WO2023201768A1 - 一种多孔分层复合控油轴承保持架材料及其制备方法 - Google Patents

一种多孔分层复合控油轴承保持架材料及其制备方法 Download PDF

Info

Publication number
WO2023201768A1
WO2023201768A1 PCT/CN2022/089827 CN2022089827W WO2023201768A1 WO 2023201768 A1 WO2023201768 A1 WO 2023201768A1 CN 2022089827 W CN2022089827 W CN 2022089827W WO 2023201768 A1 WO2023201768 A1 WO 2023201768A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cage material
oil
thickness
polyimide
Prior art date
Application number
PCT/CN2022/089827
Other languages
English (en)
French (fr)
Inventor
李锦棒
施晨淳
夏仁良
许峥嵘
所新坤
崔玉国
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Publication of WO2023201768A1 publication Critical patent/WO2023201768A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the invention relates to a porous oil-containing cage and a preparation method, specifically to a porous layered composite oil-control bearing cage material and a preparation method thereof, and belongs to the field of oil-containing material preparation.
  • Bearings are generally lubricated with grease, but in a space environment, it is difficult to apply a large amount of lubricating oil and grease to some mechanical structures, and the bearings need to work under boundary lubrication or dry friction for a long time.
  • porous polymer materials are generally used as bearing cages, and the bearings are lubricated by micro-oil lubrication.
  • Porous polymer materials have the advantages of low density and self-lubrication. They have penetrating micron-sized pores inside.
  • Lubricating oil can be stored in the micropores through vacuum oil immersion and other methods. During operation, it is released or released under the action of centrifugal force and surface tension. Absorb lubricant.
  • porosity and wear resistance are in a contradictory relationship.
  • the existence of pores weakens the strength of the polymer and reduces the hardness of the material, resulting in insufficient wear resistance under micro-oil lubrication.
  • the lubrication effect of minimum quantity lubricating oil will weaken, and the friction coefficient will increase significantly.
  • the present invention is to overcome the shortcomings of the existing technology and provide a porous layered composite oil-control bearing cage material and a preparation method thereof to solve the mutual constraints of high porosity and high wear resistance of the existing porous oil-containing cage material and the precipitation of lubricating oil. Uncontrollable problems.
  • a porous layered composite oil-control bearing cage material is prepared by layering in one step and includes a wear-resistant layer, a lipophilic layer, an oil storage layer, an oleophobic layer and an oil-sealing layer;
  • the two sides of the wear-resistant layer are paved with a lipophilic layer, an oil storage layer, an oleophobic layer and an oil-sealing layer from the inside to the outside;
  • the thickness of the wear-resistant layer accounts for 10%-20% of the total thickness of the cage material.
  • the wear-resistant layer contains 0.5%-3% by mass of anti-wear components, and the remaining components are polyamide with a particle size of 5-20 ⁇ m. imine;
  • the thickness of the single-layer lipophilic layer accounts for 5%-15% of the total thickness of the cage material.
  • the lipophilic layer contains 0.5%-3% lipophilic components in terms of mass percentage, and the remaining components are polyamide with a particle size of 20-30 ⁇ m. imine;
  • the thickness of the single-layer oil storage layer accounts for 25%-40% of the total thickness of the cage material, and the component of the oil storage layer is polyimide with a particle size of 50-80 ⁇ m;
  • the thickness of a single oleophobic layer accounts for 3%-8% of the total thickness of the cage material; the oleophobic layer contains 3%-10% oleophobic components by mass, and the remaining components are polyimide with a particle size less than 10um amine;
  • the thickness of a single layer of sealing oil layer accounts for 3%-8% of the total thickness of the cage material; the component of the sealing oil layer is polyimide with a particle size less than 10um.
  • the present invention has the following effects:
  • the porous cage material is divided into nine functional layers. Through the different formulas of each functional layer, the precipitation of lubricating oil is controlled and the utilization rate of lubricating oil is improved. Compared with homogeneous porous materials of the same density, the present invention increases the porosity of the porous layered composite material by 20-30%, reduces the wear rate by more than 50%, increases the oil retention rate by 20-30%, and increases the service life by more than 30%.
  • the preparation method of the porous layered composite oil-control bearing cage material includes the following steps:
  • each layer According to the thickness ratio of each layer and the mass percentage of the components, weigh powders of different qualities, lay them in layers in the mold, and flatten each layer after it is laid;
  • the sintering temperature is 320°C-360°C, and the heat preservation is 45min-180min;
  • the present invention has the following effects:
  • the preparation method of the present invention can regulate the precipitation of lubricating oil and improve the utilization rate of lubricating oil through different functional layer formulas.
  • the porosity of the porous layered composite oil-control bearing cage material prepared by the invention is increased by 20-30%, the wear rate is reduced by more than 50%, the oil content is increased by more than 10%, the oil retention rate is increased by 20-30%, and the service life is increased by more than 30%. .
  • Figure 1 is a schematic diagram of the porous layered composite oil-control bearing cage material of the present invention.
  • a porous layered composite oil-control bearing cage material is prepared by layering in one step and includes a wear-resistant layer 1, a oleophilic layer 2, an oil storage layer 3, an oleophobic layer 4 and an oil sealing layer 5;
  • the two sides of the wear-resistant layer 1 are paved with a lipophilic layer 2, an oil storage layer 3, an oleophobic layer 4 and an oil sealing layer 5 from the inside to the outside;
  • the thickness of the wear-resistant layer 1 accounts for 10%-20% of the total thickness of the cage material.
  • the wear-resistant layer contains 0.5%-3% by mass of anti-wear components, and the remaining components have a particle size of 5-20 ⁇ m. Polyimide, the porosity in this particle size range is 5%-10%;
  • the thickness of the single-layer lipophilic layer 2 accounts for 5%-15% of the total thickness of the cage material.
  • the lipophilic layer contains 0.5%-3% lipophilic components in terms of mass percentage, and the remaining components have a particle size of 20-30 ⁇ m.
  • the thickness of the single oil storage layer 3 accounts for 25%-40% of the total thickness of the cage material.
  • the component of the oil storage layer is polyimide with a particle size of 50-80 ⁇ m; the porosity of the polyimide in this particle size range The maximum is 20%-30%;
  • the thickness of the single-layer oleophobic layer 4 accounts for 3%-8% of the total thickness of the cage material; the oleophobic layer contains 3%-10% oleophobic components in terms of mass percentage, and the remaining components are polymers with particle sizes less than 10um. Imide; the porosity of polyimide in this particle size range is 5%-8%;
  • the thickness of the single-layer sealing oil layer 5 accounts for 3%-8% of the total thickness of the cage material; the component of the sealing oil layer is polyimide with a particle size less than 10um, and the porosity of the polyimide in this particle size range is 5 %-8%.
  • the wear-resistant layer 1 of this embodiment is located in the middle, and the cage material is conducive to intelligently regulating the precipitation of lubricating oil.
  • the porosity of the porous layered composite material of this embodiment is increased by 20- 30%, the wear rate is reduced by more than 50%, and the oil retention rate is increased by 20-30%.
  • the polyimide is one or a combination of isophenylene type, ether anhydride type, and ketone anhydride type.
  • the anti-wear component is one or a combination of polyetheretherketone, nano-bronze powder, nano-molybdenum disulfide, nano-graphene, and nano-diamond.
  • the lipophilic component is lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, lanthanum fluoride, cerium fluoride, lanthanum cerium fluoride, praseodymium fluoride, neodymium fluoride, lanthanum neodymium fluoride One or a combination of several.
  • the oleophobic component is one or a combination of polytetrafluoroethylene and fluorine-containing polyurethane.
  • the combined use of the components of the above functional layer ensures the high porosity and high wear resistance of the porous cage material at the same time.
  • the lubricating oil is not easily lost and the utilization rate is high.
  • the thickness of the wear-resistant layer 1 accounts for 10% of the total thickness of the cage material.
  • the wear-resistant layer 1 contains 2% by mass of anti-wear components, and the remaining components are polyimide with a particle size of 5-20 ⁇ m;
  • the polyimide is homophenylene type, and the anti-wear component is graphene, nano-molybdenum disulfide or nano-bronze powder;
  • the thickness of the single-layer lipophilic layer 2 accounts for 10% of the total thickness of the cage material.
  • the lipophilic layer 2 contains 3% lipophilic components in terms of mass percentage.
  • the remaining components are polyimide with a particle size of 20-30 ⁇ m.
  • the polyimide is of homophenylene type, and the lipophilic component is a mixture of lanthanum oxide, cerium oxide, praseodymium oxide, lanthanum fluoride, cerium fluoride and praseodymium fluoride;
  • the thickness of the single oil storage layer 3 accounts for The percentage of the total thickness of the cage material is 30%, and the oil storage layer 3 is polyimide with a particle size of 50-80 ⁇ m;
  • the thickness of the single-layer oleophobic layer 4 accounts for 5% of the total thickness of the cage material, and the oleophobic layer 4 contains a mass percentage 5% of the oleophobic component is calculated, and the remaining components are polyimide with a particle size
  • the polyimide is a homophenylene type, and the oleophobic component is polytetrafluoroethylene;
  • the thickness of the sealing oil layer 5 accounts for 5% of the total thickness of the cage material, and the sealing oil layer 5 is polyimide powder with a particle size less than 10 ⁇ m.
  • the oil content of the porous layered composite oil-control bearing cage material of this embodiment is 15-17%, the oil retention rate is 95%, the friction coefficient is 0.03-0.04, and the wear rate is 0.8 ⁇ 10 -10 mm 3 /Nm-1.0 ⁇ 10 -10 mm 3 /Nm.
  • Another embodiment also provides a method for preparing a porous layered composite oil-control bearing cage material, which includes the following steps:
  • each layer According to the thickness ratio of each layer and the mass percentage of the components, weigh the powders of different qualities and lay them in layers in the mold. After each layer is laid, use a tool to flatten it gently; when laying the layers, seal them from bottom to top.
  • the sintering temperature is 320°C-360°C, and the heat preservation is 45min-180min;
  • the thickness of the wear-resistant layer 1 accounts for 10%-20% of the total thickness of the cage material, the wear-resistant layer contains 0.5%-3% of the anti-wear component in terms of mass percentage, and the remaining components It is divided into polyimide with a particle size of 5-20 ⁇ m;
  • the thickness of the single-layer lipophilic layer 2 accounts for 5%-15% of the total thickness of the cage material.
  • the lipophilic layer 2 contains 0.5%-3% lipophilic components in mass percentage, and the remaining components have a particle size of 20-30 ⁇ m. of polyimide;
  • the thickness of the single-layer oil storage layer 3 accounts for 25%-40% of the total thickness of the cage material, and the component of the oil storage layer 3 is polyimide with a particle size of 50-80 ⁇ m;
  • the thickness of the single-layer oleophobic layer 4 accounts for 3%-8% of the total thickness of the cage material; the oleophobic layer 4 contains 3%-10% oleophobic components in terms of mass percentage, and the remaining components contain particles with a particle size less than 10um Polyimide;
  • the thickness of the single-layer sealing oil layer 5 accounts for 3%-8% of the total thickness of the cage material; the component of the sealing oil layer 5 is polyimide with a particle size less than 10um.
  • each layer According to the thickness ratio of each layer and the mass percentage of the components, weigh powders of different qualities, lay them in layers in the mold, and flatten them with tools after each layer is laid;
  • the sintering temperature is 335°C and the temperature is kept for 90 minutes;
  • the porous layered composite oil-control bearing cage material prepared in this example has an oil content of 18%, an oil retention rate of 95%, a friction coefficient of 0.03-0.05, and a wear rate of 1.0 ⁇ 10 -10 mm 3 /Nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

一种多孔分层复合控油轴承保持架材料及其制备方法,保持架材料采用分层铺设一次成型制备而成,包含耐磨层、亲油层、贮油层、疏油层和封油层;耐磨层两侧面分别由内至外铺压有亲油层、贮油层、疏油层和封油层;制备方法包含:1)、根据各层厚度占比及组分质量百分比,称取不同质量的粉料,分层铺设在模具中,每层铺完后压平;2)、粉料填装完毕后,将模具放在振动平台上振动混合;3)、将模具放在液压机上,采用双向加压的方式进行预压制,保压后卸压,再将模具压制到定容的体积,并固定;4)、将模具放入烧结炉进行烧结;5)、脱模,得到多孔分层复合控油轴承保持架材料。本发明具有孔隙率高、耐磨性好、摩擦系数低、寿命长的优点。

Description

一种多孔分层复合控油轴承保持架材料及其制备方法 技术领域
本发明涉及多孔含油保持架及制备方法,具体涉及一种多孔分层复合控油轴承保持架材料及其制备方法,属于含油材料制备领域。
背景技术
轴承一般采用油脂润滑,但在空间环境中,某些机械结构难以大量应用润滑油和润滑脂,轴承需要在边界润滑或干摩擦状态下长期工作。目前,空间高速运动部件的轴系中,一般采用多孔聚合物材料作为轴承保持架,以微量油润滑的方式实现轴承的润滑。多孔聚合物材料具有密度小、自润滑等优点,其内部具有贯通的微米级孔隙,通过真空浸油等方式可将润滑油贮存在微孔中,工作时在离心力和表面张力的作用下释放或吸收润滑油。对于传统均质多孔聚合物材料来说,孔隙率与耐磨性是此消彼长的矛盾关系。孔隙率越高,贮油量越大,但孔隙的存在削弱了聚合物的强度,使材料硬度下降,导致其在微油润滑下的耐磨性不足,磨损到一定程度后,随着磨屑的累积和表面粗糙度的增加,微量润滑油的润滑效果减弱,摩擦系数会大幅增加。相反地,孔隙率越低,材料的强度和硬度越高,耐磨性越好,但只能存贮少量润滑油,不能满足长效润滑的需求。
发明内容
本发明是为克服现有技术不足,提供一种多孔分层复合控油轴承保持架材料及其制备方法,以解决现有多孔含油保持架材料高孔隙率和高耐磨性相互制约以及润滑油析出不可调控的问题。
一种多孔分层复合控油轴承保持架材料采用分层铺设一次成型制备而成,包含耐磨层、亲油层、贮油层、疏油层和封油层;
耐磨层两侧面分别由内至外铺压有亲油层、贮油层、疏油层和封油层;
耐磨层厚度占保持架材料总厚度的百分比为10%-20%,耐磨层包含质量百分比计的0.5%-3%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺;
单层亲油层厚度占保持架材料总厚度的百分比为5%-15%,亲油层包含质量百分比计的0.5%-3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺;
单层贮油层厚度占保持架材料总厚度的百分比为25%-40%,贮油层组分是粒度为50-80μm的聚酰亚胺;
单层疏油层厚度占保持架材料总厚度的百分比为3%-8%;疏油层包含质量百分比计的3%-10%的疏油组分,其余组分是含有粒度小于10um的聚酰亚胺;
单层封油层厚度占保持架材料总厚度的比例为3%-8%;封油层组分是粒度小于10um的聚酰亚胺。
本发明与现有技术相比具有以下效果:
将多孔保持架材料分为九个功能层,通过各功能层配方的不同,调控润滑油的析出,提高润滑油利用率。本发明与相同密度的均质多孔材料相比,多孔分层复合材料的孔隙率提高20-30%,磨损率降低50%以上,含油保持率提高20-30%,寿命提高30%以上。
多孔分层复合控油轴承保持架材料的制备方法包含如下步骤:
1)、根据各层厚度占比及组分质量百分比,称取不同质量的粉料,分层铺设在模具中,每层铺完后压平;
2)、粉料填装完毕后,将模具放在振动平台上,振动20-60秒,使各层材料界面之间自然混合;
3)、将模具放在液压机上,采用双向加压的方式,在3-10MPa的压力下进行预压制,保压5-30min后卸压,再将模具压制到定容的体积,并固定;
4)、将模具放入烧结炉进行烧结,烧结温度320℃-360℃,保温45min-180min;
5)、脱模,得到多孔分层复合控油轴承保持架材料。
本发明与现有技术相比具有以下效果:
本发明的制备方法得到通过不同功能层配方,调控润滑油的析出,提高润滑油利用率。本发明制得多孔分层复合控油轴承保持架材料的孔隙率提高20-30%,磨损率降低50%以上,含油率提高10%以上,含油保持率提高20-30%,寿命提高30%以上。
下面结合附图和实施例对本发明的技术方案作进一步地说明:
附图说明
图1为本发明多孔分层复合控油轴承保持架材料示意图。
具体实施方式
本实施方式的一种多孔分层复合控油轴承保持架材料采用分层铺设一次成型制备而成,包含耐磨层1、亲油层2、贮油层3、疏油层4和封油层5;
耐磨层1两侧面分别由内至外铺压有亲油层2、贮油层3、疏油层4和封油层5;
耐磨层1的厚度占保持架材料总厚度的百分比为10%-20%,耐磨层包含质量百分比计的0.5%-3%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺,该粒度范围下的孔隙率为5%-10%;
单层亲油层2的厚度占保持架材料总厚度的百分比为5%-15%,亲油层包含质量百分比计的0.5%-3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺;该粒度范围下的聚酰亚胺的孔隙率为12%-18%;
单层贮油层3的厚度占保持架材料总厚度的百分比为25%-40%,贮油层组分是粒度为50-80μm的聚酰亚胺;该粒度范围下的聚酰亚胺的孔隙率最大为20%-30%;
单层疏油层4的厚度占保持架材料总厚度的百分比为3%-8%;疏油层包含质量百分比计的3%-10%的疏油组分,其余组分是含有粒度小于10um的聚酰亚胺;该粒度范围下的聚酰亚胺的孔隙率为5%-8%;
单层封油层5的厚度占保持架材料总厚度的百分比为3%-8%;封油层组分是粒度小于10um的聚酰亚胺,该粒度范围下的聚酰亚胺的孔隙率为5%-8%。
该实施方式的耐磨层1位于中间位置,该保持架材料有利于智能调控润滑油的析出,与相同密度的均质多孔材料相比,本实施方式多孔分层复合材料的孔隙率提高20-30%,磨损率降低50%以上,含油保持率提高20-30%。
可选地,所述的聚酰亚胺为均苯型、醚酐型、酮酐型的一种或几种的组合。
可选地,所述的抗磨组分为聚醚醚酮、纳米青铜粉、纳米二硫化钼、纳米石墨烯、纳米金刚石中的一种或几种的组合。
可选地,所述的亲油组分为氧化镧、氧化铈、氧化镨、氧化钕、氟化镧、氟化铈、氟化镧铈、氟化镨、氟化钕、氟化镧钕的一种或几种的组合。
可选地,所述的疏油组分为聚四氟乙烯、含氟聚氨酯中的一种或两种的组合。上述功能层的组分组合使用,使得多孔保持架材料高孔隙率与高耐磨性能得到同时保证,润滑油不容易散失,利用率高。
进一步地,基于上述可选方案,优选地:
实施例1
耐磨层1的厚度占保持架材料总厚度的百分比为10%,耐磨层1包含质量百分比计的2%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺;可选地,所述的聚酰亚胺为均苯型,抗磨组分为石墨烯、纳米二硫化钼或者纳米青铜粉;
单层亲油层2厚度占保持架材料总厚度的百分比为10%,亲油层2包含质量百分比计的3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺,可选地,所述的聚酰亚胺为均苯型,亲油组分为氧化镧、氧化铈、氧化镨、氟化镧、氟化铈和氟化镨的混合物;单层贮油层3厚度占保持架材料总厚度的百分比为30%,贮油层3为粒度为50-80μm的聚酰亚胺;单层疏油层4厚度占保持架材料总厚度的百分比为5%,疏油层4包含质量百分比计的5% 的疏油组分,其余组分是粒度小于10um的聚酰亚胺,可选地,所述的聚酰亚胺为均苯型,疏油组分为聚四氟乙烯;单层封油层5厚度占保持架材料总厚度的百分比为5%,封油层5为粒度小于10um的聚酰亚胺粉料。
本实施例的多孔分层复合控油轴承保持架材料的含油率为15-17%,含油保持率为95%,摩擦系数为0.03-0.04,磨损率为0.8×10 -10mm 3/Nm-1.0×10 -10mm 3/Nm。
另一个实施方式还提供多孔分层复合控油轴承保持架材料的制备方法,包含如下步骤:
1)、根据各层厚度占比及组分质量百分比,称取不同质量的粉料,分层铺设在模具中,每层铺完后用工具轻轻压平;铺层时由下至上是封油层2、疏油层3、贮油层4、亲油层5、耐磨层1、亲油层2、贮油层3、疏油层4和封油层5;
2)、粉料填装完毕后,将模具放在振动平台上,振动20-60秒,使各层材料界面之间自然混合;
3)、将模具放在液压机上,采用双向加压的方式,在3-10MPa的压力下进行预压制,保压5-30min后卸压,再将模具压制到定容的体积,用螺栓固定体积;
4)、将模具放入烧结炉进行烧结,烧结温度320℃-360℃,保温45min-180min;
5)、脱模,得到多孔分层复合控油轴承保持架材料。
可选地,铺层时,耐磨层1的厚度占保持架材料总厚度的百分比为10%-20%,耐磨层包含质量百分比计的0.5%-3%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺;
单层亲油层2的厚度占保持架材料总厚度的百分比为5%-15%,亲油层2包含质量百分比计的0.5%-3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺;
单层贮油层3的厚度占保持架材料总厚度的百分比为25%-40%,贮油层3组分是粒度为50-80μm的聚酰亚胺;
单层疏油层4的厚度占保持架材料总厚度的百分比为3%-8%;疏油层4包含质量百分比计的3%-10%的疏油组分,其余组分是含有粒度小于10um的聚酰亚胺;
单层封油层5的厚度占保持架材料总厚度的比例为3%-8%;封油层5组分是粒度小于10um的聚酰亚胺。
可选地,振动25-45秒,使各层材料界面之间自然混合,在5-10MPa的压力下进行预压制,保压5-20min后卸压,烧结温度为300℃-350℃,保温55min-160min。
进一步地,基于上述实施方式,优选地:
实施例2
1)、根据各层厚度占比及组分质量百分比,称取不同质量的粉料,分层铺设在模具中,每层铺完后用工具压平;
2)、粉料填装完毕后,将模具放在振动平台上,振动30秒,使各层材料界面之间自然混合;
3)、将模具放在液压机上,采用双向加压的方式,在10MPa的压力下进行预压制,保压15min后卸压,再将模具压制到定容的体积,用螺栓固定体积;
4)、将模具放入烧结炉进行烧结,烧结温度335℃,保温90min;
5)、脱模,得到多孔分层复合控油轴承保持架材料。
本实施例制备的多孔分层复合控油轴承保持架材料的含油率为18%,含油保持率为95%,摩擦系数为0.03~0.05,磨损率为1.0×10 -10mm 3/Nm。
本发明已以较佳实施案例揭示如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可以利用上述揭示的结构及技术内容做出些许的更动或修饰为等同变化的等效实施案例,均仍属本发明技术方案范围。

Claims (10)

  1. 一种多孔分层复合控油轴承保持架材料,其特征在于:所述保持架材料采用分层铺设一次成型制备而成,包含耐磨层、亲油层、贮油层、疏油层和封油层;
    耐磨层两侧面分别由内至外铺压有亲油层、贮油层、疏油层和封油层;
    耐磨层的厚度占保持架材料总厚度的百分比为10%-20%,耐磨层包含质量百分比计的0.5%-3%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺;
    单层亲油层的厚度占保持架材料总厚度的百分比为5%-15%,亲油层包含质量百分比计的0.5%-3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺;
    单层贮油层的厚度占保持架材料总厚度的百分比为25%-40%,贮油层组分是粒度为50-80μm的聚酰亚胺;
    单层疏油层的厚度占保持架材料总厚度的百分比为3%-8%;疏油层包含质量百分比计的3%-10%的疏油组分,其余组分是含有粒度小于10um的聚酰亚胺;
    单层封油层的厚度占保持架材料总厚度的比例为3%-8%;封油层组分是粒度小于10um的聚酰亚胺。
  2. 根据权利要求1所述一种多孔分层复合控油轴承保持架材料,其特征在于:所述的聚酰亚胺为均苯型、醚酐型、酮酐型的一种或几种的组合。
  3. 根据权利要求1所述一种多孔分层复合控油轴承保持架材料,其特征在于:所述的抗磨组分为聚醚醚酮、纳米青铜粉、纳米二硫化钼、纳米石墨烯、纳米金刚石中的一种或几种的组合。
  4. 根据权利要求1所述一种多孔分层复合控油轴承保持架材料,其特征在于:所述的亲油组分为氧化镧、氧化铈、氧化镨、氧化钕、氟化镧、氟化铈、氟化镧铈、氟化镨、氟化钕、氟化镧钕的一种或几种的组合。
  5. 根据权利要求1所述一种多孔分层复合控油轴承保持架材料,其特征在于:所述的疏油组分为聚四氟乙烯、含氟聚氨酯中的一种或两种的组合。
  6. 根据权利要求1至5任一项所述一种多孔分层复合控油轴承保持架材料,其特征在于:耐磨层的厚度占保持架材料总厚度的百分比为10%,耐磨层包含质量百分比计的2%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺;
    单层亲油层的厚度占保持架材料总厚度的百分比为10%,亲油层包含质量百分比计的3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺;
    单层贮油层的厚度占保持架材料总厚度的百分比为30%,贮油层为粒度为50-80μm的聚酰亚胺;
    单层疏油层的厚度占保持架材料总厚度的百分比为5%;疏油层包含质量百分比计的5% 的疏油组分,其余组分是粒度小于10um的聚酰亚胺;
    单层封油层的厚度占保持架材料总厚度的百分比为5%;封油层为粒度小于10um的聚酰亚胺粉料。
  7. 根据权利要求1所述一种多孔分层复合控油轴承保持架材料,其特征在于:耐磨层的厚度占保持架材料总厚度的百分比为10%,耐磨层含有质量百分比计的2%的抗磨组分,其余组分是粒度为5-20μm的聚酰亚胺;所述的聚酰亚胺为均苯型,抗磨组分为石墨烯、纳米二硫化钼或者纳米青铜粉;
    单层亲油层的厚度占保持架材料总厚度的百分比为10%,亲油层包含质量百分比计的3%的亲油组分,其余组分是粒度为20-30μm的聚酰亚胺粉料;所述的聚酰亚胺为均苯型,亲油组分为氧化镧、氧化铈、氧化镨、氟化镧、氟化铈和氟化镨的混合物;
    单层贮油层的厚度占保持架材料总厚度的百分比为30%,贮油层是粒度为50-80μm的聚酰亚胺;
    单层疏油层的厚度占保持架材料总厚度的百分比为5%;疏油层包含质量百分比计的5%的疏油组分,其余组分是粒度小于10um的聚酰亚胺粉料,所述的聚酰亚胺为均苯型,疏油组分为聚四氟乙烯。
    单层封油层的厚度占保持架材料总厚度的百分比为5%,封油层是粒度小于10um的聚酰亚胺。
  8. 制备如权利要求1所述多孔分层复合控油轴承保持架材料的方法,其特征在于:包含如下步骤:
    1)、根据各层厚度占比及组分质量百分比,称取不同质量的粉料,分层铺设在模具中,每层铺完后压平;
    2)、粉料填装完毕后,将模具放在振动平台上,振动20-60秒,使各层材料界面之间自然混合;
    3)、将模具放在液压机上,采用双向加压的方式,在3-10MPa的压力下进行预压制,保压5-30min后卸压,再将模具压制到定容的体积,并固定;
    4)、将模具放入烧结炉进行烧结,烧结温度320℃-360℃,保温45min-180min;
    5)、脱模,得到多孔分层复合控油轴承保持架材料。
  9. 根据权利要求8所述多孔分层复合控油轴承保持架材料的制备方法,其特征在于:振动25-45秒,使各层材料界面之间自然混合,在5-10MPa的压力下进行预压制,保压5-20min后卸压,烧结温度为300℃-350℃,保温55min-160min。
  10. 根据权利要求8或9所述多孔分层复合控油轴承保持架材料的制备方法,其特征在 于:振动30秒,使各层材料界面之间自然混合,在10MPa的压力下进行预压制,保压15min后卸压,烧结温度为335℃,保温90min。
PCT/CN2022/089827 2022-04-18 2022-04-28 一种多孔分层复合控油轴承保持架材料及其制备方法 WO2023201768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210403267.X 2022-04-18
CN202210403267.XA CN114605826B (zh) 2022-04-18 2022-04-18 一种多孔分层复合控油轴承保持架材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023201768A1 true WO2023201768A1 (zh) 2023-10-26

Family

ID=81869607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089827 WO2023201768A1 (zh) 2022-04-18 2022-04-28 一种多孔分层复合控油轴承保持架材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114605826B (zh)
WO (1) WO2023201768A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167889A (en) * 1991-06-10 1992-12-01 Hoechst Celanese Corp. Process for pressure sintering polymeric compositions
CN102145556A (zh) * 2010-11-29 2011-08-10 复旦大学 耐高温金属-织物/树脂自润滑轴承复合材料及其制备方法
CN102582138A (zh) * 2012-01-18 2012-07-18 桂林电器科学研究院 多层结构多孔化聚酰亚胺薄膜及其制造方法
CN111808422A (zh) * 2020-06-09 2020-10-23 洛阳轴承研究所有限公司 一种轴承保持架用聚酰亚胺复合材料及其制备方法、轴承保持架
GB202015126D0 (en) * 2020-09-24 2020-11-11 Mahle Int Gmbh Bearing material with solid lubricant
CN112080146A (zh) * 2020-07-31 2020-12-15 洛阳轴承研究所有限公司 一种轴承保持架用聚酰亚胺复合材料及其制备方法、轴承保持架
CN113147105A (zh) * 2021-04-23 2021-07-23 中国科学院兰州化学物理研究所 一种多孔聚酰亚胺储油保油结构及其制备方法和应用
CN113290759A (zh) * 2021-05-18 2021-08-24 洛阳轴承研究所有限公司 一种小尺寸聚酰亚胺自润滑复合保持架材料的成型方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107474258B (zh) * 2017-08-01 2020-10-13 清华大学 一种多孔含油复合润滑材料及其制备方法
CN111763429B (zh) * 2020-06-08 2024-02-09 洛阳轴承研究所有限公司 一种轴承保持架用多孔聚酰亚胺复合材料及其制备方法、轴承保持架
CN112795188B (zh) * 2020-12-31 2022-10-25 宁波大学 一种金属聚合物复合型含油轴承保持架材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167889A (en) * 1991-06-10 1992-12-01 Hoechst Celanese Corp. Process for pressure sintering polymeric compositions
CN102145556A (zh) * 2010-11-29 2011-08-10 复旦大学 耐高温金属-织物/树脂自润滑轴承复合材料及其制备方法
CN102582138A (zh) * 2012-01-18 2012-07-18 桂林电器科学研究院 多层结构多孔化聚酰亚胺薄膜及其制造方法
CN111808422A (zh) * 2020-06-09 2020-10-23 洛阳轴承研究所有限公司 一种轴承保持架用聚酰亚胺复合材料及其制备方法、轴承保持架
CN112080146A (zh) * 2020-07-31 2020-12-15 洛阳轴承研究所有限公司 一种轴承保持架用聚酰亚胺复合材料及其制备方法、轴承保持架
GB202015126D0 (en) * 2020-09-24 2020-11-11 Mahle Int Gmbh Bearing material with solid lubricant
CN113147105A (zh) * 2021-04-23 2021-07-23 中国科学院兰州化学物理研究所 一种多孔聚酰亚胺储油保油结构及其制备方法和应用
CN113290759A (zh) * 2021-05-18 2021-08-24 洛阳轴承研究所有限公司 一种小尺寸聚酰亚胺自润滑复合保持架材料的成型方法

Also Published As

Publication number Publication date
CN114605826B (zh) 2023-05-23
CN114605826A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN1141498C (zh) 轴承材料及制造轴承材料的方法
EP2312174B1 (en) Slide bearing with grease
US5217814A (en) Sintered sliding material
CN101126418A (zh) 一种聚合物自润滑薄层复合轴套及其制备方法
JPS63111312A (ja) 複層軸受ならびのその製造方法
US9926978B2 (en) Plain bearing composite material
WO2023201768A1 (zh) 一种多孔分层复合控油轴承保持架材料及其制备方法
Zhang et al. Tribological properties and mechanism of the bilayer iron based powder metallurgy materials
TWI233968B (en) Highly non-compact and lubricant-containing non-metallic bearing
KR20110100284A (ko) 소결 부시
US20190353205A1 (en) Method of molding double-layer sliding bearing
Leshok et al. Influence of copper frictional material composition on structure and tribotechnical properties
CN105695872B (zh) 一种用于粉末冶金的预扩散结合粉末及其制造方法以及利用该粉末制造含油轴承的方法
CN1756911A (zh) 可钻孔的滑动轴承材料
CN103909258B (zh) 以煤油为介质的齿轮泵轴承材料及其制备方法
CN101469687A (zh) 斜盘式压缩机的斜盘
US4233071A (en) Bearing having iron sulfur matrix
CN109177201A (zh) 一种自润滑双层复合材料及其制备方法
JP2003021144A (ja) 樹脂系複合摺動部材およびその製造方法
CN203009586U (zh) 汽车制动器自润滑轴承
CN114654640B (zh) 功能梯度多孔含油摩擦材料制备方法
CN111349296A (zh) 用于十字节的滑动部件的树脂组合物及滑动部件、滑动部件的制备方法
RU82179U1 (ru) Смазочный стержень
JPH11350008A (ja) 焼結銅合金系摺動材料
JPH0372682B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938003

Country of ref document: EP

Kind code of ref document: A1