WO2023202084A1 - 数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品 - Google Patents

数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品 Download PDF

Info

Publication number
WO2023202084A1
WO2023202084A1 PCT/CN2022/136561 CN2022136561W WO2023202084A1 WO 2023202084 A1 WO2023202084 A1 WO 2023202084A1 CN 2022136561 W CN2022136561 W CN 2022136561W WO 2023202084 A1 WO2023202084 A1 WO 2023202084A1
Authority
WO
WIPO (PCT)
Prior art keywords
user plane
network element
way delay
service
plane functional
Prior art date
Application number
PCT/CN2022/136561
Other languages
English (en)
French (fr)
Inventor
张卓筠
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to US18/244,560 priority Critical patent/US20230422079A1/en
Publication of WO2023202084A1 publication Critical patent/WO2023202084A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • H04L41/5025Ensuring fulfilment of SLA by proactively reacting to service quality change, e.g. by reconfiguration after service quality degradation or upgrade
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5029Service quality level-based billing, e.g. dependent on measured service level customer is charged more or less
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • H04L43/55Testing of service level quality, e.g. simulating service usage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/342Signalling channels for network management communication between virtual entities, e.g. orchestrators, SDN or NFV entities

Definitions

  • the present application relates to the field of communication technology, specifically, to a data packet transmission method, communication equipment, computer-readable storage media and computer program products.
  • the transmission quality of the network may change, resulting in the inability to meet the two-way delay (Round Trip Time, RTT) requirements of the user plane function (UPF) side of the business flow, resulting in the loss of data packets.
  • Problems such as congestion and lagging may occur during transmission.
  • target services such as augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR) and other services, it may even cause the target business to be unable to be used in actual scenarios.
  • Embodiments of the present application provide a data packet transmission method, communication equipment, computer-readable storage media and computer program products, which can adjust network transmission according to the two-way delay requirements on the UPF side to meet the two-way delay requirements on the UPF side.
  • Embodiments of the present application provide a data packet transmission method.
  • the method is executed by an application function network element.
  • the method includes: sending a two-way delay request for a target service flow to the policy control function network element.
  • the two-way delay request includes The first user plane functional side two-way delay threshold value; receiving a response message for the two-way delay request, where the response message includes indication information whether to agree to the two-way delay request.
  • the two-way delay request is used to instruct the policy control function network element to generate the target service flow that meets the two-way delay threshold value of the first user plane functional side when agreeing to the two-way delay request.
  • the first service quality detection strategy includes the first user plane functional side bidirectional threshold value;
  • the third A service quality detection policy is used to instruct the session management function network element to generate a service quality detection request of the first user plane function network element, and send the service quality detection request of the first user plane function network element to The first user plane functional network element;
  • the service quality detection request of the first user plane functional network element is used to instruct the first user plane functional network element to detect the relationship between the terminal and the first user plane functional network element.
  • the user plane function side two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to satisfy the two-way delay request.
  • Embodiments of the present application provide a data packet transmission method.
  • the method is executed by a policy control function network element.
  • the method includes: receiving a two-way delay request for a target service flow sent by an application function network element.
  • the two-way delay request including a first user plane functional side two-way delay value; when agreeing to the two-way delay request, generating a first service quality detection of the target service flow that satisfies the first user plane functional side two-way delay threshold value Strategy, the first service quality detection strategy includes the first user plane function side two-way delay threshold value; send the first service quality detection strategy to the session management function network element; the first service quality detection
  • the policy is used to instruct the session management function network element to generate a service quality detection request of the first user plane function network element, and send the service quality detection request of the first user plane function network element to the first user plane function network element.
  • the service quality detection request of the first user plane functional network element is used to instruct the first user plane functional network element to detect the communication between the terminal and the first user plane functional network element.
  • the current user plane functional side two-way delay of the target service flow When it is determined that the current user plane functional side two-way delay exceeds the first user plane functional side two-way delay threshold value, the user plane functional side two-way delay is reported.
  • Timeout message; the user plane function side two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to satisfy the two-way delay request.
  • Embodiments of the present application provide a data packet transmission method.
  • the method is executed by a session management function network element.
  • the method includes: receiving a packet sent by a policy control function network element that satisfies the two-way delay threshold on the first user plane functional side.
  • a first service quality detection strategy for the target service flow including the first user plane functional side two-way delay value; generating a first user plane functional network element according to the first service quality detection strategy
  • the service quality detection request of the first user plane functional network element is sent to the first user plane functional network element, and the service quality detection request of the first user plane functional network element is used for Instruct the first user plane functional network element to detect the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element, and determine the current user plane functional side
  • the two-way delay exceeds the first user plane functional side two-way delay threshold value, report the user plane functional side two-way delay timeout message; receive the user plane functional side two-way delay timeout message; and send the user plane functional side
  • the side two-way delay timeout message is reported to the policy control function network element.
  • the user plane function side two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to meet the requirements sent by the application function network element to the policy control function network element.
  • a two-way delay request, the two-way delay request includes the first user plane functional side two-way delay threshold value.
  • Embodiments of the present application provide a data packet transmission method.
  • the method is executed by a first user plane functional network element.
  • the method includes: receiving the service quality of the first user plane functional network element sent by the session management functional network element. Detection request; According to the service quality detection request of the first user plane functional network element, detect the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element; determine The current user plane functional side two-way delay exceeds the first user plane functional side two-way delay threshold; the user plane functional side two-way delay timeout message is reported to the policy control function network element through the session management function network element; The user plane function side two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to meet the requirements sent by the application function network element to the policy control function network element.
  • a two-way delay request, the two-way delay request includes the first user plane functional side two-way delay threshold value.
  • Embodiments of the present application provide a data packet transmission method, which is executed by a network device.
  • the method includes: receiving the quality of service profile information of the first quality of service flow of the target service flow sent by the session management function network element; receiving The service quality detection request of the network device sent by the session management function network element; according to the service quality detection request of the network device, detect the current air interface bidirectional time of the target service flow between the terminal and the network device delay; determine that the current air interface two-way delay exceeds the first air interface two-way delay threshold, and the first air interface two-way delay threshold is less than the first user plane functional side two-way delay threshold; through the session The management function network element reports the air interface two-way delay timeout message to the policy control function network element.
  • the air interface two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to meet the two-way delay sent by the application function network element to the policy control function network element.
  • the two-way delay request includes the first user plane functional side two-way delay threshold value.
  • Embodiments of the present application provide an application function network element, including: a sending unit configured to send a two-way delay request of a target service flow to a policy control function network element, where the two-way delay request includes a first user plane functional side two-way delay request. Delay threshold; receiving unit, configured to receive a response message to the two-way delay request, where the response message includes indication information of whether to agree to the two-way delay request.
  • the two-way delay request is used to instruct the policy control function network element to generate the target service flow that meets the two-way delay threshold value of the first user plane functional side when agreeing to the two-way delay request.
  • the first service quality detection strategy includes the first user plane functional side bidirectional threshold value;
  • the third A service quality detection policy is used to instruct the session management function network element to generate a service quality detection request of the first user plane function network element, and send the service quality detection request of the first user plane function network element to The first user plane functional network element;
  • the service quality detection request of the first user plane functional network element is used to instruct the first user plane functional network element to detect the relationship between the terminal and the first user plane functional network element.
  • the user plane function side two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to satisfy the two-way delay request.
  • Embodiments of the present application provide a policy control function network element, including: a receiving unit configured to receive a two-way delay request for a target service flow sent by an application function network element, where the two-way delay request includes a first user plane functional side bidirectional Delay value; a processing unit configured to, when agreeing to the two-way delay request, generate a first quality of service detection policy for the target service flow that satisfies the first user plane functional side two-way delay threshold value, so The first service quality detection strategy includes the first user plane functional side two-way delay threshold value; a sending unit configured to send the first service quality detection strategy to the session management function network element; the first service The quality detection policy is used to instruct the session management function network element to generate a service quality detection request of the first user plane function network element, and send the service quality detection request of the first user plane function network element to the The first user plane functional network element; the service quality detection request of the first user plane functional network element is used to instruct the first user plane functional network element to detect the communication between the terminal and the first
  • the current user plane functional side two-way delay of the target service flow is reported to the user plane functional side two-way delay when it is determined that the current user plane functional side two-way delay exceeds the first user plane functional side two-way delay threshold value.
  • Delay timeout message; the user plane functional side two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to satisfy the two-way delay request, wherein, receiving The unit is also configured to receive the user plane functional side two-way delay timeout message sent by the first user plane functional network element; the processing unit is also configured to determine the user plane functional side two-way delay timeout message according to the user plane functional side two-way delay timeout message.
  • the target processing method of the target service flow is to satisfy the two-way delay request.
  • Embodiments of the present application provide a session management function network element, including: a receiving unit, configured to receive the first quality of service of a target service flow that meets the two-way delay threshold on the first user plane functional side and is sent by the policy control function network element.
  • the first service quality detection strategy includes the first user plane functional side two-way delay value; a processing unit configured to generate the service quality of the first user plane functional network element according to the first service quality detection strategy Detection request; sending unit, configured to send the service quality detection request of the first user plane functional network element to the first user plane functional network element, and the service quality detection request of the first user plane functional network element is Instructing the first user plane function network element, detecting the current user plane function side two-way delay of the target service flow between the terminal and the first user plane function network element, and determining the current user plane function When the side two-way delay exceeds the first user plane functional side two-way delay threshold, a user plane functional side two-way delay timeout message is reported; the receiving unit is also configured to receive the user plane functional side two-way delay timeout message.
  • the sending unit is also configured to report the user plane function side two-way delay timeout message to the policy control function network element; the user plane function side two-way delay timeout message is used to indicate the policy control function network element , determine the target processing method for the target service flow to satisfy the two-way delay request sent by the application function network element to the policy control function network element, where the two-way delay request includes the first user plane functional side bidirectional Delay threshold value.
  • Embodiments of the present application provide a first user plane functional network element, including: a receiving unit, configured to receive a service quality detection request of the first user plane functional network element sent by the session management functional network element; and a processing unit, configured to perform The service quality detection request of the first user plane functional network element detects the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element; the processing unit is also configured to It is determined that the current two-way delay on the functional side of the user plane exceeds the first two-way delay threshold on the functional side of the user plane; the sending unit is configured to report the functional side of the user plane to the policy control function network element through the session management function network element.
  • Two-way delay timeout message is used to instruct the policy control function network element to determine the target processing method for the target service flow to satisfy the application function network element's request to the policy. Control the two-way delay request sent by the functional network element, where the two-way delay request includes the first user plane functional side two-way delay threshold value.
  • Embodiments of the present application provide a network device, including: a receiving unit, configured to receive the service quality profile information of the first quality of service flow of the target service flow sent by the session management function network element; the receiving unit is also configured to receive the A service quality detection request of the network device sent by the session management function network element; a processing unit configured to detect the current status of the target service flow between the terminal and the network device according to the service quality detection request of the network device.
  • Air interface two-way delay the processing unit is also used to determine that the current air interface two-way delay exceeds a first air interface two-way delay threshold, and the first air interface two-way delay threshold is less than the first user plane functional side two-way delay Delay threshold; sending unit, configured to report an air interface two-way delay timeout message to the policy control function network element through the session management function network element; the air interface two-way delay timeout message is used to indicate to the policy control function network element element, determine the target processing method for the target service flow to satisfy the two-way delay request sent by the application function network element to the policy control function network element, where the two-way delay request includes the first user plane function side Two-way delay threshold.
  • An embodiment of the present application provides a communication device, including: one or more processors; a memory configured to store one or more programs, when the one or more programs are executed by the one or more processors , so that the communication device implements the data packet transmission method described in the embodiment of this application.
  • Embodiments of the present application provide a computer-readable storage medium on which a computer program is stored.
  • the data packet transmission method described in the embodiment of the present application is implemented when the computer executes it.
  • Embodiments of the present application provide computer program products, including computer programs.
  • the computer program When the computer program is executed by a computer, the data packet transmission method described in the embodiments of the present application is implemented.
  • the policy control function network element can detect the current two-way delay on the functional side of the user plane through the first user plane functional network element. When it is detected that the current two-way delay on the functional side of the user plane cannot meet the target service flow
  • the policy control functional network element can ensure the required bidirectional first user plane functional side of the target service flow by determining the target processing method. Delay threshold value, thereby realizing that when the transmission quality of the network changes, the two-way delay requirement on the user plane functional side of the target service flow can also be guaranteed, so that the target service flow does not suffer from congestion or lag during the transmission process. problem, improving the network transmission quality of the target business flow.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a system architecture diagram of the 5G network provided by the embodiment of this application.
  • Figure 3 is a flow chart of a data packet transmission method provided by an embodiment of the present application.
  • Figure 4 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 5 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 6 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 7 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 8 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 9 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 10 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 11 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 12 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • Figure 13 is a flow chart of the data packet transmission method provided by the embodiment of the present application.
  • Figure 14 is a flow chart of the data packet transmission method provided by the embodiment of the present application.
  • Figure 15 is a flow chart of the data packet transmission method provided by the embodiment of the present application.
  • Figure 16 is a flow chart of the data packet transmission method provided by the embodiment of the present application.
  • Figure 17 is a block diagram of an application function network element provided by an embodiment of the present application.
  • Figure 18 is a block diagram of a policy control function network element provided by an embodiment of the present application.
  • Figure 19 is a block diagram of a session management function network element provided by an embodiment of the present application.
  • Figure 20 is a block diagram of the first user plane functional network element provided by the embodiment of the present application.
  • Figure 21 is a block diagram of a network device provided by an embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G fifth generation mobile communication technology
  • 5G fifth generation mobile communication technology
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • Network device 110 may provide communication coverage for a specific geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA system, a base station (NodeB, NB) in the WCDMA system, or an evolved base station in the LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB evolved base station in the LTE system.
  • Evolutional Node B eNB or eNodeB
  • it can be a base station in a 5G communication system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center , relay stations, access points, vehicle-mounted equipment, wearable devices, hubs, switches, bridges, routers, network-side equipment in 5G networks or network equipment in future evolved Public Land Mobile Networks (PLMN) wait.
  • CRAN Cloud Radio Access Network
  • PLMN Public Land Mobile Network
  • the communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via the Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cables, direct cable connections ; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Network (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or a device of another terminal configured to receive/transmit communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Network
  • IoT Internet of Things
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communications capabilities; may include radiotelephones, pagers, Internet/Intranet Personal Digital Assistant (PDA) with Internet access, Web browser, planner, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or handheld reception or other electronic device including a radiotelephone transceiver.
  • PCS Personal Communications System
  • PDA Internet/Intranet Personal Digital Assistant
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device.
  • the access terminal may be a cellular phone, cordless phone, Session Initiation Protocol (SIP) phone, Wireless Local Loop (WLL) station, PDA, handheld device with wireless communication capabilities, computing device or connection to other processing equipment of wireless modems, vehicle-mounted equipment, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • D2D communication can be performed between terminal devices 120 .
  • Figure 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and other numbers of terminals may be included within the coverage of each network device. This is not the case in this embodiment of the present application. Make limitations.
  • the communication system 100 may also include other network network elements such as policy control function network elements and access mobility management function network elements, which are not limited in the embodiments of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here. .
  • FIG. 2 is a system architecture diagram of the 5G network provided by the embodiment of this application.
  • the equipment involved in the 5G network system includes: terminal/user equipment, radio access network (Radio Access Network, RAN), user User Plane Function (UPF) network element, Data Network (DN), Access and Mobility Management Function (AMF) network element, Session Management Function (SMF) network element , Policy Control Function (PCF) network element, Application Function (AF) network element, Authentication Server Function (AUSF) network element, Unified Data Management (UDM) network Yuan, Network Slice Selection Function (NSSF).
  • Radio Access Network Radio Access Network
  • RAN Radio Access Network
  • UPF User Plane Function
  • DN Data Network
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • AF Application Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • Figure 3 is a flow chart of a data packet transmission method provided by an embodiment of the present application.
  • the method provided in the embodiment of Figure 3 can be executed by the AF network element, but the present application is not limited thereto.
  • the method provided by the embodiment of this application may include:
  • a two-way delay request of the target service flow is sent to the policy control function network element, where the two-way delay request includes the first user plane functional side two-way delay threshold value.
  • the AF network element can directly send the two-way delay request of the target service flow to the PCF network element, or the AF network element can also indirectly, for example, through the Network Exposure Function (NEF) network element Send a two-way delay request for the target service flow to the PCF network element.
  • the two-way delay request is used by the AF network element to propose an RTT request for the target service flow to the PCF network element.
  • the specific RTT request can be made through the first user plane It is reflected by the RTT threshold value on the functional side.
  • the target service flow refers to the target data packet (which may include at least one of the target uplink data packet and the target downlink data packet) sent by the terminal (hereinafter referred to as UE) and/or the service server for a certain or certain target services.
  • the target service can be set according to actual needs. For example, it can be specific services such as AR and VR that require high data rates and short delays.
  • RTT refers to the round-trip time it takes for the target data packet of the target service flow to be sent from one end of the network to the other end of the network, and then returned from the other end of the network to the other end of the network.
  • the RTT threshold value on the user plane function side refers to a specific threshold value that requires the end-to-end two-way delay of the service data flow from the terminal, such as the UE, to the UPF network element for a specific target service flow.
  • This specific threshold value can be set according to the specific needs of the target business flow. For example, for target business flows such as AR or VR, the specific threshold value can be set smaller than other business flows to meet the requirements of AR or VR, etc. actual needs of the scenario.
  • the user plane functional side RTT threshold value may include the first user plane functional side RTT threshold value.
  • the first user plane functional side RTT threshold value refers to the target service flow, which requires the service data flow from the terminal to the first user plane
  • the end-to-end two-way delay between functional network elements (hereinafter referred to as UPF1) does not exceed a specific threshold value.
  • the two-way delay request may also include service flow template information of the target service flow, Data Network Name (DNN) information of the target service flow, Single Network Slice selection auxiliary information (Single Network Slice At least one of Selection Assistance Information, S-NSSAI) information, etc.
  • DNN Data Network Name
  • S-NSSAI Single Network Slice At least one of Selection Assistance Information
  • the service flow template information may include the source network address (source IP address), source port number, destination network address (destination IP address), destination port number, and fully qualified domain name (Fully Qualified Domain) of the target service flow. Name, FQDN), application identity (Application identity, APP ID), etc. One or more.
  • step 320 a response message to the two-way delay request is received.
  • the response message includes indication information whether to agree to the two-way delay request.
  • the two-way delay request can be used to instruct the policy control function network element to generate the first policy charging control ( Policy and Charging Control (PCC) rules and the first Quality of Service (Quality of Service, QoS) detection policy, and send the first policy charging control rules and the first Quality of Service detection policy to the Session Management Function (SMF) network element.
  • PCC Policy and Charging Control
  • QoS Quality of Service
  • SMF Session Management Function
  • the first service quality detection strategy may include a first user plane functional side bidirectional threshold value, or a unidirectional threshold value split according to the first user plane functional side bidirectional threshold value. If it is a one-way threshold, it is also necessary to further indicate whether the one-way threshold that needs to be detected is an uplink service flow or a downlink service flow. If the indication is an uplink service flow, the one-way threshold can be called The uplink service transmission delay threshold value of the first user plane functional side for the first quality of service flow. If the indication is a downlink service flow, the one-way threshold value can be called the first user plane functional side for the first The downlink service transmission delay threshold value of the quality of service flow.
  • the first policy charging control rule may be used to instruct the session management function network element to generate the first quality of service information of the first quality of service flow, and send the first quality of service information of the first quality of service flow to the first user plane function. network element.
  • the first service quality detection policy may be used to instruct the session management function network element to generate a service quality detection request of the first user plane functional network element, and send the service quality detection request of the first user plane functional network element to the first user plane Functional network element.
  • the service quality detection request of the first user plane functional network element may carry content such as how to perform detection and reporting conditions. For example, it may include the first user plane functional side RTT threshold. When it is detected that the first user plane functional side RTT is exceeded, Reported when the RTT threshold is exceeded.
  • the service quality detection request of the first user plane functional network element can be used to instruct the first user plane functional network element to detect the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element, When it is determined that the current two-way delay on the functional side of the user plane exceeds the first two-way delay threshold on the functional side of the user plane, a user plane functional side two-way delay timeout message is reported.
  • the two-way delay timeout message on the user plane functional side can be used to instruct the policy control function network element to determine the target processing method for the target service flow to meet the two-way delay request.
  • the PCF network element can generate the first PCC rule based on the first user plane functional side RTT threshold value carried in the two-way delay request.
  • the first PCC rule can be applied to generate the first quality of service flow ( QoS Flow) first quality of service information to achieve the target service flow to be transmitted through the first QoS flow.
  • QoS Flow quality of service flow
  • the first PCC rule satisfies the first user plane functional side RTT threshold, which means that the first QoS information of the first QoS flow bound by the first PCC rule satisfies the QoS rule (QoS rule) of the first QoS flow.
  • the first user plane functional side RTT threshold value means that the first QoS information of the first QoS flow bound by the first PCC rule satisfies the QoS rule (QoS rule) of the first QoS flow.
  • the first PCC rule and the first QoS detection policy can be merged, separated, or used as part of other rules. They may have different names depending on the execution entity. This application does not do this. limited.
  • the first policy charging control rule may include an uplink service transmission delay threshold value and a downlink service transmission delay threshold value for the first quality of service flow on the first user plane functional side.
  • the sum of the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the first user plane functional side for the first quality of service flow may be less than or equal to the first user plane functional side two-way delay threshold value .
  • the first quality of service flow can satisfy the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the first user plane function side for the first quality of service flow in the first quality of service information.
  • the uplink service transmission delay threshold value for the first quality of service flow on the first user plane functional side may be equal to or not equal to the downlink service transmission delay threshold value.
  • the PCF network element after the PCF network element receives the first user plane functional side RTT threshold value sent by the AF network element, it can split the first user plane functional side RTT threshold value to obtain the first user plane functional side
  • the sum of the service transmission delay threshold value and the downlink service transmission delay threshold value of the first user plane functional side for the first Qos flow is less than or equal to the first user plane functional side RTT threshold value, and the first Qos flow
  • the uplink service transmission delay threshold value may or may not be equal to the downlink service transmission delay threshold value for the first Qos flow on the first user plane functional side.
  • the uplink service transmission delay threshold of the first user plane functional side for the first Qos flow may be 15 ms.
  • the downstream service transmission delay threshold of the Qos flow can be 5ms.
  • the uplink service transmission delay threshold of the first user plane functional side for the first Qos flow may be 10 ms, and the downlink service transmission delay threshold of the first user plane functional side for the first Qos flow may be 10 ms.
  • the uplink service transmission delay threshold for the first Qos flow on the first user plane functional side and the downlink service transmission delay threshold on the first user plane functional side for the first Qos flow are obtained by splitting it from the RTT threshold on the first user plane functional side.
  • the service transmission delay threshold is used to detect whether the uplink service transmission delay of the first user plane functional side of the target service flow for the first Qos flow exceeds the uplink service of the first user plane functional side for the first Qos flow.
  • the first PCC rule may include an uplink service transmission delay threshold for the first Qos flow on the first user plane functional side and a downlink service transmission delay threshold on the first user plane functional side for the first Qos flow.
  • the first PCC rule still satisfies the first user plane functional side RTT threshold.
  • the first QoS detection policy may include an uplink service transmission threshold for the first Qos flow on the first user plane functional side and a downlink service transmission on the first user plane functional side for the first Qos flow.
  • the delay threshold value may also include the first user plane functional side RTT threshold value, so that the SMF network element can generate a QoS detection request for UPF1 according to the first QoS detection policy, and the QoS detection request may include the first user
  • the uplink service transmission delay threshold value for the first QoS flow on the plane function side and the downlink service transmission delay threshold value on the first user plane function side for the first QoS flow may also include the first user plane Function side RTT threshold value.
  • UPF1 can respond to the received QoS detection request of UPF1 and detect the current uplink service transmission delay of the target service flow between the terminal and UPF1, and the current downlink service transmission delay of the target service flow between the terminal and UPF1, for example, The current UPF side RTT of the target service flow between the terminal and UPF1 can also be detected.
  • UPF1 may detect that the current uplink service transmission delay of the target service flow between the terminal and UPF1 exceeds the uplink service transmission delay threshold value of the first user plane functional side for the first QoS flow; and/or, in It is detected that the current downlink service transmission delay of the target service flow between the terminal and UPF1 exceeds the downlink service transmission delay threshold value of the first user plane function side for the first QoS flow; and/or, when the terminal is detected When the current UPF-side RTT of the target service flow between UPF1 exceeds the first user plane functional side RTT threshold, a UPF-side RTT timeout message is directly or indirectly reported to the PCF network element.
  • the UPF-side RTT timeout message may include more than The current downlink service transmission delay of the target service flow between the terminal and UPF1 exceeds the downlink service transmission delay threshold value of the first QoS flow on the first user plane function side, and/or exceeds the first user plane function side The current downlink service transmission delay of the target service flow between the terminal and UPF1 for the downlink service transmission delay threshold value of the first QoS flow, and/or the terminal exceeding the first user plane functional side RTT threshold value The current UPF side RTT of the target service flow between UPF1 and UPF1, so that the PCF network element can determine the target processing method to meet the two-way delay request proposed by the AF network element.
  • the two-way delay request may also include a recommended processing method after the two-way delay threshold value on the first user plane functional side is exceeded.
  • the user plane functional side two-way delay timeout message can also be used to instruct the policy control function network element to determine the target processing method for the target service flow based on at least one of the recommended processing method and the local policy of the policy control function network element.
  • the two-way delay request sent directly or indirectly by the AF network element to the PCF network element may also include when it is detected that the current UPF side RTT exceeds the first user plane functional side RTT threshold, the AF network element
  • the recommended processing method provided, the recommended processing method can be at least one of the following:
  • the AF network element may advise the PCF network element to continue transmitting the target service flow without performing any other processing and only transmitting the target service flow when it learns that the current UPF side RTT between the UE and the UPF1 side exceeds the first user plane functional side RTT threshold.
  • the AF network element only needs to report the two-way delay timeout message.
  • the two-way delay exceeds message is used to inform the AF network element that the current UPF side RTT between the UE and the UPF1 side exceeds the first user plane function side RTT threshold.
  • the two-way delay exceeds the RTT threshold.
  • the delay timeout message may also include the current UPF side RTT of the UE and UPF1 side that exceeds the first user plane function side RTT threshold value.
  • the PCF network element increases the first user plane functional side RTT threshold, it reports to the AF network element and notifies the AF network element of the increased user plane functional side RTT.
  • the PCF network element when the PCF network element adjusts the network configuration in order to meet the two-way delay request, if the two-way delay request can be satisfied after adjusting the network configuration, the PCF network element does not need to report to the AF network element, or It can be reported to the AF network element.
  • the AF network element can also recommend that the PCF network element directly interrupts the transmission of the target service flow. .
  • This application does not limit the proposed processing method, and the AF network element can be set according to the actual target service flow requirements.
  • the method provided by the embodiment of the present application may further include: receiving a two-way delay timeout message.
  • the two-way delay timeout message may include the current user plane functional side two-way delay that exceeds the first user plane functional side two-way delay threshold.
  • the AF network element can receive a two-way delay timeout message from the PCF network element.
  • the two-way delay timeout message can be used to inform the AF network element that the current UPF side RTT between the UE and UPF1 has exceeded the first user plane function side.
  • RTT threshold value for example, the two-way delay timeout message may also carry the current UPF side RTT that exceeds the first user plane function side RTT threshold value.
  • the policy control function network element can detect the current two-way delay on the functional side of the user plane through the first user plane functional network element. When it is detected that the current two-way delay on the functional side of the user plane cannot meet the target
  • the policy control functional network element can ensure the required first user plane function of the target service flow by determining the target processing method.
  • the side two-way delay threshold value is achieved, so that when the transmission quality of the network changes, the user plane function side two-way delay requirement of the target service flow can also be guaranteed, so that the target service flow does not suffer from congestion or jamming during the transmission process. It solves the problem of pause and improves the network transmission quality of the target business flow.
  • FIG. 4 shows a schematic diagram of AF interactive service requirements.
  • the method provided by the embodiment of this application may include:
  • step 41 the AF network element sends the two-way delay requirement of the target service to the NEF network element.
  • the two-way delay requirement may include the RTT threshold value of the first user plane functional side and the identification information of the AF (represented by AF ID).
  • the two-way delay requirement may also include exceeding the RTT threshold value of the first user plane functional side.
  • step 42 the NEF network element returns a response message to the AF network element.
  • the AF network element can send a two-way delay request for the target service flow to the NEF network element, and the two-way delay request carries the above two-way delay requirement.
  • the NEF network element receives the two-way delay request sent by the AF network element. After the delay request, the two-way delay request can be authenticated and authenticated, a corresponding response message can be generated, and the response message can be returned to the AF network element.
  • the response message may include indication information indicating whether to agree to the two-way delay request. If the authentication and authentication of the two-way delay request pass, the indication information indicates that the two-way delay request is approved; if the authentication and authentication of the two-way delay request fail. If the request is passed, the indication information indicates that the two-way delay request is rejected. For example, the indication information may also include a rejection reason value.
  • step 43 the NEF network element sends the two-way delay requirement information of the target service to the PCF network element.
  • the NEF network element after the NEF network element authenticates and authenticates the above two-way delay request, the NEF network element can then send at least part of the two-way delay requirement carried in the two-way delay request as two-way delay requirement information to PCF network element
  • the two-way delay requirement information may include the RTT threshold value of the first user plane function side.
  • the recommended processing method and the target service flow after exceeding the RTT threshold value of the first user plane function side may include the recommended processing method and the target service flow after exceeding the RTT threshold value of the first user plane function side.
  • the PCF network element After the PCF network element receives the two-way delay requirement information sent by the NEF network element, it can generate the first PCC rule and the first QoS detection policy that meet the RTT threshold on the first user plane functional side based on the two-way delay requirement information, and then The first PCC rule and the first QoS detection policy are then sent to the SMF network element, and the SMF network element generates the first quality of service information of the first quality of service flow of the target service flow according to the first PCC rule, and sends the first service quality information to the SMF network element.
  • the first quality of service information of the quality flow is sent to the first user plane functional network element (hereinafter represented by UPF1).
  • the SMF network element can generate a service flow template according to the service flow template information of the target service flow.
  • the PCF network element can obtain the service flow template information from the two-way delay request sent by the AF network element, or can also obtain the service flow template information through other methods, which is not limited in this application.
  • the service flow template may include one or more of the source IP address, source port number, destination IP address, destination port number, FQDN, APP ID, Internet Protocol (Internet Protocol, IP) protocol, etc. .
  • the AF network element can send a two-way delay request to the NEF network element, by carrying the first user plane function side RTT threshold value, AF ID, and exceeding the first user plane function side RTT threshold in the two-way delay request.
  • the recommended processing method after the RTT threshold on the first user plane functional side, the service flow template information of the target service flow, the DNN and S-NSSAI information of the target service flow, etc. indirectly sends the two-way delay requirement information to the PCF network element. , and at the same time can reduce the number of interactions between AF network elements and NEF network elements.
  • the AF network element may be a functional unit abstracted from the service server.
  • Figure 5 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • the method provided by the embodiment of this application may include:
  • the AF network element sends at least one of AF identification information, service flow template information of the target service, and DNN and S-NSSAI information to the NEF network element.
  • the NEF network element receives the AF ID sent by the AF network element and at least one of the service flow template information of the target service, DNN information and/or S-NSSAI information, and combines the AF ID with the service flow template information of the target service, At least one of DNN information and/or S-NSSAI information is stored in association.
  • step 52 the AF network element sends the two-way delay requirement of the target service to the NEF network element.
  • the AF network element can send the two-way delay requirement of the target service to the NEF network element through a two-way delay request, where the two-way delay requirement can include the first user plane functional side RTT threshold value, which exceeds the first user plane functional side RTT threshold value.
  • the NEF network element After receiving the two-way delay request, the NEF network element can authenticate and authenticate the two-way delay request. When the two-way delay request is authenticated and authenticated, the NEF network element can perform authentication according to the AF carried in the two-way delay request.
  • the ID searches the above-mentioned associated storage to obtain at least one of the service flow template information, DNN information and/or S-NSSAI information of the target service flow.
  • step 53 the NEF network element returns a response message to the AF network element.
  • the response message includes indication information whether to agree to the two-way delay request.
  • the NEF network element sends the two-way delay requirement information of the target service to the PCF network element.
  • the NEF network element can directly or indirectly send the two-way delay requirement information of the target service to the PCF network element.
  • the NEF network element can obtain the service flow template information, DNN information and/or S-NSSAI information of the target service flow from the AF network element in advance, and the NEF network element can use the AF ID It is stored in association with the service flow template information, DNN information and/or S-NSSAI information of the target service flow. In this way, when the AF network element sends a two-way delay request to the NEF network element, the two-way delay request does not need to include the target.
  • the service flow template information, DNN information and/or S-NSSAI information of the service flow only needs to carry the AF ID, the first user plane functional side RTT threshold and the first user plane functional side RTT threshold after exceeding the first user plane functional side RTT threshold.
  • the recommended processing method can reduce the amount of data carried in the two-way delay request. According to the AF ID carried in the two-way delay request, the business flow template information and DNN of the corresponding target service flow can be found from the above-mentioned associated storage. information and/or S-NSSAI information, etc., to be sent to the PCF network element.
  • the method provided by the embodiment of this application may include:
  • step 61 the AF network element sends the two-way delay requirement of the target service to the PCF network element.
  • the two-way delay requirement may include the RTT threshold on the functional side of the first user plane, the recommended processing method after the RTT threshold on the functional side of the first user plane is exceeded, the identification information of the AF, and the service flow template of the target service flow. information, DNN of the target business flow and S-NSSAI information, etc.
  • step 62 the PCF network element returns a response message to the AF network element.
  • the AF network element can send a two-way delay request to the PCF network element.
  • the two-way delay request can carry the above two-way delay requirement.
  • the two-way delay request can be authenticated and authenticated, a corresponding response message can be generated, and the response message can be returned to the AF network element.
  • the response message may include indication information indicating whether to agree to the two-way delay request. If the authentication and authentication of the two-way delay request pass, the indication information indicates that the two-way delay request is approved; if the authentication and authentication of the two-way delay request fail. If passed, the indication information indicates that the two-way delay request is rejected, and optionally may also include a rejection reason value.
  • the AF network element can directly send a two-way delay request to the PCF network element, and the two-way delay request carries the RTT threshold value of the first user plane function side, AF ID, and exceeds the The recommended processing method after the RTT threshold on the first user plane functional side, the service flow template information of the target service flow, the DNN of the target service flow, and S-NSSAI information can reduce the interaction between AF network elements and PCF network elements. frequency.
  • Figure 7 is an interactive schematic diagram of the data packet transmission method provided by the embodiment of the present application.
  • the method provided by the embodiment of this application may include:
  • the AF network element sends at least one of AF identification information, service flow template information of the target service, DNN information, and S-NSSAI information to the PCF network element.
  • the PCF network element receives the AF ID sent by the AF network element and at least one of the service flow template information of the target service, DNN information and/or S-NSSAI information, and combines the AF ID with the service flow template information of the target service, At least one of DNN information and/or S-NSSAI information is stored in association.
  • step 72 the AF network element sends the two-way delay requirement of the target service to the PCF network element.
  • the two-way delay requirement may include the first user plane functional side RTT threshold, the recommended processing method after exceeding the first user plane functional side RTT threshold, and the identification information of the AF.
  • the PCF network element can search the above-mentioned associated storage based on the AF ID carried in the two-way delay request to obtain the service flow template information, DNN information and/or S-NSSAI information of the target service flow. wait.
  • step 73 the PCF network element returns a response message to the AF network element.
  • the response message includes indication information whether to agree to the two-way delay request.
  • the AF network element can directly send a two-way delay request to the PCF network element; on the other hand, the PCF network element can obtain the service of the target service flow from the AF network element in advance. Flow template information, DNN information and/or S-NSSAI information, etc.
  • the PCF network element can associate and store the AF ID with the service flow template information, DNN information and/or S-NSSAI information of the target service flow.
  • the two-way delay request does not need to contain the service flow template information, DNN information and/or S-NSSAI information of the target service flow, but only needs to carry the AF ID, first
  • the user plane functional side RTT threshold value and the recommended processing method after exceeding the first user plane functional side RTT threshold value can reduce the amount of data carried in the two-way delay request.
  • the service flow template information, DNN information and/or S-NSSAI information of the corresponding target service flow can be found from the above-mentioned associated storage.
  • the embodiments of Figures 4 to 7 all take the AF network element and the PCF network element to exchange information directly or indirectly through the NEF network element as an example, the application is not limited thereto.
  • the NEF network element The network element can also store the two-way delay requirement information requested by the AF in the Unified Data Repository (UDR) network element, and the PCF network element can receive the two-way delay requirement information from the UDR network element.
  • UDR Unified Data Repository
  • Figure 8 shows a schematic diagram of policy execution on the network side.
  • the UE is used as the terminal device and the base station is used as the network device.
  • the method provided by the embodiment of the present application may include:
  • step 81 the PCF network element generates a first PCC rule and a first QoS detection policy that satisfy the RTT threshold on the first user plane function side.
  • the PCF network element can generate a function-side RTT threshold that satisfies the first user plane based on the two-way delay requirement information.
  • the value of the first PCC rule and the first QoS detection policy can be generated.
  • step 82 the UE initiates the PDU session establishment process, or the UE has established a corresponding PDU session.
  • the UE has established a PDU session for the target service (such as a specific target DNN, target S-NSSAI), or the UE initiates a PDU session establishment process for the target service (such as a specific target DNN, target S-NSSAI) -NSSAI).
  • the SMF network element in the S82 can select UPF1.
  • the PCF network element delivers the first PCC rule and the first QoS detection policy to the SMF network element.
  • step 84 the SMF network element generates first QoS information of the first QoS flow according to the first PCC rule.
  • step 85 the SMF network element sends the first QoS information of the first QoS flow to UPF1 associated with the first QoS flow.
  • UPF1 receives the first QoS information of the first QoS flow sent by the SMF network element, and executes the first QoS information on the target service of the first QoS flow.
  • step 86 the SMF network element generates a QoS detection request for UPF1 according to the first QoS detection policy.
  • the QoS detection request of UPF1 may include the first user plane function side RTT threshold value.
  • step 87 the SMF network element sends a QoS detection request of UPF1 to UPF1 associated with the first QoS flow.
  • step 88 UPF1 performs detection of the first QoS flow and detects the current UPF side RTT between the UE and UPF1.
  • UPF1 sends the target downlink data packet of the target service flow (which can be a detection packet used to detect the current RTT on the UPF side), stamps the timestamp when UPF1 sends the target downlink data packet, and then sends the target downlink data packet to the base station.
  • the base station receives the target downlink data packet and stamps the timestamp when the base station receives the target downlink data packet.
  • the base station then sends the target downlink data packet to the UE and stamps the timestamp when the UE receives the target downlink data packet.
  • the UE then stamps the UE
  • the target downlink data packet receiving the timestamp of the target downlink data packet is sent to the base station as the target uplink data packet.
  • the base station then adds the timestamp of the target uplink data packet received by the base station.
  • the base station then returns the target uplink data packet to UPF1, UPF1 Based on the current time when the target uplink data packet is received and the timestamp on the target uplink data packet, the current UPF side RTT can be calculated.
  • This application does not limit how UPF1 detects and obtains the current UPF-side RTT between the UE and UPF1.
  • UPF1 may report the UPF side RTT timeout message to the PCF network element through the SMF network element.
  • UPF1 when UPF1 detects that the current UPF-side RTT between the UE and UPF1 exceeds the first user plane function side RTT threshold, UPF1 may report a UPF-side RTT timeout message to the PCF network element through the SMF network element.
  • the PCF network element determines a target processing method to satisfy the first UPF side RTT threshold.
  • the PCF network element can detect the current UPF side RTT through UPF1. When it is detected that the current UPF side RTT cannot meet the first user plane function side RTT of the target service flow required by the AF network element. When the threshold value is reached, the PCF network element can ensure the required RTT threshold value of the first user plane function side of the target service flow by determining the target processing method, thereby ensuring that when the transmission quality of the network changes, it can also guarantee The two-way delay requirement on the user plane functional side of the target service flow prevents congestion and lagging problems during the transmission process of the target service flow, and improves the network transmission quality of the target service flow.
  • the method provided by the embodiment of this application may include:
  • the PCF network element separates the uplink and downlink service transmission delays of the first user plane functional side for the first QoS flow from the RTT threshold value of the first user plane functional side, and generates the first PCC rule and the first QoS flow.
  • a QoS detection strategy is used.
  • the PCF network element can obtain the first user plane functional side RTT threshold value in the two-way delay requirement information. Separate the uplink service transmission delay threshold value of the first user plane functional side for the first QoS flow and the downlink service transmission delay threshold value of the first user plane functional side for the first QoS flow, and generate a method that satisfies the first The first PCC rule of the RTT threshold value on the user plane functional side and the first QoS detection policy, where the first PCC rule may include the uplink service transmission delay threshold value and the first QoS flow on the first user plane functional side. A downlink service transmission delay threshold value for the first QoS flow on the user plane functional side.
  • the uplink service transmission delay threshold value of the first user plane functional side for the first QoS flow may not be equal to the downlink service transmission delay threshold value of the first user plane functional side for the first QoS flow
  • the specific method of splitting the RTT threshold value on the functional side of the first user plane can be considered based on factors such as network routing, network policies, business requirements, network conditions, etc. This application does not limit this.
  • the embodiment of the present application can flexibly configure network policies according to network conditions by dividing the RTT threshold value on the first user plane functional side into non-equal or equal parts.
  • step 92 the UE initiates the PDU session establishment process, or the UE has established a corresponding PDU session.
  • the UE has established a PDU session for the target service (such as a specific target DNN, target S-NSSAI), or the UE initiates a PDU session establishment process for the target service (such as a specific target DNN, target S-NSSAI) -NSSAI).
  • a PDU session for the target service such as a specific target DNN, target S-NSSAI
  • a PDU session establishment process for the target service such as a specific target DNN, target S-NSSAI
  • step 93 the PCF network element delivers the first PCC rule and the first QoS detection policy to the SMF network element.
  • step 94 the SMF network element generates first QoS information of the first QoS flow according to the first PCC rule.
  • the first QoS information of the first QoS flow satisfies the uplink service transmission delay threshold and the downlink service transmission delay threshold for the first QoS flow on the first user plane function side in the QoS rule.
  • step 95 the SMF network element sends the first QoS information of the first QoS flow to UPF1.
  • UPF1 receives the first QoS information of the first QoS flow sent by the SMF network element.
  • step 96 the SMF network element generates a QoS detection request for UPF1 according to the first QoS detection policy.
  • the QoS detection request of UPF1 may include the first user plane function side RTT threshold value.
  • step 97 the SMF network element sends the QoS detection request of UPF1 to UPF1.
  • step 98 UPF1 performs detection of the first QoS flow and detects the current UPF side RTT.
  • UPF1 may report the UPF side RTT timeout message to the PCF network element through the SMF network element.
  • step 910 the PCF network element determines a target processing method to satisfy the first user plane functional side RTT threshold.
  • the PCF network element when the PCF network element receives the two-way delay requirement information directly or indirectly sent by the AF network element, the PCF network element can obtain the first user plane function from the two-way delay requirement information.
  • the RTT threshold is divided into the uplink service transmission delay threshold value of the first user plane functional side for the first QoS flow and the downlink service transmission delay threshold value of the first user plane functional side for the first QoS flow. Therefore, the PCF network element can generate the first PCC rule and the first QoS detection policy that meet the RTT threshold value of the first user plane functional side, where the first PCC rule can include the uplink of the first user plane functional side for the first QoS flow.
  • the service transmission delay threshold value and the downlink service transmission delay threshold value of the first user plane function side for the first QoS flow, so that the SMF network element can generate the first user plane that satisfies the QoS rule according to the first PCC rule.
  • the functional side provides first QoS information of the first QoS flow for the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the first QoS flow.
  • the method provided by the embodiment of this application may include:
  • the PCF network element separates the first air interface RTT threshold value from the first user plane functional side RTT threshold value, and generates the first PCC rule sum that satisfies the first user plane functional side RTT threshold value.
  • the first QoS detection strategy, and the second PCC rule and the second QoS detection strategy that meet the first air interface RTT threshold.
  • the first air interface RTT threshold is smaller than the first user plane functional side RTT threshold.
  • How the PCF network element obtains the first air interface RTT threshold from the first user plane functional side RTT threshold can be considered based on network routing, network policies, service requirements, network conditions, etc.
  • the first air interface RTT threshold between the UE and the base station can be set to 15ms; if the core network delay is large, The first air interface RTT threshold can be divided into 10ms.
  • step 102 the UE initiates the PDU session establishment process, or the UE has established a corresponding PDU session.
  • the UE has established a PDU session for the target service (such as a specific target DNN, target S-NSSAI), or the UE initiates a PDU session establishment process for the target service (such as a specific target DNN, target S-NSSAI) -NSSAI).
  • a PDU session for the target service such as a specific target DNN, target S-NSSAI
  • a PDU session establishment process for the target service such as a specific target DNN, target S-NSSAI
  • the PCF network element delivers the first PCC rule and the first QoS detection policy, and the second PCC rule and the second QoS detection policy to the SMF network element.
  • the second PCC rule and the second QoS detection policy may be parts of the first PCC rule and the first QoS detection policy respectively, or may be different parts of one rule, which is not limited in this application.
  • step 104 the SMF network element generates first QoS information of the first QoS flow according to the first PCC rule, and generates QoS configuration file information of the first QoS flow according to the second PCC rule.
  • the QoS profile information of the first QoS flow may include the first air interface RTT threshold value.
  • the SMF network element can determine the QoS Profile (configuration) file information of the first QoS flow of the transmission target service flow according to the second PCC rule, and the SMF network element can send the QoS Profile file information of the first QoS flow to the base station to
  • the base station is configured to configure the first QoS flow based on the QoS Profile information of the first QoS flow, and schedule the UE to transmit the target data packet of the target service flow corresponding to the first QoS flow.
  • step 105a the SMF network element sends the first QoS information of the first QoS flow to UPF1.
  • UPF1 receives the first QoS information of the first QoS flow sent by the SMF network element.
  • step 105b the SMF network element sends the QoS profile information of the first QoS flow to the base station.
  • the SMF network element may also send the updated QoS profile information of the first QoS flow to the base station.
  • the SMF network element In step 106, the SMF network element generates a QoS detection request for UPF1 according to the first QoS detection policy, and generates a QoS detection request for the base station according to the second QoS detection policy.
  • step 107a the SMF network element sends the QoS detection request of UPF1 to UPF1.
  • step 107b the SMF network element sends the base station's QoS detection request to the base station.
  • step 108a UPF1 performs detection of the first QoS flow and detects the current UPF side RTT.
  • step 108b the base station performs detection of the first QoS flow and detects the current air interface RTT between the UE and the base station.
  • the base station can detect the current air interface RTT between the UE and the base station based on the timestamp carried on the received target uplink data packet or target downlink data packet.
  • this application does not limit the base station to detect the current air interface RTT. The way.
  • step 109a UPF1 reports the UPF side RTT timeout message to the PCF network element through the SMF network element.
  • step 109b when the base station detects that the current air interface RTT exceeds the first air interface RTT threshold, it may report the air interface RTT timeout message to the PCF network element through the AMF network element and the SMF network element in sequence.
  • the PCF network element determines a target processing method to satisfy the first user plane functional side RTT threshold and/or the first air interface RTT threshold.
  • the PCF network element when the PCF network element receives the reported UPF side RTT timeout message and/or air interface RTT timeout message, the PCF network element can determine the target processing method based on the UPF side RTT timeout message and/or air interface RTT timeout message, so as to Meet the first user plane functional side RTT threshold and/or the first air interface RTT threshold.
  • the PCF network element can set the first user plane function side RTT in the two-way delay requirement information. Split the first air interface RTT threshold value from the threshold value, and generate the first PCC rule and the first QoS detection policy that satisfy the first user plane function side RTT threshold value, and generate the first air interface RTT threshold value that meets the first air interface RTT threshold value.
  • the second PCC rule and the second QoS detection policy allow the SMF network element to further generate a QoS detection request sent to UPF1 according to the first PCC rule and the first QoS detection policy respectively.
  • the QoS detection strategy generates a QoS detection request sent to the base station, which can not only detect whether the current UPF side RTT between the UE and UPF1 exceeds the first user plane functional side RTT threshold, but also detect the current UPF side RTT between the UE and the base station. Whether the air interface RTT exceeds the first air interface RTT threshold.
  • the method provided by the embodiment of this application may include:
  • the PCF network element splits the first air interface RTT threshold value from the first user plane functional side RTT threshold value, and then splits the air interface RTT threshold value for the first QoS flow from the first air interface RTT threshold value.
  • uplink and downlink service transmission delay thresholds and generate the first PCC rule and the first QoS detection policy that meet the first user plane functional side RTT threshold, and the second PCC that meets the first air interface RTT threshold. Rules and second QoS detection policy.
  • the second PCC rule may include an uplink service transmission delay threshold value and a downlink service transmission delay threshold value of the air interface for the first QoS flow.
  • the PCF network element splits the RTT value of the first air interface into the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface for the first QoS flow as an example An example is provided, but the application is not limited thereto.
  • the PCF network element may also send the first air interface RTT value to a network device such as a base station, and the base station splits the first air interface RTT value into air interface The uplink service transmission delay threshold and the downlink service transmission delay threshold of the first QoS flow.
  • step 112 the UE initiates the PDU session establishment process, or the UE has established a corresponding PDU session.
  • the UE has established a PDU session for the target service (such as a specific target DNN, target S-NSSAI), or the UE initiates the establishment of a PDU session for the target service (such as a specific target DNN, target S-NSSAI). NSSAI).
  • a PDU session for the target service such as a specific target DNN, target S-NSSAI
  • NSSAI NSSAI
  • the PCF network element delivers the first PCC rule and the first QoS detection policy, and the second PCC rule and the second QoS detection policy to the SMF network element.
  • step 114 the SMF network element generates first QoS information of the first QoS flow according to the first PCC rule, and generates QoS configuration file information of the first QoS flow according to the second PCC rule.
  • the first QoS flow satisfies the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface for the first QoS flow in the QoS configuration file information.
  • step 115a the SMF network element sends the first QoS information of the first QoS flow to UPF1.
  • UPF1 receives the first QoS information of the first QoS flow sent by the SMF network element.
  • step 115b the SMF network element sends the QoS profile information of the first QoS flow to the base station.
  • the SMF network element In step 116, the SMF network element generates a QoS detection request for UPF1 according to the first QoS detection policy, and generates a QoS detection request for the base station according to the second QoS detection policy.
  • step 117a the SMF network element sends the QoS detection request of UPF1 to UPF1.
  • the QoS detection request of UPF1 may include the first user plane functional side RTT threshold and related indication information for reporting when it is detected that the first user plane functional side RTT threshold is exceeded.
  • step 117b the SMF network element sends the base station's QoS detection request to the base station.
  • the base station's QoS detection request may include the first air interface RTT threshold and related indication information for reporting when it is detected that the first air interface RTT threshold is exceeded.
  • step 118a UPF1 performs detection of the first QoS flow and detects the current UPF side RTT.
  • step 118b the base station performs detection of the first QoS flow and detects the current air interface RTT.
  • step 119a UPF1 reports the UPF side RTT timeout message to the PCF network element through the SMF network element.
  • step 119b when the base station detects that the current air interface RTT exceeds the first air interface RTT threshold, it sequentially reports the air interface RTT timeout message to the PCF network element through the AMF network element and the SMF network element.
  • the current air interface RTT may include the current air interface uplink delay and the current air interface downlink delay.
  • the base station can report an air interface RTT timeout message to the PCF network element, and the air interface RTT timeout message can include the current air interface uplink delay and /or the current air interface downlink delay.
  • the PCF network element determines a target processing method to satisfy the first user plane functional side RTT threshold and/or the first air interface RTT threshold.
  • the PCF network element when the PCF network element receives the two-way delay requirement information sent directly or indirectly by the AF network element, the PCF network element can split it from the first user plane functional side RTT threshold value.
  • the first air interface RTT threshold value is obtained, and the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface for the first QoS flow can be further split from the first air interface RTT threshold value. and further generate a second PCC rule and a second QoS detection policy that satisfy the first air interface RTT threshold, where the second PCC rule may include an uplink service transmission delay threshold and a downlink service transmission time of the air interface for the first QoS flow. delay threshold value.
  • the PCF network element can split the first user from the first user plane functional side RTT threshold value.
  • the uplink service transmission delay threshold value and the downlink service transmission delay threshold value for the first quality of service flow on the plane function side can also be separated from the first user plane function side RTT threshold value.
  • the air interface RTT threshold can further be separated from the first air interface RTT threshold into the air interface's uplink service transmission delay threshold and downlink service transmission delay threshold for the first QoS flow.
  • the method provided by the embodiment of this application may include:
  • the PCF network element adjusts the first user plane functional side RTT threshold, obtains the second user plane functional side RTT threshold, and generates a third PCC rule that satisfies the second user plane functional side RTT threshold. and third QoS detection strategy.
  • the second user plane functional side RTT threshold value is greater than the first user plane functional side RTT threshold value
  • step 122 the PCF network element delivers the third PCC rule and the third QoS detection policy to the SMF network element.
  • step 123 the SMF network element generates second QoS information of the first QoS flow according to the third PCC rule.
  • step 124 the SMF network element sends the second QoS information of the first QoS flow to UPF1.
  • UPF1 receives the second QoS information of the first QoS flow sent by the SMF network element.
  • step 125 the SMF network element generates an updated QoS detection request for UPF1 according to the third QoS detection policy.
  • step 126 the SMF network element sends the updated QoS detection request of UPF1 to UPF1.
  • step 127 UPF1 performs detection of the first QoS flow and detects the current UPF side RTT.
  • UPF1 receives the updated QoS detection request of UPF1 sent by the SMF network element. According to the updated QoS detection request of UPF1, UPF1 performs the detection of the first QoS flow and detects the current UPF side RTT.
  • step 1208 UPF1 reports the UPF side RTT timeout message to the PCF network element through the SMF network element.
  • UPF1 when UPF1 detects that the current UPF-side RTT exceeds the second user plane functional side RTT threshold, UPF1 reports a UPF-side RTT timeout message to the PCF network element through the SMF network element.
  • the UPF-side RTT timeout message may include information that exceeds the second user plane functional side RTT threshold.
  • the current UPF side RTT of the second user plane functional side RTT threshold value when UPF1 detects that the current UPF-side RTT exceeds the second user plane functional side RTT threshold, UPF1 reports a UPF-side RTT timeout message to the PCF network element through the SMF network element.
  • the UPF-side RTT timeout message may include information that exceeds the second user plane functional side RTT threshold.
  • the current UPF side RTT of the second user plane functional side RTT threshold value when UPF1 detects that the current UPF-side RTT exceeds the second user plane functional side RTT threshold.
  • the UE may initiate a PDU session update procedure.
  • the UE can initiate a PDU session update process.
  • the SMF network element reselects a new second UPF network element (i.e., Figure UPF2 in Figure 12) to replace UPF1.
  • the PCF network element In step 1210, the PCF network element generates a fourth PCC rule and a fourth QoS detection policy that satisfy the second user plane function side RTT threshold.
  • the PCF network element delivers the fourth PCC rule and the fourth QoS detection policy to the SMF network element.
  • step 1212 the SMF network element generates third QoS information of the first QoS flow according to the fourth PCC rule.
  • step 1213 the SMF network element sends the third QoS information of the first QoS flow to UPF2.
  • UPF2 receives the third QoS information of the first QoS flow sent by the SMF network element.
  • step 1214 the SMF network element generates a QoS detection request for UPF2 according to the fourth QoS detection policy.
  • step 1215 the SMF network element sends the QoS detection request of UPF2 to UPF2.
  • UPF2 performs detection of the first QoS flow and detects the current UPF-side RTT between the UE and UPF2.
  • UPF2 receives the QoS detection request of UPF2 sent by the SMF network element. According to the QoS detection request of UPF2, UPF2 performs the detection of the first QoS flow and detects the current UPF-side RTT between the UE and UPF2.
  • the target service flow can be transmitted on the UPF2; if UPF2 detects that the current UPF-side RTT between the UE and UPF2 If the current UPF side RTT is greater than the second user plane functional side RTT threshold, you can continue to increase the second user plane functional side RTT threshold to obtain the third user plane functional side RTT threshold.
  • UPF2 re-detects UE and UPF2 Whether the current RTT on the UPF side exceeds the RTT threshold on the third user plane function side, and so on, until a target UPF network element that meets the two-way delay request is found for transmitting the target service flow, or no target UPF network element is found that satisfies the two-way delay request. If the requested target UPF network element is delayed, the transmission of the target service flow will be interrupted.
  • the corresponding target can be determined processing methods to try to meet the two-way delay requirements proposed by AF network elements.
  • One of the ways to meet this requirement is to gradually increase the RTT threshold on the functional side of the first user plane until the network most suitable for transmitting the target service flow is found.
  • Figure 13 is a flow chart of a data packet transmission method provided by an embodiment of the present application.
  • the method provided in the embodiment of Figure 13 can be executed by the PCF network element, but the present application is not limited thereto.
  • the method provided by the embodiment of this application may include:
  • step 1310 a two-way delay request for the target service flow sent by the application function network element is received, where the two-way delay request includes a first user plane functional side two-way delay value.
  • step 1320 when the two-way delay request is agreed to, the first policy charging control rule and the first service quality detection policy of the target service flow that meets the first user plane functional side two-way delay threshold value are generated, and the first service The quality inspection strategy includes the first user plane functional side two-way delay threshold value.
  • generating the first policy charging control rule for the target service flow that meets the first user plane functional side two-way delay threshold value may include: according to the first user plane functional side two-way delay threshold value , determine the uplink service transmission delay threshold value and downlink service transmission delay threshold value of the first user plane functional side for the first quality of service flow; according to the uplink service transmission of the first user plane functional side for the first quality of service flow.
  • the delay threshold value and the downlink service transmission delay threshold value generate a first policy charging control rule.
  • the first policy charging control rule may include an uplink service transmission delay threshold value and a downlink service transmission delay threshold value for the first quality of service flow on the first user plane functional side.
  • the sum of the uplink service transmission delay threshold and the downlink service transmission delay threshold on the first user plane functional side for the first quality of service flow may be less than or equal to the two-way delay threshold on the first user plane functional side.
  • the first quality of service flow can satisfy the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the first user plane function side for the first quality of service flow in the first quality of service information.
  • the uplink service transmission delay threshold value for the first quality of service flow on the first user plane functional side may be equal to or not equal to the downlink service transmission delay threshold value.
  • step 1330 the first policy charging control rule and the first quality of service detection policy are sent to the session management function network element.
  • the first policy control rule may be used to instruct the session management function network element to generate the first quality of service information of the first quality of service flow to the first user plane function network element.
  • the first service quality detection policy may be used to instruct the session management function network element to generate a service quality detection request of the first user plane function network element, and send the service quality detection request of the first user plane function network element to the first user plane function network element.
  • User plane functional network element may be used to instruct the session management function network element to generate a service quality detection request of the first user plane function network element, and send the service quality detection request of the first user plane function network element to the first user plane function network element.
  • the service quality detection request of the first user plane functional network element can be used to instruct the first user plane functional network element to detect the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element, When it is determined that the current two-way delay on the functional side of the user plane exceeds the first two-way delay threshold on the functional side of the user plane, a user plane functional side two-way delay timeout message is reported.
  • the two-way delay timeout message on the user plane functional side can be used to instruct the policy control function network element to determine the target processing method for the target service flow to meet the two-way delay request.
  • step 1340 a user plane functional side two-way delay timeout message sent by the first user plane functional network element is received.
  • step 1350 the target processing method for the target service flow is determined according to the two-way delay timeout message on the user plane functional side to satisfy the two-way delay request.
  • the two-way delay request may also include a recommended processing method after the two-way delay threshold value on the first user plane functional side is exceeded.
  • determining the target processing method for the target service flow to satisfy the two-way delay request based on the two-way delay timeout message on the user plane functional side may include: controlling the local policy of the functional network element according to the recommended processing method and/or the policy, Determine the target processing method for the target business flow.
  • the method provided by the embodiment of the present application may further include: determining the first air interface bidirectional delay threshold value according to the first user plane functional side bidirectional delay threshold value; generating a first air interface bidirectional delay threshold value that satisfies the first air interface bidirectional delay threshold value;
  • the second policy charging control rule and the second service quality detection policy of the target service flow with the delay threshold value may include the first air interface two-way delay threshold value; the second policy charging control rule and the second service quality detection policy is sent to the session management function network element.
  • the second policy charging control rule may be used to instruct the session management function network element to generate the quality of service profile information of the first quality of service flow, and send the quality of service profile information of the first quality of service flow to the network device.
  • the second service quality detection policy may be used to instruct the session management function network element to generate a service quality detection request of the network device, and send the service quality detection request of the network device to the network device.
  • the service quality detection request of the network device can be used to instruct the network device to detect the current air interface two-way delay of the target service flow between the terminal and the network device, and determine that the current air interface two-way delay exceeds the first air interface two-way delay threshold When the value is set, an air interface two-way delay timeout message is reported.
  • the method provided by the embodiment of the present application may also include: receiving an air interface two-way delay timeout message reported by the network device through the session management function network element.
  • generating a second policy charging control rule for a target service flow that satisfies the first air interface two-way delay threshold may include: determining, based on the first air interface two-way delay threshold, that the air interface is The uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the service quality flow; the first quality of service flow is generated according to the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface. 2. Policy charging control rules.
  • the second policy charging control rule may include an uplink service transmission delay threshold value and a downlink service transmission delay threshold value of the air interface for the first quality of service flow.
  • the sum of the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface for the first quality of service flow is less than or equal to the first air interface two-way delay threshold value.
  • the first quality of service flow can satisfy the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface for the first quality of service flow in the quality of service profile information.
  • the uplink service transmission delay threshold value of the air interface for the first quality of service flow may be equal to or not equal to the downlink service transmission delay threshold value.
  • the user plane functional side two-way delay timeout message may include the current user plane functional side two-way delay that exceeds the first user plane functional side two-way delay threshold value.
  • target processing methods can include:
  • the current user plane functional side two-way delay that exceeds the first user plane functional side two-way delay threshold adjust the first user plane functional side two-way delay threshold to obtain the second user plane functional side two-way delay threshold.
  • the two-way delay threshold value of the second user plane functional side is greater than the two-way delay threshold value of the first user plane functional side;
  • the update process of the protocol data unit session is initiated. , to reselect the second user plane functional network element;
  • the second user plane functional network element is used. Metatransmission target business flow.
  • the target processing method may include at least one of the following:
  • Adjust the service quality rules and service quality profile information of the target business flow obtain the updated service quality rules and service quality profile information, and send the updated service quality rules and service quality profile information to the terminal and network device respectively ;
  • the PCF network element can determine the processing method when it detects that the current UPF side RTT exceeds the first user plane functional side RTT threshold according to the recommended processing method provided by the AF network element and/or the local policy of the PCF network element.
  • Target processing method which may be at least one of the following:
  • the PCF network element can adjust the configuration parameters of the base station to meet the first user plane functional side RTT threshold.
  • the specific configuration parameters of the base station to be adjusted and how to adjust the configuration parameters of the base station can be determined based on actual business needs, and are not limited in this application.
  • the AF network element can advise the PCF network element to initiate a protocol data unit (Protocol Data Unit, PDU) session update process when it learns that the current UPF side RTT between the UE and the UPF1 side exceeds the first user plane functional side RTT threshold.
  • PDU Protocol Data Unit
  • UPF2 protocol Data Unit
  • the specific detection process can refer to UPF1.
  • the PDU session update process can be continued, and a new third UPF network element can be selected to replace the UPF2, and the above process can be repeated. , until the target UPF network element that meets the RTT threshold on the first user plane function side is found, then the target service flow is transmitted on the path of the target UPF network element.
  • the AF network element can advise the PCF network element to adjust the QoS rules, QoS profile information and QoS information of the target service flow when learning that the current UPF side RTT between the UE and the UPF1 side exceeds the first UPF side RTT threshold, and obtain The updated QoS rules, QoS profile information and QoS information are sent to the UE, the updated QoS profile information is sent to the base station, the updated QoS information is sent to UPF1, and then based on the The updated QoS rules transmit the target business flow to meet the target business flow.
  • the specific method of adjusting the QoS rules can be determined based on actual business needs, and this application does not limit this.
  • the AF network element may advise the PCF network element that when it is learned that the current UPF side RTT between the UE and the UPF1 side exceeds the first user plane functional side RTT threshold, it may increase the first user plane functional side according to the current UPF side RTT.
  • the RTT threshold is the RTT threshold on the functional side of the second user plane. For example, assuming that the RTT threshold on the functional side of the first user plane is 20ms, the PCF network element can set the RTT threshold on the functional side of the second user plane to 30ms. , UPF1 re-detects the current UPF-side RTT between the UE and UPF1 based on the new second user plane function-side RTT threshold value.
  • the current UPF-side RTT between the UE and UPF1 is less than or equal to 30ms, it can still use the The path where UPF1 is located transmits the target service flow, so that the target service flow can continue to be transmitted on UPF1 that meets 30ms, avoiding the impact of directly interrupting the transmission of the target service flow on users; if the current UPF side between UE and UPF1 If the RTT is greater than 30ms, you can initiate the PDU session update process, reselect the new UPF2 to replace the UPF1, and then re-check whether the second user plane function side RTT threshold is met on the new UPF2.
  • the target service flow can be transmitted on the path where the UPF2 is located; if the new UPF2 still does not meet the second user plane functional side RTT threshold, then the target service flow can be transmitted on the path where the UPF2 is located.
  • the target service flow continues to initiate the PDU session update process, reselect a new third UPF network element to replace UPF2, and repeat the above process until a target UPF network element that meets the RTT threshold on the second user plane functional side is found. Then, in the target UPF network The target service flow is transmitted along the path of the element.
  • the AF network element may advise the PCF network element that when it is learned that the current UPF-side RTT on the UE and UPF1 sides exceeds the first user plane function side RTT threshold, the first user plane function may be increased based on the current UPF side RTT.
  • the side RTT threshold is the second user plane functional side RTT threshold. For example, assuming that the first user plane functional side RTT threshold is 20ms, the PCF network element can set the second user plane functional side RTT threshold to 30ms, UPF1 re-detects the current UPF-side RTT between the UE and UPF1 based on the new second user plane function-side RTT threshold.
  • the PCF network element can continue Increase the second user plane functional side RTT threshold, for example, obtain the third user plane functional side RTT threshold to 40ms, and UPF1 re-detects the relationship between UE and UPF1 based on the new third user plane functional side RTT threshold. If the current UPF-side RTT between the UE and UPF1 is less than or equal to 40ms, the target service flow can still be transmitted on the path where the UPF1 is located, and the target service flow can be transmitted on the UPF1 that satisfies 40ms. Continue transmission to avoid the impact on users caused by directly interrupting the transmission of the target service flow.
  • the target service flow can be interrupted to avoid wasting network transmission resources; if the target service flow is switched to Ordinary service flows can also continue to be applied in actual scenarios, and the target service flow can be switched to a network where the RTT threshold value on the user plane functional side is, for example, 300ms for ordinary service flows.
  • the PCF network element can also directly interrupt the transmission of the target service flow.
  • the target processing method can also be a combination of adjusting the RTT threshold on the first user plane function side and reselecting the second UPF network element, for example:
  • the current user plane functional side two-way delay that exceeds the first user plane functional side two-way delay threshold adjust the first user plane functional side two-way delay threshold to obtain the second user plane functional side two-way delay threshold.
  • the two-way delay threshold value of the second user plane functional side is greater than the two-way delay threshold value of the first user plane functional side;
  • the update process of the protocol data unit session is initiated. , to reselect the second user plane functional network element;
  • the second user plane When it is determined that the current user plane functional side two-way delay of the target service flow between the terminal and the second user plane functional network element does not exceed the second user plane functional side two-way delay threshold value, the second user plane is used Functional network elements transmit target service flows.
  • the PCF network element After the PCF network element receives the suggested processing method provided by the AF network element, it can use one or more of the recommended processing methods provided by the AF network element as the target processing method, or it can also adopt one or more of its local policies. As the target processing method, or the recommended processing method provided by the AF network element and its local policy can be comprehensively considered to determine the target processing method. When the recommended processing method provided by the AF network element conflicts with its local policy, its local policy can be used as the target.
  • the processing method is not limited in this application.
  • the PCF network element when the target processing method determined by the PCF network element is inconsistent with the recommended processing method proposed by the AF network element, the PCF network element can send a notification message to the AF network element to inform that the recommended processing method proposed by the AF network element cannot be satisfied. And can further inform the AF network element of the actual target processing method that can be adopted.
  • Figure 14 is a flow chart of a data packet transmission method provided by an embodiment of the present application.
  • the method provided in the embodiment of Figure 14 can be executed by the SMF network element, but the present application is not limited thereto.
  • the method provided by the embodiment of this application may include:
  • step 1410 receive the first policy charging control rule and the first quality of service detection policy for the target service flow that meets the first user plane functional side two-way delay threshold sent by the policy control function network element, and the first quality of service
  • the detection strategy may include a first user plane functional side two-way delay value.
  • step 1420 first quality of service information of the first quality of service flow is generated according to the first policy charging control rule, and the first quality of service information of the first quality of service flow is sent to the first user plane functional network element.
  • a service quality detection request of the first user plane functional network element is generated according to the first service quality detection policy, and the service quality detection request of the first user plane functional network element is sent to the first user plane functional network element.
  • step 1440 a user plane functional side two-way delay timeout message is received.
  • step 1450 the user plane function side two-way delay timeout message is reported to the policy control function network element.
  • Figure 15 is a flow chart of a data packet transmission method provided by an embodiment of the present application.
  • the method provided in the embodiment of Figure 15 can be executed by the first user plane functional network element, but the present application is not limited thereto.
  • the method provided by the embodiment of this application may include:
  • step 1510 receive the first quality of service information of the first quality of service flow of the target service flow sent by the session management function network element.
  • step 1520 the service quality detection request of the first user plane function network element sent by the session management function network element is received.
  • step 1530 based on the service quality detection request of the first user plane functional network element, the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element is detected.
  • step 1540 it is determined that the current two-way delay on the functional side of the user plane exceeds the first two-way delay threshold on the functional side of the user plane.
  • step 1550 the user plane function side two-way delay timeout message is reported to the policy control function network element through the session management function network element.
  • Figure 16 is a flow chart of a data packet transmission method provided by an embodiment of the present application.
  • the method provided in the embodiment of Figure 16 can be executed by a network device, but the present application is not limited thereto.
  • the method provided by the embodiment of this application may include:
  • step 1610 the service quality profile information of the first quality of service flow of the target service flow sent by the session management function network element is received.
  • step 1620 receive the service quality detection request of the network device sent by the session management function network element.
  • step 1630 the current air interface two-way delay of the target service flow between the terminal and the network device is detected according to the service quality detection request of the network device.
  • step 1640 it is determined that the current air interface two-way delay exceeds the first air interface two-way delay threshold, and the first air interface two-way delay threshold is less than the first user plane functional side two-way delay threshold.
  • step 1650 the air interface two-way delay timeout message is reported to the policy control function network element through the session management function network element.
  • Figure 17 is a block diagram of an application function network element provided by an embodiment of the present application.
  • the application function network element 1700 provided by the embodiment of the present application may include a sending unit 1710 and a receiving unit 1720.
  • the sending unit 1710 is configured to send a two-way delay request of the target service flow to the policy control function network element.
  • the two-way delay request may include a first user plane functional side two-way delay threshold value.
  • the receiving unit 1720 is configured to receive a response message to the two-way delay request.
  • the response message may include indication information of whether to agree to the two-way delay request.
  • the receiving unit 1720 may be further configured to: receive a two-way delay timeout message.
  • Figure 18 is a block diagram of a policy control function network element provided by an embodiment of the present application.
  • the policy control function network element 1800 may include a receiving unit 1810, a processing unit 1820, and a sending unit 1830.
  • the receiving unit 1810 may be configured to receive a two-way delay request for the target service flow sent by the application function network element, and the two-way delay request may include a first user plane functional side two-way delay value.
  • the processing unit 1820 may be configured to, when agreeing to the two-way delay request, generate the first policy charging control rule and the first quality of service detection policy for the target service flow that meets the first user plane functional side two-way delay threshold, the first The service quality detection policy may include a first user plane functional side two-way delay threshold value.
  • the sending unit 1830 may be configured to send the first policy charging control rule and the first quality of service detection policy to the session management function network element.
  • the receiving unit 1810 may be further configured to receive the user plane functional side two-way delay timeout message sent by the first user plane functional network element.
  • the processing unit 1820 may also be configured to determine a target processing method for the target service flow according to the user plane functional side two-way delay timeout message to satisfy the two-way delay request.
  • the processing unit 1820 may also be configured to: determine the uplink service transmission delay threshold of the first user plane functional side for the first quality of service flow according to the two-way delay threshold value of the first user plane functional side. value and the downlink service transmission delay threshold value; generate the first policy charging control rule according to the uplink service transmission delay threshold value and the downlink service transmission delay threshold value for the first quality of service flow on the first user plane functional side , the first policy charging control rule may include an uplink service transmission delay threshold value and a downlink service transmission delay threshold value for the first quality of service flow on the first user plane functional side.
  • the processing unit 1820 may also be configured to determine a target processing method for the target service flow according to the recommended processing method and/or the local policy of the policy control function network element.
  • the processing unit 1820 may also be configured to: determine the first air interface two-way delay threshold value according to the first user plane functional side two-way delay threshold value; and generate a generator that satisfies the first air interface two-way delay threshold value.
  • the second policy charging control rule and the second quality of service detection policy of the target service flow of the value, and the second quality of service detection policy may include a first air interface two-way delay threshold value.
  • the sending unit 1830 may also be configured to: send the second policy charging control rule and the second quality of service detection policy to the session management function network element.
  • the receiving unit 1810 may also be configured to: receive the air interface two-way delay timeout message reported by the network device through the session management function network element.
  • the processing unit 1820 may be further configured to: determine the uplink service transmission delay threshold and the downlink service transmission delay gate of the air interface for the first quality of service flow according to the first air interface two-way delay threshold. limit; generate a second policy charging control rule based on the uplink service transmission delay threshold value and the downlink service transmission delay threshold value of the air interface for the first quality of service flow.
  • the second policy charging control rule may include the air interface for the first quality of service flow. 1.
  • Figure 19 is a block diagram of a session management function network element provided by an embodiment of the present application.
  • the session management function network element 1900 may include a receiving unit 1910, a processing unit 1920, and a sending unit 1930.
  • the receiving unit 1910 may be configured to receive the first policy charging control rule and the first service quality detection policy of the target service flow that meets the first user plane functional side two-way delay threshold sent by the policy control function network element, and the first service The quality detection policy may include a first user plane functional side two-way delay value.
  • the processing unit 1920 may be configured to generate first quality of service information of the first quality of service flow according to the first policy charging control rule.
  • the sending unit 1930 may be configured to send the first quality of service information of the first quality of service flow to the first user plane functional network element.
  • the processing unit 1920 may be further configured to generate a service quality detection request for the first user plane functional network element according to the first service quality detection policy.
  • the sending unit 1930 may also be configured to send the service quality detection request of the first user plane functional network element to the first user plane functional network element.
  • the receiving unit 1910 may also be configured to receive the user plane functional side two-way delay timeout message.
  • the sending unit 1930 may also be configured to report the user plane function side two-way delay timeout message to the policy control function network element.
  • the receiving unit 1910 may be further configured to: receive a second policy charging control rule and a second quality of service detection policy that satisfy the first air interface two-way delay threshold from the policy control function network element.
  • the processing unit 1920 may be further configured to generate quality of service profile information of the first quality of service flow according to the second policy charging control rule.
  • the sending unit 1930 may be further configured to send the quality of service profile information of the first quality of service flow to the network device.
  • the processing unit 1920 may be further configured to generate a service quality detection request of the network device according to the second quality of service detection policy.
  • the sending unit 1930 may also be configured to send the service quality detection request of the network device to the network device.
  • the receiving unit 1910 may also be configured to receive the air interface two-way delay timeout message.
  • the sending unit 1930 may also be configured to send the air interface two-way delay timeout message to the policy control function network element.
  • Figure 20 is a block diagram of a first user plane functional network element provided by an embodiment of the present application.
  • the first user plane functional network element 2000 provided by the embodiment of the present application may include a receiving unit 2010, a processing unit 2020, and a sending unit 2030.
  • the receiving unit 2010 may be configured to receive the first quality of service information of the first quality of service flow of the target service flow sent by the session management function network element.
  • the receiving unit 2010 may also be configured to receive a service quality detection request of the first user plane functional network element sent by the session management functional network element.
  • the processing unit 2020 may be configured to detect the current user plane functional side two-way delay of the target service flow between the terminal and the first user plane functional network element according to the service quality detection request of the first user plane functional network element.
  • the processing unit 2020 may also be configured to determine that the current two-way delay on the functional side of the user plane exceeds the first two-way delay threshold on the functional side of the user plane.
  • the sending unit 2030 may be configured to report the user plane function side two-way delay timeout message to the policy control function network element through the session management function network element.
  • Figure 21 is a block diagram of a network device provided by an embodiment of the present application.
  • the network device 2100 may include a receiving unit 2110, a processing unit 2120, and a sending unit 2130.
  • the receiving unit 2110 may be configured to receive the quality of service profile information of the first quality of service flow of the target service flow sent by the session management function network element.
  • the receiving unit 2110 may also be configured to receive a service quality detection request of the network device sent by the session management function network element.
  • the processing unit 2120 may be configured to detect the current air interface two-way delay of the target service flow between the terminal and the network device according to the service quality detection request of the network device.
  • the processing unit 2120 may also be configured to determine that the current air interface two-way delay exceeds a first air interface two-way delay threshold, and the first air interface two-way delay threshold may be less than the first user plane functional side two-way delay threshold.
  • the sending unit 2130 may be configured to report the air interface two-way delay timeout message to the policy control function network element through the session management function network element.
  • FIG 22 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal, such as a UE, or a network device such as a base station, or may be a PCF network element and/or an NEF network element and/or an AF network element and/or an AMF network element and/or an SMF network element and/or Or a UPF network element (which may include the above-mentioned UPF1 and UPF2).
  • the communication device 2200 shown in Figure 22 includes a processor 2210.
  • the processor 2210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 2200 may also include memory 2220.
  • the processor 2210 can call and run the computer program from the memory 2220 to implement the method in the embodiment of the present application.
  • the memory 2220 may be a separate device independent of the processor 2210, or may be integrated into the processor 2210.
  • the communication device 2200 may also include a transceiver 2230, and the processor 2210 may control the transceiver 2230 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 2230 may include a transmitter and a receiver.
  • the transceiver 2230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2200 can be various network elements in the embodiments of the present application, and the communication device 2200 can implement the corresponding processes implemented by each network element in the various methods of the embodiments of the present application. For the sake of simplicity, here No longer.
  • the communication device 2200 may be a network device according to the embodiment of the present application, and the communication device 2200 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the communication device 2200 can be a mobile terminal/terminal in the embodiment of the present application, and the communication device 2200 can implement the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • programmed logic devices, discrete gate or transistor logic devices, discrete hardware components Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SynchlinkDRAM Synchrobus RAM
  • DR RAM direct memory bus random access memory
  • the memory of the systems and methods described herein is intended to include, but is not limited to, these and any other suitable types of memory. It should be understood that the above-mentioned memory is an example but not a limitation.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network equipment in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the computer-readable storage medium can be applied to each network element in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by each network element in each method of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network equipment in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For the sake of brevity, they will not be described again. .
  • the computer program product can be applied to each network element in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by each network element in the various methods of the embodiment of the present application. For the sake of simplicity, they are not mentioned here. Again.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network equipment in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For simplicity, in This will not be described again.
  • the computer program can be applied to each network element in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, it causes the computer to execute the corresponding processes implemented by each network element in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种数据包传输方法及相关设备。应用功能网元执行的方法包括:发送双向时延请求;接收响应消息;双向时延请求指示策略控制功能网元发送第一服务质量检测策略;第一服务质量检测策略用于指示会话管理功能网元发送第一用户面功能网元的服务质量检测请求;第一用户面功能网元的服务质量检测请求用于指示第一用户面功能网元,在确定当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;用户面功能侧双向时延超时消息用于指示策略控制功能网元确定针对目标业务流的目标处理方式。

Description

数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品
相关申请的交叉引用
本申请基于申请号为202210422067.9,申请日为2022年04月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,具体而言,涉及一种数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品。
背景技术
网络传输数据包的过程中,网络的传输质量可能会发生变化,导致无法满足业务流的用户面功能(User Plane Function,UPF)侧双向时延(Round Trip Time,RTT)要求,从而使得数据包在传输过程中出现拥塞、卡顿等问题。对于一些特定的目标业务,例如增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)等业务而言,甚至可能造成目标业务无法在实际场景中使用。
发明内容
本申请实施例提供一种数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品,可以针对UPF侧双向时延的需求对网络传输进行调节,以满足UPF侧双向时延的需求。
本申请实施例提供一种数据包传输方法,所述方法由应用功能网元执行,所述方法包括:向策略控制功能网元发送目标业务流的双向时延请求,所述双向时延请求包括第一用户面功能侧双向时延门限值;接收针对所述双向时延请求的响应消息,所述响应消息包括是否同意所述双向时延请求的指示信息。所述双向时延请求用于指示所述策略控制功能网元,在同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一服务质量检测策略,并将所述第一服务质量检测策略发送至会话管理功能网元,所述第一服务质量检测策略包括所述第一用户面功能侧双向门限值;所述第一服务质量检测策略用于指示所述会话管理功能网元,生成所述第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元;所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,在确定所述当前用户面功能侧双向时延超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足所述双向时延请求。
本申请实施例提供一种数据包传输方法,所述方法由策略控制功能网元执行,所述方法包括:接收应用功能网元发送的目标业务流的双向时延请求,所述双向时延请求包括第一用户面功能侧双向时延值;在同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一服务质量检测策略,所述第一服务质量检测策略包括所述第一用户面功能侧双向时延门限值;将所述第一服务质量检测策略发送至会话管理功能网元;所述第一服务质量检测策略用于指示所述会话管理功能网元,生成所述第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元;所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,在确定所述当前用户面功能侧双向时延超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式以满足所述双向时延请求。
本申请实施例提供一种数据包传输方法,所述方法由会话管理功能网元执行,所述方法包括:接收策略控制功能网元发送的满足第一用户面功能侧双向时延门限值的目标业务流的第一服务质量检测策略,所述第一服务质量检测策略包括所述第一用户面功能侧双向时延值;根据所述第一服务质量检测策略生成第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服 务质量检测请求发送至所述第一用户面功能网元,所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,在确定所述当前用户面功能侧双向时延超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;接收所述用户面功能侧双向时延超时消息;将所述用户面功能侧双向时延超时消息上报至所述策略控制功能网元。所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
本申请实施例提供一种数据包传输方法,所述方法由第一用户面功能网元执行,所述方法包括:接收所述会话管理功能网元发送的第一用户面功能网元的服务质量检测请求;根据所述第一用户面功能网元的服务质量检测请求,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延;确定所述当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值;通过所述会话管理功能网元,向策略控制功能网元上报用户面功能侧双向时延超时消息;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
本申请实施例提供一种数据包传输方法,所述方法由网络设备执行,所述方法包括:接收会话管理功能网元发送的目标业务流的第一服务质量流的服务质量配置文件信息;接收所述会话管理功能网元发送的所述网络设备的服务质量检测请求;根据所述网络设备的服务质量检测请求,检测终端与所述网络设备之间的所述目标业务流的当前空口双向时延;确定所述当前空口双向时延超过第一空口双向时延门限值,所述第一空口双向时延门限值小于第一用户面功能侧双向时延门限值;通过所述会话管理功能网元,向策略控制功能网元上报空口双向时延超时消息。所述空口双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
本申请实施例提供一种应用功能网元,包括:发送单元,用于向策略控制功能网元发送目标业务流的双向时延请求,所述双向时延请求包括第一用户面功能侧双向时延门限值;接收单元,用于接收针对所述双向时延请求的响应消息,所述响应消息包括是否同意所述双向时延请求的指示信息。所述双向时延请求用于指示所述策略控制功能网元,在同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一服务质量检测策略,并将所述第一服务质量检测策略发送至会话管理功能网元,所述第一服务质量检测策略包括所述第一用户面功能侧双向门限值;所述第一服务质量检测策略用于指示所述会话管理功能网元,生成所述第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元;所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,在确定所述当前用户面功能侧双向时延超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足所述双向时延请求。
本申请实施例提供一种策略控制功能网元,包括:接收单元,用于接收应用功能网元发送的目标业务流的双向时延请求,所述双向时延请求包括第一用户面功能侧双向时延值;处理单元,用于在同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一服务质量检测策略,所述第一服务质量检测策略包括所述第一用户面功能侧双向时延门限值;发送单元,用于将所述第一服务质量检测策略发送至会话管理功能网元;所述第一服务质量检测策略用于指示所述会话管理功能网元,生成所述第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元;所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,在确定所述当前用户面功能侧双向时延超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式以满足所述双向时延请求,其中,接收单元,还用于接收所述第一用户面功能网元发送的所述用户面功能侧双向时延超时消息;处理单元,还用于根据所述用户面功能侧双向时延超时消息,确定针对所述目标业务流的目标处理方式,以满足所述双向时延请求。
本申请实施例提供一种会话管理功能网元,包括:接收单元,用于接收策略控制功能网元发送的满足第一用户面功能侧双向时延门限值的目标业务流的第一服务质量检测策略,所述第一服务质量检测策略包括所述第一用户面功能侧双向时延值;处理单元,用于根据所述第一服务质量检测策略生成第一用户面功能网元的服务质量检测请求;发送单元,用于将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元,所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,在确定所述当前用户面功能侧双向时延超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;接收单元,还用于接收所述用户面功能侧双向时延超时消息;发送单元,还用于将所述用户面功能侧双向时延超时消息上报至所述策略控制功能网元;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足应用功能网元向所述策略控 制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
本申请实施例提供一种第一用户面功能网元,包括:接收单元,用于接收会话管理功能网元发送的第一用户面功能网元的服务质量检测请求;处理单元,用于根据所述第一用户面功能网元的服务质量检测请求,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延;处理单元,还用于确定所述当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值;发送单元,用于通过所述会话管理功能网元,向策略控制功能网元上报用户面功能侧双向时延超时消息;所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
本申请实施例提供一种网络设备,包括:接收单元,用于接收会话管理功能网元发送的目标业务流的第一服务质量流的服务质量配置文件信息;接收单元,还用于接收所述会话管理功能网元发送的所述网络设备的服务质量检测请求;处理单元,用于根据所述网络设备的服务质量检测请求,检测终端与所述网络设备之间的所述目标业务流的当前空口双向时延;处理单元,还用于确定所述当前空口双向时延超过第一空口双向时延门限值,所述第一空口双向时延门限值小于第一用户面功能侧双向时延门限值;发送单元,用于通过所述会话管理功能网元,向策略控制功能网元上报空口双向时延超时消息;所述空口双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,以满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
本申请实施例提供了一种通信设备,包括:一个或多个处理器;存储器,配置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述通信设备实现本申请实施例中所述的数据包传输方法。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行时实现本申请实施例中所述的数据包传输方法。
本申请实施例提供了计算机程序产品,包括计算机程序,所述计算机程序被计算机执行时实现本申请实施例中所述的数据包传输方法。
本申请一些实施方式提供的方法,策略控制功能网元可以通过第一用户面功能网元来检测当前用户面功能侧双向时延,当检测到当前用户面功能侧双向时延无法满足目标业务流通过应用功能网元所要求的第一用户面功能侧双向时延门限值时,策略控制功能网元可以通过确定目标处理方式,来保障目标业务流的所要求的第一用户面功能侧双向时延门限值,从而实现了当网络的传输质量发生变化时,也可以保障目标业务流的用户面功能侧双向时延的要求,使得目标业务流在传输过程中不出现拥塞、卡顿的问题,提高了目标业务流的网络传输质量。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的5G网络的系统架构图;
图3是本申请实施例提供的数据包传输方法的流程图;
图4是本申请实施例提供的数据包传输方法的交互示意图;
图5是本申请实施例提供的数据包传输方法的交互示意图;
图6是本申请实施例提供的数据包传输方法的交互示意图;
图7是本申请实施例提供的数据包传输方法的交互示意图;
图8是本申请实施例提供的数据包传输方法的交互示意图;
图9是本申请实施例提供的数据包传输方法的交互示意图;
图10是本申请实施例提供的数据包传输方法的交互示意图;
图11是本申请实施例提供的数据包传输方法的交互示意图;
图12是本申请实施例提供的数据包传输方法的交互示意图;
图13是本申请实施例提供的数据包传输方法的流程图;
图14是本申请实施例提供的数据包传输方法的流程图;
图15是本申请实施例提供的数据包传输方法的流程图;
图16是本申请实施例提供的数据包传输方法的流程图;
图17是本申请实施例提供的应用功能网元的框图;
图18是本申请实施例提供的策略控制功能网元的框图;
图19是本申请实施例提供的会话管理功能网元的框图;
图20是本申请实施例提供的第一用户面功能网元的框图;
图21是本申请实施例提供的网络设备的框图;
图22是本申请实施例提供的通信设备的示意性结构图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本申请的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统,第五代移动通信技术(5th Generation Partnership Project,5G)系统或未来演进的移动通信系统等。
示例性的,本申请实施例应用的通信系统100的架构如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是5G通信系统中的基站,或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的个人数字处理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、PDA、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
在一些实施例中,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
图1示例性地示出了一个网络设备和两个终端,例如,通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
在一些实施例中,通信系统100还可以包括策略控制功能网元、接入移动管理功能网元等其他网络网元,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
图2为本申请实施例提供的5G网络的系统架构图,如图2所示,5G网络系统中涉及到的设备包括:终端/用户设备,无线接入网(Radio Access Network,RAN),用户面功能(User Plane Function,UPF)网元,数据网络(Data Network,DN),接入移动管理功能(Access and Mobility Management Function,AMF)网元,会话管理功能(Session Management Function,SMF)网元,策略控制功能(Policy Control Function,PCF)网元,应用功能(Application Function,AF)网元,鉴权服务器功能(Authentication  Server Function,AUSF)网元,统一数据管理(Unified Data Management,UDM)网元、网络切片选择功能(Network Slice Selection Function,NSSF)。
图3是本申请实施例提供的数据包传输方法的流程图。图3实施例提供的方法可以由AF网元执行,但本申请并不限定于此。
如图3所示,本申请实施例提供的方法可以包括:
在步骤310中,向策略控制功能网元发送目标业务流的双向时延请求,双向时延请求包括第一用户面功能侧双向时延门限值。
本申请实施例中,AF网元可以直接地向PCF网元发送目标业务流的双向时延请求,或者,AF网元也可以间接地,例如通过网络开放功能(Network Exposure Function,NEF)网元向PCF网元发送目标业务流的双向时延请求,该双向时延请求用于该AF网元向该PCF网元提出针对该目标业务流的RTT要求,具体的RTT要求可以通过第一用户面功能侧RTT门限值来体现。
其中,目标业务流是指针对某一或某些目标业务,终端(以下均用UE表示)和/或业务服务器发出的目标数据包(可以包括目标上行数据包和目标下行数据包至少之一)在网络中传输所形成的业务数据流,目标业务可以根据实际需求设置,例如可以是AR、VR等要求高数据速率、短时延的特定业务。
本申请实施例中,RTT是指目标业务流的目标数据包从网络的一端发送到网络的另一端,再从该网络的另一端返回到该网络的该端所花费的往返时间。
用户面功能侧RTT门限值是指对于特定的目标业务流,要求业务数据流从终端例如UE到UPF网元之间的端到端的双向时延不超过的特定的门限值,该特定的门限值可以根据目标业务流的具体需求进行设置,例如,对于AR或VR等目标业务流,该特定的门限值相比其它业务流,可以设置的更小一些,以满足AR或VR等场景的实际需求。
用户面功能侧RTT门限值可以包括第一用户面功能侧RTT门限值,第一用户面功能侧RTT门限值是指对于目标业务流,要求其业务数据流从终端到第一用户面功能网元(以下表示为UPF1)之间的端到端的双向时延不超过的特定的门限值。
在示例性实施例中,双向时延请求还可以包括目标业务流的业务流模板信息、该目标业务流的数据网络名称(Data Network Name,DNN)信息、单网络切片选择辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI)信息等中的至少一种。
在示例性实施例中,业务流模板信息可以包括目标业务流的源网络地址(源IP地址)、源端口号、目的网络地址(目的IP地址)、目的端口号、全限定域名(Fully Qualified Domain Name,FQDN)、应用标识(Application identity,APP ID)等中的一种或多种。
在步骤320中,接收针对所述双向时延请求的响应消息,响应消息包括是否同意双向时延请求的指示信息。
这里,双向时延请求可以用于指示策略控制功能网元,在同意双向时延请求时,生成满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制(Policy and Charging Control,PCC)规则和第一服务质量(Quality of Service,QoS)检测策略,并将第一策略计费控制规则和第一服务质量检测策略发送至会话管理功能(SMF)网元。这里的“满足”是指第一PCC规则和第一QoS检测策略小于或等于第一用户面功能侧双向时延门限值。
第一服务质量检测策略可以包括第一用户面功能侧双向门限值,或者是根据第一用户面功能侧双向门限值拆分的单向门限值。如果是单向门限值,还需要进一步指示需要检测的该单向门限值是上行业务流,还是下行业务流,如果指示的是上行业务流,则该单向门限值可以称之为第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值,如果指示的是下行业务流,则该单向门限值可以称之为第一用户面功能侧针对第一服务质量流的下行业务传输时延门限值。
第一策略计费控制规则可以用于指示会话管理功能网元,生成第一服务质量流的第一服务质量信息,并将第一服务质量流的第一服务质量信息发送至第一用户面功能网元。
第一服务质量检测策略可以用于指示会话管理功能网元,生成第一用户面功能网元的服务质量检测请求,并将第一用户面功能网元的服务质量检测请求发送至第一用户面功能网元。该第一用户面功能网元的服务质量检测请求中可以携带如何进行检测以及上报条件等内容,例如可以包括该第一用户面功能侧RTT门限值,当检测到超过第一用户面功能侧RTT门限值时上报。
第一用户面功能网元的服务质量检测请求可以用于指示第一用户面功能网元,检测终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延,在确定当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息。
用户面功能侧双向时延超时消息可以用于指示策略控制功能网元,确定针对目标业务流的目标处理方式,以满足双向时延请求。
本申请实施例中,PCF网元可以根据该双向时延请求中携带的第一用户面功能侧RTT门限值生成第一PCC规则,该第一PCC规则可以应用于生成第一服务质量流(QoS Flow)的第一服务质量信息,以实现目标业务流通过第一QoS流进行传输。该第一PCC规则满足第一用户面功能侧RTT门限值,是指第一PCC规则所绑定的第一QoS流的第一QoS信息满足该第一QoS流的QoS规则(QoS rule)中的第一用户面功能侧RTT门限值。
本申请实施例中,第一PCC规则和第一QoS检测策略可以合并,也可以分开,也可以作为其他规则的一部分,根据执行实体的不同,可能会具有不同的名称,本申请对此不做限定。
在示例性实施例中,第一策略计费控制规则可以包括第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值之和可以小于或等于第一用户面功能侧双向时延门限值。
第一服务质量流可以满足第一服务质量信息中第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值可以等于或不等于下行业务传输时延门限值。
本申请实施例中,PCF网元接收到AF网元发送的第一用户面功能侧RTT门限值后,可以从第一用户面功能侧RTT门限值中拆分获得第一用户面功能侧针对第一Qos流的上行业务传输时延门限值和第一用户面功能侧针对第一Qos流的下行业务传输时延门限值,且第一用户面功能侧针对第一Qos流的上行业务传输时延门限值和第一用户面功能侧针对第一Qos流的下行业务传输时延门限值之和小于或等于该第一用户面功能侧RTT门限值,第一Qos流的上行业务传输时延门限值可以等于,也可以不等于第一用户面功能侧针对第一Qos流的下行业务传输时延门限值。
例如,假设第一用户面功能侧RTT门限值为20ms,则第一用户面功能侧针对第一Qos流的上行业务传输时延门限值可以为15ms,第一用户面功能侧针对第一Qos流的下行业务传输时延门限值可以为5ms。或者,第一用户面功能侧针对第一Qos流的上行业务传输时延门限值可以为10ms,第一用户面功能侧针对第一Qos流的下行业务传输时延门限值可以为10ms。
通过从第一用户面功能侧RTT门限值中拆分获得第一用户面功能侧针对第一Qos流的上行业务传输时延门限值和第一用户面功能侧针对第一Qos流的下行业务传输时延门限值,以用于检测目标业务流的第一用户面功能侧针对第一Qos流的上行业务传输时延是否超过了第一用户面功能侧针对第一Qos流的上行业务传输时延门限值,以及和目标业务流的第一用户面功能侧针对第一Qos流的下行业务传输时延是否超过了第一用户面功能侧针对第一Qos流的下行业务传输时延门限值,从而可以实现更加准确的检测和网络传输质量的优化。此时,第一PCC规则中可以包括第一用户面功能侧针对第一Qos流的上行业务传输时延门限值和第一用户面功能侧针对第一Qos流的下行业务传输时延门限值,以使得SMF可以根据该第一PCC规则生成的第一Qos流的第一QoS信息,满足QoS rule中第一用户面功能侧针对该第一Qos流的上行业务传输门限值和第一用户面功能侧针对该第一Qos流的下行业务传输时延门限值,且由于第一用户面功能侧针对该第一Qos流的上行业务传输门限值和第一用户面功能侧针对该第一Qos流的下行业务传输时延门限值之和不大于第一用户面功能侧RTT门限值,因此,该第一PCC规则仍然是满足第一用户面功能侧RTT门限值的。
在示例性实施例中,第一QoS检测策略可以包括第一用户面功能侧针对该第一Qos流的上行业务传输门限值和第一用户面功能侧针对该第一Qos流的下行业务传输时延门限值,例如,还可以包括第一用户面功能侧RTT门限值,从而使得SMF网元可以根据第一QoS检测策略生成UPF1的QoS检测请求,该QoS检测请求可以包括第一用户面功能侧针对该第一QoS流的上行业务传输时延门限值和第一用户面功能侧针对该第一QoS流的下行业务传输时延门限值,例如,还可以包括第一用户面功能侧RTT门限值。
UPF1可以响应接收到的UPF1的QoS检测请求,检测终端与UPF1之间的目标业务流的当前上行业务传输时延,以及终端与UPF1之间的目标业务流的当前下行业务传输时延,例如,还可以检测终端与UPF1之间的目标业务流的当前UPF侧RTT。UPF1可以在检测到终端与UPF1之间的目标业务流的当前上行业务传输时延,超过第一用户面功能侧针对该第一QoS流的上行业务传输时延门限值;和/或,在检测到终端与UPF1之间的目标业务流的当前下行业务传输时延,超过第一用户面功能侧针对该第一QoS流的下行业务传输时延门限值;和/或,在检测到终端与UPF1之间的目标业务流的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,直接或间接地向PCF网元上报UPF侧RTT超时消息,该UPF侧RTT超时消息可以包括超过第一用户面功能侧针对该第一QoS流的下行业务传输时延门限值的终端与UPF1之间的目标业务流的当前下行业务传输时延,和/或,超过第一用户面功能侧针对该第一QoS流的下行业务传输时延门限值的终端与UPF1之间的目标业务流的当前下行业务传输时延,和/或,超过第一用户面功能侧RTT门限值的终端与UPF1之间的目标业务流的当前UPF侧RTT,以使得PCF网元可以确定目标处理方式,以满足AF网元提出的双向时延请求。
在示例性实施例中,双向时延请求还可以包括超过第一用户面功能侧双向时延门限值后的建议处理方式。
其中,用户面功能侧双向时延超时消息还可以用于指示策略控制功能网元,根据建议处理方式和策略控制功能网元的本地策略至少之一,确定针对目标业务流的目标处理方式。
本申请实施例中,AF网元直接或间接发送给PCF网元的双向时延请求中还可以包括当检测到当前UPF侧RTT超过第一用户面功能侧RTT门限值时,AF网元所提供的建议处理方式,该建议处理方式例如可以是以下中的至少一项:
(1)继续传输目标业务流,向应用功能网元上报双向时延超时消息。
例如,AF网元可以建议PCF网元,在获知UE与UPF1侧的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,继续传输该目标业务流,不做任何其它处理,仅向AF网元上报双向时延超时消息即可,通过该双向时延超过消息告知AF网元,UE与UPF1侧的当前UPF侧RTT超过了第一用户面功能侧RTT门限值,例如,该双向时延超时消息还可以包括超过了第一用户面功能 侧RTT门限值的UE与UPF1侧的当前UPF侧RTT。
(2)当出现服务降级时,向应用功能网元上报。
例如,当PCF网元将第一用户面功能侧RTT门限值增大时,向AF网元上报,将增大后的用户面功能侧RTT告知AF网元。
(3)当PCF网元为了满足该双向时延请求,调整了网络配置时,向应用功能网元上报。
本申请实施例中,当PCF网元为了满足该双向时延请求,调整了网络配置时,如果调整网络配置后,能够满足该双向时延请求,PCF网元可以不向AF网元上报,也可以向AF网元上报。
(4)中断传输目标业务流。
对于一些对RTT要求较高的目标业务流,若检测到不满足AF网元所提出的第一用户面功能侧RTT门限值时,AF网元也可以建议PCF网元直接中断传输目标业务流。
本申请不对建议处理方式进行限定,AF网元可以根据实际的目标业务流的需求进行设置。
在示例性实施例中,本申请实施例提供的方法还可以包括:接收双向时延超时消息。双向时延超时消息可以包括超过第一用户面功能侧双向时延门限值的当前用户面功能侧双向时延。
例如,AF网元可以从PCF网元接收双向时延超时消息,该双向时延超时消息可以用于告知AF网元,UE与UPF1之间的当前UPF侧RTT已经超过了第一用户面功能侧RTT门限值,例如,该双向时延超时消息还可以携带超过了第一用户面功能侧RTT门限值的当前UPF侧RTT。
本申请实施方式提供的数据包传输方法,策略控制功能网元可以通过第一用户面功能网元来检测当前用户面功能侧双向时延,当检测到当前用户面功能侧双向时延无法满足目标业务流通过应用功能网元所要求的第一用户面功能侧双向时延门限值时,策略控制功能网元可以通过确定目标处理方式,来保障目标业务流的所要求的第一用户面功能侧双向时延门限值,从而实现了当网络的传输质量发生变化时,也可以保障目标业务流的用户面功能侧双向时延的要求,使得目标业务流在传输过程中不出现拥塞、卡顿的问题,提高了目标业务流的网络传输质量。
图4实施例示出了AF交互业务需求的示意图。如图4所示,本申请实施例提供的方法可以包括:
在步骤41中,AF网元向NEF网元发送目标业务的双向时延需求。
这里,双向时延需求可以包括第一用户面功能侧RTT门限值和AF的标识信息(用AF ID表示),该双向时延需求还可以包括超过该第一用户面功能侧RTT门限值后的建议处理方式、目标业务流的业务流模板信息、目标业务流的DNN以及S-NSSAI信息。
在步骤42中,NEF网元向AF网元返回响应消息。
本申请实施例中,AF网元可以通过向NEF网元发送目标业务流的双向时延请求,在该双向时延请求中携带上述双向时延需求,NEF网元接收到AF网元发送的双向时延请求之后,可以对双向时延请求进行鉴权和认证,生成相应的响应消息,并返回响应消息给AF网元。
响应消息可以包括是否同意该双向时延请求的指示信息,若该双向时延请求鉴权和认证通过,则该指示信息指示同意该双向时延请求;若该双向时延请求鉴权和认证未通过,则该指示信息指示拒绝该双向时延请求,例如,还可以包括拒绝原因值。
在步骤43中,NEF网元将目标业务的双向时延需求信息发送给PCF网元。
本申请实施例中,当NEF网元对上述双向时延请求鉴权和认证通过之后,NEF网元可以再将双向时延请求中携带的至少部分双向时延需求作为双向时延需求信息发送给PCF网元,该双向时延需求信息可以包括第一用户面功能侧RTT门限值,例如,还可以包括超过该第一用户面功能侧RTT门限值后的建议处理方式、目标业务流的业务流模板信息、目标业务流的DNN以及S-NSSAI信息等。
PCF网元接收到NEF网元发送的双向时延需求信息之后,可以根据该双向时延需求信息生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略,然后再将该第一PCC规则和第一QoS检测策略发送给SMF网元,由SMF网元根据第一PCC规则生成目标业务流的第一服务质量流的第一服务质量信息,并将第一服务质量流的第一服务质量信息发送至第一用户面功能网元(下面用UPF1表示)。
本申请实施例中,SMF网元可以根据目标业务流的业务流模板信息生成业务流模板。PCF网元可以从AF网元发送的双向时延请求中获得业务流模板信息,也可以通过其它方式获得业务流模板信息,本申请对此不做限定。
本申请实施例中,业务流模板可以包括源IP地址,源端口号,目的IP地址,目的端口号,FQDN,APP ID、网际互联协议(Internet Protocol,IP)协议等中的一种或者多种。
本申请实施方式提供的数据包传输方法,AF网元可以向NEF网元发送双向时延请求,通过在该双向时延请求中携带第一用户面功能侧RTT门限值、AF ID、超过该第一用户面功能侧RTT门限值后的建议处理方式、目标业务流的业务流模板信息、目标业务流的DNN以及S-NSSAI信息等,间接地将双向时延需求信息发送至PCF网元,同时可以减少AF网元和NEF网元之间的交互次数。
本申请实施例中,AF网元可以是业务服务器中抽象出来的一个功能单元。
图5是本申请实施例提供的数据包传输方法的交互示意图。
如图5所示,本申请实施例提供的方法可以包括:
在步骤51中,AF网元向NEF网元发送AF的标识信息、目标业务的业务流模板信息、DNN和S-NSSAI信息中的至少一种。
NEF网元接收AF网元发送的AF ID,以及目标业务的业务流模板信息、DNN信息和/或S-NSSAI信息等中的至少一种,并将AF ID和目标业务的业务流模板信息、DNN信息和/或S-NSSAI信息等中的至少一种关联存储。
在步骤52中,AF网元向NEF网元发送目标业务的双向时延需求。
这里,AF网元可以通过双向时延请求,向NEF网元发送目标业务的双向时延需求,其中,该双向时延需求可以包括第一用户面功能侧RTT门限值,超过该第一用户面功能侧RTT门限值后的建议处理方式,以及AF ID。
NEF网元接收到该双向时延请求之后,可以对该双向时延请求进行鉴权和认证,当双向时延请求鉴权和认证通过之后,NEF网元可以根据双向时延请求中携带的AF ID查找上述关联存储,获得目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等中的至少一项。
在步骤53中,NEF网元向AF网元返回响应消息。
这里,响应消息包括是否同意双向时延请求的指示信息。
在S54中,NEF网元将目标业务的双向时延需求信息发送给PCF网元。
这里,NEF网元可以将目标业务的双向时延需求信息直接地或者间接地发送给PCF网元。
图5实施例的其它内容可以参照上述实施例。
本申请实施方式提供的数据包传输方法,NEF网元可以预先从AF网元中获取到目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等,NEF网元可以将AF ID与目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等进行关联存储,这样,当AF网元向NEF网元发送双向时延请求时,双向时延请求中可以不用包含目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等,而只需携带AF ID、第一用户面功能侧RTT门限值以及超过该第一用户面功能侧RTT门限值后的建议处理方式,从而可以减少双向时延请求中携带的数据量,根据该双向时延请求中携带的AF ID,可以从上述关联存储中查找到对应的目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等,以发送给PCF网元。
如图6所示,本申请实施例提供的方法可以包括:
在步骤61中,AF网元向PCF网元发送目标业务的双向时延需求。
这里,该双向时延需求可以包括第一用户面功能侧RTT门限值,超过该第一用户面功能侧RTT门限值后的建议处理方式,AF的标识信息,目标业务流的业务流模板信息,目标业务流的DNN以及S-NSSAI信息等。
在步骤62中,PCF网元向AF网元返回响应消息。
本申请实施例中,AF网元可以通过向PCF网元发送双向时延请求,该双向时延请求可以携带上述双向时延需求,PCF网元接收到AF网元发送的双向时延请求之后,可以对双向时延请求进行鉴权和认证,生成相应的响应消息,并返回响应消息给AF网元。响应消息可以包括是否同意该双向时延请求的指示信息,若该双向时延请求鉴权和认证通过,则该指示信息指示同意该双向时延请求;若该双向时延请求鉴权和认证未通过,则该指示信息指示拒绝该双向时延请求,可选的,还可以包括拒绝原因值。
图6实施例的其它内容可以参照上述实施例。
本申请实施方式提供的数据包传输方法,AF网元可以直接向PCF网元发送双向时延请求,且该双向时延请求中携带第一用户面功能侧RTT门限值、AF ID、超过该第一用户面功能侧RTT门限值后的建议处理方式、目标业务流的业务流模板信息、目标业务流的DNN以及S-NSSAI信息等,可以减少AF网元和PCF网元之间的交互次数。
图7是本申请实施例提供的数据包传输方法的交互示意图。
如图7所示,本申请实施例提供的方法可以包括:
在步骤71中,AF网元向PCF网元发送AF的标识信息、目标业务的业务流模板信息、DNN信息和S-NSSAI信息中的至少一种。
PCF网元接收AF网元发送的AF ID,以及目标业务的业务流模板信息、DNN信息和/或S-NSSAI信息等中的至少一种,并将AF ID和目标业务的业务流模板信息、DNN信息和/或S-NSSAI信息等中的至少一种关联存储。
在步骤72中,AF网元向PCF网元发送目标业务的双向时延需求。
这里,该双向时延需求可以包括第一用户面功能侧RTT门限值,超过该第一用户面功能侧RTT门限值后的建议处理方式,AF的标识信息。
当双向时延请求鉴权和认证通过之后,PCF网元可以根据双向时延请求中携带的AF ID查找上述关联存储,获得目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等。
在步骤73中,PCF网元向AF网元返回响应消息。
这里,响应消息包括是否同意双向时延请求的指示信息。
图7实施例的其它内容可以参照上述实施例。
本申请实施方式提供的数据包传输方法,一方面,AF网元可以直接向PCF网元发送双向时延请求;另一方面,PCF网元可以预先从AF网元中获取到目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等,PCF网元可以将AF ID与目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等进行关联存储,这样,当AF网元向PCF网元发送双向时延请求时,双向时延请求中可以不用包含目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等,而只需携带AF ID、第一用户面功能侧RTT门限值以及超过该第一用户面功能侧RTT门限值后的建议处理方式,从而可以减少双向时延请求中携带的数据量,根据该双向时延请求中携带的AF ID,可以从上述关联存储中查找到对应的目标业务流的业务流模板信息、DNN信息和/或S-NSSAI信息等。
可以理解的是,虽然图4至图7实施例均以AF网元和PCF网元直接或者通过NEF网元间接交互信息为例,但本申请并不限定于此,在其它实施例中,NEF网元也可以将AF请求的双向时延需求信息存储在统一数据仓库功能(Unified Data Repository,UDR)网元,PCF网元可以从UDR网元接收该双向时延需求信息。
图8示出了网络侧的策略执行的示意图。图8实施例中以UE作为终端设备,基站作为网络设备进行举例,如图8所示,本申请实施例提供的方法可以包括:
在步骤81中,PCF网元生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略。
在一些实施例中,当PCF网元接收到AF网元直接或间接发送的双向时延需求信息之后,PCF网元可以根据该双向时延需求信息,生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略。
在步骤82中,UE发起PDU会话建立流程,或者UE已经建立相应的PDU会话。
本申请实施例中,UE已经建立了该目标业务的PDU会话(如特定的目标DNN,目标S-NSSAI),或者UE发起该目标业务的PDU会话建立流程(如针对特定的目标DNN,目标S-NSSAI)。该S82中SMF网元可以选定UPF1。
在步骤83中,PCF网元向SMF网元下发第一PCC规则和第一QoS检测策略。
在步骤84中,SMF网元根据第一PCC规则生成第一QoS流的第一QoS信息。
在步骤85中,SMF网元将第一QoS流的第一QoS信息发送给与该第一QoS流关联的UPF1。
UPF1接收SMF网元发送的第一QoS流的第一QoS信息,并对该第一QoS流的目标业务执行该第一QoS信息。
在步骤86中,SMF网元根据第一QoS检测策略生成UPF1的QoS检测请求。
这里,该UPF1的QoS检测请求可以包括第一用户面功能侧RTT门限值。
在步骤87中,SMF网元向与该第一QoS流关联的UPF1,发送UPF1的QoS检测请求。
在步骤88中,UPF1执行第一QoS流的检测,检测UE与UPF1之间的当前UPF侧RTT。
例如,UPF1发送目标业务流的目标下行数据包(可以是用于检测当前UPF侧RTT的探测包),打上UPF1发送该目标下行数据包的时间戳,再将该目标下行数据包发送至基站,基站接收该目标下行数据包,打上基站接收该目标下行数据包的时间戳,基站再将该目标下行数据包发送至UE,打上UE接收该目标下行数据包的时间戳,UE再将打上了UE接收该目标下行数据包的时间戳的目标下行数据包作为目标上行数据包发送至基站,基站再打上基站接收该目标上行数据包的时间戳,基站再将该目标上行数据包返回至UPF1,UPF1根据接收到该目标上行数据包的当前时间以及该目标上行数据包上的时间戳,可以计算出当前UPF侧RTT。
本申请对UPF1如何检测获得UE和UPF1之间的当前UPF侧RTT的方式不做限定。
在步骤89中,UPF1可以通过SMF网元向PCF网元上报UPF侧RTT超时消息。
在一些实施例中,当UPF1检测到UE和UPF1之间的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,UPF1可以通过SMF网元向PCF网元上报UPF侧RTT超时消息。
在S810中,PCF网元确定目标处理方式,以满足第一UPF侧RTT门限值。
本申请实施方式提供的数据包传输方法,PCF网元可以通过UPF1来检测当前UPF侧RTT,当检测到当前UPF侧RTT无法满足AF网元所要求的目标业务流的第一用户面功能侧RTT门限值时,PCF网元可以通过确定目标处理方式,来保障目标业务流的所要求的第一用户面功能侧RTT门限值,从而实现了当网络的传输质量发生变化时,也可以保障目标业务流的用户面功能侧双向时延的要求,使得目标业务流在传输过程中不出现拥塞、卡顿的问题,提高了目标业务流的网络传输质量。
如图9所示,本申请实施例提供的方法可以包括:
在步骤91中,PCF网元从第一用户面功能侧RTT门限值中拆分出第一用户面功能侧针对第一QoS流的上行和下行业务传输时延,生成第一PCC规则和第一QoS检测策略。
在一些实施例中,当PCF网元接收到AF网元直接或间接发送的双向时延需求信息之后,PCF网元可以从双向时延需求信息中的第一用户面功能侧RTT门限值中拆分出第一用户面功能侧针对第一QoS流的上行业务传输时延门限值和第一用户面功能侧针对第一QoS流的下行业务传输时延门限值,并生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略,其中,第一PCC规则可以包括第一用户面功能侧针对第一QoS流的上行业务传输时延门限值和第一用户面功能侧针对第一QoS流的下行业务传输时延门限值。
本申请实施例中,第一用户面功能侧针对第一QoS流的上行业务传输时延门限值可以不等于第一用户面功能侧针对第一QoS流的下行业务传输时延门限值,具体如何拆分第一用户面功能侧RTT门限值,可以根据网络路由、网络策略、业务诉求、网络条件等因素进行考虑,本申请对此不做限定。本申请实施例通过将第一用户面功能侧RTT门限值进行非等分或者等分拆分,可以根据网络条件灵活配置网络策略。
在步骤92中,UE发起PDU会话建立流程,或者UE已经建立相应的PDU会话。
本申请实施例中,UE已经建立了该目标业务的PDU会话(如特定的目标DNN,目标S-NSSAI),或者UE发起该目标业务的PDU会话建立流程(如针对特定的目标DNN,目标S-NSSAI)。
在步骤93中,PCF网元向SMF网元下发第一PCC规则和第一QoS检测策略。
在步骤94中,SMF网元根据第一PCC规则生成第一QoS流的第一QoS信息。
这里,第一QoS流的第一QoS信息满足QoS规则中第一用户面功能侧针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值。
在步骤95中,SMF网元向UPF1发送第一QoS流的第一QoS信息。
UPF1接收SMF网元发送的第一QoS流的第一QoS信息。
在步骤96中,SMF网元根据第一QoS检测策略生成UPF1的QoS检测请求。
这里,UPF1的QoS检测请求可以包括第一用户面功能侧RTT门限值。
在步骤97中,SMF网元向UPF1发送UPF1的QoS检测请求。
在步骤98中,UPF1执行第一QoS流的检测,检测当前UPF侧RTT。
在步骤99中,UPF1可以通过SMF网元向PCF网元上报UPF侧RTT超时消息。
在步骤910中,PCF网元确定目标处理方式,以满足第一用户面功能侧RTT门限值。
图9实施例的其它内容可以参照上述实施例。
本申请实施方式提供的数据包传输方法,当PCF网元接收到AF网元直接或间接发送的双向时延需求信息之后,PCF网元可以从双向时延需求信息中的第一用户面功能侧RTT门限值中拆分出第一用户面功能侧针对第一QoS流的上行业务传输时延门限值和第一用户面功能侧针对第一QoS流的下行业务传输时延门限值,从而使得PCF网元可以生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略,其中第一PCC规则可以包括第一用户面功能侧针对第一QoS流的上行业务传输时延门限值和第一用户面功能侧针对第一QoS流的下行业务传输时延门限值,以使得SMF网元可以根据该第一PCC规则生成满足QoS规则中第一用户面功能侧针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值的第一QoS流的第一QoS信息。
如图10所示,本申请实施例提供的方法可以包括:
在步骤101中,PCF网元从第一用户面功能侧RTT门限值中拆分出第一空口RTT门限值,并生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略,以及满足第一空口RTT门限值的第二PCC规则和第二QoS检测策略。
本申请实施例中,第一空口RTT门限值小于第一用户面功能侧RTT门限值。
PCF网元具体如何从第一用户面功能侧RTT门限值中拆分获得第一空口RTT门限值,可以根据网络路由、网络策略、业务诉求、网络条件等进行考虑。
例如,若核心网时延很小,第一用户面功能侧RTT门限值为20ms,则UE与基站之间的第一空口RTT门限值可以设置为15ms;若核心网时延较大,可将第一空口RTT门限值拆分为10ms。
在步骤102中,UE发起PDU会话建立流程,或者UE已经建立相应的PDU会话。
本申请实施例中,UE已经建立了该目标业务的PDU会话(如特定的目标DNN,目标S-NSSAI),或者UE发起该目标业务的PDU会话建立流程(如针对特定的目标DNN,目标S-NSSAI)。
在步骤103中,PCF网元向SMF网元下发第一PCC规则和第一QoS检测策略,以及第二PCC规则和第二QoS检测策略。
本申请实施例中,第二PCC规则和第二QoS检测策略可以分别是第一PCC规则和第一QoS检测策略的一部分,可以是一个规则的不同部分,本申请对此不做限定。
在步骤104中,SMF网元根据第一PCC规则生成第一QoS流的第一QoS信息,根据第二PCC规则生成第一QoS流的QoS配置文件信息。
这里,第一QoS流的QoS配置文件信息可以包括第一空口RTT门限值。
示例的,SMF网元可以根据第二PCC规则确定传输目标业务流第一QoS流的QoS Profile(配置)文件信息,SMF网元可以将该第一QoS流的QoS Profile文件信息发送至基站,以使基站基于该第一QoS流的QoS Profile文件信息配置第一QoS流,并调度UE进行第一QoS流所对应的目标业务流的目标数据包的传输。
在步骤105a中,SMF网元向UPF1发送第一QoS流的第一QoS信息。
UPF1接收SMF网元发送的第一QoS流的第一QoS信息。
在步骤105b中,SMF网元向基站发送第一QoS流的QoS配置文件信息。
在另一些实施例中,SMF网元也可以将更新的第一QoS流的QoS配置文件信息发送给基站。
在步骤106中,SMF网元根据第一QoS检测策略生成UPF1的QoS检测请求,并根据第二QoS检测策略生成基站的QoS检测请求。
在步骤107a中,SMF网元向UPF1发送UPF1的QoS检测请求。
在步骤107b中,SMF网元向基站发送基站的QoS检测请求。
在步骤108a中,UPF1执行第一QoS流的检测,检测当前UPF侧RTT。
在步骤108b中,基站执行第一QoS流的检测,检测UE和基站之间的当前空口RTT。
本申请实施例中,基站可以根据接收到的目标上行数据包或者目标下行数据包上携带的时间戳,检测出UE和基站之间的当前空口RTT,但本申请并不限定基站检测当前空口RTT的方式。
在步骤109a中,UPF1通过SMF网元向PCF网元上报UPF侧RTT超时消息。
在步骤109b中,当基站检测到当前空口RTT超过第一空口RTT门限值时,可以依次通过AMF网元和SMF网元向PCF网元上报空口RTT超时消息。
在步骤1010中,PCF网元确定目标处理方式,以满足第一用户面功能侧RTT门限值和/或第一空口RTT门限值。
示例的,当PCF网元接收到上报的UPF侧RTT超时消息和/或空口RTT超时消息时,PCF网元可以根据该UPF侧RTT超时消息和/或空口RTT超时消息,确定目标处理方式,以满足第一用户面功能侧RTT门限值和/或第一空口RTT门限值。
图10实施例的其它内容可以参照其它实施例。
本申请实施方式提供的数据包传输方法,当PCF网元接收到AF网元直接或间接发送的双向时延需求信息之后,PCF网元可以双向时延需求信息中的第一用户面功能侧RTT门限值中拆分出第一空口RTT门限值,并生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略,以及满足第一空口RTT门限值的第二PCC规则和第二QoS检测策略,从而使得SMF网元可以进一步地分别根据该第一PCC规则和第一QoS检测策略生成发送至UPF1的QoS检测请求,根据该第二PCC规则和第二QoS检测策略生成发送至基站的QoS检测请求,既可以实现检测UE和UPF1之间的当前UPF侧RTT是否超过第一用户面功能侧RTT门限值,还可以实现检测UE与基站之间的当前空口RTT是否超过第一空口RTT门限值。
如图11所示,本申请实施例提供的方法可以包括:
在步骤111中,PCF网元从第一用户面功能侧RTT门限值中拆分出第一空口RTT门限值,再从第一空口RTT门限值中拆分出空口针对第一QoS流的上行和下行业务传输时延门限值,并生成满足第一用户面功能侧RTT门限值的第一PCC规则和第一QoS检测策略,以及满足第一空口RTT门限值的第二PCC规则和第二QoS检测策略。
这里,第二PCC规则可以包括空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值。
需要说明的是,虽然图11实施例中以PCF网元将第一空口RTT值拆分为空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值为例进行举例说明,但本申请并不限定于此,在其它实施例中,PCF网元也可以将第一空口RTT值发送至网络设备例如基站,由基站将第一空口RTT值拆分为空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值。
在步骤112中,UE发起PDU会话建立流程,或者UE已经建立相应的PDU会话。
本申请实施例中,UE已经建立了该目标业务的PDU会话(如特定的目标DNN,目标S-NSSAI),或者UE发起该目标业务的PDU会话建立(如针对特定的目标DNN,目标S-NSSAI)。
在步骤113中,PCF网元向SMF网元下发第一PCC规则和第一QoS检测策略,以及第二PCC规则和第二QoS检测策略。
在步骤114中,SMF网元根据第一PCC规则生成第一QoS流的第一QoS信息,根据第二PCC规则生成第一QoS流的QoS配置文件信息。
这里,第一QoS流满足QoS配置文件信息中空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值。
在步骤115a中,SMF网元向UPF1发送第一QoS流的第一QoS信息。
UPF1接收SMF网元发送的第一QoS流的第一QoS信息。
在步骤115b中,SMF网元向基站发送第一QoS流的QoS配置文件信息。
在步骤116中,SMF网元根据第一QoS检测策略生成UPF1的QoS检测请求,并根据第二QoS检测策略生成基站的QoS检测请求。
在步骤117a中,SMF网元向UPF1发送UPF1的QoS检测请求。
该UPF1的QoS检测请求可以包括第一用户面功能侧RTT门限值以及当检测到超过第一用户面功能侧RTT门限值时进行上报的相关指示信息。
在步骤117b中,SMF网元向基站发送基站的QoS检测请求。
该基站的QoS检测请求可以包括第一空口RTT门限值以及当检测到超过第一空口RTT门限值时进行上报的相关指示信息。
在步骤118a中,UPF1执行第一QoS流的检测,检测当前UPF侧RTT。
在步骤118b中,基站执行第一QoS流的检测,检测当前空口RTT。
在步骤119a中,UPF1通过SMF网元向PCF网元上报UPF侧RTT超时消息。
在步骤119b中,当基站检测到当前空口RTT超过第一空口RTT门限值时,依次通过AMF网元和SMF网元向PCF网元上报空口RTT超时消息。
例如,当前空口RTT可以包括当前空口上行时延和当前空口下行时延,当检测到当前空口上行时延超过空口针对第一QoS流的上行业务传输时延门限值,和/或,当检测到当前空口下行时延超过空口针对第一QoS流的下行业务传输时延门限值时,基站可以向PCF网元上报空口RTT超时消息,且该空口RTT超时消息可以包括当前空口上行时延和/或当前空口下行时延。
在步骤1110中,PCF网元确定目标处理方式,以满足第一用户面功能侧RTT门限值和/或第一空口RTT门限值。
图11实施例的其它内容可以参照其它实施例。
本申请实施方式提供的数据包传输方法,当PCF网元接收到AF网元直接或间接发送的双向时延需求信息之后,PCF网元可以从第一用户面功能侧RTT门限值中拆分出第一空口RTT门限值,还可以进一步再从第一空口RTT门限值中拆分出空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值,并进一步生成满足第一空口RTT门限值的第二PCC规则和第二QoS检测策略,其中第二PCC规则可以包括空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值。
在示例性实施例中,当PCF网元接收到AF网元直接或间接发送的双向时延需求信息之后,PCF网元可以从第一用户面功能侧RTT门限值中拆分出第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值,同时还可以从第一用户面功能侧RTT门限值中拆分出第一空口RTT门限值,还可以进一步再从第一空口RTT门限值中拆分出空口针对第一QoS流的上行业务传输时延门限值和下行业务传输时延门限值。其它内容可以参照上述实施例。
如图12所示,本申请实施例提供的方法可以包括:
在步骤121中,PCF网元调节第一用户面功能侧RTT门限值,获得第二用户面功能侧RTT门限值,并生成满足第二用户面功能侧RTT门限值的第三PCC规则和第三QoS检测策略。
这里,第二用户面功能侧RTT门限值大于第一用户面功能侧RTT门限值,
在步骤122中,PCF网元向SMF网元下发第三PCC规则和第三QoS检测策略。
在步骤123中,SMF网元根据第三PCC规则生成第一QoS流的第二QoS信息。
在步骤124中,SMF网元向UPF1发送第一QoS流的第二QoS信息。
UPF1接收SMF网元发送的第一QoS流的第二QoS信息。
在步骤125中,SMF网元根据第三QoS检测策略生成更新的UPF1的QoS检测请求。
在步骤126中,SMF网元向UPF1发送更新的UPF1的QoS检测请求。
在步骤127中,UPF1执行第一QoS流的检测,检测当前UPF侧RTT。
示例的,UPF1接收SMF网元发送的更新的UPF1的QoS检测请求,根据该更新的UPF1的QoS检测请求,UPF1执行第一QoS流的检测,检测当前UPF侧RTT。
在步骤128中,UPF1通过SMF网元向PCF网元上报UPF侧RTT超时消息。
示例的,当UPF1检测到当前UPF侧RTT超过第二用户面功能侧RTT门限值时,UPF1通过SMF网元向PCF网元上报UPF侧RTT超时消息,该UPF侧RTT超时消息可以包括超过第二用户面功能侧RTT门限值的当前UPF侧RTT。
在步骤129中,UE可以发起PDU会话更新流程。
示例的,当PCF网元接收到UPF1上报的UPF侧RTT超时消息时,UE可以发起PDU会话更新流程,在该PDU会话更新流程中,SMF网元重新选择新的第二UPF网元(即图12示中的UPF2)以替代UPF1。
在步骤1210中,PCF网元生成满足第二用户面功能侧RTT门限值的第四PCC规则和第四QoS检测策略。
在步骤1211中,PCF网元向SMF网元下发第四PCC规则和第四QoS检测策略。
在步骤1212中,SMF网元根据第四PCC规则生成第一QoS流的第三QoS信息。
在步骤1213中,SMF网元将第一QoS流的第三QoS信息发送至UPF2。
UPF2接收SMF网元发送的第一QoS流的第三QoS信息。
在步骤1214中,SMF网元根据第四QoS检测策略生成UPF2的QoS检测请求。
在步骤1215中,SMF网元将UPF2的QoS检测请求发送至UPF2。
在步骤1216中,UPF2执行第一QoS流的检测,检测UE与UPF2之间的当前UPF侧RTT。
示例的,UPF2接收SMF网元发送的UPF2的QoS检测请求,根据该UPF2的QoS检测请求,UPF2执行第一QoS流的检测,检测UE与UPF2之间的当前UPF侧RTT。若UPF2检测到UE与UPF2之间的当前UPF侧RTT小于或等于第二用户面功能侧RTT 门限值,则可以在该UPF2上传输该目标业务流;若UPF2检测到UE与UPF2之间的当前UPF侧RTT大于第二用户面功能侧RTT门限值,则可以继续增大第二用户面功能侧RTT门限值,获得第三用户面功能侧RTT门限值,UPF2重新检测UE与UPF2之间的当前UPF侧RTT是否超过第三用户面功能侧RTT门限值,以此类推,直到找到满足双向时延请求的目标UPF网元以用于传输目标业务流,或者未找到满足双向时延请求的目标UPF网元,则中断该目标业务流的传输。
图12实施例的其它内容可以参照其它实施例。
本申请实施方式提供的数据包传输方法,当PCF网元获知UE与UPF1之间的当前UPF侧RTT超过了AF网元提出的第一用户面功能侧RTT门限值时,可以确定相应的目标处理方式来尽量满足AF网元提出的双向时延需求,其中一种满足方式是逐步递增第一用户面功能侧RTT门限值,直到找到最适于传输该目标业务流的网络。
图13是本申请实施例提供的数据包传输方法的流程图。图13实施例提供的方法可以由PCF网元执行,但本申请并不限定于此。
如图13所示,本申请实施例提供的方法可以包括:
在步骤1310中,接收应用功能网元发送的目标业务流的双向时延请求,双向时延请求包括第一用户面功能侧双向时延值。
在步骤1320中,在同意双向时延请求时,生成满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制规则和第一服务质量检测策略,第一服务质量检测策略包括第一用户面功能侧双向时延门限值。
在示例性实施例中,生成满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制规则,可以包括:根据第一用户面功能侧双向时延门限值,确定第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;根据第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值生成第一策略计费控制规则。
第一策略计费控制规则可以包括第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值之和可以小于或等于第一用户面功能侧双向时延门限值。
第一服务质量流可以满足第一服务质量信息中第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值可以等于或者不等于下行业务传输时延门限值。
在步骤1330中,将第一策略计费控制规则和第一服务质量检测策略发送至会话管理功能网元。
第一策略控制计规则可以用于指示会话管理功能网元,生成第一服务质量流的第一服务质量信息至第一用户面功能网元。
第一服务质量检测策略可以用于指示所述会话管理功能网元,生成第一用户面功能网元的服务质量检测请求,并将第一用户面功能网元的服务质量检测请求发送至第一用户面功能网元。
第一用户面功能网元的服务质量检测请求可以用于指示第一用户面功能网元,检测终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延,在确定当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息。
用户面功能侧双向时延超时消息可以用于指示策略控制功能网元,确定针对目标业务流的目标处理方式以满足双向时延请求。
在步骤1340中,接收第一用户面功能网元发送的用户面功能侧双向时延超时消息。
在步骤1350中,根据用户面功能侧双向时延超时消息,确定针对目标业务流的目标处理方式,以满足双向时延请求。
在示例性实施例中,双向时延请求还可以包括超过第一用户面功能侧双向时延门限值后的建议处理方式。
其中,根据用户面功能侧双向时延超时消息,确定针对目标业务流的目标处理方式以满足双向时延请求,可以包括:根据建议处理方式和/或所述策略控制功能网元的本地策略,确定针对目标业务流的目标处理方式。
在示例性实施例中,本申请实施例提供的方法还可以包括:根据第一用户面功能侧双向时延门限值,确定第一空口双向时延门限值;生成满足第一空口双向时延门限值的目标业务流的第二策略计费控制规则和第二服务质量检测策略,第二服务质量检测策略可以包括第一空口双向时延门限值;将第二策略计费控制规则和第二服务质量检测策略发送至会话管理功能网元。
第二策略计费控制规则可以用于指示会话管理功能网元,生成第一服务质量流的服务质量配置文件信息,并将第一服务质量流的服务质量配置文件信息发送至网络设备。
第二服务质量检测策略可以用于指示会话管理功能网元,生成网络设备的服务质量检测请求,并将网络设备的服务质量检测请求发送至网络设备。
网络设备的服务质量检测请求可以用于指示网络设备,检测终端与网络设备之间的所述目标业务流的当前空口双向时延,在确定当前空口双向时延超过第一空口双向时延门限值时,上报空口双向时延超时消息。
其中,本申请实施例提供的方法还可以包括:接收网络设备通过会话管理功能网元上报的空口双向时延超时消息。
在示例性实施例中,生成满足第一空口双向时延门限值的目标业务流的第二策略计费控制规则,可以包括:根据第一空口双向 时延门限值,确定空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;根据空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值生成第二策略计费控制规则。
第二策略计费控制规则可以包括空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值之和小于或等于第一空口双向时延门限值。
第一服务质量流可以满足服务质量配置文件信息中空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
空口针对第一服务质量流的上行业务传输时延门限值可以等于或者不等于下行业务传输时延门限值。
在示例性实施例中,用户面功能侧双向时延超时消息可以包括超过第一用户面功能侧双向时延门限值的当前用户面功能侧双向时延。
其中,目标处理方式可以包括:
根据超过第一用户面功能侧双向时延门限值的当前用户面功能侧双向时延,调节第一用户面功能侧双向时延门限值,获得第二用户面功能侧双向时延门限值,第二用户面功能侧双向时延门限值大于第一用户面功能侧双向时延门限值;
指示第一用户面功能网元,检测终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延;
在确定终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延,超过第二用户面功能侧双向时延门限值时,发起协议数据单元会话的更新流程,以重新选择第二用户面功能网元;
指示第二用户面功能网元,检测终端与第二用户面功能网元之间的目标业务流的当前用户面功能侧双向时延;
在确定终端与第二用户面功能网元之间的目标业务流的当前用户面功能侧双向时延,未超过第二用户面功能侧双向时延门限值时,采用第二用户面功能网元传输目标业务流。
在示例性实施例中,目标处理方式可以包括以下中的至少一项:
继续传输目标业务流,向应用功能网元上报双向时延超时消息;
调整网络设备的配置参数;
重新选择第二用户面功能网元以用于替换第一用户面功能网元;
调整目标业务流的服务质量规则和服务质量配置文件信息,获得更新后的服务质量规则和服务质量配置文件信息,并将更新后的服务质量规则和服务质量配置文件信息分别发送至终端和网络设备;
调节第一用户面功能侧的服务质量检测中的双向时延门限值参数,获得第二用户面功能侧双向时延门限值;
中断传输目标业务流。
本申请实施例中,PCF网元可以根据AF网元提供的建议处理方式和/或PCF网元的本地策略,确定当检测到当前UPF侧RTT超过第一用户面功能侧RTT门限值时的目标处理方式,该目标处理方式例如可以是以下中的至少一项:
(1)继续传输目标业务流,并向应用功能网元上报双向时延超时消息。
(2)调整网络配置以保障业务的RTT。例如调整网络设备的配置参数。
例如,PCF网元可以在获知UE与UPF1侧的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,调整基站的配置参数,去满足第一用户面功能侧RTT门限值。具体调整基站的哪些配置参数、如何调整基站的这些配置参数,可以根据实际业务需求确定,本申请对此不做限定。
(3)重新选择第二用户面功能网元以用于替换第一用户面功能网元。
例如,AF网元可以建议PCF网元,在获知UE与UPF1侧的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,发起协议数据单元(Protocol Data Unit,PDU)会话更新流程,重新选择新的第二UPF网元(以下表示为UPF2)来替代该UPF1,然后重新在该新的UPF2上检测是否满足第一用户面功能侧RTT门限值,具体的检测过程可以参照UPF1,若在该新的UPF2上检测到还是不满足第一用户面功能侧RTT门限值,则可以再继续发起PDU会话更新流程,重新选择新的第三UPF网元来替换该UPF2,重复上述过程,直至找到满足第一用户面功能侧RTT门限值的目标UPF网元,则在该目标UPF网元的路径上传输该目标业务流。
(4)调整目标业务流的服务质量规则和服务质量配置文件信息,获得更新后的服务质量规则和服务质量配置文件信息,并将更新后的服务质量规则和服务质量配置文件信息发送至终端和网络设备。
例如,AF网元可以建议PCF网元,在获知UE与UPF1侧的当前UPF侧RTT超过第一UPF侧RTT门限值时,调整目标业务流的QoS规则、QoS配置文件信息和QoS信息,获得更新后的QoS规则、QoS配置文件信息和QoS信息,并将更新后的QoS规则发送至UE,将更新后的QoS配置文件信息发送至基站,将更新后的QoS信息发送至UPF1,然后基于该更新的QoS规则传输目标业务流,以满足该目标业务流,具体如何调整QoS规则可以根据实际业务需求确定,本申请对此不做限定。
(5)调节第一用户面功能侧的服务质量检测中的双向时延门限值参数(例如上述第一用户面功能侧RTT门限值),获得第二用户面功能侧双向时延门限值。
例如,AF网元可以建议PCF网元,在获知UE与UPF1侧的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,可以根 据该当前UPF侧RTT增大第一用户面功能侧RTT门限值为第二用户面功能侧RTT门限值,如假设第一用户面功能侧RTT门限值为20ms,则PCF网元可以将第二用户面功能侧RTT门限值设置为30ms,UPF1根据该新的第二用户面功能侧RTT门限值重新检测UE和UPF1之间的当前UPF侧RTT,若UE和UPF1之间的当前UPF侧RTT小于或等于30ms,则可以仍然以该UPF1所在的路径传输目标业务流,则可以实现让目标业务流在满足30ms的UPF1上继续传输,避免直接中断目标业务流的传输给用户带来的影响;若UE和UPF1之间的当前UPF侧RTT大于30ms,则可以发起PDU会话更新流程,重新选择新的UPF2来替代该UPF1,然后重新在该新的UPF2上检测是否满足第二用户面功能侧RTT门限值,若在该新的UPF2上检测到满足第二用户面功能侧RTT门限值,则可以在该UPF2所在的路径上传输目标业务流;若该新的UPF2上还是不满足第二用户面功能侧RTT门限值,再继续发起PDU会话更新流程,重新选择新的第三UPF网元来替换该UPF2,重复上述过程,直至找到满足第二用户面功能侧RTT门限值的目标UPF网元,则在该目标UPF网元的路径上传输该目标业务流。
再例如,AF网元可以建议PCF网元,在获知UE与UPF1侧的当前UPF侧RTT超过第一用户面功能侧RTT门限值时,可以根据该当前UPF侧RTT增大第一用户面功能侧RTT门限值为第二用户面功能侧RTT门限值,如假设第一用户面功能侧RTT门限值为20ms,则PCF网元可以将第二用户面功能侧RTT门限值设置为30ms,UPF1根据该新的第二用户面功能侧RTT门限值重新检测UE和UPF1之间的当前UPF侧RTT,若UE和UPF1之间的当前UPF侧RTT大于30ms,则PCF网元可以继续增大该第二用户面功能侧RTT门限值,例如获得第三用户面功能侧RTT门限值为40ms,UPF1根据该新的第三用户面功能侧RTT门限值重新检测UE和UPF1之间的当前UPF侧RTT,若UE和UPF1之间的当前UPF侧RTT小于或等于40ms,则可以仍然以该UPF1所在的路径传输目标业务流,则可以实现让目标业务流在满足40ms的UPF1上继续传输,避免直接中断目标业务流的传输给用户带来的影响。若UE和UPF1之间的当前UPF侧RTT大于40ms,则可以继续增大第三用户面功能侧RTT门限值,以此类推,可以逐渐增大用户面功能侧RTT门限值阈值,当增大到该用户面功能侧RTT门限值使得该目标业务流此时继续传输已经无法在实际场景中应用时,可以将目标业务流中断,以避免浪费网络传输资源;如果该目标业务流切换到普通业务流,也可以继续在实际场景中应用,则可以将目标业务流切换到用户面功能侧RTT门限值例如为300ms的普通业务流的网络中传输。
(6)中断传输目标业务流。
对于一些对RTT要求较高的目标业务流,若检测到不满足AF网元所提出的第一用户面功能侧RTT门限值时,PCF网元也可以直接中断传输目标业务流。
该目标处理方式也可以是将调节第一用户面功能侧RTT门限值和重新选择第二UPF网元进行结合,例如:
根据超过第一用户面功能侧双向时延门限值的当前用户面功能侧双向时延,调节第一用户面功能侧双向时延门限值,获得第二用户面功能侧双向时延门限值,第二用户面功能侧双向时延门限值大于第一用户面功能侧双向时延门限值;
指示第一用户面功能网元,重新检测终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延;
在确定终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延,超过第二用户面功能侧双向时延门限值时,发起协议数据单元会话的更新流程,以重新选择第二用户面功能网元;
指示第二用户面功能网元,检测终端与第二用户面功能网元之间的目标业务流的当前用户面功能侧双向时延;
在确定终端与第二用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,未超过第二用户面功能侧双向时延门限值时,采用第二用户面功能网元传输目标业务流。
PCF网元接收到AF网元提供的建议处理方式之后,可以采用AF网元提供的建议处理方式中的一种或者多种作为目标处理方式,也可以采用其本地策略中的一种或者多种作为目标处理方式,或者可以综合考虑AF网元提供的建议处理方式和其本地策略来确定目标处理方式,当AF网元提供的建议处理方式与其本地策略发生冲突时,可以采用其本地策略作为目标处理方式,本申请对此不做限定。
本申请实施例中,当PCF网元确定的目标处理方式与AF网元提出的建议处理方式不一致时,PCF网元可以向AF网元发送通知消息,以告知无法满足AF建议的建议处理方式,并可以进一步告知AF网元实际可以采用的该目标处理方式是什么。
图13实施例的其它内容可以参照上述其它实施例。
图14是本申请实施例提供的数据包传输方法的流程图。图14实施例提供的方法可以由SMF网元执行,但本申请并不限定于此。
如图14所示,本申请实施例提供的方法可以包括:
在步骤1410中,接收策略控制功能网元发送的满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制规则和第一服务质量检测策略,第一服务质量检测策略可以包括第一用户面功能侧双向时延值。
在步骤1420中,根据第一策略计费控制规则生成第一服务质量流的第一服务质量信息,并将第一服务质量流的第一服务质量信息发送至第一用户面功能网元。
在步骤1430中,根据第一服务质量检测策略生成第一用户面功能网元的服务质量检测请求,并将第一用户面功能网元的服务质量检测请求发送至第一用户面功能网元。
在步骤1440中,接收用户面功能侧双向时延超时消息。
在步骤1450中,将用户面功能侧双向时延超时消息上报至策略控制功能网元。
图14实施例的其它内容可以参照上述其它实施例。
图15是本申请实施例提供的数据包传输方法的流程图。图15实施例提供的方法可以由第一用户面功能网元执行,但本申请并不限定于此。
如图15所示,本申请实施例提供的方法可以包括:
在步骤1510中,接收会话管理功能网元发送的目标业务流的第一服务质量流的第一服务质量信息。
在步骤1520中,接收会话管理功能网元发送的第一用户面功能网元的服务质量检测请求。
在步骤1530中,根据第一用户面功能网元的服务质量检测请求,检测终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延。
在步骤1540中,确定当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值。
在步骤1550中,通过会话管理功能网元,向策略控制功能网元上报用户面功能侧双向时延超时消息。
图15实施例的其它内容可以参照上述其它实施例。
图16是本申请实施例提供的数据包传输方法的流程图。图16实施例提供的方法可以由网络设备执行,但本申请并不限定于此。
如图16所示,本申请实施例提供的方法可以包括:
在步骤1610中,接收会话管理功能网元发送的目标业务流的第一服务质量流的服务质量配置文件信息。
在步骤1620中,接收会话管理功能网元发送的网络设备的服务质量检测请求。
在步骤1630中,根据网络设备的服务质量检测请求,检测终端与网络设备之间的目标业务流的当前空口双向时延。
在步骤1640中,确定当前空口双向时延超过第一空口双向时延门限值,第一空口双向时延门限值小于第一用户面功能侧双向时延门限值。
在步骤1650中,通过会话管理功能网元,向策略控制功能网元上报空口双向时延超时消息。
图16实施例的其它内容可以参照上述其它实施例。
图17是本申请实施例提供的应用功能网元的框图。
如图17所示,本申请实施例提供的应用功能网元1700可以包括发送单元1710和接收单元1720。
发送单元1710配置为向策略控制功能网元发送目标业务流的双向时延请求,双向时延请求可以包括第一用户面功能侧双向时延门限值。
接收单元1720配置为接收针对双向时延请求的响应消息,响应消息可以包括是否同意双向时延请求的指示信息。
在示例性实施例中,接收单元1720还可以配置为:接收双向时延超时消息。
图17实施例的其它内容可以参照上述其它实施例。
图18是本申请实施例提供的策略控制功能网元的框图。
如图18所示,本申请实施例提供的策略控制功能网元1800可以包括接收单元1810、处理单元1820以及发送单元1830。
接收单元1810可以配置为接收应用功能网元发送的目标业务流的双向时延请求,双向时延请求可以包括第一用户面功能侧双向时延值。
处理单元1820可以配置为在同意双向时延请求时,生成满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制规则和第一服务质量检测策略,第一服务质量检测策略可以包括第一用户面功能侧双向时延门限值。
发送单元1830可以配置为将第一策略计费控制规则和第一服务质量检测策略发送至会话管理功能网元。
其中,接收单元1810还可以配置为接收第一用户面功能网元发送的用户面功能侧双向时延超时消息。
处理单元1820还可以配置为根据用户面功能侧双向时延超时消息,确定针对目标业务流的目标处理方式,以满足双向时延请求。
在示例性实施例中,处理单元1820还可以配置为:根据第一用户面功能侧双向时延门限值,确定第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;根据第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值生成第一策略计费控制规则,第一策略计费控制规则可以包括第一用户面功能侧针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
其中,处理单元1820还可以配置为:根据建议处理方式和/或策略控制功能网元的本地策略,确定针对目标业务流的目标处理方式。
在示例性实施例中,处理单元1820还可以配置为:根据第一用户面功能侧双向时延门限值,确定第一空口双向时延门限值;生成满足第一空口双向时延门限值的目标业务流的第二策略计费控制规则和第二服务质量检测策略,第二服务质量检测策略可以包括第一空口双向时延门限值。发送单元1830还可以配置为:将第二策略计费控制规则和第二服务质量检测策略发送至会话管理功 能网元。
其中,接收单元1810还可以配置为:接收网络设备通过会话管理功能网元上报的空口双向时延超时消息。
在示例性实施例中,处理单元1820还可以配置为:根据第一空口双向时延门限值,确定空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;根据空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值生成第二策略计费控制规则,第二策略计费控制规则可以包括空口针对第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值。
图18实施例的其它内容可以参照上述其它实施例。
图19是本申请实施例提供的会话管理功能网元的框图。
如图19所示,本申请实施例提供的会话管理功能网元1900可以包括接收单元1910、处理单元1920以及发送单元1930。
接收单元1910可以配置为接收策略控制功能网元发送的满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制规则和第一服务质量检测策略,第一服务质量检测策略可以包括第一用户面功能侧双向时延值。
处理单元1920可以配置为根据第一策略计费控制规则生成第一服务质量流的第一服务质量信息。
发送单元1930可以配置为将第一服务质量流的第一服务质量信息发送至第一用户面功能网元。
处理单元1920还可以配置为根据第一服务质量检测策略生成第一用户面功能网元的服务质量检测请求。
发送单元1930还可以配置为将第一用户面功能网元的服务质量检测请求发送至第一用户面功能网元。
接收单元1910还可以配置为接收用户面功能侧双向时延超时消息。
发送单元1930还可以配置为将用户面功能侧双向时延超时消息上报至策略控制功能网元。
在示例性实施例中,接收单元1910还可以配置为:从策略控制功能网元接收满足第一空口双向时延门限值的第二策略计费控制规则和第二服务质量检测策略。
处理单元1920还可以配置为根据第二策略计费控制规则生成第一服务质量流的服务质量配置文件信息。
发送单元1930还可以配置为将第一服务质量流的服务质量配置文件信息发送至网络设备。
处理单元1920还可以配置为根据第二服务质量检测策略生成网络设备的服务质量检测请求。
发送单元1930还可以配置为将网络设备的服务质量检测请求发送至网络设备。
接收单元1910还可以配置为接收空口双向时延超时消息。
发送单元1930还可以配置为将空口双向时延超时消息发送至策略控制功能网元。
图19实施例的其它内容可以参照上述其它实施例。
图20是本申请实施例提供的第一用户面功能网元的框图。
如图20所示,本申请实施例提供的第一用户面功能网元2000可以包括接收单元2010、处理单元2020以及发送单元2030。
接收单元2010可以配置为接收会话管理功能网元发送的目标业务流的第一服务质量流的第一服务质量信息。
接收单元2010还可以配置为接收会话管理功能网元发送的第一用户面功能网元的服务质量检测请求。
处理单元2020可以配置为根据第一用户面功能网元的服务质量检测请求,检测终端与第一用户面功能网元之间的目标业务流的当前用户面功能侧双向时延。
处理单元2020还可以配置为确定当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值。
发送单元2030可以配置为通过会话管理功能网元,向策略控制功能网元上报用户面功能侧双向时延超时消息。
图20实施例的其它内容可以参照上述其它实施例。
图21是本申请实施例提供的网络设备的框图。
如图21所示,本申请实施例提供的网络设备2100可以包括接收单元2110、处理单元2120以及发送单元2130。
接收单元2110可以配置为接收会话管理功能网元发送的目标业务流的第一服务质量流的服务质量配置文件信息。
接收单元2110还可以配置为接收会话管理功能网元发送的网络设备的服务质量检测请求。
处理单元2120可以配置为根据网络设备的服务质量检测请求,检测终端与网络设备之间的目标业务流的当前空口双向时延。
处理单元2120还可以配置为确定当前空口双向时延超过第一空口双向时延门限值,第一空口双向时延门限值可以小于第一用户面功能侧双向时延门限值。
发送单元2130可以配置为通过会话管理功能网元,向策略控制功能网元上报空口双向时延超时消息。
图21实施例的其它内容可以参照上述其它实施例。
图22是本申请实施例提供的通信设备的示意性结构图。该通信设备可以是终端,例如UE,也可以是网络设备例如基站,还可以是PCF网元和/或NEF网元和/或AF网元和/或AMF网元和/或SMF网元和/或UPF网元(可以包括上述UPF1和UPF2),图22所示的通信设备2200包括处理器2210,处理器2210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图22所示,通信设备2200还可以包括存储器2220。其中,处理器2210可以从存储器2220中调用并运 行计算机程序,以实现本申请实施例中的方法。
其中,存储器2220可以是独立于处理器2210的一个单独的器件,也可以集成在处理器2210中。
在一些实施例中,如图22所示,通信设备2200还可以包括收发器2230,处理器2210可以控制该收发器2230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2230可以包括发射机和接收机。收发器2230还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,通信设备2200可以为本申请实施例的各种网元,并且该通信设备2200可以实现本申请实施例的各个方法中由各网元实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,通信设备2200可以为本申请实施例的网络设备,并且该通信设备2200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,通信设备2200可以为本申请实施例的移动终端/终端,并且该通信设备2200可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。
上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。应理解,上述存储器为示例性但不是限制性说明。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
例如,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
例如,该计算机可读存储介质可应用于本申请实施例中的各网元,并且该计算机程序使得计算机执行本申请实施例的各个方法中由各网元实现的相应流程,为了简洁,在此不再赘述。
例如,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
例如,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
例如,该计算机程序产品可应用于本申请实施例中的各网元,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由各网元实现的相应流程,为了简洁,在此不再赘述。
例如,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
例如,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
例如,该计算机程序可应用于本申请实施例中的各网元,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由各网元实现的相应流程,为了简洁,在此不再赘述。
例如,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (24)

  1. 一种数据包传输方法,由应用功能网元执行,所述方法包括:
    向策略控制功能网元发送目标业务流的双向时延请求,所述双向时延请求包括第一用户面功能侧双向时延门限值;
    接收针对所述双向时延请求的响应消息,所述响应消息包括网络开放功能网元是否同意所述双向时延请求的指示信息;
    所述双向时延请求用于指示所述策略控制功能网元,在所述网络开放功能网元同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一服务质量检测策略,并将所述第一服务质量检测策略发送至会话管理功能网元,所述第一服务质量检测策略包括所述第一用户面功能侧双向门限值;
    所述第一服务质量检测策略用于指示所述会话管理功能网元,生成所述第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元;
    所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元:当检测到终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;
    所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,其中,所述目标处理方式满足所述双向时延请求。
  2. 根据权利要求1所述的方法,其中,所述双向时延请求还用于指示所述策略控制功能网元,在所述网络开放功能网元同意所述双向延时请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一策略计费控制规则,并将所述第一策略计费控制规则发送至所述会话管理功能网元;
    所述第一策略计费控制规则用于指示所述会话管理功能网元,生成第一服务质量流的第一服务质量信息,并将所述第一服务质量流的第一服务质量信息发送至第一用户面功能网元。
  3. 根据权利要求2所述的方法,其中,所述第一策略计费控制规则包括第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值之和小于、或等于所述第一用户面功能侧双向时延门限值;
    所述第一服务质量流满足所述第一服务质量信息中所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值等于、或者不等于下行业务传输时延门限值。
  4. 根据权利要求1所述的方法,其中,所述双向时延请求还包括超过所述第一用户面功能侧双向时延门限值后的建议处理方式;
    其中,所述用户面功能侧双向时延超时消息还用于指示所述策略控制功能网元,根据所述建议处理方式和所述策略控制功能网元的本地策略至少之一,确定针对所述目标业务流的所述目标处理方式。
  5. 根据权利要求1所述的方法,其中,所述双向时延请求还包括所述目标业务流的业务流模板信息、数据网络名称、单网络切片选择辅助信息中的至少一项。
  6. 一种数据包传输方法,由策略控制功能网元执行,所述方法包括:
    接收应用功能网元发送的目标业务流的双向时延请求,所述双向时延请求包括第一用户面功能侧双向时延值;
    在网络开放功能网元同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一服务质量检测策略,所述第一服务质量检测策略包括所述第一用户面功能侧双向时延门限值;
    将所述第一服务质量检测策略发送至会话管理功能网元;
    所述第一服务质量检测策略用于指示所述会话管理功能网元,生成所述第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元;
    所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功能网元:当检测到终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;
    所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,其中,所述目标处理方式满足所述双向时延请求。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    接收所述第一用户面功能网元发送的所述用户面功能侧双向时延超时消息;
    根据所述用户面功能侧双向时延超时消息,确定针对所述目标业务流的目标处理方式,其中,所述目标处理方式满足所述双向时延请求。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:
    在网络开放功能网元同意所述双向时延请求时,生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一策略计费控制规则;
    将所述第一策略计费控制规则发送至所述会话管理功能网元。
  9. 根据权利要求8所述的方法,其中,所述生成满足所述第一用户面功能侧双向时延门限值的所述目标业务流的第一策略计费控制规则,包括:
    根据所述第一用户面功能侧双向时延门限值,确定第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    根据所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值生成所述第一策略计费控制规则,所述第一策略计费控制规则包括所述第一用户面功能侧针对所述第一服务质量流的上行业务传输 时延门限值和下行业务传输时延门限值;
    所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值之和小于、或等于所述第一用户面功能侧双向时延门限值;
    所述第一服务质量流满足所述第一服务质量信息中所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    所述第一用户面功能侧针对所述第一服务质量流的上行业务传输时延门限值等于、或者不等于下行业务传输时延门限值。
  10. 根据权利要求6所述的方法,其中,所述双向时延请求还包括超过所述第一用户面功能侧双向时延门限值后的建议处理方式;
    其中,根据所述用户面功能侧双向时延超时消息,确定针对所述目标业务流的目标处理方式,包括:
    根据所述建议处理方式和所述策略控制功能网元的本地策略至少之一,确定针对所述目标业务流的目标处理方式。
  11. 根据权利要求6所述的方法,其中,所述方法还包括:
    根据所述第一用户面功能侧双向时延门限值,确定第一空口双向时延门限值;
    生成满足所述第一空口双向时延门限值的所述目标业务流的第二策略计费控制规则和第二服务质量检测策略,所述第二服务质量检测策略包括所述第一空口双向时延门限值;
    将所述第二策略计费控制规则和所述第二服务质量检测策略发送至所述会话管理功能网元;
    所述第二策略计费控制规则用于指示所述会话管理功能网元,生成所述第一服务质量流的服务质量配置文件信息,并将所述第一服务质量流的服务质量配置文件信息发送至网络设备;
    所述第二服务质量检测策略用于指示所述会话管理功能网元,生成所述网络设备的服务质量检测请求,并将所述网络设备的服务质量检测请求发送至所述网络设备;
    所述网络设备的服务质量检测请求用于指示所述网络设备,检测所述终端与所述网络设备之间的所述目标业务流的当前空口双向时延,在确定所述当前空口双向时延超过所述第一空口双向时延门限值时,上报空口双向时延超时消息;
    接收所述网络设备通过所述会话管理功能网元上报的所述空口双向时延超时消息。
  12. 根据权利要求11所述的方法,其中,所述生成满足所述第一空口双向时延门限值的所述目标业务流的第二策略计费控制规则,包括:
    根据所述第一空口双向时延门限值,确定空口针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    根据所述空口针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值生成所述第二策略计费控制规则,所述第二策略计费控制规则包括所述空口针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    所述空口针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值之和小于、或等于所述第一空口双向时延门限值;
    所述第一服务质量流满足所述服务质量配置文件信息中所述空口针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    所述空口针对所述第一服务质量流的上行业务传输时延门限值等于、或者不等于下行业务传输时延门限值。
  13. 根据权利要求6所述的方法,其中,所述用户面功能侧双向时延超时消息包括超过所述第一用户面功能侧双向时延门限值的当前用户面功能侧双向时延;
    其中,所述目标处理方式包括:
    根据超过所述第一用户面功能侧双向时延门限值的当前用户面功能侧双向时延,调节所述第一用户面功能侧双向时延门限值,获得第二用户面功能侧双向时延门限值,所述第二用户面功能侧双向时延门限值大于所述第一用户面功能侧双向时延门限值;
    指示所述第一用户面功能网元,检测所述终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延;
    在确定所述终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,超过所述第二用户面功能侧双向时延门限值时,发起协议数据单元会话的更新流程,以重新选择第二用户面功能网元;
    指示所述第二用户面功能网元,检测所述终端与所述第二用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延;
    在确定所述终端与所述第二用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,未超过所述第二用户面功能侧双向时延门限值时,采用所述第二用户面功能网元传输所述目标业务流。
  14. 根据权利要求6所述的方法,其中,所述目标处理方式包括以下中的至少一项:
    继续传输所述目标业务流,向所述应用功能网元上报双向时延超时消息;
    调整网络设备的配置参数;
    重新选择第二用户面功能网元以用于替换所述第一用户面功能网元;
    调整所述目标业务流的服务质量规则和服务质量配置文件信息,获得更新后的服务质量规则和服务质量配置文件信息,并将更新后的服务质量规则和服务质量配置文件信息分别发送至所述终端和网络设备;
    调节第一用户面功能侧的服务质量检测中的双向时延门限值参数,获得第二用户面功能侧双向时延门限值;
    中断传输所述目标业务流。
  15. 一种数据包传输方法,由会话管理功能网元执行,所述方法包括:
    接收策略控制功能网元发送的满足第一用户面功能侧双向时延门限值的目标业务流的第一服务质量检测策略,所述第一服务质量检测策略包括所述第一用户面功能侧双向时延值;
    根据所述第一服务质量检测策略生成第一用户面功能网元的服务质量检测请求,并将所述第一用户面功能网元的服务质量检测请求发送至所述第一用户面功能网元,所述第一用户面功能网元的服务质量检测请求用于指示所述第一用户面功 能网元:当检测到终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延,超过所述第一用户面功能侧双向时延门限值时,上报用户面功能侧双向时延超时消息;
    接收所述用户面功能侧双向时延超时消息;
    将所述用户面功能侧双向时延超时消息上报至所述策略控制功能网元;
    所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,其中,所述目标处理方式满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    接收所述策略控制功能网元发送的满足第一用户面功能侧双向时延门限值的目标业务流的第一策略计费控制规则;
    根据所述第一策略计费控制规则生成第一服务质量流的第一服务质量信息,并将所述第一服务质量流的第一服务质量信息发送至所述第一用户面功能网元。
  17. 根据权利要求15所述的方法,其中,所述方法还包括:
    从所述策略控制功能网元接收满足第一空口双向时延门限值的第二策略计费控制规则和第二服务质量检测策略,所述第二服务质量检测策略包括所述第一空口双向时延门限值;
    根据所述第二策略计费控制规则生成所述第一服务质量流的服务质量配置文件信息;
    将所述第一服务质量流的服务质量配置文件信息发送至网络设备;
    根据所述第二服务质量检测策略生成所述网络设备的服务质量检测请求;
    将所述网络设备的服务质量检测请求发送至所述网络设备,所述网络设备的服务质量检测请求用于指示所述网络设备,检测所述终端与所述网络设备之间的所述目标业务流的当前空口双向时延,在确定所述当前空口双向时延超过所述第一空口双向时延门限值时,上报空口双向时延超时消息;
    接收所述空口双向时延超时消息;
    将所述空口双向时延超时消息发送至所述策略控制功能网元。
  18. 一种数据包传输方法,由第一用户面功能网元执行,所述方法包括:
    接收会话管理功能网元发送的第一用户面功能网元的服务质量检测请求;
    根据所述第一用户面功能网元的服务质量检测请求,检测终端与所述第一用户面功能网元之间的所述目标业务流的当前用户面功能侧双向时延;
    当确定所述当前用户面功能侧双向时延超过第一用户面功能侧双向时延门限值时,通过所述会话管理功能网元,向策略控制功能网元上报用户面功能侧双向时延超时消息;
    所述用户面功能侧双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,其中,所述目标处理方式满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    接收所述会话管理功能网元发送的目标业务流的第一服务质量流的第一服务质量信息。
  20. 一种数据包传输方法,由网络设备执行,所述方法包括:
    接收会话管理功能网元发送的目标业务流的第一服务质量流的服务质量配置文件信息;
    接收所述会话管理功能网元发送的所述网络设备的服务质量检测请求;
    根据所述网络设备的服务质量检测请求,检测终端与所述网络设备之间的所述目标业务流的当前空口双向时延;
    当确定所述当前空口双向时延超过第一空口双向时延门限值时,通过所述会话管理功能网元,向策略控制功能网元上报空口双向时延超时消息,其中,所述第一空口双向时延门限值小于第一用户面功能侧双向时延门限值;
    所述空口双向时延超时消息用于指示所述策略控制功能网元,确定针对所述目标业务流的目标处理方式,其中,所述目标处理方式满足应用功能网元向所述策略控制功能网元发送的双向时延请求,所述双向时延请求包括所述第一用户面功能侧双向时延门限值。
  21. 根据权利要求20所述的方法,其中,所述第一服务质量流的服务质量配置文件信息包括所述第一空口双向时延门限值;
    所述当前空口双向时延包括当前空口上行时延和当前空口下行时延;
    根据所述第一空口双向时延门限值,确定空口针对所述第一服务质量流的上行业务传输时延门限值和下行业务传输时延门限值;
    其中,确定所述当前空口双向时延超过第一空口双向时延门限值的方式包括以下至少之一:
    确定所述当前空口上行时延超过所述空口针对所述第一服务质量流的上行业务传输时延门限值;
    确定所述当前空口下行时延超过所述空口针对所述第一服务质量流的下行业务传输时延门限值。
  22. 一种通信设备,包括:
    一个或多个处理器;
    存储器,配置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述通信设备实现如权利要求1至5中任一项所述的方法;或者,如权利要求6至14中任一项所述的方法;或者,如权利要求15至17任一项所述的方法;或者,如权利要求18或19所述的方法;或者,如权利要求20或21所述的方法。
  23. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至5中任一项所述的方法;或者,如权利要求6至14中任一项所述的方法;或者,如权利要求15至17任一项所述的方法;或者,如权利要求18或19所述的方法;或者,如权利要求20或21所述的方法。
  24. 一种计算机程序产品,包括计算机程序,该计算机程序被计算机执行时实现权利要求1至5中任一项所述的方法;或者,如权利要求6至14中任一项所述的方法;或者,如权利要求15至17任一项所述的方法;或者,如权利要求18或19所述的方法;或者,如权利要求20或21所述的方法。
PCT/CN2022/136561 2022-04-21 2022-12-05 数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品 WO2023202084A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/244,560 US20230422079A1 (en) 2022-04-21 2023-09-11 Data packet transmission method, communication device, computer-readable storage medium and computer program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210422067.9 2022-04-21
CN202210422067.9A CN116980327A (zh) 2022-04-21 2022-04-21 数据包传输方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/244,560 Continuation US20230422079A1 (en) 2022-04-21 2023-09-11 Data packet transmission method, communication device, computer-readable storage medium and computer program product

Publications (1)

Publication Number Publication Date
WO2023202084A1 true WO2023202084A1 (zh) 2023-10-26

Family

ID=88418992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136561 WO2023202084A1 (zh) 2022-04-21 2022-12-05 数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品

Country Status (3)

Country Link
US (1) US20230422079A1 (zh)
CN (1) CN116980327A (zh)
WO (1) WO2023202084A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676947A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 通信方法和装置
CN114008989A (zh) * 2019-07-18 2022-02-01 联想(新加坡)私人有限公司 测量移动通信网络中的往返时间
CN114189908A (zh) * 2021-12-17 2022-03-15 中国联合网络通信集团有限公司 通信方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008989A (zh) * 2019-07-18 2022-02-01 联想(新加坡)私人有限公司 测量移动通信网络中的往返时间
CN113676947A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 通信方法和装置
CN114189908A (zh) * 2021-12-17 2022-03-15 中国联合网络通信集团有限公司 通信方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, CHINA MOBILE: "Correction on QoS monitoring for URLLC", 3GPP TSG-WG SA2 MEETING #143E, S2-2100850, 18 February 2021 (2021-02-18), XP052173348 *

Also Published As

Publication number Publication date
CN116980327A (zh) 2023-10-31
US20230422079A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US20210219364A1 (en) Resource establishing method, and device
WO2020029097A1 (zh) 一种信息传输方法及装置、通信设备
US11503531B2 (en) Control data transmission method and network device and storage medium
WO2021217412A1 (zh) 一种确定终端策略行为的方法及装置、网络设备
WO2020061931A1 (zh) 一种切换上报的方法、终端设备及网络设备
WO2021087910A1 (zh) 用于连接网络的方法和设备
WO2020051745A1 (zh) 一种数据传输方法及装置、通信设备
US11184804B2 (en) Data transmission method and apparatus
WO2021031010A1 (zh) 通信方法、终端设备和网络设备
TW202021320A (zh) 通訊方法和設備
AU2018435773A1 (en) Information configuration method and apparatus, terminal, and network device
WO2020223907A1 (zh) 一种信息传输方法及装置、网络设备
WO2020056587A1 (zh) 一种切换处理方法、终端设备及网络设备
WO2023202084A1 (zh) 数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品
WO2020113520A1 (zh) 用于建立连接的方法、网络设备和终端设备
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
US20210153084A1 (en) Wireless communication method, terminal device, and network device
CN111903154B (zh) 无线通信的方法和设备
WO2021016790A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020164054A1 (zh) 业务处理方法、装置、芯片及计算机程序
WO2023184999A1 (zh) 数据包传输方法、通信设备、计算机可读存储介质及计算机程序产品
WO2020061962A1 (zh) 一种切换定时方法、终端设备及网络设备
WO2024001551A1 (zh) 网络能力开放方法及相关设备
WO2020077645A1 (zh) 一种参数配置方法、终端设备及存储介质
WO2024016779A1 (zh) 消息传输方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938302

Country of ref document: EP

Kind code of ref document: A1