WO2023201679A1 - 波浪惯性力发电装置 - Google Patents

波浪惯性力发电装置 Download PDF

Info

Publication number
WO2023201679A1
WO2023201679A1 PCT/CN2022/088379 CN2022088379W WO2023201679A1 WO 2023201679 A1 WO2023201679 A1 WO 2023201679A1 CN 2022088379 W CN2022088379 W CN 2022088379W WO 2023201679 A1 WO2023201679 A1 WO 2023201679A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
main body
wave
mass
accommodation space
Prior art date
Application number
PCT/CN2022/088379
Other languages
English (en)
French (fr)
Inventor
刘文晏
Original Assignee
刘文晏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘文晏 filed Critical 刘文晏
Priority to PCT/CN2022/088379 priority Critical patent/WO2023201679A1/zh
Publication of WO2023201679A1 publication Critical patent/WO2023201679A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present application relates to a power generation device, especially a wave inertia force power generation device.
  • FIG. 1 is Taiwan Patent No. M599855, illustrating a float-actuated bidirectional drive wave power generation device 11, which includes a pipe 111, a floating body 112, a driving component 113, a mounting base 114, a connecting body 115, a base 116, and an antenna 117 , and the battery 118, the floating body 112 floats on the water surface, the pipe fitting 111 is passed through the floating body 112, the driving component 113 is provided in the pipe fitting 111 to obtain the power to move up and down, and a power generation module is provided on the mounting base 114 (not shown in the figure) ), the connector 115 is connected to the pipe 111 and the floating body 112 to fix the pipe 111 and can only move up and down.
  • the base 116 has weight to sink into the water so that the pipe 111 can stand upright on the water.
  • the antenna 117 can send and receive signals to the outside world.
  • the battery 118 can store electricity.
  • the power generated by the module and the waves on the sea can drive the floating body 112 to move up and down, causing the pipe 111 to move up and down relative to the floating body 112, and driving the driving assembly 113 to obtain the power of the waves to further drive the power generation module to generate electricity.
  • Waves on the water surface can cause repeated changes in the height of the water surface, so that the existing floating body 112 moves up and down to drive the driving assembly 113 to obtain the power of changes in the height of the water surface.
  • waves on the water surface not only have the power to move up and down, but also have the power to move up and down.
  • the power of left and right lateral movement, and the terrain conditions close to the shore 22 can increase the power of wave lateral movement.
  • the existing wave power generation technology cannot obtain the power of waves from the side to generate electricity.
  • a movable mechanism will be provided on the structure, such as the existing connecting body 115 that connects the pipe 111 and the floating body 112, so that the driving assembly in the pipe 111 113 obtains the power of waves, but the structure protruding outside the floating body 112 will be impacted by external wind and waves.
  • the external structure When strong winds and waves occur on the sea, the external structure will not be able to withstand the impact of wind and waves and cause structural damage.
  • the existing wave power generation device floats on the water. It floats up and down with the height of the wave. It cannot withstand the impact of the wave and cannot be used as a wave absorbing block. Moreover, there is no space at the bottom for small fish to escape, and it cannot provide a safe place for fish schools. The living environment cannot protect the offshore ecology and terrain.
  • the main purpose of this application is to provide a wave inertial power generation device that can obtain wave power for power generation while protecting the coastline.
  • a wave inertia power generation device of the present application is used to receive the energy of waves on the water surface. It includes: a main body unit, including a main body disposed on the water surface, a surround disposed on the main body and surrounding which defines an accommodation space. wall, and a fixed body connected to the main body. The main body is driven by waves and moves relative to the fixed body. The fixed body is used to limit the movement range of the main body; a mass unit includes a mass unit movably arranged in the container. a mass body in the placement space, which is pushed by the body and moves inertly in the accommodation space; and an energy conversion unit, including a power generation module provided on the body and connected to the mass body, The power generation module absorbs the inertial force of the mass body.
  • the above-mentioned mass body is a liquid, and the surrounding wall defines the accommodation space as a flow channel.
  • the accommodation space has a corresponding first end and a second end. The mass body After being pushed by the main body, it flows from the first end to the second end of the accommodation space.
  • the above-mentioned surrounding wall has an inclined portion disposed between the first end and the second end, and the structure of the inclined portion gradually increases from the first end to the second end. rise.
  • the above-mentioned surrounding wall defines the accommodating space as an annular flow channel, and the accommodating space further has another first end and another second end. A plurality of first ends and a plurality of second ends are arranged in turn.
  • Another technical means of the present application is that a plurality of first ends of the above-mentioned accommodation space are connected with each other.
  • the above-mentioned main body unit further includes a backstop structure disposed in the main body and located between the first end and the second end of the accommodation space.
  • the backstop structure is used to stop Block the mass body in the second end of the accommodation space from flowing to the first end of the accommodation space.
  • the above-mentioned fixed body has a fixed part and a connecting part connected to the main body and the fixed part respectively.
  • the above-mentioned energy conversion unit further includes an ionization module electrically connected to the power generation module.
  • the power generation module is used to convert the inertial force of the mass body into electric power and provide the ionization module.
  • the ionization module is used to ionize water into hydrogen and oxygen.
  • the above-mentioned mass body is solid
  • the power generation module has at least one force-receiving part connected to the main body, and a power generation part connected to the force-receiving part, and the mass body is detachable.
  • the ground is in contact with the force-receiving part, and the force-receiving part is used to absorb the inertia force of the mass body and conduct the force to the power generation part.
  • the above-mentioned main body has at least one backstop structure connected to the surrounding wall and disposed in the accommodation space.
  • the backstop structure is used to push the mass body so that the mass body is in the One-way inertial motion occurs in this accommodation space.
  • the beneficial effect of this application is that when the main body is tilted or moved by the force of waves, the mass body will move. When the main body receives interference from the fixed body and moves stationary, the mass body will be in the accommodation. Inertial movement occurs in space, and the power generation module can absorb the inertial force of the mass body and convert it into electric power for external output.
  • Figure 1 is a schematic diagram of a three-dimensional device illustrating Taiwan Patent No. M599855, a float-actuated bidirectional drive wave power generation device;
  • Figure 2 is a schematic side view, which is a first preferred embodiment of a wave inertial power generation device of the present application, illustrating a state in which a main body of the wave inertia power generation device is disposed on the water surface close to the shore;
  • Figure 3 is a schematic side cross-sectional view illustrating the side cross-sectional view of the main body in the first preferred embodiment
  • Figure 4 is a schematic side cross-sectional view, which is a second preferred embodiment of a wave inertial power generation device of the present application, illustrating the side cross-sectional appearance of the main body;
  • Figure 5 is a schematic top cross-sectional view, which is a third preferred embodiment of a wave inertial power generation device of the present application, illustrating the top cross-sectional appearance of the main body;
  • Figure 6 is a schematic top cross-sectional view, which is a fourth preferred embodiment of a wave inertial power generation device of the present application, illustrating the top cross-sectional appearance of the main body;
  • Figure 7 is a schematic top cross-sectional view, which is a fifth preferred embodiment of a wave inertial power generation device of the present application, illustrating the top cross-sectional appearance of the main body;
  • Figure 8 is a side sectional schematic diagram illustrating that in the fifth preferred embodiment, a mass body in a spherical state rolls in an accommodating space, and the accommodating space is provided with a force-receiving part of the power generation module and The status of the power generation department;
  • Figure 9 is a schematic cross-sectional view, which is a sixth preferred embodiment of a wave inertia power generation device of the present application, illustrating the cross-sectional appearance of the main body.
  • Figure 10 is a top view of the arrangement, illustrating the manner in which several bodies are connected to each other and arranged on the shore.
  • the wave inertia power generation device is arranged on the water surface 21 and is used to receive the power of the waves 24 on the water surface 21. It generates inertial force and then absorbs the inertial force to generate electricity.
  • the wave inertia power generation device includes a main body unit 3, a mass unit 4, and an energy conversion unit 5.
  • the main unit 3 includes a main body 31 disposed on the water surface 21 , a surrounding wall 33 disposed on the main body 31 and surrounding a receiving space 32 , and a fixed body 34 connected to the main body 31 .
  • the main body 31 is supported by The fixed body 34 is moved relative to the push of the waves 24.
  • the main body 31 is disposed close to the shore 22.
  • the fixed body 34 has a fixed part 341 disposed on the water bottom 23, and a separate The connecting part 342 is connected to the main body 31 and the fixing part 341.
  • the fixing part 341 is a pile fixed on the water bottom 23.
  • the connecting part 342 is a rope connecting the fixing part 341 and the main body 31.
  • the fixing part 34 is In order to pull the main body 31 and limit the floating movement range of the main body 31, and to cause the mass unit 4 to move inertially when the main body 31 is pulled, in actual implementation, another position can be set between the shore 22 and the main body 31.
  • a reinforced connecting rope should not be limited to this.
  • the structure of the fixed part 341 can be an artificial fish reef, with a rough surface for water plants to grow, and holes in the structure to attract fish groups A to settle in and avoid predators of large fish, which is beneficial
  • the fixed part 341 can also be other forms of artificial reefs or structures, and should not be limited to this.
  • the mass unit 4 includes a mass body 41 movably disposed in the accommodating space 32.
  • the mass body 41 can produce inertial movement in the accommodating space 32 after being pushed by the main body 31.
  • the mass body 41 is liquid, and the surrounding wall 33 defines the accommodating space 32 as a flow channel.
  • the accommodating space 32 has a corresponding first end 321 and a second end 322.
  • the mass body 41 is pushed by the main body 31 and flows from the first end 321 to the second end 322 of the accommodation space 32.
  • the surrounding wall 33 has a gap disposed between the first end 321 and the second end 322.
  • the inclined portion 331 has a structure that gradually rises from the first end 321 to the second end 322.
  • the main body 31 is provided with a water tank at the first end 321, and the main body unit 3 also includes a
  • the return pipe 35 is provided between the second end 322 and the sink.
  • the return pipe 35 first extends downward from the second end 322 of the accommodation space 32 and then extends laterally toward the sink of the main body 31 .
  • the energy conversion unit 5 includes a power generation module 51 disposed on the main body 31 and connected to the mass body 41.
  • the power generation module 51 absorbs the inertia force of the mass body 41 to generate electricity.
  • the power generation module 51 is a generator set, and has a blade 511 disposed at the second end 322 of the accommodation space 32 . The blade 511 can be impacted by water flow to drive the power generation module 51 to generate electricity.
  • the waves 24 generated on the water surface 21 will move from the wave direction 25 to the shore 22 , and the main body 31 of the main body unit 3 disposed close to the shore 22 is still connected to the connecting portion 342 of the fixed body 34 .
  • the main body 31 will be pushed by the waves 24 and move toward the shore 22 .
  • the surrounding wall 33 provided on the left side of the main body 31 will push the mass body 41 in the accommodation space 32 in the direction of thrust. 26 push to the right, so that the mass body 41 and the main body 31 move to the right at the same time.
  • the main body 31 will be pulled to stop the movement of the main body 31, and the mass located in the accommodation space 32 of the main body unit 3 will The body 41 will move to the right based on the inertial force, and flow from the first end 321 to the second end 322 of the accommodation space 32 in the direction 27 of the inertial force, and impact the blade 511 provided at the second end 322 to cause the body 41 to move to the right. Rotate, so that the power generation module 51 receives the inertial force of the mass body 41 to generate electricity.
  • the mass body 41 flowing to the second end 322 of the accommodation space 32 will be blocked by the surrounding wall 33 on the right side, and then passes through the ground. Gravity flows into the return pipe 35 and returns to the water tank of the main body 31, thereby allowing the mass body 41 to circulate in the main body 31.
  • the surrounding wall 33 may not be provided with an inclined portion 331.
  • the first end 321 of the accommodation space 32 is at the same height as the second end 322.
  • the main body 31 may not be provided with a return pipe 35 so that the mass body 41 can naturally flow back from the second end 322 to the first end 321.
  • the mass body 41 located in the accommodating space 32 will still be pushed by the main body 31 and impact the blades 511 of the power generation module 51, and should not be limited to this.
  • the energy conversion unit 5 further includes an ionization module 52 electrically connected to the power generation module 51.
  • the power generation module 51 is used to convert the inertial force of the mass body 41 into electric power.
  • the ionization module 52 is provided for use.
  • the ionization module 52 is used to ionize water into hydrogen and oxygen.
  • the obtained hydrogen and oxygen can be stored or used by gas transmission pipelines. In actual implementation, the ionization module 52 does not need to be provided.
  • the module 52 directly transmits the power generated by the power generation module 51 to the power supply grid using transmission lines, or uses batteries to store the power, which should not be limited to the examples of this preferred embodiment.
  • a wave-receiving structure such as a guide structure or a vane structure
  • a wave power generation device to absorb wave power to generate electricity.
  • the wave-receiving structure is installed on the outside.
  • the structure cannot resist damage caused by excessive wind and waves, but the wind and waves are too small to obtain enough wave power to generate electricity.
  • the main power generation technology of this application is to obtain this quality body. 41 inertia force to generate electricity. All mechanical structures are arranged on the inside of the main body 31. Therefore, there is no complicated structure on the outside of the main body 31 and will not be damaged by the impact of wind and waves. This application has the ability to withstand a long period of time. Advantages of big waves.
  • FIG. 2 and Figure 4 is a second preferred embodiment of a wave inertial power generation device of the present application.
  • the second preferred embodiment is substantially the same as the first preferred embodiment, and the similarities are here Without going into details, the difference is that the accommodating space 32 defined by the surrounding wall 33 forms a flow channel, and the flow channel curves and extends upward, and the power generation module 51 is arranged above the water tank of the main body 31.
  • the inclined portion 331 of the surrounding wall 33 not only gradually rises from the first end 321 to the second end 322, but also forms a curved structure toward the position of the power generation module 51.
  • the inclined portion 331 is used for guiding.
  • the mass body 41 flows to the power generation module 51.
  • the main body 31 is provided with a return pipe 35 on the left side of the second end 322 and the first end 321.
  • the return pipe 35 is provided with a backstop structure 36.
  • the backstop structure 36 is used to prevent the mass body 41 in the first end 321 of the accommodation space 32 from flowing from the return pipe 35 to the second end 322, and the mass body 41 in the second end 322 can pass through the backflow pipe 35.
  • the stop structure 36 flows to the first end 321 , thereby controlling the circulation flow of the mass body 41 in the accommodating space 32 .
  • the mass body 41 and the main body 31 will move to the right at the same time.
  • the mass body 31 is supported by the fixed body
  • the mass body 41 is restricted by 34 and stops moving, the mass body 41 located in the accommodation space 32 will generate an inertial force and move to the right.
  • the mass body 41 reaches the inclined portion 331 on the right side, the inclined portion 331 of the curved structure will move to the right.
  • the mass body 41 is guided to the power generation module 51 in the flow direction 28 to drive the power generation module 51 to generate electricity.
  • the applicant of this case would like to emphasize that the driving force of the waves 24 in the ocean is very large.
  • the waves 24 The size is not only affected by the climate but also by the terrain. Therefore, in the second preferred embodiment, the force of the waves can drive the mass body 41 to move to a higher place and drive the power generation module 51 to generate electricity.
  • Figure 2 and Figure 5 is a third preferred embodiment of a wave inertial power generation device of the present application.
  • the third preferred embodiment is substantially the same as the first preferred embodiment, and the similarities are here Without going into details, the difference is that the surrounding wall 33 defines the accommodating space 32 as an annular flow channel, and the accommodating space 32 further has another first end 321 and another second end 322.
  • the plurality of first ends 321 and the plurality of second ends 322 in the accommodation space 32 are arranged in turn.
  • the main body 31 When the waves 24 on the water surface 21 push the main body 31 in the wave direction 25, the main body 31 will move to the right and push the mass body 41 in the thrust direction 26, and the main body 31 is restricted by the fixed body 34 and stops moving. , the mass body 41 will move to the right with inertial force relative to the main body 31. At this time, the mass body 41 flows from the first end 321 of the accommodation space 32 to the second end 322 on the right in the direction of inertia force 27. , and drives the impeller 511 located in the flow channel. Since the height of the second end 322 of the accommodation space 32 is relatively high, the mass body 41 flowing to the second end 322 will naturally flow into the right side in the return direction 29.
  • the mass body 41 of 322 will fall into the accommodating space 32 on the left in the return direction 29 due to gravity.
  • the mass body 41 located in the accommodating space 32 will move into the annular flow channel due to the force of the wave 24.
  • the flow is clockwise in the accommodation space 32.
  • a plurality of first ends 321 of the accommodation space 32 are connected to each other, that is, the bottoms of the plurality of first ends 321 can be provided with transverse connecting pipes.
  • the mass body 41 It can flow in the communication pipe to maintain enough mass body 41 for the first end 321 of each accommodation space 32 to move inertly, and should not be limited to this.
  • FIG. 2 and Figure 6 is a fourth preferred embodiment of a wave inertial power generation device of the present application.
  • the fourth preferred embodiment is substantially the same as the first preferred embodiment, and the similarities are here Without going into details, the difference lies in that the height of the first end 321 and the second end 322 of the accommodation space 32 is the same, and a number of flow channels are provided between the first end 321 and the second end 322.
  • the main body unit 3 also includes a backstop structure 36 disposed in the main body 31 and between the first end 321 and the second end 322 of the accommodation space 32.
  • the backstop structure 36 is used to stop the accommodation.
  • the mass body 41 in the second end 322 of the space 32 flows to the first end 321 of the accommodation space 32.
  • a flow channel is provided in the middle of the main body 31, and is located in the middle flow channel.
  • a backstop structure 36 is provided to drive the mass body 41 to flow to the right, and the vanes 511 of the power generation module 51 are arranged in the middle flow channel.
  • the mass body 41 located in the accommodating space 32 will be driven by an inertial force relative to the main body 31 Moving in direction 27, it flows into the middle flow channel and drives the blade 511 to rotate and flows into the second end 322. After the inertial force disappears, the mass body 41 flowing into the second end 322 of the accommodating space 32 will flow into the second end 322.
  • the return flow direction 29 flows from the return channels on the upper and lower sides of the main body 31 back to the first end 321 of the accommodating space 32 , thereby causing the mass body 41 to form a circular flow in the accommodating space 32 .
  • FIG. 2 Figure 7, and Figure 8, which is a fifth preferred embodiment of a wave inertial power generation device of the present application.
  • the fifth preferred embodiment is substantially the same as the first preferred embodiment.
  • the same No further details will be given here.
  • the difference is that the mass body 41 is solid, and the power generation module 51 has at least one force-receiving part 512 connected to the main body 31, and a force-receiving part 512 connected to the force-receiving part 512.
  • the power generation part 513 , the mass body 41 is detachably in contact with the force receiving part 512 , and the force receiving part 512 is used to absorb the inertial force of the mass body 41 and conduct the force to the power generation part 513 .
  • the mass body 41 is a circular sphere, the accommodating space 32 defined by the surrounding wall 33 forms an annular pipe, and the mass body 41 can be opposite in the accommodating space 32
  • the main body 31 rolls.
  • the force-receiving part 512 of the power generation module 51 is a plate disposed in the accommodating space 32 .
  • the force-receiving part 512 is disposed in the accommodating space 32 in an inclined manner, and the force-receiving part 512 is inclined. 512 can pivot relative to the main body 31.
  • the force-receiving portion 512 is supported in the accommodating space 32 at a right angle of 45 degrees.
  • the mass body 41 When the mass body 41 approaches from the right side of the force-receiving portion 512 , the mass body 41 will be blocked by the force-receiving part 512 and stop moving.
  • the body 31 drives the force-receiving part 512 to push the mass body 41 in the thrust direction 26. , so that the mass body 41 and the main body 31 move to the right.
  • the mass body 41 approaches the other force-receiving part 512 in the inertial force direction 27 and moves the force-receiving part 512 to the right.
  • the force part 512 is pressed down, and the power generation part 513 of the power generation module 51 is connected to the rotating shaft of the force receiving part 512 to receive the force of the rotation of the force receiving part 512 to generate electricity.
  • the force-receiving part 512 will rebound to an inclined state.
  • the force-receiving part 512 of the power generation module 51 is not only a structure for absorbing inertial force, but also a The backstop structure 36 drives the mass body 41 to rotate clockwise in the accommodation space 32 .
  • FIG. 2 and Figure 9 is a sixth preferred embodiment of a wave inertial power generation device of the present application.
  • the sixth preferred embodiment is substantially the same as the fifth preferred embodiment, and the similarities are here Without going into details, the difference is that the power generation module 51 has a timing belt 514 connected to the mass body 41 and two gears 515 spaced apart from the timing belt 514.
  • the mass body 41 drives the timing belt 514.
  • the timing belt 514 moves and drives the two gears 515 to rotate.
  • the power generation module 51 can receive the rotation of the gears 515 to generate electricity.
  • the main body unit 3 also includes two blocks 37 connected to the main body 31 and spaced in the accommodation space 32.
  • the two blocks 37 can limit the movement range of the mass body 41.
  • the mass body 41 will move in the direction of inertial force 27 when the main body 31 is restricted by the fixed body 34 and stops moving.
  • the two gears 515 transmit the inertial force of the mass body 41 to cause the power generation module 51 to generate electricity.
  • the structure of the main body 31 is simple, and there are no other complicated structures on the outside. Therefore, the main body 31 will not be damaged due to excessive wind and waves, and ropes can be used to connect several main bodies 31 together.
  • Several bodies 31 can be arranged in a matrix on the shore 22 to receive the force of the waves 24 moving toward the shore 22.
  • the waves 24 will be effectively slowed down.
  • a number of connected wave inertia power generation devices can be used to achieve the purpose of eliminating waves 24, so that the shore 22 in this area does not need to be equipped with wave absorbing blocks.
  • a plurality of bodies 31 arranged in a matrix on the shore 22 can be provided with first connecting ropes 343 between each other, so that the positions of the several bodies 31 can be restrained and close to each other through the first connecting ropes 343.
  • the main body 31 of the shore 22 can be further provided with a second connecting rope 344 with the shore 22, so that the shore 22 can pull the plurality of main bodies through the second connecting rope 344.
  • a connecting rope with the shore 22 there is no need to set a connecting rope with the shore 22, and it should not be limited to this.
  • each body 31 when a plurality of bodies 31 are provided in an area close to the shore 22, the bottom of each body 31 can be connected to a fixed body 34 disposed on the seabed, thereby fixing the position of the bodies 31 on the water surface.
  • the structure of the fixed portions 341 of the plurality of fixed bodies 34 is an artificial fish reef, which can provide an environment for fish schools A to grow in large numbers and help restore the offshore ecology.
  • several main bodies 31 can also be fixed to one fixed body at the same time. 34, should not be limited to this.
  • the terrain conditions close to the shore 22 can increase the force of wave lateral movement, and the sides of the main body 31 can receive the impact force of the waves 24 when they move, so that the mass body 41 provided inside the main body 31 can move inertially, and further
  • the power generation module 51 can absorb the inertial force of the mass body 41 to generate electricity. Therefore, the present application can obtain the force of wave traverse to generate electricity.
  • the main body 31 has a simple structure and the mass body 41 and the power generation module 51 are housed inside. Therefore, when encountering large winds and waves, the internal structure of the main body 31 is not easily damaged, and most wave power generation devices They are all directly subjected to the force of waves, so when the waves are too large, structural damage is likely to occur. However, when the waves are too small, power generation efficiency will be ineffective. This is the main reason why wave power generation has not yet been commercialized on a large scale. This application The advantage is that it can withstand the force of large waves. Precision power generation instruments and structures are protected by the main body 31 and are not easily damaged.
  • wave inertia power generation devices can be installed close to the shore 22. Not only can the power transmission lines be short and the installation cost of the device can be reduced, but several power generation modules 51 installed in the main body 31 can convert the generated power. It is accumulated and then transmitted to the power supply grid on land, thereby obtaining more power.
  • This application is a wave inertial power generation device installed on the shore 22. It can not only obtain the force of the waves 24 impacting the shore 22 to generate electricity, but also a large number of main bodies 31 installed on the shore 22 can provide the function of wave absorbing blocks. It is used to reduce the impact force of the waves 24 and effectively prevent the coastline from being eroded by wind and waves.
  • the fixed part 341 of the artificial reef it can provide a living environment for the fish group A, which is beneficial to the growth of offshore organisms.
  • the main body 31 is disposed on the water surface 21 of the shore 22 and can convert the force of the waves 24 into the inertial force of the mass body 41, and then utilize the power generation module 51 to absorb the inertial force of the mass body 41 to generate electricity. Generate electricity, and the plurality of main bodies 31 can be connected to each other and installed close to the shore 22. When performing wave inertia power generation, the force of the waves 24 can also be reduced to slow down the erosion of the coast by the waves 24, so the purpose can indeed be achieved. Purpose of application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种波浪惯性力发电装置,用于接收水面的波浪的能量,其包含一主体单元、一质量单元及一能源转换单元,该主体单元包括一设置于水面的主体、一设置于该主体并围绕界定出一容置空间的围绕壁及一与该主体连接的固定体,该主体受波浪的推动而相对该固定体移动,该固定体用于限制该主体的移动范围,该质量单元包括一可动地设置于该容置空间中的质量体,该质量体受该主体的推抵后于该容置空间中产生惯性移动,该能源转换单元包括一设置于该主体并与该质量体连接的发电模组,该发电模组吸收该质量体的惯性力并将所取得的惯性力转换成电力。借此,可实现在保护海岸线的同时取得波浪力量进行发电。

Description

波浪惯性力发电装置 技术领域
本申请是有关于一种发电装置,尤其是一种波浪惯性力的发电装置。
背景技术
随着环保意识提高,再生能源已受到大众的重视,其中,风力发电占据了再生能源中一定的比例,一般风力发电装置是通过空气流动时产生的风力推动风扇叶片转动,而风扇叶片的转动进一步带动发电机发电,一般而言,海上的风力资源比的陆上的资源丰富,且风向较为稳定,使得离岸风力发电较陆上风力发电在同样时间内能提供更多且稳定的电力。然而,在海上风力发电与陆地风力发电比较之下,海上风力发电的建设费用以及维护保养修理等费用,成为海上风力发电的主要成本。
请参阅图1,为中国台湾专利号M599855,说明一种浮子致动双向驱动波浪发电装置11,其包含管件111、浮体112、驱动组件113、安装座114、连接体115、底座116、天线117,及蓄电池118,浮体112漂浮于水面,管件111穿设该浮体112中,驱动组件113设置于管件111中以取得上下移动的动力,安装座114上设置有发电模组(图式未示出),连接体115与管件111及浮体112连接以固定该管件111只能上下移动,底座116具有重量以沉入水中使管件111可以直立于水面,天线117可以对外收发信号,蓄电池118可以储存发电模组发出的电力,海上的波浪可以带动浮体112上下移动,而使该管件111相对该浮体112上下移动,并带动该驱动组件113获得波浪的动力,以进一步驱动发电模组发电。
由上述说明可知,虽然其提供了一种波浪发电装置,但实际使用时仍具有下列缺点:
一、无法获取波浪的横移力量:
水面上的波浪可使水面高度产生反复的改变,以使现有的浮体112以上下飘移的方式带动该驱动组件113获得水面高低变化的力量,但是波浪于水面不仅具有上下移动的力量,更具有左右横移的力量,而靠近岸边22的地形条件可以提升波浪横移的力量,现有的波浪发电技术并无法取得来自侧向的波浪力量来进行发电。
二、结构强度不足:
一般波浪发电结构中因为需要吸收波浪的动力,会在结构上设置可活动的机构,如现有的中连接该管件111及该浮体112的连接体115,以使该管体111中的驱动组件113取得波浪的力量,但是突出该浮体112外侧的结构会受到外界风浪的冲击,当海上出现强风大浪时,设置于外部的结构将无法抵抗风浪的冲击而产生结构的损坏。
三、成本高发电效益不彰:
一般设置在海上的发电装置通常是以单一个体为发电单位,其发电的能力有限,并且海上发电装置发出的电力需要传输至陆地上,必需架设很长的电力传输线,海洋发电设备建置成本耗费颇大,然而陆地上的供电电网所取得的电力却没有很多,如此就会产生发电效益不彰的缺点。
四、无法保护海岸线:
现有的波浪发电装置漂浮于水面上,是随着波浪高度上下漂浮,无法抵挡波浪的冲击力,无法作为消波块使用,并且底部并没有设置小鱼可以躲避的空间,无法提供鱼群的生活环境,无法对近海的生态及地形起到保护的作用。
因此,如何在海岸边建置可以保护海岸线并且取得波浪力量的发电装置,还可以吸收波浪横向力量来进行发电,而且可以避免风浪的撞击所造成结构上的损坏,以达成更好的发电效率,是相关技术人员亟需努力的目标。
申请内容
有鉴于此,本申请的主要目的是在提供一种波浪惯性力发电装置,可实现在保护海岸线的同时取得波浪力量进行发电。
本申请的一种波浪惯性力发电装置,用于接收水面的波浪的能量,其包含:一主体单元,包括一设置于水面的主体、一设置于该主体并围绕界定出一容置空间的围绕壁,及一与该主体连接的固定体,该主体受波浪的推动而相对该固定体移动,该固定体用于限制该主体的移动范围;一质量单元,包括一可移动地设置于该容置空间中的质量体,该质量体受该主体的推抵后于该容置空间中产生惯性移动;及一能源转换单元,包括一设置于该主体并与该质量体连接的发电模组,该发电模组吸收该质量体的惯性力。
本申请的又一技术手段,是在于上述的质量体为液体,该围绕壁将该容置空间界定成流道,该容置空间具有对应的一第一端及一第二端,该质量体受该主体的推抵后是从该容置空间的第一端流往第二端。
本申请的另一技术手段,是在于上述的围绕壁具有一设置于该第一端与该第二端之间的倾斜部,该倾斜部的结构是由该第一端往该第二端逐渐升高。
本申请的再一技术手段,是在于上述的围绕壁将该容置空间界定成环形流道,并且该容置空间更具有另一第一端及另一第二端,该容置空间中的若干第一端与若干第二端为轮流设置。
本申请的又一技术手段,是在于上述的容置空间的若干第一端彼此连通。
本申请的另一技术手段,是在于上述的主体单元还包括一设置于该主体中并位于该容置空间的第一端与第二端之间的逆止结构,该逆止结构用于止挡该容置空间的第二端中的质量体流往该容置空间的第一端。
本申请的再一技术手段,是在于上述的固定体具有一固定部,及一分别与该主体与该固定部连接的连接部。
本申请的又一技术手段,是在于上述的能源转换单元还包括一与该发电模组电连接的电离模组,该发电模组用于将该质量体的惯性力转换成电力并提供该电离模组使用,该电离模组用于将水电离成氢跟氧。
本申请的另一技术手段,是在于上述的质量体为固体,该发电模组具有至少一与该主体连接的受力部,及一与该受力部连接的发电部,该质量体可分离地与该受力部抵接,该受力部用于吸收该质量体的惯性力并将力量传导至该发电部。
本申请的再一技术手段,是在于上述的主体具有至少一与该围绕壁连接并设置于该容置空间的逆止结构,该逆止结构用于推抵该质量体以使该质量体于该容置空间中进行单方向惯性运动。
本申请的有益功效在于,当该主体受到波浪的力量而产生倾斜或移动时该质量体会产生移动,当该主体收到该固定体的干涉而静止移动时,该质量体就会在该容置空间中产生惯性移动,而该发电模组可吸收于该质量体的惯性力,并转成电力对外输出。
附图说明
图1是一立体装置示意图,说明中国台湾专利号M599855,一种浮子致动双向驱动波浪发电装置;
图2是一侧视示意图,为本申请一种波浪惯性力发电装置的一第一较佳实施例,说明该波浪惯性力发电装置的一主体设置于靠近岸边的水面上的状态;
图3是一侧视剖面示意图,说明于该第一较佳实施例中,该主体的侧视剖面态样;
图4是一侧视剖面示意图,为本申请一种波浪惯性力发电装置的一第二较佳实施例,说明该主体的侧视剖面态样;
图5是一俯视剖面示意图,为本申请一种波浪惯性力发电装置的一第三较佳实施例,说明该主体的俯视剖面态样;
图6是一俯视剖面示意图,为本申请一种波浪惯性力发电装置的一第四较佳实施例,说明该主体的俯视剖面态样;
图7是一俯视剖面示意图,为本申请一种波浪惯性力发电装置的一第五较佳实施例,说明该主体的俯视剖面态样;
图8是一侧视剖面示意图,说明于该第五较佳实施例中,一球体状态的质量体于一容置空间中滚动,并且该容置空间中设置有发电模组的受力部及发电部的状态;
图9是一剖面示意图,为本申请一种波浪惯性力发电装置的一第六较佳实施例,说明该主体的 剖面态样;及
图10是一俯视设置示意图,说明若干主体彼此连接并设置于岸边的态样。
符号说明:
A鱼群;11浮子致动双向驱动波浪发电装置;111管件;112浮体;113驱动组件;114安装座;115连接体;116底座;117天线;118蓄电池;21水面;22岸边;23水底;24波浪;25波浪方向;26推力方向;27惯性力方向;28导流方向;29回流方向;3主体单元;31主体;32容置空间;321第一端;322第二端;33围绕壁;331倾斜部;34固定体;341固定部;342连接部;343第一连接绳;344第二连接绳;35回流管道;36逆止结构;37挡块;4质量单元;41质量体;5能源转换单元;51发电模组;511轮叶;512受力部;513发电部;514时规皮带;515齿轮;52电离模组。
具体实施方式
有下面结合附图和六个具体实施例对本申请作进一步说明,以使本领域的技术人员可以更好的理解本申请并能予以实施,但所举实施例不作为对本申请的限定。
参阅图2,及图3,为本申请一种波浪惯性力发电装置的一第一较佳实施例,该波浪惯性力发电装置是设置水面21上,用于接收水面21上波浪24的力量,使其产生惯性力后再吸收惯性力来进行发电。
该波浪惯性力发电装置包含一主体单元3、一质量单元4,及一能源转换单元5。
该主体单元3包括一设置于水面21的主体31、一设置于该主体31并围绕界定出一容置空间32的围绕壁33,及一与该主体31连接的固定体34,该主体31受波浪24的推动而相对该固定体34移动,于该第一较佳实施例,该主体31的设置位置靠近岸边22,该固定体34具有一设置于水底23的固定部341,及一分别与该主体31与该固定部341连接的连接部342,该固定部341为固定在水底23的桩体,该连接部342为连接该固定部341及该主体31的绳索,该固定体34用于拉住该主体31并限制该主体31的飘浮移动范围,并于拉住该主体31时使该质量单元4产生惯性移动,实际实施时,该岸边22与该主体31之间可以再设置一条加固的连接绳,不应以此为限。
于该第一较佳实施例,该固定部341的结构可为人工鱼礁,其表面粗糙以供水草生长,结构中设有空洞可吸引鱼群A进驻并躲避大型鱼类的猎食,有利近海生物的成长,实际实施时,该固定部341也可以是其他形式的人工鱼礁或结构,不应以此为限。
该质量单元4包括一可动地设置于该容置空间32中的质量体41,该质量体41受该主体31的推抵后可以于该容置空间32中产生惯性移动,于该第一较佳实施例,该质量体41为液体,该围绕壁33将该容置空间32界定成流道,该容置空间32具有对应的一第一端321及一第二端322,该 质量体41受该主体31的推抵后是从该容置空间32的第一端321流往第二端322,该围绕壁33具有一设置于该第一端321与该第二端322之间的倾斜部331,该倾斜部331的结构是由该第一端321往该第二端322逐渐升高,其中,该主体31于该第一端321设有水槽,并且该主体单元3还包括一设置于该第二端322与该水槽之间的回流管道35,该回流管道35是先由该容置空间32的第二端322向下延伸,再横向往该主体31的水槽延伸。
该能源转换单元5包括一设置于该主体31并与该质量体41连接的发电模组51,该发电模组51吸收该质量体41的惯性力来产生电力,于该第一较佳实施例,该发电模组51为发电机组,并且具有一设置于该容置空间32的第二端322的轮叶511,该轮叶511可受水流冲击而驱动该发电模组51产生电力。
于该第一较佳实施例,水面21上产生的波浪24会由波浪方向25向岸边22移动,设置于靠近岸边22的主体单元3的主体31在该固定体34的连接部342还未拉紧时,该主体31会被波浪24推动而向该岸边22移动,此时设置于该主体31内部左侧的围绕壁33会将该容置空间32中的质量体41以推力方向26向右推动,以使该质量体41与该主体31同时向右方移动。接着,当该固定体34的连接部342受该固定部341的拉力而撑紧时会拉住该主体31而使该主体31停止移动,而位于该主体单元3的容置空间32中的质量体41则会基于惯性力而向右移动,并以惯性力方向27从该容置空间32的第一端321流向第二端322,并冲击设置于该第二端322的轮叶511使其转动,以使该发电模组51接收该质量体41的惯性力而进行发电,流动至该容置空间32的第二端322的质量体41会被右侧的围绕壁33挡住,再通过地心引力流入该回流管道35而回到该主体31的水槽中,借此使该质量体41可于该主体31中循环流动,实际实施时,该围绕壁33可以不设置倾斜部331,而使该容置空间32的第一端321与第二端322相同高度,该主体31也可以不设置回流管道35以使该质量体41自然地由该第二端322回流至该第一端321,位于该容置空间32的质量体41还是会受该主体31的推动而冲击该发电模组51的轮叶511,不应以此为限。
于该第一较佳实施例,该能源转换单元5还包括一与该发电模组51电连接的电离模组52,该发电模组51用于将该质量体41的惯性力转换成电力并提供该电离模组52使用,该电离模组52用于将水电离成氢跟氧,取得的氢气及氧气可以进行储存,或是利用输气管路进行运用,实际实施时,可以不设置该电离模组52,是直接将该发电模组51发出的电力利用输电线传输至供电电网中,或是利用蓄电池进行电力的储存,不应以本较佳实施例的举例为限。
值得一提的是,一般波浪发电装置的外侧会设置承接波浪的结构,例如导流结构或轮叶结构,用于吸收波浪力量来进行发电,但是当风浪强大到一定的程度后,设置于外侧的结构并无法抵抗过大的风浪而产生损坏的状况,但是风浪太小时无法取得足够的波浪力量来进行发电,这是目前波浪 发电装置的缺点,然而本申请主要的发电技术为取得该质量体41的惯性力来进行发电,所有的机械结构都设置于该主体31的内侧,因此该主体31的外侧没有复杂的结构,不会受到风浪的撞击而产生损坏的状况,本申请具有可以承受较大风浪的优点。
请参阅图2,及图4,为本申请一种波浪惯性力发电装置的一第二较佳实施例,该第二较佳实施例与该第一较佳实施例大致相同,相同之处于此不再详述,不同之处再于,该围绕壁33所界定的容置空间32形成流道,并且流道往上方弯曲延伸,而该发电模组51设置于该主体31的水槽的上方,其中,该围绕壁33的倾斜部331不仅由该第一端321往该第二端322逐渐升高,更形成弯曲的结构而朝向该发电模组51的位置,该倾斜部331用于导引该质量体41流往该发电模组51,另外该主体31于该第二端322与该第一端321左侧更设置有回流管道35,该回流管道35中设有一逆止结构36,该逆止结构36用以阻止该容置空间32的第一端321中的质量体41从该回流管道35流往该第二端322,而该第二端322中的质量体41可通过该逆止结构36流往该第一端321,借此控制该质量体41于该容置空间32中进行循环的流动。
当水面21上的波浪24推动该主体31而以推力方向26推动容置空间32中的质量体41,会使该质量体41与该主体31同时向右移动,当该主体31受该固定体34的限制而停止移动时,位于该容置空间32的质量体41会产生惯性力而向右移动,当该质量体41到达位于右侧的倾斜部331时,弯曲结构的倾斜部331会将该质量体41以导流方向28导引至该发电模组51,以驱动该发电模组51进行发电,本案申请人要强调的是,海洋中波浪24的推动力量是非常大的,波浪24的大小不仅受到气候的影响也会受到地形的影响,因此于该第二较佳实施例中,波浪的力量是可以驱动该质量体41向高处移动,并驱动该发电模组51进行发电。
请参阅图2,及图5,为本申请一种波浪惯性力发电装置的一第三较佳实施例,该第三较佳实施例与该第一较佳实施例大致相同,相同之处于此不再详述,不同之处再于,该围绕壁33将该容置空间32界定成环形流道,并且该容置空间32更具有另一第一端321及另一第二端322,该容置空间32中的若干第一端321与若干第二端322为轮流设置。
当水面21上的波浪24以波浪方向25推动该主体31时会使该主体31向右移动并以推力方向26推动该质量体41,而该主体31受该固定体34的限制而停止移动时,会使该质量体41相对该主体31进行向右的惯性力移动,此时该质量体41由该容置空间32的第一端321以惯性力方向27流往右侧的第二端322,并驱动位于流道中的轮叶511,由于该容置空间32的第二端322的高度较高,因此流往该第二端322的质量体41会以回流方向29自然地流入右方的容置空间32中,当水面21上的波浪24抵达岸边22时会被阻挡,并且会产生另一以相反该波浪方向25移动的波浪24而推动该主体31向左移动,此时该主体31右侧的围绕壁33以向左的推力方向26推动右方容置空 间32中的质量体41,使该主体31与该质量体41以远离岸边22的方向移动,当该主体31受该固定体34的限制而停止移动时,会使该质量体41相对该主体31进行向左的惯性力移动,同时驱动设置于下方发电模组51的轮叶511转动,而抵达该第二端322的质量体41会因为地心引力以回流方向29落入左侧的容置空间32中,位于该容置空间32中的质量体41会因为波浪24力量而于该形成环形流道的容置空间32中进行顺时钟的流动,实际实施时,该容置空间32的若干第一端321彼此连通,也就是该若干第一端321的底部可以设置横向设置的连通管,该质量体41可于该连通管中流动,用以保持每一个容置空间32的第一端321都有足够的质量体41来进行惯性移动,不应以此为限。
请参阅图2,及图6,为本申请一种波浪惯性力发电装置的一第四较佳实施例,该第四较佳实施例与该第一较佳实施例大致相同,相同之处于此不再详述,不同之处再于,该容置空间32的第一端321与第二端322的高度相同,并且该第一端321与该第二端322之间设有若干流道,该主体单元3还包括一设置于该主体31中并位于该容置空间32的第一端321与第二端322之间的逆止结构36,该逆止结构36用于止挡该容置空间32的第二端322中的质量体41流往该容置空间32的第一端321,于该第四较佳实施例,该主体31的中间处设有流道,位于中间的流道中设有逆止结构36以驱使该质量体41向右流动,并且该发电模组51的轮叶511设置于中间的流道中,该主体31的上下两侧也另外设有回流道,位于该第二端322的质量体41会由上下两侧的回流道流往该第一端321,当水面21上波浪24推动该主体31向右移动时,该主体31中左侧的围绕壁33以推力方向26推动该容置空间32中的质量体41移动,当该主体31受该固定体34的限制而停止移动时,位于该容置空间32中的质量体41会相对该主体31由惯性力方向27移动而流入位于中间的流道并驱动该轮叶511转动而流入该第二端322,而流入该容置空间32的第二端322中的质量体41在惯性力消失后,会以回流方向29从该主体31的上下两侧的回流道中流回该容置空间32的第一端321,借此使该质量体41在该容置空间32中形成循环的流动。
请参阅图2、图7,及图8,为本申请一种波浪惯性力发电装置的一第五较佳实施例,该第五较佳实施例与该第一较佳实施例大致相同,相同之处于此不再详述,不同之处再于,该质量体41为固体,该发电模组51具有至少一与该主体31连接的受力部512,及一与该受力部512连接的发电部513,该质量体41可分离地与该受力部512抵接,该受力部512用于吸收该质量体41的惯性力并将力量传导至该发电部513。
于该第五较佳实施例中,该质量体41为圆形的球体,该围绕壁33所界定的容置空间32是形成环形管道,且该质量体41可于该容置空间32中相对该主体31滚动,该发电模组51的受力部512为设置于容置空间32中的板体,该受力部512以倾斜的方式设置于该容置空间32中,并且该 受力部512可相对该主体31枢转,较佳地,该受力部512是以右斜45度撑立于该容置空间32中,当该质量体41从该受力部512的右侧接近时,该质量体41将被该受力部512挡住而停止移动,当该主体31受波浪24的力量而向右移动时,该主体31带动该受力部512以推力方向26推动该质量体41,以使该质量体41与该主体31向右移动,当该主体31受该固定体34的限制而静止时,该质量体41以惯性力方向27接近另一受力部512并将该受力部512下压,该发电模组51的发电部513与该受力部512的转轴连接,用以接受该受力部512转动的力量而进行发电,当该质量体41离开该受力部512后,该受力部512会回弹成倾斜状态,于该第五较佳实施例中,该发电模组51的受力部512不仅是一种用于吸收惯性力的结构,也是一种逆止结构36,以驱动该质量体41于该容置空间32中顺时针转动。
请参阅图2,及图9,为本申请一种波浪惯性力发电装置的一第六较佳实施例,该第六较佳实施例与该第五较佳实施例大致相同,相同之处于此不再详述,不同之处再于,该发电模组51具有一与该质量体41连接的时规皮带514,及二间隔设置于该时规皮带514的齿轮515,该质量体41带动该时规皮带514移动并驱动该二齿轮515转动,该发电模组51可接收齿轮515的转动而进行发电。
其中,该主体单元3还包括二与该主体31连接并间隔设置于该容置空间32的挡块37,该二挡块37可以限制该质量体41的移动范围,当该主体31受波浪24的推力而向右移动时,位于左边的挡块37可以推动该质量体41向右移动,当该主体31受到该固定体34的限制而停止移动时,该质量体41会以惯性力方向27相对该主体31移动并且带动该时规皮带514移动,该二齿轮515传递该质量体41的惯性力而使该发电模组51发电。
配合参阅图10,该主体31的结构简单,其外侧没有其他复杂的结构,因此该主体31不会因为风浪过大而造成损坏,并且可利用绳索将若干主体31连接在一起,较佳地,可将若干主体31以矩阵的方式设置于岸边22,用来接收向岸边22移动的波浪24力量,当该若干主体31受到固定体34的限制而停止移动时,会有效减缓波浪24的力量,借此可利用若干连接在一起的波浪惯性力发电装置来达成消除波浪24的目的,可使该区域的岸边22不需要设置消波块。
较佳地,以矩阵方式设置于岸边22的若干主体31,彼此之间可以设置第一连接绳343,以使该若干主体31的位置可以通过该第一连接绳343而彼此牵制,并且靠近于岸边22的主体31可以与岸边22再设置第二连接绳344,使该岸边22可以通过该第二连接绳344拉住该若干主体,实际实施时,该若干主体31之间或者与岸边22之间也可以不设置连接绳,不应以此为限。
除此之外,当靠近岸边22的区域设置有若干主体31时,每一主体31的底部可以分别连接一设置于海床上的固定体34,借此固定该若干主体31于水面上的位置,并且该若干固定体34的固 定部341的结构为人工鱼礁,可以提供鱼群A大量生长的环境,有助近海生态的恢复,实际实施时,也可以将若干主体31同时固定在一固定体34上,不应以此为限。
由上述说明可知,本申请一种波浪惯性力发电装置确实具有下列功效:
一、用于取得波浪横移的力量:
靠近岸边22的地形条件可以提升波浪横移的力量,而该主体31的侧边可以接收波浪24移动时撞击的力量,以使设置于该主体31内部的质量体41可以产生惯性移动,进一步该发电模组51可以吸收该质量体41的惯性力而发电,因此本申请可以取得波浪横移的力量来进行发电。
二、不惧风浪的撞击:
该主体31结构简单并且质量体41及发电模组51都容置于内部,因此当遇到较大的风浪时,该主体31内部的结构并不容易被破坏,而绝大多数的波浪发电装置都是直接承受波浪的力量,所以波浪过大时容易发生结构上的损坏,但波浪太小又会产生发电效益不彰的状况,这是波浪发电为什么至今尚未大规模商转的主因,本申请的优点是可以承受大浪的力量,精密的发电仪器及结构都受该主体31保护,具有不易受损的优点。
三、可以获取较多的电力:
若干的波浪惯性力发电装置可以设置于靠近岸边22的位置,不仅所设置的电力传输线较短而可降低装置的设置成本,若干设置于该主体31中的发电模组51可以将产生的电力累加起来再传输至陆地上的供电电网,借此获得较多的电力。
四、可以保护海岸线:
本申请是一种设置于岸边22的波浪惯性力发电装置,不仅可以取得波浪24冲击岸边22的力量而进行发电,并且大量设置于岸边22的主体31可提供消波块的功能,用于削减波浪24冲击的力量,有效防止海岸线被风浪侵蚀,除此之外,作为人工鱼礁的固定部341可以提供鱼群A的生存环境,有利近海生物的成长。
综上所述,该主体31设置于岸边22的水面21上,可以将波浪24的力量转成该质量体41的惯性力,再利用该发电模组51吸收该质量体41的惯性力而进行发电,并且该若干主体31可以相互连接并设置于靠近岸边22处,在进行波浪惯性力发电时还可以削减波浪24的力量,用以减缓波浪24对海岸的侵蚀,故确实可以达成本申请的目的。
以上所述六个实施例仅是为充分说明本申请而所举的较佳的实施例,本申请的保护范围不限于此。本技术领域的技术人员在本申请基础上所作的等同替代或变换,均在本申请的保护范围之内。本申请的保护范围以权利要求书为准。

Claims (10)

  1. 一种波浪惯性力发电装置,用于接收水面的波浪的能量,其包含:
    一主体单元,包括一设置于水面的主体、一设置于该主体并围绕界定出一容置空间的围绕壁,及一与该主体连接的固定体,该主体受波浪的推动而相对该固定体移动,该固定体用于限制该主体的移动范围;
    一质量单元,包括一可移动地设置于该容置空间中的质量体,该质量体受该主体的推抵后于该容置空间中产生惯性移动;及
    一能源转换单元,包括一设置于该主体并与该质量体连接的发电模组,该发电模组吸收该质量体的惯性力。
  2. 如权利要求1所述波浪惯性力发电装置,其中,该质量体为液体,该围绕壁将该容置空间界定成流道,该容置空间具有对应的一第一端及一第二端,该质量体受该主体的推抵后是从该容置空间的第一端流往第二端。
  3. 如权利要求2所述波浪惯性力发电装置,其中,该围绕壁具有一设置于该第一端与该第二端之间的倾斜部,该倾斜部的结构是由该第一端往该第二端逐渐升高。
  4. 如权利要求2所述波浪惯性力发电装置,其中,该围绕壁将该容置空间界定成环形流道,并且该容置空间更具有另一第一端及另一第二端,该容置空间中的若干第一端与若干第二端为轮流设置。
  5. 如权利要求4所述波浪惯性力发电装置,其中,该容置空间的若干第一端彼此连通。
  6. 如权利要求2所述波浪惯性力发电装置,其中,该主体单元还包括一设置于该主体中并位于该容置空间的第一端与第二端之间的逆止结构,该逆止结构用于止挡该容置空间的第二端中的质量体流往该容置空间的第一端。
  7. 如权利要求1所述波浪惯性力发电装置,其中,该固定体具有一固定部,及一分别与该主体与该固定部连接的连接部,该固定部的结构为人工鱼礁。
  8. 如权利要求1所述波浪惯性力发电装置,其中,该能源转换单元还包括一与该发电模组电连接的电离模组,该发电模组用于将该质量体的惯性力转换成电力并提供该电离模组使用,该电离模组用于将水电离成氢跟氧。
  9. 如权利要求1所述波浪惯性力发电装置,其中,该质量体为固体,该发电模组具有至少一个与该主体连接的受力部,及一与该受力部连接的发电部,该质量体可分离地与该受力部抵接,该受力部用于吸收该质量体的惯性力并将力量传导至该发电部。
  10. 如权利要求9所述波浪惯性力发电装置,其中,该主体具有至少一个与该围绕壁连接并设置于 该容置空间的逆止结构,该逆止结构用于推抵该质量体以使该质量体于该容置空间中进行单方向惯性运动。
PCT/CN2022/088379 2022-04-22 2022-04-22 波浪惯性力发电装置 WO2023201679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088379 WO2023201679A1 (zh) 2022-04-22 2022-04-22 波浪惯性力发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088379 WO2023201679A1 (zh) 2022-04-22 2022-04-22 波浪惯性力发电装置

Publications (1)

Publication Number Publication Date
WO2023201679A1 true WO2023201679A1 (zh) 2023-10-26

Family

ID=88418834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088379 WO2023201679A1 (zh) 2022-04-22 2022-04-22 波浪惯性力发电装置

Country Status (1)

Country Link
WO (1) WO2023201679A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2208622Y (zh) * 1994-07-27 1995-09-27 林香建 一种可减少船只横摇和利用风浪能量的装置
CN102182616A (zh) * 2011-05-17 2011-09-14 冯久雨 利用海浪动能进行二次发电的装置
CN106640494A (zh) * 2016-08-31 2017-05-10 西安交通大学 均向力波浪能发电装置
WO2019136007A1 (en) * 2018-01-02 2019-07-11 Lone Gull Holdings, Ltd. Renewably-powered buoy submersible
CN110159500A (zh) * 2019-06-19 2019-08-23 李宏江 车用的地上拖轮发电机和船用的水上拖轮发电机
CN111997817A (zh) * 2020-09-25 2020-11-27 南京工业职业技术大学 一种船载冲击式摇摆驱动波浪发电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2208622Y (zh) * 1994-07-27 1995-09-27 林香建 一种可减少船只横摇和利用风浪能量的装置
CN102182616A (zh) * 2011-05-17 2011-09-14 冯久雨 利用海浪动能进行二次发电的装置
CN106640494A (zh) * 2016-08-31 2017-05-10 西安交通大学 均向力波浪能发电装置
WO2019136007A1 (en) * 2018-01-02 2019-07-11 Lone Gull Holdings, Ltd. Renewably-powered buoy submersible
CN110159500A (zh) * 2019-06-19 2019-08-23 李宏江 车用的地上拖轮发电机和船用的水上拖轮发电机
CN111997817A (zh) * 2020-09-25 2020-11-27 南京工业职业技术大学 一种船载冲击式摇摆驱动波浪发电机

Similar Documents

Publication Publication Date Title
AU2017200610B2 (en) Wave energy converter system
KR101642941B1 (ko) 와이어를 이용한 동력 전달식 파력 발전장치
AU2011269845B2 (en) System and method for renewable electrical power production using wave energy
WO2019169742A1 (zh) 一种用于深海养殖的浮式防波提和风能集成系统
CN104265550B (zh) 一种漂浮式波浪能发电系统
CN104960636A (zh) 一种能集聚的多功能组合式海洋发电平台及集聚群
CN102900592B (zh) 浮动平台波浪能储能系统和波浪能发电系统
WO2021218596A1 (zh) 聚能式海浪加重力发电系统及海上生态平台
US8439641B2 (en) Flow driven engine
CN202756167U (zh) 浮动平台波浪能储能系统和波浪能发电系统
EP2770194A1 (en) Wave-power electricity generation system
Shintake Harnessing the Power of Breaking Waves
CN115769794A (zh) 一种深远海柔性气囊波浪能网箱养殖平台
US20110254270A1 (en) Wave gear drive -WGD
KR20130066258A (ko) 해류 또는 조류를 이용하는 발전장치
CN103925143A (zh) 海风海浪海流能量同步偶合的海上发电平台
WO2023201679A1 (zh) 波浪惯性力发电装置
CN104018980A (zh) 一种利用多个浮体的桩式波浪能俘获装置
TWI804289B (zh) 波浪慣性力發電裝置
CN201896696U (zh) 一种柱式波浪发电系统
KR101239053B1 (ko) 해양 에너지를 이용한 발전 장치
EP3247897B1 (en) System for conversion of the whole kinetic energy of sea wave into electricity by one-way direct drive shaft converter, (odsc system)
WO2011042915A2 (en) Shoal anchoring marine-wave power absorption and delivery apparatus and the method
CN219587704U (zh) 一种海上综合能源发电装置
CN211474321U (zh) 漂浮式浮筒连杆海浪发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937915

Country of ref document: EP

Kind code of ref document: A1