WO2023201770A1 - 一种蓝莓容器栽培的容器及方法 - Google Patents

一种蓝莓容器栽培的容器及方法 Download PDF

Info

Publication number
WO2023201770A1
WO2023201770A1 PCT/CN2022/089952 CN2022089952W WO2023201770A1 WO 2023201770 A1 WO2023201770 A1 WO 2023201770A1 CN 2022089952 W CN2022089952 W CN 2022089952W WO 2023201770 A1 WO2023201770 A1 WO 2023201770A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
container
cultivation
culture container
pipe
Prior art date
Application number
PCT/CN2022/089952
Other languages
English (en)
French (fr)
Inventor
娄鑫
王贺新
周永斌
谷岩
徐国辉
Original Assignee
大连大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连大学 filed Critical 大连大学
Publication of WO2023201770A1 publication Critical patent/WO2023201770A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G2031/006Soilless cultivation, e.g. hydroponics with means for recycling the nutritive solution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the invention belongs to the field of fruit tree cultivation, and specifically designs a new method for container substrate cultivation.
  • Blueberry whose scientific name is Vaccimium spp, belongs to the Vaccinium genus (or Vaccinium subfamily) of the Ericaceae family. It is also known as blue berry. Its fruit has a bright color and unique flavor, and is rich in vitamins, minerals and various antioxidants. Anthocyanins with extremely high oxidative activity have high nutritional and health care effects and are a new type of functional fruit. Blueberry cultivation in China started relatively late. It has been introduced and carried out cultivation research since 1983. It has developed rapidly in recent years and industrialized cultivation has initially been formed [1] . As a third-generation emerging fruit tree, the cultivation and management of blueberries is significantly different from other fruit trees. The matrix pot cultivation method that has emerged in recent years is regarded as an emerging cultivation method.
  • this container cultivation method has a high demand for nutrient solution (the nutrient solution needs to be watered multiple times a day, and more than 20% of the nutrient solution needs to flow out each time to meet the rapid growth needs of blueberries). This will cause a large amount of nutrient solution to be discharged into the surrounding soil, causing soil pollution. In addition, the amount of nutrient solution poured is very large, and the open potting system will also cause a large amount of water to evaporate into the air, increase the air humidity, and lead to the occurrence of blueberry gray mold. And this is very fatal in northern greenhouse cultivation. Therefore, the development of new container cultivation technology is particularly important.
  • this drainage method will discharge a large amount of waste nutrient solution with high salt content into the soil. Even if the waste liquid recovery system is used for recycling, the large opening area above the container will cause the matrix water to evaporate too quickly, thus affecting the The ambient air humidity increases the probability of blueberries being infected with gray mold.
  • the present invention provides a new method for blueberry container cultivation.
  • the present invention provides a new method for blueberry container cultivation, which includes the following components: a culture container, a cultivation substrate, a nutrient solution circulation equipment, and a nutrient solution. Its main innovation lies in the cultivation system composed of culture containers, cultivation substrates and water circulation equipment.
  • the invention provides a culture container, the cross-sectional area of the opening of the container is larger than the cross-sectional area of the bottom; the bottom of the container is provided with a drainage hole; the bottom of the container is provided with a drainage pipe connected to the drainage hole; the drainage pipe is connected to liquid Recycling pipeline; the upper opening of the container is covered with a flexible membrane with a hollow center, and a central hollow hole is provided in the middle of the flexible membrane for plants to grow through; the flexible membrane is made of outer aluminum foil, inner pearl cotton, and outer aluminum film One of plastic films such as PE or PP plastic film with black interior, or PET film with white exterior and black interior.
  • the container has a volume of 25L-30L and a height of 250-350mm; there are legs with a height of 70-80mm below the container, and 3-5 drainage holes are arranged side by side at the bottom.
  • the inner diameter of the drainage holes is
  • the length of the drainage pipe is 13mm-15mm; the length of the drainage pipe is 35-45mm;
  • the recovery pipeline is provided with a perforated cover; the drainage pipe is inserted into the hole of the perforated cover.
  • a recovery line can recover drainage water from at least one culture vessel.
  • annular rain pipe for watering nutrient solution is provided above the container and below the flexible film; the annular rain pipe is arranged around the plant roots.
  • the invention also provides a cultivation nutrient solution circulation system, which sequentially includes a reservoir, a circulation pipeline, a culture container, a recovery pipeline, a liquid return tank, and a filtration and sterilization device.
  • the circulation pipeline is composed of a main pipe, a branch pipe, a fine-tuning valve and an annular deluge pipe.
  • the size and flow rate of the main pipe and branch pipes are designed according to the cultivation area and the number of pots.
  • the fine-tuning valve is used to balance the output. Liquid volume, design flow rate 80-100L/h.
  • the filtration sterilization device includes a sand filter and an ultraviolet sterilization lamp.
  • the conductivity of the nutrient solution is controlled at about 1.2-1.6ms/cm, and the pH value is controlled between 4.5-5.5.
  • the present invention also provides a cultivation method, which adopts the above-mentioned cultivation nutrient solution circulation system to configure nutrient solution in the reservoir.
  • the nutrient solution is pumped into the circulation pipeline by a water pump, enters the cultivation container, and passes through the drainage holes, drainage pipes, and recovery pipelines. It flows back to the liquid return tank, and the nutrient solution in the liquid return tank enters the filtration and sterilization device through the water pump, and finally returns to the reservoir.
  • the nutrient solution in the vigorous growing season is circulated 10-12 times a day, with at least 30% of the liquid returned in each cycle; the nutrient solution in the flowering promotion period and flowering period is circulated every 2 days; if there is a dormant period, it needs to be Stop circulating the nutrient solution for one week before entering the dormant period to promote dormancy, and stop circulating the nutrient solution during the dormant period; the nutrient solution in the reservoir is replaced once a week on average, or when the nutrient solution consumption is greater than 1/2.
  • the culture substrate for cultivating blueberries includes coarse buffered coconut bran with particles of 10-20 mm and/or coarse conifer bark with particles of 10-20 mm, peat soil with a pH of 5.5, and particles of 5-5. 10mm perlite.
  • the perlite accounts for 20%-30% of the volume of the culture medium; the buffered coconut bran and pine and cypress bark can be substituted for each other, and the buffered coconut bran and/or pine and cypress bark account for 30%-30% of the volume of the culture medium. 40%; the remainder consists of peat soil.
  • the beneficial effects of the present invention are: (1) It can minimize the transpiration of water from the open area and reduce the moisture content in the space, thereby reducing the probability of blueberry being infected with gray mold. (2) Through the recycling and reuse of waste liquid, the salinization of land caused by the discharge of waste liquid into the soil can be effectively reduced. (3) Filtration and disinfection of waste liquid through filtration and ultraviolet sterilization lamp can increase the utilization rate of nutrient solution. (4) Abandoning the drip irrigation system and using high-flow fine-tuning pipelines can reduce the death of seedlings in a single pot due to failure to detect clogged drip irrigation heads in time during the potting process, and at the same time reduce pipeline maintenance costs.
  • Figure 1a is a schematic structural diagram of the vertical cross-section of the cultivation container
  • Figure 1b is a schematic structural diagram of the cultivation container from above
  • Figure 2a is a schematic diagram of the cross-sectional structure of the recovery pipeline
  • Figure 2b is a schematic diagram of the structure of the recovery pipeline with a hole cover
  • FIG. 3 Schematic diagram of the nutrient solution circulation pipeline structure
  • Figure 4 shows the cultivation nutrient solution circulation system
  • a cultivation nutrient solution circulation system includes a reservoir, a circulation pipeline, a culture container, a recovery pipeline, a recovery tank, and a filtration and sterilization device.
  • the cross-sectional area of the opening of the container is greater than the cross-sectional area of the bottom; the cross-sectional area of the opening of the container is greater than the cross-sectional area of the bottom; the bottom of the container is provided with a drainage hole; the bottom of the container is provided with a drainage hole connected to the The drainage pipe is connected to the liquid recovery pipeline; the upper opening of the container is covered with a flexible membrane with a hollow center.
  • the main cultivation container is a truncated cone-shaped or square container with a large top and a small bottom.
  • the container has a volume of 25L-30L and a height of about 300mm.
  • the liquid recovery pipeline uses a rectangular tube or a circular tube as the recovery pipeline, and is equipped with a perforable upper cover. During the layout process, holes are drilled on site according to the size and position of the drainage pipe in Figure 1, and the drainage pipe is inserted into the pipeline. See Figure 2 for details.
  • One embodiment of the present application provides a cultivation nutrient solution circulation system, including a nutrient solution circulation pipeline, a recovery pipeline, a culture container, and a nutrient solution circulation head device.
  • the nutrient solution circulation pipeline is composed of a main pipe, a branch pipe, a fine-tuning valve and an annular rain pipe.
  • the size and flow rate of the main pipe and branch pipes are designed according to the cultivation area and the number of pots.
  • the fine-tuning valve is used to balance the liquid output and the designed flow rate. 100L/h, the annular rainwater pipe is designed around the plant roots, see Figure 3 for details.
  • the nutrient solution circulation head equipment consists of a reservoir, a liquid return tank, a water pump and a filtration and sterilization equipment.
  • the volume of the reservoir is not less than 2m3 /100 basins, and the volume of the liquid return tank is not less than 1.5m. 3 /Hundred basins must be designed with upper covers; the filtration and sterilization device includes 1 set of sand and gravel filters and 1 set of ultraviolet sterilization lamps.
  • the culture substrate can be composed of coarse buffer coconut bran (10-20mm), coarse cypress bark (10-20mm), peat soil (10-20mm, pH5.5), perlite (5-10mm), etc., among which , the volume proportion of perlite does not exceed 30%.
  • the matrix composition can be 30% coarse buffer coconut bran, 40% peat soil, and 30% perlite.
  • Operation method of cultivation nutrient solution circulation system Configure nutrient solution in the reservoir.
  • the type of nutrient solution changes with the growth season.
  • the conductivity of the nutrient solution is controlled at about 1.5ms/cm, and the pH value is controlled between 4.5-5.5.
  • the liquid is pumped into the circulation pipe by a water pump, enters the culture container, and flows back to the liquid return pool through the drainage hole, drainage pipe, and recovery pipeline.
  • the nutrient solution in the liquid return pool then enters the sand filter and ultraviolet sterilization lamp through the water pump, and finally Return to the cistern.
  • the nutrient solution is circulated 10 times a day, with at least 30% of the liquid returned in each cycle; during the flowering promotion period and flowering period, the nutrient solution is circulated every 2 days; during the dormant period (if any), the nutrient solution needs to be stopped for one week before entering the dormant period. Promote dormancy and stop circulating nutrient solution during the dormancy period.
  • the nutrient solution in the reservoir should be replaced once a week on average, or when the nutrient solution consumption is greater than 1/2.
  • a comparative cultivation experiment was conducted on 2-year-old blueberry cuttings by planting them on the ground in a solar greenhouse, in ordinary pots, and in the potting methods shown in the present invention.
  • Each cultivation method experiment was designed to be repeated in 3 solar greenhouses, with 300 seedlings planted in each solar greenhouse. The experiment began in May 2020.
  • the ground planting part was fertilized and watered according to the conventional management process.
  • the fertilizer applied was consistent with the main nutritional components of the potted plants of the present invention, but the watering was determined according to the dryness and wetness of the soil.
  • Ordinary potted plants use the same management methods as the potted plants of the present invention.
  • the composition of the nutrient solution for ordinary potted plants is consistent with that of the potted plants of the present invention.
  • Ordinary potted plants use the same management methods as the potted plants of the present invention, including using a higher concentration of nutrient solution during the vigorous vegetative growth season.
  • this patented method does have significant advantages in potting blueberries in solar greenhouses, and can simultaneously take into account the needs of environmental humidity control and plant growth and fruit production. And after a one-time investment, the later management costs and ongoing investment costs are low, so it can be widely used in industrial planting.
  • the main components of the nutrient solution are as follows:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydroponics (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

一种用于蓝莓栽培的培养容器(2)及方法,培养容器(2)开口横截面积大于底部横截面积;培养容器(2)底部设有排水孔(4);培养容器(2)底部设有与排水孔(4)连接的排水管(3);所述排水管(3)连接液体回收管路;所述培养容器(2)上开口覆盖有中心镂空的柔性膜(1);栽培营养液循环系统包括蓄水池、循环管路、所述培养容器(2)、回收管路、回液池、过滤杀菌装置,采用所述栽培营养液循环系统栽培蓝莓的方法,在日光温室大棚蓝莓盆栽方面具有显著的优势,可以同时兼顾环境湿度控制与植株生长量、产果量的需求,在一次性投入后,后期管理成本及持续投入成本较低,可以在工业化种植中大量应用。

Description

一种蓝莓容器栽培的容器及方法 技术领域
本发明属于果树栽培领域,具体设计一种用于容器基质栽培的新方法。
背景技术
蓝莓(blueberry)学名(Vaccimium spp),属于杜鹃花科越桔属(或越桔亚科)植物,又称蓝浆果,其果实色泽艳丽风味独特,富含丰富的维生素、矿物质以及多种抗氧化活性极高的花青素类物质,具有很高的营养保健作用,是一种新型的功能性水果。我国蓝莓栽培起步较晚,自1983年开始引入并进行栽培研究工作,最近几年发展迅速,已初步形成了产业化栽培 [1]。作为一种第三代新兴的果树,蓝莓的栽培管理与其他果树相比明显不同。而近几年兴起的基质盆栽栽培法则被看做一种新兴的栽培方法。但是,这种容器栽培法由于其对营养液有着较高的需求量(每日需浇灌营养液多次,并且每次均需有超过20%的营养液流出才能满足蓝莓快速生长需求),这样就会导致大量的营养液排入周边土壤造成土壤污染。再加上营养液的浇注量非常大,开放的盆栽系统也会导致大量的水分蒸腾到空气中,增加空气湿度,导致蓝莓灰霉病的发生。而这在北方温室栽培中非常致命。因此,发展新型的容器栽培技术就显得尤为重要。
通常的容器栽培中,我们所关注的都是单一容器,无论是方形还是圆形,都是容器上方呈开放状态浇灌营养液,而废液从下方排出,从而保证水在容器中不会积累,植物根系不受伤害。但是这就对灌溉系统和营养液管理有着非常高的要求。包括必须使用精准滴灌系统来保证盆与盆之间的营养液浇灌均匀,管理中不能发生任何滴灌头损坏或堵塞。但是这在实际生产中难以实现,而一旦发生滴灌速度不均,甚至滴灌头损坏或堵塞的情况,则会直接导致苗木缺水死亡。另外,这种排水方式会将大量的含盐量较高的废弃营养液排入土壤,就算利用废液回收系统进行回收,也会因容器上方开口面积大从而导致基质水分蒸发过快,从而影响周边空气湿度,加大蓝莓侵染灰霉病的概率。
因此,为彻底改善以上问题,我们在前人容器栽培方法的基础上,通过不 断探索,重新建立了一种蓝莓容器栽培的新方法。
发明内容
本发明提供一种用于蓝莓容器栽培的新方法。
为实现上述目的,本发明给出用于蓝莓容器栽培的新方法包括如下的几个部分组成:培养容器、栽培基质、营养液循环设备、营养液。其主要创新点在于培养容器、栽培基质及水循环设备所组成的栽培系统。
本发明提供一种培养容器,所述容器开口横截面积大于底部横截面积;所述容器底部设有排水孔;所述容器底部设有与排水孔连接的排水管;所述排水管连接液体回收管路;所述容器上开口覆盖有中心镂空的柔性膜,所述柔性膜中部设有用于植株穿过生长的中心镂空的孔;所述柔性膜材质为外铝箔内珍珠棉、外铝膜内黑PE或PP塑料膜、或外白内黑的PET膜等塑料膜中的一种。
进一步地,在上述技术方案中,所述容器容积25L-30L,高度250-350mm;所述容器下方设有高70-80mm的支脚,底部并排设置3-5个排水孔,所述排水孔内径为13mm-15mm;所述排水管的长度为35-45mm;所述回收管路设有带孔盖;所述排水管插入带孔盖的孔中。一个回收管路可以回收至少一个培养容器的排水。
进一步地,在上述技术方案中,所述容器上方、柔性膜下方设有用于浇灌营养液的环形雨淋管;所述环形雨淋管围绕植物根系设置。
本发明还提供一种栽培营养液循环系统,依次包括蓄水池,循环管路,培养容器,回收管路,回液池,和过滤杀菌装置。
进一步地,在上述技术方案中,所述循环管路依次由主管、支管、微调阀和环形雨淋管组成,其中主管和支管大小及流速根据栽培面积及盆数设计,微调阀用于平衡出液量,设计流速80-100L/h。
进一步地,在上述技术方案中,所述过滤杀菌装置包括砂石过滤器和紫外光杀菌灯。
进一步地,在上述技术方案中,营养液电导率控制在1.2-1.6ms/cm左右,pH值控制在4.5-5.5之间。
本发明还提供一种栽培方法,采用上述栽培营养液循环系统,在蓄水池中配置营养液,营养液利用水泵泵入循环管路进入培养容器,并通过排水孔、排水管、回收管路回流至回液池,回液池中的营养液再通过水泵进入过滤杀菌装置,最后返回蓄水池。
进一步地,在上述技术方案中,旺盛生长季营养液每日循环10-12次,每次循环最少回液30%;促花期及花期营养液每2日循环一次;如有休眠期则需在进入休眠期前停止循环营养液一周促休眠,并在休眠期内停止循环营养液;蓄水池中的营养液平均每周更换一次,或当营养液消耗量大于1/2时进行更换。
进一步地,在上述技术方案中,栽培蓝莓的培养基质包括颗粒为10-20mm的粗缓冲椰糠和/或颗粒为10-20mm的粗松柏树皮,pH为5.5的泥炭土,颗粒为5-10mm的珍珠岩。其中,所述珍珠岩在培养基质中体积占比20%-30%;缓冲椰糠与松柏树皮间可以相互替代,缓冲椰糠和/或松柏树皮在培养基质中体积占比30%-40%;余下部分由泥炭土组成。
本发明的有益效果是:(1)可最大限度的降低水分的从开放区域的蒸腾作用,降低空间水分含量,从而降低蓝莓侵染灰霉病的概率。(2)通过废液回收再利用,有效降低废液排入土壤中所导致的土地盐碱化。(3)通过过滤和紫外光杀菌灯对对废液进行过滤消毒,可增加营养液利用率。(4)摒弃滴灌系统改用大流量微调管路,可降低盆栽过程中由于滴灌头堵塞未能及时发现所导致的单盆苗木死亡现象,同时降低管路维护成本。
附图说明
图1a栽培容器垂直方向截面结构示意图;图1b为栽培容器俯视结构示意图;
图2a回收管路截面结构示意图,图2b为回收管路带孔盖结构示意图;
图3营养液循环管路结构示意图;
图4为栽培营养液循环系统;
图中,1、柔性膜;2、培养容器;3、排水管;4、排水孔;5、环形雨淋管。
具体实施方式
一种栽培营养液循环系统,依次包括蓄水池、循环管道、培养容器、回收管路、回收池、过滤杀菌装置。
所述培养容器,所述容器开口横截面积大于底部横截面积;所述容器开口横截面积大于底部横截面积;所述容器底部设有排水孔;所述容器底部设有与排水孔连接的排水管;所述排水管连接液体回收管路;所述容器上开口覆盖有中心镂空的柔性膜。所述容器以上大下小的圆台型或方形容器为主要栽培容器,容器容积25L-30L,高度300mm左右;所述容器下方设有高80mm的支脚,底部并排设置3-5个13mm-15mm内径的排水口;所述排水管的长度为35-45mm。容器上开口覆盖柔性膜,具体见图1。
液体回收管路,以长方形管或圆形管为回收管路,设置可打孔上盖,布设过程中以图1中排水管大小与位置现场打孔,并将排水管插入管路中。具体见图2。
所述容器上方,柔性膜下方设有用于浇灌营养液的环形雨淋管。
本申请的一个实施方式,提供一种栽培营养液循环系统,包括营养液循环管路、回收管路、培养容器、和营养液循环头部设备。
营养液循环管路,营养液循环管路由主管、支管、微调阀和环形雨淋管组成,其中主管和支管大小及流速根据栽培面积及盆数设计,微调阀用处在于平衡出液量,设计流速100L/h,环形雨淋管围绕植物根系设计,具体见图3。
营养液循环头部设备,营养液循环头部设备由蓄水池、回液池、水泵和过滤杀菌设备组成,其中蓄水池容积不小于2m 3/百盆,回液池容积不小于1.5m 3/百盆,均需设计上盖;过滤杀菌装置包括砂石过滤器1组、紫外光杀菌灯1组。
培养基质,培养基质可以由粗缓冲椰糠(10-20mm)、粗松柏树皮(10-20mm)、泥炭土(10-20mm,pH5.5)、珍珠岩(5-10mm)等组成,其中,珍珠岩体积比例不超过30%。如:基质组成可为粗缓冲椰糠30%、泥炭土40%、珍珠岩30%。
栽培营养液循环系统运行方法:在蓄水池中配置营养液,营养液种类随生长季变化而变化,营养液电导率控制在1.5ms/cm左右,pH值控制在4.5-5.5之间,营养液利用水泵泵入循环管道进入培养容器,并通过排水孔、排水管、回 收管路回流至回液池,回液池中的营养液再通过水泵进入砂石过滤器与紫外光杀菌灯,最后返回蓄水池。旺盛生长季营养液每日循环10次,每次循环最少回液30%;促花期及花期营养液每2日循环一次;休眠期(如有)则需在进入休眠期前停止循环营养液一周促休眠,并在休眠期内停止循环营养液。蓄水池中的营养液平均每周更换一次,或当营养液消耗量大于1/2时进行更换。
通过对2年生扦插蓝莓苗进行日光温室地栽、普通盆栽、及本发明所示盆栽方式进行对比栽培实验。每个栽培方式实验设计3个日光温室重复,每个日光温室栽种苗木300株,于2020年5月开始进行实验。其中,地栽方式按照常用改土方案进行穴改,每穴拌入草炭土50L,并利用硫磺进行调酸,调整土壤酸度到4.8-5.5之间;普通盆栽与本发明盆栽使用相同配比基质,按体积比具体为椰糠:泥炭:珍珠岩=30:40:30,使用25L容器进行栽培实验。实验过程中的所有管理流程,地栽部分按照常规管理流程进行施肥浇水,所施用肥料与本发明盆栽主要营养成分一致,但浇水按土壤干湿程度来定。普通盆栽与本发明盆栽使用相同的管理方法,普通盆栽与本发明盆栽营养液成分一致;普通盆栽与本发明盆栽使用相同的管理方法,包括在旺盛营养生长季使用较高浓度的营养液,每日循环营养液10-12次,每次循环最少回液30%;促花期及花期营养液每2日循环一次;休眠期内停止循环营养液共持续2周。蓄水池中的营养液平均每周更换一次,或当营养液消耗量大于1/2时进行更换。实验过程中监测花期大棚湿度(灰霉病高发期)、无农药前提下计算灰霉病发病率并对其第二年及第三年产量进行统计,结果如下:
表1 不同栽培方式对大棚环境湿度、灰霉病发病率、蓝莓产量的影响
Figure PCTCN2022089952-appb-000001
实验结果表明,本申请栽培方法在控制大棚湿度上有显著的优势,可以大大降低大棚湿度,从而显著降低灰霉病的发病率。在生长量上,盆栽要显著优 于地栽,但普通盆栽与发明方法之间差异并不显著。年生长量基本一致,并在第三年都生长出了足够的结果枝。但是由于灰霉病的显著影响,普通盆栽的产量显著低于本申请盆栽。并且,由于地栽方式逐渐达到初果期和盛果期,预计普通盆栽的产量也将逐渐落后于地栽方式。
从以上结果中可以看出,本专利方法确实在日光温室大棚蓝莓盆栽方面具有显著的优势,可以同时兼顾环境湿度控制与植株生长量、产果量的需求。并且在一次性投入后,后期管理成本及持续投入成本较低,因此可以在工业化种植中大量应用。
本发明的一个实施例中,营养液主要成分如下:
药品名 分子式
硫酸铵 (NH4) 2·SO 4
硫酸钾 K 2SO 4
七水硫酸镁 MgSO 4·7H 2O
硫酸锰 MnSO 4
硼酸 H 3BO 3
五水硫酸铜 CuSO 4·5H 2O
七水硫酸锌 ZnSO 4·7H 2O
钼酸铵 H 8MoN 2O 4
磷酸二氢钾 KH 2PO 4
磷酸钾 K 3PO 4
硝酸钙 Ca(NO 3) 2
EDTA铁钠盐 C 10H 12FeN 2NaO 8·3H 2O

Claims (10)

  1. 一种培养容器,其特征在于:所述容器开口横截面积大于底部横截面积;所述容器底部设有排水孔;所述容器底部设有与排水孔连接的排水管;所述排水管连接液体回收管路;所述容器上开口覆盖有中心镂空的柔性膜。
  2. 根据权利要求1所述培养容器,其特征在于:所述容器容积25L-30L,高度250-350mm;所述容器下方设有高70-80mm的支脚;所述容器底部并排设置3-5个排水孔,所述排水孔内径为13mm-15mm;所述排水管的长度为35-45mm;
    所述回收管路设有带孔盖;所述排水管插入带孔盖的孔中。
  3. 根据权利要求1所述培养容器,其特征在于:所述容器上方、柔性膜下方设有用于浇灌营养液的环形雨淋管;所述环形雨淋管围绕植物根系设置。
  4. 一种栽培营养液循环系统,其特征在于,包括蓄水池,循环管路,权利要求1-3任意一项所述培养容器,回收管路,回液池,过滤杀菌装置。
  5. 根据权利要求4所述栽培营养液循环系统,其特征在于,所述循环管路由主管、支管、微调阀和环形雨淋管组成,其中主管和支管大小及流速根据栽培面积及盆数设计,微调阀用于平衡出液量,设计流速80-100L/h。
  6. 根据权利要求4所述栽培营养液循环系统,其特征在于,所述过滤杀菌装置包括砂石过滤器和紫外光杀菌灯。
  7. 一种栽培方法,其特征在于,采用权利要求4-6任意一项所述栽培营养液循环系统,在蓄水池中配置营养液,营养液利用水泵泵入循环管路进入培养容器,并通过排水孔、排水管、回收管路回流至回液池,回液池中的营养液再通过水泵进入过滤杀菌装置,最后返回蓄水池。
  8. 根据权利要求7所述栽培方法,其特征在于,营养液电导率控制在1.2-1.6ms/cm,pH值控制在4.5-5.5之间。
  9. 根据权利要求7所述栽培方法,其特征在于,所述方法用于栽培蓝莓;旺盛生长季营养液每日循环10-12次,每次循环最少回液30%;促花期及花期营养液每2日循环一次;如有休眠期则需在进入休眠期前停止循环营养液一周促休眠,并在休眠期内停止循环营养液;蓄水池中的营养液平均每周更换一次, 或当营养液消耗量大于1/2时进行更换。
  10. 根据权利要求9所述栽培方法,其特征在于,栽培蓝莓的培养基质包括颗粒为10-20mm的缓冲椰糠和/或颗粒为10-20mm的松柏树皮,pH为5.5的泥炭土、颗粒为5-10mm的珍珠岩;
    其中,所述珍珠岩在培养基质中体积占比20%-30%;缓冲椰糠与松柏树皮间可以相互替代,缓冲椰糠和/或松柏树皮在培养基质中体积占比30%-40%;余下部分由泥炭土组成。
PCT/CN2022/089952 2022-04-22 2022-04-28 一种蓝莓容器栽培的容器及方法 WO2023201770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210431307.1 2022-04-22
CN202210431307.1A CN114766342A (zh) 2022-04-22 2022-04-22 一种蓝莓容器栽培的新方法

Publications (1)

Publication Number Publication Date
WO2023201770A1 true WO2023201770A1 (zh) 2023-10-26

Family

ID=82430268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089952 WO2023201770A1 (zh) 2022-04-22 2022-04-28 一种蓝莓容器栽培的容器及方法

Country Status (2)

Country Link
CN (1) CN114766342A (zh)
WO (1) WO2023201770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118318721A (zh) * 2024-05-24 2024-07-12 青岛农业大学 一种基质栽培蓝莓高效灌溉施肥装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217654A (ja) * 1992-12-28 1994-08-09 Semenov Arudokimov Anatoly 養液栽培方法及び養液栽培装置
JP2008011752A (ja) * 2006-07-05 2008-01-24 Osaka Prefecture Univ 根菜類の養液栽培装置および養液栽培方法
CN104839001A (zh) * 2015-04-29 2015-08-19 北京市农林科学院蔬菜研究中心 一种封闭式生态槽无土栽培系统及其应用
CN107258518A (zh) * 2017-08-03 2017-10-20 江苏省中国科学院植物研究所 一种促进蓝莓幼苗快速生长的栽培方法
US20200163295A1 (en) * 2018-10-15 2020-05-28 Caleb Mata Hydroponic Plant Cultivation System
CN212164502U (zh) * 2020-04-15 2020-12-18 福建省农业科学院土壤肥料研究所 一种椰糠基质栽培装置
CN214126403U (zh) * 2021-01-18 2021-09-07 云南莓隆镇农业科技有限公司 蓝莓基质栽培盆

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032409A (en) * 1995-09-05 2000-03-07 Mukoyama Orchids, Ltd. Support for cultivating plant
CN102210254B (zh) * 2011-03-22 2012-08-15 汪晓云 多功能的基质无土栽培方法及装置
CN102696422A (zh) * 2012-06-13 2012-10-03 北京农业智能装备技术研究中心 植物栽培容器
CN104429849B (zh) * 2014-11-13 2016-10-05 大连大学 一种用于水培蓝莓的新方法
JP2016202047A (ja) * 2015-04-20 2016-12-08 シャープ株式会社 栽培装置および植物の栽培方法
KR101925909B1 (ko) * 2018-06-25 2018-12-06 주식회사 삼농바이오텍 블루베리 재배용 배양토 및 이의 제조방법
CN209497991U (zh) * 2018-09-27 2019-10-18 北京泓稷科技有限公司 一种盆花潮汐式灌溉种植槽系统
CN110934067A (zh) * 2019-12-31 2020-03-31 无为县襄安镇农业服务中心 一种新型蓝莓无土栽培方法
CN212696819U (zh) * 2020-08-05 2021-03-16 江苏爱美塑业有限公司 一种蓝莓种植盆
CN214385446U (zh) * 2021-01-18 2021-10-15 云南莓隆镇农业科技有限公司 蓝莓无土栽培装置
CN214126402U (zh) * 2021-01-18 2021-09-07 云南莓隆镇农业科技有限公司 蓝莓无土栽培盆
CN216254495U (zh) * 2021-11-09 2022-04-12 北京田润禾农业科技有限公司 一种蓝莓的基质栽培盆
CN216219346U (zh) * 2021-11-16 2022-04-08 成都逸田生态农业科技有限公司 无土蓝莓排液回收再利用装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217654A (ja) * 1992-12-28 1994-08-09 Semenov Arudokimov Anatoly 養液栽培方法及び養液栽培装置
JP2008011752A (ja) * 2006-07-05 2008-01-24 Osaka Prefecture Univ 根菜類の養液栽培装置および養液栽培方法
CN104839001A (zh) * 2015-04-29 2015-08-19 北京市农林科学院蔬菜研究中心 一种封闭式生态槽无土栽培系统及其应用
CN107258518A (zh) * 2017-08-03 2017-10-20 江苏省中国科学院植物研究所 一种促进蓝莓幼苗快速生长的栽培方法
US20200163295A1 (en) * 2018-10-15 2020-05-28 Caleb Mata Hydroponic Plant Cultivation System
CN212164502U (zh) * 2020-04-15 2020-12-18 福建省农业科学院土壤肥料研究所 一种椰糠基质栽培装置
CN214126403U (zh) * 2021-01-18 2021-09-07 云南莓隆镇农业科技有限公司 蓝莓基质栽培盆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118318721A (zh) * 2024-05-24 2024-07-12 青岛农业大学 一种基质栽培蓝莓高效灌溉施肥装置

Also Published As

Publication number Publication date
CN114766342A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN104041367B (zh) 一种大樱桃种植管理方法
CN204259549U (zh) 室内滴灌农作物灌溉装置
CN102219332A (zh) 一种新农村生活污水处理技术
CN104082116A (zh) 一种水肥一体化无土栽培系统及栽培方法
CN100574608C (zh) 一种牡丹无土促成栽培方法
WO2023201770A1 (zh) 一种蓝莓容器栽培的容器及方法
Van Os Closed soilless growing systems in the Netherlands: the finishing touch
CN204598762U (zh) 一种庭院栽培设施
CN114651710A (zh) 可在荒漠化干旱地区实现自动水肥养护的可控节水植树系统
CN105850441A (zh) 柠檬盆景的种植方法
CN210264045U (zh) 一种垂直绿化污水自净的智能公厕
CN104838987B (zh) 一种根域式可控节肥器
CN107278466A (zh) 一种可移动果园的建立方法
CN115997670A (zh) 一种蓝莓栽培装置及其栽培方法
CN101720656A (zh) 一种盆栽苹果基质栽培方法
CN103202265B (zh) 节水型石蛙养殖供排水设施
CN106472291A (zh) 一种用于水生植物栽培的浮板
CN108684512A (zh) 一种都市屋顶阳台果园的气雾栽培构建方法
CN202310763U (zh) 一种滴灌带
CN208597484U (zh) 一种苗木栽植的智能滴灌系统
CN208063788U (zh) 火龙果种植喷灌系统
CN112616607A (zh) 一种月季潮汐式育苗方法
CN111011223A (zh) 六位一体组合生态温室大棚
CN214902398U (zh) 一种智慧生态农业种植的多功能架
Higashide et al. Development of closed, energy-saving hydroponics for sloping land

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938005

Country of ref document: EP

Kind code of ref document: A1