WO2023201948A1 - 一种用于电位梯度测量的传感器系统 - Google Patents

一种用于电位梯度测量的传感器系统 Download PDF

Info

Publication number
WO2023201948A1
WO2023201948A1 PCT/CN2022/114775 CN2022114775W WO2023201948A1 WO 2023201948 A1 WO2023201948 A1 WO 2023201948A1 CN 2022114775 W CN2022114775 W CN 2022114775W WO 2023201948 A1 WO2023201948 A1 WO 2023201948A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
potential
wand
potential gradient
probe
Prior art date
Application number
PCT/CN2022/114775
Other languages
English (en)
French (fr)
Inventor
张军
诸海博
曾艳丽
汤银龙
宋华东
胡文广
Original Assignee
沈阳仪表科学研究院有限公司
国机传感科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳仪表科学研究院有限公司, 国机传感科技有限公司 filed Critical 沈阳仪表科学研究院有限公司
Priority to GB2217847.9A priority Critical patent/GB2610353B8/en
Publication of WO2023201948A1 publication Critical patent/WO2023201948A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2503Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the field of measuring potential gradients, and in particular, to a sensor system for measuring potential gradients.
  • Buried steel long-distance oil and gas pipelines are the "main arteries" of the country's energy. Oil and gas pipelines are expensive to build, cross vast areas, and involve complex types of areas. Once perforations and ruptures caused by corrosion occur, serious accidents will occur. Malignant accidents caused by corrosion and damage of long-distance oil and gas pipelines often cause huge economic losses.
  • pipeline inspections need to be carried out regularly on long-distance oil and gas pipelines.
  • the integrity inspection of the pipeline anti-corrosion layer and the effectiveness inspection of the cathodic protection are the main tasks of the external anti-corrosion system of the pipeline. important content.
  • the external anti-corrosion layer and cathodic protection are the main technologies for controlling corrosion in oil and gas pipelines currently in service.
  • the DC potential gradient method and the AC potential gradient method can effectively evaluate the overall performance of the external anti-corrosion layer and the effectiveness of cathodic protection.
  • Existing measurement technology requires the use of two independent sets of devices to measure DC potential and AC potential. In order to measure DC potential and AC potential at the same time, two sets of equipment need to be carried at the same time and operated by two people. The work efficiency is low and the operation cost is high. And there are the following shortcomings:
  • the A-frame used by the AC potential measuring device has a fixed spacing and cannot be used for flexible measurement by changing the distance;
  • the measurement results of the DC potential measuring device and the AC potential measuring device only contain the absolute value of the potential difference, but do not include information on the direction and spacing of the measurement points, and the potential gradient vector value result cannot be obtained;
  • the potential gradient measuring device includes: a main probe rod, an auxiliary probe rod, and a connecting cable connecting the main probe rod and the auxiliary probe rod.
  • the main probe is configured to collect the first AC and DC potential signal at the first mark point above the buried pipeline.
  • the auxiliary probe is configured to collect the second AC and DC potential signals at the second mark point above the buried pipeline.
  • the distance between the first marking point and the second marking point is greater than zero.
  • the main probe converts the first difference signal into first AC and DC potential gradient data through the first voltage gradient sensor module and sends the first feedback data with the first AC and DC potential gradient data to the mobile terminal; so
  • the first difference signal is the difference between the first AC and DC potential signal and the second AC and DC potential signal obtained through the connecting cable.
  • the auxiliary probe converts the second difference signal into second AC and DC potential gradient data through the second voltage gradient sensor module and sends the second feedback data with the second AC and DC potential gradient data to the mobile terminal; so
  • the second difference signal is the difference between the second AC and DC potential signal and the first AC and DC potential signal obtained through the connecting cable.
  • a mobile terminal is used to obtain feedback data sent by the potential gradient measurement device and send control instructions and data to the potential gradient measurement device; the feedback data includes first feedback data and second feedback data.
  • the main probe includes: a first reference electrode, a first connector, a first button switch, a first end cover, a first circuit board, a first protective sleeve and a main probe casing.
  • the auxiliary probe rod includes: a second reference electrode, a second connector, a second button switch, a second end cover, a second circuit board, a second protective sleeve and an auxiliary probe rod shell.
  • the first reference electrode and the second reference electrode have a cylindrical body and a conical head.
  • the main detecting wand shell and the auxiliary detecting wand shell are cylindrical shells.
  • the main body of the first reference electrode is connected to one side of the main detection wand housing, and the other side of the main detection wand housing is connected to the first end cover; when the main detection wand housing is close to the third
  • the first connector is provided at one end cover, and the first button switch is provided between the first connector and the first end cover; the first protective sleeve is sleeved on the The outside of the main body of the first reference electrode; the first voltage gradient sensor module on the first circuit board is electrically connected to the first reference electrode, and is used to receive the first voltage measured by the first reference electrode.
  • the first voltage gradient sensor module receives the second AC/DC potential signal sent by the auxiliary probe, and calculates the first difference signal based on the first AC/DC potential signal and the second AC/DC potential signal. and convert the first difference signal into the first AC-DC potential gradient data, and send the first feedback data with the first AC-DC potential gradient data to the mobile terminal.
  • the main body of the second reference electrode is connected to one side of the auxiliary probe casing, and the other side of the auxiliary probe casing is connected to the second end cover; when the auxiliary probe casing is close to the first
  • the second connector is provided at the position of the two end caps, and the second button switch is provided between the second connector and the second end cap;
  • the second protective sleeve is sleeved on the The outside of the main body of the second reference electrode;
  • the second voltage gradient sensor module of the second circuit board is electrically connected to the second reference electrode, and is used to receive the second cross signal measured by the second reference electrode.
  • the voltage gradient sensor module receives the first AC/DC potential signal sent by the main probe, and calculates the second difference signal based on the second AC/DC potential signal and the first AC/DC potential signal, and Convert the second difference signal into the second AC/DC potential gradient data, and send the second feedback data with the second AC/DC potential gradient data to the mobile terminal.
  • connection cable Both ends of the connection cable are connected to the first connector and the second connector respectively.
  • multi-frequency antenna assemblies are respectively provided on the first end cover and the second end cover.
  • the first circuit board includes: a first differential positioning module, a first tilt sensing module, a first communication module, a first power module and a first measurement control module.
  • the second circuit board includes: a second differential positioning module, a second tilt sensing module, a second communication module, a second power module and a second measurement control module.
  • the first differential positioning module is configured to obtain the original positioning data of the main wand; the second differential positioning module is configured to obtain the original positioning data of the auxiliary wand.
  • the first tilt sensing module is configured to measure the tilt angle of the main wand and generate first angle data.
  • the second tilt sensing module is configured to measure the tilt angle of the auxiliary probe wand and generate second angle data.
  • the first voltage gradient sensor module is configured to calculate the first difference based on the first AC/DC potential signal measured by the first reference electrode and the second AC/DC potential signal measured by the second reference electrode. signal, and convert the first difference signal into the first AC and DC potential gradient data.
  • the second voltage gradient sensor module is configured to calculate the second difference based on the second AC/DC potential signal measured by the second reference electrode and the first AC/DC potential signal measured by the first reference electrode. signal, and convert the second difference signal into the second AC/DC potential gradient data.
  • the first communication module is configured to perform transmission of control instructions and data between the main probe wand and the mobile terminal; and send the first feedback data to the mobile terminal.
  • the second communication module is configured to perform transmission of control instructions and data between the auxiliary probe wand and the mobile terminal; and send the second feedback data to the mobile terminal.
  • the first feedback data includes: the original positioning data of the main probe, the first AC and DC potential gradient data and the first angle data.
  • the second feedback data includes: the original positioning data of the auxiliary probe, the second AC and DC potential gradient data, and the second angle data.
  • the first power module is configured to provide power to the main wand; the second power module is configured to provide power to the auxiliary wand.
  • first measurement control module and the second measurement control module respectively include:
  • a bias voltage generator circuit is used to generate the operating voltage reference point of the circuit.
  • the input resistor voltage dividing circuit is used to divide the AC and DC potential signals.
  • Instrumentation amplifier is used to convert AC and DC potential signals into amplified analog AC and DC difference potential signals.
  • An analog-to-digital converter is used to convert the analog AC-DC difference potential signal into AC-DC potential gradient data.
  • a single chip microcomputer is configured to control the operation of the analog-to-digital converter, read AC and DC potential gradient data, obtain original positioning data and send the original positioning data to the mobile terminal, and correct the AC and DC potential gradient data;
  • the original positioning data includes main The original positioning data of the detection stick and the original positioning data of the auxiliary detection stick.
  • first communication module and the second communication module respectively include:
  • a Bluetooth communication module is configured to perform Bluetooth connection interaction with the mobile terminal.
  • a network communication module is configured to perform network communication interaction with the mobile terminal.
  • first power module and the second power module respectively include:
  • a fuel gauge module configured to display remaining battery power and usable time.
  • the charge and discharge control module is configured to control battery charge and discharge and perform step-up and step-down conversion.
  • a voltage stabilizing circuit module configured to stabilize the circuit voltage.
  • the mobile terminal is further configured to send the feedback data to a continuously operating reference station or base station for correction.
  • system further includes a differential positioning server configured to receive the original positioning data sent by the mobile terminal, and correct the original positioning data into precise positioning data based on real-time dynamic differential technology and feed it back to the mobile terminal.
  • a differential positioning server configured to receive the original positioning data sent by the mobile terminal, and correct the original positioning data into precise positioning data based on real-time dynamic differential technology and feed it back to the mobile terminal.
  • the mobile terminal is also configured to send a GPS request instruction, obtain the probe correction information corresponding to the GPS request instruction, and correct the AC and DC potential gradient data according to the probe correction information;
  • the probe The staff correction information includes: the main detection staff position correction information and the auxiliary detection staff position correction information.
  • This application provides a sensor system for potential gradient measurement, which measures the first AC and DC potential signals of the first marking point above the buried pipeline and the second marking point of the main probe rod and the auxiliary probe rod connected by connecting cables.
  • the second AC and DC potential signal The main probe calculates the first difference signal between the first AC and DC potential signal and the second AC and DC potential signal through the first voltage gradient sensor module, converts the first difference signal into the first AC and DC potential gradient data, and sends to the mobile terminal.
  • the auxiliary probe calculates the second difference signal between the second AC and DC potential signal and the first AC and DC potential signal through the second voltage gradient sensor module, converts the second difference signal into the second AC and DC potential gradient data, and sends to mobile terminals.
  • the mobile terminal After the mobile terminal obtains the original positioning data of the main and auxiliary exploration rods, it uses the differential base station or reference station for correction, obtains the precise positioning information of the main and auxiliary exploration rods, and compares the first AC and DC potential gradient data with the second The two AC and DC potential gradient data are corrected.
  • the first AC and DC potential gradient data and the second AC and DC potential gradient data are obtained through the mobile terminal to analyze whether the anti-corrosion layer of the buried pipeline is damaged. If there is damage, determine the location and severity of the damage to the anti-corrosion layer of the buried pipeline. Improve the efficiency of inspection personnel in detecting buried pipelines.
  • Figure 1 is a schematic diagram of the existing technology for simultaneously measuring DC potential and AC potential
  • Figure 2 is a schematic diagram of measuring DC potential and AC potential according to an embodiment of a sensor system for potential gradient measurement
  • Figure 3 is a process diagram of the potential gradient measuring device for detecting buried pipelines
  • Figure 4 is an outline view of the main probe of a sensor system used for potential gradient measurement
  • Figure 5 is a front view of the layout of the electronic system in the main probe of a sensor system used for potential gradient measurement
  • Figure 6 is a side view of the layout of the electronic system in the main probe of a sensor system used for potential gradient measurement
  • Figure 7 is an outline view of an auxiliary probe of a sensor system used for potential gradient measurement
  • Figure 8 is a front view of the layout of the electronic system in the auxiliary probe of a sensor system used for potential gradient measurement;
  • Figure 9 is a side view of the layout of the electronic system in the auxiliary probe of a sensor system used for potential gradient measurement;
  • Figure 10 is the circuit wiring diagram of the bias voltage generator of the probe circuit system
  • Figure 11 is the input resistor voltage dividing circuit wiring diagram of the probe circuit system
  • Figure 12 is the voltage stabilizing circuit module diagram of the probe circuit system
  • Figure 13 is a workflow diagram of an embodiment of a sensor system for potential gradient measurement.
  • the DC potential measuring device uses two probe sticks equipped with reference electrodes, and is used in conjunction with the cathodic protection measuring device for measurement.
  • the AC potential measuring device is a device equipped with a buried pipeline anti-corrosion layer condition detection system and adopts an A-frame structure.
  • 10 is the buried pipeline
  • 11 is the damaged anti-corrosion layer of the buried pipeline
  • 12 is the voltage equipotential line after the anti-corrosion layer of the buried pipeline is damaged.
  • This application provides a sensor system for potential gradient measurement, as shown in Figure 2.
  • the system includes:
  • the potential gradient measurement device includes: a main probe rod 100, an auxiliary probe rod 200, and a connecting cable 300 connecting the main probe rod 100 and the auxiliary probe rod 200.
  • the main probe wand 100 is configured to collect the first AC and DC potential signals at the first mark point above the buried pipeline
  • the auxiliary probe wand 200 is configured to collect the second AC and DC potential signals at the second mark point above the buried pipeline. signal, the distance between the first marking point and the second marking point is greater than zero.
  • the first voltage gradient sensor module in the main probe 100 converts the first difference signal into first AC and DC potential gradient data, and sends the first feedback data with the first AC and DC potential gradient data to the mobile terminal.
  • the first difference signal is the difference between the first AC and DC potential signal and the second AC and DC potential signal.
  • the second AC and DC potential signals are obtained through the connecting cable 300 .
  • the second voltage gradient sensor module in the auxiliary probe 200 converts the second difference signal into second AC/DC potential gradient data, and sends the second feedback data with the second AC/DC potential gradient data to the mobile terminal.
  • the second difference signal is the difference between the second AC and DC potential signal and the first AC and DC potential signal.
  • the first AC and DC potential signals are obtained through the connecting cable 300 .
  • a mobile terminal is used to obtain feedback data sent by the potential gradient measurement device, and send control instructions and data to the potential gradient measurement device.
  • the feedback data includes first feedback data and second feedback data.
  • the main detecting wand 100 and the auxiliary detecting wand 200 respectively collect AC and DC potential signals (the first AC and DC potential signals and the second AC and DC potential signals) at two marked points above the buried pipeline. Because buried pipelines are buried in underground soil, if the anti-corrosion layer of the buried pipeline is damaged, the potential gradient in the area near the buried pipeline will change.
  • the inspector first places the main probing wand 100 at the first marking point, and then places the auxiliary probing wand 200 at the second marking point to obtain the first AC and DC potential signals and the second AC and DC potential signals at the current position.
  • the main detecting wand 100 also obtains the second AC and DC potential signals measured by the auxiliary detecting wand 200 through the connecting cable 300.
  • the main detecting wand 100 calculates the first AC and DC potential signals based on the first AC and DC potential signals and the acquired second AC and DC potential signals.
  • the difference signal is converted into first AC/DC potential gradient data through the first voltage gradient sensor module 120, which is convenient for inspection personnel to view, and is then sent to the mobile terminal.
  • the auxiliary probe wand 200 will also obtain the first AC and DC potential signals measured by the main probe wand 100 through the connecting cable 300 .
  • the auxiliary probe 200 calculates a second difference signal based on the second AC/DC potential signal and the acquired first AC/DC potential signal.
  • the second voltage gradient sensor module 220 converts the second difference signal into second AC and DC potential gradient data that is convenient for inspection personnel to view. Then send it to the mobile terminal.
  • the above first AC and DC potential gradient data and second AC and DC potential gradient data are displayed on the mobile terminal.
  • 10 is the buried pipeline
  • 11 is the damaged anti-corrosion layer of the buried pipeline
  • 12 is the voltage equipotential line after the anti-corrosion layer of the buried pipeline is damaged
  • 13 represents the soil layer near the buried pipeline.
  • the main detecting rod 100 is far away from the damage of the anti-corrosion layer, and the measured first AC and DC potential signals are weak.
  • the auxiliary detecting rod 200 is closer to the damaged part of the anti-corrosion layer, and the measured second AC and DC potential signals are stronger.
  • the mobile terminal When the mobile terminal receives the first feedback data with the first AC and DC potential gradient data and the second feedback data with the second AC and DC potential gradient data sent by the main probe wand 100 and the auxiliary probe wand 200, it will pass The first feedback data and the second feedback data are analyzed. Obtain the approximate location and degree of damage to the anti-corrosion layer of the buried pipeline.
  • the above operation only completes one measurement. Because detecting buried pipelines is a dynamic process, multiple measurements are required to detect the entire buried pipeline. The overall measurement direction is from the starting measurement end of the buried pipeline to the ending measurement end of the buried pipeline. In the measurement section where the anti-corrosion layer of the buried pipeline is not damaged, there will be no leakage current between the buried pipeline and the earth, so the potential gradient is close to zero. Near the damaged anti-corrosion layer of buried pipelines, leakage current will occur between the buried pipeline and the earth, and the potential gradient around the buried pipeline will change regularly.
  • the potential gradient measuring device when the potential gradient measuring device is located at point A, the potential gradient measuring device is close to the damaged area of the anti-corrosion layer. At this time, the AC and DC potential signals measured by the main detector rod 100 and the auxiliary detector rod 200 begin to fluctuate. At point A, the auxiliary detection wand 200 is closer to the damaged anti-corrosion layer than the main detection wand 100, so the second AC and DC potential signal intensity measured by the auxiliary detection wand 200 is greater than the first AC potential signal measured by the main detection wand 100. The DC potential signal strength indicates that it is approaching the damage of the anti-corrosion layer. Continue to measure in the direction of travel.
  • the main probe rod 100 and the auxiliary probe rod 200 are at the same distance from the damaged anti-corrosion layer.
  • the first intersection measured by the main probe rod 100 is The DC potential signal intensity is the same as or close to the second AC and DC potential signal intensity measured by the auxiliary probe 200 (there will be a certain numerical error in the actual measurement), indicating that it has reached directly above the damage of the anti-corrosion layer.
  • the measurement reaches point C.
  • the main probe rod 100 is closer to the damaged anti-corrosion layer than the auxiliary probe rod 200.
  • the first AC and DC potential signal intensity measured by the main probe rod 100 is greater than that of the auxiliary probe rod 200.
  • the second AC and DC potential signal strength measured at 200 indicates that the potential gradient measuring device has passed through and is moving away from the damaged area of the anti-corrosion layer.
  • 10 is the buried pipeline
  • 11 is the damaged anti-corrosion layer of the buried pipeline
  • 12 is the voltage equipotential line after the anti-corrosion layer of the buried pipeline is damaged
  • 13 represents the soil layer near the buried pipeline.
  • the difference in AC and DC potential signal intensity measured by the main detection rod 100 and the auxiliary detection rod 200 gradually increases.
  • the difference between the AC and DC potential signals is a maximum value.
  • the difference between the AC and DC potential signals decreases.
  • the main detection rod 100 and the auxiliary detection rod 200 are at the same distance directly above the damaged anti-corrosion layer, the difference between the AC and DC potential signals is a minimum value.
  • the center point of the distance between the main detection rod 100 and the auxiliary detection rod 200 is The location of the damage to the anti-corrosion layer.
  • the auxiliary detecting wand 200 has passed through the damaged area of the anti-corrosion layer, and the difference between the AC and DC potential signals is the maximum value again.
  • the difference between the AC and DC potential signals gradually decreases.
  • the distance between the main detecting rod 100 and the auxiliary detecting rod 200 remains unchanged.
  • the mobile terminal can be any electronic device that can receive data and communicate and interact, such as a smartphone, a laptop, a tablet, a smart watch, etc.
  • the potential gradient measuring device sends relevant data to the electronic device through the corresponding communication link.
  • the mobile terminal is installed with processing software that can divide AC and DC potential gradient data into AC potential gradient data and DC potential gradient data.
  • the mobile terminal receives the first feedback data with the first AC and DC potential gradient data sent by the main probe wand 100 .
  • the first AC potential signal collected by the main probe 100 is a mixture of AC potential signal and DC potential signal, if it is necessary to separately detect the AC potential signal and the DC potential signal, two sets of equipment are required, which increases the cost and manpower, and is inconvenient. Detection personnel operation.
  • the first AC and DC potential gradient data can be directly separated into the first AC potential gradient data and the first DC potential gradient data through the processing software.
  • the collection of AC potential gradient data and DC potential gradient data can be completed using one set of devices, saving manpower. material resources to collect relevant data more efficiently.
  • the potential gradient measurement device uses pipeline current positioning technology when collecting AC and DC potential signals. Before measurement, a transmitter is used to apply a current signal between one end of the buried pipeline and the earth. The current signal will flow along the buried pipeline. direction spreads far away. If the anti-corrosion layer of the buried pipeline is damaged and leaks, the current signal will generate an electric field centered on the damaged anti-corrosion layer. The value of the AC and DC potential signals measured by the inspector using the potential gradient measuring device near the damaged area of the anti-corrosion layer is the largest.
  • the main probe 100 includes: a first reference electrode 104, a first connector 105, a first button switch 106, a first end cover 108, a first circuit board 109, and a first protective sleeve. 110.
  • the auxiliary probe wand 200 includes: a second reference electrode 204, a second connector 205, a second button switch 206, a second end cover 208, a second circuit board 209, a second protective sleeve 210, and an auxiliary probe wand casing. 211.
  • the first reference electrode 104 and the second reference electrode 204 have a cylindrical body and a conical head.
  • the main wand housing 111 and the auxiliary wand housing 211 are cylindrical shells.
  • the main body of the first reference electrode 104 is connected to one side of the main wand housing 111 , and the other side of the main wand housing 111 is connected to the first end cap 108 .
  • the first connector 105 is provided on the main wand housing 111 close to the first end cover 108 , and the first connector 105 is provided between the first connector 105 and the first end cover 108 .
  • the first protective sleeve 110 is placed outside the main body of the first reference electrode 104 .
  • the first circuit board 109 is electrically connected to the first reference electrode 104 for receiving the first AC and DC potential signals measured by the first reference electrode 104 and transmitting them through the connecting cable 300 .
  • the first AC and DC potential signals are sent to the second circuit board 209 in the auxiliary probe 200; the first voltage gradient sensor module 120 on the first circuit board 109 receives all the signals sent by the auxiliary probe 200.
  • the second AC/DC potential signal is generated, and the first difference signal is calculated based on the first AC/DC potential signal and the second AC/DC potential signal. Further, the first difference signal is converted into the first AC/DC potential gradient data, and the first feedback data with the first AC/DC potential gradient data is sent to the mobile terminal.
  • the main body of the second reference electrode 204 is connected to one side of the auxiliary probe casing 211, and the other side of the auxiliary probe casing 211 is connected to the second end cover 208; in the auxiliary probe casing 211 211
  • the second connector 205 is provided near the second end cover 208, and the second button switch 206 is provided between the second connector 205 and the second end cover 208;
  • the second protective sleeve 210 is placed on the outside of the main body of the second reference electrode 204; the second circuit board 209 is electrically connected to the second reference electrode 204 and is used to receive the second reference electrode.
  • the second voltage gradient sensor module 220 on the board 209 receives the first AC/DC potential signal sent by the main probe 100, and calculates the voltage gradient signal based on the second AC/DC potential signal and the first AC/DC potential signal.
  • the second difference signal is converted into the second AC-DC potential gradient data, and the second feedback data with the second AC-DC potential gradient data is sent to the mobile terminal.
  • connection cable 300 Both ends of the connection cable 300 are connected to the first connector 105 and the second connector 205 respectively.
  • the head of the main probing wand 100 is the first reference electrode 104.
  • the inspector controls the main probing wand 100 so that the first reference electrode 104 contacts the ground measurement first mark point above the buried pipeline.
  • the first AC and DC potential signal The first circuit board 109 calculates a first difference signal based on the first AC/DC potential signal and the second AC/DC potential signal, converts the first difference signal into first AC/DC potential gradient data, and then converts the first AC/DC potential gradient data with the first AC/DC potential signal.
  • the first feedback data of bit gradient data is sent to the mobile terminal.
  • the first protective sleeve 110 is placed on the outside of the main body of the first reference electrode 104 to protect the main body of the first reference electrode 104 from damage such as impact and extrusion.
  • the first connector 105 is used to connect to one end of the connecting cable 300 , and the other end of the connecting cable 300 is connected to the second connector 205 in the auxiliary probe wand 200 .
  • the first circuit board 109 is inside the main wand housing 111 .
  • the first end cap 108 is installed at the rear of the main wand housing 111 .
  • the first button switch 106 controls the startup and shutdown of the main probe wand 100, and sends a signal to the mobile terminal to indicate saving the current first AC and DC potential gradient data.
  • the connecting cable 300 may be a multi-core cable for wired signal transmission between the main probe wand 100 and the auxiliary probe wand 200 .
  • the multi-core cable includes signal lines connecting the first reference electrode 104 and the second reference electrode 204 .
  • the component structures and working principles of the main detecting wand 100 and the auxiliary detecting wand 200 are the same. The above only describes the structure and working principle of the main detecting wand 100 .
  • the component structure of the auxiliary probe wand 200 is shown in Figures 7 and 8, and will not be described again.
  • the inspector controls the auxiliary probe wand 200 so that the second reference electrode 204 contacts the ground above the buried pipeline, and measures the second AC and DC potential signals at the second marking point.
  • the second voltage gradient sensor module 220 on the second circuit board 209 calculates a second difference signal based on the second AC/DC potential signal and the first AC/DC potential signal, and converts the second difference signal into second AC/DC potential gradient data. , and then send the second feedback data with the second AC and DC potential gradient data to the mobile terminal.
  • the first circuit board 109 includes: a first differential positioning module 101 , a first tilt sensing module 102 , a first communication module 103 , a first power supply module 107 , and a first voltage gradient sensor module 120 . See Figure 5 and Figure 6 for the location of the above modules.
  • the second circuit board 209 includes: a second differential positioning module 201, a second tilt sensing module 202, a second communication module 203, a second power supply module 207, and a second voltage gradient sensor module 220.
  • the distribution positions of each module on the second circuit board 209 are the same as those on the first circuit board 109, as shown in Figures 8 and 9.
  • the first differential positioning module 101 and the second differential positioning module 201 are configured to respectively obtain the original positioning data of the main wand and the original positioning data of the auxiliary wand through a global positioning system such as GPS, Beidou, etc.
  • the original positioning data of the main probe rod is used to eliminate the error of the first AC and DC potential gradient data collected by the main probe rod 100 .
  • the original positioning data of the auxiliary probe rod is used to eliminate errors in the second AC and DC potential gradient data collected by the auxiliary probe rod 200 .
  • GPS positioning technology the position of the main detection wand 100 is satellite positioned according to the first differential positioning module 101 on the main detection wand 100 .
  • the position of the auxiliary detection wand 200 is satellite positioned to determine the positions of the main detection wand 100 and the auxiliary detection wand 200 at the current moment.
  • the original positioning data of the main probe and the original positioning data of the auxiliary probe at the current moment are sent to the base station or reference station, and the corrected precise positioning data is given by the base station or reference station and sent to the mobile terminal.
  • multi-frequency antenna assemblies are respectively provided on the first end cover 108 and the second end cover 208 . This facilitates the first differential positioning module 101 on the first circuit board 109 to receive the original positioning data of the main wand, and also facilitates the second differential positioning module 201 on the second circuit board to receive the original positioning data of the auxiliary wand.
  • the base station or reference station is a fixed ground observation station that performs long-term continuous observation of satellite navigation signals and transmits the observation data to the data center in real time or regularly by communication facilities. It can provide differential data correction services to mobile stations, that is, high precision. Positioning services with accuracy up to millimeter level.
  • a mobile station can be defined as a mobile terminal used by detection personnel.
  • the first tilt sensing module 102 is configured to measure the tilt angle of the main wand 100 and generate first angle data.
  • the first tilt sensing module 102 senses the angle between the main probing rod 100 and the ground. When the angle between the main probing rod 100 and the ground is 90 degrees, it is a standard measurement angle, and the error is approximately zero. When the angle between the main detection wand 100 and the ground is less than or greater than ninety degrees, the measurement error of the main detection wand 100 is the length projected from above to the location of the buried pipeline. The closer the angle between the main detecting rod 100 and the ground is to ninety degrees, the smaller the measurement error will be. For example, the length of the main probe 100 is 100cm.
  • the inspector When measuring, the inspector will measure the main probe rod 100 at an angle of 60 degrees to the ground. At this time, the first tilt sensing module 102 of the main probing wand 100 will generate first angle data based on the angle between the main probing wand 100 and the ground. After the mobile terminal receives the first angle data, the inspector can know the tilt angle and the corresponding measurement error at the current moment. For example, when the tilt angle is 60 degrees, the projection of the main probe rod 100 in the direction of the buried pipeline is 50 cm, which is the measurement error of the actual measurement.
  • the second tilt sensor module 202 is configured to measure the tilt angle of the auxiliary probe wand 200 and generate second angle data.
  • the working principle is the same as that of the first tilt sensor module 102 and will not be repeated here.
  • the tilt angle of the main wand 100 and the auxiliary wand 200 is graphically displayed on the mobile terminal, and an audible alarm message can be given for the inspection personnel to correct the improper placement angle of the wand.
  • the first tilt sensing module 102 and the second tilt sensing module 202 each include a three-axis high-precision MEMS accelerometer.
  • the three-axis high-precision MEMS accelerometer is equipped with a three-axis accelerometer sensor, which can output gravity acceleration data in three directions.
  • the tilt angle change data is then uploaded to the mobile terminal. Detectors use the inclination change data to correct the improper placement angle of the probe and reduce the resulting measurement error.
  • the first voltage gradient sensor module 120 is configured to calculate a first difference based on the first AC/DC potential signal measured by the first reference electrode 104 and the second AC/DC potential signal measured by the second reference electrode 204 signal, and convert the first difference signal into the first AC and DC potential gradient data.
  • the second voltage gradient sensor module 220 is configured to calculate a second difference based on the second AC/DC potential signal measured by the second reference electrode 204 and the first AC/DC potential signal measured by the first reference electrode 104 signal, and convert the second difference signal into the second AC/DC potential gradient data.
  • the first voltage gradient sensor module 120 and the second voltage gradient sensor module 220 further include:
  • the bias voltage generator circuit is used to generate the operating voltage reference point of the circuit.
  • the bias voltage generator circuit includes: resistors R5, R6, capacitor C2 and operational amplifier OP2.
  • the 3.3V power supply signal (VCC33) is divided in series through resistors R5 and R6 of equal value, and capacitor C2 is connected in parallel to both ends of R6.
  • the divided signal is connected to the non-inverting input pin 3 of the operational amplifier OP2.
  • the bias voltage signal for the output voltage is connected to the input resistor divider circuit and the instrumentation amplifier respectively.
  • the operational amplifier OP2 adopts a 3.3V power supply scheme, and its positive and negative power supply pins 5 and 2 are respectively connected to the 3.3V positive power supply and power ground.
  • the input resistor voltage dividing circuit is used to divide the AC and DC potential signals. In order to meet the input impedance and input voltage range requirements of the standard and measurement circuits, the input signal is divided by the input resistor voltage dividing circuit.
  • CN1 represents the first connector 105 on the main probe wand 100, and CN1 has eight pins. The left sides of pins 1 and 2 are respectively connected to the lead wire of the first reference electrode 104 of the main probe wand 100 and the lead wire of the second reference electrode 204 of the auxiliary probe wand 200 (both are not shown in FIG. 11 ).
  • pin 1 The right side of pin 1 is connected to the resistor R1 in the input resistor divider circuit, and the right side of pin 2 is connected to the resistor R4 in the input resistor divider circuit.
  • Pin 3 is connected to the 5V power supply (VDD50), which can be used to provide power from the other probe rod when one of the probe rods does not have a battery installed.
  • VDD50 5V power supply
  • the auxiliary probe wand 200 passes through the pin 3 of the second connector 205 (the second connector has the same pin structure as the first connector and also contains the same Eight pins), providing power from the connecting cable 300 to the main probe 100.
  • the size of the power supply is determined by the voltage connected to pin 3.
  • Pin 4 is connected to 3.3V (VCC33) power supply.
  • Pin 5 and Pin 7 are connected to ground (GND).
  • Pin 8 is the external USB charging interface, connected to the 5V power output of the USB charger.
  • the resistors R1, R2, R3, and R4 in the input resistor divider circuit are all precision low-temperature drift resistors with an accuracy of more than 0.1% and a temperature coefficient of no more than 25ppm.
  • the resistance of R1 and R4 is 10M ⁇ , and the resistance of R2 and R3 is 499k ⁇ .
  • R2 and R3 are connected to the bias voltage to ensure that the subsequent circuit has a suitable operating point.
  • the VGIN_M and VGIN_S signals in the circuit are the measured input signals, that is, the first AC and DC potential signals and the second AC and DC potential signals, which are divided by the input resistor voltage dividing circuit at pins 2 and 3 of OP1. AC and DC potential signals.
  • the main detection wand 100 and the auxiliary detection wand 200 respectively measure two different marking points above the buried pipeline, there is a difference between the first AC and DC potential signals and the second AC and DC potential signals.
  • the AC and DC potential signals after the voltage division and attenuation can be obtained, which can also reflect the degree of difference in the AC and DC potential signals between the main probe rod 100 and the auxiliary probe rod 200. According to the degree of the difference, Determine the degree of corrosion of buried pipelines.
  • OP1 is an instrumentation amplifier. It is used to amplify the first AC/DC potential signal or the second AC/DC potential signal and convert it into a potential signal suitable for conversion by an analog-to-digital converter.
  • the divided AC and DC potential signals input by the instrumentation amplifier at pins 2 and 3 are high source impedance signals. After being processed by the instrumentation amplifier, the original high-impedance AC and DC potential signals are converted into low-impedance analog AC-DC difference potential signals and output through pins 5 and 6 of the instrumentation amplifier in Figure 11.
  • the analog-to-digital converter is used to convert the analog AC-DC potential difference signal output from the instrumentation amplifier into AC-DC potential gradient data.
  • the microcontroller is configured to control the operation of the analog-to-digital converter, read the AC and DC potential gradient data, obtain the original positioning data and send the original positioning data to the mobile terminal, and correct the AC and DC potential gradient data.
  • the original positioning data includes the original positioning data of the main probing stick and the original positioning data of the auxiliary probing stick.
  • the first communication module 103 is configured to perform the transmission of control instructions and data between the main probe wand 100 and the mobile terminal; and to send the first feedback data to the mobile terminal.
  • the second communication module 203 is configured to perform the transmission of control instructions and data between the auxiliary probe wand 200 and the mobile terminal; and send the second feedback data to the mobile terminal.
  • first communication module 103 and the second communication module 203 respectively include:
  • a Bluetooth communication module is configured to perform Bluetooth connection interaction with the mobile terminal. Simultaneously turn on the Bluetooth module on the main probing wand 100 and the auxiliary probing wand 200 and the Bluetooth communication module on the mobile terminal to establish a Bluetooth communication connection.
  • the main probing wand 100 sends the first feedback data to the mobile terminal through a Bluetooth communication connection
  • the auxiliary probing wand 200 sends the second feedback data to the mobile terminal through a Bluetooth communication connection.
  • a network communication module is configured to perform network communication interaction with the mobile terminal. At the same time, turn on the network communication modules on the main detection wand 100 and the auxiliary detection wand 200, open the network connection on the mobile terminal, and establish a network communication connection.
  • the main probe wand 100 sends the first feedback data to the mobile terminal through a network communication connection
  • the auxiliary probe wand 200 sends the second feedback data to the mobile terminal through a network communication connection.
  • the network communication module on the mobile terminal can also be connected to the Internet or establish a connection with a base station or reference station.
  • the access method includes data transmission radio, mobile network, etc.
  • the first feedback data includes: the original positioning data of the main probe, the first AC and DC potential gradient data and the first angle data.
  • the second feedback data includes: the original positioning data of the auxiliary probe, the second AC and DC potential gradient data, and the second angle data.
  • the first power module 107 is configured to provide power to the main wand 100 ; the second power module 207 is configured to provide power to the auxiliary wand 200 .
  • the first power module 107 and the second power module 207 further include a backup power module respectively.
  • the backup power module in the main detector wand 100 can provide power to the auxiliary detector wand 200 through the connection cable 300 .
  • the backup power module in the auxiliary detector wand 200 can provide power to the main detector wand 100 through the connecting cable 300 .
  • the first power module 107 and the second power module 207 respectively include:
  • a fuel gauge module configured to display remaining battery power and usable time.
  • the fuel gauge module is equipped with a battery, which can measure the battery voltage and calculate the remaining power of the battery based on the battery model.
  • the battery power data calculated by the battery model and the remaining usable time data of the battery in its current state are read through the microcontroller.
  • the battery can be a lithium battery, a nickel-metal hydride battery, or other reusable or disposable batteries.
  • the charge and discharge control module is configured to control battery charge and discharge and perform step-up and step-down conversion.
  • Charge and discharge the main probe 100 or the auxiliary probe 200 by connecting or disconnecting the external USB5V power supply.
  • the main detection wand 100 or the auxiliary detection wand 200 enters the discharge mode and can perform boost conversion on the connected battery.
  • the main detection wand 100 or the auxiliary detection wand 200 enters the charging mode and can charge the connected battery.
  • U9 is a low-noise voltage stabilizing circuit used to provide a stable 3.3V power supply for the circuit system.
  • Pin 1 of U9 is the power input pin.
  • Pin 2 is the ground pin.
  • Pin 3 is the enable pin, which is high level and is connected to the input power supply in the circuit.
  • Pin 5 is the regulated output pin. When pin 1 is connected to the 5V power supply, since the enable pin signal is high level, the circuit works normally. Pin 5 outputs a regulated 3.3V power supply signal.
  • the external capacitor further ensures the stability of the signal and reduces the power supply. Noise level.
  • the system also includes a differential positioning server 415, configured to receive the original positioning data sent by the mobile terminal, convert the original positioning data into precise positioning data based on real-time dynamic differential technology, and provide feedback Accurately locate data to mobile terminals.
  • a differential positioning server 415 configured to receive the original positioning data sent by the mobile terminal, convert the original positioning data into precise positioning data based on real-time dynamic differential technology, and provide feedback Accurately locate data to mobile terminals.
  • the mobile terminal receives the feedback data sent by the potential gradient measurement device, and there is a certain positioning deviation in the feedback data at this time. As shown in Figure 2, the mobile terminal sends the original positioning data to the differential positioning server 415 through the Internet.
  • the differential positioning server 415 converts the original positioning data into precise positioning data, and sends the corrected feedback data back to the mobile terminal through the Internet.
  • the software corrects and compensates the feedback data sent by the potential gradient measurement device, making the data obtained by the inspector on the mobile terminal more accurate.
  • the differential positioning server 415 uses Continuously Operating Reference Stations (CORS) for correction.
  • CORS Continuously Operating Reference Stations
  • the continuously operating reference station (satellite positioning service) established using multi-base station network and carrier phase difference technology can provide high-precision differential positioning services.
  • real-time kinematic differential (RTK) is the most accurate among differential GPS (differential GPS, DGPS).
  • the positioning accuracy of the corrected feedback data through continuous operation of the reference station is more accurate and can reach positioning accuracy above centimeter level.
  • the real-time dynamic differential technology is a measurement method that can obtain centimeter-level positioning accuracy in real time in the field, which can greatly improve the efficiency of potential gradient measurement devices in the field. It is commonly used when the distance between the mobile station and the base station is less than 50km.
  • the differential positioning correction service is provided by installing a base station or reference station in place of the differential positioning server 415 at a reference point of known location.
  • a base station or reference station in place of the differential positioning server 415 at a reference point of known location.
  • its working principle is similar to the working principle of the above-mentioned differential positioning server 415, and will not be repeated here.
  • the mobile terminal is further configured to send a GPS request instruction, obtain the probe correction information corresponding to the GPS request instruction, and correct the AC and DC potential gradient data according to the probe correction information.
  • the said wand correction information includes: main wand position correction information and auxiliary wand position correction information.
  • the potential gradient measurement device is powered on and initialized, and the current battery power of the potential gradient measurement device is read. If the power is low or there are other abnormalities in the battery, the device shuts down. If the power is sufficient, the potential gradient measurement device is reading ADC data (the ADC data is the first AC and DC potential gradient data and the second AC and DC potential gradient data), and then obtains the attitude data of the main probe wand 100 and the auxiliary probe wand 200 .
  • the attitude data includes first angle data and second angle data.
  • the gesture data is then sent to the mobile terminal. The mobile terminal receives the posture data and generates posture prompts.
  • the inspector can manually correct the postures of the main probing wand 100 and the auxiliary probing wand 200 according to the posture prompts, thereby reducing errors generated during the measurement process.
  • the potential gradient measurement device reads the positioning data, including the original positioning data of the main probe and the original positioning data of the auxiliary probe, and sends the positioning data to the mobile terminal.
  • the mobile terminal corrects the accuracy of the positioning data through differential positioning calculation, or based on the base station or continuously operating reference station. In other embodiments, the reference station may also be called a base station.
  • the mixed AC and DC potential gradient data are then separated into DC potential gradient data and AC potential gradient data through calculation.
  • the AC potential gradient data is calculated by the ACVG AC potential gradient method
  • the DC potential gradient data is calculated by the DCVG DC potential gradient method
  • the DC potential gradient data and AC potential gradient data are normalized.
  • Detectors can further process the normalized data based on the user's keystroke type. Among them, there are two types of user keys, one is the user key that represents confirmation, and the other is the user key that represents return. After the inspector confirms that the normalized data is correct, he clicks the user button indicating Yes and controls Bluetooth communication to send the above DC potential gradient data and AC potential gradient data to the mobile terminal for display. If there are obvious errors in the normalized data, you can repeat the above steps to recalculate by clicking the user button indicating Return (No).
  • Bluetooth communication is used to transmit the above data to the mobile terminal.
  • Bluetooth communication is only a technical means for transmitting data.
  • the above data can also be transmitted to the mobile terminal using a data transmission method such as network communication.
  • the present application provides a sensor system for potential gradient measurement, which includes a potential gradient measurement device and a mobile terminal.
  • a sensor system for potential gradient measurement which includes a potential gradient measurement device and a mobile terminal.
  • the main probe rod and the auxiliary probe rod of the potential gradient measurement device there are multiple probe rods along the direction of the buried pipeline. Measure the first AC and DC potential signals and the second AC and DC potential signals of the two marking points above the buried pipeline.
  • the main probe calculates the first difference signal based on the first AC and DC potential signal and the second AC and DC potential signal, converts the first difference signal into the first AC and DC potential gradient data, and sends the data with the first AC and DC potential.
  • the first feedback data of gradient data is to the mobile terminal.
  • the auxiliary probe calculates a second difference signal based on the second AC/DC potential signal and the first AC/DC potential signal, converts the second difference signal into second AC/DC potential gradient data, and sends the second AC/DC potential gradient data with the second AC/DC potential signal.
  • the second feedback data of the bit gradient data is to the mobile terminal.
  • the mobile terminal analyzes whether there is a damaged area of the anti-corrosion layer of the buried pipeline based on the first AC-DC potential gradient data and the second AC-DC potential gradient data and determines the location of the damaged anti-corrosion layer of the buried pipeline, which facilitates the inspection personnel to make judgments and formulate response methods. .
  • the sensor system for potential gradient measurement uses a potential gradient measurement device to replace the AC potential measurement device and the DC potential measurement device, making it more convenient for inspection personnel to conduct safety inspections of buried pipelines. Moreover, after the mobile terminal obtains the original positioning data of the main and auxiliary detector rods, it uses the differential base station or reference station to make corrections, obtains the precise positioning information of the main and auxiliary detector rods, and corrects the AC and DC potential gradient data. , reduce the positioning error of the measured data and achieve higher precision measurement.

Abstract

一种用于电位梯度测量的传感器系统,包括电位梯度测量装置和移动终端,通过电位梯度测量装置的主探杖(100)和副探杖(200)沿着埋地管道(10)的方向分别多次测量埋地管道(10)上方的两个标记点的第一交直流电位信号和第二交直流电位信号,通过两个探杖(100,200)内的电压梯度传感器模块(120,220)分别测量并发送带有第一交直流电位梯度数据的第一反馈数据和带有第二交直流电位梯度数据的第二反馈数据到移动终端。便于检测人员作出判断。用于电位梯度测量的传感器系统使用包含有电压梯度传感器模块(120,220)的电位梯度测量装置即可代替交流电位测量装置和直流电位测量装置两件设备,使检测人员对埋地管道(10)进行安全检测更加方便。

Description

一种用于电位梯度测量的传感器系统
本申请要求于2022年4月21日提交到国家知识产权局、申请号为202210417304.2、发明名称为“一种电位梯度测量系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及测量电位梯度领域,尤其涉及一种用于电位梯度测量的传感器系统。
背景技术
埋地钢质长输油气管道是国家能源的“大动脉”,油气输送管线造价高,穿越地域广阔,涉及的地域类型复杂,一旦发生腐蚀引起的穿孔、破裂,就会造成严重事故。由于长输油气管道的腐蚀破坏而引发的恶性事故,往往会造成巨大的经济损失。
根据埋地钢质管道腐蚀相关的法律、法规、国标、行标要求,需要定期对长输油气管道开展管道检测工作,管道防腐层完整性检测和阴极保护有效性检测是管道外防腐系统检测的重要内容。
外防腐层和阴极保护是目前在役油气管道控制腐蚀的主要技术,直流电位梯度法和交流电位梯度法能够有效评价外防腐层整体性能和阴极保护有效性。现有的测量技术需要采用两套独立的装置测量直流电位和交流电位,为了同时测量直流电位和交流电位,需要同时携带两套设备并由双人操作,工作效率低,作业成本高。而且存在以下缺点:
交流电位测量装置采用的A字架间距固定,不能变距离灵活测量;
在交流电位测量中,A字架的接地探针与管道走向的夹角影响测量精度;
在直流电位测量中,探杖的接地电极连线方向与管道走向的夹角影响测量精度;
直流电位测量装置和交流电位测量装置的测量结果中仅含有电位差绝对值,不包含测量点方向和测量点间距信息,未能取得电位梯度矢量值结果;
多次测量中由于测量点方向和测量点间距无法复现,相同位置测量数据无可比性,影响管道健康水平综合评估准确度。
发明内容
为了解决现有技术测量直流电位和交流电位需要两套装置、多人使用操作不便、直流电位和交流电位测量精度不高、测量过程不灵活的问题,本申请提供了一种用于电位梯度测量的传感器系统,包括:
电位梯度测量装置,包括:主探杖、副探杖、以及连接所述主探杖和所述副探杖的连接电缆。
所述主探杖被配置为采集埋地管道上方第一标记点的第一交直流电位信号。
所述副探杖被配置为采集埋地管道上方第二标记点的第二交直流电位信号。所述第 一标记点和所述第二标记点之间的距离大于零。
所述主探杖通过第一电压梯度传感器模块将第一差值信号转换为第一交直流电位梯度数据并发送带有所述第一交直流电位梯度数据的第一反馈数据至移动终端;所述第一差值信号为所述第一交直流电位信号和通过所述连接电缆获得的所述第二交直流电位信号的差值。
所述副探杖通过第二电压梯度传感器模块将第二差值信号转换为第二交直流电位梯度数据并发送带有所述第二交直流电位梯度数据的第二反馈数据至移动终端;所述第二差值信号为所述第二交直流电位信号和通过所述连接电缆获得的所述第一交直流电位信号的差值。
移动终端,用于获取电位梯度测量装置发送的反馈数据以及向电位梯度测量装置发送控制指令和数据;所述反馈数据包括第一反馈数据和第二反馈数据。
进一步的,所述主探杖包括:第一参比电极、第一连接器、第一按钮开关、第一端盖、第一电路板、第一保护套筒和主探杖外壳。
所述副探杖包括:第二参比电极、第二连接器、第二按钮开关、第二端盖、第二电路板、第二保护套筒和副探杖外壳。
所述第一参比电极和所述第二参比电极的主体为圆柱状、头部为圆锥状。
所述主探杖外壳和所述副探杖外壳为圆柱状壳体。
所述第一参比电极的主体与所述主探杖外壳的一侧连接,所述主探杖外壳的另一侧连接所述第一端盖;在所述主探杖外壳靠近所述第一端盖的位置设置有所述第一连接器,在所述第一连接器和所述第一端盖之间设置有所述第一按钮开关;所述第一保护套筒套在所述第一参比电极的主体外侧;所述第一电路板上的第一电压梯度传感器模块与所述第一参比电极电连接,用于接收所述第一参比电极测量的所述第一交直流电位信号,并通过所述连接电缆传输所述第一交直流电位信号到所述副探杖内的所述第二电路板上的第二电压梯度传感器模块;所述第一电路板的第一电压梯度传感器模块接收所述副探杖发送的所述第二交直流电位信号,并根据所述第一交直流电位信号和所述第二交直流电位信号计算所述第一差值信号,并将所述第一差值信号转换为所述第一交直流电位梯度数据,发送带有所述第一交直流电位梯度数据的所述第一反馈数据至所述移动终端。
所述第二参比电极的主体与所述副探杖外壳的一侧连接,所述副探杖外壳的另一侧连接所述第二端盖;在所述副探杖外壳靠近所述第二端盖的位置设置有所述第二连接器,在所述第二连接器和所述第二端盖之间设置有所述第二按钮开关;所述第二保护套筒套在所述第二参比电极的主体外侧;所述第二电路板的第二电压梯度传感器模块与所述第二参比电极电连接,用于接收所述第二参比电极测量的所述第二交直流电位信号,并通过所述连接电缆传输所述第二交直流电位信号到所述主探杖内的所述第一电路板的第一电压梯度传感器模块;所述第二电路板的第二电压梯度传感器模块接收所述主探杖发送的所述第一交直流电位信号,并根据所述第二交直流电位信号和所述第一交直流电位信号计算所述第二差值信号,并将所述第二差值信号转换为所述第二交直流电位梯度数据,发送带有所述第二交直流电位梯度数据的所述第二反馈数据至所述移动终端。
所述连接电缆的两端分别连接所述第一连接器和所述第二连接器。
进一步的,所述第一端盖和所述第二端盖上分别设置有多频天线组件。
进一步的,所述第一电路板包括:第一差分定位模块、第一倾斜传感模块、第一通 讯模块、第一电源模块和第一测量控制模块。
所述第二电路板包括:第二差分定位模块、第二倾斜传感模块、第二通讯模块、第二电源模块和第二测量控制模块。
所述第一差分定位模块被配置为获取主探杖原始定位数据;所述第二差分定位模块被配置为获取副探杖原始定位数据。
所述第一倾斜传感模块被配置为测量所述主探杖的倾斜角度,生成第一角度数据。
所述第二倾斜传感模块被配置为测量所述副探杖的倾斜角度,生成第二角度数据。
所述第一电压梯度传感器模块被配置为根据所述第一参比电极测量的第一交直流电位信号与第二参比电极测量的所述第二交直流电位信号计算所述第一差值信号,并将所述第一差值信号转换为所述第一交直流电位梯度数据。
所述第二电压梯度传感器模块被配置为根据所述第二参比电极测量的第二交直流电位信号与第一参比电极测量的所述第一交直流电位信号计算所述第二差值信号,并将所述第二差值信号转换为所述第二交直流电位梯度数据。
所述第一通讯模块被配置为执行所述主探杖与所述移动终端之间的控制指令和数据的传输;向移动终端发送所述第一反馈数据。
所述第二通讯模块被配置为执行所述副探杖与所述移动终端之间的控制指令和数据的传输;向移动终端发送所述第二反馈数据。
所述第一反馈数据包括:所述主探杖原始定位数据、所述第一交直流电位梯度数据和所述第一角度数据。
所述第二反馈数据包括:所述副探杖原始定位数据、所述第二交直流电位梯度数据和所述第二角度数据。
所述第一电源模块被配置为向所述主探杖提供电源;所述第二电源模块被配置为向所述副探杖提供电源。
进一步的,所述第一测量控制模块和所述第二测量控制模块还分别包括:
偏置电压发生器电路,用于产生电路的工作电压参考点。
输入电阻分压电路,用于对交直流电位信号进行分压。
仪表放大器,用于将交直流电位信号转换为放大后的模拟交直流差值电位信号。
模拟数字转换器,用于将所述模拟交直流差值电位信号转换为交直流电位梯度数据。
单片机,被配置为控制模拟数字转换器运行,读取交直流电位梯度数据,获取原始定位数据并将所述原始定位数据发送至移动终端,修正交直流电位梯度数据;所述原始定位数据包括主探杖原始定位数据和副探杖原始定位数据。
进一步的,所述第一通讯模块和所述第二通讯模块还分别包括:
蓝牙通讯模块,被配置为与所述移动终端进行蓝牙连接交互。
网络通讯模块,被配置为与所述移动终端进行网络通信交互。
进一步的,所述第一电源模块和所述第二电源模块分别包括:
电量计模块,被配置为显示电池剩余电量以及可使用时间。
充放电控制模块,被配置为对电池充放电进行控制以及进行升压降压变换。
稳压电路模块,被配置为稳定电路电压。
进一步的,所述移动终端还被配置为将所述反馈数据发送到连续运行参考站或基准站进行修正。
进一步的,所述系统还包括差分定位服务器,被配置为接收所述移动终端发送的原始定位数据,并基于实时动态差分技术将所述原始定位数据修正为精准定位数据并反馈给移动终端。
进一步的,所述移动终端还被配置为发送GPS请求指令,获取与所述GPS请求指令相对应的探杖修正信息,根据所述探杖修正信息对交直流电位梯度数据进行修正;所述探杖修正信息包括:主探杖位置修正信息和副探杖位置修正信息。
本申请提供一种用于电位梯度测量的传感器系统,通过用连接电缆连接的主探杖和副探杖,测量埋地管道上方第一标记点的第一交直流电位信号和第二标记点的第二交直流电位信号。主探杖通过第一电压梯度传感器模块计算第一交直流电位信号与第二交直流电位信号的第一差值信号,并将第一差值信号转换为第一交直流电位梯度数据,并发送到移动终端。副探杖通过第二电压梯度传感器模块计算第二交直流电位信号和第一交直流电位信号的第二差值信号,并将第二差值信号转换为第二交直流电位梯度数据,并发送至移动终端。移动终端取得主探杖和副探杖的原始定位数据后,利用差分基准站或者参考站进行修正,取得主探杖和副探杖的精准定位信息,并对第一交直流电位梯度数据和第二交直流电位梯度数据进行修正。通过移动终端获取第一交直流电位梯度数据和第二交直流电位梯度数据分析埋地管道的防腐层是否存在破损,如果存在破损,判断埋地管道防腐层破损处的位置和严重程度。提高检测人员检测埋地管道的工作效率。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术同时测量直流电位和交流电位的示意图;
图2为一种用于电位梯度测量的传感器系统一种实施例的测量直流电位和交流电位的示意图;
图3为电位梯度测量装置检测埋地管道过程图;
图4为一种用于电位梯度测量的传感器系统的主探杖外形图;
图5为一种用于电位梯度测量的传感器系统的主探杖内电子系统布局主视图;
图6为一种用于电位梯度测量的传感器系统的主探杖内电子系统布局侧视图;
图7为一种用于电位梯度测量的传感器系统的副探杖外形图;
图8为一种用于电位梯度测量的传感器系统的副探杖内电子系统布局主视图;
图9为一种用于电位梯度测量的传感器系统的副探杖内电子系统布局侧视图;
图10为探杖电路系统的偏置电压发生器电路接线图;
图11为探杖电路系统的输入电阻分压电路接线图;
图12为探杖电路系统的稳压电路模块图;
图13为一种用于电位梯度测量的传感器系统的一种实施例的工作流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例,都属于本发明保护的范围。
如图1所示,直流电位测量装置采用两只安装有参比电极的探杖,配合阴极保护测量装置测量。交流电位测量装置是一种安装有埋地管道防腐层状况检测系统的设备,采用A字架体结构。图1中,10为埋地管道、11为埋地管道的防腐层破损处、12为埋地管道防腐层破损后的电压等势线。
电位测量相关领域在测量直流电位和测量交流电位时需要两套装置。为了解决使用这两套装置过程中,因测量过程复杂,导致所得到的测量结果精度低的问题。本申请提供了一种用于电位梯度测量的传感器系统,如图2所示,系统包括:
电位梯度测量装置,包括:主探杖100、副探杖200、以及连接所述主探杖100和副探杖200的连接电缆300。
所述主探杖100被配置为采集埋地管道上方第一标记点的第一交直流电位信号,所述副探杖200被配置为采集埋地管道上方第二标记点的第二交直流电位信号,所述第一标记点和所述第二标记点之间的距离大于零。
所述主探杖100内第一电压梯度传感器模块将第一差值信号转换为第一交直流电位梯度数据,并发送带有所述第一交直流电位梯度数据的第一反馈数据至移动终端。所述第一差值信号为,所述第一交直流电位信号和所述第二交直流电位信号的差值。第二交直流电位信号通过所述连接电缆300获得的。
所述副探杖200内第二电压梯度传感器模块将第二差值信号转换为第二交直流电位梯度数据,发送带有所述第二交直流电位梯度数据的第二反馈数据至移动终端。所述第二差值信号为所述第二交直流电位信号和所述第一交直流电位信号的差值。第一交直流电位信号通过所述连接电缆300获得的。
移动终端,用于获取电位梯度测量装置发送的反馈数据,向电位梯度测量装置发送控制指令和数据。所述反馈数据包括第一反馈数据和第二反馈数据。
主探杖100和副探杖200分别采集埋地管道上方的两个标记点的交直流电位信号(第一交直流电位信号和第二交直流电位信号)。因为埋地管道是被埋在地下土壤里,如果埋地管道的防腐层发生破损,会造成埋地管道附近区域的电位梯度变化。
检测人员先将主探杖100放置于第一标记点,然后将副探杖200放置于第二标记点,取得在当前位置的第一交直流电位信号和第二交直流电位信号。主探杖100还会通过连接电缆300获取副探杖200所测得的第二交直流电位信号,主探杖100根据第一交直流电位信号和所获取的第二交直流电位信号计算第一差值信号,并通过第一电压梯度传感器模块120将第一差值信号转换为便于检测人员查看的第一交直流电位梯度数据,然后发送至移动终端。副探杖200还会通过连接电缆300获取主探杖100所测得的第一交直流电位信号。副探杖200根据第二交直流电位信号和所获取的第一交直流电位信号计算第二差值信号。并通过第二电压梯度传感器模块220将第二差值信号转换为便于检测人员查看的第二交直流电位梯度数据。然后发送至移动终端。以上第一交直流电位梯度数据和第二交直流电位梯度数据在移动终端上显示。
图2中,10为埋地管道,11为埋地管道的防腐层破损处,12为埋地管道防腐层破损后的电压等势线,13表示的是埋地管道附近的土壤层。此时,主探杖100距离防腐层破损处较远,所测量到的第一交直流电位信号较弱。而副探杖200相对主探杖100来说,距离防腐层破损处较近,所测量到的第二交直流电位信号较强。当移动终端接收到主探 杖100和副探杖200发送的带有第一交直流电位梯度数据的第一反馈数据,以及带有第二交直流电位梯度数据的第二反馈数据后,会通过第一反馈数据和第二反馈数据进行分析。得到埋地管道的防腐层破损处的大致位置和破损程度。
上述操作仅为完成一次的测量,因为检测埋地管道是一个动态的过程,所以需要进行多次测量来对埋地管道的整体进行检测。整体的测量方向为从埋地管道的起始测量端向埋地管道的结束测量端。在埋地管道的防腐层没有破损的测量段,不会产生埋地管道与大地之间的泄漏电流,因此电位梯度接近于零。在埋地管道的防腐层破损处附近,会产生埋地管道与大地之间的泄漏电流,埋地管道周边的电位梯度会出现规律性变化。
如图3所示,当电位梯度测量装置位于A点时,电位梯度测量装置接近防腐层破损处。此时,主探杖100和副探杖200所测得的交直流电位信号开始出现波动。在A点时刻副探杖200相较于主探杖100更接近防腐层破损处,所以副探杖200所测得的第二交直流电位信号强度大于主探杖100所测得的第一交直流电位信号强度,说明正在接近防腐层破损处。继续向行进方向前进测量,当电位梯度测量装置到达B点处,主探杖100和副探杖200距离防腐层破损处的距离相同,在B点时刻主探杖100所测得的第一交直流电位信号强度与副探杖200所测得的第二交直流电位信号强度相同或相接近(实际测量会存在一定数值误差),说明已经到达防腐层破损处的正上方。继续向行进方向前进测量到达C点处,主探杖100相对副探杖200更接近防腐层破损处,在C点时刻主探杖100所测得的第一交直流电位信号强度大于副探杖200所测得的第二交直流电位信号强度,说明电位梯度测量装置已走过并正在远离防腐层破损处。图3中,10为埋地管道,11为埋地管道的防腐层破损处,12为埋地管道防腐层破损后的电压等势线,13表示的是埋地管道附近的土壤层。
其中,在逐渐接近防腐层破损处的过程中,主探杖100和副探杖200所测得的交直流电位信号强度的差值逐渐增大。当副探杖200位于防腐层破损处正上方时,交直流电位信号的差值为极大值。当副探杖200开始远离防腐层破损处,主探杖100继续接近防腐层破损处时,交直流电位信号的差值减小。直至主探杖100与副探杖200位于防腐层破损处正上方的距离相同时,交直流电位信号的差值为极小值,此时主探杖100与副探杖200的距离中心点为防腐层破损处的位置。当主探杖100位于防腐层破损处正上方时,副探杖200已经经过防腐层破损处,交直流电位信号的差值再次为极大值。当主探杖100经过防腐层破损处后,交直流电位信号的差值逐渐减小。测量过程中,主探杖100和副探杖200之间的距离保持不变,通过观察交直流电位信号强度的差值变化可以大致判断埋地管道的防腐层破损处的位置。
其中,移动终端可以为智能手机、笔记本电脑、平板电脑、智能手表等可以接收数据、可以通信交互的任意电子设备。电位梯度测量装置通过相应通讯链路将相关数据发送至电子设备中。
在一些实施例中,移动终端安装有可将交直流电位梯度数据分为交流电位梯度数据和直流电位梯度数据的处理软件。例如,移动终端接收到主探杖100发送的带有第一交直流电位梯度数据的第一反馈数据。因为主探杖100所采集的第一交直流电位信号是交流电位信号和直流电位信号混合在一起的,如果需要分开检测交流电位信号和直流电位信号需要两套设备,增加成本和人力,不便于检测人员操作。通过处理软件可以直接将第一交直流电位梯度数据分开为第一交流电位梯度数据和第一直流电位梯度数据,使用 一套装置就可以完成交流电位梯度数据和直流电位梯度数据的采集,节省人力物力,更高效地采集相关数据。
检查埋地管道时,若电流穿过土壤并触及防腐层破损的埋地管道,土壤中就会产生泄漏电流并在防腐层破损处周围形成电位梯度。防腐层破损越严重,电流就会越强,进而电位梯度也就越大。检测人员使用电位梯度测量装置所检测的交直流电位信号的差值也就越大,代表此位置的埋地管道的防腐层急需修复。
电位梯度测量装置采集交直流电位信号时采用的是管道电流定位技术,在进行测量之前,先使用发射器对埋地管道的一端和大地之间施加一个电流信号,电流信号会沿着埋地管道的方向向远处传播。如果埋地管道的防腐层产生破损,发生泄漏,这个电流信号就会在防腐层破损处,产生一个以防腐层破损处为中心的电场。检测人员使用电位梯度测量装置在防腐层破损处附近所测得的交直流电位信号的数值是最大的。
在一些实施例中,所述主探杖100包括:第一参比电极104、第一连接器105、第一按钮开关106、第一端盖108、第一电路板109、第一保护套筒110、主探杖外壳111。
所述副探杖200包括:第二参比电极204、第二连接器205、第二按钮开关206、第二端盖208、第二电路板209、第二保护套筒210、副探杖外壳211。
所述第一参比电极104和所述第二参比电极204的主体为圆柱状、头部为圆锥状。
所述主探杖外壳111和副探杖外壳211为圆柱状壳体。
所述第一参比电极104的主体与所述主探杖外壳111的一侧连接,所述主探杖外壳111的另一侧连接所述第一端盖108。在所述主探杖外壳111靠近所述第一端盖108的位置设置有所述第一连接器105,在所述第一连接器105和所述第一端盖108之间设置有所述第一按钮开关106。所述第一保护套筒110套在所述第一参比电极104的主体外侧。所述第一电路板109与所述第一参比电极104电连接,用于接收所述第一参比电极104测量的所述第一交直流电位信号,并通过所述连接电缆300传输所述第一交直流电位信号到所述副探杖200内的所述第二电路板209;所述第一电路板109上的第一电压梯度传感器模块120接收所述副探杖200发送的所述第二交直流电位信号,并根据所述第一交直流电位信号和所述第二交直流电位信号计算所述第一差值信号。进一步的,将所述第一差值信号转换为所述第一交直流电位梯度数据,发送带有所述第一交直流电位梯度数据的所述第一反馈数据至所述移动终端。
所述第二参比电极204的主体与所述副探杖外壳211的一侧连接,所述副探杖外壳211的另一侧连接所述第二端盖208;在所述副探杖外壳211靠近所述第二端盖208的位置设置有所述第二连接器205,在所述第二连接器205和所述第二端盖208之间设置有所述第二按钮开关206;所述第二保护套筒210套在所述第二参比电极204的主体外侧;所述第二电路板209与所述第二参比电极204电连接,用于接收所述第二参比电极204测量的所述第二交直流电位信号,并通过所述连接电缆300传输所述第二交直流电位信号到所述主探杖100内的所述第一电路板109;所述第二电路板209上的第二电压梯度传感器模块220接收所述主探杖100发送的所述第一交直流电位信号,并根据所述第二交直流电位信号和所述第一交直流电位信号计算所述第二差值信号。进一步的,将所述第二差值信号转换为所述第二交直流电位梯度数据,发送带有所述第二交直流电位梯度数据的所述第二反馈数据至所述移动终端。
所述连接电缆300的两端分别连接所述第一连接器105和所述第二连接器205。
参见图4和图5,主探杖100的头部为第一参比电极104,使用时检测人员操控主探杖100使得第一参比电极104接触埋地管道上方的地面测量第一标记点的第一交直流电位信号。第一电路板109根据第一交直流电位信号和第二交直流电位信号计算第一差值信号,将第一差值信号转换为第一交直流电位梯度数据,然后将带有第一交直流电位梯度数据的第一反馈数据发送到移动终端。
第一保护套筒110套在第一参比电极104的主体外侧,保护第一参比电极104的主体避免撞击、挤压等损害。第一连接器105用于与连接电缆300的一端相连,连接电缆300另一端与副探杖200中的第二连接器205相连。第一电路板109在主探杖外壳111内部。第一端盖108安装在主探杖外壳111尾部。第一按钮开关106控制主探杖100的启动和关闭,以及向移动终端发送信号指示保存当前的第一交直流电位梯度数据。例如,当主探杖100上的第一交直流电位梯度数据符合要求时,检测人员按下第一按钮开关106。主探杖100检测到按键信号,通过第一电路板109发送按键事件信息,通知移动终端保存当前的测量数据。所述第一按钮开关106和第二按钮开关206可以为带灯自复位开关。连接电缆300可采用多芯电缆,用于主探杖100与副探杖200之间的有线信号传输。所述多芯电缆内包含第一参比电极104和第二参比电极204的连接信号线。
需要说明的是,主探杖100和副探杖200的部件结构和工作原理相同,以上仅对于主探杖100的结构及工作原理进行说明描述。副探杖200的部件结构如图7和图8所示,不作重复阐述。使用时检测人员操控副探杖200使得第二参比电极204接触埋地管道上方的地面,测量第二标记点的第二交直流电位信号。第二电路板209上的第二电压梯度传感器模块220根据第二交直流电位信号和第一交直流电位信号计算第二差值信号,将第二差值信号转换为第二交直流电位梯度数据,然后将带有第二交直流电位梯度数据的第二反馈数据发送到移动终端。
在一些实施例中,所述第一电路板109包括:第一差分定位模块101、第一倾斜传感模块102、第一通讯模块103、第一电源模块107、第一电压梯度传感器模块120。上述各模块的位置参见图5和图6。
所述第二电路板209包括:第二差分定位模块201、第二倾斜传感模块202、第二通讯模块203、第二电源模块207、第二电压梯度传感器模块220。第二电路板209上的各模块分布位置与第一电路板109相同,如图8和图9所示。
所述第一差分定位模块101和所述第二差分定位模块201被配置为:通过全球定位系统如GPS、北斗等,分别获取主探杖原始定位数据和副探杖原始定位数据。主探杖原始定位数据用于消除主探杖100所采集的第一交直流电位梯度数据的误差。副探杖原始定位数据用于消除副探杖200所采集的第二交直流电位梯度数据的误差。通过GPS定位技术,根据主探杖100上的第一差分定位模块101对主探杖100的位置进行卫星定位。根据副探杖200上的第二差分定位模块201对副探杖200的位置进行卫星定位,确定当前时刻主探杖100和副探杖200所在的位置。并将当前时刻主探杖原始定位数据和副探杖原始定位数据发送到基准站或参考站,由基准站或参考站给出修正后的精准定位数据并发送给移动终端。
在一些实施例中,所述第一端盖108和所述第二端盖208上分别设置有多频天线组件。便于第一电路板109上的第一差分定位模块101接收主探杖原始定位数据,同时也便于第二电路板上的第二差分定位模块201接收副探杖原始定位数据。
其中,基准站或参考站是对卫星导航信号进行长期连续观测,并由通信设施将观测数据实时或定时传送至数据中心的地面固定观测站,能够对移动站提供差分数据修正服务,即高精度的定位服务,精度最高可达毫米级别。移动站可被定义为检测人员使用的移动终端。
所述第一倾斜传感模块102被配置为测量所述主探杖100的倾斜角度,生成第一角度数据。通过第一倾斜传感模块102感应主探杖100与地面之间的角度,主探杖100与地面之间的角度是九十度时,为标准的测量角度,误差近似于零。当主探杖100与地面之间的角度小于或大于九十度时,主探杖100从上投影到埋地管道所在位置的长度为主探杖100的测量误差。主探杖100与地面的角度越接近九十度,测量误差越小。例如,主探杖100长度为100cm。测量时,检测人员将主探杖100与地面呈六十度进行测量。此时主探杖100的第一倾斜传感模块102会将此刻的主探杖100与地面之间的角度生成第一角度数据。移动终端在接收到第一角度数据后,检测人员即可知道当前时刻的倾斜角度与相应的测量误差。例如,当倾斜角度为六十度时,主探杖100在埋地管道方向的投影为50cm,即为实际测量的测量误差。
所述第二倾斜传感模块202被配置为测量所述副探杖200的倾斜角度,生成第二角度数据,工作原理与第一倾斜传感模块102相同,在此不作重复阐述。
在一些实施例中,在移动终端上以图形方式显示主探杖100和副探杖200的倾斜角度情况,并能够给出声音报警信息,供检测人员纠正探杖的不当放置角度。
在一些实施例中,第一倾斜传感模块102和第二倾斜传感模块202分别包含三轴高精度MEMS加速度计。三轴高精度MEMS加速度计中设置有三轴加速度计传感器,能够输出三个方向的重力加速度数据,通过将静态重力场变化,转换成倾角变化,再将倾角变化的数据上传至移动终端。检测人员通过倾角变化的数据纠正探杖的不当放置角度,减小产生的测量误差。
所述第一电压梯度传感器模块120被配置为,根据所述第一参比电极104测量的第一交直流电位信号与第二参比电极204测量的第二交直流电位信号计算第一差值信号,并将第一差值信号转换为所述第一交直流电位梯度数据。
所述第二电压梯度传感器模块220被配置为,根据所述第二参比电极204测量的第二交直流电位信号与第一参比电极104测量的第一交直流电位信号计算第二差值信号,并将第二差值信号转换为所述第二交直流电位梯度数据。
在一些实施例中,第一电压梯度传感器模块120和所述第二电压梯度传感器模块220还分别包括:
偏置电压发生器电路用于产生电路的工作电压参考点。参见图10,在一些实施例中,偏置电压发生器电路包括:电阻R5、R6、电容C2和运算放大器OP2。通过等值的电阻R5和R6对3.3V电源信号(VCC33)进行串联分压,并在R6两端并联电容C2,分压后的信号接到运算放大器OP2的同向输入引脚3。输出电压的偏置电压信号分别连接到输入电阻分压电路和仪表放大器。在本实施例中,运算放大器OP2采用3.3V电源供电方案,其正负电源引脚5和引脚2分别接3.3V正电源和电源地。
输入电阻分压电路,用于对交直流电位信号进行分压。为了满足标准和测量电路对输入阻抗和输入电压范围要求,通过输入电阻分压电路对输入信号进行分压。参见图11,在一些实施例中,CN1代表主探杖100上的第一连接器105,CN1有八条引脚。引脚1、2 左侧分别连接主探杖100的第一参比电极104的引线和副探杖200的第二参比电极204的引线(图11中均未示出)。引脚1右侧连接输入电阻分压电路中的电阻R1,引脚2右侧连接输入电阻分压电路中的电阻R4。引脚3接5V电源(VDD50),可在其中一只探杖未安装电池的情况下由另一只的探杖提供电源。例如,在主探杖100未安装电源的情况下,副探杖200通过第二连接器205的引脚3(所述第二连接器与第一连接器的引脚结构相同,也包含相同的八条引脚),从连接电缆300向主探杖100提供电源。电源大小根据引脚3所连接的电压大小决定。引脚4接3.3V(VCC33)电源。引脚5和引脚7接地(GND)。引脚8是外部USB充电接口,接USB充电器的5V电源输出。
输入电阻分压电路中的电阻R1、R2、R3、R4,均为精密低温漂电阻,精度为0.1%以上,温度系数不大于25ppm。R1和R4的阻值为10MΩ,R2和R3的阻值为499kΩ。如图11,R2和R3接在偏置电压上,从而保证后续电路有合适的工作点。
电路中的VGIN_M和VGIN_S信号为被测的输入信号,即第一交直流电位信号和第二交直流电位信号,通过输入电阻分压电路在OP1的引脚2和引脚3处得到分压后的交直流电位信号。
需要说明的是,因为主探杖100和副探杖200分别测量埋地管道上方的两个不同的标记点,所以第一交直流电位信号和第二交直流电位信号之间存在差值,通过输入电阻分压电路后,可以得到分压衰减后的交直流电位信号,也就能反映出主探杖100和副探杖200之间的交直流电位信号的差值程度,根据差值程度来判断埋地管道的腐蚀程度。
OP1为仪表放大器。用于将第一交直流电位信号或第二交直流电位信号放大后,转化为适用于模拟数字转换器进行转换的电位信号。仪表放大器在引脚2、引脚3输入的分压后的交直流电位信号为高源阻抗信号。经过仪表放大器处理后,将原有的高阻抗的交直流电位信号转换为低阻抗的模拟交直流差值电位信号,并通过图11中的仪表放大器的引脚5和引脚6输出。
模拟数字转换器用于将来自仪表放大器输出的所述模拟交直流电位差值信号转换为交直流电位梯度数据。
单片机,被配置为控制模拟数字转换器运行,读取交直流电位梯度数据,获取原始定位数据并将原始定位数据发送至移动终端,修正交直流电位梯度数据。原始定位数据包括主探杖原始定位数据和副探杖原始定位数据。
第一通讯模块103被配置为执行所述主探杖100与所述移动终端之间的控制指令和数据的传输;向移动终端发送所述第一反馈数据。
第二通讯模块203被配置为执行所述副探杖200与所述移动终端之间的控制指令和数据的传输;向移动终端发送所述第二反馈数据。
进一步的,所述第一通讯模块103和所述第二通讯模块203还分别包括:
蓝牙通讯模块,被配置为与所述移动终端进行蓝牙连接交互。同时开启主探杖100和副探杖200上的蓝牙模块和移动终端上的蓝牙通讯模块,建立蓝牙通讯连接。主探杖100将第一反馈数据通过蓝牙通讯连接发送至移动终端,副探杖200将第二反馈数据通过蓝牙通讯连接发送至移动终端。
网络通讯模块,被配置为与所述移动终端进行网络通信交互。同时开启主探杖100和副探杖200上的网络通讯模块,打开移动终端上的网络连接,建立网络通讯连接。主探杖100将第一反馈数据通过网络通讯连接发送至移动终端,副探杖200将第二反馈数 据通过网络通讯连接发送至移动终端。
所述移动终端上的网络通讯模块还能够连接到互联网或者与基准站或参考站建立连接,接入方式包括数传电台、移动网络等。
所述第一反馈数据包括:所述主探杖原始定位数据、所述第一交直流电位梯度数据和所述第一角度数据。
所述第二反馈数据包括:所述副探杖原始定位数据、所述第二交直流电位梯度数据和所述第二角度数据。
所述第一电源模块107被配置为向所述主探杖100提供电源;所述第二电源模块207被配置为向副探杖200提供电源。在一些实施例中,所述第一电源模块107和第二电源模块207还分别包括备用电源模块。例如,当副探杖200没有安装电源时,主探杖100中的备用电源模块可通过连接电缆300向副探杖200提供电源。当主探杖100没有安装电源时,副探杖200中的备用电源模块可通过连接电缆300向主探杖100提供电源。
在一些实施例中,所述第一电源模块107和所述第二电源模块207分别包括:
电量计模块,被配置为显示电池剩余电量以及可使用时间。其中,电量计模块安装有电池,可测量电池电压,并根据电池模型计算出电池的剩余电量。通过单片机读取电池模型计算出的电池电量数据以及电池当前状态下还可使用的时间数据。电池可以为锂电池,镍氢电池等可反复使用或者一次性使用的电池。
充放电控制模块,被配置为对电池充放电进行控制以及进行升压降压变换。通过接入或断开外部USB5V供电电源对主探杖100或副探杖200进行充放电。当断开外部电源时,主探杖100或副探杖200进入放电模式,可对接入的电池进行升压变换。当接入外部电源时,主探杖100或副探杖200进入充电模式,可对接入的电池进行充电。
稳压电路模块,被配置为稳定电路电压。如图12,U9是低噪声稳压电路,用于为电路系统提供稳定的3.3V电源供电。U9的引脚1是电源输入引脚。引脚2是接地引脚。引脚3是使能引脚,为高电平,在电路中与输入电源相连。引脚5是稳压输出引脚。当引脚1接入5V电源后,由于使能引脚信号为高电平,因此电路正常工作,在引脚5输出稳压后的3.3V电源信号,外接电容进一步保证信号的稳定以及降低电源噪声水平。
在一些实施例中,所述系统还包括差分定位服务器415,被配置为接收移动终端发送的所述原始定位数据,并基于实时动态差分技术将所述原始定位数据转化为精准定位数据,并反馈精准定位数据至移动终端。
移动终端接收到电位梯度测量装置发送的反馈数据,此时的反馈数据存在一定的定位偏差。如图2,移动终端通过互联网将原始定位数据发送至差分定位服务器415,差分定位服务器415根据原始定位数据转化为精准定位数据,并将修正后的反馈数据通过互联网发送回移动终端,移动终端上的软件对电位梯度测量装置发送的反馈数据进行修正和补偿,使检测人员在移动终端所获得的数据更加精准。
在一些实施例中,所述差分定位服务器415使用连续运行参考站(CORS)进行修正。在连续运行参考站中,利用多基站网络、载波相位差分技术建立的连续运行参考站(卫星定位服务)能够提供高精度差分定位服务。其中,实时动态差分(RTK),是差分GPS(differential GPS,DGPS)中精度最高的一种。通过连续运行参考站修正后的反馈数据的定位精度更加精准,可以达到厘米级以上的定位精度。
需要说明的是,在全球导航卫星系统测量中,如静态、快速静态、动态测量都需要 进行解算才能获得分米级以上的精度。而实时动态差分技术是一种能够在野外实时得到厘米级以上定位精度的测量方法,能够极大地提高电位梯度测量装置在野外作业效率。在移动站与基准站之间的距离小于50km时被普遍使用。
在一些实施例中,通过在已知位置的参考点安装一个基准站或者参考站代替差分定位服务器415,提供差分定位修正服务。对本发明的用于电位梯度测量的传感器系统而言,其工作原理与上述差分定位服务器415的工作原理类似,在此不做重复阐述。
在一些实施例中,所述移动终端还被配置为发送GPS请求指令,获取与所述GPS请求指令相对应的探杖修正信息,根据所述探杖修正信息对交直流电位梯度数据进行修正。所述探杖修正信息包括:主探杖位置修正信息和副探杖位置修正信息。通过GPS卫星定位,修正反馈数据的定位精度,并将修正后的反馈数据返回至移动终端。经过修正后的反馈数据的定位更精准,电位梯度测量装置所测量的精度更高。
如图13所示,为一种用于电位梯度测量的传感器系统的一种实施例的工作流程图。首先将电位梯度测量装置进行上电初始化,读取电位梯度测量装置当前电池电量,如果电量低或电池存在其他异常时,装置关机。如果电量充足,电位梯度测量装置正读取ADC数据(ADC数据为第一交直流电位梯度数据和第二交直流电位梯度数据),然后获取主探杖100和副探杖200的姿态数据。姿态数据包括第一角度数据和第二角度数据。然后将姿态数据发送到移动终端。移动终端接收姿态数据,产生姿态提示。检测人员可根据姿态提示手动姿态纠正主探杖100和副探杖200,减小测量过程中产生的误差。然后电位梯度测量装置读取定位数据,包括主探杖原始定位数据和副探杖原始定位数据,并将定位数据发送到移动终端。移动终端通过差分定位解算,或者根据基站或连续运行参考站来修正定位数据的精度。在其他实施例中基准站也可称为基站。再将混合在一起的交直流电位梯度数据通过计算分开为直流电位梯度数据和交流电位梯度数据。通过ACVG交流电位梯度法计算出交流电位梯度数据,通过DCVG直流电位梯度法计算出直流电位梯度数据,并将直流电位梯度数据和交流电位梯度数据归一化。检测人员可根据用户按键类型,进一步对归一化后的数据进行处理。其中,包括两种用户按键类型,一种是表示确定的用户按键,另一种是表示返回的用户按键。检测人员确认归一化后的数据无误后,点击表示确定(Yes)的用户按键,控制蓝牙通讯将上述直流电位梯度数据和交流电位梯度数据发送至移动终端显示。如果归一化后的数据存在明显误差,可通过点击表示返回(No)的用户按键重复上述步骤重新计算。姿态提示、定位数据、直流电位梯度数据和交流电位梯度数据的显示和存储等动作均发生在移动终端。在本实施例中,将上述数据传输至移动终端均使用蓝牙通讯。蓝牙通讯仅为传输数据的一种技术手段,在其他实施例中,还可以使用网络通讯等可以传输数据的方式将上述数据传输至移动终端。
由上述技术方案可知本申请提供一种用于电位梯度测量的传感器系统,包括电位梯度测量装置和移动终端,通过电位梯度测量装置的主探杖和副探杖沿着埋地管道的方向分别多次测量埋地管道上方的两个标记点的第一交直流电位信号和第二交直流电位信号。主探杖根据第一交直流电位信号和第二交直流电位信号计算出第一差值信号,将第一差值信号转化成第一交直流电位梯度数据,并发送带有第一交直流电位梯度数据的第一反馈数据到移动终端。在副探杖根据第二交直流电位信号和第一交直流电位信号计算出第二差值信号,将第二差值信号转化成第二交直流电位梯度数据,并发送带有第二交直流电位梯度数据的第二反馈数据到移动终端。移动终端根据第一交直流电位梯度数据和第 二交直流电位梯度数据分析埋地管道是否存在防腐层破损的区域以及确定埋地管道的防腐层破损处位置,便于检测人员作出判断,制定应对方法。所述用于电位梯度测量的传感器系统使用电位梯度测量装置即可代替交流电位测量装置和直流电位测量装置两件设备,使检测人员对埋地管道进行安全检测更加方便。并且,移动终端取得主探杖和副探杖的原始定位数据后,利用差分基准站或者参考站进行修正,取得主探杖和副探杖的精准定位信息,并对交直流电位梯度数据进行修正,减小测量所得数据的定位误差,实现更高精度的测量。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种用于电位梯度测量的传感器系统,其特征在于,包括:
    电位梯度测量装置,包括:主探杖(100)、副探杖(200)、以及连接所述主探杖(100)和所述副探杖(200)的连接电缆(300);
    所述主探杖(100)被配置为采集埋地管道上方第一标记点的第一交直流电位信号;
    所述副探杖(200)被配置为采集埋地管道上方第二标记点的第二交直流电位信号;
    所述第一标记点和所述第二标记点之间的距离大于零;
    所述主探杖(100)通过探杖内的第一电压梯度传感器模块(120)将第一差值信号转换为第一交直流电位梯度数据并发送带有所述第一交直流电位梯度数据的第一反馈数据至移动终端;所述第一差值信号为所述第一交直流电位信号和通过所述连接电缆(300)获得的所述第二交直流电位信号的差值;
    所述副探杖(200)通过探杖内的第二电压梯度传感器模块(220)将探杖内的第二电压梯度传感器模块(220)将第二差值信号转换为第二交直流电位梯度数据并发送带有所述第二交直流电位梯度数据的第二反馈数据至移动终端;所述第二差值信号为所述第二交直流电位信号和通过所述连接电缆(300)获得的所述第一交直流电位信号的差值;
    移动终端,用于获取电位梯度测量装置发送的反馈数据以及向电位梯度测量装置发送控制指令和数据;所述反馈数据包括第一反馈数据和第二反馈数据。
  2. 根据权利要求1所述的用于电位梯度测量的传感器系统,包含相同结构的主探杖(100)和副探杖(200),其特征在于,所述主探杖(100)包括:第一参比电极(104)、第一连接器(105)、第一按钮开关(106)、第一端盖(108)、第一电路板(109)、第一保护套筒(110)和主探杖外壳(111);
    所述副探杖(200)包括:第二参比电极(204)、第二连接器(205)、第二按钮开关(206)、第二端盖(208)、第二电路板(209)、第二保护套筒(210)和副探杖外壳(211);
    所述第一参比电极(104)和所述第二参比电极(204)的主体为圆柱状、头部为圆锥状;
    所述主探杖外壳(111)和所述副探杖外壳(211)为圆柱状壳体;
    所述第一电路板(109)和第二电路板(209)分别安装有第一电压梯度传感器模块(120)和第二电压梯度传感器模块(220);
    所述第一参比电极(104)的主体与所述主探杖外壳(111)的一侧连接,所述主探杖外壳(111)的另一侧连接所述第一端盖(108);在所述主探杖外壳(111)靠近所述第一端盖(108)的位置设置有所述第一连接器(105),在所述第一连接器(105)和所述第一端盖(108)之间设置有所述第一按钮开关(106);所述第一保护套筒(110)套在所述第一参比电极(104)的主体外侧;所述第一电路板(109)上的电压梯度传感器输入端与所述第一参比电极(104)电连接,用于接收所述第一参比电极(104)测量的所述第一交直流电位信号,并通过所述连接电缆(300)传输所述第一交直流电位信号到所述副探杖(200)内的所述第二电路板(209);所述第一电路板(109)上的电压梯度传感器输入端接收所述副探杖(200)发送的所述第二交直流电位信号,并根据所述第一交直流电位信号和所述第二交直流电位信号计算所述第一差值信号,并将所述第一差值 信号通过电压梯度传感器转换为所述第一交直流电位梯度数据,发送带有所述第一交直流电位梯度数据的所述第一反馈数据至所述移动终端;
    所述第二参比电极(204)的主体与所述副探杖外壳(211)的一侧连接,所述副探杖外壳(211)的另一侧连接所述第二端盖(208);在所述副探杖外壳(211)靠近所述第二端盖(208)的位置设置有所述第二连接器(205),在所述第二连接器(205)和所述第二端盖(208)之间设置有所述第二按钮开关(206);所述第二保护套筒(210)套在所述第二参比电极(204)的主体外侧;所述第二电路板(209)上电压梯度传感器输入端与所述第二参比电极(204)电连接,用于接收所述第二参比电极(204)测量的所述第二交直流电位信号,并通过所述连接电缆(300)传输所述第二交直流电位信号到所述主探杖(100)内的所述第一电路板(109);所述第二电路板(209)的电压梯度传感器输入端接收所述主探杖(100)发送的所述第一交直流电位信号,并根据所述第二交直流电位信号和所述第一交直流电位信号计算所述第二差值信号,并将所述第二差值信号通过电压梯度传感器转换为所述第二交直流电位梯度数据,发送带有所述第二交直流电位梯度数据的所述第二反馈数据至所述移动终端;
    所述连接电缆(300)的两端分别连接所述第一连接器(105)和所述第二连接器(205)。
  3. 根据权利要求2所述的用于电位梯度测量的传感器系统,其特征在于,所述第一端盖(108)和所述第二端盖(208)上分别设置有多频天线组件。
  4. 根据权利要求2所述的用于电位梯度测量的传感器系统,其特征在于,所述第一电路板(109)包括:第一差分定位模块(101)、第一倾斜传感模块(102)、第一通讯模块(103)、第一电源模块(107)和第一测量控制模块(120);
    所述第二电路板(209)包括:第二差分定位模块(201)、第二倾斜传感模块(202)、第二通讯模块(203)、第二电源模块(207)和第二测量控制模块(220);
    所述第一差分定位模块(101)被配置为获取主探杖原始定位数据;所述第二差分定位模块(201)被配置为获取副探杖原始定位数据;
    所述第一倾斜传感模块(102)被配置为测量所述主探杖(100)的倾斜角度,生成第一角度数据;
    所述第二倾斜传感模块(202)被配置为测量所述副探杖(200)的倾斜角度,生成第二角度数据;
    所述第一电压梯度传感器模块(120)被配置为根据所述第一参比电极(104)测量的第一交直流电位信号与第二参比电极(204)测量的所述第二交直流电位信号计算所述第一差值信号,并将所述第一差值信号转换为所述第一交直流电位梯度数据;
    所述第二电压梯度传感器模块(220)被配置为根据所述第二参比电极(204)测量的第二交直流电位信号与第一参比电极(104)测量的所述第一交直流电位信号计算所述第二差值信号,并将所述第二差值信号转换为所述第二交直流电位梯度数据;
    所述第一通讯模块(103)被配置为执行所述主探杖(100)与所述移动终端之间的控制指令和数据的传输;向移动终端发送所述第一反馈数据;
    所述第二通讯模块(203)被配置为执行所述副探杖(200)与所述移动终端之间的控制指令和数据的传输;向移动终端发送所述第二反馈数据;
    所述第一反馈数据包括:所述主探杖原始定位数据、所述第一交直流电位梯度数据和所述第一角度数据;
    所述第二反馈数据包括:所述副探杖原始定位数据、所述第二交直流电位梯度数据和所述第二角度数据;
    所述第一电源模块(107)被配置为向所述主探杖(100)提供电源;所述第二电源模块(207)被配置为向所述副探杖(200)提供电源。
  5. 根据权利要求4所述的用于电位梯度测量的传感器系统,其特征在于,所述第一测量控制模块(120)和所述第二测量控制模块(220)还分别包括:
    偏置电压发生器电路,用于产生电路的工作电压参考点;
    输入电阻分压电路,用于对交直流电位信号进行分压;
    仪表放大器,用于将交直流电位信号转换为放大后的模拟交直流差值电位信号;
    模拟数字转换器,用于将所述模拟交直流差值电位信号转换为交直流电位梯度数据;
    单片机,被配置为控制模拟数字转换器运行,读取交直流电位梯度数据,获取原始定位数据并将所述原始定位数据发送至移动终端,修正交直流电位梯度数据;所述原始定位数据包括主探杖原始定位数据和副探杖原始定位数据。
  6. 根据权利要求4所述的用于电位梯度测量的传感器系统,其特征在于,所述第一通讯模块(103)和所述第二通讯模块(203)还分别包括:
    蓝牙通讯模块,被配置为与所述移动终端进行蓝牙连接交互;
    网络通讯模块,被配置为与所述移动终端进行网络通信交互。
  7. 根据权利要求4所述的用于电位梯度测量的传感器系统,其特征在于,所述第一电源模块(107)和所述第二电源模块(207)分别包括:
    电量计模块,被配置为显示电池剩余电量以及可使用时间;
    充放电控制模块,被配置为对电池充放电进行控制以及进行升压降压变换;
    稳压电路模块,被配置为稳定电路电压。
  8. 根据权利要求4所述的用于电位梯度测量的传感器系统,其特征在于,所述移动终端还被配置为将所述反馈数据发送到连续运行参考站或基准站进行修正。
  9. 根据权利要求1所述的用于电位梯度测量的传感器系统,其特征在于,所述系统还包括差分定位服务器(415),被配置为接收所述移动终端发送的原始定位数据,并基于实时动态差分技术将所述原始定位数据修正为精准定位数据并反馈给移动终端。
  10. 根据权利要求1所述的用于电位梯度测量的传感器系统,其特征在于,所述移动终端还被配置为发送GPS请求指令,获取与所述GPS请求指令相对应的探杖修正信息,根据所述探杖修正信息对交直流电位梯度数据进行修正;所述探杖修正信息包括:主探杖位置修正信息和副探杖位置修正信息。
PCT/CN2022/114775 2022-04-21 2022-08-25 一种用于电位梯度测量的传感器系统 WO2023201948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2217847.9A GB2610353B8 (en) 2022-04-21 2022-08-25 Sensor system for potential gradient measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210417304.2A CN114527161B (zh) 2022-04-21 2022-04-21 一种电位梯度测量系统
CN202210417304.2 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023201948A1 true WO2023201948A1 (zh) 2023-10-26

Family

ID=81628317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114775 WO2023201948A1 (zh) 2022-04-21 2022-08-25 一种用于电位梯度测量的传感器系统

Country Status (2)

Country Link
CN (1) CN114527161B (zh)
WO (1) WO2023201948A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527161B (zh) * 2022-04-21 2022-07-19 国机传感科技有限公司 一种电位梯度测量系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160403A (en) * 1997-06-03 2000-12-12 Tokyo Gas Company Limited Evaluation methods and instrumentation with steel probes used for cathodic protection of underground pipelines
CN102252168A (zh) * 2011-07-19 2011-11-23 华电能源股份有限公司 地埋金属管道防腐层破损精确定位检测方法和装置
CN110066997A (zh) * 2019-04-30 2019-07-30 青岛雅合科技发展有限公司 外腐蚀交直流综合检测方法
CN209784244U (zh) * 2019-04-30 2019-12-13 青岛雅合科技发展有限公司 外腐蚀检测采集装置
CN113686772A (zh) * 2021-09-13 2021-11-23 国机传感科技有限公司 一种埋地钢质长输油气管道综合外检测装置
CN114527161A (zh) * 2022-04-21 2022-05-24 国机传感科技有限公司 一种电位梯度测量系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003244265A1 (en) * 2003-04-26 2004-11-23 Korea Gas Corporation Dcvg-cips measuring apparatus for detecting the results of a pipe line
CN202141690U (zh) * 2011-07-19 2012-02-08 华电能源股份有限公司 地埋金属管道防腐层破损点精确定位检测装置
CN207704043U (zh) * 2018-01-16 2018-08-07 天津市嘉信技术工程公司 直流电位梯度检测探杖的位置识别装置
CN110779969A (zh) * 2019-11-19 2020-02-11 江苏科盾检测技术有限公司 一种地埋钢筋混凝土管道防腐层检测装置及方法
CN111398661A (zh) * 2020-04-28 2020-07-10 青岛雅合科技发展有限公司 直流杂散电流干扰检测装置、系统及检测方法
CN111575715A (zh) * 2020-05-09 2020-08-25 中核武汉核电运行技术股份有限公司 核电厂埋地管道防腐层缺陷检测系统
CN113549918A (zh) * 2021-07-19 2021-10-26 常州大学 一种近海海底管道牺牲阳极阴极保护状态的接触式测量装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160403A (en) * 1997-06-03 2000-12-12 Tokyo Gas Company Limited Evaluation methods and instrumentation with steel probes used for cathodic protection of underground pipelines
CN102252168A (zh) * 2011-07-19 2011-11-23 华电能源股份有限公司 地埋金属管道防腐层破损精确定位检测方法和装置
CN110066997A (zh) * 2019-04-30 2019-07-30 青岛雅合科技发展有限公司 外腐蚀交直流综合检测方法
CN209784244U (zh) * 2019-04-30 2019-12-13 青岛雅合科技发展有限公司 外腐蚀检测采集装置
CN113686772A (zh) * 2021-09-13 2021-11-23 国机传感科技有限公司 一种埋地钢质长输油气管道综合外检测装置
CN114527161A (zh) * 2022-04-21 2022-05-24 国机传感科技有限公司 一种电位梯度测量系统

Also Published As

Publication number Publication date
CN114527161A (zh) 2022-05-24
CN114527161B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN112462190B (zh) 地下电缆故障探测多足机器人、探测系统及探测方法
WO2023201948A1 (zh) 一种用于电位梯度测量的传感器系统
CN105759147A (zh) 一种电动汽车电池管理系统的一体化测试装置
CN109839084B (zh) 一种高压单芯电缆的转弯半径检测装置、系统及方法
CN105179013A (zh) 基于振动监测定位的煤炭盗采监测方法
CN104090173B (zh) 一种基于蓝牙通信的多节点分布式场强测试系统及方法
CN106338272A (zh) 用于构件倾斜角测量的测试装置及其测试方法
CN203249889U (zh) 金属管道腐蚀检测装置
CN206670624U (zh) 无人机检测装置及系统
CN210037946U (zh) 基于tmr隧道磁阻的电流测量装置
CN208636398U (zh) 一种阴极保护绝缘测试仪
CN218630179U (zh) 基于uwb技术的远距离高精确测距的隧道安全步距监测系统
CN111123037A (zh) 一种配电网故障定点检测装置及检测方法
GB2610353A (en) Sensor system for potential gradient measurement
CN110118546A (zh) 一种测量独立构筑物高程的方法
CN206709776U (zh) 混凝土厚度无损检测仪
CN112945862B (zh) 一种煤矿瓦斯手持巡检终端
CN203149040U (zh) 远程水电容检测装置
CN206002116U (zh) 基于蓝牙与捷联式惯性导航技术的定位系统及大型变压器
CN203479312U (zh) 一种惯性定位定向系统电路检测设备
CN214795235U (zh) 一种复杂地形中电测深法测量装置
CN203759143U (zh) 带有数据监控及gps定位功能的电力多功能试验仪
CN219103938U (zh) 一种测量机器人智能监测采集装置
CN214583018U (zh) 基于rtk技术的弧垂测量设备和弧垂监测系统
CN218156278U (zh) 一种基于nb-iot通信的井盖监测系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202217847

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220825

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938173

Country of ref document: EP

Kind code of ref document: A1