WO2023201857A1 - 功率模块 - Google Patents

功率模块 Download PDF

Info

Publication number
WO2023201857A1
WO2023201857A1 PCT/CN2022/097114 CN2022097114W WO2023201857A1 WO 2023201857 A1 WO2023201857 A1 WO 2023201857A1 CN 2022097114 W CN2022097114 W CN 2022097114W WO 2023201857 A1 WO2023201857 A1 WO 2023201857A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
igbt
chip
fwd
chips
Prior art date
Application number
PCT/CN2022/097114
Other languages
English (en)
French (fr)
Inventor
张忻庾
胡子晨
温进
杨恩星
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Priority to CN202280001697.7A priority Critical patent/CN115298822A/zh
Publication of WO2023201857A1 publication Critical patent/WO2023201857A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular to a power module.
  • the flat-plate crimping type structure fastens the device and the double-sided heat sink together.
  • the heat sink is used both for heat dissipation and as an electrode.
  • the advantages of the flat plate crimping type are good heat dissipation performance, safe and reliable device operation, and its failure mode is generally short circuit, so it is suitable for series applications, but the heat dissipation system in the application requires special insulation treatment.
  • the welding type has the advantages of small size, easy installation, and simple structure.
  • the disadvantage is that the device can only dissipate heat from one side, so the base plate must be insulated and have good thermal conductivity.
  • its failure mode is generally open circuit, so it is not suitable for series applications.
  • the object of the present invention is to provide a power module to solve the problem that it is difficult for the power module to achieve further performance improvement based on existing soldering-type and flat-plate pressure-type semiconductor devices.
  • a power module including:
  • a substrate configured to carry a plurality of IGBT chips and FWD chips
  • a plurality of IGBT chips and FWD chips are configured to be connected in series, wherein the plurality of IGBT chips and FWD chips are packaged on the substrate.
  • the power module is composed of multiple chips connected in series, which has great price and cost advantages, faster switching speed, and lower switching loss; the power module is used in medium and high voltage topologies such as three-level, five-level, and seven-level, which reduces the complexity of the topology. degree, reducing the size of the power module;
  • the packaging includes welding and/or sintering as a fixing method between the IGBT chip, the FWD chip and the insulating substrate, and between the substrate and the insulating substrate.
  • the power module also includes:
  • each power sub-unit includes an IGBT chip and a FWD chip or a plurality of parallel IGBT chips and FWD chips, wherein the multiple power sub-units are connected to each other in series to improve the power module voltage rating;
  • the emitter areas of the IGBT chip and FWD chip in the front-stage power subunit are connected to the collector areas of the IGBT chip and FWD chip in the next-level power subunit; multiple power subunits are packaged on the substrate.
  • the number of power sub-units is n, n is a natural number and n ⁇ 2;
  • Each power subunit includes p identical IGBT chips connected in parallel, and q identical FWD chips connected in parallel;
  • I igbt_chip is the rated current of the IGBT chip
  • I FWD_chip is the rated current of the FWD chip
  • I total_igbt is the total current flowing through the parallel IGBT chips
  • I total_FWD is the total current flowing through the parallel FWD chips
  • the FWD chip is the reverse freewheeling diode corresponding to the IGBT chip.
  • One FWD chip is connected in parallel with one IGBT chip.
  • the collector of the IGBT chip is connected to the cathode of the FWD chip.
  • the emitter of the IGBT chip is connected to the anode of the FWD chip. .
  • the power module also includes:
  • An insulating substrate which includes an upper surface conductive layer, an intermediate insulator layer and a lower surface conductive layer;
  • the conductive layer on the upper surface is used to fix the IGBT chip and FWD chip, voltage equalizing circuit, multiple gate drive terminals and drive circuits.
  • the conductive layer on the lower surface is fixed on the substrate to conduct the heat in the module to the outside.
  • the middle insulator layer connects the module to the outside.
  • the power module also includes:
  • a connecting conductor is arranged at the upper surface conductive layer of the insulating substrate to form an electrical connection between devices fixed on the upper surface conductive layer of the insulating substrate, the connecting conductor includes a bonding wire, and/or Conductor sheets and/or conductor strips.
  • the electrical connection of the upper surface conductive layer is formed by connecting conductors to realize the layout of the voltage equalizing circuit, and the thermal conductive structure within the module is used to effectively reduce the temperature of the voltage equalizing device and improve system reliability;
  • the power module also includes:
  • the voltage equalization circuit includes resistors, capacitors, diodes and transistors.
  • the voltage equalization circuit is electrically connected to the IGBT chip and FWD chip through the conductive layer on the upper surface of the insulating substrate and the connecting conductor. connection so that the voltages between the IGBT chips connected in series are equal.
  • the present invention optimizes the voltage distribution between series chips through a voltage equalization circuit.
  • the voltage equalization circuit integrated within the high-voltage power module specifically includes diodes, resistors, capacitors, transistors, etc. to optimize the voltage distribution between series chips;
  • the power module also includes:
  • Multiple gate drive terminals and drive circuits correspond to each power subunit and are configured as independent drive circuits
  • Multiple gate drive terminals and drive circuits can share external controller switching signals to reduce drive signal deviations between multiple power subunits for voltage equalization.
  • the number of gate drive terminals and drive circuits is t (t is a natural number);
  • the drive circuit includes an isolated power supply, a transistor, a resistor and a capacitor, which is configured to power amplify the external controller switching signal to drive the IGBT chip;
  • the power module also includes:
  • Power terminals the number is s (s is a natural number), s ⁇ 2, are arranged on the conductive layer on the upper surface of the insulating substrate, and are configured to lead out the electrodes of the IGBT chip and be able to connect to the module's external power supply, external load and/or Other modules are connected to form a power topology;
  • Auxiliary terminals are arranged on the conductive layer on the upper surface of the insulating substrate, and are connected to external voltage equalizing devices, sampling circuits and/or other module connections to form a power topology; and the power terminals of the high-voltage power module
  • the auxiliary terminals can be flexibly customized and connected to external voltage equalizing circuits, sampling circuits or other modules to form a power topology.
  • the external overall package of the power module includes:
  • the base plate serves as the power module installation base and heat dissipation interface, in which an insulating substrate is fixed on the upper surface of the base plate, and the lower surface of the base plate is fixed on the radiator to dissipate the heat inside the module;
  • the power module also includes an encapsulated casing, which is sealed with the bottom of the power module to isolate it from the external environment;
  • the packaging shell is filled with insulating material.
  • the external overall package of the power module includes:
  • the power terminals, drive terminals and auxiliary terminals are connected so that a plurality of the power modules form a three-level, five-level, or seven-level power topology; the power terminals, drive terminals and auxiliary terminals are externally connected in a certain manner, and several
  • the above power modules can be assembled and combined to form medium and high voltage power topologies such as three-level, five-level, and seven-level.
  • Medium and high voltage is any voltage above 1000VAC or 1500VDC.
  • the inventor of the present invention found through research that the welding type structure is mostly used to integrate several devices into a basic converter circuit.
  • welded IGBTs large currents are achieved by connecting multiple chips in parallel.
  • the packaging structure when the power level is too large, there is great inconsistency in the current distribution between chips. This is due to the packaging geometry.
  • the single-sided heat dissipation package structure cannot be connected in series as easily as the press-fit IGBT devices. Press-fit IGBTs can realize dense parallel connection of multiple chips, but the pressure consistency of the chips is very high, and the device requires a large clamping pressure during operation, which places high mechanical demands on the system.
  • the direct series connection of welded IGBTs has the following disadvantages: (1) The failure mode of welded IGBTs is circuit breakage. Once a failure occurs, it will affect other IGBTs in series and is not suitable for series applications; (2) Welded IGBTs can only dissipate heat from one side. Poor heat dissipation affects the reliability of IGBT devices.
  • Chinese invention patent CN107305886A proposes a high-power IGBT module that is easy to use in series, including a power subunit, a metal electrode plate, a gate PCB board and an external tube shell.
  • the power subunit is set in a square frame and closely connected with the metal electrode plate. touch.
  • the modules are stacked vertically and can be connected in series to form a high-voltage power unit.
  • this solution has the following shortcomings: the power subunits are crimped in the vertical direction to achieve series connection, instead of the chips and metal electrodes in the module being connected in series; and there is no voltage equalization circuit, and the voltage distribution between series connected chips cannot be optimized. ;
  • the metal electrode plate that can be used for heat dissipation is charged, and the cooling system requires special insulation treatment, which increases the system cost.
  • Cisoki patent CN101819970B proposes a series structural module based on welded IGBT and crimped diode.
  • the welded IGBT and crimped diode form a series structural module, in which multiple welded insulated gate bipolar power tubes are connected in series. Connection, the crimp type diode is crimped between two adjacent welding type IGBTs.
  • the module is composed of several commercial IGBT and diode modules connected in series externally, rather than the chips in the module being connected in series, so the cost is high; and there is no voltage equalization circuit, and the voltage distribution between the series connected chips cannot be optimized. defect.
  • the present invention provides a power module suitable for high voltage. Since commercial high-voltage modules are expensive and unsuitable for medium and high-voltage converters, and the module cost is high, the high-voltage power module of the present invention is packaged with multiple Chips are composed of special series connections, and the power module has a high withstand voltage level; the power module can be applied to medium and high-voltage power topologies such as three-level, five-level, and seven-level, which can reduce topology complexity and power module volume and increase switching frequency.
  • the present invention also optimizes the voltage distribution between series chips by encapsulating a voltage equalizing circuit including diodes, resistors, capacitors, and transistors in a high-voltage power module; dissipates the loss of the voltage equalizing device through the thermal conductive structure in the module, reduces the temperature, and improves system reliability;
  • the high-voltage power module also encapsulates an independent drive circuit to reduce the deviation of the drive signal of the series unit and improve the dynamic voltage equalization performance; further, the power terminals and auxiliary terminals in the high-voltage power module can be flexibly customized and connected to the external voltage equalization circuit.
  • sampling circuit or form a new multi-level topology use series-connected power sub-units to form a structural modular design layout, reduce the layout structure differences, drive control differences, heat dissipation differences, and loss differences of each power sub-unit in series, and optimize the relationship between series-connected chips.
  • the voltage distribution of the IGBTs in series; in addition, the IGBT drive signals connected in series are susceptible to differences in wire harness placement, interference, etc., and uneven voltage distribution may lead to the risk of overvoltage. Therefore, an independent drive circuit can be packaged in the high-voltage power module of the present invention, and an external controller can be shared The switching signal reduces the deviation of the power subunit drive signal and improves the voltage equalization performance.
  • Figure 1 is a schematic functional structure diagram of a power module in the first embodiment of the present invention
  • Figure 2 is a schematic diagram of the layout structure of the power module in the second embodiment of the present invention.
  • Figure 3 is a schematic diagram of the appearance and assembly of various components of the power module in the third embodiment of the present invention.
  • Figure 4 is a schematic circuit diagram of an application scenario of the power module in the fifth embodiment of the present invention.
  • FIG. 5 is a schematic circuit diagram of an application scenario of the power module in the sixth embodiment of the present invention.
  • the quantifiers "a” and “ ⁇ " do not exclude the scenario of multiple elements.
  • the object of the present invention is to provide a power module to solve the problem that it is difficult for the power module to achieve further performance improvement based on existing soldering-type and flat-plate pressure-type semiconductor devices.
  • IGBT chip may refer to an unpackaged insulated gate bipolar transistor (Insulated Gate Bipolar Transistor) die.
  • FWD chip may refer to an unpackaged freewheeling diode die.
  • the present invention provides a power module, including: a substrate configured to carry a plurality of IGBT chips and FWD chips; and a plurality of IGBT chips and FWD chips configured to be connected in series, wherein the plurality of IGBT chips and FWD chips are configured to be connected in series. IGBT chips and FWD chips are packaged on the substrate.
  • Figure 1 provides a first embodiment of the present invention, which shows a schematic functional structure diagram of a power module.
  • the power module includes a base plate 1, which serves as an optional mounting base and heat dissipation interface for the power module; the power module also includes a plurality of power sub-units 2 (2.1, 2, 2..., 2.n).
  • Unit 2 can be a sub-unit with the same layout structure.
  • the modular design layout of the series-connected power sub-unit structure can be used to reduce the layout structure, drive control, heat dissipation, and loss differences of each series-connected sub-unit, and optimize the voltage distribution between series chips. .
  • each power subunit 2 may have at least one IGBT chip, at least one FWD chip, and at least one voltage equalization circuit 3, wherein an insulating substrate 8 is provided at the bottom of the power subunit 2, and the side ends of the power subunit 2 It has power terminal 4, gate drive terminal and drive circuit 5, and auxiliary terminal 6.
  • One IGBT chip is connected in parallel with one FWD chip, or k IGBTs are connected in parallel with m FWDs. k and m are positive integers, that is, IGBT and FWD.
  • the parallel connection form is not limited to the specific number of chips, and should be within the protection scope of the present invention; therefore, the high-voltage power module of this embodiment has multiple chips packaged in it, and is formed in a special series connection form, and the module has a high voltage withstand level; it can be used in three applications Level, five-level, seven-level and other medium and high voltage power topologies reduce topological complexity and power module volume, and increase switching frequency; FWD is the reverse freewheeling diode corresponding to the IGBT chip, and FWD and IGBT are connected in parallel through conductors.
  • the method is: the IGBT collector is connected to the FWD cathode, and the IGBT emitter is connected to the FWD anode.
  • the insulating substrate 8 is composed of a three-layer structure; the upper surface conductive layer fixes the IGBT and FWD chips, the voltage equalization circuit, the connecting conductor, the drive circuit and the terminals and electrically connects them; the middle layer is an insulator layer; the lower surface conductive layer It can be fixed on the optional substrate; the voltage equalizing circuit 3 includes resistors, capacitors, diodes, etc.
  • the loss of the voltage equalizing device is dissipated through the thermal conductive structure in the module, reducing the temperature and improving system reliability; through the insulating lining
  • the conductive layer on the upper surface of the bottom and the connecting conductor are electrically connected to the IGBT and FWD chips to optimize the voltage distribution between series chips;
  • the power terminal 4 is fixed on the conductive layer on the upper surface of the insulating substrate and can be connected to the external power supply, load or other modules of the module, so the high voltage
  • the power terminals and auxiliary terminals in the power module can be flexibly customized and connected to external voltage equalizing circuits, sampling circuits or to form a multi-level power topology.
  • the gate drive terminal and the drive circuit 5 are fixed on the conductive layer on the upper surface of the insulating substrate. They are internally connected to the drive circuit input end and externally connected to the controller switching signal. It can be seen that an independent drive circuit can be packaged in the high-voltage power module, reducing the number of series units. Drive signal deviation to improve dynamic voltage equalization performance; the drive circuit includes isolated power supply, transistor, resistor, capacitor, etc.; auxiliary terminal 6 is fixed on the conductive layer on the upper surface of the insulating substrate, connecting external voltage equalizing devices, sampling circuits, etc.; connecting conductor 7 is used The conductors of each component in the electrical connection module can be bonding wires, conductor sheets, or conductor strips.
  • the substrate 1 is at the bottom, and three insulating substrates 8 form the substrate of three power subunits.
  • IGBT chips are arranged in the middle of the insulating substrate 8 in order to equalize the voltage.
  • Circuit 3 is arranged on the right side of the IGBT chip, the gate drive terminal, drive circuit 5 and auxiliary terminal 6 are arranged on the left side of the IGBT chip, the power terminal 4 is arranged on the right side of the voltage equalizing circuit 3, and the connecting conductor 7 is connected to each power between subunit 2.
  • Figure 3 provides a third embodiment of the present invention, which shows the appearance and assembly schematic diagram of each component of the power module; the top of Figure 3 is a schematic diagram of the appearance after each component is disassembled, and the bottom of Figure 3 is a schematic diagram of the assembly of all components.
  • the IGBT chips and FWD chips are arranged side by side at one end of the insulating substrate 8.
  • the voltage equalization circuit 3 is also composed of multiple chips and is generally arranged at the other end of the insulating substrate 8.
  • the power terminals 4 include vertical terminals and top terminals, and the top terminals cover at least one IGBT chip and/or FWD chip (here The number of IGBT chips and FWD chips is not limited to a specific number. The number of chips under the top terminals depends on the specific situation) to connect to the external power supply, load or other modules of the module. There are holes in the middle to provide connections, and the longitudinal terminals serve as the top surface.
  • the bottom of the terminal support is connected to the insulating substrate 8 and is located between the IGBT chip and the voltage equalizing circuit 3, closer to the IGBT chip.
  • the gate drive terminal, drive circuit 5 and auxiliary terminal 6 are arranged at one end of the insulating substrate 8 close to the voltage equalization circuit, and the gate drive terminal and drive circuit 5 are located at the top corner next to the voltage equalization circuit, and the auxiliary terminal 6 is located at the voltage equalization circuit. On the other side of the circuit.
  • the insulating substrate consists of an intermediate insulating layer and conductive layers on its upper and lower surfaces; the intermediate insulating layer insulates and isolates the conductive components in the module from the external structure. All IGBT and FWD chips, voltage equalizing circuits, connecting conductors, drive circuits and terminals in the power subunit are fixedly installed on the conductive layer on its upper surface to realize electrical connection between components; the conductive layer on the lower surface can be fixed on the optional substrate to provide The heat in the external conduction module; the voltage equalization circuit included in the power subunit is used to optimize the voltage distribution between series chips, and is electrically connected to each pole of the IGBT and FWD chip through the conductive layer on the upper surface of the insulating substrate and the connecting conductor, in which the voltage equalization circuit It can include resistors, capacitors, diodes, and transistors; the connecting conductors in the power module can be bonding wires, conductor sheets, and conductor strips; the power subunits are connected through connecting conductors to improve the voltage
  • the baseboard of the power module serves as the power module installation base and heat dissipation interface.
  • the upper surface is fixed with an insulating substrate, and the lower surface is fixed with the radiator to dissipate the heat inside the module.
  • the power module also includes 4 power terminals, which are fixedly installed on the insulating substrate.
  • each power sub-module also includes a gate drive terminal and a drive circuit 5; the gate drive terminal is fixed on the surface conductive layer on the insulating substrate and is connected to the drive circuit input Terminal and external controller switching signal, each power subunit corresponds to a gate drive terminal and a drive circuit; the drive circuit can include an isolated power supply, transistor, resistor, capacitor, etc., to amplify the controller switch signal to drive the IGBT chip; power
  • the module also includes 7 auxiliary terminals.
  • the leftmost power subunit in Figure 3 has 3 auxiliary terminals, and the remaining two power subunits have 2 auxiliary terminals.
  • the auxiliary terminals are fixed on the conductive layer on the upper surface of the insulating substrate and are connected to the external voltage equalizer. devices, sampling circuits, etc.; the power module also includes a packaging shell, which is sealed with the bottom of the power module, fixes the outlet of each connection terminal, and isolates the external environment; the shell is filled with insulating material;
  • the high-voltage module in this embodiment is composed of multiple low-voltage chips connected in series, such as the power group subunit 2 in the figure, which has a great price and cost advantage; the switch Higher speed and lower switching loss; applied to medium and high voltage topologies such as three-level, five-level, and seven-level, reducing topological complexity and power module volume; the high-voltage power module integrates a voltage equalizing circuit3 , optimize the voltage distribution between series chips; use the thermal conductive structure in the module to effectively reduce the temperature of the voltage equalizing device and improve system reliability; the series IGBT drive signal is susceptible to differences in wire harness placement, interference, etc., and uneven voltage distribution poses the risk of overvoltage; An independent drive circuit 5 can be packaged in the high-voltage power module, which can share external controller switching signals, reduce power sub-unit drive signal deviations, and improve voltage equalization performance; the power terminals 4 and auxiliary terminals
  • three groups of high-voltage IGBT power modules with 1200V chips connected in series, rated at 400A/3600V include three groups of power subunits connected in series; each group of power subunits includes 2 IGBT chips with close performance (Vce and Vth The difference is less than 0.1V, rated current 200A) are connected in parallel. Two FWD chips with similar performance (Vf difference is less than 0.1V, rated current 200A) are connected in parallel.
  • the connection method is: the IGBT collector is connected to the FWD cathode, and the IGBT emitter is connected to the FWD Anode connection; power subunits are connected through connecting conductors to improve the voltage withstand level of the power module.
  • the connection method is that the IGBT emitter area in the previous stage power subunit is connected to the IGBT collector area in the next stage power subunit;
  • the power module also includes 4 power terminals, which are fixedly installed on the conductive layer on the upper surface of the insulating substrate and connected to the external power supply, load or other modules of the module; the power terminal of the first power subunit is connected to the 3 auxiliary terminals of the power subunit. 2 of the auxiliary terminals are reserved. The power terminal of the second power subunit is connected to 1 of the 2 auxiliary terminals of the power subunit. The other auxiliary terminal is reserved. The power terminal of the third power subunit is reserved. One power terminal is connected to 2 of the 3 auxiliary terminals of the power subunit, and the other auxiliary terminal 6 is connected to the second power terminal 4.
  • the power module also includes 3 gate drive terminals and a drive circuit; the gate drive terminals are fixed on the conductive layer on the upper surface of the insulating substrate, connecting the input end of the drive circuit and the switching signal of the external controller. Each power subunit corresponds to a gate drive independently. Terminals and drive circuits;
  • the power module also includes 7 auxiliary terminals, which are fixed on the conductive layer on the upper surface of the insulating substrate and connected to external voltage equalizing devices, sampling circuits, etc.;
  • the power module also includes 3 drive circuits, including isolated power supplies, transistors, resistors, capacitors, etc., which amplify the controller switching signal to drive the IGBT chip;
  • the above embodiments describe in detail different configurations of power modules.
  • the present invention includes but is not limited to the configurations listed in the above embodiments. Any configuration that is modified based on the configurations provided in the above embodiments All contents fall within the scope of protection of the present invention. Those skilled in the art can draw inferences based on the contents of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明提供了一种功率模块,包括:基板,被配置为承载多个IGBT芯片及FWD芯片;以及多个IGBT芯片及FWD芯片,被配置为串联连接,其中所述多个IGBT芯片及FWD芯片封装在基板上。

Description

功率模块 技术领域
本发明涉及半导体技术领域,特别涉及一种功率模块。
背景技术
目前半导体器件的封装形式主要有焊接型和平板压接型两种。平板压接型结构是将器件和双面散热器紧固在一起,散热器既作散热又作电极之用。平板压接型的优点是散热性能好,器件工作安全、可靠,且其失效形式一般为短路,因此适合于串联应用,但应用中散热系统需要特殊绝缘处理。焊接型具有体积小、安装方便、结构简单等优点,但缺点是器件只能单面散热,因此要求底板既要绝缘又要导热性能好,但其失效形式一般为断路,因此不适合串联应用。
基于以上原因,功率模块难以基于现有的焊接型和平板压接型的半导体器件实现进一步的性能改进。
发明内容
本发明的目的在于提供一种功率模块,以解决功率模块难以基于现有的焊接型和平板压接型的半导体器件实现进一步的性能改进的问题。
为解决上述技术问题,本发明提供一种功率模块,包括:
基板,被配置为承载多个IGBT芯片及FWD芯片;以及
多个IGBT芯片及FWD芯片,被配置为串联连接,其中所述多个IGBT芯片及FWD芯片封装在基板上。
通过多个IGBT芯片及FWD芯片封装在基板上,实现了模块内芯片串联,避免了现有技术中采用若干商用IGBT、二极管模块外部串联组成,克服了商用高压模块价格昂贵,应用在中高压变流器,模块成本高的缺陷;
其中所述功率模块由多个芯片串联构成,价格成本优势大,开关速度 更块,开关损耗更低;功率模块应用于三电平、五电平、七电平等中高压拓扑,降低了拓扑复杂度,减小了功率模组体积;
可选的,在所述的功率模块中,所述封装包括焊接和/或烧结,作为IGBT芯片、FWD芯片与绝缘衬底、及基板与绝缘衬底之间的固定方式。
可选的,在所述的功率模块中,还包括:
多个功率子单元布置在基板上,其中每个功率子单元包括一个IGBT芯片及FWD芯片或多个并联的IGBT芯片及FWD芯片,其中所述多个功率子单元彼此串联连接,以提高功率模块的耐压等级;以及
其中前级功率子单元中IGBT芯片及FWD芯片的发射极区与下一级功率子单元中IGBT芯片及FWD芯片的集电极区相连;其中多个功率子单元封装在基板上。
通过以单独制作功率子模块,然后多个功率子模块统一布置的方式,实现模块化生产安装,调整功率子模块数量可提升功率模块耐压等级,且多个IGBT并联额定电流大。
可选的,在所述的功率模块中,功率子单元的数量为n个,n为自然数且n≥2;
其中每个功率子单元包括p个并联连接的相同的IGBT芯片、以及q个并联连接的相同的FWD芯片;
p=I total_igbt/I igbt_chip向上取整,q=I total_FWD/I FWD_chip向上取整;
其中I igbt_chip为IGBT芯片的额定电流,I FWD_chip为FWD芯片的额定电流,I total_igbt为流过并联的IGBT芯片的总电流,I total_FWD为流过并联的FWD芯片的总电流;以及
其中FWD芯片为IGBT芯片对应的反向续流二极管,一个FWD芯片与一个IGBT芯片并联,该IGBT芯片的集电极与该FWD芯片的阴极连接,该IGBT芯片的发射极与该FWD芯片的阳极连接。
可选的,在所述的功率模块中,还包括:
绝缘衬底,其包括上表面导电层、中间绝缘体层和下表面导电层;
其中通过上表面导电层用于固定IGBT芯片和FWD芯片、均压电路和多个门极驱动端子及驱动电路,下表面导电层固定在基板上以向外部传导 模块内热量,中间绝缘体层将模块内导电元件与外部结构绝缘隔离的绝缘方案,避免了现有技术中用于散热的金属电极板带电的弊端,进一步克服由此产生的冷却系统需特殊绝缘处理,增加系统成本的缺陷。
可选的,在所述的功率模块中,还包括:
连接导体,布置在绝缘衬底的上表面导电层处,以用于使得固定在绝缘衬底的上表面导电层上的器件之间形成电气连接,所述连接导体包括键合线、和/或导体片和/或导体带。通过连接导体形成上表面导电层的电气连接,实现均压电路的布局,且利用模块内导热结构,有效降低均压器件温度,提升系统可靠性;
可选的,在所述的功率模块中,还包括:
多个均压电路,分别对应各个功率子单元,所述均压电路包括电阻、电容、二极管和晶体管,所述均压电路通过绝缘衬底上表面导电层和连接导体与IGBT芯片和FWD芯片电气连接,使得串联的IGBT芯片之间电压相等。
本发明通过均压电路优化串联芯片间电压分布,所述高压功率模块内部集成的均压电路具体的包括二极管、电阻、电容、晶体管等以优化串联芯片间电压分布;
可选的,在所述的功率模块中,还包括:
多个门极驱动端子及驱动电路,分别对应各个功率子单元,被配置为独立的驱动回路;
其中多个门极驱动端子及驱动电路可共用外部控制器开关信号以减小多个功率子单元之间的驱动信号偏差以进行均压。
可选的,在所述的功率模块中,实现了功率子单元的合理布局,包括:
所述门极驱动端子及驱动电路数量为t个(t为自然数);
门极驱动端子固定在绝缘衬底上表面导电层以连接驱动电路输入端与外部控制器开关信号,t=n,各功率子单元单独对应一门极驱动端子及驱动电路;
驱动电路包括隔离电源、晶体管、电阻和电容,其被配置为将外部控制器开关信号进行功率放大以驱动IGBT芯片;
可选的,在所述的功率模块中,还包括:
功率端子,数量为s个(s为自然数),s≥2,布置在绝缘衬底的上表面导电层,被配置为将IGBT芯片的电极引出后,能够与模块外部电源、外部负载和/或其他模块连接构成功率拓扑;
辅助端子,数量为r个(r为自然数),布置在绝缘衬底的上表面导电层,连接外部均压器件、采样电路和/或其他模块连接构成功率拓扑;以及所述高压功率模块功率端子、辅助端子可灵活定制引出,连接外部的均压电路、采样电路或者其他模块构成功率拓扑。
可选的,在所述的功率模块中,功率模块的外部整体封装包括:
基板充当功率模块安装基座与散热接口,其中在基板的上表面固定绝缘衬底,基板的下表面固定在散热器以耗散模块内部热量;
功率模块还包括封装外壳,封装外壳与功率模块底部密封,隔绝外部环境;以及
封装外壳内填充有绝缘物质。
可选的,在所述的功率模块中,功率模块的外部整体封装包括:
功率端子、驱动端子及辅助端子被连接为使得多个所述功率模块构成三电平、五电平、七电平的功率拓扑;通过一定方式外部连接功率端子、驱动端子及辅助端子,若干所述功率模块可以拼装组合构成三电平、五电平、七电平等中高压功率拓扑。中高压为高于1000VAC或1500VDC的任何电压。
本发明的发明人通过研究发现,焊接型结构多用于将数个器件整合成基本变流电路,
Figure PCTCN2022097114-appb-000001
Figure PCTCN2022097114-appb-000002
对于焊接型IGBT,通过多个芯片并联的形式来实现大电流,但是由于其封装结构,导致功率等级太大时,芯片之间电流分布存在很大的不一 致性,这是由于封装几何结构导致,此外单面散热的封装结构,不能够像压接型IGBT器件一样方便地串联。压接式IGBT,可以实现多个芯片的密集并联,但是对芯片的压力一致性要求很高,且器件在运行时需要很大的钳位压力,从而对系统提出了很高的机械需求。另外,焊接型IGBT的直接串联有以下缺点:(1)焊接型IGBT失效形式为断路形式,一旦故障将影响串联的其他IGBT,不适合串联应用;(2)焊接型IGBT只能单面散热,散热性差,影响IGBT器件可靠性。
目前国内外提出的有关焊接型的IGBT串联的技术包括:
中国发明专利CN107305886A提出的一种便于串联使用的大功率IGBT模块,包括功率子单元、金属电极板、栅极PCB板和外部管壳,其中功率子单元设置在方形框架内且与金属电极板紧密接触。模块垂直方向叠加,可压接串联组成高电压等级功率单元。但本发明人通过研究发现,该方案具有如下不足:其功率子单元在垂直方向压接以实现串联,而并非模块内芯片串联和金属电极;且无均压电路,无法优化串联芯片间电压分布;可用于散热的金属电极板带电,冷却系统需特殊绝缘处理,增加系统成本。
中国发明专利CN101819970B提出的一种基于焊接型IGBT与压接型二极管的串联结构模块,焊接型IGBT与压接型二极管组成串联结构模块,其中多个焊接型绝缘栅双极型功率管之间串联连接,压接型二极管压接于两个相邻焊接型IGBT之间。但本发明人通过研究发现,其具有如下不足:该模块由若干商用IGBT、二极管模块外部串联组成,并非模块内芯片串联,成本较高;且无均压电路,无法优化串联芯片间电压分布的缺陷。
基于以上洞察,本发明提供了一种适用于高压的功率模块,针对商用高压模块价格昂贵,不适用于中高压变流器,模块成本高的特点,本发明的高压功率模块内封装有多个芯片,芯片之间采用特殊串联形式构成,功率模块的耐压等级高;该功率模块可以应用于三电平、五电平、七电平等中高压功率拓扑,可以降低拓扑复杂度与功率模组体积,提高开关频率。
本发明还通过在高压功率模块内封装包括二极管、电阻、电容、晶体管的均压电路,优化串联芯片间电压分布;通过模块内导热结构耗散均压 器件损耗、降低温度,提升系统可靠性;另外高压功率模块内还通过封装独立驱动回路,减小了串联单元驱动信号偏差,提高了动态均压性能;进一步的,高压功率模块内功率端子、辅助端子可灵活定制引出,连接外部均压电路、采样电路或者构成新型多电平拓扑;采用串联的功率子单元形成结构模块化设计布局,减小串联的各功率子单元布局结构差异、驱动控制差异、散热差异、损耗差异,优化串联芯片间的电压分布;另外串联的IGBT驱动信号易受线束摆放、干扰等产生差异,电压分布不均匀存在过压风险,因此本发明中的高压功率模块内可封装独立驱动回路,可共用外部控制器开关信号,减小了功率子单元驱动信号偏差,提高均压性能。
附图说明
图1是本发明第一实施例中的功率模块的功能结构示意图;
图2是本发明第二实施例中的功率模块的布局结构示意图;
图3是本发明第三实施例中的功率模块的各个零部件外观及装配示意图;
图4是本发明第五实施例中的功率模块的应用场合的电路示意图;以及
图5是本发明第六实施例中的功率模块的应用场合的电路示意图。
具体实施方式
下面结合具体实施方式参考附图进一步阐述本发明。
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为 限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。另外,除非另行说明,本发明的不同实施例中的特征可以相互组合。例如,可以用第二实施例中的某特征替换第一实施例中相对应或功能相同或相似的特征,所得到的实施例同样落入本申请的公开范围或记载范围。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
以下结合附图和具体实施例对本发明提出的功率模块作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的目的在于提供一种功率模块,以解决功率模块难以基于现有的焊接型和平板压接型的半导体器件实现进一步的性能改进的问题。
在本发明中,术语“IGBT芯片”可以是指未经封装的绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor)裸片(die)。术语“FWD芯片”可以是指未经封装的续流二极管(Freewheeling diode)裸片。
为实现上述目的,本发明提供了一种功率模块,包括:基板,被配置为承载多个IGBT芯片及FWD芯片;以及多个IGBT芯片及FWD芯片,被配置为串联连接,其中所述多个IGBT芯片及FWD芯片封装在基板上。
图1提供了本发明的第一个实施例,其示出了功率模块的功能结构示 意图。所述功率模块包括基板1,基板1充当功率模块的可选安装基座和散热接口;所述功率模块还包括多个功率子单元2(2.1,2,2…,2.n),功率子单元2可以是具有相同布局结构的子单元,如可采用串联的功率子单元结构模块化设计布局,减小各串联子单元的布局结构、驱动控制、散热、损耗差异,优化串联芯片间电压分布。
具体的,每个功率子单元2均可具有至少一个IGBT芯片与至少一个FWD芯片、至少一个均压电路3,其中在功率子单元2的底部设置有绝缘衬底8,功率子单元的侧端具有功率端子4、门极驱动端子及驱动电路5、辅助端子6,其中一个IGBT芯片与一个FWD芯片并联连接,或者k个IGBT与m个FWD并联,k和m为正整数,即IGBT和FWD的并联形式不限于具体的芯片数量,均应在本发明的保护范围之内;因此本实施例的高压功率模块内封装多个芯片,采用特殊串联形式构成,模块耐压等级高;应用于三电平、五电平、七电平等中高压功率拓扑,降低拓扑复杂度与功率模组体积,提高开关频率;其中FWD为IGBT芯片对应的反向续流二极管,FWD与IGBT通过导体并联,连接方法为:IGBT集电极与FWD阴极连接,IGBT发射极与FWD阳极连接。
进一步的,绝缘衬底8由三层结构组成;上表面导电层固定IGBT及FWD芯片、均压电路、连接导体、驱动电路及端子并将其电气连接;中间层为绝缘体层;下表面导电层可固定在可选基板;其中均压电路3包括电阻、电容、二极管等,优化串联芯片间电压分布;通过模块内导热结构耗散均压器件损耗、降低温度,提升系统可靠性;通过绝缘衬底上表面导电层及连接导体与IGBT及FWD芯片电气连接,优化串联芯片间电压分布;功率端子4固定在绝缘衬底上表面导电层,可与模块外部电源、负载或者其他模块连接,因此高压功率模块内功率端子、辅助端子可灵活定制引出,连接外部均压电路、采样电路或者构成多电平功率拓扑。
另外,门极驱动端子及驱动电路5固定在绝缘衬底上表面导电层,内部连接至驱动电路输入端,外部连接控制器开关信号,可见高压功率模块内可封装独立驱动回路,减小串联单元驱动信号偏差,提高动态均压性能;驱动电路包括隔离电源、晶体管、电阻、电容等;辅助端子6固定在绝缘 衬底上表面导电层,连接外部均压器件、采样电路等;连接导体7用于电气连接模块内各部件的导电体,可为键合线、导体片、导体带。
图2提供了本发明的第二个实施例,其示出了功率模块的布局结构示意图;如图2所示,本实施例提出的一种应用于中高压功率拓扑的IGBT功率模块,包括n组串联连接的功率子单元,n≥2;具体的n=3;其中每组功率子单元包括p个性能接近的IGBT芯片(Vce与Vth差别小于0.1V,额定电流I igbt_chip)并联连接,q个性能接近的FWD芯片(Vf差别小于0.1V,额定电流I FWD_chip)并联连接,p=I total_igbt/I igbt_chip向上取整,q=I total_FWD/I FWD_chip向上取整;如图2所示p=q=2;基板1在最底端,3个绝缘衬底8组成3个功率子单元的衬底,在每个绝缘衬底8上,IGBT芯片依次排布在绝缘衬底8中间,均压电路3布置在IGBT芯片的右侧,门极驱动端子及驱动电路5和辅助端子6布置在IGBT芯片的左侧,功率端子4布置在均压电路3的右侧,连接导体7连接在各个功率子单元2之间。
图3提供了本发明的第三个实施例,其示出了功率模块的各个零部件外观及装配示意图;图3上方为各个零部件拆分后的外观示意图,图3下方为所有零部件装配之后的示意图,且上方的各个零部件的位置对应下方的装配位置,且分层位置也代表其装配后的上下位置关系;可见基板1位于最底部,基板上3个绝缘衬底8并列排布,绝缘衬底8上具有用于电气连接模块内各部件的导电体,可为键合线、导体片、导体带的连接导体,IGBT芯片和FWD芯片并列排布在绝缘衬底8的一端,均压电路3也为多个芯片组成,总体布置在绝缘衬底8的另一端,功率端子4包括纵向端子和顶面端子,顶面端子覆盖至少一个IGBT芯片和/或FWD芯片上方(此处IGBT芯片和FWD芯片的数量不限于具体的数量,顶面端子下方的芯片数量依具体情况而定),以与模块外部电源、负载或者其他模块连接,中间具有孔提供连接,纵向端子作为顶面端子的支撑,其底部连接绝缘衬底8,且位于IGBT芯片和均压电路3之间,更靠近IGBT芯片。门极驱动端子及驱动电路5和辅助端子6布置在绝缘衬底8靠近均压电路的一端,且门极驱动端子及驱动电路5位于均压电路一旁的顶角处,辅助端子6位于均压电路另一旁。
绝缘衬底由中间绝缘层及其上下表面的导电层组成;中间绝缘层将模块内导电元件与外部结构绝缘隔离。功率子单元内所有IGBT及FWD芯片、均压电路、连接导体、驱动电路及端子均固定安装在其上表面导电层,实现各元件间电气连接;下表面导电层可固定在可选基板,向外部传导模块内热量;所述功率子单元包括的均压电路用于优化串联芯片间电压分布,通过绝缘衬底上表面导电层及连接导体与IGBT及FWD芯片各极电气连接,其中均压电路可包括电阻、电容、二极管、晶体管;所述功率模块内连接导体可以为键合线、导体片、导体带;功率子单元之间通过连接导体连接,提高功率模块的耐压等级。连接方式为,前级功率子单元中IGBT发射极区与下一级功率子单元中IGBT集电极区相连;
功率模块的基板,作为功率模块安装基座与散热接口,上表面固定绝缘衬底,下表面固定在散热器耗散模块内部热量;功率模块还包括4个功率端子,固定安装在绝缘衬底上表面导电层,连接模块外部电源、负载或者其他模块;每个功率子模块还包括1个门极驱动端子及驱动电路5;门极驱动端子固定在绝缘衬底上表面导电层,连接驱动电路输入端与外部控制器开关信号,各功率子单元单独对应一门极驱动端子及驱动电路;驱动电路可包括隔离电源、晶体管、电阻、电容等,将控制器开关信号进行功率放大驱动IGBT芯片;功率模块还包括7个辅助端子,图3最左端的功率子单元有3个辅助端子,其余两个功率子单元有2个辅助端子,辅助端子固定在绝缘衬底上表面导电层,连接外部均压器件、采样电路等;功率模块还包括封装外壳,与功率模块底部密封,固定各连接端子出口部,隔绝外部环境;外壳内填充绝缘物质;
商用高压功率模块价格昂贵,应用在中高压变流器,模块成本高;因此本实施例的高压模块由多个低压芯片串联构成,如图中串联功率组子单元2,价格成本优势大;开关速度更块,更低的开关损耗;应用于三电平、五电平、七电平等中高压拓扑,降低拓扑复杂度,减小功率模组体积;所述高压功率模块内部集成均压电路3,优化串联芯片间电压分布;利用模块内导热结构,有效降低均压器件温度,提升系统可靠性;串联IGBT驱动信号易受线束摆放、干扰等产生差异,电压分布不均匀存在过压风险; 所述高压功率模块内可封装独立驱动回路5,可共用外部控制器开关信号,减小功率子单元驱动信号偏差,提高均压性能;所述高压功率模块功率端子4、辅助端子6可灵活定制引出,连接外部均压电路、采样电路或者构成多电平功率拓扑;
在本实施例中三组1200V芯片串联的高压IGBT功率模块,额定规格400A/3600V,包括三组串联连接的功率子单元;其中每组功率子单元包括2个性能接近的IGBT芯片(Vce与Vth差别小于0.1V,额定电流200A)并联连接,2个性能接近的FWD芯片(Vf差别小于0.1V,额定电流200A)并联连接,连接方法为,IGBT集电极与FWD阴极连接,IGBT发射极与FWD阳极连接;功率子单元之间通过连接导体连接,提高功率模块的耐压等级。连接方式为,前级功率子单元中IGBT发射极区与下一级功率子单元中IGBT集电极区相连;
功率模块还包括4个功率端子,固定安装在绝缘衬底上表面导电层,连接模块外部电源、负载或者其他模块;第一个功率子单元的功率端子连接该功率子单元的3个辅助端子中的2个,另一个辅助端子预留,第二个功率子单元的功率端子连接该功率子单元的2个辅助端子中的1个,另一个辅助端子预留,第三个功率子单元的第一个功率端子连接该功率子单元的3个辅助端子中的2个,另一个辅助端子6连接第二个功率端子4。
功率模块还包括3个门极驱动端子及驱动电路;门极驱动端子固定在绝缘衬底上表面导电层,连接驱动电路输入端与外部控制器开关信号,各功率子单元单独对应一门极驱动端子及驱动电路;
功率模块还包括7个辅助端子,固定在绝缘衬底上表面导电层,连接外部均压器件、采样电路等;
功率模块还包括3个驱动电路,包括隔离电源、晶体管、电阻、电容等,将控制器开关信号进行功率放大驱动IGBT芯片;
图4提供了本发明的第四个实施例,其示出了功率模块的应用场合的电路示意图;六个所述功率模块(见虚线方框)应用于ANPC五电平功率拓扑,其中功率模块内串联数n=2;
图5提供了本发明的第五个实施例,其示出了功率模块的另一应用场 合的电路示意图;六个所述功率模块(见虚线方框)应用于ANPC七电平功率拓扑,其中功率模块内串联数n=3;
综上,上述实施例对功率模块的不同构型进行了详细说明,当然,本发明包括但不局限于上述实施中所列举的构型,任何在上述实施例提供的构型基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (12)

  1. 一种功率模块,其特征在于,包括:
    基板,被配置为承载多个IGBT芯片及FWD芯片;以及
    多个IGBT芯片及多个FWD芯片,被配置为串联连接,其中所述多个IGBT芯片及所述多个FWD芯片封装在基板上。
  2. 如权利要求1所述的功率模块,其特征在于,所述封装包括焊接和/或烧结,作为IGBT芯片、FWD芯片与绝缘衬底、及基板与绝缘衬底之间的固定方式。
  3. 如权利要求1所述的功率模块,其特征在于,其中:
    多个功率子单元布置在基板上,其中每个功率子单元包括一个IGBT芯片及FWD芯片或多个并联的IGBT芯片及FWD芯片,其中所述多个功率子单元彼此串联连接,以提高功率模块的耐压等级;以及
    前级功率子单元中IGBT芯片及FWD芯片的发射极区与下一级功率子单元中IGBT芯片及FWD芯片的集电极区相连,其中多个功率子单元封装在基板上。
  4. 如权利要求3所述的功率模块,其特征在于,功率子单元的数量为n个,n为自然数且n≥2;
    其中每个功率子单元包括p个并联连接的相同的IGBT芯片、以及q个并联连接的相同的FWD芯片;
    p=I total_igbt/I igbt_chip向上取整,q=I total_FWD/I FWD_chip向上取整;
    其中I igbt_chip为IGBT芯片的额定电流,I FWD_chip为FWD芯片的额定电流,I total_igbt为流过并联的IGBT芯片的总电流,I total_FWD为流过并联的FWD芯片的总电流;以及
    其中FWD芯片为IGBT芯片对应的反向续流二极管,一个FWD芯片与一个IGBT芯片并联,该IGBT芯片的集电极与该FWD芯片的阴极连接,该IGBT芯片的发射极与该FWD芯片的阳极连接。
  5. 如权利要求4所述的功率模块,其特征在于,还包括:
    绝缘衬底,其包括上表面导电层、中间绝缘体层和下表面导电层,其中上表面导电层用于固定IGBT芯片和FWD芯片、均压电路和多个门极驱动端子及驱动电路,下表面导电层固定在基板上以向外部传导模块内热量,中间绝缘体层将模块内导电元件与外部结构绝缘隔离。
  6. 如权利要求5所述的功率模块,其特征在于,还包括:
    连接导体,布置在绝缘衬底的上表面导电层处,以用于使得固定在绝缘衬底的上表面导电层上的器件之间形成电气连接,所述连接导体包括键合线、和/或导体片和/或导体带。
  7. 如权利要求6所述的功率模块,其特征在于,还包括:
    多个均压电路,分别对应各个功率子单元,所述均压电路包括电阻、电容、二极管和晶体管,所述均压电路绝缘衬底上表面导电层和连接导体与IGBT芯片和FWD芯片电气连接,使得串联的IGBT芯片之间电压相等。
  8. 如权利要求7所述的功率模块,其特征在于,还包括:
    多个门极驱动端子及驱动电路,分别对应各个功率子单元,被配置为独立的驱动回路;
    其中多个门极驱动端子及驱动电路可共用外部控制器开关信号以减小多个功率子单元之间的驱动信号偏差以进行均压。
  9. 如权利要求8所述的功率模块,其特征在于,
    所述门极驱动端子及驱动电路数量为t个;
    门极驱动端子固定在绝缘衬底上表面导电层以连接驱动电路输入端与外部控制器开关信号,t=n,各功率子单元单独对应一门极驱动端子及驱动电路;以及
    驱动电路包括隔离电源、晶体管、电阻和电容,其被配置为将外部控 制器开关信号进行功率放大以驱动IGBT芯片。
  10. 如权利要求9所述的功率模块,其特征在于,还包括:
    功率端子,数量为s个,布置在绝缘衬底的上表面导电层,被配置为将IGBT芯片的电极引出后,能够与模块外部电源、外部负载和/或其他模块连接构成功率拓扑;以及
    辅助端子,数量为r个,布置在绝缘衬底的上表面导电层,连接外部均压器件、采样电路和/或构成功率拓扑。
  11. 如权利要求10所述的功率模块,其特征在于,
    基板充当功率模块安装基座与散热接口,其中在基板的上表面固定绝缘衬底,基板的下表面固定在散热器以耗散模块内部热量;
    功率模块还包括封装外壳,封装外壳与功率模块底部密封,隔绝外部环境;以及
    封装外壳内填充有绝缘物质。
  12. 如权利要求11所述的功率模块,其特征在于,
    功率端子、驱动端子及辅助端子被连接为使得多个所述功率模块构成三电平、五电平、七电平的功率拓扑。
PCT/CN2022/097114 2022-04-23 2022-06-06 功率模块 WO2023201857A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280001697.7A CN115298822A (zh) 2022-04-23 2022-06-06 功率模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210431478 2022-04-23
CN202210431478.4 2022-04-23

Publications (1)

Publication Number Publication Date
WO2023201857A1 true WO2023201857A1 (zh) 2023-10-26

Family

ID=88418995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097114 WO2023201857A1 (zh) 2022-04-23 2022-06-06 功率模块

Country Status (1)

Country Link
WO (1) WO2023201857A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030570A (zh) * 2006-03-03 2007-09-05 三菱电机株式会社 半导体装置
US20120228741A1 (en) * 2011-03-08 2012-09-13 Mitsubishi Electric Corporation Power module
CN103683260A (zh) * 2013-12-19 2014-03-26 天津正本自控系统有限公司 一种igbt串联均压电路
CN104143925A (zh) * 2013-05-08 2014-11-12 株式会社东芝 电力转换装置
CN105609493A (zh) * 2016-03-22 2016-05-25 富士电机(中国)有限公司 一种集成双向升降压功能的八合一igbt模块
CN113783400A (zh) * 2021-09-09 2021-12-10 远景能源有限公司 功率转换单元

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030570A (zh) * 2006-03-03 2007-09-05 三菱电机株式会社 半导体装置
US20120228741A1 (en) * 2011-03-08 2012-09-13 Mitsubishi Electric Corporation Power module
CN104143925A (zh) * 2013-05-08 2014-11-12 株式会社东芝 电力转换装置
CN103683260A (zh) * 2013-12-19 2014-03-26 天津正本自控系统有限公司 一种igbt串联均压电路
CN105609493A (zh) * 2016-03-22 2016-05-25 富士电机(中国)有限公司 一种集成双向升降压功能的八合一igbt模块
CN113783400A (zh) * 2021-09-09 2021-12-10 远景能源有限公司 功率转换单元

Similar Documents

Publication Publication Date Title
US11532538B2 (en) Component structure, power module and power module assembly structure
US10123443B2 (en) Semiconductor device
CN203165891U (zh) 半导体模块
US20140334203A1 (en) Power converter and method for manufacturing power converter
US10217690B2 (en) Semiconductor module that have multiple paths for heat dissipation
CN104716128A (zh) 功率模块、电源变换器以及功率模块的制造方法
US12046584B2 (en) Semiconductor module
CN111540730A (zh) 基于导电金属夹扣互连的多芯片宽禁带功率模块封装结构
US11532557B2 (en) Planar power module with spatially interleaved structure
US20230056722A1 (en) Power module with improved electrical and thermal characteristics
US20220216157A1 (en) Semiconductor module
CN109428498A (zh) 组件结构、功率模块及功率模块组装结构
WO2016031317A1 (ja) パワー半導体装置及びパワー半導体装置の製造方法
WO2020215737A1 (zh) 一种功率器件封装结构及其方法
WO2020229114A1 (en) Semiconductor module
WO2023201857A1 (zh) 功率模块
KR20210076469A (ko) 파워 모듈 및 그 제조 방법
US11895775B2 (en) Modular power electronics converters with enhanced connectivity reliability and simplified method of fabrication
CN105374806A (zh) 一种圆形分组布局的压接式功率器件封装
US12068290B2 (en) Power semiconductor module with low inductance gate crossing
US10855196B2 (en) Semiconductor device
US11139732B2 (en) Power electronic module
CN113725199A (zh) 一种低电感压接型半导体模块
CN115298822A (zh) 功率模块
CN114121923A (zh) 一种功率半导体模块封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938086

Country of ref document: EP

Kind code of ref document: A1