WO2023202063A1 - 一种主动冗余的空调机组及控制方法 - Google Patents

一种主动冗余的空调机组及控制方法 Download PDF

Info

Publication number
WO2023202063A1
WO2023202063A1 PCT/CN2022/132835 CN2022132835W WO2023202063A1 WO 2023202063 A1 WO2023202063 A1 WO 2023202063A1 CN 2022132835 W CN2022132835 W CN 2022132835W WO 2023202063 A1 WO2023202063 A1 WO 2023202063A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
intermediate relay
frequency
conditioning unit
air conditioning
Prior art date
Application number
PCT/CN2022/132835
Other languages
English (en)
French (fr)
Inventor
蒲栋
周新喜
徐萌
杨晓艳
姜皓沥
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Publication of WO2023202063A1 publication Critical patent/WO2023202063A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • B61D27/0018Air-conditioning means, i.e. combining at least two of the following ways of treating or supplying air, namely heating, cooling or ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to the technical field of air conditioning products, in particular to an active redundant air conditioning unit and a control method.
  • EMUs have increasingly become people's first choice for travel due to their advantages of high speed, speed and comfort.
  • EMUs and other rail vehicles are equipped with on-board air-conditioning units.
  • common on-board air-conditioning units include multiple compressors. Each compressor represents an independent refrigeration cycle. Fixed-frequency compressors have high reliability. When one of the refrigeration cycle circuits fails, the refrigeration output decreases, which is equivalent to the air conditioning unit running in a degraded mode, and the comfort in the car is affected; in another technical solution of the existing technology , configure a variable frequency air conditioning unit for rail vehicles.
  • Each unit contains multiple sets of independent refrigeration cycle circuits.
  • Each refrigeration circuit includes a variable frequency compressor, which can achieve multi-level adjustment.
  • the compressors in the remaining circuits will run at an increased frequency, which can take into account the refrigeration output before the failure and ensure that the refrigeration output remains unchanged, thereby ensuring comfort.
  • the inverter air conditioner has many electrical components and many fault points.
  • the main purpose of the present invention is to solve the above problems and deficiencies.
  • an active redundant air conditioning unit is provided, and a control method of the air conditioning unit is further provided, which can convert the fixed frequency mode and the variable frequency mode of the air conditioning unit, and control the air conditioning unit at any time.
  • the compressor frequency is increased to ensure indoor temperature and comfort.
  • the present invention first provides an active redundant air conditioning unit, adopting the following technical solutions:
  • An active redundant air conditioning unit includes a controller and multiple groups of mutually independent refrigeration cycle circuits.
  • Each group of the refrigeration cycle circuits includes at least one variable frequency compressor, and also includes a plurality of variable frequency compressors that respectively control the frequency changes of each compressor.
  • frequency converter the input end of each frequency converter is connected to the controller through a first intermediate relay, the output end is connected to the compressor, and the input end of the first intermediate relay is connected to the input of the compressor
  • the controller controls the opening and closing of the first intermediate relay and the second intermediate relay to realize switching between the compressor frequency conversion mode and the fixed frequency mode. Any of the refrigeration cycle circuits When a fault occurs, the second intermediate relay is disconnected, the first intermediate relay is closed, and the compressor operates in the frequency conversion mode under the control of the frequency converter.
  • circuit breaker is connected in series between the input end of each first intermediate relay and the output end of the controller.
  • it also includes a detection device for detecting the fault status of each of the refrigeration cycle circuits.
  • the second intermediate relay is engaged, the first intermediate relay is disconnected, and the compressor operates in a fixed frequency mode.
  • the second object of the present invention is to provide a control method for an active redundant air conditioning unit, adopting the following technical solution:
  • the air conditioning unit includes control and multiple groups of refrigeration cycle circuits that are independent and connected in parallel.
  • Each group of refrigeration cycle circuits includes a variable frequency compressor, and is characterized by: also including multiple frequency converters.
  • the input end of each frequency converter is connected to the controller through a first intermediate relay, the output end is connected to the compressor, and a second intermediate relay is connected in parallel between the input end of the first intermediate relay and the input end of the compressor,
  • T1 when the ambient temperature is less than T1
  • heating mode when the ambient temperature is greater than T2
  • the first intermediate relay is disconnected, the second intermediate relay is closed, and the compressor runs in fixed frequency mode.
  • the controller controls the first intermediate relay to close, the second intermediate relay to open, and the frequency converter controls each compressor to run in high-frequency mode.
  • the controller controls the first intermediate relay to close, the second intermediate relay to disconnect, and the compressor runs in the high-frequency mode in the variable frequency mode; in the cooling mode, when the environment When the temperature is greater than or equal to T1, or in heating mode, the ambient temperature is less than or equal to T2, the first intermediate relay is closed, the second intermediate relay is disconnected, and the frequency converter controls the change of the operating frequency of the compressor, and the compressor operates with variable frequency mode; in cooling mode, when the ambient temperature is less than T1, or in heating mode, when the ambient temperature is greater than T2, the first intermediate relay is disconnected, the second intermediate relay is closed, and the compressor runs in fixed frequency mode.
  • each compressor is started at intervals.
  • the compressor is turned from off to on, it is raised to the first frequency at a predetermined rate and stays for a predetermined time before being adjusted to the target value.
  • the controller includes a temperature control module and a PI module, which calculates the action value Tacu based on the collected fresh air temperature, added air temperature, and supply air temperature, and determines the action of the compressor through preset logic.
  • the calculation process of the action value Tacu includes: obtaining the difference ⁇ TRaum between the indoor average temperature CATavg and the indoor set temperature CAR SP, inputting ⁇ TRaum into the PI module to perform calculations on P and I respectively, and adding the results to a value-added operation. , obtain TP+I, and input TP+I into the temperature control module in the control. Combined with the fresh air temperature and supply air temperature, the action value Tacu is calculated and obtained.
  • the preset logic includes the operating frequency value of each compressor when the action value Tacu is in different intervals when each compressor is in a normal state, when at least one compressor is faulty, and when the driver's cab air conditioner is faulty.
  • the active redundant air conditioning unit and control method provided by the present invention have the following technical advantages compared with the existing technology:
  • variable frequency compressor that is suitable for vehicle power supply. It can be used as a fixed frequency compressor in daily use. When one of the compressors fails, the remaining compressors can be powered by the frequency converter. By increasing the power frequency, the compressor working load is increased to ensure The heat exchanger output does not bend, thereby ensuring indoor comfort;
  • the controller and intermediate relay can start the frequency converter in a short time, ensuring the quality and life of the frequency converter, and ensuring the charging and discharging process of the frequency converter, thereby ensuring the reliability of the frequency converter.
  • FIG. 1 Schematic diagram of the control system of an active redundant air conditioning unit provided by the present invention
  • FIG. 2 A schematic diagram of the control logic of an active redundant air conditioning unit provided by the present invention
  • intermediate relay K1 intermediate relay K2, intermediate relay K3, intermediate relay K4, intermediate relay K5, intermediate relay K6, intermediate relay K7, intermediate relay K8, circuit breaker Q1, circuit breaker Q2, circuit breaker Q3, circuit breaker Q4, Controller 1, frequency converter 2, compressor 3, indoor temperature sensor 4, fresh air temperature sensor 5, supply air temperature sensor 6, PI module 7.
  • the present invention first provides an active redundant air conditioning unit, which includes a controller 1 and multiple groups of mutually independent refrigeration cycle circuits.
  • Each group of refrigeration cycle circuits includes at least one variable frequency compressor 3 and a plurality of variable-frequency compressors 3 that respectively control each compressor.
  • the frequency converter 2 of the machine 3 changes in frequency.
  • the input end of each frequency converter 2 is connected to the controller 1 through a first intermediate relay, the output end is connected to the compressor 3, and the input end of the first intermediate relay is connected to the input end of the compressor 3.
  • the controller 1 controls the opening and closing of the first intermediate relay and the second intermediate relay to realize the switching between the variable frequency mode and the fixed frequency mode of the compressor 3.
  • the second intermediate relay The intermediate relay is disconnected, the first intermediate relay is closed, and the compressor 3 operates in the frequency conversion mode under the control of the frequency converter 2.
  • the air conditioning unit includes two air conditioning systems.
  • Each air conditioning system includes two sets of refrigeration cycle loops.
  • Each set of refrigeration cycle loops includes The compressor 1, evaporator, condenser, and four-way valve are connected by pipelines, and the refrigerant runs in the circulation loop to achieve heat exchange.
  • the compressors 3 are electrically connected to the controller 1 respectively, and each compressor 3 is connected to a three-phase power supply to receive power, so that the compressors are connected in parallel.
  • the air conditioning unit includes four sets of refrigeration cycle circuits.
  • Each set of cycle circuits includes a compressor 3.
  • the four compressors 3 are connected in parallel through a circuit and connected to a three-phase power supply.
  • the three-phase power supply The controller 1 can provide power to the compressor 3.
  • Each compressor 3 adopts a variable frequency compressor that can adapt to the vehicle power supply system (such as 3N400V, 50Hz).
  • Each compressor 3 is connected to an inverter 2 and is powered by the inverter 2. And control and adjust the frequency change of the compressor 3 to control the temperature inside the car to maintain a relatively stable temperature range to improve the comfort of the car environment.
  • the output end of the inverter 2 is connected to the input end of the compressor 3, and the input end is connected to the controller 1 through the intermediate relay K1.
  • intermediate relay K5 connected in parallel between the input end of the intermediate relay K1 and the output end of the frequency converter 2. Furthermore, the input end of the intermediate relay K1 is connected to the three-phase power supply through the circuit breaker Q1, and the controller 1 controls the circuit breaker Q1, The switching of the intermediate relay K1 and the intermediate relay K5 controls the working status and working mode of the refrigeration cycle. The controller 1 controls the circuit breaker Q1 to close, and the entire refrigeration cycle is powered on. When the intermediate relay K1 closes, the intermediate relay K1 closes. When relay K5 is disconnected, inverter 2 is powered on and started instantly to ensure that inverter 2 has a charging and discharging process and ensures the reliability of the inverter.
  • Inverter 2 supplies power to compressor 3, and inverter 2 controls the operation of compressor 3.
  • Frequency conversion mode when the intermediate relay K1 is disconnected and the intermediate relay K5 is closed, the frequency converter 2 is powered off, and the controller 1 directly supplies power to the compressor 3, and controls the compressor 3 to run in the fixed frequency mode.
  • the compressor 3 of each other group of refrigeration cycle circuits is connected to the controller 1 in the same way, that is, the input end of the compressor 3 of the second group of refrigeration cycle circuit is sequentially connected to the frequency converter 2, the intermediate relay K2, the input end of the intermediate relay K2 and the frequency converter.
  • the output terminals of 2 are connected in parallel with the intermediate relay K6; the input terminals of the compressor 3 of the third group of refrigeration cycle circuits are sequentially connected to the frequency converter 2 and the intermediate relay K3.
  • the input terminals of the intermediate relay K3 and the output terminals of the frequency converter 2 are connected in parallel with the intermediate relay.
  • Relay K7; the input end of the compressor 3 of the fourth group of refrigeration cycle circuits is sequentially connected to the frequency converter 2 and the intermediate relay K4, and the intermediate relay K8 is connected in parallel between the input end of the intermediate relay K4 and the output end of the frequency converter 2.
  • the input terminals of intermediate relays K2, K3, K4 and K6, K7 and K8 are respectively connected to the controller 1 through circuit breaker Q2, circuit breaker Q3 and circuit breaker Q4.
  • the intermediate relays K1-K5 are the first intermediate relays
  • the intermediate relays K6-K8 are the second intermediate relays.
  • the controller 1 controls the on and off of each circuit breaker respectively according to the built-in control logic, thereby controlling the working state of the refrigeration cycle.
  • the working mode of the air conditioning unit is controlled.
  • the on-off states of the first intermediate relay and the second intermediate relay are opposite. When the first intermediate relay is closed, the second intermediate relay is disconnected. When the second intermediate relay is closed, the first intermediate relay is disconnected.
  • the air conditioning unit also includes a detection device that can detect the fault status of each refrigeration cycle circuit respectively.
  • the detection device sends the fault status to controller 1, and controller 1
  • controller 1 The circuit breaker that controls the refrigeration cycle is disconnected, and the first intermediate relay of the other groups of refrigeration cycle circuits is controlled to close, and the second intermediate relay is disconnected.
  • the inverter 2 controls the compressor 3 to increase the frequency according to the built-in control logic and run.
  • the frequency conversion mode ensures to avoid the problem of reduced overall heat exchange of the air conditioning unit when any refrigeration cycle circuit fails.
  • the controller 1 controls the first intermediate relay to open and the second intermediate relay to close according to the predetermined control logic.
  • Each compressor 3 runs in the fixed frequency mode, and the air conditioning unit outputs relatively stable heat exchange.
  • the present invention further provides the control method of the air conditioning unit mentioned above, specifically:
  • each circuit breaker When the air-conditioning unit is running for the first time, and/or before each operation of the air-conditioning unit, perform self-tests on the first intermediate relay, the second intermediate relay and each circuit breaker respectively, and confirm that the first intermediate relay, the second intermediate relay and The functions of each circuit breaker are normal and in the initial state, that is, each circuit breaker Q1-Q4 is in the pull-in state, the first intermediate relay is in the pull-in state, the second intermediate relay is in the disconnected state, and the first intermediate relay and the second intermediate relay are in the off state.
  • the on-off function of the intermediate relay is normal to ensure that the frequency converter 2 has the ability to operate normally and to realize the conversion of the compressor between fixed frequency mode and variable frequency mode.
  • the outdoor temperature sensor of the air conditioning unit works, and it is determined that the air conditioning unit needs to be turned on to exchange heat inside the vehicle (hereinafter referred to as indoor), the air conditioning unit is powered on and running, and controller 1 controls the intermediate relays K1 and K2 , K3 and K4 are engaged, each frequency converter 2 is powered on, and each compressor 3 is controlled to run in the variable frequency mode in the high frequency mode to achieve the purpose of quickly reducing the indoor temperature;
  • T1 In cooling mode, when the ambient temperature is detected to be greater than or equal to T1 (T1 is the high temperature limit), or in heating mode, when the ambient temperature is detected to be less than or equal to T2 (T2 is the low temperature limit), the indoor heat exchange demand Higher, the heat load is larger, the controller 1 controls the intermediate relays K1, K2, K3, K4 to continue to close, and controls the operating frequency change of the compressor 3 through the inverter 2 to achieve indoor temperature control;
  • controller 1 Control the intermediate relays K1, K2, K3, and K4 to disconnect, and control the intermediate relays K5, K6, K7, and K8 to close.
  • the air conditioning unit enters the fixed frequency mode.
  • Each compressor operates at a stable frequency, quantitatively outputs heat exchange, and indoor temperature. Controlled by the start and stop of compressor 3;
  • controller 1 controls the circuit breaker of the refrigeration cycle circuit to open, and controls the intermediate relays K1, K2, K3, and K4 to re-close, controls the intermediate relays K5, K6, K7, and K8 to disconnect, and the inverter 2 is powered on again.
  • the air conditioning unit is controlled to re-enter the variable frequency mode, and each compressor that enters the variable frequency mode runs in the high frequency mode to ensure that the overall heat exchange output of the air conditioning unit remains unchanged or only decreases slightly, thereby Ensure that the failure of a certain refrigeration cycle does not affect the indoor temperature.
  • compressor 3 The control logic of compressor frequency when the air conditioning unit built in controller 1 and/or inverter 2 operates in the inverter mode. Compressor 3 is directly driven through inverter 2. Inverter 2 performs overcurrent protection on compressor 3 to prevent compressor 3 from overcurrent. was burned.
  • compressor 3 starts according to the control logic, and finally reaches the optimal target operating frequency:
  • Compressor start Each compressor in the car starts at an interval of 3s to 5s.
  • the frequency When the compressor turns from off to on, the frequency must be increased to the first predetermined frequency and continued to run at this frequency for a predetermined time, and then increased at a predetermined rate.
  • the target value such as compressor 3 from off to on, increase the operating frequency of the compressor by 40Hz-60Hz, the best is 50Hz, and continue to run at this frequency for 2min-5min, the best is 3min, and then adjust to the target value;
  • Compressor frequency change rate frequency rise and fall speed ⁇ 5Hz/s; the time required for the compressor from starting to increasing to 50Hz is set to 8s-15s, the best is 10s;
  • Compressor 3 first drops from the current operating frequency to the second predetermined frequency at the preset decreasing speed, such as 30-60Hz, preferably 40Hz, and then stops directly;
  • the air conditioning unit When the air conditioning unit is initially turned on or when the outdoor ambient temperature is greater than or equal to T1 (cooling mode) or less than or equal to T2 (heating mode), the heat load is large, and the air conditioning unit operates in variable frequency mode to achieve rapid indoor cooling/heating. To improve comfort, in frequency conversion mode, conventional methods can be used in conjunction with the previous control data (contents in a, b, and c) to achieve frequency conversion control.
  • the controller 1 controls each compressor 3 to operate between 40 and 60Hz.
  • the specific operating frequency can be obtained by performing PI calculations based on the obtained fresh air temperature, supply air temperature, indoor temperature and predetermined temperature.
  • the action value Tacu is determined.
  • the air conditioning unit also includes a fresh air temperature sensor 5, a supply air temperature sensor 6 and an indoor temperature sensor 4, which collect the fresh air temperature, supply air temperature and indoor temperature respectively, and preset the PI module 7 in the controller 1 and compressor frequency control logic program, input each temperature value obtained into the PI module 7 to calculate the action value, and use the action value to define the refrigeration demand, and then adjust the actual operating frequency of the compressor according to the preset control logic to achieve frequency conversion Automatic cooling capacity adjustment, the PI calculation process of action value Tacu includes:
  • multiple indoor temperature sensors 4 are installed indoors to detect real-time temperature values at different locations in the room, and transmit the real-time indoor temperature values to the controller 1, and obtain the indoor temperature average CATavg, and average the indoor temperature Compare the difference between the value CATavg and the set temperature value CAR SP in the passenger room to obtain the difference ⁇ TRaum between the actual average indoor temperature and the set temperature. Input ⁇ TRaum into the PI module 7.
  • P is 2000 and I is 500. After the operations of P (proportional) and I (integral) respectively, the TP value and I value are obtained respectively.
  • the air conditioning control logic module is shown in Figure 2. In the field of air conditioning, using PI modules for data calculation is a conventional technology, and any calculation method that may appear now or in the future is within the scope of the present invention.
  • the controller 1 directly controls the operation and operating frequency of the compressor 3, and pre-stores a corresponding table between the action value Tacu and the action frequency of each compressor 3 of the air conditioning unit in the controller 1, so that the action value Tacu is at Different intervals correspond to different fixed operating frequencies of the compressors, and there are multiple corresponding tables, including when the four compressors are all working normally and the action value Tacu is in different intervals, the common frequency value of the four compressors, a When one compressor fails (one set of refrigeration cycle circuits fails), two compressors fail (two sets of refrigeration cycle circuits fail), or three compressors fail (three sets of refrigeration cycle circuits fail), the action value Tacu is at different interval, the frequency value corresponding to each compressor.
  • the air-conditioning unit in one carriage of a rail vehicle Take the air-conditioning unit in one carriage of a rail vehicle as an example.
  • the air-conditioning unit in each carriage includes two outdoor units and matching indoor units.
  • Each outdoor unit includes two sets of refrigeration cycle circuits and two sets of refrigeration cycle circuits. Independently separated, but the two compressors share a condenser, that is, each two sets of refrigeration cycle circuits share a condenser.
  • the action value Tacu prestored in the controller and/or inverter is in different intervals
  • the corresponding relationship with the compressor operating frequency specifically includes:
  • Table 1 Correspondence between action value Tacu and compressor operating frequency Table 1 (during normal operation)
  • the operating frequency of the compressors of another set of refrigeration cycle loops that share a condenser is higher than the frequencies of the other two compressors.
  • the operating frequency of the compressors in the other group of refrigeration cycle circuits that share a condenser with this refrigeration cycle circuit is increased by 20 Hz, and the operating frequencies of the other two compressors are increased by 10 Hz each.
  • Tacu ⁇ -1.2 the air conditioning unit operates in ventilation mode without starting or changing the operating frequency of the compressor.
  • This mode includes two situations: one group of refrigeration cycle circuits in each of the two outdoor units fails, and one case in which both groups of refrigeration cycle circuits of the same outdoor unit fail. Both situations will cause a serious shortage of heat exchange.
  • the operating frequency of the compressor needs to be accurately controlled. Therefore, the action value Tacu is divided into 6 consecutive intervals from the numerical range of (-1.2, 1.2), and is changed to In order to divide the numerical range from (0, 1.2) into 8 continuous intervals, the division is more precise and the indoor temperature can be accurately controlled.
  • the action value T ⁇ 0 the air conditioning unit is controlled to enter the ventilation mode.
  • the air conditioning unit when the air conditioning unit operates in fixed frequency mode, the corresponding compressor operating frequency is selected based on the working status of each group of refrigeration cycle circuits and the action value Tacu obtained through temperature calculation.
  • the air conditioning unit When one, two or three groups of refrigeration When a cycle loop fails, select the corresponding correspondence table based on the number of failed refrigeration cycle loops, select the corresponding compressor frequency based on the calculated Tacu interval, and control the compressor to perform actions; when the four groups of refrigeration cycles When all loops fail, the air conditioning unit will give an alarm; during fixed-frequency operation, when the action value Tacu changes to another interval, and when the duration of the new interval exceeds the predetermined value, the controller will respond according to the changed action value.
  • the controller receives the detection device After sending the fault information, the controller directly or after a predetermined time interval, based on the interval of the real-time action value Tacu and the corresponding correspondence table, synchronously re-adjusts the operating frequency of the compressors that control other normal refrigeration cycle circuits to improve the operation of each compressor. frequency to avoid sudden changes in indoor temperature.
  • the present invention further provides a correspondence table between the action value Tacu and the operating frequency of the driver's cab air conditioner. Since the driver's cab space is small and the heat exchange requirement is not large, the driver's cab air conditioner usually only includes one set of refrigeration cycle circuits. Similarly, the driver's cab air conditioner usually only includes one set of refrigeration cycle circuits. The connection methods of the compressor, controller, frequency converter, circuit breaker, and intermediate relay of the refrigeration cycle of the air conditioner are as mentioned above. When the driver's cab air conditioner is powered on and initially runs, the air conditioner runs in the frequency conversion mode as mentioned above, and the compressor The control methods such as operating frequency increase and growth rate are as mentioned above. When the cab air conditioner enters the fixed frequency mode, the action value Tacu is calculated, and according to the corresponding relationship shown in Table 5, the compressor of the cab air conditioner is controlled in the fixed frequency mode. operating frequency:
  • Table 5 Correspondence table between action value Tacu and operating frequency of cab air conditioning compressor
  • an air conditioning unit equipped with four sets of refrigeration cycle circuits in a single carriage of a rail vehicle is used as an example to introduce the connection and control relationship between each compressor of the air conditioning unit provided by the present invention, the frequency converter and the controller.
  • the air conditioning unit provided by the present invention can be used in various environments, such as commercial air conditioners, multi-split units, etc. The above cannot be regarded as limiting the scope of application of the present invention; at the same time, in the foregoing, the air conditioning unit includes four A group of refrigeration cycle circuits.
  • each group of refrigeration cycle circuits are connected to the controller 1 using the circuit diagram shown in Figure 1, and accept the operation control of the controller directly or indirectly.
  • Each two groups of refrigeration cycle circuits share a condenser.
  • the number of refrigeration cycle loops and the number of compressors included in each group of refrigeration cycle loops are determined based on the size of the heat exchange space and heat exchange requirements.
  • Each group of refrigeration cycle loops can include two or more parallel compressors.
  • the frequency increase value during high-frequency operation is equivalent to equipping the air conditioning unit with a redundant compressor to achieve a redundant design of the air conditioning unit.
  • the active redundant air conditioning unit and control method provided by the present invention have the following technical advantages compared with the existing technology:
  • variable frequency compressor that is suitable for vehicle power supply. It can be used as a fixed frequency compressor in daily use. When one of the compressors fails, the remaining compressors can be powered by the frequency converter. By increasing the power frequency, the compressor working load is increased to ensure The heat exchanger output does not bend, thereby ensuring indoor comfort;
  • the controller and intermediate relay can start the frequency converter in a short time, ensuring the quality and life of the frequency converter, and ensuring the charging and discharging process of the frequency converter, thereby ensuring the reliability of the frequency converter.

Abstract

一种主动冗余的空调机组及控制方法,该主动冗余的空调机组包括控制器和多组相互独立的制冷循环回路,每组制冷循环回路至少包括一台变频压缩机,还包括多个控制压缩机频率变化的变频器,每个变频器的输入端通过第一中间继电器与控制器连接,输出端与压缩机连接,第一中间继电器的输入端与压缩机的输入端之间还并联有第二中间继电器,控制器控制第一中间继电器和第二中间继电器的开合,实现压缩机变频模式和定频模式的切换,任一制冷循环回路故障时,第二中间继电器断开,第一中间继电器吸合,压缩机在变频器的控制下运行变频模式。

Description

一种主动冗余的空调机组及控制方法
本申请要求于2022年04月20日提交中国专利局、申请号为202210417226.6、发明名称为“一种主动冗余的空调机组及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调产品技术领域,尤其是一种主动冗余的空调机组及控制方法。
背景技术
随着轨道车辆技术的发展,动车组以其高速、快捷、舒适的优势,越来越成为人们出行的首选。为提高乘坐的舒适性,动车组及其他轨道车辆上配备有车载空调机组,现有技术中,常见的车载空调机组包含多台压缩机,每台压缩机代表1套独立的制冷循环回路,采用定频压缩机,可靠性较高,当其中1套制冷循环回路故障时,制冷输出降低,相当于空调机组运行在降级模式,车内舒适度受到影响;现有技术的另一种技术方案中,为轨道车辆配置变频空调机组,每台机组包含多套相互的独立的制冷循环回路,每套制冷回路包括一台变频压缩机,可实现多级调节,当其中1套制冷循环回路故障时,为确保制冷输出,其余回路中的压缩机将升频率运行,可以兼顾故障前的制冷输出量,保证制冷输出量不变,从而保证舒适度,但变频空调电气元件较多,故障点较多。
当用户提出空调系统单制冷系统故障,且单点故障不允许影响室内温度的时候,就需要考虑变频空调的应用,且要保证可靠性。
发明内容
本发明主要目的在于解决上述问题和不足,首先提供了一种主动冗余的空调机组,并进一步提供了该空调机组的控制方法,可进行空调机组的定频模式和变频模式的转换,并在任一制冷循环回路故障时,实现压缩机升频,确保室内温度,保证舒适性。
为实现上述目的,本发明首先提供了一种主动冗余的空调机组,采用如下技术方案:
一种主动冗余的空调机组,包括控制器和多组相互独立的制冷循环回路,每组所述制冷循环回路至少包括一台变频压缩机,还包括多个分别控制各所述压缩机频率变化的变频器,每个所述变频器的输入端通过第一中间继电器与所述控制器连接,输出端与所述压缩机连接,所述第一中间继电器的输入端与所述压缩机的输入端之间还并联有第二中间继电器,所述控制器控制所述第一中间继电器和第二中间继电器的开合,实现压缩机变频模式和定频模式的切换,任一所述制冷循环回路故障时,所述第二中间继电器断开,第一中间继电器吸合,所述压缩机在所述变频器的控制下运行变频模式。
进一步的,每个所述第一中间继电器的输入端与所述控制器的输出端之间还串联有断路器。
进一步的,还包括检测各所述制冷循环回路故障状态的检测装置。
进一步的,所述制冷循环回路稳定运行时,所述第二中间继电器吸合,第一中间继电器断开,所述压缩机以定频模式运行。
本发明第二发明目的在于提供一种主动冗余的空调机组的控制方法,采用如下技术方案:
一种主动冗余的空调机组控制方法,空调机组包括控制和多组相互独立且并联连接的制冷循环回路,每组制冷循环回路包括一台变频压缩机,其特征在于:还包括多个变频器,每个变频器的输入端通过第一中间继电器与所述控制器连接,输出端与压缩机连接,第一中间继电器的输入端与压缩机的输入端之间还并联有第二中间继电器,在制冷模式下,环境温度小于T1,或在制热模式下,环境温度大于T2时,第一中间继电器断开,第二中间继电器吸合,压缩机运行定频模式,当检测到任一制冷循环回路故障时,控制器控制第一中间继电器吸合,第二中间继电器断开,变频器控制各压缩机运行在高频模式。
进一步的,当空调机组首次上电时,控制器控制所述第一中间继电器吸合,第二中间继电器断开,所述压缩机以变频模式运行在高频模式下;制冷模式下,当环境温度大于等于T1,或在制热模式下,环境温度小于等于T2时,所述第一中间继电器吸合,第二中间继电器断开,由变频器控制压缩机的运行频率变化,压缩机运行变频模式;制冷模式下,环境温度 小于T1,或制热模式下,环境温度大于T2时,所述第一中间继电器断开,第二中间继电器吸合,压缩机运行定频模式。
进一步的,空调机组上电后,各压缩机之间间隔启动,压缩机由关到开时,以预定速率提升到第一频率并停留预定时间后再调至目标值。
进一步的,控制器包括温度控制模块和PI模块,对采集的新风温度、加风温度和送风温度,计算动作值Tacu,并通过预设逻辑,决定压缩机的动作。
进一步的,动作值Tacu的计算过程包括:获取室内平均温度CATavg与室内设定温度CAR SP的差值△TRaum,将△TRaum输入PI模块分别进行P和I的运算,将结果加行加值运行,获得TP+I,并将TP+I输入到控制内的温度控制模块,结合新风温度和送风温度,计算获得动作值Tacu。
进一步的,预设逻辑包括各压缩机正常状态下、至少一台压缩机故障状态下以及司机室空调故障状态下,动作值Tacu在不同区间时,各压缩机的运行频率值。
综上所述,本发明提供的一种主动冗余的空调机组及控制方法,与现有技术相比,具有如下技术优势:
采用适用车载电源制式的变频压缩机,日常运用时可以作为定频压缩机使用,当其中一台压缩机故障时,剩余压缩机可通过变频器供电,通过提升电源频率加强压缩机工作载荷,保证换热量输出不弯,从而保证室内的舒适性;
通过控制器、中间继电器在短时间内可启动变频器,保证了变频器的质量及寿命,并保证变频器充放电过程,从而保证变频器的可靠性。
附图说明
图1:本发明提供的一种主动冗余的空调机组的控制系统示意图;
图2:本发明提供的一种主动冗余的空调机组的控制逻辑示意图;
其中:中间继电器K1,中间继电器K2,中间继电器K3,中间继电器K4,中间继电器K5,中间继电器K6,中间继电器K7,中间继电器K8,断路器Q1,断路器Q2,断路器Q3,断路器Q4,控制器1,变频器2,压缩机3,室内温度传感器4,新风温度传感器5,送风温度传感器6,PI模 块7。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步的详细描述。
本发明首先提供了一种主动冗余的空调机组,包括控制器1和多组相互独立的制冷循环回路,每组制冷循环回路至少包括一台变频压缩机3,还包括多个分别控制各压缩机3频率变化的变频器2,每个变频器2的输入端通过第一中间继电器与控制器1连接,输出端与压缩机3连接,第一中间继电器的输入端与压缩机3的输入端之间还并联有第二中间继电器,控制器1控制第一中间继电器和第二中间继电器的开合,实现压缩机3变频模式和定频模式的切换,任一制冷循环回路故障时,第二中间继电器断开,第一中间继电器吸合,压缩机3在变频器2的控制下运行变频模式。
以轨道车辆用空调机组为例,介绍本发明提供的主动冗余的空调机组的具体组成,空调机组包括两部空调系统,每部空调系统包括两组制冷循环回路,每组制冷循环回路包括通过管路连接的压缩机1、蒸发器、冷凝器、四通阀,制冷剂在循环回路中运转,实现换热。压缩机3分别与控制器1电连接,且各压缩机3分别与三相电源连接受电,实现各压缩机并联连接。如图1所示,在本实施例中,空调机组包括四组制冷循环回路,每组循环回路包括一台压缩机3,四台压缩机3通过电路并联后与三相电源连接,三相电源可通过控制器1向压缩机3供电,各压缩机3采用能适应车辆电源制式(如3N400V,50Hz)的变频压缩机,每个压缩机3分别连接一个变频器2,由变频器2供电,并控制、调整压缩机3的频率变化,控制车内温度维持在相对稳定的温度范围,以提高车内环境的舒适性。以最左侧压缩机3与三相电源的连接为例,如图1所示,变频器2的输出端与压缩机3的输入端连接,输入端通过中间继电器K1与控制器1连接,在中间继电器K1的输入端与变频器2的输出端之间,并联有中间继电器K5,进一步的,中间继电器K1的输入端通过断路器Q1与三相电源连接,由控制器1控制断路器Q1、中间继电器K1和中间继电器K5的通断,从而控制该制冷循环回路的工作状态和工作模式,控制器1控制断路器Q1吸合,整个制冷循环回路上电运行,当中间继电器K1吸合,中间继电器 K5断开时,变频器2瞬间上电启动,保证变频器2具备充放电过程,确保变频器的可靠性,并由变频器2向压缩机3供电,由变频器2控制压缩机3运行变频模式;当中间继电器K1断开,中间继电器K5吸合时,变频器2断电,由控制器1直接向压缩机3供电,控制压缩机3运行定频模式。其他各组制冷循环回路的压缩机3与控制器1连接方式相同,即第二组制冷循环回路的压缩机3的输入端顺序连接变频器2、中间继电器K2,中间继电器K2输入端及变频器2的输出端之间并联中间继电器K6;第三组制冷循环回路的压缩机3的输入端顺序连接变频器2、中间继电器K3,中间继电器K3输入端及变频器2的输出端之间并联中间继电器K7;第四组制冷循环回路的压缩机3的输入端顺序连接变频器2、中间继电器K4,中间继电器K4输入端及变频器2的输出端之间并联中间继电器K8。中间继电器K2、中间继电器K3、中间继电器K4和中间继电器K6、中间继电器K7、中间继电器K8的输入端分别通过断路器Q2、断路器Q3、断路器Q4与控制器1连接。其中,中间继电器K1-K5为第一中间继电器,中间继电器K6-K8为第二中间继电器,控制器1根据内置控制逻辑,分别控制各断路器的通断,从而控制该制冷循环回路的工作状态,并通过控制第一中间继电器和第二中间继电器的通断,实现对空调机组工作模式的控制。第一中间继电器和第二中间继电器的通断状态相反,当第一中间继电器吸合时,第二中间继电器断开,当第二中间继电器吸合时,第一中间继电器断开。空调机组还包括检测装置,可分别检测各制冷循环回路的故障状态,当任一制冷循环回路出现故障,无法实现相应的换热工作时,检测装置将故障状态发送给控制器1,控制器1控制该制冷循环回路的断路器断开,同时控制其他各组制冷循环回路的第一中间继电器吸合,第二中间继电器断开,由变频器2按内置控制逻辑控制压缩机3升频,运行变频模式,保证避免出现任一制冷循环回路故障时,空调机组整体换热量减少的问题。当室内温度相对稳定时,控制器1按预定控制逻辑,控制第一中间继电器断开,第二中间继电器吸合,各压缩机3运行定频模式,空调机组输出相对稳定的换热量。
本发明进一步提供了前文所述的空调机组的控制方法,具体的:
在空调机组在初次运行时,和/或是在空调机组每次运行之前,分别对 第一中间继电器、第二中间继电器及各断路器进行自检,确认第一中间继电器、第二中间继电器及各断路器的功能正常,并处于初始状态,即各断路器Q1-Q4处于吸合状态,第一中间继电器处于吸合状态,第二中间继电器处于断开状态,且第一中间继电器和第二中间继电器的通断功能正常,以确保变频器2具备正常运行的能力,以及可实现压缩机在定频模式及变频模式之间的转换。
当轨道车辆上电运行,空调机组的室外温度传感器工作,确定需开启空调机组对车内(后文称为室内)进行换热时,空调机组上电运行,控制器1控制中间继电器K1、K2、K3及K4吸合,各变频器2上电,控制各压缩机3以变频模式运行在高频率模式下,以达到快速降低室内温度的目的;
在制冷模式下,当检测到环境温度大于等于T1(T1为高温温度限值),或制热模式下,当检测到环境温度小于等于T2(T2为低温温度限值)时,室内换热需求较高,热负荷较大,控制器1控制中间继电器K1、K2、K3、K4继续吸合,通过变频器2控制压缩机3的运行频率变化,以实现室内温度的控制;
在制冷模式下,当检测到环境温度小于T1,或在制热模式下,当检测到环境温度大于T2时,室内换热需求降低,热负荷下降,室内温度相对稳定,此时,控制器1控制中间继电器K1、K2、K3、K4断开,控制中间继电器K5、K6、K7、K8吸合,空调机组进入定频模式运行,各压缩机以稳定频率运行,定量输出换热量,室内温度由压缩机3的启停进行控制;
在制冷模式下,当检测到环境温度小于T1,或在制热模式下,当检测到环境温度大于T2时,空调机组进入定频模式运行,当检测装置检测到任一制冷循环回路出现故障时,控制器1控制该制冷循环回路的断路器断开,并控制中间继电器K1、K2、K3、K4重新吸合,控制中间继电器K5、K6、K7、K8断开,变频器2重新上电,并按预置的控制逻辑,控制空调机组重新进入变频模式运行,且进入变频模式的各压缩机运行在高频模式,保证空调机组的整体换热量输出不变,或仅有小幅降低,从而确保某一制冷循环回路的故障不影响室内温度。
在控制器1和/或变频器2内置空调机组运行变频模式时压缩机频率的 控制逻辑,压缩机3通过变频器2直接驱动,变频器2对压缩机3进行过流保护,防止压缩机3被烧毁。空调机组在轨道车辆上应用时,当制冷循环回路运行时,送风机、废排风机、新风风机及冷凝风机启动后,压缩机3再按控制逻辑启动,并最终达到最佳的目标运行频率:
a.压缩机启动:本车内每个压缩机之间间隔3s~5s启动,压缩机由关到开时须将频率提升第一预定频率并在该频率持续运行预定时间后再以预定速率上调至目标值,如压缩机3从关到开,将压缩机运行频率提升40Hz-60Hz,最佳为50Hz时,并在此频率持续运行2min-5min,最佳为3min,再调至目标值;
b.压缩机频率变化率为:频率上升、下降速度≤5Hz/s;压缩机从启动开始到提升至50Hz所需时间设置为8s-15s,最佳为10s;
c.压缩机停机:压缩机3由当前运行频率按预设的下降速度先降至第二预定频率,如30-60Hz,最佳为40Hz,然后直接停机;
d.压缩机定频模式运行限制:空调机组运行定频模式时,压缩机在40~60Hz之间运行。
空调机组在初始开机运行或当室外环境温度大于等于T1(制冷模式下)或小于等于T2(制热模式下)时,热负荷较大,空调机组运行变频模式,实现室内的快速降温/升温,提高舒适感,变频模式下,可采用常规方法结合前文的控制数据(a、b、c中的内容)实现变频调控。当空调机组运行定频模式时,控制器1控制各压缩机3在40~60Hz之间运行,具体的运行频率可根据获得的新风温度、送风温度、室内温度及预定温度进行PI运算获得的动作值Tacu确定,因此,空调机组还包括新风温度传感器5、送风温度传感器6及室内温度传感器4,分别采集新风温度、送风温度和室内温度,并在控制器1内预置PI模块7和压缩机频率控制逻辑程序,将获得的各温度值输入到PI模块7进行动作值的计算,由动作值来定义制冷需求,随后根据预设的控制逻辑调整压缩机实际运行频率,以实现变频自动冷量调节,动作值Tacu的PI计算过程包括:
如图2所示,室内设置多个室内温度传感器4,分别检测室内不同位置的实时温度值,并将室内温度实时值传送给控制器1,并获取室内温度平均值CATavg,将此室内温度平均值CATavg与客室内设定温度值CAR SP 做差值对比,获得到室内实际平均温度与设定温度差值ΔTRaum。将ΔTRaum输入PI模块7,在本实施例中,PI运算软件代码中,P为2000,I为500,在分别通过P(比例)和I(积分)的运算之后,分别获得TP值和I值,将获得的两项结果进行加值运算,得到的TP+I,值最终传输至控制器1内置的温度控制模块(ACU-Control),结合新风温度传感器及送风温度传感器测得的新风温度和送风温度的实时数值,进行最终的运算,得到动作值Tacu,并通过预设的控制逻辑来决定压缩机3的动作频率,空调控制逻辑模块如图2所示。空调领域中,使用PI模块进行数据计算为常规技术,现在或将来可能出现的任意计算方法均在本发明的保护范围内。
当空调机组运行定频模式时,控制器1直接控制压缩机3运转及运转频率,在控制器1内预存动作值Tacu与空调机组的各压缩机3动作频率的对应表,使动作值Tacu处于不同区间时,对应压缩机不同的定频运行频率,且对应表为多个,包括四台压缩机均正常工作状态时,动作值Tacu处于不同区间时,四台压缩机共同的频率值、一台压缩机故障(一组制冷循环回路故障)、两台压缩机故障(两组制冷循环回路故障)、三台压缩机故障(三组制冷循环回路和故障)状态下,动作值Tacu时处于不同区间时,各压缩机对应的频率值。
以轨道车辆一节车厢的空调机组为例,在轨道车辆上,每节车厢的空调机组包括两台室外机和配套的室内机,每台室外机包括两组制冷循环回路,两组制冷循环回路独立分开,但两台压缩机共用一个冷凝器,即每两组制冷循环回路共用一个冷凝器,此种模式的空调机组中,控制器和/或变频器中预存的动作值Tacu位于不同区间时与压缩机动作频率的对应关系具体包括:
1、所有制冷循环回路均正常工作,且空调机组运行定频模式时,通过如图2所示的PI计算方法获得的动作值Tacu与压缩机运行频率的对应关系:
表1:动作值Tacu与压缩机运行频率对应表1(正常运行时)
序号 T acu 对应压缩机频率(Hz)*数量(台)
1 T acu>1.2 60*4
2 1.2≥T acu>0.6 55*4
3 0.6≥T acu>0 50*4
4 0≥T acu>-0.6 45*4
5 -0.6≥T acu>-1.2 40*4
6 T acu<-1.2 通风模式
当所有制冷循环回路均正常运行时,4台压缩机以相同的频率运行,定量输出换热量,室内温度由压缩机3的启停进行控制。由表1可知,动作值Tacu越大,代表室外温度越高(此为制冷模式下,若为制热模式下,由代表室外温度越低),热负荷越大,因此压缩机3运行频率越高,当动作值Tacu小于-1.2时,表明室内室外温度较为接近且处于舒适的温度区间,无需进行制冷或制热,空调机组仅运行通风模式,向室内提供新鲜空气,并保持室内外的压差。
2、当其中任一组制冷循环回路出现故障时,采用表2所示的对应关系,控制其余压缩机的运转频率:
表2:动作值Tacu与压缩机运行频率对应表2(1组制冷循环回路故障)
序号 T acu 对应压缩机频率(Hz)*数量(台)
1 T acu>1.2 70*2+80*1
2 1.2≥T acu>0.6 65*2+75*1
3 0.6≥T acu>0 60*2+70*1
4 0≥T acu>-0.6 55*2+65*1
5 -0.6≥T acu>-1.2 50*2+60*1
6 T acu<-1.2 通风模式
表2中,以Tacu>1.2为例,当Tacu>1.2时,与故障的制冷循环回路共用一个冷凝器的另一组制冷循环回路的压缩机运行频率为80Hz,另两组共用一个冷凝器的制冷循环回路的两台压缩机的运行频率为70Hz,当Tacu位于其他区间时,各压缩机的运行频率的选择相同。结合表1可知,同样当Tacu>1.2时,制冷循环回路全部正常时,各压缩机的运行频率为60Hz,当一组制冷循环故障时,各压缩机同步提高运行频率,对应的,与 故障制冷循环回路共有冷凝器的另一组制冷循环回路的压缩机运行频率要高于其他两台压缩机的频率,在本实施例中,相对于全部制冷循环回路均正常的情况,当动作值Tacu位于同一区间时,当有一组制冷循环回路故障时,与此制冷循环回路共用一个冷凝器的另一组制冷循环回路的压缩机的运行频率提升20Hz,其他两台压缩机的运行频率各提升10Hz。同样的,当Tacu<-1.2时,空调机组运行通风模式,不启动也不改变压缩机的运行频率。
3、当任两组制冷循环回路出现故障时,采用表3所示的对应关系,控制其余压缩机的运行频率:
表3:动作值Tacu与压缩机运行频率对应表3(2组制冷循环回路故障时)
序号 T acu 压缩机频率(Hz)*压缩机运行数量(个)
1 T acu>1.2 70*2
2 1.2≥T acu>0.9 65*2
3 0.9≥T acu>0.7 60*2
4 0.7≥T acu>0.5 55*2
5 0.5≥T acu>0.3 50*2
6 0.3≥T acu>0.1 45*2
7 0.1≥T acu>0 40*2
8 T acu<0 通风模式
此种模式下,包括两种情况,两台室外机中,各有一组制冷循环回路出现故障的情况和,同一室外机的两组制冷循环回路均出现故障。两种情况均会造成换热量的严重不足,此时,需对压缩机的运行频率进行精确调控,因此,动作值Tacu从(-1.2,1.2)的数值范围划分为6个连续区间,改为从(0,1.2)的数值范围划分为8个连续区间,划分更为精细,精准控制室内温度。当动作值T<0时,控制空调机组进入通风模式。
4、当三组制冷循环回路出现故障时,采用表4所示的对应关系,控制剩余的一台压缩机的运行频率:
表4:动作值Tacu与压缩机运行频率对应表4(3组制冷循环回路故障时)
序号 T acu 压缩机频率(Hz)*压缩机运行数量(个)
1 T acu>1.2 80*1
2 1.2≥T acu>0.9 75*1
3 0.9≥T acu>0.7 70*1
4 0.7≥T acu>0.5 65*1
5 0.5≥T acu>0.3 60*1
6 0.3≥T acu>0.1 55*1
7 0.1≥T acu>0 50*1
8 T acu<0 通风模式
此种模式下,三组制冷循环回路均出现故障,换热量急剧减少,结合表3中,同两组制冷循环回路故障的模式做相同的动作值Tacu数值范围取值以及对应的区间划分,区别在于,相同区间对应的压缩机运行频率提高10Hz。
在前文中,当空调机组运行定频模式时,以各组制冷循环回路的工作状态以及通过温度计算获得的动作值Tacu来选择对应的压缩机运行频率,当一组或两组或三组制冷循环回路出现故障时,根据出现故障的制冷循环回路的数量,选择对应的对应表,并根据计算获得的Tacu所在区间,选择对应的压缩机频率,并控制压缩机执行动作;当四组制冷循环回路均出现故障时,空调机组报警提示;在定频运行过程中,当动作值Tacu产生变化,变化到另一区间,且在新区间持续时间超过预定值时,控制器根据变化后的动作值Tacu所在区间,重新控制调整压缩机的运行频率;当进入定频模式时,四组制冷循环回路均正常,按表1选择对应的压缩机运行频率,在运行过程中,控制器接收到检测装置发送的故障信息后,控制器直接或间隔预定时间后,根据实时动作值Tacu所在区间,以及对应的对应表,同步重新调整控制其他正常制冷循环回路的压缩机运行频率,提高各压缩机的运行频率,避免出现室内温度的突变。
本发明进一步提供了动作值Tacu与司机室空调运行频率的对应表,因司机室空间较小,换热量需求不大,因此司机室空调通常仅包括一组制冷循环回路,同样的,司机室空调的制冷循环回路的压缩机、控制器、变频器、断路器、中间继电器的连接方式如前文所述,在司机室空调上电初始 运行时,空调运行如前文所述的变频模式,压缩机运行频率增加以及增长速率等控制方法如前文所述,当司机室空调进入定频模式时,计算动作值Tacu,并按表5所示对应关系,控制司机室空调的压缩机在定频模式下的运行频率:
表5:动作值Tacu与司机室空调压缩机运行频率对应表
序号 温度变化范围 对应压缩机频率(Hz)*数量(台)
1 T acu>1.2 60
2 1.2≥T acu>0.6 55
3 0.6≥T acu>0 50
4 0≥T acu>-0.6 45
5 -0.6≥T acu>-1.2 40
6 T acu<-1.2 通风模式
在本实施例中,以轨道车辆单节车厢的空调机组具备四组制冷循环回路为例,介绍本发明提供的空调机组的各压缩机与变频器、控制器的连接和控制关系,当多组制冷循环回路中至少一组制冷循环回路出现故障时,对应提高其他压缩机的运行频率。在实际应用中,本发明提供的空调机组可应用于各种环境,如商用空调、多联机等,不可因前文所述,视为对本发明应用范围的限制;同时,前文中,空调机组包括四组制冷循环回路,各组制冷循环回路的压缩机采用如图1所示的线路图与控制器1连接,直接或间接接受控制器的运行控制,每两组制冷循环回路共用一个冷凝器,在实际应用中,根据换热空间的大小及换热需求,确定制冷循环回路的数量以及每组制冷循环回路中包含的压缩机数量,每组制冷循环回路可包含两个或两个以上并联的压缩机,并根据制冷循环回路数量、压缩机数量及压缩机的变频能力,确定各对应表中动作值Tacu的区间划分以及各区间对应的压缩机运行频率,以及当出现故障时,其余压缩机升频运行时的频率提升值,相当于给空调机组配备冗余压缩机,实现空调机组的冗余设计。
综上所述,本发明提供的一种主动冗余的空调机组及控制方法,与现有技术相比,具有如下技术优势:
采用适用车载电源制式的变频压缩机,日常运用时可以作为定频压缩机使用,当其中一台压缩机故障时,剩余压缩机可通过变频器供电,通过提升电源频率加强压缩机工作载荷,保证换热量输出不弯,从而保证室内的舒适性;
通过控制器、中间继电器在短时间内可启动变频器,保证了变频器的质量及寿命,并保证变频器充放电过程,从而保证变频器的可靠性。
如上所述,结合所给出的方案内容,可以衍生出类似的技术方案。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种主动冗余的空调机组,包括控制器和多组相互独立的制冷循环回路,每组所述制冷循环回路至少包括一台变频压缩机,其特征在于:还包括多个分别控制各所述压缩机频率变化的变频器,每个所述变频器的输入端通过第一中间继电器与所述控制器连接,输出端与所述压缩机连接,所述第一中间继电器的输入端与所述压缩机的输入端之间还并联有第二中间继电器,所述控制器控制所述第一中间继电器和第二中间继电器的开合,实现压缩机变频模式和定频模式的切换,任一所述制冷循环回路故障时,所述第二中间继电器断开,第一中间继电器吸合,所述压缩机在所述变频器的控制下运行变频模式。
  2. 如权利要求1所述的一种主动冗余的空调机组,其特征在于:每个所述第一中间继电器的输入端与所述控制器的输出端之间还串联有断路器。
  3. 如权利要求1所述的一种主动冗余的空调机组,其特征在于:还包括检测各所述制冷循环回路故障状态的检测装置。
  4. 如权利要求1至3任一项所述的一种主动冗余的空调机组,其特征在于:所述制冷循环回路稳定运行时,所述第二中间继电器吸合,第一中间继电器断开,所述压缩机以定频模式运行。
  5. 一种主动冗余的空调机组控制方法,其特征在于:空调机组包括控制和多组相互独立且并联连接的制冷循环回路,每组制冷循环回路包括一台变频压缩机,其特征在于:还包括多个变频器,每个变频器的输入端通过第一中间继电器与所述控制器连接,输出端与压缩机连接,第一中间继电器的输入端与压缩机的输入端之间还并联有第二中间继电器,在制冷模式下,环境温度小于T1,或在制热模式下,环境温度大于T2时,第一中间继电器断开,第二中间继电器吸合,压缩机运行定频模式,当检测到任一制冷循环回路故障时,控制器控制第一中间继电器吸合,第二中间继电器断开,变频器控制各压缩机运行在高频模式。
  6. 如权利要求5所述的一种主动冗余的空调机组控制方法,其特征在于:当空调机组首次上电时,控制器控制所述第一中间继电器吸合,第二中间继电器断开,所述压缩机以变频模式运行在高频模式下;制冷模式下, 当环境温度大于等于T1,或在制热模式下,环境温度小于等于T2时,所述第一中间继电器吸合,第二中间继电器断开,由变频器控制压缩机的运行频率变化,压缩机运行变频模式;制冷模式下,环境温度小于T1,或制热模式下,环境温度大于T2时,所述第一中间继电器断开,第二中间继电器吸合,压缩机运行定频模式。
  7. 如权利要求6所述的一种主动冗余的空调机组控制方法,其特征在于:空调机组上电后,各压缩机之间间隔启动,压缩机由关到开时,以预定速率提升到第一频率并停留预定时间后再调至目标值。
  8. 如权利要求5至7任一项所述的一种主动冗余的空调机组控制方法,其特征在于:控制器包括温度控制模块和PI模块,对采集的新风温度、加风温度和送风温度,计算动作值Tacu,并通过预设逻辑,决定压缩机的动作。
  9. 如权利要求8所述的一种主动冗余的空调机组控制方法,其特征在于:动作值Tacu的计算过程包括:获取室内平均温度CATavg与室内设定温度CAR SP的差值△TRaum,将△TRaum输入PI模块分别进行P和I的运算,将结果加行加值运行,获得TP+I,并将TP+I输入到控制内的温度控制模块,结合新风温度和送风温度,计算获得动作值Tacu。
  10. 如权利要求8所述的一种主动冗余的空调机组控制方法,其特征在于:预设逻辑包括各压缩机正常状态下、至少一台压缩机故障状态下以及司机室空调故障状态下,动作值Tacu在不同区间时,各压缩机的运行频率值。
PCT/CN2022/132835 2022-04-20 2022-11-18 一种主动冗余的空调机组及控制方法 WO2023202063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210417226.6 2022-04-20
CN202210417226.6A CN114877431B (zh) 2022-04-20 2022-04-20 一种主动冗余的空调机组及控制方法

Publications (1)

Publication Number Publication Date
WO2023202063A1 true WO2023202063A1 (zh) 2023-10-26

Family

ID=82671304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132835 WO2023202063A1 (zh) 2022-04-20 2022-11-18 一种主动冗余的空调机组及控制方法

Country Status (2)

Country Link
CN (1) CN114877431B (zh)
WO (1) WO2023202063A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114877431B (zh) * 2022-04-20 2023-10-31 中车青岛四方机车车辆股份有限公司 一种主动冗余的空调机组及控制方法
CN117450623B (zh) * 2023-12-22 2024-03-19 珠海格力电器股份有限公司 压缩机频率控制方法及空调机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233240A (ja) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd 空気調和機の運転制御装置
JPH1114125A (ja) * 1997-06-20 1999-01-22 Matsushita Refrig Co Ltd 多室型空気調和機
CN201467065U (zh) * 2009-08-14 2010-05-12 河南中烟工业有限责任公司 一种空压机电机的变频控制系统
CN108683383A (zh) * 2018-06-26 2018-10-19 河南森源电气股份有限公司 一种变频故障切工频控制电路
KR20180127667A (ko) * 2017-05-22 2018-11-30 엘지전자 주식회사 공조장치 및 공조장치의 제어 방법
CN110044035A (zh) * 2019-05-16 2019-07-23 珠海格力电器股份有限公司 变频空调控制器容错电路和控制方法
CN211995571U (zh) * 2020-04-09 2020-11-24 上海松芝轨道车辆空调有限公司 车载变频空调机组及列车空调系统
CN114877431A (zh) * 2022-04-20 2022-08-09 中车青岛四方机车车辆股份有限公司 一种主动冗余的空调机组及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348492B1 (ko) * 2000-07-27 2002-08-13 만도공조 주식회사 열차용 냉방기의 자동절환장치
CN105674517B (zh) * 2016-04-12 2018-07-10 重庆捷先机电科技有限公司 一种用于机房的精密空调节能装置及节能控制方法
CN110726207B (zh) * 2019-10-28 2021-02-05 珠海格力电器股份有限公司 多系统空调控制方法及装置
CN113550883B (zh) * 2021-07-19 2023-04-07 中国工商银行股份有限公司 冷水机组及其控制方法、电子设备及存储介质
CN113587291B (zh) * 2021-08-12 2022-07-26 四川长虹空调有限公司 新风空调压缩机频率的补偿控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233240A (ja) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd 空気調和機の運転制御装置
JPH1114125A (ja) * 1997-06-20 1999-01-22 Matsushita Refrig Co Ltd 多室型空気調和機
CN201467065U (zh) * 2009-08-14 2010-05-12 河南中烟工业有限责任公司 一种空压机电机的变频控制系统
KR20180127667A (ko) * 2017-05-22 2018-11-30 엘지전자 주식회사 공조장치 및 공조장치의 제어 방법
CN108683383A (zh) * 2018-06-26 2018-10-19 河南森源电气股份有限公司 一种变频故障切工频控制电路
CN110044035A (zh) * 2019-05-16 2019-07-23 珠海格力电器股份有限公司 变频空调控制器容错电路和控制方法
CN211995571U (zh) * 2020-04-09 2020-11-24 上海松芝轨道车辆空调有限公司 车载变频空调机组及列车空调系统
CN114877431A (zh) * 2022-04-20 2022-08-09 中车青岛四方机车车辆股份有限公司 一种主动冗余的空调机组及控制方法

Also Published As

Publication number Publication date
CN114877431B (zh) 2023-10-31
CN114877431A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023202063A1 (zh) 一种主动冗余的空调机组及控制方法
US20240017589A1 (en) Integrated thermal management system, vehicle, and thermal management control method
CN101846413B (zh) 一种地铁车辆单元式空调机组及其控制方法
US20070193289A1 (en) Fuel Cell Power Generation Refrigerating System
CN108895601B (zh) 基于磁悬浮主机的中央空调群控方法
CN110986289B (zh) 一种空调风机盘管与模块化变频空调主机联动控制方法
CN102607140B (zh) 空调机
CN111795481B (zh) 空气调节系统及用于其的控制方法
CN106080099A (zh) 车载空调系统的控制方法及车载空调系统
CN108162723B (zh) 一种电动客车空调系统及其变频器
CN114279012A (zh) 带互联备用装置的空调系统及其控制方法
CN211204223U (zh) 变频空调系统
CN101237215B (zh) 车辆空调变频控制系统及其方法
JPH1114123A (ja) 空気調和装置
CN115447338A (zh) 一种基于重力热管及多重换热耦合的整车热管理系统及方法
CN112413815B (zh) 空调系统
CN111219821B (zh) 一种户式水机
CN113692189A (zh) 一种机房空调及其控制方法、装置、存储介质及处理器
CN111765597B (zh) 空调系统的能效测试控制方法及空调系统
CN113752905B (zh) 一种热管理系统、车辆和控制方法
CN109263671B (zh) 一种车辆变频空调的除湿控制方法
CN112918209B (zh) 一种智能调温大巴汽车及其智能调温控制方法
CN112349990A (zh) 一种电动车内置分体式空调共享电池冷却控制装置及方法
CN217952534U (zh) 双系统空调机组
CN218600030U (zh) 多级制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938282

Country of ref document: EP

Kind code of ref document: A1