 9;
  • FIG. 9 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a modified example of the third embodiment.
  • FIG. 7 is a left perspective view showing the configuration of a microphone according to a fourth embodiment. It is a right perspective view which shows the structure of the microphone of 4th Embodiment.
  • FIG. 9 is
  • a microphone as an embodiment will be described with reference to the drawings.
  • the embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the embodiments below.
  • the configuration of this embodiment can be modified and implemented in various ways without departing from the spirit thereof. Further, they can be selected or combined as necessary.
  • the microphone according to this embodiment is an electronic device that converts audio (sound waves) into electrical signals.
  • the microphone according to the present embodiment can be used in various devices having a voice recognition function, such as small wireless terminals such as smartphones, information processing devices (computers), various objects equipped with computers, such as electronic devices, machines such as vehicles, etc. , applicable to devices including guns, etc.
  • FIG. 1 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to the first embodiment.
  • Microphone 100 includes a vibrating body 10, a magnet 20, and a magnetic sensor 30.
  • the vibrating body 10 holds the magnet 20 so that it can vibrate.
  • An example of the vibrating body 10 is a soft material 11, such as gel or rubber.
  • the vibrating body 10 of this embodiment has the magnet 20 laminated on the top surface.
  • the vibrating body 10 vibrates in the same direction as the vibration direction of the magnet 20 in conjunction with the vibration of the magnet 20.
  • the shape of the vibrating body 10 is a cylinder.
  • the magnet 20 is in direct or indirect contact with the vibrating body 10 and can be vibrated by sound waves.
  • a portion of the magnet 20 may be in contact with the external space (outside air) so as to be able to receive sound waves, and the other portion may be in contact with the vibrating body 10.
  • the magnet 20 receives sound waves at the portion that contacts the external space, and vibrates in a direction substantially perpendicular to the direction in which the portion that contacts the external space extends.
  • the magnet 20 of this embodiment has a disk shape, and its lower surface is in direct or indirect contact with the vibrating body 10, and its upper surface is in contact with the external space, so it vibrates up and down depending on the size of the sound wave. .
  • the magnet is, for example, a neodymium magnet.
  • the magnet 20 and the vibrating body 10 are, for example, insert molded, they come into direct contact.
  • the magnets 20 come into indirect contact with each other.
  • the powdered magnet 20 may be fixed to the vibrating body 10 in a disk shape. By using the powdered magnet 20, the inertial force of the magnet 20 can be reduced.
  • the magnetic sensor 30 is provided at a location away from the outside of the microphone 100, detects magnetic force fluctuations due to vibrations of the magnet 20, and outputs the magnetic force fluctuations as an electrical signal.
  • the magnetic sensor 30 is, for example, a Hall IC or an NVC diamond sensor.
  • the magnetic sensor 30 is separated from the outside of the microphone 100 by laminating the soft material 11 on the magnetic sensor 30 .
  • the magnetic sensor 30 is included in the lower part of the soft material 11.
  • the magnetic sensor 30 has waterproof and pressure-resistant performance, and even if the microphone 100 is submerged in water, the intrusion of liquid and the input of pressure into the microphone are blocked, and the performance of the magnetic sensor 30, that is, the fluctuation of magnetic force due to sound waves, is prevented. The performance of receiving and outputting electrical signals is not degraded.
  • the pressure resistance is assumed to be about 10 atm, but the present invention can be implemented at a pressure resistance depending on the application of the device in which the microphone 100 is installed.
  • the magnet 20 faces the magnetic sensor 30 with the vibrating body 10 in between.
  • the magnet 20 is arranged in a direction in which the magnetic sensor 30 can detect variations in magnetic force.
  • the magnetic sensor 30 is preferably arranged in the direction in which the magnet 20 vibrates (the direction of magnetic flux).
  • the magnetic sensor 30 since the magnet 20 vibrates up and down, the magnetic sensor 30 is arranged on the opposite side of the surface where the magnet 20 contacts the external space, and detects the vibration of the magnet 20 directly or through the vibration of the vibrating body 10. Receive.
  • the magnet 20 is not affected by vibration characteristics caused by expansion and contraction of the gas in the internal space of the microphone 100 due to changes in the environment in the external space.
  • no pressure is applied to the vibration direction of the magnet 20 and the vibrating body 10, so that the displacement of the magnet 20 due to internal pressure can be prevented, and the vibration of the magnet 20 and the vibrating body 10 is not restricted. Interference with the detection of magnetic force fluctuations by the sensor 30 can be suppressed. Therefore, high quality acoustic performance can be obtained.
  • the basic structure consisting of the vibrating body 10, magnet 20, and magnetic sensor 30 that constitutes the microphone 100 may be referred to as a microphone unit.
  • the microphone unit is arranged on the upper surface of the base plate 50.
  • the base plate 50 is a rigid member for supporting the microphone unit.
  • the magnetic sensor 30 is electrically connected to an electronic device board (not shown) at the bottom of the base plate 50 by soldering or the like (electrical connection 40). Electrical connections 40 are contained within base plate 50 . As a result, the electrical connection 40 is separated from the outside of the microphone 100, so that it has waterproof and pressure-resistant performance.
  • FIG. 2 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a first modification of the first embodiment.
  • the first modification differs from the microphone 100 of the first embodiment in that it includes a diaphragm 12. The differences will be mainly explained below.
  • the same reference numerals as those used in the first embodiment are the same or substantially similar.
  • a diaphragm 12 is further laminated on the magnet 20.
  • the diaphragm 12 is arranged so as to be in contact with the upper side of the magnet 20, that is, the part of the magnet 20 that contacts the external space, and receives sound waves.
  • the diaphragm 12 may be placed below the magnet 20, that is, between the magnet 20 and the vibrating body 10.
  • the diaphragm 12 is preferably a flat plate that is larger than the magnet 20 in order to easily receive the sound waves. Thereby, sound waves can be collected with higher sensitivity than the magnet 20 alone.
  • the diaphragm 12 comes into contact with the external space, it is preferably made of a material that is not only rigid enough to receive sound waves with good sensitivity, but also able to withstand pressure from the outside.
  • the diaphragm 12 is made of lightweight metal such as aluminum or magnesium, or resin.
  • FIG. 3 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a second modification of the first embodiment.
  • the second modification differs from the microphone 100 of the first embodiment in that the soft material 11 encloses a liquid.
  • the differences will be mainly explained below.
  • the same reference numerals as those used in the first embodiment are the same or substantially similar.
  • the soft material 11 further encloses the liquid 13.
  • the soft material 11 has a space of an appropriate shape and size therein, and a liquid 13 is sealed therein.
  • the liquid 13 is used to adjust the vibration sensitivity of the soft material 11.
  • the liquid 13 is sealed with a soft material 11 so as not to come into contact with the magnetic sensor 30.
  • the liquid 13 is, for example, water/alcohol, and preferably has a viscosity of 0.5 to 50 mPa ⁇ s.
  • the liquid 13 is appropriately selected depending on the type of the soft material 11 with which it comes into contact.
  • the amount of liquid 13 is determined as appropriate depending on the vibration sensitivity.
  • the magnet 20 shown in FIG. 3 may further include a diaphragm 12.
  • FIG. 4 is a vertical cross-sectional perspective view showing the configuration of the microphone 100 according to the second embodiment.
  • the second embodiment is different from the microphone 100 of the first embodiment (including modified examples) in that it includes a case 60 that encloses a soft material 11.
  • the differences will be mainly explained below.
  • the same reference numerals as those used in the first embodiment (including modified examples) are the same or substantially similar.
  • the microphone 100 of the second embodiment further includes a case 60 that encloses the soft material 11.
  • the case 60 protects the entire microphone unit, guides the vibration of the magnet 20 in a specific direction, and stabilizes the vibration direction.
  • the case 60 is a rigid body, such as plastic or metal.
  • the case 60 has a cylindrical shape, encloses the soft material 11, and the side surface of the soft material 11 is in contact with the inner surface of the case 60.
  • Case 60 has a height greater than or equal to the height of soft material 11 in the loading direction of soft material 11 and magnet 20 .
  • the soft material 11 and the case 60 are at the same height.
  • FIG. 4 shows an example including the diaphragm 12 and the liquid 13, the diaphragm 12 and the liquid 13 may not be provided.
  • FIG. 5 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a modification of the second embodiment. This modification differs from the microphone 100 of the second embodiment in the height of the case.
  • the case 60r of the modified microphone 100 has a height greater than the height of the soft material 11 in the loading direction of the soft material 11 and the magnet 20.
  • the case 60r encloses the vibrating body 10 and increases the amplitude of the sound wave inside a portion extending above the magnet 20. Therefore, the case 60r of this modification may be referred to as a case 60r with a resonance tube.
  • the shape of the resonance tube-equipped case 60r of this modification is a cylindrical shape in which the side surface containing the soft material 11 extends upward.
  • FIG. 6 is a vertical cross-sectional perspective view showing the configuration of the microphone 100 according to the third embodiment.
  • the third embodiment is characterized in that, in contrast to the microphone 100 of the first embodiment (including modified examples), an NVC diamond sensor is particularly used as the magnetic sensor.
  • an NVC diamond sensor is particularly used as the magnetic sensor.
  • the microphone 100 of the third embodiment includes a case 60 in addition to a soft material 11 and a magnet 20 that is in contact with the soft material 11 and can vibrate by sound waves.
  • the magnetic sensor 30 of this embodiment includes an NVC diamond sensor 31, a green LED light emitting section 32, and a light receiving section 33.
  • the basic structure consisting of these three parts 31, 32, 33 may be called an NVC diamond sensor unit.
  • the case 60 has the soft material 11 laminated on its upper surface and encloses the magnetic sensor 30, thereby separating it from the outside of the microphone 100. This allows the magnetic sensor 30 to maintain waterproof and pressure-resistant performance.
  • Case 60 is a rigid body.
  • a magnet 20 is laminated on the upper surface of the soft material 11. Magnet 20 faces NVC diamond sensor 31 with soft material 11 in between.
  • the NVC diamond sensor 31 of this embodiment is installed upright in the same direction as the direction in which the magnet 20 vibrates. In this embodiment, the proportion of the soft material 11 in the entire microphone 100 is small. The size of the soft material 11 is selected depending on the required sensitivity of the NVC diamond sensor 31.
  • the NVC diamond sensor unit which is the magnetic sensor 30, is connected to the side of the case 60 that faces the upper surface on which the soft material 11 is laminated.
  • the NVC diamond unit also includes an NVC diamond sensor 31 , a green LED light emitting section 32 that inputs light to the NVC diamond sensor 31 , and a light receiving section 33 that can detect light emission from the NVC diamond sensor 31 .
  • the NVC diamond sensor 31 is arranged between the green LED light emitting section 32 and the light receiving section 33.
  • NVC of the NVC diamond sensor 31 is an abbreviation for Nitrogen Vacancy Center.
  • NVC is a defect in which carbon (C) adjacent to the structure in the diamond crystal lattice is replaced with nitrogen (N) and vacancy (V), respectively.
  • NVC exhibits a magnetic property called spin when it captures electrons and becomes negatively charged.
  • Diamond has a wide band gap due to its strong bonds, and has the property of not releasing captured electrons even when high energy of several hundred degrees Celsius or more is applied to it. This helps stabilize the spin, and normally cooling is required to maintain the quantum state, but NVC can maintain the quantum state even at room temperature.
  • NVC In NVC, captured electrons easily react to slight variations in the electrical, magnetic, and optical properties of their surroundings. In addition to its atomic-like functionality, NVC has photoluminescent properties that absorb and emit colored photons. Irradiation with light or microwaves changes the state of the center, and the spin of the electrons changes accordingly. NVC emits different amounts of red light depending on the state of its electrons. Such light contains quantum information about magnetic and electric fields, and can be used in a variety of sensing applications that handle minute information, such as biosensing, neural imaging, object detection, and position sensing (GPS).
  • GPS position sensing
  • the NVC diamond sensor 31 of this embodiment has an I-shape, diamond particles are arranged in recesses on both sides, and magnetism is detected in the entire recess. The number of diamond particles is adjusted depending on the required sensitivity.
  • the green LED light emitting part 32 and the light receiving part 33 each have a convex part formed on the side surface facing the NVC diamond sensor 31, which can fit into a concave part of the NVC diamond sensor 31. By forming the three parts 31, 32, and 33 into such a shape, it is possible to achieve good detection and to realize a compact microphone 100.
  • the green light emitted from the green LED light emitting unit 32 passes through the NVC diamond sensor, it changes to red due to the change in the magnetic strength of the magnet 20 detected by the recessed part of the NVC diamond sensor 31.
  • the brightness of the red light changes according to changes in the magnetic strength of the magnet 20.
  • the intensity of the light output from the NVC diamond sensor 31 is detected by a light receiving section (photodiode) 33.
  • the NVC diamond sensor 31, the green LED light emitting section 32, and the light receiving section 33 are each electrically connected to an electronic device board (not shown) at the bottom of the base plate 50 (electrical connection 40).
  • the space in which the magnet 20 and the NVC diamond sensor 31 are arranged is separated by the case 60, that is, there is no gas layer between the magnet 20 and the case 60. Therefore, the magnet 20 is not affected by vibration characteristics caused by expansion and contraction of the gas in the internal space of the microphone 100 due to changes in the environment in the external space. As a result, no pressure is applied to the vibration direction of the magnet 20 and the vibrating body 10, so that displacement of the magnet 20 due to internal pressure can be prevented, and the vibration of the magnet 20 and the soft material 11 is not restricted. Interference with the detection of magnetic force fluctuations by the sensor 31 can be suppressed. Therefore, high quality acoustic performance can be obtained.
  • FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a modification of the third embodiment. In FIG. 7, this modification differs from the microphone 100 of the third embodiment in the position of the soft material 11 laminated on the case 60.
  • the case 60 has the soft material 11 laminated on the side surface and contains the magnetic sensor 30, thereby separating it from the outside of the microphone 100. This allows the magnetic sensor 30 to maintain waterproof and pressure-resistant performance.
  • Case 60 is a rigid body.
  • a magnet 20 is laminated on the upper surface of the soft material 11. The magnet 20 faces the side surface of the NVC diamond sensor 31 with the soft material 11 in between.
  • the NVC diamond sensor 31 of this embodiment is installed vertically to the direction in which the magnet 20 vibrates.
  • the NVC diamond sensor unit which is the magnetic sensor 30, is connected to the side of the case 60 that is perpendicular to the side surface on which the soft material 11 is laminated.
  • the NVC diamond sensor 31 can detect slight fluctuations in the surrounding electrical, magnetic, and optical characteristics, so it can detect vibrations of the magnet 20 even if it is in a position perpendicular to the magnet 20. can be detected.
  • the fourth embodiment will be described with reference to FIGS. 8 to 11.
  • the fourth embodiment is different from the microphones of the first to third embodiments (including modified examples) in that the structure of the case and the positions of the magnet and the magnetic sensor are different. Below, the description will focus on the feature points. In the description of the fourth embodiment, the same reference numerals as those used in the first to third embodiments (including modifications) are the same or substantially similar.
  • FIG. 8 is a left perspective view showing the configuration of the microphone 100 of the fourth embodiment.
  • FIG. 9 is a right perspective view showing the configuration of the microphone 100 of the fourth embodiment.
  • the microphone 100 further includes a first case 61 and a second case 62.
  • the first case 61 and the second case 62 are provided with holes that communicate with the external space.
  • the first case 61 and the second case 62 have the same shape, and the first case 61 is provided with three small circular holes, and the second case 62 is provided with three small circular holes. And one circular hole larger than the small circles is provided in the middle of these small circles.
  • the positions of the small circular holes in the cases 61 and 62 coincide with each other.
  • the first case 61 and the second case 62 each have a recess of the same size formed on one side, and the positions of the recesses match (see FIG. 10).
  • the case of the microphone 100 is formed by making the concave portions face each other and tightly fitting the outer circumferences of the surfaces of the first case 61 and the second case 62 on which the concave portions are provided over the entire circumference.
  • the microphone unit is arranged on the upper surface of the base plate 50.
  • the lower portions of the first case 61 and the second case 62 are surrounded by a waterproof seal member 63.
  • the seal member 63 will be described later.
  • the magnetic sensor 30 is attached to either the first case 61 or the second case 62, and is separated from the outside of the microphone 100 by being subjected to waterproof and pressure-resistant treatment 64.
  • the magnetic sensor 30 may be placed in the direction in which the magnet 20 vibrates (the magnetic flux direction), and the position where the magnetic sensor 30 is attached may be outside or inside the cases 61 and 62.
  • the magnetic sensor 30 is attached to the outside of the first case 61.
  • the magnetic sensor 30 When the magnetic sensor 30 is installed inside the cases 61 and 62, it may be installed on the side with the vibrating membrane 14 in between, where there is a part that receives the sound waves of the magnet 20, or it can be installed on the side where the part does not exist. (See FIG. 10).
  • the sensor part and the amplifier part of the magnetic sensor 30 are molded with resin and have a waterproof structure
  • the waterproof pressure-resistant treatment 64 is applied to the electrical connection 40 and the electrical connection of the magnetic sensor 30. It is applied to the parts related to the connection 40. If the sensor section and the amplifier section of the magnetic sensor 30 do not have a waterproof structure, the entire magnetic sensor 30 may be provided with this.
  • the waterproof and pressure-resistant treatment 64 there is a method of sealing and waterproofing, for example, by insert molding an elastic material such as resin, rubber, or elastomer.
  • the waterproof and pressure-resistant treatment 64 be performed to the extent that the same level of strength as the cases 61 and 62 can be obtained.
  • the magnetic sensor 30 may be covered with a rigid body.
  • FIG. 10 is a sectional view taken along the line AA in FIG. 9 and a partially enlarged view thereof.
  • a vibrating body 10 that directly or indirectly contacts a magnet 20 that receives sound waves taken in through the holes is arranged in the internal spaces of the cases 61 and 62.
  • An example of the vibrating body 10 is a vibrating plate 12, which is laminated under the magnet 20 in the example of FIG.
  • the diaphragm 12 is connected to cases 61 and 62 via a diaphragm 14.
  • the vibrating body 10 of this embodiment is the diaphragm 12 sandwiched between the first case 61 and the second case 62, inside the first case 61 and the second case 62.
  • the side of the diaphragm 12 facing the first case 61 communicates with the outside of the first case through a hole provided in the first case 61
  • the side facing the second case 62 of the diaphragm 12 communicates with the outside of the first case through a hole provided in the first case 61
  • the opposing side communicates with the outside of the second case 62 via a hole provided in the second case.
  • the vibrating membrane 14 freely deforms and receives sound waves. Since the ends of the vibrating membrane 14 are held between the cases 61 and 62, the internal spaces of the cases 61 and 62 are divided into two spaces by the vibrating membrane 14. Since the vibrating membrane 14 is connected to the external space through the hole, it is preferably made of a material that can withstand external pressure, such as PVC film. Since the vibrating membrane 14 is arranged parallel to the cases 61 and 62, the magnet 20 receives the sound waves input through the holes and vibrates in a direction substantially perpendicular to the direction in which the cases 61 and 62 are installed.
  • the boundary surface of the internal space formed by the first case 61 and the second case 62 is a smooth curved surface.
  • the internal space has a disk shape, and its cross section and longitudinal section are elliptical.
  • the magnet 20 and the magnetic sensor 30 are separated by the case 61, and since the case 61 is provided with a hole, a gas layer exists.
  • the holes provided in the cases 61, 62 cause the internal space of the cases 61, 62 to be reduced to the external space.
  • the expanded gas in the inner space flows out to the outer space through the hole.
  • the backup structure 65 supports the entire vibrating membrane 14, so that the vibrating membrane 14 will not be damaged. The influence on the connected diaphragm 12 and magnet 20 can be reduced.
  • FIG. 11 is a sectional view taken along the line BB in FIG. 9.
  • the magnetic sensor 30 placed outside the first case 61 detects magnetic force fluctuations of the magnet 20 in the internal space.
  • the electrical connection 40 of the magnetic sensor 30 extends from inside the main body of the magnetic sensor 30 to the bottom of the first case 61 and is connected to an electronics board (not shown) at the bottom of the base plate 50.
  • the magnet 20, the diaphragm 12, and the diaphragm 14 can receive sound waves even when water flows in through the holes and comes into contact with water, and the performance after water removal does not deteriorate.
  • FIG. 12 is a right perspective view of a modification of the fourth embodiment.
  • the microphone 100 is connected to a casing (attachment destination casing) 70 to be incorporated.
  • a casing attachment destination casing
  • the object into which the microphone 100 is installed is not limited to a specific device, this embodiment will be described using an electronic device as an example.
  • FIG. 13 is a sectional view taken along the line CC in FIG. 12.
  • the sealing member 63 of the microphone 100 is in contact with the casing 70 to which it is attached. That is, the microphone 100 is fitted into the attachment destination housing 70 at the seal member 63.
  • the seal member 63 prevents water from entering the space where the electrical connection 40 of the magnetic sensor 30 is arranged. Damage to the connection 40 can be prevented.
  • the electrical connection 40 of this embodiment is not subjected to waterproof and pressure-resistant treatment 64, it may be subjected to waterproof and pressure-resistant treatment 64 in order to further improve safety.
  • the microphone 100 includes a vibrating body 10, a magnet 20 that is in direct or indirect contact with the vibrating body and is capable of vibrating by sound waves, and is provided at a position separated from the outside of the microphone 100, and is provided with a magnet 20 that is in direct or indirect contact with the vibrating body and can vibrate by sound waves. It includes a magnetic sensor 30 that detects magnetic force fluctuations and outputs the magnetic force fluctuations as electrical signals.
  • the structure in which the magnet 20 vibrates with sound waves and the magnetic sensor 30 detects magnetic force fluctuations due to the vibration of the magnet 20 is new. Moreover, since the magnetic sensor 30 has waterproof and pressure-resistant performance, even if the microphone 100 is submerged in water, the time required for recovery can be shortened.
  • the vibrating body 10 is made of a soft material 11, and the magnet 20 is laminated on the upper surface, and the magnetic sensor 30 is separated from the outside of the microphone 100 by laminating the soft material 11 on the magnetic sensor 30. Ru.
  • the soft material 11 allows magnetic force fluctuations caused by the vibrations of the magnet 20 to be reliably transmitted to the magnetic sensor 30, and the soft material 11 makes the magnetic sensor 30 waterproof and pressure resistant, allowing the microphone to be used safely even in environments with water. be able to. Further, since the microphone 100 has a small number of parts, it can be configured compactly. Since there is no gas layer between the magnet 20 and the magnetic sensor 30, the magnet 20, the vibrating body 10, and the magnetic sensor 30 are not adversely affected by the expansion and contraction of the gas in the internal space.
  • the microphone 100 further includes a diaphragm 12 laminated on the magnet 20. Thereby, sound waves can be detected with higher sensitivity.
  • the soft material 11 encloses the liquid 13. Thereby, the sensitivity of the vibrating body 10 can be adjusted.
  • the microphone 100 further includes a case 60r that has a height larger than the height of the soft material 11 in the loading direction of the soft material 11 and the magnet 20, and encloses the soft material 11.
  • the amplitude of the sound waves can be increased inside the portion extending above the magnet 20, so that weakly vibrating sound waves can be reliably detected.
  • the vibrating body 10 is a soft material 11, and the microphone 100 further includes a case 60 in which the soft material 11 is laminated on the upper surface, and a case 60 is separated from the outside of the microphone 100 by enclosing a magnetic sensor 30.
  • 30 is connected to the side facing the upper surface of the case 60, and includes an NVC diamond sensor 31, a green LED light emitting section 32 that inputs light to the NVC diamond sensor 31, and a light receiving section 33 that can detect light emission from the NVC diamond sensor 31. including.
  • the vibrating body 10 is a soft material 11, and the microphone 100 further includes a case in which the soft material is laminated on the side surface and the magnetic sensor is enclosed in the case to separate the microphone 100 from the outside, is connected to a side perpendicular to the side surface of the case, and includes an NVC diamond sensor, a green LED light emitting section that inputs light to the NVC diamond sensor, and a light receiving section capable of detecting light emission from the NVC diamond sensor. .
  • the NVC diamond sensor 31 even when the NVC diamond sensor 31 is arranged in a direction perpendicular to the vibration direction of the magnet 20, it is possible to reliably detect weak magnetic force fluctuations of the magnet 20. I can do it.
  • the microphone 100 further includes a first case 61 and a second case 62, and the vibrating body 10 is arranged inside the first case 61 and the second case 62.
  • the diaphragm 12 is sandwiched between a diaphragm 61 and a second case 62, and the magnetic sensor 30 is attached to either the first case 61 or the second case and is subjected to waterproof and pressure-resistant treatment 64.
  • the microphone 100 is separated from the outside.
  • the diaphragm 12 is protected by the cases 61 and 62 to prevent damage, and the magnetic sensor 30 is subjected to waterproof and pressure-resistant treatment 64, so the microphone can be used safely even in environments with water.
  • the side of the diaphragm 12 facing the first case 61 communicates with the outside of the first case 61 through the hole provided in the first case 61, and
  • the side facing 62 communicates with the outside of second case 62 through a hole provided in second case 62 .
  • the microphone includes a base plate 1 and a microphone unit disposed on the base plate, and the microphone unit has the configuration described in (1) above. This allows the microphone unit to be stably installed in any location.
  • the components of the microphone 100 can take various shapes.
  • the shape of the magnet 20 is shown as a disk, and in the figure, the vibrating body 10 is shown as a cylinder or a prism, but the shape is not limited to these shapes.
  • the case 60 has various shapes such as a cylinder, a square, and an ellipse, but is not limited to these shapes.
  • the shape of the resonance tube-equipped case 60r may be a shape that widens upward or a shape that narrows toward the top.
  • the shapes of the parts 31, 32, and 33 of the NVC diamond sensor unit are also not limited to the above.
  • the shapes of the first case 61 and the second case 62 and the size and number of holes provided therein can be arbitrarily selected.
  • the magnetic sensor 30 is not limited to Hall IC and NVC diamond sensors, and other sensors capable of detecting changes in magnetic force may be used.
  • the mounting position of the magnetic sensor 30 is not limited to the above example as long as the magnetic force fluctuation of the magnet 20 can be received.
  • any position inside the vibrating body 10 in the third embodiment, any position inside the case 60, and in the fourth embodiment, at any position inside the first case 61 or the second case 62. May be attached.

Abstract

A microphone 100 comprises: an oscillator 10; a magnet 20 that directly or indirectly contacts the oscillator and that can oscillate by sound waves; and a magnetic sensor 30 that is provided at a position spaced apart from the outside of the microphone 100, that detects magnetic-force fluctuations due to the oscillation of the magnet, and that outputs such magnetic-force fluctuations as electrical signals.

Description

マイクロフォンmicrophone
 本発明は、マイクロフォンに関する。 The present invention relates to a microphone.
 従来、スピーカやマイクロフォンなどの音響部品においては防水耐圧構造を備えたものが知られている。例えば、筐体内部の空間を可撓性シートを用いて気密状態にし、防水を行なうとともに、振動板の表側と裏側にかかる圧力を等しくすることで、振動板が変形したり損傷したりすることを抑止する技術が知られている(特許文献1)。 Conventionally, acoustic components such as speakers and microphones have been known to have a waterproof and pressure-resistant structure. For example, by making the space inside the casing airtight using a flexible sheet to make it waterproof, and by equalizing the pressure applied to the front and back sides of the diaphragm, there is no possibility that the diaphragm will be deformed or damaged. A technique for suppressing this is known (Patent Document 1).
 さらに、音響装置では、内部空間の気体が外部の環境の変化の影響を受けて膨張及び収縮することで振動特性に影響を与えることが知られている。これを防止するために、例えば、装置の内部空気をダンパとして使うことで、空気の流出を制限する一方で、通気穴をハウジングの側面に設けて、ダイヤフラムの振動時に内部空間の空気を通気穴から装置外部に出す技術が知られている(特許文献2)。 Furthermore, in acoustic devices, it is known that the gas in the internal space expands and contracts under the influence of changes in the external environment, which affects the vibration characteristics. To prevent this, for example, by using the internal air of the device as a damper, the outflow of air is restricted, and by providing ventilation holes on the side of the housing, when the diaphragm vibrates, the air in the internal space is removed through the ventilation holes. A technique is known in which the liquid is discharged from the device to the outside of the device (Patent Document 2).
特開2003-18685号公報Japanese Patent Application Publication No. 2003-18685 国際公開第2004/023843号International Publication No. 2004/023843
 しかしながら、単一のマイクロフォンにおいて、防水耐圧性能及び内部空間の気体の膨張の抑止の両方を解決するのは難しい。本発明は、上記の課題に鑑みて創案されたものであり、周辺環境の変化にも音響性能が損なわれることなく、防水耐圧性能を有するコンパクトなマイクロフォン構造を提供することを目的とする。 However, it is difficult to achieve both waterproof and pressure-resistant performance and suppression of gas expansion in the internal space with a single microphone. The present invention was devised in view of the above-mentioned problems, and an object of the present invention is to provide a compact microphone structure that has waterproof and pressure-resistant performance without impairing its acoustic performance even when the surrounding environment changes.
 本件は上記の課題の少なくとも一部を解決するためになされたものであり、以下の態様又は適用例として実現できる。
 (1)本適用例に係るマイクロフォンは、振動体と、前記振動体に直接又は間接に接触しており、音波により振動可能なマグネットと、前記マイクロフォンの外部と離隔した位置に設けられ、前記マグネットの振動による磁力変動を検出して、前記磁力変動を電気信号として出力する磁気センサと、を備える。
The present invention has been made to solve at least part of the above problems, and can be realized in the following aspects or application examples.
(1) The microphone according to this application example includes a vibrating body, a magnet that is in direct or indirect contact with the vibrating body and can be vibrated by sound waves, and a magnet that is provided at a position separated from the outside of the microphone. and a magnetic sensor that detects magnetic force fluctuations due to vibrations and outputs the magnetic force fluctuations as an electrical signal.
 (2)前記振動体は、軟質材であり、前記マグネットを上面に積層し、前記磁気センサは、前記磁気センサの上に前記軟質材が積層されることにより、前記マイクロフォンの外部と離隔されることが好ましい。 (2) The vibrating body is made of a soft material, the magnet is laminated on the upper surface, and the magnetic sensor is separated from the outside of the microphone by laminating the soft material on the magnetic sensor. It is preferable.
 (3)本適用例に係るマイクロフォンは、前記マグネットに積層される振動板を更に備えることが好ましい。 (3) Preferably, the microphone according to this application example further includes a diaphragm laminated on the magnet.
 (4)前記軟質材は、液体を封入することが好ましい。 (4) The soft material preferably encapsulates a liquid.
 (5)本適用例に係るマイクロフォンは、前記軟質材と前記マグネットとの積載方向について前記軟質材の高さよりも大きい高さを有し、前記軟質材を内包するケースを更に備えることが好ましい。 (5) The microphone according to this application example preferably further includes a case that has a height greater than the height of the soft material in the loading direction of the soft material and the magnet, and that encloses the soft material.
 (6)前記振動体は、軟質材であり、マイクロフォンは、前記軟質材を上面に積層し、前記磁気センサを内包することで前記マイクロフォンの外部と離隔させるケースを更に備え、前記磁気センサは、前記ケースにおいて前記上面と対向する側に接続され、NVCダイヤモンドセンサと、前記NVCダイヤモンドセンサに光を入力する緑色LED発光部と、前記NVCダイヤモンドセンサの発光を検出可能な受光部とを含むことが好ましい。 (6) The vibrating body is made of a soft material, and the microphone further includes a case in which the soft material is laminated on an upper surface and the magnetic sensor is enclosed therein to separate the microphone from the outside, and the magnetic sensor includes: The case may include an NVC diamond sensor, a green LED light emitting unit that inputs light to the NVC diamond sensor, and a light receiving unit that is connected to a side facing the upper surface of the case and can detect light emission from the NVC diamond sensor. preferable.
 (7)前記振動体は、軟質材であり、マイクロフォンは、前記軟質材を側面に積層し、前記磁気センサを内包することで前記マイクロフォンの外部と離隔させるケースを更に備え、前記磁気センサは、前記ケースにおいて前記側面と直交する側に接続され、NVCダイヤモンドセンサと、前記NVCダイヤモンドセンサに光を入力する緑色LED発光部と、前記NVCダイヤモンドセンサの発光を検出可能な受光部とを含むことが好ましい。 (7) The vibrating body is made of a soft material, and the microphone further includes a case in which the soft material is laminated on a side surface and the magnetic sensor is enclosed in the case to separate the microphone from the outside, and the magnetic sensor includes: The case may include an NVC diamond sensor, a green LED light emitting section connected to a side perpendicular to the side surface of the case, and a green LED light emitting section inputting light to the NVC diamond sensor, and a light receiving section capable of detecting light emission from the NVC diamond sensor. preferable.
 (8)本適用例に係るマイクロフォンは、第1のケースと、第2のケースと、を更に備え、前記振動体は、前記第1のケースと前記第2のケースとの内側において、前記第1のケースと前記第2のケースとに挟まれた振動板であり、前記磁気センサは、前記第1のケース及び前記第2のケースのいずれか一方に取り付けられ、防水耐圧処理が施されることで前記マイクロフォンの外部と離隔されることが好ましい。 (8) The microphone according to this application example further includes a first case and a second case, and the vibrating body is arranged inside the first case and the second case. The magnetic sensor is a diaphragm sandwiched between the first case and the second case, and the magnetic sensor is attached to either the first case or the second case, and is subjected to waterproof and pressure-resistant treatment. Therefore, it is preferable that the microphone be separated from the outside of the microphone.
 (9)前記振動板の前記第1のケースに対向する側は、前記第1のケースに設けられた孔を介して前記第1のケースの外側と連通し、前記振動板の前記第2のケースに対向する側は、前記第2のケースに設けられた孔を介して前記第2のケースの外側と連通することが好ましい。 (9) The side of the diaphragm that faces the first case communicates with the outside of the first case via a hole provided in the first case, and the side of the diaphragm that faces the second case communicates with the outside of the first case through a hole provided in the first case. Preferably, the side facing the case communicates with the outside of the second case via a hole provided in the second case.
 (10)本適用例に係るマイクロフォンは、ベースプレートと、前記ベースプレート上に配置されるマイクロフォンユニットとを備え、前記マイクロフォンユニットは、(1)に記載の構成を有することが好ましい。 (10) The microphone according to this application example preferably includes a base plate and a microphone unit disposed on the base plate, and the microphone unit preferably has the configuration described in (1).
 本発明によれば、周辺環境の変化にも音響性能が損なわれることなく、防水耐圧性能を有するコンパクトなマイクロフォン構造を提供することができる。 According to the present invention, it is possible to provide a compact microphone structure that has waterproof and pressure-resistant performance without deteriorating its acoustic performance even when the surrounding environment changes.
第1実施形態のマイクロフォンの構成を示す縦断面斜視図である。FIG. 1 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a first embodiment. 第1実施形態の第1変形例のマイクロフォンの構成を示す縦断面斜視図である。FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a first modification of the first embodiment. 第1実施形態の第2変形例マイクロフォンの構成を示す縦断面斜視図である。FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a second modified example microphone of the first embodiment. 第2実施形態のマイクロフォンの構成を示す縦断面斜視図である。FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a second embodiment. 第2実施形態の変形例のマイクロフォンの構成を示す縦断面斜視図である。FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a modification of the second embodiment. 第3実施形態のマイクロフォンの構成を示す縦断面斜視図である。FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a third embodiment. 第3実施形態の変形例のマイクロフォンの構成を示す縦断面斜視図である。FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone according to a modified example of the third embodiment. 第4実施形態のマイクロフォンの構成を示す左斜視図である。FIG. 7 is a left perspective view showing the configuration of a microphone according to a fourth embodiment. 第4実施形態のマイクロフォンの構成を示す右斜視図である。It is a right perspective view which shows the structure of the microphone of 4th Embodiment. 図9のA-A矢視断面図及びその部分拡大図である。FIG. 9 is a sectional view taken along the line AA in FIG. 9 and a partially enlarged view thereof. 図9のB-B矢視断面図である。FIG. 9 is a sectional view taken along the line BB in FIG. 9; 第4実施形態の変形例の右斜視図である。FIG. 7 is a right perspective view of a modification of the fourth embodiment. 図12のC-C矢視断面図である。13 is a sectional view taken along the line CC in FIG. 12. FIG.
 図面を参照して、実施形態としてのマイクロフォンについて説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A microphone as an embodiment will be described with reference to the drawings. The embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the embodiments below. The configuration of this embodiment can be modified and implemented in various ways without departing from the spirit thereof. Further, they can be selected or combined as necessary.
 本実施形態に係るマイクロフォンは、音声(音波)を電気信号に変換する電子機器である。本実施形態に係るマイクロフォンは、音声認識機能を備える様々な機器、例えばスマートフォン等の小型無線端末、情報処理装置(コンピュータ)、コンピュータが搭載された種々の物、例えば、電子機器、車両等の機械、銃を含む装置等に適用される。 The microphone according to this embodiment is an electronic device that converts audio (sound waves) into electrical signals. The microphone according to the present embodiment can be used in various devices having a voice recognition function, such as small wireless terminals such as smartphones, information processing devices (computers), various objects equipped with computers, such as electronic devices, machines such as vehicles, etc. , applicable to devices including guns, etc.
[A.構成] [A. composition]
[1.第1実施形態]
 図1を参照し、第1実施形態を説明する。図1は、第1実施形態のマイクロフォン100の構成を示す縦断面斜視図である。マイクロフォン100は、振動体10と、マグネット20と、磁気センサ30とを備える。
[1. First embodiment]
A first embodiment will be described with reference to FIG. FIG. 1 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to the first embodiment. Microphone 100 includes a vibrating body 10, a magnet 20, and a magnetic sensor 30.
 振動体10は、マグネット20を振動可能に保持する。振動体10の一例は軟質材11であり、例えばゲルやゴム等である。また、本実施形態の振動体10は、マグネット20を上面に積層する。振動体10は、マグネット20の振動に連動してマグネット20の振動方向と同じ方向に振動する。本実施形態では、振動体10の形状は円柱である。 The vibrating body 10 holds the magnet 20 so that it can vibrate. An example of the vibrating body 10 is a soft material 11, such as gel or rubber. Moreover, the vibrating body 10 of this embodiment has the magnet 20 laminated on the top surface. The vibrating body 10 vibrates in the same direction as the vibration direction of the magnet 20 in conjunction with the vibration of the magnet 20. In this embodiment, the shape of the vibrating body 10 is a cylinder.
 マグネット20は、振動体10に直接又は間接に接触しており、音波により振動可能である。マグネット20の一部は音波を受信可能に外部空間(外気)に接触し、他部は振動体10に接触してよい。マグネット20は外部空間に接触する部位で音波を受け、外部空間に接触する部位が延在する方向と略垂直の方向に振動する。本実施形態のマグネット20の形状は円盤であり、その下面は振動体10に直接又は間接に接触し、その上面は外部空間に接触しているため、音波の大きさに応じて上下に振動する。マグネットは、例えばネオジウム磁石である。 The magnet 20 is in direct or indirect contact with the vibrating body 10 and can be vibrated by sound waves. A portion of the magnet 20 may be in contact with the external space (outside air) so as to be able to receive sound waves, and the other portion may be in contact with the vibrating body 10. The magnet 20 receives sound waves at the portion that contacts the external space, and vibrates in a direction substantially perpendicular to the direction in which the portion that contacts the external space extends. The magnet 20 of this embodiment has a disk shape, and its lower surface is in direct or indirect contact with the vibrating body 10, and its upper surface is in contact with the external space, so it vibrates up and down depending on the size of the sound wave. . The magnet is, for example, a neodymium magnet.
 マグネット20と振動体10とが例えばインサート成形されている場合は、これらは直接に接触する。あるいは、粉状にしたマグネット20を振動体10の外部空間に接触する一部又は全体の表面に接着剤等を用いてコーティング(固定)することで、これらは間接に接触する。本実施形態では、粉状のマグネット20を振動体10に円盤状に固定してもよい。粉状のマグネット20を用いることにより、マグネット20の慣性力を下げることができる。 If the magnet 20 and the vibrating body 10 are, for example, insert molded, they come into direct contact. Alternatively, by coating (fixing) the powdered magnet 20 on a part or the entire surface of the vibrating body 10 that contacts the external space using an adhesive or the like, the magnets 20 come into indirect contact with each other. In this embodiment, the powdered magnet 20 may be fixed to the vibrating body 10 in a disk shape. By using the powdered magnet 20, the inertial force of the magnet 20 can be reduced.
 磁気センサ30は、マイクロフォン100の外部と離隔した位置に設けられ、マグネット20の振動による磁力変動を検出して、当該磁力変動を電気信号として出力する。磁気センサ30は、例えばホールIC及びNVCダイヤモンドセンサ等である。磁気センサ30は、磁気センサ30の上に軟質材11が積層されることによりマイクロフォン100の外部と離隔される。本実施形態では、磁気センサ30は、軟質材11の下部に内包される。これにより、磁気センサ30は防水耐圧性能を有し、マイクロフォン100が浸水した場合でも、マイクロフォン内部への液体の侵入及び圧力の入力が遮断され、磁気センサ30の性能、すなわち、音波による磁力変動を受信し、その電気信号を出力する性能は低下しない。本実施形態では、耐圧は約10気圧を想定しているが、本発明はマイクロフォン100を搭載する機器等の用途に応じた耐圧気圧で実施可能である。 The magnetic sensor 30 is provided at a location away from the outside of the microphone 100, detects magnetic force fluctuations due to vibrations of the magnet 20, and outputs the magnetic force fluctuations as an electrical signal. The magnetic sensor 30 is, for example, a Hall IC or an NVC diamond sensor. The magnetic sensor 30 is separated from the outside of the microphone 100 by laminating the soft material 11 on the magnetic sensor 30 . In this embodiment, the magnetic sensor 30 is included in the lower part of the soft material 11. As a result, the magnetic sensor 30 has waterproof and pressure-resistant performance, and even if the microphone 100 is submerged in water, the intrusion of liquid and the input of pressure into the microphone are blocked, and the performance of the magnetic sensor 30, that is, the fluctuation of magnetic force due to sound waves, is prevented. The performance of receiving and outputting electrical signals is not degraded. In this embodiment, the pressure resistance is assumed to be about 10 atm, but the present invention can be implemented at a pressure resistance depending on the application of the device in which the microphone 100 is installed.
 マグネット20は、振動体10を挟んで磁気センサ30と対向する。マグネット20は磁気センサ30が磁力変動を検出可能な方向に配置される。別言すると、磁気センサ30はマグネット20が振動する方向(磁束方向)に配置されることが好ましい。本実施形態では、マグネット20は上下に振動するため、磁気センサ30はマグネット20が外部空間と接触する面と反対側に配置され、マグネット20の振動を、直接又は振動体10の振動を介して受信する。 The magnet 20 faces the magnetic sensor 30 with the vibrating body 10 in between. The magnet 20 is arranged in a direction in which the magnetic sensor 30 can detect variations in magnetic force. In other words, the magnetic sensor 30 is preferably arranged in the direction in which the magnet 20 vibrates (the direction of magnetic flux). In this embodiment, since the magnet 20 vibrates up and down, the magnetic sensor 30 is arranged on the opposite side of the surface where the magnet 20 contacts the external space, and detects the vibration of the magnet 20 directly or through the vibration of the vibrating body 10. Receive.
 マグネット20と磁気センサ30との間には軟質材11のみが存在する、すなわち、マグネット20と磁気センサ30との間には気体層が無い。このため、マグネット20は、マイクロフォン100の内部空間の気体が外部空間の環境の変化によって膨張及び収縮することで生じる振動特性への影響を受けることが無い。これにより、マグネット20及び振動体10の振動方向に対して圧力がかかることが無いため、内圧によるマグネット20の変位を防止でき、マグネット20及び振動体10の振動が制限されることがなく、磁気センサ30の磁力変動の検出への妨害を抑止できる。従って、高品質の音響性能が得られる。 Only the soft material 11 exists between the magnet 20 and the magnetic sensor 30, that is, there is no gas layer between the magnet 20 and the magnetic sensor 30. Therefore, the magnet 20 is not affected by vibration characteristics caused by expansion and contraction of the gas in the internal space of the microphone 100 due to changes in the environment in the external space. As a result, no pressure is applied to the vibration direction of the magnet 20 and the vibrating body 10, so that the displacement of the magnet 20 due to internal pressure can be prevented, and the vibration of the magnet 20 and the vibrating body 10 is not restricted. Interference with the detection of magnetic force fluctuations by the sensor 30 can be suppressed. Therefore, high quality acoustic performance can be obtained.
 マイクロフォン100を構成する振動体10と、マグネット20と、磁気センサ30とから成る基本構造は、マイクロフォンユニットと称してもよい。マイクロフォンユニットは、ベースプレート50の上面に配置される。ベースプレート50は、マイクロフォンユニットを支持するための剛性の部材である。 The basic structure consisting of the vibrating body 10, magnet 20, and magnetic sensor 30 that constitutes the microphone 100 may be referred to as a microphone unit. The microphone unit is arranged on the upper surface of the base plate 50. The base plate 50 is a rigid member for supporting the microphone unit.
 磁気センサ30は、半田等によりベースプレート50の下部にある電子機器基板(不図示)に電気的に接続される(電気的接続40)。電気的接続40は、ベースプレート50に内包される。これにより、電気的接続40は、マイクロフォン100の外部と離隔されるため、防水耐圧性能を有する。 The magnetic sensor 30 is electrically connected to an electronic device board (not shown) at the bottom of the base plate 50 by soldering or the like (electrical connection 40). Electrical connections 40 are contained within base plate 50 . As a result, the electrical connection 40 is separated from the outside of the microphone 100, so that it has waterproof and pressure-resistant performance.
[1-1.第1実施形態の第1変形例]
 次に、第1実施形態の第1変形例を説明する。図2は、第1実施形態の第1変形例のマイクロフォン100の構成を示す縦断面斜視図である。第1変形例は、第1実施形態のマイクロフォン100に対して、振動板12を備える点において相違している。以下、相違点を中心に説明する。なお、第1変形例の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
[1-1. First modification of the first embodiment]
Next, a first modification of the first embodiment will be described. FIG. 2 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a first modification of the first embodiment. The first modification differs from the microphone 100 of the first embodiment in that it includes a diaphragm 12. The differences will be mainly explained below. In addition, in the description of the first modification, the same reference numerals as those used in the first embodiment are the same or substantially similar.
 第1実施形態の第1変形例のマイクロフォン100には、更に、マグネット20に振動板12が積層される。図2に示す例では、振動板12は、マグネット20の上、すなわち外部空間に接触するマグネット20の部位の上側に接触するように配置され、音波を受ける。あるいは、振動板12は、マグネット20の下、つまりマグネット20と振動体10との間に配置されてもよい。振動板12は、音波の受圧を容易にするために、マグネット20の部位よりも大きい平板であることが好ましい。これにより、マグネット20単体よりも音波を感度よく集めることができる。また、振動板12は、外部空間と接触するため、音波を感度良く受けとめる為の剛性に加え、外部からの圧力に耐えられる素材であることが好ましい。振動板12は、例えばアルミニウム・マグネシウム等の軽量金属又は樹脂である。 In the microphone 100 of the first modification of the first embodiment, a diaphragm 12 is further laminated on the magnet 20. In the example shown in FIG. 2, the diaphragm 12 is arranged so as to be in contact with the upper side of the magnet 20, that is, the part of the magnet 20 that contacts the external space, and receives sound waves. Alternatively, the diaphragm 12 may be placed below the magnet 20, that is, between the magnet 20 and the vibrating body 10. The diaphragm 12 is preferably a flat plate that is larger than the magnet 20 in order to easily receive the sound waves. Thereby, sound waves can be collected with higher sensitivity than the magnet 20 alone. Furthermore, since the diaphragm 12 comes into contact with the external space, it is preferably made of a material that is not only rigid enough to receive sound waves with good sensitivity, but also able to withstand pressure from the outside. The diaphragm 12 is made of lightweight metal such as aluminum or magnesium, or resin.
[1-2.第1実施形態の第2変形例]
 次に、第1実施形態の第2変形例を説明する。図3は、第1実施形態の第2変形例のマイクロフォン100の構成を示す縦断面斜視図である。第2変形例は、第1実施形態のマイクロフォン100に対して、軟質材11が液体を封入する点において相違している。以下、相違点を中心に説明する。なお、第2変形例の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
[1-2. Second modification of the first embodiment]
Next, a second modification of the first embodiment will be described. FIG. 3 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a second modification of the first embodiment. The second modification differs from the microphone 100 of the first embodiment in that the soft material 11 encloses a liquid. The differences will be mainly explained below. In addition, in the description of the second modification, the same reference numerals as those used in the first embodiment are the same or substantially similar.
 図3に表されるように、第1実施形態の第2変形例のマイクロフォン100は、更に、軟質材11が液体13を封入する。軟質材11は、その内部に適当な形状及び大きさの空間を有し、液体13が封入されている。液体13は、軟質材11の振動の感度を調整するために用いられる。液体13は、磁気センサ30に接触しないように軟質材11で密閉される。液体13は、例えば水・アルコールであり、粘度0.5~50mPa・sであることが好ましい。液体13は、接触する軟質材11の種類に応じて適宜選択される。液体13の量は、振動の感度に応じ適宜決定される。なお、図3に示すマグネット20は、更に振動板12を備えてもよい。 As shown in FIG. 3, in the microphone 100 of the second modification of the first embodiment, the soft material 11 further encloses the liquid 13. The soft material 11 has a space of an appropriate shape and size therein, and a liquid 13 is sealed therein. The liquid 13 is used to adjust the vibration sensitivity of the soft material 11. The liquid 13 is sealed with a soft material 11 so as not to come into contact with the magnetic sensor 30. The liquid 13 is, for example, water/alcohol, and preferably has a viscosity of 0.5 to 50 mPa·s. The liquid 13 is appropriately selected depending on the type of the soft material 11 with which it comes into contact. The amount of liquid 13 is determined as appropriate depending on the vibration sensitivity. Note that the magnet 20 shown in FIG. 3 may further include a diaphragm 12.
[2.第2実施形態]
 図4を参照し、第2実施形態を説明する。図4は、第2実施形態のマイクロフォン100の構成を示す縦断面斜視図である。第2実施形態は、第1実施形態(変形例を含む)のマイクロフォン100に対して、軟質材11を内包するケース60を備える点において相違している。以下、相違点を中心に説明する。なお、第2実施形態の説明において、第1実施形態(変形例を含む)にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
[2. Second embodiment]
A second embodiment will be described with reference to FIG. 4. FIG. 4 is a vertical cross-sectional perspective view showing the configuration of the microphone 100 according to the second embodiment. The second embodiment is different from the microphone 100 of the first embodiment (including modified examples) in that it includes a case 60 that encloses a soft material 11. The differences will be mainly explained below. In the description of the second embodiment, the same reference numerals as those used in the first embodiment (including modified examples) are the same or substantially similar.
 図4に表されるように、第2実施形態のマイクロフォン100は、更に、軟質材11を内包するケース60を備える。ケース60は、マイクロフォンユニット全体を保護するとともにマグネット20の振動を特定方向に導き、振動方向を安定させる。ケース60は、剛性体であり、例えばプラスチックや金属である。本実施形態では、ケース60の形状は筒状であり、軟質材11を内包し、軟質材11の側面はケース60の内側面に接触している。ケース60は、軟質材11とマグネット20との積載方向について軟質材11の高さ以上の高さを有する。本実施形態では、軟質材11及びケース60は同じ高さである。図4には、振動板12及び液体13を備える例が示されているが、振動板12及び液体13を備えていなくてもよい。 As shown in FIG. 4, the microphone 100 of the second embodiment further includes a case 60 that encloses the soft material 11. The case 60 protects the entire microphone unit, guides the vibration of the magnet 20 in a specific direction, and stabilizes the vibration direction. The case 60 is a rigid body, such as plastic or metal. In this embodiment, the case 60 has a cylindrical shape, encloses the soft material 11, and the side surface of the soft material 11 is in contact with the inner surface of the case 60. Case 60 has a height greater than or equal to the height of soft material 11 in the loading direction of soft material 11 and magnet 20 . In this embodiment, the soft material 11 and the case 60 are at the same height. Although FIG. 4 shows an example including the diaphragm 12 and the liquid 13, the diaphragm 12 and the liquid 13 may not be provided.
[2-1.第2実施形態の変形例]
 図5は、第2実施形態の変形例のマイクロフォン100の構成を示す縦断面斜視図である。本変形例は、第2実施形態のマイクロフォン100に対して、ケースの高さの点において相違している。
[2-1. Modification of second embodiment]
FIG. 5 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a modification of the second embodiment. This modification differs from the microphone 100 of the second embodiment in the height of the case.
 図5に表されるように、変形例のマイクロフォン100のケース60rは、軟質材11とマグネット20との積載方向について軟質材11の高さよりも大きい高さを有する。ケース60rは、振動体10を内包し、マグネット20の上側に延在する部位の内部で音波の振幅を増大させる。このため、本変形例のケース60rは共鳴管付きケース60rと称してもよい。本変形例の共鳴管付きケース60rの形状は、軟質材11を内包する側面が上側に向かって延びた筒状である。 As shown in FIG. 5, the case 60r of the modified microphone 100 has a height greater than the height of the soft material 11 in the loading direction of the soft material 11 and the magnet 20. The case 60r encloses the vibrating body 10 and increases the amplitude of the sound wave inside a portion extending above the magnet 20. Therefore, the case 60r of this modification may be referred to as a case 60r with a resonance tube. The shape of the resonance tube-equipped case 60r of this modification is a cylindrical shape in which the side surface containing the soft material 11 extends upward.
[3.第3実施形態]
 図6を参照し、第3実施形態を説明する。図6は、第3実施形態のマイクロフォン100の構成を示す縦断面斜視図である。第3実施形態は、第1実施形態(変形例を含む)のマイクロフォン100に対して、磁気センサとして特にNVCダイヤモンドセンサを用いる点を特徴とする。以下、特徴点を中心に説明する。なお、第3実施形態の説明において、第1実施形態(変形例を含む)にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
[3. Third embodiment]
A third embodiment will be described with reference to FIG. FIG. 6 is a vertical cross-sectional perspective view showing the configuration of the microphone 100 according to the third embodiment. The third embodiment is characterized in that, in contrast to the microphone 100 of the first embodiment (including modified examples), an NVC diamond sensor is particularly used as the magnetic sensor. Below, the description will focus on the feature points. In the description of the third embodiment, the same reference numerals as those used in the first embodiment (including modified examples) are the same or substantially similar.
 図6に表されるように、第3実施形態のマイクロフォン100は、軟質材11と、軟質材11に接触しており、音波により振動可能なマグネット20に加え、更にケース60を備え、本実施形態の磁気センサ30は、NVCダイヤモンドセンサ31と、緑色LED発光部32と、受光部33とを含む。これら3つの部品31,32,33から成る基本構造は、NVCダイヤモンドセンサユニットと称してもよい。 As shown in FIG. 6, the microphone 100 of the third embodiment includes a case 60 in addition to a soft material 11 and a magnet 20 that is in contact with the soft material 11 and can vibrate by sound waves. The magnetic sensor 30 of this embodiment includes an NVC diamond sensor 31, a green LED light emitting section 32, and a light receiving section 33. The basic structure consisting of these three parts 31, 32, 33 may be called an NVC diamond sensor unit.
 ケース60は、軟質材11を上面に積層し、磁気センサ30を内包することでマイクロフォン100の外部と離隔させる。これにより、磁気センサ30に防水耐圧性能を保持させる。ケース60は、剛性体である。軟質材11の上面にはマグネット20が積層されている。マグネット20は、軟質材11を挟んでNVCダイヤモンドセンサ31と対向する。本実施形態のNVCダイヤモンドセンサ31はマグネット20が振動する方向と同じ方向に立設する。本実施形態では、軟質材11がマイクロフォン100全体に占める割合は小さい。軟質材11の大きさは、NVCダイヤモンドセンサ31の要求感度に応じて選択される。 The case 60 has the soft material 11 laminated on its upper surface and encloses the magnetic sensor 30, thereby separating it from the outside of the microphone 100. This allows the magnetic sensor 30 to maintain waterproof and pressure-resistant performance. Case 60 is a rigid body. A magnet 20 is laminated on the upper surface of the soft material 11. Magnet 20 faces NVC diamond sensor 31 with soft material 11 in between. The NVC diamond sensor 31 of this embodiment is installed upright in the same direction as the direction in which the magnet 20 vibrates. In this embodiment, the proportion of the soft material 11 in the entire microphone 100 is small. The size of the soft material 11 is selected depending on the required sensitivity of the NVC diamond sensor 31.
 磁気センサ30であるNVCダイヤモンドセンサユニットは、ケース60において軟質材11が積層された上面と対向する側に接続される。また、NVCダイヤモンドユニットは、NVCダイヤモンドセンサ31と、NVCダイヤモンドセンサ31に光を入力する緑色LED発光部32と、NVCダイヤモンドセンサ31の発光を検出可能な受光部33とを含む。NVCダイヤモンドセンサ31は、緑色LED発光部32と、受光部33との間に配置される。 The NVC diamond sensor unit, which is the magnetic sensor 30, is connected to the side of the case 60 that faces the upper surface on which the soft material 11 is laminated. The NVC diamond unit also includes an NVC diamond sensor 31 , a green LED light emitting section 32 that inputs light to the NVC diamond sensor 31 , and a light receiving section 33 that can detect light emission from the NVC diamond sensor 31 . The NVC diamond sensor 31 is arranged between the green LED light emitting section 32 and the light receiving section 33.
 ここで、NVCダイヤモンドセンサ31について説明する。NVCダイヤモンドセンサ31のNVCとは、窒素空孔中心(Nitrogen Vacancy Center)の略称である。NVCは、ダイヤモンド結晶格子中の構造に隣接する炭素(C)が、それぞれ窒素(N)と空孔(V)とに置き換わった状態の欠陥である。NVCは、電子を捕獲して負に帯電するとスピンと呼ばれる磁気的な性質を示す。ダイヤモンドは結合が強固であるためバンドギャップが広く、数百℃以上の高いエネルギーを加えても捕獲した電子を放出しないという性質がある。このことがスピンの安定に役立っており、通常、量子状態を保つには冷却が必要であるが、NVCは、室温でも量子状態を保つことができる。 Here, the NVC diamond sensor 31 will be explained. NVC of the NVC diamond sensor 31 is an abbreviation for Nitrogen Vacancy Center. NVC is a defect in which carbon (C) adjacent to the structure in the diamond crystal lattice is replaced with nitrogen (N) and vacancy (V), respectively. NVC exhibits a magnetic property called spin when it captures electrons and becomes negatively charged. Diamond has a wide band gap due to its strong bonds, and has the property of not releasing captured electrons even when high energy of several hundred degrees Celsius or more is applied to it. This helps stabilize the spin, and normally cooling is required to maintain the quantum state, but NVC can maintain the quantum state even at room temperature.
 NVCでは、捕獲された電子は、周囲の電気的、磁気的、光学的特性のわずかな変動に対し容易に反応する。NVCは、原子のような機能に加え、色付のフォトンを吸収・放出する光ルミネセンス特性を有する。光やマイクロ波の照射によりセンターの状態が変化し、それに伴って電子のスピンも変化する。NVCは、電子の状態に応じて異なる量の赤色光を放出する。このような光は磁界や電界の量子情報を含んでおり、バイオセンシング、神経画像撮像や物体検出、位置検出(GPS)等、微細な情報を扱う多様なセンシングアプリケーションに利用できる。 In NVC, captured electrons easily react to slight variations in the electrical, magnetic, and optical properties of their surroundings. In addition to its atomic-like functionality, NVC has photoluminescent properties that absorb and emit colored photons. Irradiation with light or microwaves changes the state of the center, and the spin of the electrons changes accordingly. NVC emits different amounts of red light depending on the state of its electrons. Such light contains quantum information about magnetic and electric fields, and can be used in a variety of sensing applications that handle minute information, such as biosensing, neural imaging, object detection, and position sensing (GPS).
 NVCダイヤモンドセンサユニットの動作を説明する。本実施形態のNVCダイヤモンドセンサ31はI字形状であり、両側面の凹部にダイヤモンド粒子が配置され、当該凹部全体で磁気を検出する。ダイヤモンド粒子数は要求感度によって調整される。緑色LED発光部32及び受光部33にはそれぞれNVCダイヤモンドセンサ31に対向する側面に、NVCダイヤモンドセンサ31の凹部と嵌合可能な凸部が形成されている。3つの部品31,32,33をこのような形状にすることで、良好な検出を可能にするとともにコンパクトなマイクロフォン100を実現できる。緑色LED発光部32から照射された緑色の光は、NVCダイヤモンドセンサを通過する際、NVCダイヤモンドセンサ31の凹部が検出したマグネット20の磁気強度変化により赤色に変化する。赤色の光の輝度は、マグネット20の磁気強度変化に応じて変化する。NVCダイヤモンドセンサ31から出力された光の強弱は、受光部(フォトダイオード)33で検出される。 The operation of the NVC diamond sensor unit will be explained. The NVC diamond sensor 31 of this embodiment has an I-shape, diamond particles are arranged in recesses on both sides, and magnetism is detected in the entire recess. The number of diamond particles is adjusted depending on the required sensitivity. The green LED light emitting part 32 and the light receiving part 33 each have a convex part formed on the side surface facing the NVC diamond sensor 31, which can fit into a concave part of the NVC diamond sensor 31. By forming the three parts 31, 32, and 33 into such a shape, it is possible to achieve good detection and to realize a compact microphone 100. When the green light emitted from the green LED light emitting unit 32 passes through the NVC diamond sensor, it changes to red due to the change in the magnetic strength of the magnet 20 detected by the recessed part of the NVC diamond sensor 31. The brightness of the red light changes according to changes in the magnetic strength of the magnet 20. The intensity of the light output from the NVC diamond sensor 31 is detected by a light receiving section (photodiode) 33.
 NVCダイヤモンドセンサ31と、緑色LED発光部32と、受光部33とはそれぞれベースプレート50の下部にある電子機器基板(不図示)に電気的に接続される(電気的接続40)。 The NVC diamond sensor 31, the green LED light emitting section 32, and the light receiving section 33 are each electrically connected to an electronic device board (not shown) at the bottom of the base plate 50 (electrical connection 40).
 マグネット20とNVCダイヤモンドセンサ31とが配置された空間はケース60によって区切られている、すなわち、マグネット20とケース60との間には気体層が無い。このため、マグネット20はマイクロフォン100の内部空間の気体が外部空間の環境の変化によって膨張及び収縮することで生じる振動特性への影響を受けることが無い。これにより、マグネット20及び振動体10の振動方向に対して圧力がかかることが無いため、内圧によるマグネット20の変位を防止でき、マグネット20及び軟質材11の振動が制限されることなく、NVCダイヤモンドセンサ31の磁力変動の検出への妨害を抑止できる。従って、高品質の音響性能が得られる。 The space in which the magnet 20 and the NVC diamond sensor 31 are arranged is separated by the case 60, that is, there is no gas layer between the magnet 20 and the case 60. Therefore, the magnet 20 is not affected by vibration characteristics caused by expansion and contraction of the gas in the internal space of the microphone 100 due to changes in the environment in the external space. As a result, no pressure is applied to the vibration direction of the magnet 20 and the vibrating body 10, so that displacement of the magnet 20 due to internal pressure can be prevented, and the vibration of the magnet 20 and the soft material 11 is not restricted. Interference with the detection of magnetic force fluctuations by the sensor 31 can be suppressed. Therefore, high quality acoustic performance can be obtained.
[3-1.第3実施形態の変形例]
 図7は、第3実施形態の変形例のマイクロフォン100の構成を示す縦断面斜視図である。図7では、本変形例は、第3実施形態のマイクロフォン100に対して、ケース60に積層される軟質材11の位置の点において相違している。
[3-1. Modification of third embodiment]
FIG. 7 is a vertical cross-sectional perspective view showing the configuration of a microphone 100 according to a modification of the third embodiment. In FIG. 7, this modification differs from the microphone 100 of the third embodiment in the position of the soft material 11 laminated on the case 60.
 図7に表されるように、変形例のマイクロフォン100では、ケース60は、軟質材11を側面に積層し、磁気センサ30を内包することでマイクロフォン100の外部と離隔させる。これにより、磁気センサ30に防水耐圧性能を保持させる。ケース60は、剛性体である。軟質材11の上面にはマグネット20が積層されている。マグネット20は、軟質材11を挟んでNVCダイヤモンドセンサ31の側面に対向する。本実施形態のNVCダイヤモンドセンサ31はマグネット20が振動する方向と垂直に立設する。 As shown in FIG. 7, in the modified microphone 100, the case 60 has the soft material 11 laminated on the side surface and contains the magnetic sensor 30, thereby separating it from the outside of the microphone 100. This allows the magnetic sensor 30 to maintain waterproof and pressure-resistant performance. Case 60 is a rigid body. A magnet 20 is laminated on the upper surface of the soft material 11. The magnet 20 faces the side surface of the NVC diamond sensor 31 with the soft material 11 in between. The NVC diamond sensor 31 of this embodiment is installed vertically to the direction in which the magnet 20 vibrates.
 磁気センサ30であるNVCダイヤモンドセンサユニットは、ケース60において軟質材11が積層された側面と直交する側に接続される。NVCダイヤモンドセンサ31は、上述したように、周囲の微弱な電気的、磁気的、光学的特性の変動を検知可能であるため、マグネット20と直交する位置関係にあっても、マグネット20の振動を検出することができる。 The NVC diamond sensor unit, which is the magnetic sensor 30, is connected to the side of the case 60 that is perpendicular to the side surface on which the soft material 11 is laminated. As mentioned above, the NVC diamond sensor 31 can detect slight fluctuations in the surrounding electrical, magnetic, and optical characteristics, so it can detect vibrations of the magnet 20 even if it is in a position perpendicular to the magnet 20. can be detected.
[4.第4実施形態]
 図8~図11を参照し、第4実施形態を説明する。第4実施形態は、第1~第3実施形態(変形例を含む)のマイクロフォンに対して、ケースの構造と、マグネット及び磁気センサの位置とが異なる点を特徴とする。以下、特徴点を中心に説明する。なお、第4実施形態の説明において、第1~第3実施形態(変形例を含む)にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
[4. Fourth embodiment]
The fourth embodiment will be described with reference to FIGS. 8 to 11. The fourth embodiment is different from the microphones of the first to third embodiments (including modified examples) in that the structure of the case and the positions of the magnet and the magnetic sensor are different. Below, the description will focus on the feature points. In the description of the fourth embodiment, the same reference numerals as those used in the first to third embodiments (including modifications) are the same or substantially similar.
 図8は、第4実施形態のマイクロフォン100の構成を示す左斜視図である。また、図9は、第4実施形態のマイクロフォン100の構成を示す右斜視図である。図8及び図9に表されるように、マイクロフォン100は、更に、第1のケース61と、第2のケース62とを備える。第1のケース61及び第2のケース62には、外部空間と連通する孔が設けられている。本実施形態では、第1のケース61及び第2のケース62は同じ形状であり、第1のケース61には小さな円形の孔が3つ設けられ、第2のケース62には小さな円形の孔及びこれらの小円の真ん中に小円よりも大きな円形の孔が1つ設けられている。ケース61,62における小円の孔の位置は互いに一致している。 FIG. 8 is a left perspective view showing the configuration of the microphone 100 of the fourth embodiment. Further, FIG. 9 is a right perspective view showing the configuration of the microphone 100 of the fourth embodiment. As shown in FIGS. 8 and 9, the microphone 100 further includes a first case 61 and a second case 62. The first case 61 and the second case 62 are provided with holes that communicate with the external space. In this embodiment, the first case 61 and the second case 62 have the same shape, and the first case 61 is provided with three small circular holes, and the second case 62 is provided with three small circular holes. And one circular hole larger than the small circles is provided in the middle of these small circles. The positions of the small circular holes in the cases 61 and 62 coincide with each other.
 第1のケース61及び第2のケース62にはそれぞれ片側に同じ大きさの凹部が形成されており、凹部の位置は一致している(図10参照)。マイクロフォン100のケースは、凹部同士を対向させて、第1のケース61及び第2のケース62の凹部が設けられた面の外周を全周に亘ってぴったりと密着させることで成される。マイクロフォンユニットは、ベースプレート50の上面に配置される。第1のケース61及び第2のケース62の下部は、防水用のシール部材63で取り囲まれている。シール部材63については後述する。 The first case 61 and the second case 62 each have a recess of the same size formed on one side, and the positions of the recesses match (see FIG. 10). The case of the microphone 100 is formed by making the concave portions face each other and tightly fitting the outer circumferences of the surfaces of the first case 61 and the second case 62 on which the concave portions are provided over the entire circumference. The microphone unit is arranged on the upper surface of the base plate 50. The lower portions of the first case 61 and the second case 62 are surrounded by a waterproof seal member 63. The seal member 63 will be described later.
 磁気センサ30は、第1のケース61及び第2のケース62のいずれか一方に取り付けられ、防水耐圧処理64が施されることでマイクロフォン100の外部と離隔される。磁気センサ30は、マグネット20が振動する方向(磁束方向)に配置されればよく、磁気センサ30が取り付けられる位置は、ケース61,62の外側でもよく内側でもよい。本実施形態では、磁気センサ30は、第1のケース61の外側に取り付けられている。磁気センサ30がケース61,62の内側に取り付けられる場合は、振動膜14を挟んで、マグネット20の音波を受ける部位が存在する側に設置されてもよいし、当該部位が存在しない側に設置されてもよい(図10参照)。 The magnetic sensor 30 is attached to either the first case 61 or the second case 62, and is separated from the outside of the microphone 100 by being subjected to waterproof and pressure-resistant treatment 64. The magnetic sensor 30 may be placed in the direction in which the magnet 20 vibrates (the magnetic flux direction), and the position where the magnetic sensor 30 is attached may be outside or inside the cases 61 and 62. In this embodiment, the magnetic sensor 30 is attached to the outside of the first case 61. When the magnetic sensor 30 is installed inside the cases 61 and 62, it may be installed on the side with the vibrating membrane 14 in between, where there is a part that receives the sound waves of the magnet 20, or it can be installed on the side where the part does not exist. (See FIG. 10).
 さらに、本実施形態では、磁気センサ30のセンサ部及びアンプ部が樹脂成型で防水構造を有している例を示しており、防水耐圧処理64は、磁気センサ30の電気的接続40及び電気的接続40に関係する部位に施されている。磁気センサ30のセンサ部及びアンプ部が防水構造でない場合は、磁気センサ30全体に施されてもよい。防水耐圧処理64は、例えば樹脂・ゴム・エラストマー等の弾性材インサート成型等で封止し防水する方法がある。特に、防水耐圧処理64は、ケース61,62と同程度の強度が得られる程度の処理を施されることが好ましい。防水耐圧処理64に替えて、磁気センサ30を剛体で覆ってもよい。 Furthermore, in this embodiment, an example is shown in which the sensor part and the amplifier part of the magnetic sensor 30 are molded with resin and have a waterproof structure, and the waterproof pressure-resistant treatment 64 is applied to the electrical connection 40 and the electrical connection of the magnetic sensor 30. It is applied to the parts related to the connection 40. If the sensor section and the amplifier section of the magnetic sensor 30 do not have a waterproof structure, the entire magnetic sensor 30 may be provided with this. For the waterproof and pressure-resistant treatment 64, there is a method of sealing and waterproofing, for example, by insert molding an elastic material such as resin, rubber, or elastomer. In particular, it is preferable that the waterproof and pressure-resistant treatment 64 be performed to the extent that the same level of strength as the cases 61 and 62 can be obtained. Instead of the waterproof and pressure-resistant treatment 64, the magnetic sensor 30 may be covered with a rigid body.
 図10は、図9のA-A矢視断面図及びその部分拡大図である。図10に表されるように、ケース61,62の内部空間には、孔から取り込まれた音波を受けるマグネット20に直接又は間接に接触する振動体10が配置されている。振動体10の一例は振動板12であり、図10の例ではマグネット20の下に積層されている。振動板12は振動膜14を介してケース61,62と接続されている。別言すると、本実施形態の振動体10は、第1のケース61と第2のケース62との内側において、第1のケースと前記第2のケースとに挟まれた振動板12である。さらに、振動板12の第1のケース61に対向する側は、第1のケース61に設けられた孔を介して第1のケースの外側と連通し、振動板12の第2のケース62に対向する側は、第2のケースに設けられた孔を介して第2のケース62の外側と連通している。 FIG. 10 is a sectional view taken along the line AA in FIG. 9 and a partially enlarged view thereof. As shown in FIG. 10, a vibrating body 10 that directly or indirectly contacts a magnet 20 that receives sound waves taken in through the holes is arranged in the internal spaces of the cases 61 and 62. An example of the vibrating body 10 is a vibrating plate 12, which is laminated under the magnet 20 in the example of FIG. The diaphragm 12 is connected to cases 61 and 62 via a diaphragm 14. In other words, the vibrating body 10 of this embodiment is the diaphragm 12 sandwiched between the first case 61 and the second case 62, inside the first case 61 and the second case 62. Further, the side of the diaphragm 12 facing the first case 61 communicates with the outside of the first case through a hole provided in the first case 61, and the side facing the second case 62 of the diaphragm 12 communicates with the outside of the first case through a hole provided in the first case 61. The opposing side communicates with the outside of the second case 62 via a hole provided in the second case.
 振動膜14は、自在に変形して音波を受け止める。振動膜14の端部はケース61,62に挟持されているため、ケース61,62の内部空間は振動膜14によって2つの空間に区切られている。振動膜14は、孔を介して外部空間と接続しているので、外部からの圧力に耐えられるような素材で構成されることが好ましく、例えばPVCフィルムが挙げられる。振動膜14はケース61,62と並行に配置されているため、マグネット20は、孔から入力された音波を受け、ケース61,62の立設方向と略垂直の方向に振動する。 The vibrating membrane 14 freely deforms and receives sound waves. Since the ends of the vibrating membrane 14 are held between the cases 61 and 62, the internal spaces of the cases 61 and 62 are divided into two spaces by the vibrating membrane 14. Since the vibrating membrane 14 is connected to the external space through the hole, it is preferably made of a material that can withstand external pressure, such as PVC film. Since the vibrating membrane 14 is arranged parallel to the cases 61 and 62, the magnet 20 receives the sound waves input through the holes and vibrates in a direction substantially perpendicular to the direction in which the cases 61 and 62 are installed.
 図10の拡大図に表されるように、第1のケース61及び第2のケース62で構成される内部空間の境界面は滑らかな曲面である。本実施形態では内部空間は円盤形状であり、その横断面及び縦断面は楕円形である。外部空間から大きな圧力がかかった場合、振動膜14全体は、圧力が加わった方向と、反動によりその反対方向とに移動し、振動膜14が内壁に接触することがあるが、内壁に曲面が設けられていることにより、振動膜14の局部的な破損を防ぐことができる。この破損防止構造をバックアップ構造65と称してもよい。 As shown in the enlarged view of FIG. 10, the boundary surface of the internal space formed by the first case 61 and the second case 62 is a smooth curved surface. In this embodiment, the internal space has a disk shape, and its cross section and longitudinal section are elliptical. When large pressure is applied from the external space, the entire vibrating membrane 14 moves in the direction of the pressure and in the opposite direction due to reaction, and the vibrating membrane 14 may come into contact with the inner wall, but if the inner wall has a curved surface. By providing this, local damage to the vibrating membrane 14 can be prevented. This damage prevention structure may be referred to as a backup structure 65.
 本実施形態では、マグネット20と磁気センサ30との間はケース61によって区切られているが、ケース61に孔が設けられているため、気体層が存在する。しかしながら、ケース61,62の内部空間の気体が外部空間の環境の変化による影響を受けた場合であっても、ケース61,62に設けられた孔により、ケース61,62の内部空間は外部空間と連通しているため、内部空間の膨張した気体は、孔を介して外部空間に流出する。また、マグネット20及び振動体10の振動方向に対して圧力がかかった場合であっても、バックアップ構造65が振動膜14全体を支持することにより、振動膜14が破損しないため、振動膜14に接続された振動板12及びマグネット20への影響を低減することができる。これにより、振動膜14及び振動板12の破損を防止でき、一時的に高外気圧が片面に偏って印加された場合にも破損無く復帰し、高品質の音響性能が得られる。 In this embodiment, the magnet 20 and the magnetic sensor 30 are separated by the case 61, and since the case 61 is provided with a hole, a gas layer exists. However, even if the gas in the internal space of the cases 61, 62 is affected by a change in the environment of the external space, the holes provided in the cases 61, 62 cause the internal space of the cases 61, 62 to be reduced to the external space. The expanded gas in the inner space flows out to the outer space through the hole. Furthermore, even if pressure is applied to the vibration direction of the magnet 20 and the vibrating body 10, the backup structure 65 supports the entire vibrating membrane 14, so that the vibrating membrane 14 will not be damaged. The influence on the connected diaphragm 12 and magnet 20 can be reduced. Thereby, damage to the diaphragm 14 and the diaphragm 12 can be prevented, and even if high external pressure is temporarily applied to one side, the diaphragm 14 and the diaphragm 12 can be restored without damage, and high-quality acoustic performance can be obtained.
 図11は、図9のB-B矢視断面図である。図11に表されるように、第1のケース61の外側に配置された磁気センサ30は、内部空間のマグネット20の磁力変動を検出する。磁気センサ30の電気的接続40は、磁気センサ30の本体内部から第1のケース61の下部へと延び、ベースプレート50の下部にある電子機器基板(不図示)に接続される。 FIG. 11 is a sectional view taken along the line BB in FIG. 9. As shown in FIG. 11, the magnetic sensor 30 placed outside the first case 61 detects magnetic force fluctuations of the magnet 20 in the internal space. The electrical connection 40 of the magnetic sensor 30 extends from inside the main body of the magnetic sensor 30 to the bottom of the first case 61 and is connected to an electronics board (not shown) at the bottom of the base plate 50.
 マグネット20、振動板12及び振動膜14は、孔から水が流れ込み、水に接触した場合であっても音波を受信することが可能で、水分排除後の性能は低下しない。 The magnet 20, the diaphragm 12, and the diaphragm 14 can receive sound waves even when water flows in through the holes and comes into contact with water, and the performance after water removal does not deteriorate.
[4-1.第4実施形態の変形例]
 図12及び図13を参照し、第4実施形態の変形例を説明する。本変形例は第4実施形態のマイクロフォンに対して、さらにマイクロフォンを組み込まれる筐体とともに示している点において相違している。以下、相違点を中心に説明する。なお、本変形例において、第1~第4実施形態(変形例を含む)の説明にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
[4-1. Modification of fourth embodiment]
A modification of the fourth embodiment will be described with reference to FIGS. 12 and 13. This modification is different from the microphone of the fourth embodiment in that the microphone is shown together with a housing in which the microphone is incorporated. The differences will be mainly explained below. In addition, in this modification, the same reference numerals as those used in the description of the first to fourth embodiments (including the modification) are the same or substantially similar.
 図12は、第4実施形態の変形例の右斜視図である。図12に表されるように、マイクロフォン100は、組み込まれる対象の筐体(取付先筐体)70に接続している。マイクロフォン100が組み込まれる対象は特定の機器に限られないが、本実施形態では電子機器を例に挙げて説明する。 FIG. 12 is a right perspective view of a modification of the fourth embodiment. As shown in FIG. 12, the microphone 100 is connected to a casing (attachment destination casing) 70 to be incorporated. Although the object into which the microphone 100 is installed is not limited to a specific device, this embodiment will be described using an electronic device as an example.
 図13は、図12のC-C矢視断面図である。マイクロフォン100のシール部材63は取付先筐体70と接触している。つまり、マイクロフォン100は、シール部材63の位置で取付先筐体70と嵌合している。これにより、マイクロフォン100のシール部材63より上部が水に接触した場合であっても、シール部材63によって磁気センサ30の電気的接続40が配置された空間への浸水が防止されるため、電気的接続40の破損を防止できる。本実施例の電気的接続40には防水耐圧処理64を施していないが、より安全性を高めるために防水耐圧処理64を施してもよい。 FIG. 13 is a sectional view taken along the line CC in FIG. 12. The sealing member 63 of the microphone 100 is in contact with the casing 70 to which it is attached. That is, the microphone 100 is fitted into the attachment destination housing 70 at the seal member 63. As a result, even if the portion above the seal member 63 of the microphone 100 comes into contact with water, the seal member 63 prevents water from entering the space where the electrical connection 40 of the magnetic sensor 30 is arranged. Damage to the connection 40 can be prevented. Although the electrical connection 40 of this embodiment is not subjected to waterproof and pressure-resistant treatment 64, it may be subjected to waterproof and pressure-resistant treatment 64 in order to further improve safety.
[B.効果]
 (1)マイクロフォン100は、振動体10と、振動体に直接又は間接に接触しており、音波により振動可能なマグネット20と、マイクロフォン100の外部と離隔した位置に設けられ、マグネット20の振動による磁力変動を検出して、前記磁力変動を電気信号として出力する磁気センサ30と、を備える。音波でマグネット20が振動し、マグネット20の振動による磁力変動を磁気センサ30で検出する構造は新規である。また、磁気センサ30が防水耐圧性能を有することで、マイクロフォン100が浸水した場合であっても復帰にかかる時間を短くすることができる。
[B. effect]
(1) The microphone 100 includes a vibrating body 10, a magnet 20 that is in direct or indirect contact with the vibrating body and is capable of vibrating by sound waves, and is provided at a position separated from the outside of the microphone 100, and is provided with a magnet 20 that is in direct or indirect contact with the vibrating body and can vibrate by sound waves. It includes a magnetic sensor 30 that detects magnetic force fluctuations and outputs the magnetic force fluctuations as electrical signals. The structure in which the magnet 20 vibrates with sound waves and the magnetic sensor 30 detects magnetic force fluctuations due to the vibration of the magnet 20 is new. Moreover, since the magnetic sensor 30 has waterproof and pressure-resistant performance, even if the microphone 100 is submerged in water, the time required for recovery can be shortened.
 (2)振動体10は、軟質材11であり、マグネット20を上面に積層し、磁気センサ30は、磁気センサ30の上に軟質材11が積層されることにより、マイクロフォン100の外部と離隔される。軟質材11により、マグネット20の振動による磁力変動を磁気センサ30に確実に伝えることができ、磁気センサ30は軟質材11によって防水耐圧性能を有するため、水がある環境でもマイクロフォンを安全に使用することができる。また、マイクロフォン100は部品点数が少ないため、コンパクトに構成できる。そして、マグネット20と磁気センサ30との間に気体層が無いため、内部空間の気体の膨張及び収縮によるマグネット20、振動体10及び磁気センサ30への悪影響が生じない。 (2) The vibrating body 10 is made of a soft material 11, and the magnet 20 is laminated on the upper surface, and the magnetic sensor 30 is separated from the outside of the microphone 100 by laminating the soft material 11 on the magnetic sensor 30. Ru. The soft material 11 allows magnetic force fluctuations caused by the vibrations of the magnet 20 to be reliably transmitted to the magnetic sensor 30, and the soft material 11 makes the magnetic sensor 30 waterproof and pressure resistant, allowing the microphone to be used safely even in environments with water. be able to. Further, since the microphone 100 has a small number of parts, it can be configured compactly. Since there is no gas layer between the magnet 20 and the magnetic sensor 30, the magnet 20, the vibrating body 10, and the magnetic sensor 30 are not adversely affected by the expansion and contraction of the gas in the internal space.
 (3)マイクロフォン100は、マグネット20に積層される振動板12を更に備える。これにより、より高感度に音波を検出することができる。 (3) The microphone 100 further includes a diaphragm 12 laminated on the magnet 20. Thereby, sound waves can be detected with higher sensitivity.
 (4)軟質材11は、液体13を封入する。これにより、振動体10の感度を調整することができる。 (4) The soft material 11 encloses the liquid 13. Thereby, the sensitivity of the vibrating body 10 can be adjusted.
 (5)マイクロフォン100は、軟質材11とマグネット20との積載方向について軟質材11の高さよりも大きい高さを有し、軟質材11を内包するケース60rを更に備える。これにより、マグネット20の上側に延在する部位の内部で音波の振幅を増大させることができるため、弱い振動の音波を確実に検知することができる。 (5) The microphone 100 further includes a case 60r that has a height larger than the height of the soft material 11 in the loading direction of the soft material 11 and the magnet 20, and encloses the soft material 11. As a result, the amplitude of the sound waves can be increased inside the portion extending above the magnet 20, so that weakly vibrating sound waves can be reliably detected.
 (6)振動体10は、軟質材11であり、マイクロフォン100は、軟質材11を上面に積層し、磁気センサ30を内包することでマイクロフォン100の外部と離隔させるケース60を更に備え、磁気センサ30は、ケース60において上面と対向する側に接続され、NVCダイヤモンドセンサ31と、NVCダイヤモンドセンサ31に光を入力する緑色LED発光部32と、NVCダイヤモンドセンサ31の発光を検出可能な受光部33とを含む。NVCダイヤモンドセンサ31を用いることで、マグネット20の微弱な磁力変動を確実に検知することができる。 (6) The vibrating body 10 is a soft material 11, and the microphone 100 further includes a case 60 in which the soft material 11 is laminated on the upper surface, and a case 60 is separated from the outside of the microphone 100 by enclosing a magnetic sensor 30. 30 is connected to the side facing the upper surface of the case 60, and includes an NVC diamond sensor 31, a green LED light emitting section 32 that inputs light to the NVC diamond sensor 31, and a light receiving section 33 that can detect light emission from the NVC diamond sensor 31. including. By using the NVC diamond sensor 31, it is possible to reliably detect weak magnetic force fluctuations of the magnet 20.
 (7)振動体10は、軟質材11であり、マイクロフォン100は、前記軟質材を側面に積層し、前記磁気センサを内包することでマイクロフォン100の外部と離隔させるケースを更に備え、前記磁気センサは、前記ケースにおいて前記側面と直交する側に接続され、NVCダイヤモンドセンサと、前記NVCダイヤモンドセンサに光を入力する緑色LED発光部と、前記NVCダイヤモンドセンサの発光を検出可能な受光部とを含む。これにより、NVCダイヤモンドセンサ31を用いることで、NVCダイヤモンドセンサ31がマグネット20の振動方向と垂直の方向に配置されている場合であっても、マグネット20の微弱な磁力変動を確実に検知することができる。 (7) The vibrating body 10 is a soft material 11, and the microphone 100 further includes a case in which the soft material is laminated on the side surface and the magnetic sensor is enclosed in the case to separate the microphone 100 from the outside, is connected to a side perpendicular to the side surface of the case, and includes an NVC diamond sensor, a green LED light emitting section that inputs light to the NVC diamond sensor, and a light receiving section capable of detecting light emission from the NVC diamond sensor. . As a result, by using the NVC diamond sensor 31, even when the NVC diamond sensor 31 is arranged in a direction perpendicular to the vibration direction of the magnet 20, it is possible to reliably detect weak magnetic force fluctuations of the magnet 20. I can do it.
 (8)マイクロフォン100は、第1のケース61と、第2のケース62と、を更に備え、振動体10は、第1のケース61と第2のケース62との内側において、第1のケース61と第2のケース62とに挟まれた振動板12であり、磁気センサ30は、第1のケース61及び第2のケースのいずれか一方に取り付けられ、防水耐圧処理64が施されることでマイクロフォン100の外部と離隔される。振動板12はケース61,62で保護されることで破損が防止され、磁気センサ30には防水耐圧処理64が施されているため、水がある環境でもマイクロフォンを安全に使用することができる。 (8) The microphone 100 further includes a first case 61 and a second case 62, and the vibrating body 10 is arranged inside the first case 61 and the second case 62. The diaphragm 12 is sandwiched between a diaphragm 61 and a second case 62, and the magnetic sensor 30 is attached to either the first case 61 or the second case and is subjected to waterproof and pressure-resistant treatment 64. The microphone 100 is separated from the outside. The diaphragm 12 is protected by the cases 61 and 62 to prevent damage, and the magnetic sensor 30 is subjected to waterproof and pressure-resistant treatment 64, so the microphone can be used safely even in environments with water.
 (9)振動板12の第1のケース61に対向する側は、第1のケース61に設けられた孔を介して第1のケース61の外側と連通し、振動板12の第2のケース62に対向する側は、第2のケース62に設けられた孔を介して第2のケース62の外側と連通する。これにより、ケース61,62の内側の気体が外部空間の環境の変化によって膨張及び縮小することがあっても、内圧による振動板12への影響を少なくすることができる。 (9) The side of the diaphragm 12 facing the first case 61 communicates with the outside of the first case 61 through the hole provided in the first case 61, and The side facing 62 communicates with the outside of second case 62 through a hole provided in second case 62 . Thereby, even if the gas inside the cases 61 and 62 expands and contracts due to changes in the environment of the external space, the influence of the internal pressure on the diaphragm 12 can be reduced.
 (10)マイクロフォンは、ベースプレート1と、前記ベースプレート上に配置されるマイクロフォンユニットとを備え、前記マイクロフォンユニットは、上記(1)に記載の構成を有する。これにより、マイクロフォンユニットを任意の場所に安定した状態で組み込むことができる。 (10) The microphone includes a base plate 1 and a microphone unit disposed on the base plate, and the microphone unit has the configuration described in (1) above. This allows the microphone unit to be stably installed in any location.
[C.その他]
 上述したマイクロフォン100の構成は一例であって、上述したものに限られない。例えば、以下のように変形、変更して実施することができる。
[C. others]
The configuration of the microphone 100 described above is an example, and is not limited to the configuration described above. For example, the following modifications and changes can be made.
 マイクロフォン100の構成要素の形状は種々の形状を取り得る。図においてマグネット20の形状は円盤、図において振動体10は円柱及び角柱の形状で示しているが、これらの形状に限られない。同様に、ケース60は、円筒、四角形、楕円形等様々な形状を示しているが、これらの形状に限られない。また、振動体10とマグネット20とが同じ形状である例を示したが、互いに異なる形状であってもよい。共鳴管付きケース60rの形状は上に向かって広がる形状又は窄まる形状であってもよい。NVCダイヤモンドセンサユニットの部品31,32,33の形状も上記に限られない。第1のケース61及び第2のケース62の形状及びこれらに設けられる孔の大きさ及び数は任意に選択可能である。 The components of the microphone 100 can take various shapes. In the figure, the shape of the magnet 20 is shown as a disk, and in the figure, the vibrating body 10 is shown as a cylinder or a prism, but the shape is not limited to these shapes. Similarly, the case 60 has various shapes such as a cylinder, a square, and an ellipse, but is not limited to these shapes. Further, although an example has been shown in which the vibrating body 10 and the magnet 20 have the same shape, they may have different shapes. The shape of the resonance tube-equipped case 60r may be a shape that widens upward or a shape that narrows toward the top. The shapes of the parts 31, 32, and 33 of the NVC diamond sensor unit are also not limited to the above. The shapes of the first case 61 and the second case 62 and the size and number of holes provided therein can be arbitrarily selected.
 磁気センサ30は、ホールIC及びNVCダイヤモンドセンサに限られず、その他の磁力変動を検出可能なセンサを用い得る。 The magnetic sensor 30 is not limited to Hall IC and NVC diamond sensors, and other sensors capable of detecting changes in magnetic force may be used.
 磁気センサ30の取り付け位置は、マグネット20の磁力変動が受信可能であれば上記の例に限られない。例えば、第1及び第2実施形態では振動体10内部の任意の位置、第3実施形態ではケース60内の任意の位置、第4実施形態では第1のケース61又は第2の62の内側に取り付けてもよい。 The mounting position of the magnetic sensor 30 is not limited to the above example as long as the magnetic force fluctuation of the magnet 20 can be received. For example, in the first and second embodiments, any position inside the vibrating body 10, in the third embodiment, any position inside the case 60, and in the fourth embodiment, at any position inside the first case 61 or the second case 62. May be attached.
 100 マイクロフォン
 10  振動体
 11  軟質材
 12  振動板
 13  液体
 14  振動膜
 20  マグネット
 30  磁気センサ
 31  NVCダイヤモンドセンサ
 32  緑色LED発光部
 33  受光部
 40  電気的接続
 50  ベースプレート
 60  ケース
 60r 共鳴管付きケース(ケース)
 61  第1のケース
 62  第2のケース
 63  シール部材
 64  防水耐圧処理
 65  バックアップ構造
 70  取付先筐体 
 
 
100 Microphone 10 Vibrating body 11 Soft material 12 Diaphragm 13 Liquid 14 Vibrating membrane 20 Magnet 30 Magnetic sensor 31 NVC diamond sensor 32 Green LED light emitting section 33 Light receiving section 40 Electrical connection 50 Base plate 60 Case 60r Case with resonance tube (case)
61 First case 62 Second case 63 Seal member 64 Waterproof and pressure resistant treatment 65 Backup structure 70 Mounting casing

Claims (10)

  1.  振動体と、
     前記振動体に直接又は間接に接触しており、音波により振動可能なマグネットと、
     マイクロフォンの外部と離隔した位置に設けられ、前記マグネットの振動による磁力変動を検出して、前記磁力変動を電気信号として出力する磁気センサと、
    を備える、マイクロフォン。
    a vibrating body;
    a magnet that is in direct or indirect contact with the vibrating body and is capable of vibrating by sound waves;
    a magnetic sensor that is provided at a location away from the outside of the microphone, detects magnetic force fluctuations due to vibrations of the magnet, and outputs the magnetic force fluctuations as an electrical signal;
    equipped with a microphone.
  2.  前記振動体は、軟質材であり、前記マグネットを上面に積層し、
     前記磁気センサは、前記磁気センサの上に前記軟質材が積層されることにより、前記マイクロフォンの外部と離隔される、
    請求項1に記載のマイクロフォン。
    The vibrating body is made of a soft material, and the magnet is laminated on the upper surface,
    The magnetic sensor is separated from the outside of the microphone by laminating the soft material on the magnetic sensor.
    The microphone according to claim 1.
  3.  前記マグネットに積層される振動板を更に備える、
    請求項1又は2に記載のマイクロフォン。
    further comprising a diaphragm laminated on the magnet;
    The microphone according to claim 1 or 2.
  4.  前記軟質材は、液体を封入する、
    請求項2に記載のマイクロフォン。
    the soft material encloses a liquid;
    The microphone according to claim 2.
  5.  前記軟質材と前記マグネットとの積載方向について前記軟質材の高さよりも大きい高さを有し、前記軟質材を内包するケースを更に備える、
    請求項2又は4に記載のマイクロフォン。
    further comprising a case that has a height greater than the height of the soft material in the loading direction of the soft material and the magnet, and that encloses the soft material;
    The microphone according to claim 2 or 4.
  6.  前記振動体は、軟質材であり、
     前記軟質材を上面に積層し、前記磁気センサを内包することで前記マイクロフォンの外部と離隔させるケースを更に備え、
     前記磁気センサは、前記ケースにおいて前記上面と対向する側に接続され、NVCダイヤモンドセンサと、前記NVCダイヤモンドセンサに光を入力する緑色LED発光部と、前記NVCダイヤモンドセンサの発光を検出可能な受光部とを含む、
    請求項1に記載のマイクロフォン。
    The vibrating body is made of a soft material,
    further comprising a case in which the soft material is laminated on an upper surface and the magnetic sensor is enclosed therein to separate the microphone from the outside;
    The magnetic sensor is connected to a side of the case facing the upper surface, and includes an NVC diamond sensor, a green LED light emitting section that inputs light to the NVC diamond sensor, and a light receiving section that can detect light emission from the NVC diamond sensor. including
    The microphone according to claim 1.
  7.  前記振動体は、軟質材であり、
     前記軟質材を側面に積層し、前記磁気センサを内包することで前記マイクロフォンの外部と離隔させるケースを更に備え、
     前記磁気センサは、前記ケースにおいて前記側面と直交する側に接続され、NVCダイヤモンドセンサと、前記NVCダイヤモンドセンサに光を入力する緑色LED発光部と、前記NVCダイヤモンドセンサの発光を検出可能な受光部とを含む、
    請求項1に記載のマイクロフォン。
    The vibrating body is made of a soft material,
    further comprising a case in which the soft material is laminated on a side surface and the magnetic sensor is enclosed in the case to separate the microphone from the outside;
    The magnetic sensor is connected to a side of the case perpendicular to the side surface, and includes an NVC diamond sensor, a green LED light emitting section that inputs light to the NVC diamond sensor, and a light receiving section that can detect light emission from the NVC diamond sensor. including
    The microphone according to claim 1.
  8.  第1のケースと、第2のケースと、を更に備え、
     前記振動体は、前記第1のケースと前記第2のケースとの内側において、前記第1のケースと前記第2のケースとに挟まれた振動板であり、
     前記磁気センサは、前記第1のケース及び前記第2のケースのいずれか一方に取り付けられ、防水耐圧処理が施されることで前記マイクロフォンの外部と離隔される、
    請求項1に記載のマイクロフォン。
    further comprising a first case and a second case,
    The vibrating body is a diaphragm sandwiched between the first case and the second case inside the first case and the second case,
    The magnetic sensor is attached to either the first case or the second case, and is isolated from the outside of the microphone by being subjected to waterproof and pressure-resistant treatment.
    The microphone according to claim 1.
  9.  前記振動板の前記第1のケースに対向する側は、前記第1のケースに設けられた孔を介して前記第1のケースの外側と連通し、
     前記振動板の前記第2のケースに対向する側は、前記第2のケースに設けられた孔を介して前記第2のケースの外側と連通する、
    請求項8に記載のマイクロフォン。
    A side of the diaphragm facing the first case communicates with the outside of the first case via a hole provided in the first case,
    A side of the diaphragm facing the second case communicates with the outside of the second case through a hole provided in the second case.
    The microphone according to claim 8.
  10.  ベースプレートと、前記ベースプレート上に配置されるマイクロフォンユニットとを備え、
     前記マイクロフォンユニットは、請求項1に記載の構成を有する、
    マイクロフォン。
    comprising a base plate and a microphone unit disposed on the base plate,
    The microphone unit has the configuration according to claim 1.
    microphone.
PCT/JP2022/018228 2022-04-19 2022-04-19 Microphone WO2023203654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/018228 WO2023203654A1 (en) 2022-04-19 2022-04-19 Microphone
PCT/JP2023/013665 WO2023203996A1 (en) 2022-04-19 2023-03-31 Microphone and microphone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018228 WO2023203654A1 (en) 2022-04-19 2022-04-19 Microphone

Publications (1)

Publication Number Publication Date
WO2023203654A1 true WO2023203654A1 (en) 2023-10-26

Family

ID=88419545

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/018228 WO2023203654A1 (en) 2022-04-19 2022-04-19 Microphone
PCT/JP2023/013665 WO2023203996A1 (en) 2022-04-19 2023-03-31 Microphone and microphone device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013665 WO2023203996A1 (en) 2022-04-19 2023-03-31 Microphone and microphone device

Country Status (1)

Country Link
WO (2) WO2023203654A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055683A (en) * 2000-08-08 2002-02-20 Foster Electric Co Ltd Electromagnetic type acoustic transducer
JP2003274487A (en) * 2002-03-15 2003-09-26 Teruhiro Makino Electroacoustic transducer
JP2011097126A (en) * 2009-10-27 2011-05-12 Hosiden Corp Electromagnetic type electroacoustic transducer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138916A (en) * 1976-05-17 1977-11-19 Ichikoh Industries Ltd Microphone applying hall element
JPS5915399A (en) * 1982-07-16 1984-01-26 Canon Inc Vibration detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055683A (en) * 2000-08-08 2002-02-20 Foster Electric Co Ltd Electromagnetic type acoustic transducer
JP2003274487A (en) * 2002-03-15 2003-09-26 Teruhiro Makino Electroacoustic transducer
JP2011097126A (en) * 2009-10-27 2011-05-12 Hosiden Corp Electromagnetic type electroacoustic transducer

Also Published As

Publication number Publication date
WO2023203996A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2018138955A1 (en) Sound generator
US7812418B2 (en) Chip-scaled MEMS microphone package
US10194248B2 (en) Speaker with flex circuit acoustic radiator
JP2009071813A (en) Vibration transducer
US11910139B2 (en) Acoustic device and electronic apparatus
US20100092011A1 (en) Membrane for an electroacoustic transducer and acoustic device
KR20210015557A (en) Speaker module including air adsorption member and electronic device including the same
WO2023203654A1 (en) Microphone
KR20220076347A (en) Micro-electromechanical transducer with reduced size
JP2008017461A (en) Electrodynamic exciter
WO2019146096A1 (en) Audio output device
WO2012060042A1 (en) Electronic equipment
JPWO2016051696A1 (en) Loudspeaker
US20230131440A1 (en) Microphone Device with a Closed Housing and a Membrane
KR102081407B1 (en) Neck Microphone Device Using Electret Condenser Microphone or MEMS Microphone
US3497638A (en) Explosion-proof acoustic device
CN112565993A (en) Bone voiceprint sensor and electronic device
WO2021062955A1 (en) Sound-producing apparatus, acoustic module provided with sound-producing apparatus, and electronic device
JP5316498B2 (en) Speaker mounted product
JP4564864B2 (en) Dynamic microphone
JP4850245B2 (en) Mounting structure of electromechanical acoustic transducer
JP2003018685A (en) Sounder and portable apparatus
WO2023283966A1 (en) Sensing apparatus
WO2022262176A1 (en) Vibration sensor
CN117440293A (en) Speaker module and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938457

Country of ref document: EP

Kind code of ref document: A1