WO2023200268A1 - 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기 - Google Patents

흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기 Download PDF

Info

Publication number
WO2023200268A1
WO2023200268A1 PCT/KR2023/005000 KR2023005000W WO2023200268A1 WO 2023200268 A1 WO2023200268 A1 WO 2023200268A1 KR 2023005000 W KR2023005000 W KR 2023005000W WO 2023200268 A1 WO2023200268 A1 WO 2023200268A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush device
processor
cleaner
brush
wireless
Prior art date
Application number
PCT/KR2023/005000
Other languages
English (en)
French (fr)
Inventor
이선구
강현구
김시현
박상혁
이영주
정재식
조정희
최지원
한정균
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220143950A external-priority patent/KR20230148084A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN202380022760.XA priority Critical patent/CN118748922A/zh
Priority to EP23788617.1A priority patent/EP4424220A1/en
Priority to US18/136,287 priority patent/US20230329499A1/en
Publication of WO2023200268A1 publication Critical patent/WO2023200268A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/24Hand-supported suction cleaners
    • A47L5/26Hand-supported suction cleaners with driven dust-loosening tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/22Mountings for motor fan assemblies
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]

Definitions

  • One embodiment of the present disclosure relates to a method for a wireless vacuum cleaner to automatically adjust the intensity of suction force of a suction motor.
  • a cordless vacuum cleaner is a type of vacuum cleaner that charges the battery built into the vacuum cleaner itself without the need to connect a wire to an outlet.
  • the cordless vacuum cleaner includes a suction motor that generates suction force, and can suck in foreign substances such as dust and air from the cleaner head (e.g. brush) through the suction power generated by the suction motor, and separate the sucked foreign substances from the air to collect dust. there is.
  • cleaner heads or attachments e.g., brushes
  • the brushes of a cordless vacuum cleaner can be divided into, for example, a main brush that is generally used to clean the floor, and an auxiliary brush that is used for special purposes.
  • auxiliary brushes used for special purposes.
  • consumers must have various types of brushes suitable for the floor condition and must replace the brushes themselves.
  • a wireless cleaner includes a suction motor that creates a vacuum inside the wireless cleaner; A pressure sensor that measures the pressure of the flow path inside the cordless vacuum cleaner; A load detection sensor for measuring the load on the brush device; Memory to store an AI model trained to infer the state of the brush device's usage environment; And it may include at least one processor. At least one processor may obtain data about the flow path pressure measured by the pressure sensor from the pressure sensor. At least one processor may obtain data related to the load of the brush device through a load detection sensor. At least one processor may identify the current usage environment state of the brush device by applying data related to flow path pressure and data related to the load of the brush device to the AI model stored in the memory. At least one processor may adjust the intensity of suction force of the suction motor based on the current usage environment state of the identified brush device.
  • a method for a wireless vacuum cleaner to automatically adjust the suction force intensity of a suction motor of a cordless vacuum cleaner includes the steps of acquiring data on flow path pressure measured by a pressure sensor of the cordless vacuum cleaner; Obtaining data related to the load of the brush device through a load detection sensor of the wireless vacuum cleaner; Applying data related to flow path pressure and data related to the load of the brush device to an AI model stored in the memory of the wireless vacuum cleaner to identify the current usage environment state of the brush device; and adjusting the intensity of suction force of the suction motor based on the current usage environment state of the identified brush device.
  • FIG. 1 is a diagram for explaining a cleaning system according to an embodiment of the present disclosure.
  • Figure 2 is a diagram for explaining a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • FIG 3 is a diagram for explaining the main body of a vacuum cleaner according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining the operation of processors of a cordless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 5 is a diagram for explaining a brush device according to an embodiment of the present disclosure.
  • Figure 6 is a diagram for explaining an operation of identifying the type of brush device in the cleaner main body according to an embodiment of the present disclosure.
  • Figure 7 is a diagram for explaining the identification resistance (ID resistance) of the brush device according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method of controlling the intensity of suction force of a suction motor in a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating an AI model for inferring the usage environment state of a brush device according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating an operation of the cleaner main body identifying the usage environment state of the brush device using an SVM model according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an operation in which the vacuum cleaner main body identifies the use environment state of the brush device using a neural network model according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating an operation in which the vacuum cleaner main body identifies the usage environment state of the brush device using a random forest model according to an embodiment of the present disclosure.
  • Figure 13 is a diagram for explaining an AI mode according to an embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating a method for a wireless vacuum cleaner to select an AI model according to the type of brush device according to an embodiment of the present disclosure.
  • FIG. 15A is a diagram for explaining a first SVM model corresponding to a multi-brush according to an embodiment of the present disclosure.
  • Figure 15b is a diagram for explaining an operation in which the parameter values of the first SVM model corresponding to the multi-brush are modified according to the change in power consumption of the suction motor.
  • Figure 15c is a diagram for explaining an operation in which the parameter values of the first SVM model corresponding to the multi-brush are modified according to the change in power consumption of the suction motor.
  • FIG. 16A is a diagram for explaining a second SVM model corresponding to a floor brush according to an embodiment of the present disclosure.
  • Figure 16b is a diagram for explaining an operation in which parameter values of the second SVM model corresponding to the floor brush are modified according to changes in power consumption of the suction motor.
  • Figure 16c is a diagram for explaining an operation in which the parameter values of the second SVM model corresponding to the floor brush are modified according to the change in power consumption of the suction motor.
  • FIG. 17 is a flowchart illustrating a method by which a wireless vacuum cleaner identifies a state transition of a usage environment of a brush device according to an embodiment of the present disclosure.
  • FIG. 18 is a flowchart illustrating an operation of a wireless vacuum cleaner using an SVM model to identify a usage environment state transition of a brush device according to an embodiment of the present disclosure.
  • FIG. 19 is a diagram illustrating an operation in which a main processor communicates with a second processor through a first processor according to an embodiment of the present disclosure.
  • Figure 20 is a diagram for explaining a circuit for signal line communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • FIG. 21 is a diagram for explaining a data format included in a signal transmitted between a cleaner main body and a brush device according to an embodiment of the present disclosure.
  • Figure 22 is a diagram for explaining an operation of transmitting a signal from the cleaner main body to the brush device according to an embodiment of the present disclosure.
  • Figure 23 is a diagram for explaining an operation of transmitting a signal from the brush device to the cleaner main body according to an embodiment of the present disclosure.
  • Figure 24 is a flowchart for explaining the operation of mutually transmitting signals between the cleaner main body and the brush device according to an embodiment of the present disclosure.
  • FIG. 25 is a diagram illustrating an operation of the cleaner main body identifying the type of a brush device based on a signal received from the brush device according to an embodiment of the present disclosure.
  • FIG. 26 is a diagram for explaining an operation in which a lighting device is controlled according to a usage environment state of a brush device according to an embodiment of the present disclosure.
  • Figure 27 is a diagram for explaining a circuit for signal line communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 28 is a diagram for explaining a circuit for I2C communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 29 is a diagram for explaining a circuit for UART full-duplex communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 30 is a diagram for explaining a circuit for UART half-duplex communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 31 is a diagram for explaining a circuit for I2C communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 32 is a diagram for explaining a circuit for UART communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 33 is a diagram for explaining a circuit for UART full-duplex communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 34 is a diagram for explaining a circuit for I2C communication of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • Figure 35 is a diagram for explaining an operation of a wireless vacuum cleaner outputting an operation status notification according to an embodiment of the present disclosure.
  • Figure 36 is a diagram for explaining the GUI of a wireless vacuum cleaner according to an embodiment of the present disclosure.
  • the expression “at least one of a, b, or c” refers to “a”, “b”, “c”, “a and b”, “a and c”, “b and c”, “a, b and c”, or variations thereof.
  • FIG. 1 is a diagram for explaining a cleaning system according to an embodiment of the present disclosure.
  • a cleaning system may include a wireless cleaner 100.
  • the wireless cleaner 100 may refer to a vacuum cleaner that has a built-in rechargeable battery and does not need to connect a power cord to an outlet during cleaning.
  • the cordless vacuum cleaner 100 is described herein, the cleaning system may also include a cord vacuum activated by a wall outlet without departing from the scope of the present disclosure.
  • the user can move the cordless cleaner 100 back and forth using the handle mounted on the cleaner main body and allow the cleaner head or attachment, such as a brush device, to suck in dust or trash from the surface being cleaned.
  • a brush device is described herein, other types of cleaner heads or attachments may be used with the vacuum cleaner without departing from the scope of the present disclosure.
  • the wireless vacuum cleaner 100 may provide a normal mode and an AI mode.
  • the normal mode may be a manual mode in which the intensity of the suction force of the suction motor is adjusted according to the intensity (e.g., strong, medium, weak, etc.) selected by the user.
  • AI mode the suction power of the suction motor or the number of revolutions per minute (hereinafter referred to as drum RPM) of the brush device varies depending on the usage environment of the brush device (e.g., the condition of the surface to be cleaned (floor, carpet, mat, corner, etc.)). It may be an automatic mode that is automatically adjusted.
  • the suction power is the electrical power (Input Power) consumed to operate the wireless vacuum cleaner 100, and the suction power strength of the suction motor 1110 is the power consumption of the suction motor 1110. It can also be expressed.
  • the user may need to change different types of cleaner attachments.
  • the user may need to replace the cleaner attachment such as a brush device or manually adjust the suction power of the suction motor depending on the condition or type of the surface being cleaned.
  • a first type of cleaner attachment such as a first brush device adapted to the carpet
  • the first type of cleaner attachment is connected to the cleaner body. It is necessary to connect different types of cleaner attachments to the cleaner body, such as different types of brush units suitable for the cleaner.
  • the user may need to adjust the suction power of the wireless vacuum cleaner 100 depending on the type or material of the surface being cleaned. For example, when cleaning a rug or a corner of a wall, the user must directly increase the suction power of the cordless vacuum cleaner 100, and when cleaning a mat, the cordless cleaner 100 adheres too closely to the mat, so the user must manually increase the suction power of the cordless cleaner 100. The suction power intensity should be lowered.
  • the user may maintain the suction force intensity at the maximum intensity without appropriately adjusting the suction force intensity depending on the situation.
  • battery usage time may be significantly reduced, and when cleaning on a mat, the brush device may be in too close contact with the mat, making it difficult for the user to push the cordless vacuum cleaner 100 back and forth.
  • the motor rotation speed (eg, drum RPM) of the brush device or the trip level of the brush device cannot be appropriately adjusted depending on the situation.
  • the trip level is used to prevent overload of the brush device and may mean a reference load value (e.g., reference current value) for stopping the operation of the brush device.
  • the wireless cleaner 100 uses an AI model learned to infer the usage environment state of the brush device or attachment. It is possible to infer the current usage environment state and automatically adjust the suction force strength of the suction motor according to the current usage environment state of the brush device or attachment. For example, when the state of the surface to be cleaned changes from hard floor to carpet, the wireless cleaner 100 may increase the suction power of the suction motor to improve cleaning performance. On the other hand, when the state of the surface to be cleaned changes from carpet to floor again, the wireless cleaner 100 is used to increase the usage time of the battery (or to increase operation noise (e.g., drum friction noise of the brush device, suction motor operation noise of the cleaner body).
  • operation noise e.g., drum friction noise of the brush device, suction motor operation noise of the cleaner body.
  • the suction power of the suction motor can be lowered again.
  • the condition of the surface to be cleaned changes from floor to mat, to increase the convenience of operation (or to reduce operation noise (e.g., friction noise of the drum of the brush unit, operation noise of the suction motor of the cleaner body, etc.), or to reduce the operation noise of the drum of the brush unit
  • the wireless cleaner 100 can automatically lower the suction power of the suction motor, and the brush device can automatically lower the suction power of the surface being cleaned.
  • the wireless cleaner 100 may control the operation of the brush device through communication between the cleaner main body and the brush device.
  • the wireless cleaner 100 adapts the motor rotation speed (e.g., drum RPM), trip level, and operation of the lighting device (e.g., color, brightness) of the brush device according to the current usage environment status of the brush device. It can be adjusted.
  • the wireless cleaner 100 may increase the motor rotation speed (eg, drum RPM) of the brush device to increase cleaning performance.
  • the wireless cleaner 100 is used to increase the usage time of the battery (or to increase operation noise (e.g., drum friction noise of the brush device, suction motor operation noise of the cleaner body). etc.), or to reduce damage (e.g. scratches, scratches, nicks, abrasions, etc.) caused by friction on the surface being cleaned by the drum rotation of the brush device, the motor rotation speed of the brush device (e.g. drum RPM) can be lowered again.
  • the wireless cleaner 100 may lower the motor rotation speed (e.g., drum RPM) of the brush device to the maximum.
  • the wireless cleaner 100 when the wireless cleaner 100 operates in AI mode, the wireless cleaner 100 automatically adjusts the suction force intensity of the suction motor or the motor rotation speed of the brush device according to the current usage environment status of the brush device inferred by the AI model.
  • the cleaning performance By adjusting the cleaning performance, user convenience, battery usage time, operation noise (e.g., drum friction noise of the brush device, suction motor operation noise of the cleaner body, etc.), the surface to be cleaned due to the drum rotation of the brush device Damage caused by friction (e.g. scratches, scratches, nicks, wear, etc.) can be efficiently improved.
  • the wireless vacuum cleaner 100 can provide optimal control suited to the various living environments of each user by using an AI model.
  • FIG. 2 is a diagram for explaining a wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the wireless cleaner 100 may be a stick-type cleaner including a cleaner main body 1000, a brush device 2000, and an extension tube 3000.
  • the wireless cleaner 100 may be implemented with more components than those shown in FIG. 2, or the wireless cleaner 100 may be implemented with fewer components.
  • the wireless cleaner 100 may be implemented as a cleaner body 1000 and a brush device 2000, excluding the extension tube 3000.
  • the wireless cleaner 100 may further include a cleaning station (not shown) for discharging dust from the cleaner main body 1000 and charging the battery. Let's look at each configuration below.
  • a brush device 2000 is described herein, it should be understood that other types of attachments may be used without departing from the scope of the present disclosure.
  • the cleaner main body 1000 is a part that the user can hold and move when cleaning, and may include a suction motor 1110 that creates a vacuum inside the wireless cleaner 100.
  • the suction motor 1110 may be located in a dust container (dust container) that accommodates foreign substances sucked from the surface to be cleaned (e.g., floor, bedding, sofa, etc.).
  • the cleaner main body 1000 may further include at least one processor 1001, a load detection sensor 1134, a pressure sensor 1400, and a memory 1900 in addition to the suction motor 1110, but is not limited thereto. no.
  • the load detection sensor 1134 may be a sensor for measuring the load of the brush device 2000 or a load detection (sensing) circuit, but is not limited thereto.
  • the pressure sensor 1400 may be a sensor that measures pressure in the flow path inside the wireless vacuum cleaner 100.
  • the memory 1900 may store an AI model learned to infer the usage environment state of the brush device 2000.
  • at least one processor 1001 obtains data about the flow path pressure measured by the pressure sensor 1400 from the pressure sensor 1400 and detects the load of the brush device 2000 through the load detection sensor 1134. You can obtain data related to .
  • the at least one processor 1001 applies data related to flow path pressure and data related to the load of the brush device 2000 to the AI model stored in the memory 1900 to determine the current usage environment state of the brush device 2000. can be identified.
  • At least one processor 1001 may adjust the intensity of suction force of the suction motor 1110 based on the current usage environment state of the brush device 2000.
  • the vacuum cleaner body 1000 will be examined in detail later with reference to FIG. 3
  • the brush device 2000 is a device that is in close contact with the surface to be cleaned and can suck air and foreign substances from the surface to be cleaned.
  • the brush device 2000 may also be represented as a cleaner head or cleaner attachment.
  • the brush device 2000 may be rotatably coupled to the extension tube 3000.
  • the brush device 2000 may include a motor, a drum with a rotating brush attached thereto, but is not limited thereto.
  • the brush device 2000 may further include at least one processor for controlling communication with the cleaner main body 1000.
  • brush device 2000 may be removably coupled to a vacuum cleaner and may be replaced with a different type of vacuum cleaner head or vacuum cleaner attachment. There may be various types of brush device 2000, and the types of brush device 2000 will be discussed in detail later with reference to FIG. 5.
  • the extension pipe 3000 may be formed of a pipe, a hollow conduit, or a flexible hose having a predetermined rigidity.
  • the extension tube 3000 transmits the suction force generated through the suction motor 1110 of the cleaner main body 1000 to the brush device 2000, and transfers air and foreign substances sucked through the brush device 2000 to the cleaner main body 1000. It can be moved.
  • the extension tube 3000 may be separably connected to the brush device 2000.
  • the extension tube 3000 may be formed in multiple stages between the cleaner main body 1000 and the brush device 2000. There may be two or more extension tubes 3000.
  • the cleaner main body 1000, brush device 2000, and extension tube 3000 included in the wireless cleaner 100 each have a power line (for example, a +power line, a -power line). and signal lines.
  • a power line for example, a +power line, a -power line.
  • the power line may be a line for transmitting power supplied from the battery 1500 to the cleaner main body 1000 and the brush device 2000 connected to the cleaner main body 1000.
  • the signal line is different from the power line and may be a line for transmitting and receiving signals between the cleaner main body 1000 and the brush device 2000.
  • the signal line may be implemented to be connected to a power line within the brush device 2000.
  • each of the at least one processor 1001 of the vacuum cleaner body 1000 and the processor of the brush device 2000 controls the operation of a switch element connected to a signal line, thereby controlling the vacuum cleaner body 1000 and the brush.
  • Two-way communication between devices 2000 can be performed.
  • communication between the cleaner main body 1000 and the brush device 2000 may be defined as ‘signal line communication.’ Signal line communication will be examined in detail later with reference to FIGS. 20 to 24.
  • the cleaner main body 1000 and the brush device 2000 may communicate using I2C (Inter Integrated Circuit) or UART (Universal asynchronous receiver/transmitter).
  • I2C Inter Integrated Circuit
  • UART Universal asynchronous receiver/transmitter
  • the cleaner main body 1000 goes beyond detecting whether the brush device 2000 is attached or detachable to identifying the type of the brush device 2000 and determining the use environment status of the brush device 2000 (e.g. :
  • the operation (e.g., drum RPM) of the brush device 2000 may be adaptively controlled depending on the condition (hard floor, carpet, mat, corner, lifted state from the surface to be cleaned, etc.).
  • the cleaner main body 1000 may transmit a signal for controlling the operation of the brush device 2000 to the brush device 2000 by periodically communicating with the brush device 2000.
  • the method by which the cleaner main body 1000 adaptively controls the operation (e.g., drum RPM) of the brush device 2000 will be discussed in detail later with reference to FIG. 23.
  • the cleaner main body 1000 will be described with reference to FIG. 3. ) Let's take a closer look at the composition.
  • FIG. 3 is a diagram for explaining the cleaner main body 1000 according to an embodiment of the present disclosure.
  • the cleaner body 1000 may include a handle that can be held by a user. Accordingly, the vacuum cleaner body 1000 may be expressed as a handy body. The user can hold the handle and move the cleaner body 1000 and the brush device 2000 in the forward and backward directions.
  • the cleaner main body 1000 includes a suction force generating device (hereinafter referred to as the motor assembly 1100) that generates the suction force necessary to suck in foreign substances on the surface to be cleaned, and a dust collection container that accommodates foreign substances sucked from the surface to be cleaned.
  • a suction force generating device hereinafter referred to as the motor assembly 1100
  • a dust collection container that accommodates foreign substances sucked from the surface to be cleaned.
  • (1200 also known as a dust bin
  • a filter unit 1300 also known as a dust bin
  • a pressure sensor 1400 a battery 1500 capable of supplying power to the motor assembly 1100
  • a communication interface 1600 e.g., a user interface 1700
  • at least one may include a processor 1001 (e.g., main processor 1800) and a memory 1900.
  • the cleaner main body 1000 may be implemented with more components than those shown in FIG. 3, or the cleaner main body 1000 may be implemented with fewer components.
  • the motor assembly 1100 includes a suction motor 1110 that converts electrical force into mechanical rotational force, a fan 1120 that is connected to the suction motor 1110 and rotates, and a drive circuit 1130 connected to the suction motor 1110 ( included in the PCB (Printed Circuit Board).
  • the suction motor 1110 can create a vacuum or suction force inside the wireless cleaner 100.
  • vacuum means a state lower than atmospheric pressure.
  • the suction motor 1110 may include a brushless motor (hereinafter referred to as a brushless direct current (BLDC) motor), but is not limited thereto.
  • BLDC brushless direct current
  • the driving circuit 1130 controls the suction motor 1110, a processor (hereinafter referred to as the first processor 1131) that controls communication with the brush device 2000, and a first switch element 1132 connected to a signal line. , a switch element (hereinafter referred to as the PWM control switch element 1133) for controlling the power supply to the brush device 2000 (e.g. FET, Transistor, IGBT, etc.), a load that senses the load of the brush device 2000 It may include a detection sensor 1134 (e.g., a shunt resistor, a shunt resistor and amplification circuit (OP-AMP), a current detection sensor, a magnetic field detection sensor (non-contact type), etc.), but is not limited thereto.
  • the FET will be described as an example of the PWM control switch element 1133
  • the shunt resistance will be described as an example of the load detection sensor 1134.
  • the first processor 1131 may obtain data related to the state of the suction motor 1110 (hereinafter referred to as state data) and transmit the state data of the suction motor 1110 to the main processor 1800.
  • the first processor 1131 controls (e.g., turns on or turns off) the operation of the first switch element 1132 connected to the signal line and sends a signal (hereinafter referred to as the first signal) to the brush device 2000 through the signal line. ) can be transmitted.
  • the first switch element 1132 is an element that can set the signal line to Low.
  • the first switch element 1132 is an element that can cause the voltage of the signal line to be 0V.
  • the first signal is the target rotation per minute (hereinafter also referred to as target drum RPM) of the rotating brush of the brush device 2000, the target trip level of the brush device 2000, or the consumption of the suction motor 1110. It may include data representing at least one of power, but is not limited thereto.
  • the first signal may include data for controlling a lighting device included in the brush device 2000.
  • the first signal may be implemented with a preset number of bits.
  • the first signal may be implemented with 5 bits or 8 bits, and may have a transmission period of 10 ms per bit, but is not limited thereto.
  • the first processor 1131 may detect a signal (hereinafter referred to as a second signal) transmitted from the brush device 2000 through a signal line.
  • the second signal may include data indicating the current state of the brush device 2000, but is not limited thereto.
  • the second signal may include data regarding current operating conditions (e.g., current drum RPM, current restraint level, current lighting device setting value, etc.).
  • the second signal may further include data indicating the type of brush device 2000.
  • the first processor 1131 may transmit data indicating the current state of the brush device 2000 or data indicating the type of the brush device 2000 included in the second signal to the main processor 1800.
  • the driving circuit 1130 of the motor assembly 1100 will be examined in more detail later with reference to FIG. 20.
  • the motor assembly 1100 may be located within the dust collection container 1200.
  • the dust collection container 1200 may be configured to filter and collect dust or dirt in the air flowing in through the brush device 2000.
  • the dust collection box 1200 may be provided to be detachable from the cleaner main body 1000.
  • the dust collection container 1200 can collect foreign substances through a cyclone method that separates foreign substances using centrifugal force. Air from which foreign substances have been removed through the cyclone method may be discharged to the outside of the cleaner main body 1000, and the foreign substances may be stored in the dust collection container 1200. A multi-cyclone may be placed inside the dust collection container 1200. The dust collection container 1200 may be provided to collect foreign substances on the lower side of the multi-cyclone.
  • the dust collection container 1200 may include a dust collection container door that allows the dust collection container 1200 to be opened when connected to the clean station.
  • the dust collection container 1200 may include a first dust collection unit that is primarily collected and relatively large foreign substances are collected, and a second dust collection unit that is collected by a multi-cyclone and relatively small foreign substances are collected. Both the first dust collection unit and the second dust collection unit may be arranged to be open to the outside when the dust collection container door is opened.
  • the filter unit 1300 can filter ultrafine dust that is not filtered in the dust collection container 1200.
  • the filter unit 1300 may include an outlet that allows air that has passed through the filter to be discharged to the outside of the wireless cleaner 100.
  • the filter unit 1300 may include a motor filter, a HEPA filter, etc., but is not limited thereto.
  • the pressure sensor 1400 can measure the pressure inside the flow path (hereinafter also referred to as flow path pressure).
  • flow path pressure In the case of the pressure sensor 1400 provided at the suction end (e.g., suction duct 40) of the wireless vacuum cleaner 100, the change in flow rate at the corresponding location can be measured by measuring the static pressure.
  • the pressure sensor 1400 may be an absolute pressure sensor or a relative pressure sensor, but is not limited thereto.
  • the main processor 1800 can use the pressure sensor 1400 to sense the first pressure value before operating the suction motor 1110. Additionally, the main processor 1800 may sense the second pressure value after driving the suction motor 1110 at the target RPM, and use the difference between the first pressure value and the second pressure value as the pressure value inside the flow path.
  • the first pressure value may be a pressure value due to internal/external influences such as weather, altitude, status of the wireless vacuum cleaner 100, and dust inflow
  • the second pressure value may be a pressure value due to altitude, status of the wireless vacuum cleaner 100, and dust inflow. It may be a pressure value due to internal/external influences such as the inflow amount and a pressure value due to driving the suction motor 1110
  • the difference between the first pressure value and the second pressure value may be a pressure value due to driving the suction motor 1110. Therefore, when the difference between the first pressure value and the second pressure value is used as the pressure value inside the flow path, internal/external influences other than those of the suction motor 1110 can be minimized.
  • the flow path pressure measured by the pressure sensor 1400 identifies the current use environment state of the brush device 2000 (e.g., the state of the surface to be cleaned (floor, carpet, mat, corner, etc.), the state lifted from the surface to be cleaned, etc.) It may be used to measure suction power that changes depending on the degree of contamination of the dust collection container 1200 or the degree of dust collection.
  • the current use environment state of the brush device 2000 e.g., the state of the surface to be cleaned (floor, carpet, mat, corner, etc.), the state lifted from the surface to be cleaned, etc.
  • the pressure sensor 1400 may be located at the suction end (eg, suction duct 40).
  • the suction duct 40 is a structure that connects the dust collection container 1200 and the extension pipe 3000 or the dust collection container 1200 and the brush device 2000 to allow fluid containing foreign substances to move to the dust collection container 1200. It can be.
  • the pressure sensor 1400 may be located at the end of a straight part (or an inflection point between a straight part and a curved part) of the suction duct 40 in consideration of contamination by foreign matter/dust, but is limited thereto. That is not the case.
  • pressure sensor 1400 may be located in the middle of a straight portion of suction duct 40. Meanwhile, when the pressure sensor 1400 is located in the suction duct 40, the pressure sensor 1400 is located in front of the suction motor 1110 that generates suction force, so the pressure sensor 1400 is a negative pressure sensor. sensor).
  • the case in which the pressure sensor 1400 is located in the suction duct 40 is described as an example, but is not limited thereto.
  • the pressure sensor 1400 may be located at the discharge end (eg, within the motor assembly 1100). When the pressure sensor 1400 is located at the discharge end, the pressure sensor 1400 is located at the rear end of the suction motor 1110, so it can be implemented as a positive pressure sensor. Additionally, a plurality of pressure sensors 1400 may be provided in the wireless vacuum cleaner 100.
  • the battery 1500 may be detachably mounted on the cleaner body 1000.
  • the battery 1500 may be electrically connected to a charging terminal provided in a clean station (not shown).
  • the battery 1500 can be charged by receiving power from a charging terminal.
  • the clean station may be a device for discharging dust of the wireless cleaner 100 and charging the battery 1500.
  • the wireless cleaner 100 can be mounted (docked) at a cleaning station to discharge dust, charge the battery 1500, or be stored.
  • the cleaner main body 1000 may include a communication interface 1600 for communicating with an external device.
  • the cleaner main body 1000 may communicate with a cleaning station (or server device) through the communication interface 1600.
  • the communication interface 1600 may include a short-range communication unit and a long-distance communication unit.
  • the short-range wireless communication interface includes a Bluetooth communication unit, BLE (Bluetooth Low Energy) communication unit, NFC (Near Field Communication interface), WLAN (Wi-Fi) communication unit, Zigbee communication unit, and infrared (IrDA) communication unit. , Infrared Data Association) communication department, WFD (Wi-Fi Direct) communication department, UWB (ultra wideband) communication department, Ant+ communication department, etc., but is not limited thereto.
  • the user interface 1700 may be provided on the handle.
  • the user interface 1700 may include an input interface and an output interface.
  • the cleaner main body 1000 may receive user input related to the operation of the wireless cleaner 100 through the user interface 1700, and may output information related to the operation of the wireless cleaner 100.
  • the input interface may include a power button, a suction power intensity control button, etc.
  • the output interface may include, but is not limited to, an LED display, LCD, touch screen, etc.
  • the cleaner main body 1000 may include at least one processor 1001.
  • the cleaner main body 1000 may include one processor or may include a plurality of processors.
  • the cleaner body 1000 may include a main processor 1800 connected to the user interface 1700 and a first processor 1131 connected to the suction motor 1110.
  • At least one processor 1001 may control the overall operation of the wireless vacuum cleaner 100.
  • the at least one processor 1001 determines the power consumption (suction force intensity) of the suction motor 1110, the drum RPM of the brush device 2000, the trip level of the brush device 2000, etc. You can.
  • At least one processor 1001 includes a Central Processing Unit (CPU), Graphics Processing Unit (GPU), Accelerated Processing Unit (APU), Many Integrated Core (MIC), Digital Signal Processor (DSP), and NPU ( Neural Processing Unit) may be included.
  • At least one processor 1001 may be implemented in the form of an integrated system-on-chip (SoC) including one or more electronic components.
  • SoC system-on-chip
  • Each of the at least one processor 1001 may be implemented as separate hardware (H/W).
  • At least one processor 1001 may be expressed as a microprocessor controller (MICOM), a micro processor unit (MPU), or a micro controller unit (MCU).
  • MICOM microprocessor controller
  • MPU micro processor unit
  • MCU micro controller unit
  • At least one processor 1001 may be implemented as a single core processor or a multicore processor.
  • the memory 1900 may store programs for processing and control of at least one processor 1001, and may also store input/output data.
  • the memory 1900 includes a pre-learned AI model (e.g., SVM (Support Vector Machine) algorithm, etc.), state data of the suction motor 1110, measured values of the pressure sensor 1400, and the battery 1500.
  • Status data, status data of the brush device 2000, error occurrence data, power consumption of the suction motor 1110 corresponding to the operating conditions, RPM of the drum with the rotating brush, restraint level, etc. can be stored.
  • the trip level is used to prevent overload of the brush device 2000 and may mean a reference load value (eg, a reference current value) for stopping the operation of the brush device 2000.
  • FIG. 4 is a diagram for explaining the operation of processors of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the main processor 1800 communicates with the battery 1500, the pressure sensor 1400, and the first processor 1131 in the motor assembly 1100 to check the status of parts in the cordless vacuum cleaner 100. You can.
  • the main processor 1800 may communicate with each component using a universal asynchronous receiver/transmitter (UART) or an inter integrated circuit (I2C), but is not limited to this.
  • UART universal asynchronous receiver/transmitter
  • I2C inter integrated circuit
  • the main processor 1800 may obtain data about the voltage status (e.g., normal, abnormal, fully charged, fully discharged, etc.) of the battery 1500 from the battery 1500 using the UART.
  • the main processor 1800 may obtain data about flow path pressure from the pressure sensor 1400 using I2C.
  • the main processor 1800 uses the UART from the first processor 1131 connected to the suction motor 1110 to determine the suction force intensity, RPM of the suction motor 1110, and the status of the suction motor 1110 (e.g., normal , abnormalities, etc.) can be obtained.
  • Suction power is the electrical power consumed to operate the wireless vacuum cleaner 100, and may be expressed as power consumption.
  • the main processor 1800 may obtain data related to the load of the brush device 2000 and data related to the type of the brush device 2000 from the first processor 1131.
  • the first processor 1131 provides status data (e.g., drum RPM, trip level, normal, abnormal) of the brush device 2000 through signal line communication with the second processor 2410 of the brush device 2000. etc.) can also be obtained from the brush device 2000.
  • the first processor 1131 may transmit status data of the brush device 2000 to the main processor 1800 through UART.
  • the first processor 1131 may transmit state data of the suction motor 1110 and state data of the brush device 2000 to the main processor 1800 at different cycles. For example, the first processor 1131 transmits the status data of the suction motor 1110 to the main processor 1800 once every 0.02 seconds, and transmits the status data of the brush device 2000 to the main processor 1800 once every 0.2 seconds. ), but is not limited to this.
  • the first processor 1131 of the cleaner main body 1000 and the second processor 2410 of the brush device 2000 communicate through signal line communication instead of UART or I2C.
  • the circuit for signal line communication is a voltage distribution circuit (hereinafter referred to as (referred to as a voltage divider).
  • communication between the first processor 1131 of the cleaner main body 1000 and the second processor 2410 of the brush device 2000 is not limited to signal line communication.
  • the first processor 1131 of the cleaner main body 1000 and the second processor 1131 of the brush device 2000 may also communicate using UART or I2C.
  • the noise reduction circuit may include at least one of a low pass filter, a high pass filter, a band pass filter, a damping resistor, and a distribution resistor. It is not limited to this.
  • the first processor 1131 of the cleaner main body 1000 and the second processor 1131 of the brush device 2000 may also communicate using UART or I2C.
  • the main processor 1800 may receive user input for setting buttons (e.g., ON/OFF button, +/- setting button) included in the user interface 1700, and may control the output of the LCD. .
  • the main processor 1800 uses a previously learned AI model (e.g., SVM algorithm) to determine the usage environment status of the brush device 2000 (e.g., the state of the surface to be cleaned (floor, carpet, mat, corner, etc.), the surface to be cleaned, (e.g. lifted state, etc.), and operation information of the wireless cleaner 100 (e.g., power consumption of the suction motor 1110, drum RPM, trip level, etc.) that matches the usage environment condition of the brush device 2000. ) can also be determined.
  • a previously learned AI model e.g., SVM algorithm
  • the main processor 1800 may transmit operation information of the wireless vacuum cleaner 100 that matches the usage environment state of the brush device 2000 to the first processor 1131.
  • the first processor 1131 can adjust the strength of the suction force (power consumption, RPM) of the suction motor 1110 according to the operation information of the wireless cleaner 100, and generate a wireless cleaner suitable for the usage environment of the brush device 2000.
  • the operation information of 100 may be transmitted to the second processor 2410 through signal line communication.
  • the second processor 2410 may adjust the drum RPM, restraint level, lighting device (eg, LED display), etc. according to the operation information of the wireless cleaner 100.
  • the main processor 1800 uses a pre-learned AI model (e.g., SVM algorithm) to identify the usage environment state of the brush device 2000, and creates a wireless vacuum cleaner 100 that matches the usage environment state of the brush device 2000.
  • a pre-learned AI model e.g., SVM algorithm
  • the operation of determining the operation information will be looked at in detail later with reference to FIG. 14, and hereinafter, the brush device 2000 will be looked at in more detail with reference to FIG. 5.
  • FIG. 5 is a diagram for explaining a brush device 2000 according to an embodiment of the present disclosure.
  • the brush device 2000 may include a motor 2100, a drum 2200 with a rotating brush attached thereto, a lighting device 2300, etc., but is not limited thereto.
  • the motor 2100 of the brush device 2000 may be provided inside the drum 2200 or may be provided outside the drum 2200. When the motor 2100 is provided outside the drum 2200, the drum 2200 can receive power from the motor 2100 through a belt.
  • the motor 2100 may be a planetary geared motor.
  • a planetary geared motor may be a combination of a DC motor and a planetary gear 2101.
  • the planetary gear 2101 is used to adjust the RPM of the drum 2200 according to the gear ratio.
  • the RPM of the motor 2100 and the RPM of the drum 2200 may have a constant ratio.
  • the motor 2100 may be a BLDC (Brushless Direct Current) motor, but is not limited thereto.
  • the motor 2100 is a BLDC motor, the RPM of the motor 2100 and the RPM of the drum 2200 may be the same.
  • the lighting device 2300 is used to illuminate the dark surface to be cleaned, to facilitate identification of dust or foreign matter on the surface to be cleaned, or to indicate the status of the brush device 2000, and is located on the front or top of the brush device 2300. It can be provided.
  • the lighting device 2300 may include, but is not limited to, an LED display.
  • the lighting device 2300 may be a laser.
  • the lighting device 2300 may operate automatically as the motor 2100 is driven, or may operate under the control of the second processor 2410. According to an embodiment of the present disclosure, the lighting device 2300 may change color or brightness under control of the second processor 2410.
  • the brush device 2000 may further include a driving circuit 2400 (included in the PCB).
  • the driving circuit 2400 may include a circuit for signal line communication with the cleaner main body 1000.
  • the driving circuit 2400 includes a second processor 2410, a switch element (hereinafter also referred to as a second switch element) (not shown) connected to the signal line, and an identification resistor indicating the type of the brush device 2000 ( (not shown), etc., but is not limited thereto.
  • the driving circuit 2400 will be examined in detail later with reference to FIG. 20.
  • the brush device 2000 includes a multi brush 501, a floor brush 502, a mop brush 503, a turbo (carpet) brush 504, a bedding brush 505, and a brush brush (not shown). , gap brush (not shown), pet brush (not shown), etc., but is not limited thereto.
  • the type of brush device 2000 or attachment may be distinguished by an identification resistance included in the brush device 2000 or attachment.
  • An operation in which the cleaner body 1000 identifies the type of brush device 2000 coupled to the cordless cleaner 100 or the type of attachment will be described with reference to FIG. 6 .
  • FIG. 6 is a diagram for explaining an operation of identifying the type of brush device 2000 in the cleaner main body 1000 according to an embodiment of the present disclosure.
  • the motor assembly 1100 of the cleaner main body 1000 may include a first processor 1131 and a load detection sensor 1134 (e.g., shunt resistor), and the brush device 2000
  • An identification resistor 2500 may be included.
  • the identification resistor 2500 may be located between the power lines 10 and 20 and the signal line 30.
  • the identification resistance 2500 represents the type of brush device 2000 or the type of attachment, and may be different for each type of brush device 2000 or type of attachment.
  • the discrimination resistance 2500 of the multi brush 501 is 330K ⁇
  • the discrimination resistance 2500 of the floor brush 502 is 2.2M ⁇
  • the discrimination resistance 2500 of the turbo (carpet) brush 504 is It may be 910K ⁇ , but is not limited thereto.
  • the first processor 1131 can detect whether the brush device 2000 is attached or detached using the load detection sensor 1134. For example, when the brush device 2000 is not coupled to the wireless cleaner 100 (e.g., handy mode), the operating current of the brush device 2000 detected by the load detection sensor 1134 is “0” (zero). ) can be. On the other hand, when the brush device 2000 is coupled to the wireless cleaner 100 (e.g., brush mode), the operating current of the brush device 2000 detected by the load detection sensor 1134 may be 50 mA or more. Accordingly, the first processor 1131 determines that the brush device 2000 is detached when the operating current of the brush device 2000 detected by the load detection sensor 1134 is 0, and the load detection sensor 1134 determines that the brush device 2000 is detached. If the detected operating current of the brush device 2000 is 50 mA or more, it may be determined that the brush device 2000 is coupled. Meanwhile, the reference operating current value for determining that the brush device 2000 is coupled is not limited to 50 mA and may be changed.
  • the first processor 1131 When it is determined that the brush device 2000 is coupled to the wireless cleaner 100, the first processor 1131 operates the brush based on the voltage value input to the input port (AD port) of the first processor 1131.
  • the type of device 2000 can be identified. For example, if the brush device 2000 includes an identification resistor A, and the driving circuit 1130 of the cleaner body 1000 includes a voltage divider (resistor B and resistor C) connected to the signal line 30,
  • the voltage input to the input port of the first processor 1131 may be as follows.
  • AD Port input voltage battery supply voltage * C/(A+B+C)
  • the voltage value input to the input port of the first processor 1131 may decrease as the value of the identification resistor 2500 increases.
  • resistance B and resistance C are constant, the voltage value input to the input port varies depending on the value of identification resistor A, so the first processor 1131 sets the identification resistor 2500 based on the voltage value input to the input port.
  • the type of corresponding brush device 2000 can be identified. For this, please refer to FIG. 7.
  • FIG. 7 is a diagram for explaining the identification resistance (ID resistance) of the brush device 2000 according to an embodiment of the present disclosure.
  • the identification resistance of the multi brush 501 is 330K ⁇
  • the identification resistance of the floor brush 502 is 2.2M ⁇
  • the identification resistance of the turbo (carpet) brush 504 is 910K ⁇ . You can. If the voltage of the battery 1500 is 25.2V, the voltage value input to the input port of the first processor 1131 when the multi brush 501 is coupled to the wireless cleaner 100 is 2.785V, and the voltage value input to the input port of the wireless cleaner 100 is 2.785V.
  • the voltage value input to the input port of the first processor 1131 is 0.791V
  • the turbo (carpet) brush 504 is coupled to the wireless vacuum cleaner 100
  • the voltage value input to the input port of the first processor 1131 may be 1.563V. Accordingly, the first processor 1131 determines that the brush device 2000 is coupled to the wireless cleaner 100, and in a situation where the voltage of the battery 1500 is 25.2V, the voltage value input to the input port is 2.785V. If , the multi brush 501 is identified as being combined, and if the voltage value input to the input port is 0.791V, the floor brush 502 is identified as being combined, and if the voltage value input to the input port is 1.563V. It can be identified that the turbo (carpet) brush 504 is combined.
  • FIG. 8 is a flowchart illustrating a method by which the wireless vacuum cleaner 100 adjusts the suction force intensity of the suction motor 1110 according to an embodiment of the present disclosure.
  • the wireless cleaner 100 may obtain data about the flow path pressure measured by the pressure sensor 1400.
  • At least one processor 1001 of the cleaner main body 1000 may acquire the pressure value measured by the pressure sensor 1400.
  • the main processor 1800 may receive the pressure value measured by the pressure sensor 1400 from the pressure sensor 1400 through I2C communication.
  • the pressure sensor 1400 is located within the flow path and can measure the pressure inside the flow path (flow path pressure).
  • the pressure sensor 1400 may be located within the suction duct 40 or the motor assembly 1100, but is not limited thereto.
  • the pressure sensor 1400 may be an absolute pressure sensor or a relative pressure sensor.
  • the main processor 1800 uses the pressure sensor 1400 to determine the first pressure value before operating the suction motor 1110 and drives the suction motor 1110 at the target RPM.
  • the second pressure value can be sensed, and the difference between the first pressure value and the second pressure value can be used as the pressure value inside the flow path.
  • internal/external influences other than those of the suction motor 1110 can be minimized.
  • the wireless cleaner 100 may obtain data related to the load of the brush device 2000 through the load detection sensor 1134.
  • the load detection sensor 1134 is located in the driving circuit 1130 of the motor assembly 1100 and may include, but is limited to, a shunt resistor, a current detection circuit, a load detection circuit, etc. It doesn't work.
  • the main processor 1800 of the cleaner main body 1000 may receive data related to the load of the brush device 2000 from the first processor 1131 in the motor assembly 1100.
  • the data related to the load of the brush device 2000 is one of the operating current of the brush device 2000, the voltage applied to the brush device 2000, or the power consumption of the brush device 2000. It may include at least one, but is not limited to this.
  • the power consumption of the brush device 2000 may be the power consumption of the motor 2100, and may be calculated as the product of the operating current of the brush device 2000 and the voltage applied to the brush device 2000. If the brush device 2000 includes a lighting device 2300 (e.g., an LED display), the load of the brush device 2000 can be calculated as the sum of the load of the motor 2100 and the load of the lighting device 2300. there is.
  • step S830 the cleaner main body 1000 applies data related to flow path pressure and data related to the load of the brush device 2000 to one or more previously learned AI models to identify the current usage environment state of the brush device 2000. can do.
  • the AI model may be a machine learning algorithm learned to infer the usage status of the brush device 2000.
  • the AI model may be trained or updated (renew, refined) in an external device (eg, a server device, external computing device), or may be trained or updated in the vacuum cleaner main body 1000.
  • the cleaner body 1000 may receive an AI model learned from an external device and store it in the memory 1900, and at least one processor 1001 of the cleaner body 1000 may use the brush device 2000.
  • An AI model for inferring environmental conditions can also be created through learning.
  • the AI model may include at least one of a Support Vector Machine (SVM) model, a Neural Networks model, a Random Forest model, or a Graphical Model. , but is not limited to this.
  • SVM Support Vector Machine
  • Neural Networks model e.g., a Neural Networks model
  • Random Forest model e.g., a Random Forest model
  • Graphical Model e.g., a Graphical Model
  • the SVM model may be an algorithm that creates a hyper plane with the maximum margin that can classify data in three-dimensional space using a kernel function of the characteristics in the data.
  • the Random Forest model may be an ensemble algorithm that trains multiple decision trees and predicts by combining the results of multiple decision trees.
  • a neural network model may be an algorithm that derives an output by combining weights and transformation functions for each input value.
  • a graphical model may be an algorithm that represents the independence between random variables as a graph. At this time, random variables can be expressed as nodes, and conditional independence between random variables can be expressed as edges.
  • the accuracy is relatively high and the response speed is fast, so the operation of the wireless vacuum cleaner 100 can be quickly converted to optimal specifications. Therefore, the case where the AI model is the SVM model will be described below as a main example.
  • the usage environment state of the brush device 2000 may be related to the environment in which the brush device 2000 is being used during cleaning.
  • the state of the use environment of the brush device 2000 may be the state of the surface to be cleaned on which the brush device 2000 is located, the relative position of the brush device 2000 within the surface to be cleaned, or the state of the surface to be cleaned when the brush device 2000 is It may include at least one of the states mentioned in, but is not limited to this.
  • the surface to be cleaned may refer to a surface that comes into contact with the brush device 2000 during cleaning, such as a floor, bedding, or sofa.
  • the condition of the surface to be cleaned may refer to the material of the surface to be cleaned, and may include, for example, a floor, a general carpet (normal load), a high-density carpet (overload), a mat, etc.
  • the relative position state may include, but is not limited to, the center of the floor, the side of the floor (wall surface), a corner, etc.
  • the mat state, floor state, carpet state, and lifting state will be described as examples among various usage environment states.
  • the main processor 1800 of the vacuum cleaner main body 1000 stores data on the flow path pressure obtained from the pressure sensor 1400 and the data obtained from the first processor 1131 in a pre-stored AI model.
  • Data related to the load of the brush device 2000 may be input, and the current usage environment state of the brush device 2000 may be obtained as a result of inference of the AI model.
  • the load value of the brush device 2000 used as an input value of the AI model may vary depending on the type of the brush device 2000.
  • the main processor 1800 may input the operating current data of the floor brush 502 into the first AI model corresponding to the floor brush 502. there is.
  • the power consumption (or operating current and applied voltage) of the multi-brush 501 can be input into the second AI model corresponding to the multi-brush 501. there is.
  • the cleaner main body 1000 can identify the current usage environment state of the brush device 2000 by applying data related to flow path pressure and data related to the load of the brush device 2000 to one or more previously learned AI models. there is.
  • the AI model when a normal first flow path pressure value and a normal first load value are applied to the AI model corresponding to the brush device 2000 currently used in the wireless cleaner 100, the AI model is applied to the brush device 2000.
  • the AI model can output 'hard floor' as the usage environment state
  • the AI model is the usage environment of the brush device (2000) 'Mat' can be output as a state.
  • the cleaner main body 1000 transmits data related to the flow path pressure and data related to the load of the brush device 2000 at a predetermined period to the previously learned AI model. By applying this, it is possible to continuously monitor the usage environment status of the brush device 2000.
  • the cleaner main body 1000 may adjust the suction force intensity of the suction motor 1110 based on the current usage environment state of the brush device 2000.
  • Suction power is the electrical power (Input Power) consumed to operate the wireless vacuum cleaner 100, and the strength of the suction power of the suction motor 1110 may be expressed as the power consumption of the suction motor 1110.
  • the cleaner main body 1000 when the current usage environment of the brush device 2000 is to clean a hard floor, the cleaner main body 1000 adjusts the suction power of the suction motor 1110 to a medium intensity level. It can be determined as the 1st century. For example, the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 70W.
  • the cleaner main body 1000 determines the suction power intensity of the suction motor 1110 to be a second intensity lower than the first intensity. You can. When a user cleans a mat or high-density carpet, the brush device 2000 adheres too closely to the surface being cleaned, making it difficult for the user to move the wireless cleaner 100. Accordingly, the cleaner main body 1000 may determine the suction force intensity to be lower when cleaning a mat or high-density carpet than when cleaning a floor.
  • the vacuum cleaner body 1000 may determine the power consumption of the suction motor 1110 to be 58W when cleaning a mat, and may determine the power consumption of the suction motor 1110 to be 40W when cleaning a high-density carpet.
  • the cleaner main body 1000 improves the user's convenience of use by automatically reducing the suction power of the suction motor 1110 when the user moves the brush device 2000 onto a mat or high-density carpet. can do.
  • the cleaner main body 1000 may determine the suction power intensity of the suction motor 1110 to be a third intensity higher than the first intensity. It may require greater suction power to pick up dust or debris from a regular carpet than from a hard floor. Accordingly, the vacuum cleaner main body 1000 can determine the suction strength to be higher when cleaning a general carpet than when cleaning a floor. For example, the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 115W. According to an embodiment of the present disclosure, the cleaner main body 1000 can improve cleaning performance on carpets by automatically increasing the suction power of the suction motor 1110 when the user moves the brush device 2000 on the carpet. .
  • the cleaner main body 1000 uses the suction motor 1110 when the current usage environment state of the brush device 2000 is a state in which the brush device 2000 is lifted a certain distance or more from the surface to be cleaned (hereinafter, a lifted state).
  • the suction power intensity can be determined as the minimum intensity.
  • the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 40W.
  • the cleaner body 1000 can extend the use time of the battery 1500 by minimizing the power consumption of the suction motor 1110.
  • the cleaner main body 1000 when the current use environment state of the brush device 2000 is to clean the corner of the wall, the cleaner main body 1000 increases the suction force of the suction motor 1110 to the maximum intensity. You can decide. For example, the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 200W. Accordingly, the cleaner body 1000 can improve the cleaning performance at the wall corner by automatically increasing the suction power of the suction motor 1110 when the user cleans the wall corner.
  • the wireless cleaner 100 identifies the current usage environment state of the brush device 2000 using an AI model corresponding to the brush device 2000, and determines the usage environment of the brush device 2000.
  • the suction power intensity of the suction motor 1110 can be automatically adjusted depending on the state. Accordingly, the user does not need to replace the brush according to the floor condition when cleaning, the usage time of the battery 1500 can be extended, and cleaning performance and efficiency can be improved. Additionally, the wireless vacuum cleaner 100 can finely adjust the intensity of suction force.
  • the wireless vacuum cleaner 100 can only select one of 40W, 75W, and 115W for the power consumption of the suction motor 1110 depending on the intensity selected by the user (e.g., weak, medium, strong), but in AI mode
  • 40W, 75W, and 115W you can also select intermediate values (e.g. 50W, 60W, 80W, 95W, 130W, 200W), allowing you to finely adjust the suction power strength.
  • FIG. 9 is a diagram illustrating an SVM model for inferring the usage environment state of the brush device 2000 according to an embodiment of the present disclosure.
  • the SVM model can be created through supervised learning.
  • the SVM model is a model that learns with labeled training data and then finds out which group the newly input data belongs to among the groups it was trained on.
  • the SVM model may be learned using the load value of the brush device 2000 and the pressure value of the suction motor 1110 in a specific usage environment state as learning data.
  • the load value can be used as learning data.
  • the SVM model labels e.g. correct value, ground-truth
  • the state of the usage environment e.g. floor, carpet, mat, lifting, etc.
  • the SVM model may be trained in an external device (eg, a server device, an external computing device) or in the vacuum cleaner main body 1000.
  • an external device eg, a server device, an external computing device
  • the learned SVM model may be composed of at least one hyperplane for classifying the usage environment state.
  • an SVM model for predicting the state of the use environment may be composed of a hyperplane to distinguish between floors and carpets, a hyperplane to distinguish between floors and mats, and a hyperplane to distinguish between carpets and lifts.
  • a and b may be parameters, and the parameters may vary depending on the suction force strength of the suction motor 1110, the type of brush device 2000, the state of the cleaner 100 (e.g., amount of dust, etc.), etc. It can be modified.
  • FIG. 10 is a diagram illustrating an operation of the cleaner main body 1000 to identify the usage environment state of the brush device 2000 using an SVM model according to an embodiment of the present disclosure.
  • the usage environment of the brush device 2000 is divided into four types: floor (1011, hf: hard floor), carpet (1012, carpet), mat (1013, mat), and lift (1014, lift). Let's explain this using an example.
  • the SVM model can output ‘floor (1011)’ as the usage environment state of the brush device (2000).
  • the SVM model may output ‘mat (1013)’ as the usage environment state of the brush device (2000).
  • the SVM model can output ‘carpet (1012)’ as the usage environment state of the brush device (2000).
  • the SVM model may output ‘lifting (1014)’ as the usage environment state of the brush device (2000).
  • the floor 1011 is mapped to the first operating condition
  • the carpet 1012 is mapped to the second operating condition
  • the mat 1013 is mapped to the third operating condition
  • the lift 1014 is mapped to the fourth operating condition. can be mapped to
  • the main processor 1800 of the cleaner main body 1000 operates the suction motor 1110 or the brush device 2000 according to the usage environment state of the brush device 2000 identified through the SVM model. Movement can be controlled. For example, when the use environment state of the brush device 2000 is identified as 'Maru 1011', the main processor 1800 of the cleaner main body 1000 sets the condition to the first operating condition (e.g., Maru 1011). The suction motor 1110 and the brush device 2000 may be controlled to operate based on the corresponding first operation information.
  • the first operating condition e.g., Maru 1011
  • the SVM model is explained as an example of an AI model for inferring the usage environment state of the brush device 2000, but it is not limited thereto.
  • the vacuum cleaner main body 1000 can receive or learn various types of artificial intelligence models (AI models) from outside the wireless vacuum cleaner 100.
  • AI models artificial intelligence models
  • a neural network model as an example of an AI model for inferring the usage environment state of the brush device 2000 will be examined with reference to FIG. 11.
  • FIG. 11 is a diagram illustrating an operation of the cleaner main body 1000 identifying the usage environment state of the brush device 2000 using a neural network model according to an embodiment of the present disclosure.
  • a neural network model may be composed of a plurality of neural network layers (e.g., input layer, middle layer (hidden layer), output layer).
  • Each of the plurality of neural network layers has a plurality of weight values, and neural network calculation is performed through calculation between the calculation result of the previous layer and the plurality of weights.
  • the plurality of weights possessed by the plurality of neural network layers can be optimized based on the learning results of the neural network model. For example, a plurality of weights may be updated so that loss or cost values obtained from the neural network model are reduced or minimized during the learning process.
  • Neural networks include, for example, Convolutional Neural Network (CNN), Deep Neural Network (DNN), Recurrent Neural Network (RNN), Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN), and Bidirectional Recurrent Deep Neural Network (BRDNN).
  • CNN Convolutional Neural Network
  • DNN Deep Neural Network
  • RNN Recurrent Neural Network
  • RBM Restricted Boltzmann Machine
  • DNN Deep Belief Network
  • BDN Deep Belief Network
  • BDN Bidirectional Recurrent Deep Neural Network
  • BDN Bidirectional Recurrent Deep Neural Network
  • the neural network model according to an embodiment of the present disclosure may be a model for inferring the use environment state of the brush device 2000.
  • Inference prediction is a technology that judges information and makes logical inferences and predictions, including knowledge/probability-based reasoning, optimization prediction, preference-based planning, and recommendation. Includes.
  • At least one processor 1001 may be comprised of one or multiple processors. At this time, at least one processor 1001 may be a general-purpose processor such as a CPU, AP, or DSP (Digital Signal Processor), a graphics-specific processor such as a GPU or VPU (Vision Processing Unit), or an artificial intelligence-specific processor such as an NPU. At least one processor 1001 controls input data to be processed according to predefined operation rules or an artificial intelligence model (eg, neural network model) stored in the memory 1900. Alternatively, when at least one processor 1001 is an artificial intelligence-specific processor, the artificial intelligence-specific processor may be designed with a hardware structure specialized for processing a specific artificial intelligence model.
  • an artificial intelligence model eg, neural network model
  • Predefined operation rules or artificial intelligence models are characterized by being created through learning.
  • being created through learning means that the basic artificial intelligence model is learned using a large number of learning data by a learning algorithm, thereby creating a predefined operation rule or artificial intelligence model set to perform the desired characteristics (or purpose). It means burden.
  • This learning may be performed in the device itself (e.g., the vacuum cleaner body 1000) on which the artificial intelligence according to the present disclosure is performed, or may be performed through a separate server and/or system.
  • Examples of learning algorithms include supervised learning, unsupervised learning, semi-supervised learning, or reinforcement learning, but are not limited to the examples described above.
  • the neural network model determines the flow path pressure value, the load value of the brush device 2000, and the usage environment state when the flow path pressure value and the load value of the brush device 2000 are obtained. It can be learned using learning data. For example, the first flow path pressure value and the first load value of the brush device 2000 obtained when cleaning the floor, the second flow path pressure value and the second load value of the brush device 2000 obtained when cleaning the carpet, The third flow path pressure value and the third load value of the brush device 2000 obtained when cleaning the mat, the fourth flow path pressure value obtained when the brush device 2000 is lifted from the floor, and the fourth load value of the brush device 2000 The load value can be used as learning data.
  • the neural network model uses the state of the usage environment (e.g. floor, carpet, mat, lifting, etc.) when the flow path pressure value and the load value of the brush device (2000) are obtained as a label (ground-truth). This can be learned.
  • the neural network model determines the current usage environment state of the brush device 2000. can be output.
  • FIG. 12 is a diagram illustrating an operation of the cleaner main body 1000 to identify the usage environment state of the brush device 2000 using a random forest model according to an embodiment of the present disclosure.
  • the random forest model may be an ensemble algorithm that trains multiple decision trees and predicts by combining the results of the multiple decision trees.
  • the biggest feature of the random forest model is that decision trees have slightly different characteristics due to randomness. Randomization occurs during the training process of each tree, and bagging and randomized node optimization, which are ensemble learning methods using random learning data extraction methods, are often used. Bagging is an abbreviation for bootstrap aggregating, and is a method of combining base learners trained on slightly different training data through bootstrapping. Bootstrapping refers to the process of creating a data set of the same size as the original data set by allowing overlap in the given training data.
  • the random forest model uses the flow path pressure value, the load value of the brush device 2000, and the usage environment state when the flow path pressure value and the load value of the brush device 2000 are obtained as learning data. It can be learned using According to an embodiment of the present disclosure, when at least one processor 1001 inputs the current flow path pressure value and the current load value of the brush device 2000 to the random forest model, the random forest model is the current load value of the brush device 2000. You can output the current usage environment status.
  • the wireless cleaner 100 uses the suction motor 1110 and the brush device 2000 according to the usage environment state of the brush device 2000 inferred by the AI model.
  • the control operation will be examined with reference to FIG. 13.
  • FIG. 13 is a diagram for explaining AI mode 1302 according to an embodiment of the present disclosure.
  • the power consumption of the suction motor 1110 and the drum RPM of the brush device 2000 are not automatically adjusted according to the usage environment of the brush device 2000.
  • the usage environment state of the brush device 2000 is either floor (first condition) or general carpet (first condition). 2 condition), overdense carpet (3rd condition), mat (4th condition), lifting (5th condition), or corner (6th condition)
  • the power consumption of the suction motor 1110 is 115W.
  • the drum RPM can be maintained at 3800rpm.
  • the power consumption of the suction motor 1110 and the drum RPM of the brush device 2000 are slightly changed. can be
  • the power consumption of the suction motor 1110 and the drum RPM of the brush device 2000 may be automatically adjusted according to the usage environment state of the brush device 2000.
  • the wireless cleaner 100 uses the current flow path pressure value and the current load value of the brush device 2000 using an AI model (e.g., SVM model, neural network). model, random forest model, etc.), the current usage environment state of the brush device 2000 can be identified.
  • the wireless cleaner 100 may determine the drum RPM of the brush device 2000 in addition to the suction force strength of the suction motor 1110 according to the current usage environment status of the brush device 2000.
  • the wireless cleaner 100 determines that the use environment state of the brush device 2000 is a floor (first condition)
  • the power consumption of the suction motor 1110 is determined to be 70W
  • the drum RPM of the brush device 2000 may be determined to be 2000 rpm.
  • the wireless cleaner 100 determines that the usage environment of the brush device 2000 is a general carpet (second condition)
  • the wireless cleaner 100 determines the power consumption of the suction motor 1110 to be 115W and sets the drum RPM of the brush device 2000 to 115W. can be determined as 3800rpm.
  • the wireless cleaner 100 determines the power consumption of the suction motor 1110 to be 40W and sets the drum RPM of the brush device 2000 to 40W. can be determined as 2000rpm.
  • the wireless cleaner 100 determines that the usage environment of the brush device 2000 is a mat (fourth condition) and sets the drum RPM of the brush device 2000 to 58W. It can be determined at 1500rpm.
  • the wireless cleaner 100 determines the power consumption of the suction motor 1110 to be 40W and sets the drum RPM of the brush device 2000 to 40W. It can be determined at 1500rpm.
  • the wireless cleaner 100 determines that the usage environment of the brush device 2000 is a corner (sixth condition) and determines the power consumption of the suction motor 1110 to be 115W and sets the drum RPM of the brush device 2000 to 115W. It can be determined at 3800rpm.
  • the wireless cleaner 100 when the wireless cleaner 100 operates in the AI mode 1302, cleaning efficiency, usability (operability, noise), damage to the surface to be cleaned (e.g., the drum of the brush device 2000 ( Scratches, scratches, nicks, wear, etc. due to frictional load of the battery 2200) and the usage time of the battery 1500 can be improved.
  • the wireless vacuum cleaner 100 when the wireless vacuum cleaner 100 is not in a cleaning environment that requires strong suction power (e.g., floor, lift), the battery usage time can be increased by lowering the suction power intensity and drum RPM.
  • the wireless cleaner 100 lowers the suction power intensity and drum RPM in a cleaning environment where the brush device 2000 is in too close contact with the surface being cleaned, making it difficult for the user to operate the wireless cleaner 100 (e.g., mat, high-density carpet). By adjusting it, usability (operability) can be improved.
  • the wireless cleaner 100 is in a cleaning environment that requires strong suction power (e.g., general carpet, corner), the cleaning efficiency (cleaning performance) can be increased by adjusting the suction power intensity to high.
  • FIG. 14 is a diagram illustrating a method by which the wireless cleaner 100 selects an AI model according to the type of the brush device 2000 according to an embodiment of the present disclosure.
  • the wireless cleaner 100 may identify the first type of brush device 2000 connected to the cleaner main body 1000.
  • the wireless cleaner 100 uses the identification resistor 2500 of the brush device 2000, A first type of brush device 2000 can be identified.
  • the first processor 1131 of the cleaner main body 1000 determines that the brush device 2000 is coupled to the wireless cleaner 100
  • the voltage input to the input port of the first processor 1131 Based on the value, the type of brush device 2000 can be identified. Since the operation of the wireless cleaner 100 to identify the type of the brush device 2000 using the identification resistor 2500 of the brush device 2000 has been described above with reference to FIG. 6, redundant description will be omitted.
  • the first processor 1131 or the main processor 1800 of the cleaner main body 1000 operates the brush device 2000 based on a signal received from the brush device 2000 through signal line communication.
  • the first type can be identified.
  • the brush device 2000 may insert a bit indicating the first type of the brush device 2000 into a data signal transmitted during signal line communication.
  • the operation of the cleaner body 1000 identifying the type of the brush device 2000 based on the signal received from the brush device 2000 will be discussed in more detail later with reference to FIG. 29 .
  • the first processor 1131 of the cleaner main body 1000 identifies the first type of the brush device 2000
  • the first processor 1131 determines the first type of the brush device 2000. 1 Information about the type can be transmitted to the main processor 1800.
  • the wireless cleaner 100 may select a first AI model corresponding to the first type of the brush device 2000 from among a plurality of AI models.
  • an AI model for inferring the use environment state of the brush device 2000 may vary depending on the type of the brush device 2000. Accordingly, the cleaner main body 1000 stores a plurality of AI models for each type of brush device 2000 in the memory 1900, and as the type of brush device 2000 is identified as the first type, the type of brush device 2000 A first AI model corresponding to the first type may be selected.
  • the at least one processor 1001 of the wireless vacuum cleaner 100 when the brush device 2000 is a multi-brush 501, the at least one processor 1001 of the wireless vacuum cleaner 100 generates a first SVM model corresponding to the multi-brush 501. (1510) can be selected.
  • the brush device 2000 when the brush device 2000 is the floor brush 502, at least one processor 1001 of the wireless cleaner 100 creates a second SVM model 1610 corresponding to the floor brush 502. You can choose.
  • the shape of the hyperplanes 1511, 1512, and 1513 of the first SVM model 1510 corresponding to the multi brush 501 and the hyperplanes 1611 of the second SVM model 1610 corresponding to the ridge brush 502. , 1612, 1613) may have different forms.
  • the wireless cleaner 100 may apply the suction force intensity of the suction motor 1110 to the selected first AI model to modify the parameter values of the first AI model.
  • the parameter values of the first AI model may vary depending on the suction force intensity (power consumption) of the suction motor 1110. Accordingly, the main processor 1800 of the cleaner main body 1000, before inputting data related to the flow path pressure and data related to the load of the brush device 2000, to the first AI model, the strength of the suction force of the suction motor 1110 You can modify the parameter values of the first AI model by applying .
  • the main processor 1800 of the cleaner main body 1000 may be modified again by applying the changed suction force intensity to the first AI model.
  • step S1440 the wireless cleaner 100 applies data related to flow path pressure and data related to the load of the brush device 2000 to the first AI model whose parameter values have been modified to determine the current usage environment status of the brush device 2000. can be identified.
  • the main processor 1800 of the cleaner main body 1000 may obtain data regarding the flow path pressure measured by the pressure sensor 1400.
  • the main processor 1800 of the cleaner main body 1000 may obtain data related to the load of the brush device 2000 through the load detection sensor 1134.
  • the main processor 1800 of the cleaner main body 1000 provides data on flow path pressure and the brush device 2000 to the first AI model whose parameter values are modified according to the suction force intensity (power consumption) of the suction motor 1100.
  • the current usage environment state of the brush device 2000 can be identified.
  • the first AI model whose parameter values have been modified has the state of the usage environment of the brush device 2000.
  • Hard floor' can be output
  • the second flow path pressure value and the second load value are applied to the first AI model whose parameter values have been modified
  • the first AI model whose parameter values have been modified is a brush device ( 2000)
  • 'Mat' can be output as the usage environment state.
  • step S1440 corresponds to step S830 of FIG. 8, detailed description will be omitted.
  • step S1450 the wireless cleaner 100, based on the current usage environment state of the brush device 2000, determines the suction force intensity of the suction motor 1110 or the RPM of the rotating brush of the brush device 2000 (hereinafter, also referred to as target RPM). ) can be determined.
  • the cleaner main body 1000 adjusts the suction power of the suction motor 1110 to a medium intensity level.
  • the first intensity may be determined, and the target RPM of the brush device 2000 may be determined as an intermediate level.
  • the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 70W, and the target RPM of the brush device 2000 may be determined to be 2000rpm.
  • the cleaner main body 1000 determines the suction power intensity of the suction motor 1110 to be a second intensity lower than the first intensity. You can. When a user cleans a mat or high-density carpet, the brush device 2000 adheres too closely to the surface being cleaned, making it difficult for the user to move the wireless cleaner 100. Accordingly, the cleaner main body 1000 may determine the suction force intensity to be lower when cleaning a mat or high-density carpet than when cleaning a floor. For example, the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 58W.
  • the cleaner body 1000 may determine the target RPM of the brush device 2000 to be the lowest (eg, 1000 rpm). According to an embodiment of the present disclosure, the cleaner main body 1000 automatically reduces the suction force intensity of the suction motor 1110 and the rotation speed of the brush device 2000 when the user moves the brush device 2000 onto the mat, User convenience can be improved.
  • the cleaner main body 1000 may determine the suction power intensity of the suction motor 1110 to be a third intensity higher than the first intensity. It may require greater suction power to suck up dust or foreign substances from a regular carpet than from a floor. Accordingly, the cleaner main body 1000 can determine the suction power strength to be higher when cleaning a general carpet than a floor, and the target RPM of the brush device 2000 can also be determined to be high. For example, the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 115W, and the target RPM of the brush device 2000 may be determined to be 3800rpm. According to an embodiment of the present disclosure, the cleaner main body 1000 automatically increases the suction force intensity of the suction motor 1110 and the rotation speed of the brush device 2000 when the user moves the brush device 2000 on the carpet, It can improve cleaning performance on carpets.
  • the cleaner main body 1000 uses the suction motor 1110 when the current usage environment state of the brush device 2000 is a state in which the brush device 2000 is lifted a certain distance or more from the surface to be cleaned (hereinafter, a lifted state).
  • the suction force intensity may be determined as the minimum intensity, and the target RPM of the brush device 2000 may be determined as the lowest level.
  • the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 40W, and the target RPM of the brush device 2000 may be determined to be 1500rpm.
  • the cleaner body 1000 can reduce unnecessary power consumption by reducing the power consumption of the suction motor 1110 and the rotation speed of the brush device 2000. , the usage time of the battery 1500 may also be extended.
  • the cleaner main body 1000 when the current use environment state of the brush device 2000 is to clean the corner of the wall, the cleaner main body 1000 increases the suction force of the suction motor 1110 to the maximum intensity. You can decide. For example, the cleaner main body 1000 may determine the power consumption of the suction motor 1110 to be 200W. Accordingly, the cleaner body 1000 can improve the cleaning performance at the wall corner by automatically increasing the suction power of the suction motor 1110 when the user cleans the wall corner.
  • the wireless cleaner 100 may adjust the suction force intensity of the suction motor 1110 and the RPM of the rotating brush of the brush device 2000.
  • the main processor 1800 may transmit the determined suction force intensity and the target RPM of the brush device 2000 to the first processor 1131.
  • the first processor 1131 may adjust the suction force intensity of the suction motor 1110 to the determined suction force intensity.
  • the first processor 1131 can transmit the target RPM of the brush device 2000 to the second processor 2410 by controlling the operation of the first sub-position element 1132 connected to the signal line 30.
  • the first processor 1131 may transmit the target RPM of the brush device 2000 to the second processor 2410 using UART or I2C. The operation of the first processor 1131 transmitting a signal to the second processor 2410 will be described in detail later with reference to FIGS. 20 to 24 and 27 to 34.
  • the second processor 2410 may adjust the drum RPM of the brush device 2000 to the target RPM.
  • the wireless cleaner 100 applies the suction force strength of the suction motor 1110 to the first AI model corresponding to the first type of the brush device 2000 to obtain the power of the first AI model. Let's take a closer look at the operation of modifying parameter values.
  • FIG. 15A is a diagram for explaining the first SVM model 1510 corresponding to the multi brush 501 according to an embodiment of the present disclosure.
  • FIG. 15B is a diagram illustrating an operation in which parameter values of the first SVM model 1510 corresponding to the multi-brush 501 are modified according to a change in power consumption of the suction motor 1110.
  • FIG. 15C is a diagram illustrating an operation in which parameter values of the first SVM model 1510 corresponding to the multi-brush 501 are modified according to a change in power consumption of the suction motor 1110.
  • 15A to 15C illustrate the case where the use environment of the brush device 2000 is divided into four types, such as hard floor (hf), carpet, mat, and lift. I decided to do it.
  • the first SVM model 1510 corresponding to the multi brush 501 shown in FIG. 15A includes a first hyperplane 1511 for distinguishing the carpet from the mat or floor, and a second hyperplane for distinguishing the floor from the mat ( 1512), and may be composed of a third second plane (1513) to distinguish between carpet and lifting.
  • the parameter values of each of the first second plane 1511, the second second plane 1512, and the third second plane 1513 may correspond to the case where the power consumption of the suction motor 1110 is 40W.
  • the 1-1 SVM model (1520) with modified parameter values includes a 1-1 second plane (1521) for distinguishing between floors and carpets, a 2-1 second plane (1522) for distinguishing between mats and carpets, and a carpet It may be composed of a 3-1 second plane (1523) to distinguish between and lifting.
  • the 1-1 second plane 1521 may have a smaller slope (a) compared to the 1st second plane 1511, and the 2-1 second plane 1522 may have a slope (a) compared to the 2nd second plane 1512. a) can become larger.
  • the parameter values of the first SVM model 1510 may be modified.
  • the 1-2 SVM model (1530) with modified parameter values consists of a 1-2 second plane (1531) for distinguishing between floors and carpets, and a 3-2 second plane (1533) for distinguishing between carpets and lifting. It can be.
  • the 1-2 SVM model 1530 may not include a second hyperplane 1512 for distinguishing the floor from the mat.
  • the slope a of the second second plane 1512 may be modified to 0.
  • FIG. 16A is a diagram for explaining a second SVM model 1610 corresponding to the floor brush 502 according to an embodiment of the present disclosure.
  • FIG. 16B is a diagram illustrating an operation in which parameter values of the second SVM model 1610 corresponding to the floor brush 502 are modified according to a change in power consumption of the suction motor 1110.
  • FIG. 16C is a diagram illustrating an operation in which parameter values of the second SVM model 1610 corresponding to the floor brush 502 are modified according to a change in power consumption of the suction motor 1110.
  • 16A to 16C illustrate an example in which the use environment of the brush device 2000 is divided into four types: hard floor (hf), carpet (carpet), mat, and lift. I decided to do it.
  • the second SVM model 1610 corresponding to the floor brush 502 shown in FIG. 16A includes a first hyper-plane 1611 for distinguishing the floor from the mat, and a second hyper-plane 1612 for distinguishing the floor from the carpet. , It may be composed of a third second plane 1613 to distinguish between the carpet and the lifting.
  • the parameter values of each of the first second plane 1611, the second second plane 1612, and the third second plane 1613 may correspond to the case where the power consumption of the suction motor 1110 is 40W.
  • the 2-1 SVM model (1620) with modified parameter values includes a 1-1 second plane (1621) for distinguishing between a floor and a mat, a 2-1 second plane (1622) for distinguishing between a floor and a carpet, and a carpet It may be composed of a 3-1 second plane (1623) to distinguish between and lifting.
  • the 2-2 SVM model (1630) with modified parameter values includes a 1-2 second plane (1631) for distinguishing between floors and mats, a 2-2 second plane (1632) for distinguishing between floors and carpets, and carpets. It may be composed of a 3-2 second plane (1633) to distinguish between and lifting.
  • FIG. 17 is a flowchart illustrating a method by which the wireless cleaner 100 identifies a state transition in the usage environment of the brush device 2000 according to an embodiment of the present disclosure.
  • the wireless cleaner 100 may obtain data about the flow path pressure measured by the pressure sensor 1400.
  • At least one processor 1001 of the cleaner main body 1000 may acquire the pressure value measured by the pressure sensor 1400.
  • the main processor 1800 may receive the pressure value measured by the pressure sensor 1400 from the pressure sensor 1400 through I2C communication.
  • the pressure sensor 1400 is located within the flow path and can measure the pressure inside the flow path (flow path pressure).
  • the pressure sensor 1400 may be located within the suction duct 40 or the motor assembly 1100, but is not limited thereto.
  • the cleaner main body 1000 may obtain data related to the load of the brush device 2000 through the load detection sensor 1134.
  • the load detection sensor 1134 is located in the driving circuit 1130 of the motor assembly 1100 and may include, but is limited to, a shunt resistor, a current detection circuit, a load detection circuit, etc. It doesn't work.
  • the main processor 1800 of the cleaner main body 1000 may receive data related to the load of the brush device 2000 from the first processor 1131 in the motor assembly 1100.
  • step S1730 the cleaner main body 1000 applies data related to flow path pressure and data related to the load of the brush device 2000 to a previously learned AI model to identify the current usage environment state of the brush device 2000. there is.
  • the main processor 1800 of the vacuum cleaner body 1000 stores data on the flow path pressure obtained from the pressure sensor 1400 and the brush device 2000 obtained from the first processor 1131 in a pre-stored AI model.
  • Data related to the load can be input, and the current usage environment status (e.g., floor, mat, carpet, lifting, corner) of the brush device 2000 can be obtained as an inference result of the AI model.
  • steps S1710 to S1730 correspond to steps S810 to S830 of FIG. 8, detailed description will be omitted.
  • the wireless cleaner 100 may determine whether the current usage environment state of the brush device 2000 has transitioned.
  • the main processor 1800 of the cleaner main body 1000 applies data related to flow path pressure and data related to the load of the brush device 2000 to the AI model to determine the usage environment state of the brush device 2000. Transitions (hereinafter referred to as state transitions) can be identified.
  • the hyperplane for inferring the current usage environment state and the hyperplane for inferring the state transition may be different.
  • a first second plane 1810 that distinguishes a floor from a carpet is a 1-1 second plane 1801 that identifies a state transition from a floor to a carpet, and a first second plane 1801 that identifies a state transition from a floor to a carpet. It may be different from the 1-2 second plane 1802 for identifying state transitions. That is, when the load on the brush device 2000 slightly increases while the wireless vacuum cleaner 100 is cleaning the floor, the current usage environment state may be inferred as a carpet based on the first second plane 1810. However, based on the 1-1 second plane 1801, the current usage environment state can be inferred to be the floor. In this case, the wireless vacuum cleaner 100 may determine that the usage environment state has not transitioned from the floor to the carpet.
  • the wireless vacuum cleaner ( 100) it may be determined that the use environment state has transitioned from floor to carpet.
  • step S1750 if a state transition is not identified, the wireless vacuum cleaner 100 may maintain the current suction force intensity and the current RPM of the rotating brush.
  • step S1760 when a state transition is identified, the wireless vacuum cleaner 100 may determine the suction force intensity and the RPM of the rotating brush (also referred to as target RPM) corresponding to the transitioned usage environment state.
  • the main processor 1800 of the vacuum cleaner body 1000 may determine the suction force intensity and the RPM of the rotating brush to be higher than the current state.
  • the main processor 1800 of the vacuum cleaner body 1000 may determine the suction force intensity and the RPM of the rotating brush to be lower than the current state.
  • the wireless cleaner 100 may adjust the suction force intensity of the suction motor 1110 and the RPM of the rotating brush.
  • the main processor 1800 of the cleaner main body 1000 may transmit the determined suction force intensity and the target RPM of the brush device 2000 to the first processor 1131.
  • the first processor 1131 may adjust the suction force intensity of the suction motor 1110 to the determined suction force intensity.
  • the first processor 1131 can transmit the target RPM of the brush device 2000 to the second processor 2410 by controlling the operation of the first sub-position element 1132 connected to the signal line 30.
  • the first processor 1131 may transmit the target RPM of the brush device 2000 to the second processor 2410 using UART or I2C.
  • FIG. 19 is a diagram illustrating an operation in which the main processor 1800 communicates with the second processor 2410 through the first processor 1131 according to an embodiment of the present disclosure.
  • the main processor 1800 uses a pre-stored AI model (e.g., SVM model) to determine the RPM (power consumption, intensity of suction force) of the suction motor 1110 and the drum of the brush device 2000. (2200) target RPM, restraint level, etc. can be determined.
  • the main processor 1800 may determine the RPM of the suction motor 1110 based on the user's suction intensity control input through the user interface 1700.
  • the main processor 1800 stores data including the RPM (power consumption, strength of suction force) of the suction motor 1110, the target RPM of the drum 2200 of the brush device 2000, the target restraint level, etc. It can be transmitted to the first processor 1131.
  • the main processor 1800 may transmit data to the first processor 1131 using UART, but is not limited to this.
  • the first processor 1131 may transmit data related to control of the brush device 2000 among the data received from the main processor 1800 to the second processor 2410 through signal line communication.
  • the first processor 1131 may transmit data including the target RPM and target constraint level of the drum 2200 to the second processor 2410.
  • the first processor 1131 may transmit data indicating operating conditions corresponding to the target RPM and target restraint level to the second processor 2410. The operation of the first processor 1131 and the second processor 2410 to transmit and receive data representing operating conditions will be discussed in detail later with reference to FIG. 21 .
  • the second processor 2410 of the brush device 2000 receives control-related data from the first processor 1131, it can control the operation of the brush device 2000.
  • the second processor 2410 may change the RPM of the drum 2200 to the target RPM or change the restraint level to the target restraint level.
  • step S1930 when receiving control-related data from the first processor 1131, the second processor 2410 of the brush device 2000 sends operation status feedback data to the first processor 1131 through signal line communication. Can be transmitted.
  • the operation status feedback data may include, but is not limited to, whether the brush device 2000 has any abnormalities, the current RPM of the drum 2200, etc.
  • step S1940 when the first processor 1131 of the cleaner main body 1000 receives operation state feedback data from the second processor 2410 of the brush device 2000, the first processor 1131 sends the second processor 2410 to the main processor 1800.
  • operation status feedback data can be transmitted.
  • the first processor 1131 may transmit operational status feedback data of the second processor 2410 to the main processor 1800 through UART.
  • the first processor 1131 determines whether the suction motor 1110 is abnormal, the strength of the suction force of the suction motor 1110, the load of the brush device 2000, and the brush device 2000. ) may be further transmitted to the main processor 1800.
  • the main processor 1800 may determine the operating state of the suction motor 1110 and the operating state of the brush device 2000 based on the data received from the first processor 1131. Additionally, the main processor 1800 may monitor the usage environment state of the brush device 2000 and continuously control the operation of the brush device 2000 according to the usage environment state of the brush device 2000. For example, by repeatedly performing steps S1910 to S1940, the first processor 1131 can transfer the control command of the main processor 1800 to the second processor 2410.
  • FIG. 20 is a diagram illustrating a circuit for signal line communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • A is 330K ⁇
  • B is 330K ⁇
  • C is 82K ⁇
  • the cleaner main body 1000 can perform signal line communication with the brush device 2000. there is.
  • the first switch element 1132 may be turned on. As the first switch element 1132 is turned on, the voltage of the signal line 30 changes to 0V (GND) and may be in a low state. When the voltage of the signal line 30 is 0V, the PNP transistor 2425 is turned on, and a high signal (about 4.8V) can be input to the input port of the second processor 2410. That is, when the first processor 1131 outputs a low signal through the output port, the low signal is input to the input port of the second processor 2410, and the first processor 1131 outputs a high signal through the output port. In this case, a high signal may also be input to the input port of the second processor 2410.
  • the second processor 2410 of the brush device 2000 may receive a signal using an input port and transmit a signal using an output port. For example, when the second processor 2410 outputs a high signal through the output port, the second switch element 2435 may be turned on. As the second switch element 2435 is turned on, the voltage of the signal line 30 changes to 0V (GND) and may be in a low state. When the voltage of the signal line 30 is 0V, a low signal (0V) may be input to the input port of the first processor 1131. Conversely, when the second processor 2410 outputs a low signal through the output port, the second switch element 2435 may be turned off.
  • the driving circuit 1130 of the cleaner main body 1000 includes a voltage divider 1137, so the high voltage (14V) of the signal line 30 is distributed and 2.785V is input to the input port of the first processor 1131. You can.
  • a low signal (0V) is input to the input port of the first processor 1131, and the second processor 2410 outputs a low signal through the output port.
  • 2.785V approximately 2.8V
  • FIG. 20 the case in which the PNP transistor 2425 is included as a switch element in the driving circuit 2400 of the brush device 2000 is described as an example, but the present invention is not limited thereto.
  • a P-channel FET may be used as a switch element instead of the PNP transistor 2425.
  • the driving circuit 1130 for signal line communication of the cleaner main body 1000 uses a voltage divider 1137. Since it includes, stable signal transmission is possible by minimizing the noise effect of the signal line 30. That is, since the driving circuit 1130 of the cleaner main body 1000 includes the voltage divider 1137, even if the noise voltage is applied to the signal line 30, the noise voltage is also distributed and the input port (AD) of the first processor 1131 port) can be entered. This will be explained using the case where noise of ⁇ 1.5V occurs as an example.
  • the AD port voltage when no noise occurs is 3.3V, and when noise of ⁇ 1.5V occurs, the AD port voltage can range from 1.8V to 4.8V. That is, if noise occurs in a general circuit, the AD port voltage may exceed the maximum voltage of the microcomputer's AD port (e.g., 3.3V), so the first processor 1131 may be easily damaged. Additionally, in a general circuit, a high signal may be mistakenly recognized as a low signal (or a low signal as a high signal) due to noise ( ⁇ 1.5V).
  • the input port voltage of the first processor 1131 in a situation (normal) in which no noise occurs may be 2.78V, and may be ⁇ 1.5V. Even if noise occurs, the input port voltage of the first processor 1131 may be 2.49V to 3.08V. That is, according to the driving circuit 1130 including the voltage divider 1137, even if noise occurs, the input port voltage of the first processor 1131 does not exceed the maximum voltage of the microcomputer's AD port (e.g., 3.3V), so robust Signal transmission is possible.
  • the maximum voltage of the microcomputer's AD port e.g., 3.3V
  • FIG. 21 is a diagram for explaining a data format included in a signal transmitted between the cleaner main body 1000 and the brush device 2000 according to an embodiment of the present disclosure.
  • operation information 2102 and operation conditions A lookup table 2110 containing data 2103 representing 2101 may be stored.
  • the operation information 2102 of the wireless vacuum cleaner 100 corresponding to the operating condition 2101 includes the power consumption of the suction motor 1110, the drum RPM of the brush device 2000, and the restraint level of the brush device 2000 ( Trip level), etc., but is not limited thereto.
  • data 2103 representing the operating condition 2101 may be 8-bit data, but is not limited thereto.
  • data 2103 representing the operating condition 2101 may be 5-bit data.
  • the data 2103 representing the operating condition 2101 when the data 2103 representing the operating condition 2101 consists of 8 bits, the data 2103 representing the operating condition 2101 includes one start bit and three commands. It may consist of a (command) bit, three parity bits, and one stop bit. In FIG. 21, since there are three command bits, the operating conditions 2101 are divided into eight. However, if the number of command bits increases, the operating conditions may increase.
  • the operating conditions 2101 include the type of the brush device 2000, the state of the environment in which the brush device 2000 is used (e.g., the state of the surface to be cleaned (floor, carpet, mat, corner, etc.), the state lifted from the surface to be cleaned, etc.), It can be classified according to the abnormality of the suction motor 1110, etc.
  • the first operating condition indicates when the state of the surface to be cleaned is a floor
  • the first operating information under the first operating condition is “Power consumption of the suction motor 1110: It may be 70W, drum RPM: 2000, trip level: 4.0A.” That is, when the main processor 1800 identifies that the current state of the surface to be cleaned is a floor, the wireless cleaner 100 may decide to operate based on the first operation information corresponding to the first operation condition. Accordingly, the main processor 1800 may transfer information about the first operating condition to the first processor 1131, and the first processor 1131 may check the first operating information corresponding to the first operating condition and inhale. The power consumption of the motor 1110 can be adjusted to 70W.
  • the first processor 1131 may transmit data (00011101) representing the first operating condition to the second processor 2410.
  • the second processor 2410 checks the first operation information corresponding to the first operating condition, adjusts the drum RPM to 2000 rpm, and sets the restraint level to 4.0A. It can be set to .
  • the second operation condition indicates when the state of the surface to be cleaned is a carpet (normal load), and the second operation information under the second operation condition is “Power consumption of suction motor 1110: 115W, drum RPM: 3800, restraint. Trip level: 4.9A”. That is, when the main processor 1800 identifies that the current state of the surface to be cleaned is a carpet (normal load), the wireless cleaner 100 may decide to operate based on the second operation information corresponding to the second operation condition. . Accordingly, the main processor 1800 may transfer information about the second operating condition to the first processor 1131, and the first processor 1131 may check the second operating information corresponding to the second operating condition and inhale. The power consumption of the motor 1110 can be adjusted to 115W.
  • the first processor 1131 may transmit data (00101011) representing the second operating condition to the second processor 2410.
  • the second processor 2410 checks the second operation information corresponding to the second operating condition, adjusts the drum RPM to 3800 rpm, and sets the restraint level to 4.9. It can be set to A.
  • the power consumption (suction force intensity) of the suction motor 1110 is greater, so the restraint level can also be increased from 4.0A to 4.9A.
  • the restraint level is to prevent overload of the brush device 2000, and when the load of the brush device 2000 reaches 4.9A, the motor 2100 may stop.
  • the third operation condition indicates when the state of the surface to be cleaned is a carpet (overload, high-density carpet), and the third operation information under the third operation condition is “Power consumption of suction motor 1110: 40W, drum RPM: 2000. , Trip level: 4.9A”.
  • the brush device 2000 may come into excessive contact with the surface to be cleaned, so the cleaner main body 1000 lowers the power consumption of the suction motor 1110 and , the drum RPM of the brush device 2000 can also be lowered.
  • the wireless cleaner 100 may decide to operate based on the third operation information corresponding to the third operation condition. Accordingly, the main processor 1800 may transfer information about the third operating condition to the first processor 1131, and the first processor 1131 may check the third operation information corresponding to the third operating condition and inhale. The power consumption of the motor 1110 can be adjusted to 40W. Additionally, the first processor 1131 may transmit data (00111001) representing the third operating condition to the second processor 2410. When receiving data (00111001) representing the third operating condition, the second processor 2410 checks the third operation information corresponding to the third operating condition, adjusts the drum RPM to 2000 rpm, and sets the restraint level to 4.9. It can be set to A.
  • the fourth operation condition indicates when the brush device 2000 is lifted from the surface to be cleaned (hereinafter also referred to as the lifted state), and the fourth operation information under the fourth operation condition is “power consumption of the suction motor 1110.” : 40W, drum RPM: 1000, trip level: 4.0A”. Since the strength of the suction power does not need to be large when in the lifted state, the cleaner main body 1000 lowers the power consumption of the suction motor 1110 to the lowest power consumption (e.g. 40W), and the drum RPM of the brush device 2000 is also set to the lowest RPM. It can be lowered to (1000rpm).
  • the wireless cleaner 100 may decide to operate based on the fourth operation information corresponding to the fourth operation condition. Accordingly, the main processor 1800 may transfer information about the fourth operating condition to the first processor 1131, and the first processor 1131 may check the fourth operation information corresponding to the fourth operating condition and inhale. The power consumption of the motor 1110 can be adjusted to 40W. Additionally, the first processor 1131 may transmit data (01000111) representing the fourth operating condition to the second processor 2410. When receiving data (01000111) indicating the fourth operating condition, the second processor 2410 checks the fourth operation information corresponding to the fourth operating condition, adjusts the drum RPM to 1000 rpm, and sets the restraint level to 4.0. It can be set to A.
  • the fifth operation condition indicates when the state of the surface to be cleaned is a mat
  • the fifth operation information under the fifth operation condition is “power consumption of suction motor 1110: 58W, drum RPM: 1000, trip level” ): 4.9A”. That is, if the main processor 1800 identifies that the current state of the surface to be cleaned is a mat, the wireless cleaner 100 may decide to operate based on the fifth operation information corresponding to the fifth operation condition. Therefore, the main processor 1800 can transmit information about the fifth operating condition to the first processor 1131, and the first processor 1131 checks the fifth operating information corresponding to the fifth operating condition and inhales. The power consumption of the motor 1110 can be adjusted to 58W.
  • the first processor 1131 may transmit data (01010101) representing the fifth operating condition to the second processor 2410.
  • the second processor 2410 checks the fifth operation information corresponding to the fifth operating condition, adjusts the drum RPM to 1000 rpm, and sets the restraint level to 4.9A. It can be set to .
  • the sixth operating condition indicates when the operation of the wireless vacuum cleaner 100 should be stopped, and the sixth operating information for the sixth operating condition is “power consumption of suction motor 1110: 58W, drum RPM: 0, Trip level: 0A.”
  • the cleaner body 1000 controls the operation of the brush motor 2100 as it identifies an abnormality in the motor 2100 (hereinafter also referred to as the brush motor 2100) included in the brush device 2000. You can decide to stop it.
  • the main processor 1800 may identify an abnormality in the brush motor 2100 and stop the operation of the brush motor 2100, and the first processor 1131 may identify an abnormality in the brush motor 2100 to stop the brush motor 2100. ) can also stop the operation.
  • the first processor 1131 controls the on/off operation of the first switch element 1132 to signal ( Example: Data (01100011) representing the sixth operating condition can be transmitted to the second processor 2410 of the brush device 2000 through the signal line 30.
  • the second processor 2410 When receiving data (01100011) indicating the sixth operating condition, the second processor 2410 generates sixth operation information (drum RPM: 0, trip level: 0A) corresponding to the sixth operating condition. After confirmation, the operation of the brush motor 2100 can be stopped.
  • the first processor 1131 of the cleaner main body 1000 transmits 8-bit data (01010101) indicating the fifth operating condition (mat) to the second processor 2410 of the brush device 2000. ) Let's look in detail at an example of transmitting.
  • FIG. 22 is a diagram for explaining an operation of transmitting a signal from the cleaner main body 1000 to the brush device 2000 according to an embodiment of the present disclosure.
  • 0 and 1 can be distinguished based on the state of the signal line 30. For example, a “0” bit may be transmitted when the signal line 30 is in a low state (L), and a “1” bit may be transmitted when the signal line 30 is in a high state (H).
  • the first processor 1131 turns on the first switch element 1132 to apply a first level voltage lower than the threshold to the signal line 30 to transmit code 0, and the first switch element 1132 Code 1 can be transmitted by turning off 1132 so that a second level voltage higher than the threshold is applied to the signal line 30.
  • the first processor 1131 may set the state of the signal line 30 to LHLHLHLH in order to transmit 01010101, which represents the fifth operating condition, to the second processor 2410. For example, the first processor 1131 outputs a high signal (5V or 3.3V) through the output port for the first 10 ms to turn on the first switch element 1132 and change the state of the signal line 30 to low ( 0V), and output a low signal (0V) through the output port for the next 10 ms to turn off the first switch element 1132 and make the signal line 30 high (14V) four times. It can be repeated. In this case, the first processor 1131 may transmit 01010101 to the second processor 2410 for 80 ms. While the first processor 1131 transmits a signal, the output port of the second processor 2410 may be maintained in a low (0V) state.
  • the second processor 2410 determines the fifth operating condition from the lookup table 2110 stored in the memory of the brush device 2000.
  • the corresponding fifth operation information power consumption of suction motor 1110: 58W, drum RPM: 1000, trip level: 4.9A
  • the second processor 2410 can adjust the drum RPM to 1000 rpm and set the trip level to 4.9A. Thereafter, the second processor 2410 may transmit a second signal indicating the current state to the first processor 1131 in response to the first signal.
  • the second processor 2410 since the second processor 2410 changed the settings based on the fifth operation information corresponding to the fifth operating condition, it sends a second signal (e.g., 01010101) indicating that the current state is the state corresponding to the fifth operating condition. Can be transmitted to the first processor 1131.
  • a second signal e.g. 01010101
  • FIG. 23 is a diagram for explaining an operation of transmitting a signal from the brush device 2000 to the cleaner main body 1000 according to an embodiment of the present disclosure.
  • the brush device 2000 transmits a second signal (e.g., 01010101) indicating that the current state corresponds to the fifth operating condition to the cleaner main body 1000, and has a transmission time of 10 ms per bit. Let's explain with an example.
  • 0 and 1 can be distinguished based on the state of the signal line 30. For example, 0 may be transmitted when the signal line 30 is in a low state (L), and 1 may be transmitted when the signal line 30 is in a high state (H). Accordingly, the second processor 2410 turns on the second switch element 2435 to apply a first level voltage lower than the threshold to the signal line 30 to transmit code 0, and the second switch element 2435 Code 1 can be transmitted by turning off 2435 so that a second level voltage higher than the threshold is applied to the signal line 30.
  • the second processor 2410 sets the state of the signal line 30 to LHLHLHLH in order to transmit a second signal (e.g., 01010101) indicating that it is currently operating in a state corresponding to the fifth operating condition to the first processor 1131. It can be made with For example, the second processor 2410 outputs a high signal (5V or 3.3V) through the output port for the first 10 ms to turn on the second switch element 2435 to change the state of the signal line 30 to low ( 0V), and output a low signal (0V) through the output port for the next 10 ms to turn off the second switch element 2435 and make the signal line 30 high (14V) four times. It can be repeated. In this case, the second processor 2410 may transmit 01010101 to the second processor 2410 for 80 ms. While the second processor 2410 transmits a signal, the output port of the first processor 1131 may be maintained in a low (0V) state.
  • a second signal e.g., 01010101
  • the first processor 1131 When the first processor 1131 receives a second signal (e.g., 01010101) indicating the fifth operating condition from the second processor 2410 of the brush device 2000, the first processor 1131 stores the signal in the memory 1900 of the cleaner main body 1000. Fifth operation information (power consumption of suction motor 1110: 58W, drum RPM: 1000, trip level: 4.9A) corresponding to the fifth operation condition can be checked in the stored lookup table 2110. Additionally, the first processor 1131 may identify that the current drum RPM of the brush device 2000 is 1000 rpm and the current trip level is 4.9A.
  • a second signal e.g., 01010101
  • the first processor 1131 stores the signal in the memory 1900 of the cleaner main body 1000.
  • Fifth operation information power consumption of suction motor 1110: 58W, drum RPM: 1000, trip level: 4.9A
  • the first processor 1131 may identify that the current drum RPM of the brush device 2000 is 1000 rpm and the current trip level is 4.9A.
  • FIG. 24 is a flowchart illustrating an operation of mutually transmitting signals between the cleaner main body 1000 and the brush device 2000 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 operates as a master device (or primary device) and the brush device 2000 operates as a slave device will be described as an example.
  • the vacuum cleaner main body 1000 may receive a user input to turn on the power (S2410).
  • the cleaner main body 1000 may communicate with the brush device 2000 coupled to the wireless cleaner 100 through the signal line 30.
  • the cleaner main body 1000 may transmit an A1 signal (A1-A) indicating the first operating condition to the brush device 2000 (S2420).
  • the A1 signal (A1-A) can be transmitted for 80ms.
  • the brush device 2000 may transmit an A1 response signal (A1-R) indicating the current state to the cleaner main body 1000 (S2430).
  • A1 response signal (A1-R) can also be transmitted for 80ms.
  • the brush device 2000 may execute a command according to the A1 signal (A1-A) (S2440). For example, the brush device 2000 may adjust drum RPM, restraint level, etc. based on first operation information corresponding to the first operation condition.
  • the cleaner main body 1000 may transmit the A2 signal (A2-A) to the brush device 2000 when a predetermined time has elapsed after transmitting the A1 signal (A1-A) (S2450).
  • a predetermined time is 200 ms is explained as an example, but it is not limited to this. If the usage environment condition (e.g., floor, carpet, mat, corner, lift, etc.) of the brush device 2000 has not changed between transmitting the A1 signal (A1-A) and transmitting the A2 signal (A2-A), The A2 signal (A2-A) may continue to represent the first operating condition.
  • the usage environment state of the brush device 2000 changes between the transmission of the A1 signal (A1-A) and the transmission of the A2 signal (A2-A)
  • the A2 signal (A2-A) is not the first operating condition.
  • a second operating condition may be indicated.
  • the brush device 2000 may transmit an A2 response signal (A2-R) indicating the current state to the cleaner main body 1000 (S2460).
  • the A2 response signal (A2-R) can also be transmitted for 80ms.
  • the A2 response signal (A2-R) may include the command execution result of the brush device 2000.
  • the brush device 2000 adjusts the drum RPM, restraint level, etc. based on the first operation information corresponding to the first operating condition
  • the A2 response signal (A2-R) indicates the first operating condition.
  • Data (or data indicating drum RPM and restraint level) may be included.
  • the cleaner main body 1000 may transmit the A3 signal (A3-A) to the brush device 2000 when a predetermined time (200 ms) has elapsed after transmitting the A2 signal (A2-A) (S2470).
  • the brush device 2000 receives the A3 signal (A3-A), it can transmit the A3 response signal (A3-A) indicating the current status to the cleaner main body 1000.
  • the cleaner main body 1000 continuously communicates with the brush device 2000 at predetermined time intervals (200 ms) to determine the usage environment status (e.g., floor, carpet, mat, corner, lift, etc.) of the brush device 2000. Accordingly, the operation of the brush device 2000 can be adaptively controlled.
  • the cleaner body 1000 transmits data indicating the first operating condition corresponding to the floor to the brush device 2000, and the brush device 2000 The drum RPM can be changed to 2000 rpm based on the first operating condition corresponding to the floor.
  • the cleaner main body 1000 may transmit data representing the first operating condition corresponding to the floor to the brush device 2000 every 200 ms, and the brush device 2000 may transmit the current state (corresponding to the floor)
  • the cleaner main body 1000 may respond (operate based on the first operating condition).
  • the cleaner body 1000 may transmit data indicating a second operating condition corresponding to the carpet (normal load) to the brush device 2000, and the brush device 2000 may transmit data indicating a second operating condition corresponding to the carpet (normal load).
  • the brush device 2000 may respond to the cleaner body 1000 regarding its current status (operation based on the second operating condition corresponding to the carpet).
  • the brush device ( 2000) may decide that communication is not possible. For example, if a response signal (second signal) is not received from the brush device 2000 while the cleaner main body 1000 transmits the first signal to the brush device 2000 three times, the cleaner body 1000 It may be decided that communication is not possible.
  • the cleaner main body 1000 may switch the operation mode from AI mode to normal mode.
  • the AI mode is a mode in which the suction power of the suction motor 1110 or the drum RPM of the brush device 2000 is automatically adjusted depending on the usage environment condition of the brush device 2000
  • the normal mode is a mode in which the user controls the suction motor 1110. This may be a mode in which you must manually adjust the suction power strength. If communication with the brush device 2000 is not possible, the cleaner main body 1000 cannot transmit data to adjust the drum RPM of the brush device 2000 to the brush device 2000, and therefore cannot operate in AI mode anymore.
  • the cleaner main body 1000 may output a notification indicating that operation in AI mode is impossible through the output interface.
  • the operation of the vacuum cleaner main body 1000 to output a notification will be examined in detail later with reference to FIG. 36.
  • the cleaner main body 1000 when it is determined that communication with the brush device 2000 is impossible, the cleaner main body 1000 does not adjust the drum RPM of the brush device 2000 and the brush device 2000 Depending on the usage environment, only the strength of the suction force of the suction motor 1110 may be adjusted.
  • FIG. 25 is a diagram for explaining an operation of the cleaner main body 1000 identifying the type of the brush device 2000 based on a signal received from the brush device 2000 according to an embodiment of the present disclosure.
  • the brush device 2000 may indicate the type of the brush device 2000 using the start bit of a data signal transmitted during signal line communication.
  • the brush device 2000 defines the start bit as 11 if the brush device 2000 is a type A brush, defines the start bit as 10 if the brush device 2000 is a type B brush, and defines the start bit as 10 if the brush device 2000 is a type B brush.
  • the start bit can be defined as 01, and in the case of a D-type brush, the start bit can be defined as 00, but it is not limited to this.
  • the cleaner main body 1000 may identify the type of the brush device 2000 by analyzing the start bit of the data signal transmitted from the brush device 2000. For example, if the start bit contains 11, the cleaner body 1000 identifies the brush device 2000 as a type A brush, and if the start bit contains 10, the cleaner body 1000 identifies the brush device 2000 as a type A brush.
  • the brush device 2000 can be identified as a B-type brush.
  • the number of start bits may be increased.
  • a separate bit to indicate the type of the brush device 2000 may be added to the data signal instead of the start bit.
  • FIG. 26 is a diagram for explaining an operation in which the lighting device 2300 is controlled according to the usage environment state of the brush device 2000 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 operates the suction motor 1110 according to the use environment condition of the brush device 2000 (e.g., floor, mat, general carpet, high-density carpet, lifting, wall corner, etc.). ) In addition to the power consumption and the drum RPM of the brush device 2000, the lighting brightness and lighting color of the brush device 2000 can also be determined. Additionally, the cleaner body 1000 may transmit data regarding the determined lighting brightness or determined lighting color to the second processor 2410 of the brush device 2000 through signal line communication. At this time, the second processor 2410 of the brush device 2000 may control the lighting device 2300 based on the lighting brightness or lighting color determined by the cleaner main body 1000.
  • the second processor 2410 of the brush device 2000 may control the lighting device 2300 based on the lighting brightness or lighting color determined by the cleaner main body 1000.
  • the cleaner body 1000 may determine the color of the lighting device 2300 to be white, and the cleaner body 1000 may determine the color of the lighting device 2300 to be white. Depending on control, the lighting device 2300 may output white light.
  • the cleaner body 1000 may determine the color of the lighting device 2300 to be green, and the usage environment state of the brush device 2000 may be green. If the is the mat 2603, the cleaner body 1000 may determine the color of the lighting device 2300 to be yellow, and if the usage environment state of the brush device 2000 is the carpet 2604, 2605, the cleaner body 1000 may determine the color of the lighting device 2300 to be yellow.
  • the cleaner body (1000) may determine the color of the lighting device (2300) to be blue, and if the usage environment state of the brush device (2000) is a wall (corner) (2606), the cleaner body (1000) may set the lighting device (2300) to blue. ) can be determined to be orange.
  • a user may perceive a change in the usage environment state of the brush device 2000 through a change in the color of the lighting device 2300.
  • FIG. 27 is a diagram illustrating a circuit for signal line communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 27 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 27 Since the driving circuit 2400-1 of may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the driving circuit 2400-1 of the brush device 2000 may include a voltage divider like the driving circuit 1130 of the cleaner main body 1000. Therefore, for convenience of explanation, the voltage divider of the cleaner body 1000 is expressed as a first voltage divider 1137, and the voltage divider of the brush device 2000 is expressed as a second voltage divider 2427.
  • the second voltage divider 2427 is used to distribute the voltage input from the signal line 30 to the input port of the second processor 2410.
  • the driving circuit 2400-1 of the brush device 2000 includes the second voltage divider 2427, even if a noise voltage is applied to the signal line 30, the noise voltage is also distributed to the input of the second processor 2410. It can be input as a port (AD port).
  • the driving circuit 2400-1 for signal line communication of the brush device 2000 is Since it includes two voltage dividers 2427, stable signal reception is possible by minimizing the noise effect of the signal line 30.
  • the cleaner body 1000 is configured to use the brush device 2000. ) and signal line communication can be performed.
  • the driving circuit 2400-1 of the brush device 2000 includes a second voltage divider 2427, so that the high voltage (13.4487V) of the signal line 30 is distributed to the input port of the second processor 2410. Only 2.677V can be input.
  • the first processor 1131 outputs a high signal through the output port
  • the first switch element 1132 may be turned on. As the first switch element 1132 is turned on, the voltage of the signal line 30 changes to 0V (GND) and may be in a low state. When the voltage of the signal line 30 is 0V, a low signal (0V) may be input to the input port of the second processor 2410.
  • a high signal (2.677V) is input to the input port of the second processor 2410, and the first processor 1131 outputs a low signal through the output port.
  • a low signal may be input to the input port of the second processor 2410.
  • the second processor 2410 of the brush device 2000 may receive a signal using an input port and transmit a signal using an output port. For example, when the second processor 2410 outputs a high signal through the output port, the second switch element 2435 may be turned on. As the second switch element 2435 is turned on, the voltage of the signal line 30 changes to 0V (GND) and may be in a low state. When the voltage of the signal line 30 is 0V, a low signal (0V) may be input to the input port of the first processor 1131. Conversely, when the second processor 2410 outputs a low signal through the output port, the second switch element 2435 may be turned off. As the second switch element 2435 is turned off, the voltage of the signal line 30 can be in a high state at 13.4487V.
  • the driving circuit 1130 of the cleaner main body 1000 includes the first voltage divider 1137, so the high voltage (13.4487V) of the signal line 30 is distributed to the input port of the first processor 1131 to 2.677V. can only be entered. That is, when the second processor 2410 outputs a high signal through the output port, a low signal (0V) is input to the input port of the first processor 1131, and the second processor 2410 outputs a low signal through the output port. When outputting a signal, a high signal (2.677V) may be input to the input port of the second processor 2410.
  • FIG. 28 is a diagram illustrating a circuit for I2C communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130a for I2C (Inter-Integrated Circuit) communication, and the brush device 2000 may also include a driving circuit 2400a for I2C communication. can do.
  • the driving circuit 1130a of the cleaner main body 1000 shown in FIG. 28 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 28 Since the driving circuit 2400a may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the wireless cleaner 100 includes a first communication line 41 and a second communication line 42 for I2C communication instead of the signal line 30 connected to the power lines 10 and 20. can do.
  • the wireless cleaner 100 may include a first communication line 41 for transmitting and receiving SDA (Serial Data) and a second communication line 42 for transmitting and receiving SCL (Serial Clock).
  • SDA Serial Data
  • SCL Serial Clock
  • SDA Serial Data
  • SCL Serial Clock
  • a noise reduction circuit may be applied.
  • the cleaner body 1000 may include a first noise reduction circuit 1139
  • the brush device 2000 may include a second noise reduction circuit 2450.
  • the first noise reduction circuit 1139 and the second noise reduction circuit 2450 include a low pass filter, a high pass filter, a band pass filter, and a damping resistor. Resistor), and may include at least one of a distribution resistor, but are not limited thereto.
  • Serial data (SDA) and serial clock (SCL) transmitted from the second processor 2410 through the first communication line 41 and the second communication line 42 are transmitted through the first noise reduction circuit 1139 to the first processor ( 1131), the influence of noise can be minimized.
  • SDA (Serial Data) and SCL (Serial Clock) transmitted from the first processor 1131 through the first communication line 41 and the second communication line 42 are transmitted through the second noise reduction circuit 2450. By being input to the processor 2410, the influence of noise can be minimized.
  • the cleaner main body 1000 operates as a master device and the brush device 2000 operates as a slave device, thereby performing I2C communication.
  • I2C communication signals can consist of a start signal (start bit), a data signal (command bit), and a stop signal (end bit).
  • the first processor 1131 may transmit a signal indicating an operating condition to the second processor 2410 through the first communication line 41 and the second communication line 42.
  • the operating conditions include the target revolutions per minute (RPM) of the drum 2200 of the brush device 2000, the target trip level of the brush device 2000, or the suction motor 1110 included in the cleaner body 1000. It may include at least one of the power consumption.
  • RPM revolutions per minute
  • the second processor 2410 of the brush device 2000 may execute a command based on operation information corresponding to the received operating condition. For example, the brush device 2000 can adjust drum RPM, restraint level, etc. In addition, the second processor 2410 of the brush device 2000 sends a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the first communication line 41 and the second communication line 42. Can be transmitted.
  • FIG. 29 is a diagram illustrating a circuit for UART full-duplex communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130b for UART full duplex communication
  • the brush device 2000 may also include a driving circuit 2400b for UART full duplex communication. can do.
  • the driving circuit 1130b of the cleaner main body 1000 shown in FIG. 29 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 29 Since the driving circuit 2400b of may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the wireless cleaner 100 may include two wires for UART full-duplex communication instead of the signal line 30 connected to the power lines 10 and 20.
  • the wireless cleaner 100 may include a third communication line 51 and a fourth communication line 52.
  • the third communication line 51 is a line for transmitting a signal from the first processor 1131 to the second processor 2410
  • the fourth communication line 52 is a line for the second processor 2410 to transmit a signal to the first processor 1131. It may be a line for transmitting signals.
  • the first processor 1131 and the second processor 2410 can simultaneously transmit and receive signals through the third communication line 51 and the fourth communication line 52, respectively.
  • a noise reduction circuit may be applied to the input terminal where a signal is input to minimize electrical or mechanical damage or stress during UART communication between the cleaner main body 1000 and the brush device 2000.
  • the cleaner body 1000 may include a first noise reduction circuit 1139
  • the brush device 2000 may include a second noise reduction circuit 2450.
  • the first noise reduction circuit 1139 and the second noise reduction circuit 2450 include a low pass filter, a high pass filter, a band pass filter, and a damping resistor. Resistor), and may include at least one of a distribution resistor, but are not limited thereto.
  • the data signal transmitted from the first processor 1131 through the third communication line 51 is input to the second processor 2410 through the second noise reduction circuit 2450, thereby minimizing the influence of noise.
  • the data signal transmitted from the second processor 2410 through the fourth communication line 52 is input to the first processor 1131 through the first noise reduction circuit 1139, thereby minimizing the effect of noise. .
  • the cleaner main body 1000 operates as a master device and the brush device 2000 operates as a slave device, thereby performing UART full-duplex communication.
  • the UART communication signal may consist of a start signal (start bit), a data signal (command bit), and a stop signal (end bit).
  • the first processor 1131 may transmit a signal indicating an operating condition to the second processor 2410 through the third communication line 51.
  • the operating conditions include the target revolutions per minute (RPM) of the drum 2200 of the brush device 2000, the target trip level of the brush device 2000, or the suction motor 1110 included in the cleaner body 1000. It may include at least one of the power consumption.
  • RPM revolutions per minute
  • the second processor 2410 of the brush device 2000 may execute a command based on operation information corresponding to the received operating condition. For example, the brush device 2000 can adjust drum RPM, restraint level, etc. Additionally, the second processor 2410 of the brush device 2000 may transmit a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the fourth communication line 52.
  • FIG. 30 is a diagram illustrating a circuit for UART half-duplex communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130c for UART half-duplex communication, and the brush device 2000 may also include a driving circuit 2400c for UART half-duplex communication. It can be included.
  • the driving circuit 1130c of the cleaner main body 1000 shown in FIG. 30 may correspond to the driving circuit 1130b of the cleaner main body 1000 shown in FIG. 29, and the brush device 2000 shown in FIG. 30 Since the driving circuit 2400c of may correspond to the driving circuit 2400b shown in FIG. 29, overlapping description will be omitted.
  • the wireless cleaner 100 may include one wire for UART half-duplex communication instead of the signal line 30 connected to the power lines 10 and 20.
  • the wireless cleaner 100 may include a fifth communication line 53.
  • the fifth communication line 53 may be a line for the first processor 1131 and the second processor 2410 to alternately transmit signals.
  • the first processor 1131 transmits the first signal through the fifth communication line 53
  • the second processor 2410 receives the first signal through the fifth communication line 53
  • the second processor 2410 When transmitting the second signal through the fifth communication line 53, the first processor 1131 may receive the second signal through the fifth communication line 53.
  • the data signal transmitted from the first processor 1131 through the fifth communication line 53 is input to the second processor 2410 through the second noise reduction circuit 2450, thereby minimizing the effect of noise.
  • the data signal transmitted from the second processor 2410 through the fifth communication line 53 is input to the first processor 1131 through the first noise reduction circuit 1139, thereby minimizing the effect of noise. .
  • the cleaner main body 1000 operates as a master device and the brush device 2000 operates as a slave device, thereby performing UART half-duplex communication.
  • the UART communication signal may consist of a start signal (start bit), a data signal (command bit), and a stop signal (end bit).
  • the first processor 1131 may transmit a signal indicating an operating condition to the second processor 2410 through the fifth communication line 53.
  • the operating conditions include the target revolutions per minute (RPM) of the drum 2200 of the brush device 2000, the target trip level of the brush device 2000, or the suction motor 1110 included in the cleaner body 1000. It may include at least one of the power consumption.
  • RPM revolutions per minute
  • the second processor 2410 of the brush device 2000 may execute a command based on operation information corresponding to the received operating condition. For example, the brush device 2000 can adjust drum RPM, restraint level, etc. Additionally, the second processor 2410 of the brush device 2000 may transmit a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the fifth communication line 53.
  • FIG. 31 is a diagram illustrating a circuit for I2C communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130d for I2C (Inter-Integrated Circuit) communication, and the brush device 2000 may also include a driving circuit 2400d for I2C communication. can do.
  • the driving circuit 1130d of the cleaner main body 1000 shown in FIG. 31 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 31 Since the driving circuit 2400d of may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the wireless cleaner 100 includes a first communication line 41 and a second communication line 42 for I2C communication instead of the signal line 30 connected to the power lines 10 and 20. can do.
  • the first communication line 41 may be a line for transmitting and receiving SDA (Serial Data)
  • the second communication line 42 may be a line for transmitting and receiving SCL (Serial Clock).
  • the driving circuit 1130d of the cleaner main body 1000 may include a first level shifter circuit 1141 and a second level shifter circuit 1142.
  • Each of the first level shifter circuit 1141 and the second level shifter circuit 1142 may be a level shift IC (Integrated Circuit) packing a switch element and a peripheral circuit.
  • the driving circuit 2400d of the brush device 2000 may include a first pull-up resistor 2451, a first damping resistor 2452, a second pull-up resistor 2453, and a second damping resistor 2454.
  • the cleaner main body 1000 can transmit signals representing operating conditions to the second processor 2410 through the first communication line 41 and the second communication line 42.
  • the switch element e.g., N-channel
  • 3.3V (High) connected to the first pull-up resistor 2451 is applied to the first communication line 41
  • 3.3V (High) is also applied to the second processor 2410 through the first damping resistor 2452.
  • V (High) can be input.
  • a switch element included in the first level shifter circuit 1141 Since is in the ON state, the voltage of the first communication line 41 becomes 0V (Low), and 0V (Low) can also be input to the second processor 2410.
  • the first processor 1131 when the first processor 1131 outputs a High signal in the direction of the first level shifter circuit 1141, the High signal is input to the second processor 2410 through the first communication line 41, and the first processor ( When 1131) outputs a low signal in the direction of the first level shifter circuit 1141, the low signal may be input to the second processor 2410 through the first communication line 41.
  • the first processor 1131 when the first processor 1131 outputs a High signal in the direction of the second level shifter circuit 1142, the High signal is input to the second processor 2410 through the second communication line 42, and the first processor ( When 1131) outputs a low signal in the direction of the second level shifter circuit 1142, the low signal may be input to the second processor 2410 through the second communication line 42.
  • the second processor 2410 of the brush device 2000 sends a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the first communication line 41 and the second communication line 42. Can be transmitted.
  • the second processor 2410 outputs a high signal (3.3V) in the direction of the first damping resistor 2452, 3.3V (high) is also applied to the first communication line 41.
  • the switch element eg, N-channel FET included in the first level shifter circuit 1141 does not operate, 5V (High) is input to the first processor 1131.
  • the first level shifter circuit 1141 +5V power cannot flow to the first communication line 41 through the 10K ⁇ resistor and the body diode (BD) of the switch element (e.g., N-channel FET) ( current path is not formed), 5V is input to the first processor 1131, and the SDA of the first processor 1131 becomes High (+5V).
  • the second processor 2410 outputs a low signal (0V) in the direction of the first damping resistor 2452, the size of the first damping resistor 2452 is very small compared to the first pull-up resistor 2451. , a voltage (low) close to 0 is also applied to the first communication line 41.
  • the voltage included in the first level shifter circuit 1141 Since the resistance (10K ⁇ ) is large, the voltage drop is large, so a voltage (Low) close to 0 is input to the first processor 1131. That is, the switch element (e.g., N-) included in the first level shifter circuit 1141 channel FET) is in the OFF state, but +5V forms a current path that moves to the first communication line 41 through the resistor (10K ⁇ ) and the body diode (BD) of the switch element (e.g., N-channel FET). , the SDA of the first processor 1131 becomes Low.
  • the first processor 1131 The voltage input to (1131) (also called SDA voltage) may be as follows.
  • a high signal (3.3V) in the direction of the first damping resistor 2452
  • a high signal (5V) is also output to the first processor 1131 through the first communication line 41.
  • a low signal e.g., approximately 0V( 0V)
  • a high signal e.g., 3.3V
  • a high signal e.g., 3.3V
  • 5V is input
  • the second processor 2410 outputs a low signal (e.g., 0V) in the direction of the second damping resistor 2454, it is also transmitted to the first processor 1131 through the second communication line 42.
  • Low signal e.g. approximately 0V ( 0V)
  • the cordless vacuum cleaner 100 includes a first level shifter circuit 1141 and a second level shifter circuit 1142, the voltage output from the first processor 1131 and the voltage output from the second processor 2410 are Even if they are different, I2C communication between the cleaner body 1000 and the brush device 2000 is possible.
  • the driving circuit 1130d of the cleaner main body 1000 includes a first pull-up resistor 2451, a first damping resistor 2452, a second pull-up resistor 2453, and a second damping resistor ( 2454), and the driving circuit 2400d of the brush device 2000 may include a first level shifter circuit 1141 and a second level shifter circuit 1142.
  • FIG. 32 is a diagram illustrating a circuit for UART communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130e for UART communication
  • the brush device 2000 may also include a driving circuit 2400e for UART communication.
  • the driving circuit 1130e of the cleaner main body 1000 shown in FIG. 32 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 32 Since the driving circuit 2400e of may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the wireless cleaner 100 may include two wires for UART full-duplex communication instead of the signal line 30 connected to the power lines 10 and 20.
  • the wireless cleaner 100 may include a third communication line 51 and a fourth communication line 52.
  • the third communication line 51 is a line for transmitting a signal from the first processor 1131 to the second processor 2410
  • the fourth communication line 52 is a line for the second processor 2410 to transmit a signal to the first processor 1131. It may be a line for transmitting signals.
  • the first processor 1131 and the second processor 2410 can simultaneously transmit and receive signals through the third communication line 51 and the fourth communication line 52, respectively.
  • the driving circuit 1130e of the cleaner main body 1000 may include a first level shifter circuit 1141 and a second level shifter circuit 1142.
  • Each of the first level shifter circuit 1141 and the second level shifter circuit 1142 may be a level shift IC packing a switch element and a peripheral circuit.
  • the driving circuit 2400e of the brush device 2000 may include a first pull-up resistor 2451, a first damping resistor 2452, a second pull-up resistor 2453, and a second damping resistor 2454.
  • the cleaner main body 1000 can transmit signals indicating operating conditions to the second processor 2410 through the third communication line 51.
  • the switch element e.g., N-channel FET
  • the switch element included in the first level shifter circuit 1141 is in the OFF state, so the third 3.3V (High) connected to the first pull-up resistor 2451 is applied to the communication line 51, and 3.3V (High) can also be input to the second processor 2410 through the first damping resistor 2452.
  • the switch element e.g., N-channel FET included in the first level shifter circuit 1141 is turned on, so the third The voltage of the communication line 51 becomes 0V (Low), and 0V (Low) can also be input to the second processor 2410.
  • the first processor 1131 when the first processor 1131 outputs a high signal (e.g., 5V), the high signal (e.g., 3.3V) is input to the second processor 2410 through the third communication line 51, and the first processor When 1131 outputs a low signal (e.g., 0V), the low signal (e.g., 0V) may be input to the second processor 2410 through the third communication line 51.
  • a high signal e.g., 5V
  • the high signal e.g., 3.3V
  • the low signal e.g., 0V
  • the second processor 2410 of the brush device 2000 may transmit a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the fourth communication line 52.
  • a response signal indicating the current status
  • the second processor 2410 outputs a high signal (eg, 3.3V)
  • 3.3V (high) is also applied to the fourth communication line 52.
  • the switch element eg, N-channel FET
  • 5V (High) is input to the first processor 1131.
  • the second processor 2410 when the second processor 2410 outputs a low signal (e.g., 0V), the size of the second damping resistor 2454 is very small compared to the second pull-up resistor 2453, so the fourth communication line 52 A voltage (low) close to 0 is also applied.
  • the resistance (10K) included in the second level shifter circuit 1142 is large, the voltage drop is large, and a voltage (Low) close to 0 is input to the first processor 1131.
  • a high signal e.g., 3.3V
  • a high signal e.g., 5V
  • the second processor 2410 outputs a high signal (e.g., 3.3V).
  • the processor 2410 outputs a low signal (e.g., 0V)
  • a low signal e.g., approximately 0V
  • the cordless vacuum cleaner 100 includes a first level shifter circuit 1141 and a second level shifter circuit 1142, the voltage output from the first processor 1131 and the voltage output from the second processor 2410 are Even if they are different, UART communication between the cleaner main body 1000 and the brush device 2000 is possible.
  • the driving circuit 1130e of the cleaner main body 1000 includes a first pull-up resistor 2451, a first damping resistor 2452, a second pull-up resistor 2453, and a second damping resistor ( 2454), and the driving circuit 2400e of the brush device 2000 may include a first level shifter circuit 1141 and a second level shifter circuit 1142.
  • FIG. 33 is a diagram illustrating a circuit for UART full-duplex communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130f for UART communication
  • the brush device 2000 may also include a driving circuit 2400f for UART communication.
  • the driving circuit 1130f of the cleaner body 1000 shown in FIG. 33 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 33 Since the driving circuit 2400f of may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the wireless cleaner 100 may include two wires for UART communication.
  • the wireless cleaner 100 may include a third communication line 51 and a fourth communication line 52.
  • the third communication line 51 is a line for transmitting a signal from the first processor 1131 to the second processor 2410
  • the fourth communication line 52 is a line for the second processor 2410 to transmit a signal to the first processor 1131. It may be a line for transmitting signals.
  • the first processor 1131 and the second processor 2410 can simultaneously transmit and receive signals through the third communication line 51 and the fourth communication line 52, respectively.
  • the driving circuit 1130f of the cleaner main body 1000 includes a first circuit 1141a similar to the first level shifter circuit 1141, and a third damping circuit. It may include a resistor 1143 and a first voltage divider 1137.
  • the driving circuit 2400f of the brush device 2000 may include a second voltage divider 2427, a first damping resistor 2452, and a second circuit 2455 of a similar form to the first level shifter circuit 1141. there is.
  • the cleaner main body 1000 can transmit signals indicating operating conditions to the second processor 2410 through the third communication line 51.
  • the switch element e.g., N-channel FET
  • the third communication line ( 51) the voltage (e.g. 25.2V) (High) of the + power line 10 connected through the R1 resistor is applied.
  • a high signal e.g., battery voltage (e.g., 25.2V) * R3/(R1+R2+R3)
  • a high signal e.g., battery voltage (e.g., 25.2V) * R3/(R1+R2+R3)
  • the switch element e.g., N-channel FET included in the first circuit (1141a) is turned on, so the third communication line ( 51) becomes 0V (Low), and 0V (Low) can also be input to the second processor 2410.
  • the first processor 1131 when the first processor 1131 outputs a high signal (e.g., 5V), the high signal (e.g., 3.3V) is input to the second processor 2410 through the third communication line 51, and the first processor When 1131 outputs a low signal (e.g., 0V), the low signal (e.g., 0V) may be input to the second processor 2410 through the third communication line 51.
  • a high signal e.g., 5V
  • the high signal e.g., 3.3V
  • the low signal e.g., 0V
  • the second processor 2410 of the brush device 2000 may transmit a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the fourth communication line 52.
  • a high signal e.g., 3.3V
  • the switch element e.g., N-channel FET
  • the second processor 2410 outputs a high signal (e.g., 3.3V).
  • the voltage (e.g., 25.2V) (High) of the + power line 10 connected through the R4 resistor is applied to the communication line 52.
  • a high signal (e.g., battery voltage (e.g., 25.2V) * R6/(R4+R5+R6)) may be input to the first processor 1131 through the first voltage divider 1137.
  • the switch element e.g., N-channel FET
  • the fourth communication line ( 52) becomes 0V (Low)
  • 0V (Low) can also be input to the first processor 1131.
  • the second processor 2410 when the second processor 2410 outputs a high signal (e.g., 3.3V), the high signal is input to the first processor 1131 through the fourth communication line 52, and the second processor 2410 outputs a low signal.
  • a signal e.g, 0V
  • a low signal e.g, 0V
  • the cleaner main body 1000 and the brush device 2000 communicate with UART
  • high voltage signals can be transmitted and received through the third communication line 51 and the fourth communication line 52, so the cleaner main body Communication between 1000 and brush device 2000 may be resistant to noise.
  • FIG. 34 is a diagram illustrating a circuit for I2C communication of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may include a driving circuit 1130g for I2C (Inter-Integrated Circuit) communication, and the brush device 2000 may also include a driving circuit 2400g for I2C communication. can do.
  • the driving circuit 1130g of the cleaner body 1000 shown in FIG. 34 may correspond to the driving circuit 1130 of the cleaner main body 1000 shown in FIG. 20, and the brush device 2000 shown in FIG. 33 Since the driving circuit 2400g of may correspond to the driving circuit 2400 shown in FIG. 20, redundant description will be omitted.
  • the wireless cleaner 100 may include a sixth communication line 43, a seventh communication line 44, and an eighth communication line 45 for I2C communication.
  • the sixth communication line 43 is a line for transmitting SDA (Serial Data) from the cleaner main body 1000 to the brush device 2000
  • the seventh communication line 44 is a line for transmitting SDA (Serial Data) from the brush device 2000 to the cleaner main body 1000.
  • the eighth communication line 45 may be a line for transmitting SCL (Serial Clock) from the cleaner main body 1000 to the brush device 2000.
  • the driving circuit 1130g of the cleaner main body 1000 includes a first circuit 1141a similar to the first level shifter circuit 1141, and a second level circuit 1141a. It may include a third circuit 1142a, a third damping resistor 1143, and a first voltage divider 1137 similar to the shifter circuit 1142.
  • the driving circuit 2400g of the brush device 2000 includes a second voltage divider 2427, a first damping resistor 2452, a second damping resistor 2454, and a second circuit similar to the first level shifter circuit 1141. It may include circuit 2455.
  • the cleaner main body 1000 can transmit signals representing operating conditions to the second processor 2410 through the sixth communication line 43 and the seventh communication line 44.
  • the first processor 1131 outputs a high signal (e.g., 5V) in the direction of the first circuit (1141a)
  • the switch element e.g., N-channel FET
  • the voltage e.g., 25.2V
  • the + power line 10 connected through the R1 resistor is applied to the sixth communication line 43.
  • a high signal (e.g., battery voltage (e.g., 25.2V) * R3/(R1+R2+R3)) may be input to the second processor 2410 through the second voltage divider 2427.
  • the switch element e.g., N-channel FET
  • the voltage of the sixth communication line 43 becomes 0V (Low), and 0V (Low) can also be input to the second processor 2410.
  • a high signal e.g., 5V
  • a data signal e.g., SDA
  • a high signal e.g., 5V
  • a low signal e.g. 0V
  • a low signal may be input to 2410).
  • a high signal e.g., 5V
  • a high signal e.g., 5V
  • a low signal e.g., 0V
  • SCL clock signal
  • a low signal e.g. 0V
  • the second processor 2410 of the brush device 2000 sends a response signal indicating the current status to the first processor 1131 of the cleaner main body 1000 through the eighth communication line 45 and the seventh communication line 44. Can be transmitted.
  • the switch element e.g., N-channel FET
  • the second processor 2410 outputs a high signal (e.g., 3.3V).
  • the voltage (e.g., 25.2V) (High) of the + power line 10 connected through the R7 resistor is applied to the communication line 45.
  • a high signal (e.g., battery voltage (e.g., 25.2V) * R9/(R7+R8+R9)) may be input to the first processor 1131 through the first voltage divider 1137.
  • the switch element e.g., N-channel FET
  • the eighth communication line The voltage at 45) becomes 0V (Low), and 0V (Low) can also be input to the first processor 1131.
  • the second processor 2410 when the second processor 2410 outputs a high signal (e.g., 3.3V) to transmit a data signal (e.g., SDA), the high signal is transmitted to the first processor 1131 through the eighth communication line 45. input, and when the second processor 2410 outputs a low signal (e.g., 0V) to transmit a data signal (e.g., SDA), the low signal is sent to the first processor 1131 through the eighth communication line 45. (e.g. 0V) can be input.
  • a high signal e.g., 3.3V
  • a data signal e.g., SDA
  • the sixth communication line 43, the seventh communication line 44, and the eighth communication line 45 are used. Since high voltage signals can be transmitted and received through the vacuum cleaner body 1000 and the brush device 2000, communication between the cleaner body 1000 and the brush device 2000 can be resistant to noise.
  • FIG. 35 is a diagram illustrating an operation of the wireless vacuum cleaner 100 to output an operation status notification according to an embodiment of the present disclosure.
  • the cleaner main body 1000 may display the first GUI 3501 on an output interface (eg, LCD).
  • the first GUI 3501 may indicate that the wireless vacuum cleaner 100 is operating in AI mode, and may also indicate the cleaning time (remaining battery usage time) under AI mode.
  • the cleaner main body 1000 uses the AI model to identify the usage environment state of the brush device 2000, and depending on the usage environment state of the brush device 2000, the suction force strength of the suction motor 1110 or the usage environment state of the brush device 2000
  • the second GUI 3502 may be displayed on the output interface of the cleaner main body 1000.
  • the second GUI 3502 may include a notification “Optimized for the situation.”
  • the first GUI 3501 may be displayed again after a predetermined time (e.g., 3 seconds) has elapsed. Afterwards, if the suction force intensity of the suction motor 1110 or the drum RPM of the brush device 2000 changes again depending on the usage environment of the brush device 2000, the second GUI 3502 may be displayed again.
  • a predetermined time e.g. 3 seconds
  • FIG. 36 is a diagram for explaining the GUI of the wireless vacuum cleaner 100 according to an embodiment of the present disclosure.
  • the cleaner main body 1000 displays the first message on the output interface (e.g., LCD).
  • a GUI 3601 can be displayed.
  • the first GUI 3601 may indicate that the wireless vacuum cleaner 100 is operating in AI mode.
  • the cleaner main body 1000 may display the second GUI 3602 on an output interface (e.g., LCD). there is.
  • the second GUI 3602 may include a notification that operation in AI mode is not possible. For example, if the cleaner main body 1000 does not receive the second signal for a predetermined time after transmitting the first signal through the signal line 30, it may determine that communication with the brush device 2000 is impossible. As the cleaner main body 1000 determines that communication with the brush device 2000 is impossible, a notification indicating that operation in AI mode is impossible may be output through the output interface.
  • the cleaner main body 1000 may display a third GUI 3603 asking to check the status of the brush device 2000.
  • the cleaner main body 1000 uses the brush device ( A third GUI 3603 may be displayed asking you to check the status of 2000).
  • the cleaner main body 1000 switches the operation mode from AI mode to normal mode and outputs a GUI corresponding to the normal mode. It can also be displayed through the interface.
  • the current usage environment state of the brush device 2000 is identified using an AI model, and the suction force intensity of the suction motor 1110 is automatically adjusted according to the current usage environment state of the brush device 2000.
  • a wireless vacuum cleaner 100 that can be adjusted may be provided.
  • the current usage environment state of the brush device 2000 is identified using an AI model, and the RPM of the rotating brush of the brush device 2000 is determined according to the current usage environment state of the brush device 2000.
  • a wireless vacuum cleaner 100 that automatically adjusts may be provided.
  • the wireless cleaner 100 includes a suction motor 1110 that creates a vacuum inside the wireless cleaner 100; A pressure sensor 1400 that measures pressure in the flow path inside the wireless vacuum cleaner 100; A load detection sensor 1134 for measuring the load of the brush device 2000; a memory 1900 that stores an AI model learned to infer the state of the usage environment of the brush device 2000; and at least one processor 1001. At least one processor 1001 may obtain data about the flow path pressure measured by the pressure sensor 1400 from the pressure sensor 1400 . At least one processor 1001 may obtain data related to the load of the brush device 2000 through the load detection sensor 1134.
  • At least one processor 1001 applies data related to flow path pressure and data related to the load of the brush device 2000 to the AI model stored in the memory 1900 to identify the current usage environment state of the brush device 2000. can do. At least one processor 1001 may adjust the suction force intensity of the suction motor 1110 based on the current usage environment state of the identified brush device 2000.
  • Data related to the load of the brush device 2000 may include at least one of the operating current of the brush device 2000, the voltage applied to the brush device 2000, or the power consumption of the brush device 2000. It can contain one.
  • the current usage environment state of the brush device 2000 is the state of the surface to be cleaned on which the brush device 2000 is currently located, the relative position state of the brush device 2000 within the surface to be cleaned, or the state of the brush device 2000's relative position within the surface to be cleaned.
  • the device 2000 may include at least one of the following states: the device 2000 is lifted from the surface being cleaned.
  • At least one processor 1001 may determine the target RPM of the rotating brush of the brush device 2000 based on the current usage environment state of the identified brush device 2000. At least one processor 1001 may transmit a control signal indicating the determined target RPM of the rotating brush to the brush device 2000.
  • At least one processor 1001 may receive a signal indicating the current state of the brush device 2000 from the brush device 2000 in response to the control signal.
  • At least one processor 1001 determines the color or brightness of the lighting device 2300 included in the brush device 2000, based on the current usage environment state of the identified brush device 2000. You can decide on at least one of the following. At least one processor 1001 may transmit a control signal representing at least one of the determined color or brightness of the lighting device 2300 to the brush device 2000.
  • At least one processor 1001 may select a first AI model corresponding to the first type of the brush device 2000 from among a plurality of AI models stored in the memory 1900. At least one processor 1001 may identify the current usage environment state of the brush device 2000 by applying data related to flow path pressure and data related to the load of the brush device 2000 to the selected first AI model. .
  • the brush device 2000 may include a first identification resistor representing a first type of the brush device 2000. At least one processor 1001 may identify the first type of brush device 2000 corresponding to the first identification resistor based on the first voltage value input to the suction motor 1110.
  • At least one processor 1001 may receive a data signal indicating the first type of the brush device 2000 from the brush device 2000.
  • At least one processor 1001 may modify parameter values of the AI model by applying the strength of suction force of the suction motor 1110 to the AI model. At least one processor 1001 applies data related to flow path pressure and data related to the load of the brush device 2000 to the AI model whose parameter values have been modified to identify the current usage environment state of the brush device 2000. You can.
  • the AI model may include at least one of a Support Vector Machine (SVM) model, a Neural Networks model, a Random Forest model, or a Graphical Model. .
  • SVM Support Vector Machine
  • the pressure sensor 1400 may include at least one of an absolute pressure sensor and a relative pressure sensor.
  • the pressure sensor 1400 may be provided in the suction duct 40 of the cleaner main body 1000 including the suction motor 1110.
  • At least one processor 1001 may configure a first pressure value measured through the pressure sensor 1400 before driving the suction motor 1110 and a second pressure value measured through the pressure sensor 1400 after driving the suction motor 1110. The difference can be obtained as data on flow path pressure.
  • At least one processor 1001 may adjust the suction force intensity of the suction motor 1110 to a first intensity of medium intensity when the current usage environment state of the brush device 2000 is a state of cleaning a hard floor. There is. At least one processor 1001 adjusts the suction force intensity of the suction motor 1110 to a second intensity lower than the first intensity when the current usage environment state of the brush device 2000 is a state of cleaning a mat or high-density carpet. You can. At least one processor 1001 may adjust the suction power intensity of the suction motor 1110 to a third intensity higher than the first intensity when the current usage environment state of the brush device 2000 is a state of cleaning a general carpet. .
  • At least one processor 1001 adjusts the suction force intensity of the suction motor 1110 to the minimum intensity when the current usage environment state of the brush device 2000 is a state in which the brush device 2000 is lifted a certain distance or more from the surface to be cleaned, and the brush device 2000 )'s target RPM can be determined at the lowest level.
  • At least one processor 1001 may adjust the suction force intensity of the suction motor 1110 to the maximum intensity when the current usage environment state of the brush device 2000 is to clean the corner of the wall.
  • At least one processor 1001 may adjust the trip level of the brush device 2000 based on the adjusted suction strength of the suction motor 1110.
  • At least one processor 1001 may identify a transition in the current usage environment state of the brush device 2000 by applying data related to flow path pressure and data related to the load of the brush device 2000 to the AI model. At least one processor 1001 may adjust the suction force intensity of the suction motor 1110 as a transition in the current usage environment state of the brush device 2000 is identified.
  • a method for the wireless vacuum cleaner 100 to automatically adjust the suction force intensity of the suction motor 1110 includes the steps of acquiring data on the flow path pressure measured by the pressure sensor 1400, load Obtaining data related to the load of the brush device 2000 through the detection sensor 1134, applying the data related to the flow path pressure and the data related to the load of the brush device 2000 to the previously learned AI model, (2000) identifying the current state of the usage environment; and adjusting the suction force intensity of the suction motor 1110 based on the current usage environment state of the identified brush device 2000.
  • a method of operating a vacuum cleaner includes the steps of coupling an attachment to a vacuum cleaner; identifying, by a processor of the vacuum cleaner, an attachment coupled to a vacuum cleaner as a first attachment among a plurality of different types of attachments configured to couple to a vacuum cleaner; selecting, by the processor, a first AI model corresponding to the first attachment from a plurality of different AI models corresponding to the plurality of different types of attachments; transferring power from the battery of the vacuum cleaner to the suction motor 1110 of the vacuum cleaner, and generating suction power of the vacuum cleaner according to the power consumption of the suction motor; It may include dynamically adjusting suction power by controlling the amount of power delivered from the battery, by the processor, based on at least a portion of the selected first model.
  • a method of operating a vacuum cleaner includes determining, by a processor, a use environment state of a first attachment; And it may further include adjusting the amount of power according to the state of the usage environment.
  • the step of determining the usage environment state includes measuring the flow path pressure inside the vacuum cleaner by a pressure sensor 1400 in signal communication with the processor; measuring the load on the attachment by a load detection sensor (1134) in signal communication with the processor; And it may include the step of determining the use environment state by applying the flow path pressure data and load data of the brush device 2000 to the AI model.
  • a method of operating a vacuum cleaner includes replacing a first attachment with a second attachment that is different from the first attachment; identifying, by the processor, a second attachment; The method may include selecting, by the processor, a second model corresponding to the second attachment.
  • a method of operating a vacuum cleaner may include controlling, by a processor, the amount of power delivered from a battery based on at least a portion of a second model for dynamically adjusting suction force. .
  • a storage medium that can be read by a device may be provided in the form of a non-transitory storage medium.
  • 'non-transitory storage medium' simply means that it is a tangible device and does not contain signals (e.g. electromagnetic waves). This term refers to cases where data is semi-permanently stored in a storage medium and temporary storage media. It does not distinguish between cases where it is stored as .
  • a 'non-transitory storage medium' may include a buffer where data is temporarily stored.
  • Computer program products are commodities and can be traded between sellers and buyers.
  • a computer program product may be distributed in the form of a machine-readable storage medium (e.g. compact disc read only memory (CD-ROM)) or through an application store or between two user devices (e.g. smartphones). It may be distributed in person or online (e.g., downloaded or uploaded). In the case of online distribution, at least a portion of the computer program product (e.g., a downloadable app) is stored on a machine-readable storage medium, such as the memory of a manufacturer's server, an application store's server, or a relay server. It can be temporarily stored or created temporarily.
  • a machine-readable storage medium such as the memory of a manufacturer's server, an application store's server, or a relay server. It can be temporarily stored or created temporarily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

무선 청소기가 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법이 개시될 수 있다. 구체적으로, 압력 센서에 의해 측정된 유로 압력에 관한 데이터를 획득하는 단계; 부하 감지 센서를 통해 브러시 장치의 부하와 관련된 데이터를 획득하는 단계; 유로 압력에 관한 데이터 및 브러시 장치의 부하와 관련된 데이터를 기 학습된 AI 모델에 적용하여, 브러시 장치의 현재 사용 환경 상태를 식별하는 단계; 및 식별된 브러시 장치의 현재 사용 환경 상태에 기초하여, 흡입 모터의 흡입력 세기를 조절하는 단계를 포함하는 방법이 개시될 수 있다.

Description

흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기
본 개시의 일 실시예는 무선 청소기가 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법에 관한 것이다.
무선 청소기는 콘센트(outlet)에 선을 연결할 필요 없이 청소기 자체에 내장된 배터리를 충전해 사용하는 청소기의 일종이다. 무선 청소기는 흡입력을 발생시키는 흡입 모터를 포함하여, 흡입 모터에서 발생한 흡입력을 통해 청소기 헤드(예: 브러시)로부터 공기와 함께 먼지 등의 이물질을 흡입하고, 흡입된 이물질을 공기로부터 분리하여 집진할 수 있다.
최근에는 무선 청소기의 본체에 연결되는 청소기 헤드 또는 부착물(attachments)(예: 브러시)의 종류가 다양해 지고 있다. 무선 청소기의 브러시는 예를 들어, 일반적으로 바닥을 청소할 때 사용하는 메인 브러시와 특수한 목적으로 사용하는 보조 브러시로 나뉠 수 있다. 다양한 청소 환경에 적용할 수 있도록, 특수한 목적으로 사용하는 보조 브러시의 종류가 더 세분화되고 있다. 다만, 소비자가 바닥 상태에 맞는 여러 종류의 브러시를 구비해야 하고, 소비자가 직접 브러시를 교체하여 사용해야 하는 불편이 있다.
본 개시의 일 실시예에 따른 무선 청소기는, 무선 청소기 내부에 진공을 만드는 흡입 모터; 무선 청소기 내부의 유로 압력을 측정하는 압력 센서; 브러시 장치의 부하를 측정하기 위한 부하 감지 센서; 브러시 장치의 사용 환경 상태를 추론하도록 학습된 AI 모델을 저장하는 메모리; 및 적어도 하나의 프로세서를 포함할 수 있다. 적어도 하나의 프로세서는, 압력 센서에 의해 측정된 유로 압력에 관한 데이터를 압력 센서로부터 획득할 수 있다. 적어도 하나의 프로세서는, 부하 감지 센서를 통해 브러시 장치의 부하와 관련된 데이터를 획득할 수 있다. 적어도 하나의 프로세서는, 유로 압력에 관한 데이터 및 브러시 장치의 부하와 관련된 데이터를 메모리에 저장된 AI 모델에 적용하여, 브러시 장치의 현재 사용 환경 상태를 식별할 수 있다. 적어도 하나의 프로세서는, 식별된 브러시 장치의 현재 사용 환경 상태에 기초하여, 흡입 모터의 흡입력 세기를 조절할 수 있다.
본 개시의 일 실시예에 따른 무선 청소기가 무선 청소기의 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법은, 무선 청소기의 압력 센서에 의해 측정된 유로 압력에 관한 데이터를 획득하는 단계; 무선 청소기의 부하 감지 센서를 통해 브러시 장치의 부하와 관련된 데이터를 획득하는 단계; 유로 압력에 관한 데이터 및 브러시 장치의 부하와 관련된 데이터를 무선 청소기의 메모리에 저장된 AI 모델에 적용하여, 브러시 장치의 현재 사용 환경 상태를 식별하는 단계; 및 식별된 브러시 장치의 현재 사용 환경 상태에 기초하여, 흡입 모터의 흡입력 세기를 조절하는 단계를 포함할 수 있다.
도 1은 본 개시의 일 실시예에 따른 청소 시스템을 설명하기 위한 도면이다.
도 2는 본 개시의 일 실시예에 따른 무선 청소기를 설명하기 위한 도면이다.
도 3은 본 개시의 일 실시예에 따른 청소기 본체를 설명하기 위한 도면이다.
도 4는 본 개시의 일 실시예에 따른 무선 청소기의 프로세서들의 동작을 설명하기 위한 도면이다.
도 5는 본 개시의 일 실시예에 따른 브러시 장치를 설명하기 위한 도면이다.
도 6은 본 개시의 일 실시예에 따른 청소기 본체에서 브러시 장치의 유형을 식별하는 동작을 설명하기 위한 도면이다.
도 7은 본 개시의 일 실시예에 따른 브러시 장치의 식별 저항(ID 저항)을 설명하기 위한 도면이다.
도 8은 본 개시의 일 실시예에 따른 무선 청소기가 흡입 모터의 흡입력 세기를 조절하는 방법을 설명하기 위한 순서도이다.
도 9는 본 개시의 일 실시예에 따른 브러시 장치의 사용 환경 상태를 추론하는 AI 모델을 설명하기 위한 도면이다.
도 10은 본 개시의 일 실시예에 따른 청소기 본체가 SVM 모델을 이용하여 브러시 장치의 사용 환경 상태를 식별하는 동작을 설명하기 위한 도면이다.
도 11은 본 개시의 일 실시예에 따른 청소기 본체가 신경망 모델을 이용하여 브러시 장치의 사용 환경 상태를 식별하는 동작을 설명하기 위한 도면이다.
도 12는 본 개시의 일 실시예에 따른 청소기 본체가 랜덤 포레스트(Random Forest) 모델을 이용하여 브러시 장치의 사용 환경 상태를 식별하는 동작을 설명하기 위한 도면이다.
도 13은 본 개시의 일 실시예에 따른 AI 모드를 설명하기 위한 도면이다.
도 14는 본 개시의 일 실시예에 따른 무선 청소기가 브러시 장치의 유형에 따라 AI 모델을 선택하는 방법을 설명하기 위한 도면이다.
도 15a는 본 개시의 일 실시예에 따른 멀티 브러시에 대응하는 제1 SVM 모델을 설명하기 위한 도면이다.
도 15b는 흡입 모터의 소비 전력 변화에 따라 멀티 브러시에 대응하는 제1 SVM 모델의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다.
도 15c는 흡입 모터의 소비 전력 변화에 따라 멀티 브러시에 대응하는 제1 SVM 모델의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다.
도 16a는 본 개시의 일 실시예에 따른 마루 브러시에 대응하는 제2 SVM 모델을 설명하기 위한 도면이다.
도 16b는 흡입 모터의 소비 전력 변화에 따라 마루 브러시에 대응하는 제2 SVM 모델의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다.
도 16c는 흡입 모터의 소비 전력 변화에 따라 마루 브러시에 대응하는 제2 SVM 모델의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다.
도 17은 본 개시의 일 실시예에 따른 무선 청소기가 브러시 장치의 사용 환경 상태 천이를 식별하는 방법을 설명하기 위한 순서도이다.
도 18은 본 개시의 일 실시예에 따른 무선 청소기가 SVM 모델을 이용하여 브러시 장치의 사용 환경 상태 천이를 식별하는 동작을 설명하기 위한 순서도이다.
도 19는 본 개시의 일 실시예에 따른 메인 프로세서가 제1 프로세서를 통해 제2 프로세서와 통신하는 동작을 설명하기 위한 도면이다.
도 20은 본 개시의 일 실시예에 따른 무선 청소기의 신호선 통신을 위한 회로를 설명하기 위한 도면이다.
도 21은 본 개시의 일 실시예에 따른 청소기 본체와 브러시 장치 간에 전달되는 신호에 포함된 데이터 포맷을 설명하기 위한 도면이다.
도 22는 본 개시의 일 실시예에 따른 청소기 본체에서 브러시 장치로 신호를 전송하는 동작을 설명하기 위한 도면이다.
도 23은 본 개시의 일 실시예에 따른 브러시 장치에서 청소기 본체로 신호를 전송하는 동작을 설명하기 위한 도면이다.
도 24는 본 개시의 일 실시예에 따른 청소기 본체와 브러시 장치 간에 신호를 상호 전송하는 동작을 설명하기 위한 순서도이다.
도 25는 본 개시의 일 실시예에 따른 청소기 본체가 브러시 장치로부터 수신된 신호에 기초하여, 브러시 장치의 유형을 식별하는 동작을 설명하기 위한 도면이다.
도 26은 본 개시의 일 실시예에 따른 브러시 장치의 사용 환경 상태에 따라 조명 장치가 제어되는 동작을 설명하기 위한 도면이다.
도 27은 본 개시의 일 실시예에 따른 무선 청소기의 신호선 통신을 위한 회로를 설명하기 위한 도면이다.
도 28은 본 개시의 일 실시예에 따른 무선 청소기의 I2C 통신을 위한 회로를 설명하기 위한 도면이다.
도 29는 본 개시의 일 실시예에 따른 무선 청소기의 UART 전이중 통신을 위한 회로를 설명하기 위한 도면이다.
도 30은 본 개시의 일 실시예에 따른 무선 청소기의 UART 반이중 통신을 위한 회로를 설명하기 위한 도면이다.
도 31은 본 개시의 일 실시예에 따른 무선 청소기의 I2C 통신을 위한 회로를 설명하기 위한 도면이다.
도 32는 본 개시의 일 실시예에 따른 무선 청소기의 UART 통신을 위한 회로를 설명하기 위한 도면이다.
도 33은 본 개시의 일 실시예에 따른 무선 청소기의 UART 전이중 통신을 위한 회로를 설명하기 위한 도면이다.
도 34는 본 개시의 일 실시예에 따른 무선 청소기의 I2C 통신을 위한 회로를 설명하기 위한 도면이다.
도 35는 본 개시의 일 실시예에 따른 무선 청소기가 동작 상태 알림을 출력하는 동작을 설명하기 위한 도면이다.
도 36은 본 개시의 일 실시예에 따른 무선 청소기의 GUI를 설명하기 위한 도면이다.
본 개시에서 사용되는 용어에 대해 간략히 설명하고, 본 개시의 일 실시예에 대해 구체적으로 설명하기로 한다.
본 개시에서 사용되는 용어는 본 개시의 일 실시예에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 본 개시의 실시예의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 개시에서, "a, b 또는 c 중 적어도 하나" 표현은 " a", " b", " c", "a 및 b", "a 및 c", "b 및 c", "a, b 및 c 모두", 혹은 그 변형들을 지칭할 수 있다.
본 개시 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 본 개시에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, "...부", "모듈" 은 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 개시의 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 개시의 일 실시예는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 개시의 일 실시예를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 본 개시 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도 1은 본 개시의 일 실시예에 따른 청소 시스템을 설명하기 위한 도면이다.
도 1을 참조하면, 본 개시의 일 실시예에 따른 청소 시스템은 무선 청소기(100)를 포함할 수 있다. 무선 청소기(100)는, 충전용 배터리를 내장하고 있으며, 청소 시에 전원 코드를 콘센트(outlet)에 연결할 필요가 없는 진공 청소기를 의미할 수 있다. 다만, 본 명세서에서는 무선 청소기(100)가 설명되지만, 청소 시스템은 본 개시의 범위를 벗어나지 않고 벽 콘센트에 의해 활성화되는 유선 청소기(cord vacuum)를 포함할 수도 있다. 사용자는 청소기 본체에 탑재된 핸들을 이용하여 무선 청소기(100)를 앞뒤로 이동시키면서 브러시 장치와 같은 청소기 헤드나 부착물이, 예를 들어, 피청소면에서 먼지나 쓰레기를 흡입하도록 할 수 있다. 다만, 본 명세서에서는 브러시 장치가 설명되지만, 본 개시의 범위를 벗어나지 않고 진공 청소기와 함께 다른 유형의 청소기 헤드 또는 부착물이 사용될 수도 있다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는, 일반 모드와 AI 모드를 제공할 수 있다. 일반 모드는, 사용자가 선택한 강도(intensity)(예: 강, 중, 약 등)에 따라 흡입 모터의 흡입력 세기가 조절되는 수동 모드일 수 있다. AI 모드는, 브러시 장치의 사용 환경 상태(예: 피청소면의 상태(마루, 카펫, 매트, 코너 등)에 따라 흡입 모터의 흡입력 세기 또는 브러시 장치의 분당 회전 수(이하, 드럼 RPM이라고도 함)가 자동으로 조절되는 자동 모드일 수 있다. 흡입력은 무선 청소기(100)를 동작시키기 위하여 소모되는 전기적인 힘(Input Power)으로, 흡입 모터(1110)의 흡입력 세기는 흡입 모터(1110)의 소비 전력으로 표현될 수도 있다.
도 1의 110을 참조하면, 무선 청소기(100)가 일반 모드에서 동작하는 경우, 사용자는 서로 다른 유형의 청소기 부착물을 변경하는 것이 필요할 수 있다. 예를 들어, 사용자는 피청소면의 상태나 종류에 따라 브러시 장치와 같은 청소기 부착물을 교체하거나, 흡입 모터의 흡입력 세기를 수동으로 조절해야 할 수 있다. 예를 들어, 청소 효율을 높이기 위해, 사용자가 카펫 위를 청소할 때는 카펫에 맞는 제1 브러시 장치와 같은 제1 타입의 청소기 부착물을 청소기 본체에 연결하고, 사용자가 마루(hard floor)를 청소할 때는 마루에 맞는 다른 타입의 브러시 장치와 같은 다른 타입의 청소기 부착물을 청소기 본체에 연결할 필요가 있다. 또한, 사용자는 피청소면의 종류나 재질에 따라 무선 청소기(100)의 흡입력을 조절할 필요가 있을 수 있다. 예를 들어, 사용자는 러그(rug) 위나 벽면 코너를 청소할 때 무선 청소기(100)의 흡입력 세기를 직접 높여야 하며, 매트 위를 청소할 때는 무선 청소기(100)가 매트에 과밀착되므로 무선 청소기(100)의 흡입력 세기를 낮추어야 한다.
한편, 무선 청소기(100)가 일반 모드에서 동작할 때 사용자는 상황에 따라 적절히 흡입력 세기를 조절하지 않고 흡입력 세기를 최대 강도로 유지할 수 있다. 이 경우, 배터리 사용 시간이 현저하게 줄어들 수 있으며, 매트 위를 청소할 때는 브러시 장치가 매트에 과밀착되어 사용자가 무선 청소기(100)를 앞뒤로 밀기 어려울 수 있다.
또한, 무선 청소기(100)가 일반 모드에서 동작하는 경우, 브러시 장치의 모터 회전 속도(예: 드럼 RPM) 또는 브러시 장치의 구속 레벨(Trip level) 등은 상황에 따라 적절히 조절될 수 없다. 구속 레벨(trip level)은, 브러시 장치의 과부하를 방지하기 위한 것으로, 브러시 장치의 작동을 정지하기 위한 기준 부하 값(예: 기준 전류 값)을 의미할 수 있다.
도 1의 120을 참조하면, 무선 청소기(100)가 AI 모드로 동작하는 경우, 무선 청소기(100)는 브러시 장치 또는 부착물의 사용 환경 상태를 추론하도록 학습된 AI 모델을 이용하여 브러시 장치 또는 부착물의 현재 사용 환경 상태를 추론하고, 브러시 장치 또는 부착물의 현재 사용 환경 상태에 따라 흡입 모터의 흡입력 세기를 자동으로 조절할 수 있다. 예를 들어, 피청소면의 상태가 마루(hard floor)에서 카펫으로 변경된 경우, 무선 청소기(100)는 청소 성능을 높이기 위해 흡입 모터의 흡입력 세기를 높일 수 있다. 반면, 피청소면의 상태가 카펫에서 다시 마루로 변경되는 경우, 무선 청소기(100)는 배터리의 사용 시간을 늘리기 위해(또는 동작 소음(예: 브러시 장치의 드럼 마찰 소음, 청소기 본체의 흡입 모터 동작 소음 등)을 낮추기 위해, 또는 브러시 장치의 드럼 회전에 의한 피청소면의 마찰로 인한 손상(예: 긁힘, 스크래치, 까짐, 마모 등)을 줄이기 위해), 흡입 모터의 흡입력 세기를 다시 낮출 수 있다. 피청소면의 상태가 마루에서 매트로 변경되는 경우, 조작 편의성을 높이기 위해(또는 동작 소음(예: 브러시 장치의 드럼 마찰 소음, 청소기 본체의 흡입 모터 동작 소음 등)을 낮추기 위해, 또는 브러시 장치의 드럼 회전에 의한 피청소면의 마찰로 인한 손상(예: 긁힘, 스크래치, 까짐, 마모 등)을 줄이기 위해), 무선 청소기(100)는 자동으로 흡입 모터의 흡입력 세기를 낮출 수 있고, 브러시 장치가 피청소면으로부터 들린 상태(유휴(idle) 상태)인 경우, 배터리의 사용 시간을 늘리기 위해(또는 동작 소음(예: 브러시 장치의 드럼 마찰 소음, 청소기 본체의 흡입 모터 동작 소음 등)을 낮추기 위해), 무선 청소기(100)는 흡입 모터의 흡입력 세기를 최대한 낮출 수 있다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)가 AI 모드로 동작하는 경우, 무선 청소기(100)는 청소기 본체와 브러시 장치 간의 통신을 통해 브러시 장치의 동작을 제어할 수도 있다. 무선 청소기(100)는 브러시 장치의 현재 사용 환경 상태에 따라 브러시 장치의 모터 회전 속도(예: 드럼 RPM), 구속 레벨(trip level), 조명 장치의 동작(예: 색상, 밝기) 등을 적응적으로 조절할 수 있다.
예를 들어, 피청소면의 상태가 마루(hard floor)에서 카펫으로 변경된 경우, 무선 청소기(100)는 청소 성능을 높이기 위해 브러시 장치의 모터 회전 속도(예: 드럼 RPM)를 높일 수 있다. 반면, 피청소면의 상태가 카펫에서 다시 마루로 변경되는 경우, 무선 청소기(100)는 배터리의 사용 시간을 늘리기 위해(또는 동작 소음(예: 브러시 장치의 드럼 마찰 소음, 청소기 본체의 흡입 모터 동작 소음 등)을 낮추기 위해, 또는 브러시 장치의 드럼 회전에 의한 피청소면의 마찰로 인한 손상(예: 긁힘, 스크래치, 까짐, 마모 등)을 줄이기 위해), 브러시 장치의 모터 회전 속도(예: 드럼 RPM)를 다시 낮출 수 있다. 또한, 브러시 장치가 피청소면으로부터 들린 상태(예: 유휴 상태(idle))인 경우, 배터리의 사용 시간을 늘리기 위해(또는 동작 소음(예: 브러시 장치의 드럼 마찰 소음, 청소기 본체의 흡입 모터 동작 소음 등)을 낮추기 위해), 무선 청소기(100)는 브러시 장치의 모터 회전 속도(예: 드럼 RPM)를 최대로 낮출 수 있다.
따라서, 무선 청소기(100)가 AI 모드로 동작하는 경우, 무선 청소기(100)는 AI 모델에 의해 추론된 브러시 장치의 현재 사용 환경 상태에 따라 흡입 모터의 흡입력 세기 또는 브러시 장치의 모터 회전 속도를 자동으로 조절해줌으로써, 청소 성능, 사용자의 조작 편의성, 배터리의 사용 시간, 동작 소음(예: 브러시 장치의 드럼 마찰 소음, 청소기 본체의 흡입 모터 동작 소음 등), 브러시 장치의 드럼 회전에 의한 피청소면의 마찰로 인한 손상(예: 긁힘, 스크래치, 까짐, 마모 등) 등을 효율적으로 개선할 수 있다. 또한, 무선 청소기(100)는, AI 모델을 이용함으로써, 사용자들 각각의 다양한 생활 환경에 맞는 최적의 제어를 제공할 수 있다.
무선 청소기(100)가 AI 모델을 이용하여 최적의 제어를 제공하는 동작에 대해서는 도 8을 참조하여 후에 자세히 살펴보기로 하고, 이하에서는 도 2를 참조하여, 본 개시의 일 실시예에 따른 무선 청소기(100)의 구성에 대해서 살펴보기로 한다.
도 2는 본 개시의 일 실시예에 따른 무선 청소기(100)를 설명하기 위한 도면이다.
도 2를 참조하면, 본 개시의 일 실시예에 따른 무선 청소기(100)는 청소기 본체(1000), 브러시 장치(2000), 연장관(3000)을 포함하는 스틱형 청소기일 수 있다. 그러나 도 2에 도시된 구성요소 모두가 필수구성요소인 것은 아니다. 도 2에 도시된 구성요소보다 많은 구성요소에 의해 무선 청소기(100)가 구현될 수도 있고, 그보다 적은 구성요소에 의해서도 무선 청소기(100)가 구현될 수도 있다. 예를 들어, 무선 청소기(100)는, 연장관(3000)을 제외하고, 청소기 본체(1000)와 브러시 장치(2000)로 구현될 수도 있다. 또한, 무선 청소기(100)는 청소기 본체(1000)의 먼지 배출 및 배터리 충전을 위한 청정 스테이션(미도시)을 더 포함할 수도 있다. 이하 각 구성에 대해서 살펴보자. 본 명세서에서는, 브러시 장치(2000)가 설명되지만, 본 개시의 범위를 벗어나지 않는 한 다른 유형의 부착물이 사용될 수 있음을 이해해야 한다.
청소기 본체(1000)는, 청소 시 사용자가 잡고 이동시킬 수 있는 부분으로, 무선 청소기(100) 내부에 진공을 형성하는 흡입 모터(1110)를 포함할 수 있다. 흡입 모터(1110)는 피청소면(예: 바닥, 침구, 소파 등)으로부터 흡입된 이물질이 수용되는 집진통(먼지통) 내에 위치할 수 있다. 청소기 본체(1000)는, 흡입 모터(1110) 이외에 적어도 하나의 프로세서(1001), 부하 감지 센서(1134), 압력 센서(1400), 메모리(1900) 등을 더 포함할 수 있으나, 이에 한정되는 것은 아니다.
부하 감지 센서(1134)는 브러시 장치(2000)의 부하를 측정하기 위한 센서일 수도 있고, 부하 감지(센싱) 회로일 수도 있으나, 이에 한정되는 것은 아니다. 압력 센서(1400)는 무선 청소기(100) 내부의 유로 압력을 측정하는 센서일 수 있다. 메모리(1900)는 브러시 장치(2000)의 사용 환경 상태를 추론하도록 학습된 AI 모델을 저장할 수 있다. 또한, 적어도 하나의 프로세서(1001)는, 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 압력 센서(1400)로부터 획득하고, 부하 감지 센서(1134)를 통해 브러시 장치(2000)의 부하와 관련된 데이터를 획득할 수 있다. 그리고 적어도 하나의 프로세서(1001)는, 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 메모리(1900)에 저장된 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다. 적어도 하나의 프로세서(1001)는 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 흡입 모터(1110)의 흡입력 세기를 조절할 수도 있다. 청소기 본체(1000)에 대해서는 도 3을 참조하여 후에 자세히 살펴보기로 한다.
브러시 장치(2000)는, 피청소면에 밀착되어 피청소면의 공기와 이물질을 흡입할 수 있는 장치이다. 브러시 장치(2000)는 청소기 헤드 또는 청소기 부착물로 표현될 수도 있다. 브러시 장치(2000)는 연장관(3000)에 회전 가능하게 결합될 수 있다. 브러시 장치(2000)는, 모터, 회전솔이 붙어 있는 드럼 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 본 개시의 일 실시예에 의하면, 브러시 장치(2000)는 청소기 본체(1000)와의 통신을 제어하기 위한 적어도 하나의 프로세서를 더 포함할 수 있다. 비제한적인 실시예에 따르면, 브러시 장치(2000)는 청소기에 분리 가능하게 결합될 수 있으며, 다른 유형의 청소기 헤드 또는 청소기 부착물로 대체될 수 있다. 브러시 장치(2000)의 종류는 다양할 수 있으며, 브러시 장치(2000)의 종류에 대해서는 도 5를 참조하여 후에 자세히 살펴보기로 한다.
연장관(3000)은 소정의 강성을 갖는 파이프, 중공 도관(hollow conduit) 또는 플렉서블한 호스로 형성될 수 있다. 연장관(3000)은 청소기 본체(1000)의 흡입 모터(1110)를 통해 발생된 흡입력을 브러시 장치(2000)로 전달하고, 브러시 장치(2000)를 통해 흡입된 공기와 이물질을 청소기 본체(1000)로 이동시킬 수 있다. 연장관(3000)은 브러시 장치(2000)와 분리 가능하도록 연결될 수 있다. 연장관(3000)은 청소기 본체(1000)와 브러시 장치(2000) 사이에서 다단으로 형성될 수 있다. 연장관(3000)은 두 개 이상일 수도 있다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)에 포함된 청소기 본체(1000), 브러시 장치(2000), 연장관(3000) 각각은 전원선(예를 들어, +전원선, -전원선)과 신호선을 포함할 수 있다.
전원선은 배터리(1500)로부터 공급되는 전력을 청소기 본체(1000) 및 청소기 본체(1000)에 연결되는 브러시 장치(2000)로 전달하기 위한 선일 수 있다. 신호선은 전원선과 상이하며, 청소기 본체(1000)와 브러시 장치(2000) 간의 신호를 송수신하기 위한 선일 수 있다. 신호선은 브러시 장치(2000) 내에서 전원선에 연결되도록 구현될 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 적어도 하나의 프로세서(1001)와 브러시 장치(2000)의 프로세서 각각은 신호선에 연결된 스위치 소자의 동작을 제어함으로써, 청소기 본체(1000)와 브러시 장치(2000) 간의 쌍방향 통신을 수행할 수 있다. 이하에서는, 청소기 본체(1000)와 브러시 장치(2000)가 신호선을 통해 통신하는 경우, 청소기 본체(1000)와 브러시 장치(2000) 간의 통신을 ‘신호선 통신’으로 정의할 수 있다. 신호선 통신에 대해서는 도 20 내지 도 24를 참조하여 후에 자세히 살펴보기로 한다.
한편, 청소기 본체(1000)와 브러시 장치(2000)는 I2C(Inter Intergrated Circuit) 또는 UART(Universal asynchronous receiver/transmitter)를 이용하여 통신할 수도 있다. 청소기 본체(1000)와 브러시 장치(2000)가 I2C 또는 UART 를 이용하여 통신하는 동작에 대해서는 도 32 내지 도 38을 참조하여 후에 자세히 살펴보기로 한다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 브러시 장치(2000)의 착탈 유무를 감지하는 것에서 나아가 브러시 장치(2000)의 유형을 식별하고, 브러시 장치(2000)의 사용 환경 상태(예: 마루(hard floor), 카펫, 매트, 코너, 피청소면에서 들린 상태 등)에 따라 브러시 장치(2000)의 동작(예: 드럼 RPM)을 적응적으로 제어할 수도 있다. 예를 들어, 청소기 본체(1000)는 브러시 장치(2000)와 주기적으로 통신함으로써, 브러시 장치(2000)의 동작을 제어하기 위한 신호를 브러시 장치(2000)로 전송할 수 있다. 청소기 본체(1000)가 브러시 장치(2000)의 동작(예: 드럼 RPM)을 적응적으로 제어하는 방법에 대해서는 도 23을 참조하여 후에 자세히 살펴보고, 이하에서는, 도 3을 참조하여 청소기 본체(1000)의 구성에 대해서 조금 더 자세히 살펴보기로 한다.
도 3은 본 개시의 일 실시예에 따른 청소기 본체(1000)를 설명하기 위한 도면이다.
청소기 본체(1000)는 사용자가 파지할 수 있도록 마련되는 핸들을 포함할 수 있다. 따라서, 청소기 본체(1000)는 핸디 본체로 표현될 수도 있다. 사용자는 핸들을 잡고 청소기 본체(1000) 및 브러시 장치(2000)를 전후 방향으로 이동시킬 수 있다.
도 3을 참조하면, 청소기 본체(1000)는 피청소면 상의 이물질을 흡입하는데 필요한 흡입력을 발생시키는 흡입력 발생 장치(이하, 모터 어셈블리(1100)라 함), 피청소면으로부터 흡입된 이물질이 수용되는 집진통(1200, 먼지통이라고도 함), 필터부(1300), 압력 센서(1400), 모터 어셈블리(1100)에 전원을 공급할 수 있는 배터리(1500), 통신 인터페이스(1600), 사용자 인터페이스(1700), 적어도 하나의 프로세서(1001)(예: 메인 프로세서(1800)), 메모리(1900)를 포함할 수 있다. 그러나 도 3에 도시된 구성요소 모두가 필수구성요소인 것은 아니다. 도 3에 도시된 구성요소보다 많은 구성요소에 의해 청소기 본체(1000)가 구현될 수도 있고, 그보다 적은 구성요소에 의해서도 청소기 본체(1000)가 구현될 수도 있다.
이하 각 구성에 대해서 살펴보기로 한다.
모터 어셈블리(1100)는 전기력을 기계적인 회전력으로 전환시키는 흡입 모터(1110)와, 흡입 모터(1110)에 연결되어 회전하는 팬(1120), 흡입 모터(1110)와 연결되는 구동 회로(1130)(PCB(Printed Circuit Board)에 포함 됨)를 포함할 수 있다. 흡입 모터(1110)는 무선 청소기(100) 내부에 진공 또는 흡입력을 형성할 수 있다. 여기서, 진공이란 대기압 보다 낮은 상태를 의미한다. 흡입 모터(1110)는 브러시리스 모터(이하, BLDC(Brushless Direct Current) 모터라 함)를 포함할 수 있으나, 이에 한정되는 것은 아니다.
구동 회로(1130)는 흡입 모터(1110)를 제어하고, 브러시 장치(2000)와의 통신을 제어하는 프로세서(이하, 제1 프로세서(1131)라 함), 신호선에 연결되는 제1 스위치 소자(1132), 브러시 장치(2000)로의 전력 공급을 제어하기 위한 스위치 소자(이하, PWM 제어 스위치 소자(1133)라 함)(예: FET, Transistor, IGBT 등), 브러시 장치(2000)의 부하를 감지하는 부하 감지 센서(1134)(예: 션트 저항, 션트 저항과 증폭 회로(OP-AMP), 전류 감지 센서, 자계 검출 센서(비접촉 방식) 등)를 포함할 수 있으나, 이에 한정되는 것은 아니다. 이하에서는, 설명의 편의를 위해, FET를 PWM 제어 스위치 소자(1133)의 일례로 설명하고, 션트 저항을 부하 감지 센서(1134)의 일례로 설명하기로 한다.
제1 프로세서(1131)는 흡입 모터(1110)의 상태와 관련된 데이터(이하, 상태 데이터라 함)를 획득하고, 흡입 모터(1110)의 상태 데이터를 메인 프로세서(1800)에 전달할 수 있다. 또한, 제1 프로세서(1131)는 신호선에 연결되는 제1 스위치 소자(1132)의 동작을 제어(예: 턴온 또는 턴 오프)하여 브러시 장치(2000)로 신호선을 통해 신호(이하, 제1 신호라 함)를 전송할 수 있다. 제1 스위치 소자(1132)는 신호선의 상태를 Low로 만들 수 있는 소자이다. 예를 들어, 제1 스위치 소자(1132)는 신호선의 전압이 0V가 되게 할 수 있는 소자이다. 제1 신호는 브러시 장치(2000)의 회전 솔의 목표 분당 회전 수(이하, 목표 드럼 RPM이라고 하기도 함), 브러시 장치(2000)의 목표 구속 레벨(trip level), 또는 흡입 모터(1110)의 소비 전력 중 적어도 하나를 나타내는 데이터를 포함할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 제1 신호는 브러시 장치(2000)에 포함된 조명 장치를 제어하기 위한 데이터를 포함할 수도 있다. 제1 신호는 기 설정된 비트 수로 구현될 수 있다. 예를 들어, 제1 신호는 5비트로 구현될 수도 있고, 8비트로 구현될 수도 있으며, 1비트 당 10ms의 전송 주기를 가질 수 있으나, 이에 한정되는 것은 아니다.
제1 프로세서(1131)는, 브러시 장치(2000)에서 신호선을 통해 전송하는 신호(이하, 제2 신호라 함)를 감지할 수 있다. 제2 신호는, 브러시 장치(2000)의 현재 상태를 나타내는 데이터를 포함할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 제2 신호는, 현재 동작 중인 조건에 관한 데이터(예: 현재 드럼 RPM, 현재 구속 레벨, 현재 조명 장치 설정 값 등)를 포함할 수 있다. 또한, 제2 신호는 브러시 장치(2000)의 유형을 나타내는 데이터를 더 포함할 수도 있다. 제1 프로세서(1131)는 제2 신호에 포함된 브러시 장치(2000)의 현재 상태를 나타내는 데이터 또는 브러시 장치(2000)의 유형을 나타내는 데이터를 메인 프로세서(1800)로 전달할 수 있다. 모터 어셈블리(1100)의 구동 회로(1130)에 대해서는 도 20을 참조하여 후에 조금 더 자세히 살펴보기로 한다.
모터 어셈블리(1100)는 집진통(1200) 내에 위치할 수 있다. 집진통(1200)은 브러시 장치(2000)를 통해 유입되는 공기 중의 먼지나 오물을 걸러내어 모아지도록 구성될 수 있다. 집진통(1200)은 청소기 본체(1000)로부터 분리 가능하게 마련될 수 있다.
집진통(1200)은 원심력을 이용하여 이물질을 분리하는 사이클론 방식을 통해 이물질을 수집할 수 있다. 사이클론 방식을 통해 이물질이 제거된 공기는 청소기 본체(1000)의 외부로 배출될 수 있으며, 이물질은 집진통(1200)에 저장될 수 있다. 집진통(1200) 내부에는 멀티 사이클론이 배치될 수 있다. 집진통(1200)은 멀티 사이클론의 하측으로 이물질이 포집되도록 마련될 수 있다. 집진통(1200)은, 청정 스테이션과 연결될 시 집진통(1200)이 개방되도록 마련되는 집진통 도어를 포함할 수 있다. 집진통(1200)은 1차적으로 포집되고 상대적으로 큰 이물질이 집진되는 제1 집진부와 멀티 사이클론에 의해 포집되고 상대적으로 작은 이물질이 집진되는 제2 집진부를 포함할 수도 있다. 제1 집진부와 제2 집진부는 모두 집진통 도어가 개방될 시 외부와 개방되도록 마련될 수 있다.
필터부(1300)는 집진통(1200)에서 걸러지지 않은 초미세 먼지 등을 필터링할 수 있다. 필터부(1300)는 필터를 통과한 공기가 무선 청소기(100)의 외부로 배출되도록 하는 토출구를 포함할 수 있다. 필터부(1300)는, 모터 필터, 헤파 필터 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
압력 센서(1400)는, 유로 내부의 압력(이하, 유로 압력이라고도 함)을 측정할 수 있다. 무선 청소기(100)의 흡입단(예: 흡입 덕트(40))에 마련되는 압력 센서(1400)의 경우 정압을 측정하여 해당 위치의 유속 변화를 측정할 수 있다. 압력 센서(1400)는 절대압 센서 또는 상대압 센서일 수 있으나, 이에 한정되는 것은 아니다. 압력 센서(1400)가 절대압 센서인 경우, 메인 프로세서(1800)는 압력 센서(1400)를 이용하여, 흡입 모터(1110)를 동작시키기 전의 제1 압력 값을 센싱할 수 있다. 그리고 메인 프로세서(1800)는 흡입 모터(1110)를 목표 RPM으로 구동한 후의 제2 압력 값을 센싱하고, 제1 압력 값과 제2 압력 값의 차를 유로 내부의 압력 값으로 이용할 수 있다. 이때, 제1 압력 값은 날씨, 고도, 무선 청소기(100)의 상태, 먼지 유입량 등의 내/외부 영향에 의한 압력 값일 수 있으며, 제 2 압력 값은 고도, 무선 청소기(100)의 상태, 먼지 유입량 등의 내/외부 영향에 의한 압력 값 및 흡입 모터(1110) 구동에 의한 압력 값일 수 있고, 제1 압력 값과 제 2 압력 값의 차이는 흡입 모터(1110) 구동에 의한 압력 값일 수 있다. 따라서, 제1 압력 값과 제2 압력 값의 차를 유로 내부의 압력 값으로 이용하는 경우, 흡입 모터(1110) 이외의 내/외부의 영향을 최소화할 수 있다.
압력 센서(1400)에 의해 측정된 유로 압력은 브러시 장치(2000)의 현재 사용 환경 상태(예: 피청소면의 상태(마루, 카펫, 매트, 코너 등), 피청소면에서 들린 상태 등)를 식별하는데 이용될 수도 있고, 집진통(1200)의 오염 정도나 먼지의 포집 정도에 따라 변화하는 흡입력을 측정하는데 이용될 수도 있다.
비 제한적 실시예에 의하면, 압력 센서(1400)는 흡입단(예: 흡입 덕트(40))에 위치할 수 있다. 흡입 덕트(40)는, 집진통(1200)과 연장관(3000) 또는 집진통(1200)과 브러시 장치(2000)를 연결시켜, 집진통(1200)으로 이물질을 포함하는 유체가 이동할 수 있도록 하는 구조물일 수 있다. 비 제한적 실시예에 의하면, 압력 센서(1400)는 이물/먼지의 오염을 고려하여, 흡입 덕트(40)의 직선부 끝부분(또는 직선부와 곡선부의 변곡점)에 위치할 수 있으나, 이에 한정되는 것은 아니다. 비 제한적 실시예에 의하면, 압력 센서(1400)는 흡입 덕트(40)의 직선부 중간에 위치할 수도 있다. 한편, 압력 센서(1400)가 흡입 덕트(40)에 위치하는 경우, 압력 센서(1400)는 흡입력을 발생시키는 흡입 모터(1110) 전단에 위치하기 때문에, 압력 센서(1400)는 음압 센서(negative pressure sensor)로 구현될 수 있다.
본 개시의 비 제한적 실시예에서는 압력 센서(1400)가 흡입 덕트(40)에 위치하는 경우를 예로 들어 설명하나, 이에 한정되는 것은 아니다. 압력 센서(1400)는 토출단(예: 모터 어셈블리(1100) 내)에 위치할 수도 있다. 압력 센서(1400)가 토출단에 위치하는 경우, 압력 센서(1400)는 흡입 모터(1110)의 후단에 위치하기 때문에, 양압 센서(positive pressure sensor)로 구현될 수 있다. 또한, 압력 센서(1400)는 무선 청소기(100) 내에 복수 개 마련될 수도 있다.
배터리(1500)는 청소기 본체(1000)에 분리 가능하게 장착될 수 있다. 배터리(1500)는 청정 스테이션(미도시)에 마련된 충전 단자와 전기적으로 연결될 수 있다. 배터리(1500)는 충전 단자로부터 전력을 공급받아 충전될 수 있다. 청정 스테이션은 무선 청소기(100)의 먼지 배출 및 배터리(1500)의 충전을 위한 장치일 수 있다. 무선 청소기(100)는 청정 스테이션에 거치(도킹)되어, 먼지를 배출하거나, 배터리(1500)를 충전하거나, 보관될 수 있다.
청소기 본체(1000)는 외부 장치와 통신을 수행하기 위한 통신 인터페이스(1600)를 포함할 수 있다. 예를 들어, 청소기 본체(1000)는 통신 인터페이스(1600)를 통해서 청정 스테이션(또는 서버 장치)과 통신을 수행할 수 있다. 통신 인터페이스(1600)는, 근거리 통신부와 원거리 통신부 등을 포함할 수 있다. 근거리 통신부(short-range wireless communication interface)는, 블루투스 통신부, BLE(Bluetooth Low Energy) 통신부, 근거리 무선 통신부(NFC, Near Field Communication interface), WLAN(와이파이) 통신부, 지그비(Zigbee) 통신부, 적외선(IrDA, Infrared Data Association) 통신부, WFD(Wi-Fi Direct) 통신부, UWB(ultra wideband) 통신부, Ant+ 통신부 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
사용자 인터페이스(1700)는 핸들에 마련될 수 있다. 사용자 인터페이스(1700)는 입력 인터페이스와 출력 인터페이스를 포함할 수 있다. 청소기 본체(1000)는 사용자 인터페이스(1700)를 통해 무선 청소기(100)의 동작과 관련된 사용자 입력을 수신할 수 있고, 무선 청소기(100)의 동작 관련된 정보를 출력할 수도 있다. 입력 인터페이스는 전원 버튼, 흡입력 강도 조절 버튼 등을 포함할 수 있다. 출력 인터페이스는, LED 디스플레이, LCD, 터치 스크린 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
청소기 본체(1000)는 적어도 하나의 프로세서(1001)를 포함할 수 있다. 청소기 본체(1000)는 하나의 프로세서를 포함할 수도 있고, 복수의 프로세서를 포함할 수도 있다. 예를 들어, 청소기 본체(1000)는 사용자 인터페이스(1700)와 연결되는 메인 프로세서(1800), 흡입 모터(1110)에 연결되는 제1 프로세서(1131)를 포함할 수 있다. 적어도 하나의 프로세서(1001)는 무선 청소기(100)의 전반적인 동작을 제어할 수 있다. 예를 들어, 적어도 하나의 프로세서(1001)는, 흡입 모터(1110)의 소비 전력(흡입력 세기), 브러시 장치(2000)의 드럼 RPM, 브러시 장치(2000)의 구속 레벨(trip level) 등을 결정할 수 있다.
본 개시에 따른 적어도 하나의 프로세서(1001)는 CPU (Central Processing Unit), GPU (Graphics Processing Unit), APU (Accelerated Processing Unit), MIC (Many Integrated Core), DSP (Digital Signal Processor), 및 NPU (Neural Processing Unit) 중 적어도 하나를 포함할 수 있다. 적어도 하나의 프로세서(1001)는, 하나 이상의 전자부품을 포함하는 집적된 시스템 온 칩(SoC) 형태로 구현될 수 있다. 적어도 하나의 프로세서(1001) 각각은 별개의 하드웨어(H/W)로 구현될 수도 있다. 적어도 하나의 프로세서(1001)는 MICOM(Microprocessor controller), MPU(Micro Processor unit), MCU(Micro Controller Unit)로 표현될 수도 있다.
본 개시에 따른 적어도 하나의 프로세서(1001)는 싱글 코어 프로세서(single core processor)로 구현될 수도 있고, 멀티 코어 프로세서(multicore processor)로 구현될 수도 있다.
메모리(1900)는 적어도 하나의 프로세서(1001)의 처리 및 제어를 위한 프로그램을 저장할 수도 있고, 입/출력되는 데이터들을 저장할 수도 있다. 예를 들어, 메모리(1900)는 기 학습된 AI 모델(예: SVM(Support Vector Machine) 알고리즘 등), 흡입 모터(1110)의 상태 데이터, 압력 센서(1400)의 측정 값, 배터리(1500)의 상태 데이터, 브러시 장치(2000)의 상태 데이터, 에러 발생 데이터, 동작 조건에 대응하는 흡입 모터(1110)의 소비 전력, 회전솔이 붙은 드럼의 RPM, 구속 레벨 등을 저장할 수 있다. 구속 레벨(trip level)은, 브러시 장치(2000)의 과부하를 방지하기 위한 것으로, 브러시 장치(2000)의 작동을 정지하기 위한 기준 부하 값(예: 기준 전류 값)을 의미할 수 있다.
이하에서는, 도 4를 참조하여 무선 청소기(100)의 프로세서들의 동작에 대해서 자세히 살펴보기로 한다.
도 4는 본 개시의 일 실시예에 따른 무선 청소기(100)의 프로세서들의 동작을 설명하기 위한 도면이다.
도 4를 참조하면, 메인 프로세서(1800)는 배터리(1500), 압력 센서(1400), 모터 어셈블리(1100) 내의 제1 프로세서(1131)와 통신함으로써, 무선 청소기(100) 내의 부품들의 상태를 확인할 수 있다. 이때, 메인 프로세서(1800)는 범용 비동기화 송수신기(UART: Universal asynchronous receiver/transmitter) 또는 I2C(Inter Intergrated Circuit)를 이용하여 각 부품들과 통신할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 메인 프로세서(1800)는 UART를 이용하여 배터리(1500)로부터 배터리(1500)의 전압 상태(예: 정상, 비정상, 만 충전, 만 방전 등)에 관한 데이터를 획득할 수 있다. 메인 프로세서(1800)는 압력 센서(1400)로부터 I2C를 이용하여 유로 압력에 대한 데이터를 획득할 수도 있다.
또한, 메인 프로세서(1800)는, 흡입 모터(1110)에 연결된 제1 프로세서(1131)로부터 UART를 이용하여, 흡입력 세기, 흡입 모터(1110)의 RPM, 흡입 모터(1110)의 상태(예: 정상, 비정상 등)에 관한 데이터를 획득할 수 있다. 흡입력은 무선 청소기(100)를 동작시키기 위하여 소모되는 전기적인 힘으로, 소비 전력으로 표현될 수도 있다. 메인 프로세서(1800)는 브러시 장치(2000)의 부하와 관련된 데이터, 브러시 장치(2000)의 유형에 관한 데이터를 제1 프로세서(1131)로부터 획득할 수도 있다.
한편, 제1 프로세서(1131)는 브러시 장치(2000)의 제2 프로세서(2410)와의 신호선 통신을 통해서 브러시 장치(2000)의 상태 데이터(예: 드럼 RPM, 구속 레벨(Trip level), 정상, 비정상 등)를 브러시 장치(2000)로부터 획득할 수도 있다. 이때, 제1 프로세서(1131)는 브러시 장치(2000)의 상태 데이터를 메인 프로세서(1800)에 UART를 통해 전달할 수 있다. 본 개시의 일 실시예에 의하면, 제1 프로세서(1131)는 흡입 모터(1110)의 상태 데이터와 브러시 장치(2000)의 상태 데이터를 서로 다른 주기로 메인 프로세서(1800)에 전달할 수 있다. 예를 들어, 제1 프로세서(1131)는 0.02초마다 한번씩 흡입 모터(1110)의 상태 데이터를 메인 프로세서(1800)로 전달하고, 0.2초마다 한번씩 브러시 장치(2000)의 상태 데이터를 메인 프로세서(1800)로 전달할 수 있으나, 이에 한정되는 것은 아니다.
청소기 본체(1000)의 제1 프로세서(1131)와 브러시 장치(2000)의 제2 프로세서(2410)를 UART나 I2C로 연결하는 경우, 연장관(3000) 내부 선 등에 의한 높은 임피던스 영향과 정전기 방전(ESD: electro static discharge: 정전기 방전) 및/또는 과전압(Over Voltage)에 의한 회로 소자의 소손(예: Micom AD port의 최대 전압 초과) 등이 문제될 수 있다. 따라서, 본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 제1 프로세서(1131)와 브러시 장치(2000)의 제2 프로세서(2410)는 UART나 I2C 대신에 신호선 통신으로 통신하게 된다. 이때, 신호선 통신을 위한 회로는 과전압(Over Voltage), 전원 노이즈, 서지(Surge), ESD(Electrical Overstress), EOS(Electrical Discharge) 등에 의한 회로 소자의 소손 등을 방지하기 위해 전압 분배 회로(이하, 전압 분배기라고 함)를 포함할 수 있다. 다만, 청소기 본체(1000)의 제1 프로세서(1131)와 브러시 장치(2000)의 제2 프로세서(2410) 간의 통신이 신호선 통신으로 한정되는 것은 아니다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000) 및 브러시 장치(2000)에 노이즈 저감 회로가 적용되는 경우, 청소기 본체(1000)의 제1 프로세서(1131)와 브러시 장치(2000)의 제2 프로세서(2410)는 UART나 I2C를 이용하여 통신할 수도 있다. 노이즈 저감 회로는 저주파 통과 필터(Low Pass Filter), 고주파 통과 필터(High Pass Filter), 대역 통과 필터(Band Pass Filter), 댐핑 저항(Damping Resistor), 및 분배 저항 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다. 본 개시의 일 실시예에 의하면, 청소기 본체(1000) 또는 브러시 장치(2000)에 레벨 쉬프터 회로가 적용되는 경우, 청소기 본체(1000)의 제1 프로세서(1131)와 브러시 장치(2000)의 제2 프로세서(2410)는 UART나 I2C를 이용하여 통신할 수도 있다. 청소기 본체(1000) 및 브러시 장치(2000) 간의 다양한 통신 방식에 대해서는 도 20, 도 27 내지 도 34를 참조하여 후에 자세히 살펴보기로 한다. 이하에서는, 설명의 편의 상, 청소기 본체(1000) 및 브러시 장치(2000)가 신호선 통신을 통해 통신하는 경우를 주된 예로 들어 설명하기로 한다.
한편, 메인 프로세서(1800)는 사용자 인터페이스(1700)에 포함된 설정 버튼(예: ON/OFF 버튼, +/- 설정 버튼)에 대한 사용자 입력을 수신할 수도 있고, LCD의 출력을 제어할 수도 있다. 메인 프로세서(1800)는 기 학습된 AI 모델(예: SVM 알고리즘)을 이용하여, 브러시 장치(2000)의 사용 환경 상태(예: 피청소면의 상태(마루, 카펫, 매트, 코너 등), 피청소면에서 들린 상태 등)를 식별하고, 브러시 장치(2000)의 사용 환경 상태에 맞는 무선 청소기(100)의 동작 정보(예: 흡입 모터(1110)의 소비 전력, 드럼 RPM, 구속 레벨(Trip level) 등)를 결정할 수도 있다. 이때, 메인 프로세서(1800)는 브러시 장치(2000)의 사용 환경 상태에 맞는 무선 청소기(100)의 동작 정보를 제1 프로세서(1131)로 전달할 수 있다. 제1 프로세서(1131)는 무선 청소기(100)의 동작 정보에 따라 흡입 모터(1110)의 흡입력의 세기(소비전력, RPM)를 조절할 수 있으며, 브러시 장치(2000)의 사용 환경 상태에 맞는 무선 청소기(100)의 동작 정보를 신호선 통신을 통해서 제2 프로세서(2410)로 전달할 수도 있다. 이 경우, 제2 프로세서(2410)는 무선 청소기(100)의 동작 정보에 따라 드럼 RPM, 구속 레벨, 조명 장치(예: LED 디스플레이) 등을 조절할 수 있다. 메인 프로세서(1800)가 기 학습된 AI 모델(예: SVM 알고리즘)을 이용하여, 브러시 장치(2000)의 사용 환경 상태를 식별하고, 브러시 장치(2000)의 사용 환경 상태에 맞는 무선 청소기(100)의 동작 정보를 결정하는 동작에 대해서는 도 14를 참조하여 후에 자세히 살펴보기로 하고, 이하에서는 도 5를 참조하여, 브러시 장치(2000)에 대해서 조금 더 살펴보기로 한다.
도 5는 본 개시의 일 실시예에 따른 브러시 장치(2000)를 설명하기 위한 도면이다.
도 5를 참조하면, 브러시 장치(2000)는, 모터(2100), 회전솔이 붙어 있는 드럼(2200), 조명 장치(2300) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 브러시 장치(2000)의 모터(2100)는 드럼(2200) 안에 마련될 수도 있고, 드럼(2200) 외부에 마련될 수도 있다. 모터(2100)가 드럼(2200) 외부에 마련된 경우, 드럼(2200)은 벨트를 통해서 모터(2100)로부터 동력을 전달받을 수 있다.
도 5의 510을 참조하면, 모터(2100)는 유성 기어드 모터일 수 있다. 유성 기어드 모터는 DC 모터에 유성 기어(2101)가 결합된 형태일 수 있다. 유성 기어(2101)는 드럼(2200)의 RPM을 기어 비에 따라 조절하기 위한 것이다. 유성 기어드 모터의 경우, 모터(2100)의 RPM과 드럼(2200)의 RPM이 일정한 비율을 가질 수 있다. 도 5의 520을 참조하면, 모터(2100)는 BLDC(Brushless Direct Current) 모터일 수도 있으나, 이에 한정되는 것은 아니다. 모터(2100)가 BLDC 모터인 경우, 모터(2100)의 RPM과 드럼(2200)의 RPM이 동일할 수 있다.
조명 장치(2300)는 어두운 피청소면을 밝혀주거나, 피청소면의 먼지 또는 이물의 식별이 용이하도록 밝혀주거나, 브러시 장치(2000)의 상태를 나타내기 위한 것으로, 브러시 장치(2300)의 전면 또는 상단에 마련될 수 있다. 조명 장치(2300)는 LED 디스플레이를 포함할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 조명 장치(2300)는 레이저일 수도 있다. 조명 장치(2300)는 모터(2100)가 구동 됨에 따라 자동으로 동작할 수도 있고, 제2 프로세서(2410)의 제어에 따라 동작할 수도 있다. 본 개시의 일 실시예에 의하면, 조명 장치(2300)는 제2 프로세서(2410)의 제어에 의해 색상이 변경될 수도 있고, 밝기가 변경될 수도 있다.
도 5의 520을 참조하면, 브러시 장치(2000)는 구동 회로(2400)(PCB에 포함됨) 를 더 포함할 수 있다. 구동 회로(2400)는 청소기 본체(1000)와의 신호선 통신을 위한 회로를 포함할 수 있다. 예를 들어, 구동 회로(2400)는 제2 프로세서(2410), 신호선에 연결되는 스위치 소자(이하, 제2 스위치 소자라고도 함)(미도시), 브러시 장치(2000)의 유형을 나타내는 식별 저항(미도시) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 구동 회로(2400)에 대해서는 도 20을 참조하여 후에 자세히 살펴보기로 한다.
한편, 브러시 장치(2000)의 종류는 다양할 수 있다. 예를 들어, 브러시 장치(2000)는, 멀티 브러시(501), 마루 브러시(502), 물걸레 브러시(503), 터보(카펫) 브러시(504), 침구 브러시(505), 솔 브러시(미도시), 틈새 브러시(미도시), 펫 브러시(미도시) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000) 또는 부착물의 유형은 브러시 장치(2000) 또는 부착물에 포함된 식별 저항에 의해 구별될 수 있다. 청소기 본체(1000)가 무선 청소기(100)에 결합된 브러시 장치(2000)의 유형 또는 부착물의 유형을 식별하는 동작에 대해서 도 6을 참조하여 살펴보기로 한다.
도 6은 본 개시의 일 실시예에 따른 청소기 본체(1000)에서 브러시 장치(2000)의 유형을 식별하는 동작을 설명하기 위한 도면이다.
도 6을 참조하면, 청소기 본체(1000)의 모터 어셈블리(1100)는, 제1 프로세서(1131)와 부하 감지 센서(1134)(예: 션트 저항)를 포함할 수 있고, 브러시 장치(2000)는 식별 저항(2500)을 포함할 수 있다. 식별 저항(2500)은 전원선(10, 20)과 신호선(30) 사이에 위치할 수 있다. 식별 저항(2500)은 브러시 장치(2000)의 유형 또는 부착물의 유형을 나타내는 것으로, 브러시 장치(2000)의 유형 또는 부착물의 유형마다 상이할 수 있다. 예를 들어, 멀티 브러시(501)의 식별 저항(2500)은 330KΩ이고, 마루 브러시(502)의 식별 저항(2500)은 2.2MΩ이고, 터보(카펫) 브러시(504)의 식별 저항(2500)은 910KΩ일 수 있으나, 이에 한정되는 것은 아니다.
제1 프로세서(1131)는 부하 감지 센서(1134)를 이용하여 브러시 장치(2000)의 착탈 여부를 감지할 수 있다. 예를 들어, 무선 청소기(100)에 브러시 장치(2000)가 결합되지 않은 경우(예: 핸디 모드), 부하 감지 센서(1134)에서 감지되는 브러시 장치(2000)의 동작 전류는 “0” (zero)일 수 있다. 반면, 무선 청소기(100)에 브러시 장치(2000)가 결합된 경우(예: 브러시 모드), 부하 감지 센서(1134)에서 감지되는 브러시 장치(2000)의 동작 전류는 50 mA이상일 수 있다. 따라서, 제1 프로세서(1131)는, 부하 감지 센서(1134)에서 감지된 브러시 장치(2000)의 동작 전류가 0인 경우 브러시 장치(2000)가 탈착된 것으로 판단하고, 부하 감지 센서(1134)에서 감지된 브러시 장치(2000)의 동작 전류가 50mA 이상인 경우 브러시 장치(2000)가 결합된 것으로 판단할 수 있다. 한편, 브러시 장치(2000)가 결합된 것으로 판단하기 위한 기준 동작 전류 값은 50mA로 한정되는 것은 아니고, 변경될 수 있다.
제1 프로세서(1131)는, 무선 청소기(100)에 브러시 장치(2000)가 결합된 것으로 판단된 경우, 제1 프로세서(1131)의 입력 포트(AD port)로 입력되는 전압 값에 기초하여, 브러시 장치(2000)의 유형을 식별할 수 있다. 예를 들어, 브러시 장치(2000)가 식별 저항 A를 포함하고, 청소기 본체(1000)의 구동 회로(1130)가 신호선(30)에 연결되는 전압 분배기(저항 B와 저항 C)를 포함하는 경우, 제1 프로세서(1131)의 입력 포트로 입력되는 전압은 다음과 같을 수 있다.
AD Port 입력 전압= 배터리 공급 전압* C/(A+B+C)
제1 프로세서(1131)의 입력 포트로 입력되는 전압 값(즉, AD Port 입력 전압)은, 식별 저항(2500)의 값이 증가할수록 감소할 수 있다. 저항 B, 저항 C가 일정할 때, 식별 저항 A 값에 따라 입력 포트로 입력되는 전압 값이 달라지므로, 제1 프로세서(1131)는 입력 포트로 입력되는 전압 값에 기초하여 식별 저항(2500)에 대응하는 브러시 장치(2000)의 유형을 식별할 수 있다. 이에 대해서는, 도 7을 참조하기로 한다.
도 7은 본 개시의 일 실시예에 따른 브러시 장치(2000)의 식별 저항(ID 저항)을 설명하기 위한 도면이다.
도 7의 표(700)를 참조하면, 멀티 브러시(501)의 식별 저항은 330KΩ이고, 마루 브러시(502)의 식별 저항은 2.2MΩ이고, 터보(카펫) 브러시(504)의 식별 저항은 910KΩ일 수 있다. 만일, 배터리(1500)의 전압이 25.2V인 경우, 무선 청소기(100)에 멀티 브러시(501)가 결합되었을 때 제1 프로세서(1131)의 입력 포트로 입력되는 전압 값은 2.785V이고, 무선 청소기(100)에 마루 브러시(502)가 결합되었을 때 제1 프로세서(1131)의 입력 포트로 입력되는 전압 값은 0.791V이고, 무선 청소기(100)에 터보(카펫) 브러시(504)가 결합되었을 때 제1 프로세서(1131)의 입력 포트로 입력되는 전압 값은 1.563V일 수 있다. 따라서, 제1 프로세서(1131)는 무선 청소기(100)에 브러시 장치(2000)가 결합된 것으로 판단되고, 배터리(1500)의 전압이 25.2V인 상황에서, 입력 포트로 입력되는 전압 값이 2.785V인 경우 멀티 브러시(501)가 결합된 것으로 식별하고, 입력 포트로 입력되는 전압 값이 0.791V 인 경우 마루 브러시(502)가 결합된 것으로 식별하고, 입력 포트로 입력되는 전압 값이 1.563V 인 경우 터보(카펫) 브러시(504)가 결합된 것으로 식별할 수 있다.
이하에서는, 무선 청소기(100)가 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기를 자동으로 조절하는 동작에 대해서 도 8을 참조하여 자세히 살펴보기로 한다.
도 8은 본 개시의 일 실시예에 따른 무선 청소기(100)가 흡입 모터(1110)의 흡입력 세기를 조절하는 방법을 설명하기 위한 순서도이다.
단계 S810에서, 무선 청소기(100)는 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 획득할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 적어도 하나의 프로세서(1001)는, 압력 센서(1400)에서 측정된 압력 값을 획득할 수 있다. 예를 들어, 메인 프로세서(1800)는 I2C 통신을 통해 압력 센서(1400)에서 측정된 압력 값을 압력 센서(1400)로부터 수신할 수 있다. 압력 센서(1400)는 유로 내에 위치하여 유로 내부의 압력(유로 압력)을 측정할 수 있다. 예를 들어, 압력 센서(1400)는 흡입 덕트(40) 또는 모터 어셈블리(1100) 내에 위치할 수 있으나, 이에 한정되는 것은 아니다.
압력 센서(1400)는 절대압 센서 또는 상대압 센서일 수 있다. 압력 센서(1400)가 절대압 센서인 경우, 메인 프로세서(1800)는 압력 센서(1400)를 이용하여, 흡입 모터(1110)를 동작시키기 전의 제1 압력 값과 흡입 모터(1110)를 목표 RPM으로 구동한 후의 제2 압력 값을 센싱하고, 제1 압력 값과 제2 압력 값의 차를 유로 내부의 압력 값으로 이용할 수 있다. 제1 압력 값과 제2 압력 값의 차를 유로 내부의 압력 값으로 이용하는 경우, 흡입 모터(1110) 이외의 내/외부의 영향을 최소화할 수 있다.
단계 S820에서, 무선 청소기(100)는 부하 감지 센서(1134)를 통해 브러시 장치(2000)의 부하와 관련된 데이터를 획득할 수 있다.
본 개시의 일 실시예에 의하면, 부하 감지 센서(1134)는 모터 어셈블리(1100)의 구동 회로(1130) 내에 위치하며, 션트 저항, 전류 감지 회로, 부하 감지 회로 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 청소기 본체(1000)의 메인 프로세서(1800)는 모터 어셈블리(1100) 내의 제1 프로세서(1131)로부터 브러시 장치(2000)의 부하와 관련된 데이터를 수신할 수 있다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)의 부하와 관련된 데이터는, 브러시 장치(2000)의 동작 전류, 브러시 장치(2000)로 인가되는 전압, 또는 브러시 장치(2000)의 소비 전력 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다. 브러시 장치(2000)의 소비 전력은, 모터(2100)의 소비 전력일 수 있으며, 브러시 장치(2000)의 동작 전류와 브러시 장치(2000)로 인가되는 전압의 곱으로 산출될 수 있다. 브러시 장치(2000)가 조명 장치(2300)(예: LED 디스플레이)를 포함하는 경우, 브러시 장치(2000)의 부하는 모터(2100)의 부하와 조명 장치(2300)의 부하의 합으로 산출될 수 있다.
단계 S830에서, 청소기 본체(1000)는 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 하나 이상의 기 학습된 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다.
본 개시의 일 실시예에 의하면, AI 모델은 브러시 장치(2000)의 사용 한경 상태를 추론하도록 학습된 머신 러닝 알고리즘일 수 있다. AI 모델은, 외부 장치(예: 서버 장치, 외부 컴퓨팅 장치)에서 학습(train) 또는 갱신(renew, refine)될 수도 있고, 청소기 본체(1000)에서 학습 또는 갱신될 수도 있다. 예를 들어, 청소기 본체(1000)는 외부 장치에서 학습된 AI 모델을 수신하여 메모리(1900)에 저장할 수도 있고, 청소기 본체(1000)의 적어도 하나의 프로세서(1001)가 브러시 장치(2000)의 사용 환경 상태를 추론하기 위한 AI 모델을 학습을 통해 만들 수도 있다.
본 개시의 일 실시예에 의하면, AI 모델은 SVM(Support Vector Machine) 모델, 신경망(Neural Networks) 모델, 랜덤 포레스트(Random Forest) 모델, 또는 그래픽 모델(Graphical Model) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
SVM 모델은 데이터에 있는 특성들을 커널(kernel) 함수를 이용하여 입체 공간에 데이터를 분류할 수 있는 최대 마진의 초 평면(hyper plane)을 만들어주는 알고리즘일 수 있다. 랜덤 포레스트(Random Forest) 모델은 다수의 의사결정 트리들(decision trees)을 훈련시키고, 다수의 의사결정 트리들의 결과를 종합해 예측하는 앙상블 알고리즘일 수 있다. 신경망 모델은 입력값 별 가중치 및 변환 함수를 조합하여 출력을 도출하는 알고리즘일 수 있다. 그래픽 모델(Graphical Model)은 확률 변수 간의 독립성을 그래프로 표현하는 알고리즘일 수 있다. 이때, 확률 변수는 노드(node)로 표현되며, 확률 변수 간의 조건적 독립성(conditional independency)은 엣지(edge)로 표현될 수 있다.
SVM 모델의 경우 상대적으로 정확도가 높고, 응답 속도가 빨라 무선 청소기(100)의 동작을 최적의 사양으로 빠르게 전환할 수 있으므로, 이하에서는 AI 모델이 SVM 모델인 경우를 주된 예로 설명하기로 한다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)의 사용 환경 상태는 청소 중에 브러시 장치(2000)가 사용되고 있는 환경에 관한 것일 수 있다. 예를 들어, 브러시 장치(2000)의 사용 환경 상태는 브러시 장치(2000)가 위치하는 피청소면의 상태, 피청소면 내에서 브러시 장치(2000)의 상대적 위치 상태, 또는 브러시 장치(2000)가 피청소면에서 들린 상태 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다. 여기서, 피청소면은 바닥, 침구, 소파 등 청소 중에 브러시 장치(2000)와 맞닿는 면을 의미할 수 있다. 피청소면의 상태는, 피청소면의 소재 등을 의미할 수 있으며, 예를 들어, 마루, 일반 카펫(정상부하), 고밀도 카펫(과부하), 매트 등이 있을 수 있다. 상대적 위치 상태는 바닥 중앙, 바닥 측면(벽면), 코너 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 이하에서는 설명의 편의상 다양한 사용 환경 상태 중에서 매트 상태, 마루 상태, 카펫 상태 및 들림 상태를 예로 들어 설명하기로 한다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 메인 프로세서(1800)는, 기 저장된 AI 모델에 압력 센서(1400)로부터 획득된 유로 압력에 관한 데이터 및 제1 프로세서(1131)로부터 획득된 브러시 장치(2000)의 부하와 관련된 데이터를 입력하고, AI 모델의 추론 결과로서 브러시 장치(2000)의 현재 사용 환경 상태를 획득할 수 있다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)의 유형에 따라 AI 모델의 입력 값으로 사용되는 브러시 장치(2000)의 부하 값이 달라질 수 있다. 예를 들어, 브러시 장치(2000)가 마루 브러시(502)인 경우, 메인 프로세서(1800)는 마루 브러시(502)에 대응하는 제1 AI 모델에 마루 브러시(502)의 동작 전류 데이터를 입력할 수 있다. 반면, 브러시 장치(2000)가 멀티 브러시(501)인 경우, 멀티 브러시(501)에 대응하는 제2 AI 모델에 멀티 브러시(501)의 소비 전력(또는, 동작 전류 및 인가 전압)을 입력할 수 있다.
마루(hard floor)를 청소할 때는 유로 압력과 브러시 장치(2000)의 부하가 보통이나, 매트를 청소할 때는 유로 압력과 브러시 장치(2000)의 부하가 크게 증가할 수 있고, 카펫을 청소할 때는 유로 압력은 보통이나 브러시 장치(2000)의 부하가 크게 증가할 수 있고, 브러시 장치(2000)가 들린 상태일 때는 유로 압력과 브러시 장치(2000)의 부하가 크게 줄어들 수 있다. 따라서, 청소기 본체(1000)는 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 하나 이상의 기 학습된 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다. 예를 들어, 현재 무선 청소기(100)에서 사용되고 있는 브러시 장치(2000)에 대응하는 AI 모델에 보통의 제1 유로 압력 값과 보통의 제1 부하 값이 적용되는 경우, AI 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘마루(hard floor)’를 출력할 수 있고, AI 모델에 높은 제2 유로 압력 값과 높은 제2 부하 값이 적용되는 경우, AI 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘매트’를 출력할 수 있다.
한편, 브러시 장치(2000)의 사용 환경 상태는 수시로 변경될 수 있으므로, 청소기 본체(1000)는, 소정 주기로 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 기 학습된 AI 모델에 적용하여, 브러시 장치(2000)의 사용 환경 상태를 계속 모니터링할 수 있다.
단계 S840에서, 청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 흡입 모터(1110)의 흡입력 세기를 조절할 수 있다.
흡입력은 무선 청소기(100)를 동작시키기 위하여 소모되는 전기적인 힘(Input Power)으로, 흡입 모터(1110)의 흡입력 세기는 흡입 모터(1110)의 소비 전력으로 표현될 수도 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 브러시 장치(2000)의 현재 사용 환경 상태가 마루(hard floor)를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 중간 강도인 제1 세기로 결정할 수 있다. 예를 들어, 청소기 본체(1000)는, 흡입 모터(1110)의 소비 전력을 70W로 결정할 수 있다.
청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태가 매트(또는 고밀도 카펫)를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 제1 세기보다 낮은 제2 세기로 결정할 수 있다. 사용자가 매트 또는 고밀도 카펫을 청소할 때, 브러시 장치(2000)가 피청소면에 과밀착되어 사용자가 무선 청소기(100)를 이동시키기 어렵다. 따라서, 청소기 본체(1000)는, 마루를 청소할 때 보다 매트 또는 고밀도 카펫을 청소할 때 흡입력 세기를 낮게 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 매트를 청소할 때 흡입 모터(1110)의 소비 전력을 58W로 결정하고, 고밀도 카펫을 청소할 때 흡입 모터(1110)의 소비 전력을 40W로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 사용자가 브러시 장치(2000)를 매트 또는 고밀도 카펫 위로 옮겼을 때 자동으로 흡입 모터(1110)의 흡입력 세기를 감소시킴으로써, 사용자의 사용 편의성을 개선할 수 있다.
청소기 본체(1000)는 브러시 장치(2000)의 현재 사용 환경 상태가 일반 카펫을 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 제1 세기보다 높은 제3 세기로 결정할 수 있다. 마루(hard floor)보다 일반 카펫에서 먼지나 이물질을 흡입하기 위해서는 더 큰 흡입력이 필요할 수 있다. 따라서, 청소기 본체(1000)는 마루보다 일반 카펫을 청소할 때 흡입력 세기를 높게 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 115W로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 사용자가 브러시 장치(2000)를 카펫 위로 옮겼을 때 자동으로 흡입 모터(1110)의 흡입력 세기를 증가시킴으로써, 카펫에서의 청소 성능을 높일 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태가 피청소면으로부터 일정 거리 이상 들린 상태(이하, 들림 상태)인 경우, 흡입 모터(1110)의 흡입력 세기를 최소 강도로 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 40W로 결정할 수 있다. 브러시 장치(2000)가 들림 상태(또는 idle 상태)인 경우, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 최소화함으로써, 배터리(1500)의 사용시간을 연장시킬 수 있다.
한편, 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태가 벽면 코너를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 최대 강도로 결정할 수도 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 200W로 결정할 수 있다. 따라서, 청소기 본체(1000)는 사용자가 벽면 코너를 청소할 때 자동으로 흡입 모터(1110)의 흡입력 세기를 증가시킴으로써, 벽면 코너에서의 청소 성능을 높일 수 있다.
본 개시의 일 실시예에 따른 무선 청소기(100)는, 브러시 장치(2000)에 대응하는 AI 모델을 이용하여 브러시 장치(2000)의 현재 사용 환경 상태를 식별하고, 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기를 자동으로 조절해 줄 수 있다. 따라서, 사용자는 청소 시 바닥 상태에 맞는 브러시를 교체할 필요 없고, 배터리(1500)의 사용시간도 연장될 수 있으며, 청소 성능 및 효율도 향상될 수 있다. 또한, 무선 청소기(100)는 흡입력 세기를 미세하게 조정할 수도 있다. 예를 들어, 무선 청소기(100)는 일반모드에서는 사용자가 선택한 강도(예: 약, 중, 강)에 따라 흡입 모터(1110)의 소비 전력을 40W, 75W, 115W 중에서 하나만 선택할 수 있으나, AI 모드에서는 40W, 75W, 115W 이외에 중간 값(예: 50W, 60W, 80W, 95W, 130W, 200W)도 선택할 수 있으므로, 흡입력 세기를 미세하게 조정할 수 있다.
이하에서는, 도 9를 참조하여, 브러시 장치(2000)의 사용 환경 상태를 추론하기 위한 AI 모델의 일례로서 SVM 모델에 대해서 살펴보기로 한다.
도 9는 본 개시의 일 실시예에 따른 브러시 장치(2000)의 사용 환경 상태를 추론하는 SVM 모델을 설명하기 위한 도면이다.
도 9의 910을 참조하면, SVM 모델은 지도 학습을 통해 생성될 수 있다. SVM 모델은 레이블이 달린 학습 데이터로 학습한 후에 새로 입력된 데이터가 학습했던 그룹들 중에서 어느 그룹에 속하는 지를 찾아내는 모델이다. 본 개시의 일 실시예에 의하면, SVM 모델은, 특정 사용 환경 상태에서의 브러시 장치(2000)의 부하 값과 흡입 모터(1110)의 압력 값을 학습 데이터로 이용하여 학습될 수 있다.
예를 들어, 마루를 청소할 때 획득 되는 제1 유로 압력 값 및 브러시 장치(2000)의 제1 부하 값, 카펫을 청소할 때 획득되는 제2 유로 압력 값 및 브러시 장치(2000)의 제2 부하 값, 매트를 청소할 때 획득되는 제3 유로 압력 값 및 브러시 장치(2000)의 제3 부하 값, 브러시 장치(2000)가 바닥에서 들려 있을 때 획득되는 제4 유로 압력 값 및 브러시 장치(2000)의 제4 부하 값이 학습데이터로 이용될 수 있다. 또한, SVM 모델은, 유로 압력 값 및 브러시 장치(2000)의 부하 값이 획득될 때의 사용 환경 상태(예: 마루, 카펫, 매트, 들림 등)를 레이블(예: 정답값, ground-truth)로 이용하여 학습될 수 있다.
본 개시의 일 실시예에 의하면, SVM 모델은, 외부 장치(예: 서버 장치, 외부 컴퓨팅 장치)에서 학습(train)될 수도 있고, 청소기 본체(1000)에서 학습될 수도 있다.
도 9의 920을 참조하면, 학습된 SVM 모델은 사용 환경 상태를 분류하기 위한 적어도 하나의 초 평면으로 구성될 수 있다. 예를 들어, 사용 환경 상태를 예측하기 위한 SVM 모델은, 마루와 카펫을 구분하기 위한 초 평면, 마루와 매트를 구분하기 위한 초 평면, 카펫과 들림을 구분하기 위한 초 평면 등으로 구성될 수 있다. 각각의 초 평면은 직선 방정식(y = ax + b)으로 표현될 수 있다. 직선 방정식에서 a, b는 매개변수(parameter)일 수 있으며, 매개변수는 흡입 모터(1110)의 흡입력 세기, 브러시 장치(2000)의 유형, 청소기(100)의 상태(예: 먼지량 등) 등에 따라 수정될 수 있다. 또한 초 평면의 방정식은 고차 방정식(예: y = ax2 + b, y = ax3 + b 등)일 수도 있다.
도 10은 본 개시의 일 실시예에 따른 청소기 본체(1000)가 SVM 모델을 이용하여 브러시 장치(2000)의 사용 환경 상태를 식별하는 동작을 설명하기 위한 도면이다.
도 10에서는 브러시 장치(2000)의 사용 환경 상태가 마루(1011, hf: hard floor), 카펫(1012, carpet), 매트(1013, mat), 들림(1014, lift)과 같이 네 가지로 구분되는 경우를 예로 들어 설명하기로 한다.
마루(1011)를 청소할 때는 유로 압력과 브러시 장치(2000)의 부하가 보통이나, 매트(1013)를 청소할 때는 유로 압력과 브러시 장치(2000)의 부하가 크게 증가할 수 있고, 카펫(1012)을 청소할 때는 유로 압력은 보통이나 브러시 장치(2000)의 부하가 크게 증가할 수 있고, 브러시 장치(2000)가 들린 상태일 때는 유로 압력과 브러시 장치(2000)의 부하가 크게 줄어들 수 있다. 따라서, SVM 모델에 보통의 유로 압력 값과 보통의 부하 값이 입력되는 경우 SVM 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘마루(1011)’를 출력할 수 있다. SVM 모델에 높은 유로 압력 값과 높은 부하 값이 입력되는 경우 SVM 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘매트(1013)’를 출력할 수 있다. SVM 모델에 보통의 유로 압력 값과 높은 부하 값이 입력되는 경우, SVM 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘카펫(1012)’을 출력할 수 있다. SVM 모델에 낮은 유로 압력 값과 낮은 부하 값이 입력되는 경우, SVM 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘들림(1014)’을 출력할 수 있다. 이때, 마루(1011)는 제1 동작 조건에 매핑되고, 카펫(1012)은 제2 동작 조건에 매핑되고, 매트(1013)는 제3 동작 조건에 매핑되고, 들림(1014)은 제4 동작 조건에 매핑될 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 메인 프로세서(1800)는 SVM 모델을 통해 식별된 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110) 또는 브러시 장치(2000)의 동작을 제어할 수 있다. 예를 들어, 청소기 본체(1000)의 메인 프로세서(1800)는 브러시 장치(2000)의 사용 환경 상태가 ‘마루(1011)’로 식별된 경우, 제1 동작 조건(예: 마루(1011))에 대응하는 제1 동작 정보에 기반하여 흡입 모터(1110)와 브러시 장치(2000)가 동작하도록 제어할 수 있다.
도 10에서는 브러시 장치(2000)의 사용 환경 상태를 추론하는 AI 모델의 일례로 SVM 모델을 설명하였으나, 이에 한정되는 것은 아니다. 청소기 본체(1000)는 다양한 종류의 인공지능 모델(AI 모델)을 무선 청소기(100)의 외부로부터 수신하거나, 학습시킬 수 있다. 이하에서는, 브러시 장치(2000)의 사용 환경 상태를 추론하는 AI 모델의 일례로서 신경망 모델에 대해서 도 11을 참조하여 살펴보기로 한다.
도 11은 본 개시의 일 실시예에 따른 청소기 본체(1000)가 신경망 모델을 이용하여 브러시 장치(2000)의 사용 환경 상태를 식별하는 동작을 설명하기 위한 도면이다.
신경망 모델은, 복수의 신경망 레이어들(예: 입력층, 중간층(히든층), 출력층)로 구성될 수 있다. 복수의 신경망 레이어들 각각은 복수의 가중치들(weight values)을 갖고 있으며, 이전(previous) 레이어의 연산 결과와 복수의 가중치들 간의 연산을 통해 신경망 연산을 수행한다. 복수의 신경망 레이어들이 갖고 있는 복수의 가중치들은 신경망 모델의 학습 결과에 의해 최적화될 수 있다. 예를 들어, 학습 과정 동안 신경망 모델에서 획득한 로스(loss) 값 또는 코스트(cost) 값이 감소 또는 최소화되도록 복수의 가중치들이 갱신될 수 있다. 신경망은, 예를 들어, CNN (Convolutional Neural Network), DNN (Deep Neural Network), RNN (Recurrent Neural Network), RBM (Restricted Boltzmann Machine), DBN (Deep Belief Network), BRDNN(Bidirectional Recurrent Deep Neural Network) 또는 심층 Q-네트워크 (Deep Q-Networks) 등을 포함할 수 있으나, 전술한 예에 한정되지 않는다.
본 개시의 일 실시예에 따른 신경망 모델은 브러시 장치(2000)의 사용 환경 상태를 추론하기 위한 모델일 수 있다. 추론 예측은 정보를 판단하여 논리적으로 추론하고 예측하는 기술로서, 지식/확률 기반 추론(Knowledge based Reasoning), 최적화 예측(Optimization Prediction), 선호 기반 계획(Preference-based Planning), 추천(Recommendation) 등을 포함한다.
본 개시에 따른 인공지능과 관련된 기능은 적어도 하나의 프로세서(1001)와 메모리(1900)를 통해 동작된다. 적어도 하나의 프로세서(1001)는 하나 또는 복수의 프로세서로 구성될 수 있다. 이때, 적어도 하나의 프로세서(1001)는 CPU, AP, DSP(Digital Signal Processor) 등과 같은 범용 프로세서, GPU, VPU(Vision Processing Unit)와 같은 그래픽 전용 프로세서 또는 NPU와 같은 인공지능 전용 프로세서일 수 있다. 적어도 하나의 프로세서(1001)는, 메모리(1900)에 저장된 기 정의된 동작 규칙 또는 인공지능 모델(예: 신경망 모델)에 따라, 입력 데이터를 처리하도록 제어한다. 또는, 적어도 하나의 프로세서(1001)가 인공지능 전용 프로세서인 경우, 인공지능 전용 프로세서는, 특정 인공지능 모델의 처리에 특화된 하드웨어 구조로 설계될 수 있다.
기 정의된 동작 규칙 또는 인공지능 모델(예: 신경망 모델)은 학습을 통해 만들어진 것을 특징으로 한다. 여기서, 학습을 통해 만들어진다는 것은, 기본 인공지능 모델이 학습 알고리즘에 의하여 다수의 학습 데이터들을 이용하여 학습됨으로써, 원하는 특성(또는, 목적)을 수행하도록 설정된 기 정의된 동작 규칙 또는 인공지능 모델이 만들어짐을 의미한다. 이러한 학습은 본 개시에 따른 인공지능이 수행되는 기기 자체(예: 청소기 본체(1000))에서 이루어질 수도 있고, 별도의 서버 및/또는 시스템을 통해 이루어 질 수도 있다. 학습 알고리즘의 예로는, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)이 있으나, 전술한 예에 한정되지 않는다.
예를 들어, 본 개시의 일 실시예에 따른 신경망 모델은, 유로 압력 값, 브러시 장치(2000)의 부하 값, 유로 압력 값 및 브러시 장치(2000)의 부하 값이 획득될 때의 사용 환경 상태를 학습 데이터로 이용하여 학습될 수 있다. 예를 들어, 마루를 청소할 때 획득 되는 제1 유로 압력 값 및 브러시 장치(2000)의 제1 부하 값, 카펫을 청소할 때 획득되는 제2 유로 압력 값 및 브러시 장치(2000)의 제2 부하 값, 매트를 청소할 때 획득되는 제3 유로 압력 값 및 브러시 장치(2000)의 제3 부하 값, 브러시 장치(2000)가 바닥에서 들려 있을 때 획득되는 제4 유로 압력 값 및 브러시 장치(2000)의 제4 부하 값이 학습데이터로 이용될 수 있다. 또한, 신경망 모델은, 유로 압력 값 및 브러시 장치(2000)의 부하 값이 획득될 때의 사용 환경 상태(예: 마루, 카펫, 매트, 들림 등)를 레이블(정답값, ground-truth)로 이용하여 학습될 수 있다.
본 개시의 일 실시예에 의하면, 적어도 하나의 프로세서(1001)가 신경망 모델에 유로 압력 값과 브러시 장치(2000)의 부하 값을 입력하는 경우, 신경망 모델은 브러시 장치(2000)의 현재 사용 환경 상태를 출력할 수 있다.
이하에서는 도 12를 참조하여, 브러시 장치(2000)의 사용 환경 상태를 추론하기 위한 AI 모델의 일례로서 랜덤 포레스트 모델에 대해서 살펴보기로 한다.
도 12는 본 개시의 일 실시예에 따른 청소기 본체(1000)가 랜덤 포레스트(Random Forest) 모델을 이용하여 브러시 장치(2000)의 사용 환경 상태를 식별하는 동작을 설명하기 위한 도면이다.
랜덤 포레스트 모델은 복수의 의사결정 트리(decision tree)를 훈련시키고, 복수의 의사결정 트리(decision tree)의 결과를 종합해 예측하는 앙상블 알고리즘일 수 있다. 랜덤 포레스트 모델의 가장 큰 특징은 랜덤성(randomness)에 의해 의사결정 트리들이 서로 조금씩 다른 특성을 갖는다는 점이다. 랜덤화는 각 트리들의 훈련 과정에서 진행되며, 랜덤 학습 데이터 추출 방법을 이용한 앙상블 학습법인 배깅(bagging)과 랜덤 노드 최적화(randomized node optimization)가 자주 이용된다. 배깅(bagging)은 bootstrap aggregating의 약자로, 부트스트랩(bootstrap)을 통해 조금씩 다른 훈련 데이터에 대해 훈련된 기초 분류기(base learner)들을 결합(aggregating)시키는 방법이다. 부트스트랩이란, 주어진 훈련 데이터에서 중복을 허용하여 원 데이터 셋과 같은 크기의 데이터 셋을 만드는 과정을 말한다.
본 개시의 일 실시예에 따른 랜덤 포레스트 모델은, 유로 압력 값, 브러시 장치(2000)의 부하 값, 유로 압력 값 및 브러시 장치(2000)의 부하 값이 획득될 때의 사용 환경 상태를 학습 데이터로 이용하여 학습될 수 있다. 본 개시의 일 실시예에 의하면, 적어도 하나의 프로세서(1001)가 랜덤 포레스트 모델에 현재 유로 압력 값과 브러시 장치(2000)의 현재 부하 값을 입력하는 경우, 랜덤 포레스트 모델은 브러시 장치(2000)의 현재 사용 환경 상태를 출력할 수 있다.
이하에서는, 무선 청소기(100)가 AI 모드로 동작하는 경우, 무선 청소기(100)가 AI 모델이 추론한 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110) 및 브러시 장치(2000)를 제어하는 동작에 대해서 도 13을 참조하여 살펴보기로 한다.
도 13은 본 개시의 일 실시예에 따른 AI 모드(1302)를 설명하기 위한 도면이다.
도 13을 참조하면, 일반 모드(1301)에서는 브러시 장치(2000)의 사용 환경 상태에 따라서 흡입 모터(1110)의 소비 전력과 브러시 장치(2000)의 드럼 RPM이 자동으로 조절되지 않는다. 예를 들어, 무선 청소기(100)가 일반 모드(1301)에서 동작하는 경우, 현재 설정된 강도가 ‘강’이면, 브러시 장치(2000)의 사용 환경 상태가 마루(제1 조건)든 일반 카펫(제2 조건)이든, 과밀도 카펫(제3 조건)이든, 매트(제4 조건)이든, 들림(제5 조건)이든, 코너(제6 조건)이든 상관없이 흡입 모터(1110)의 소비 전력은 115W로 유지되고, 드럼 RPM은 3800rpm으로 유지될 수 있다. 다만, 부하(브러시 장치(2000)의 드럼(2200) 마찰 부하, 이물/먼지 등에 의한 유로 저항 부하 등)에 따라 흡입 모터(1110)의 소비 전력 및 브러시 장치(2000)의 드럼 RPM은 미세하게 변경될 수 있다
도 13을 참조하면, AI 모드(1302)에서는 브러시 장치(2000)의 사용 환경 상태에 따라서 흡입 모터(1110)의 소비 전력과 브러시 장치(2000)의 드럼 RPM이 자동으로 조절될 수 있다. 예를 들어, 무선 청소기(100)가 AI 모드(1302)로 동작하는 경우, 무선 청소기(100)는 현재 유로 압력 값과 브러시 장치(2000)의 현재 부하 값을 AI 모델(예: SVM 모델, 신경망 모델, 랜덤 포레스트 모델 등)에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다. 그리고 무선 청소기(100)는 브러시 장치(2000)의 현재 사용 환경 상태에 따라, 흡입 모터(1110)의 흡입력 세기 외에 브러시 장치(2000)의 드럼 RPM도 결정할 수 있다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 브러시 장치(2000)의 사용 환경 상태가 마루(제1 조건)로 판단된 경우, 흡입 모터(1110)의 소비 전력을 70W로 결정하고, 브러시 장치(2000)의 드럼 RPM을 2000rpm으로 결정할 수 있다. 무선 청소기(100)는 브러시 장치(2000)의 사용 환경 상태가 일반 카펫(제2 조건)으로 판단된 경우, 흡입 모터(1110)의 소비 전력을 115W로 결정하고, 브러시 장치(2000)의 드럼 RPM을 3800rpm으로 결정할 수 있다. 무선 청소기(100)는 브러시 장치(2000)의 사용 환경 상태가 고밀도 카펫(제3 조건)으로 판단된 경우, 흡입 모터(1110)의 소비 전력을 40W로 결정하고, 브러시 장치(2000)의 드럼 RPM을 2000rpm으로 결정할 수 있다. 무선 청소기(100)는 브러시 장치(2000)의 사용 환경 상태가 매트(제4 조건)로 판단된 경우, 흡입 모터(1110)의 소비 전력을 58W로 결정하고, 브러시 장치(2000)의 드럼 RPM을 1500rpm으로 결정할 수 있다. 무선 청소기(100)는 브러시 장치(2000)의 사용 환경 상태가 들림(제5 조건)으로 판단된 경우, 흡입 모터(1110)의 소비 전력을 40W로 결정하고, 브러시 장치(2000)의 드럼 RPM을 1500rpm으로 결정할 수 있다. 무선 청소기(100)는 브러시 장치(2000)의 사용 환경 상태가 코너(제6 조건)로 판단된 경우, 흡입 모터(1110)의 소비 전력을 115W로 결정하고, 브러시 장치(2000)의 드럼 RPM을 3800rpm으로 결정할 수 있다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)가 AI 모드(1302)로 동작하는 경우, 청소 효율, 사용성(조작성, 소음), 피청소면의 손상(예: 브러시 장치(2000)의 드럼(2200)의 마찰 부하에 의한 긁힘, 스크래치, 까짐, 마모 등), 배터리(1500)의 사용 시간이 개선될 수 있다. 예를 들어, 무선 청소기(100)는 흡입력이 강하게 필요한 청소 환경이 아닌 경우(예: 마루, 들림), 흡입력 세기와 드럼 RPM을 낮게 조절함으로써, 배터리 사용 시간을 늘릴 수 있다. 무선 청소기(100)는, 브러시 장치(2000)가 피청소면에 과밀착되어 사용자가 무선 청소기(100)를 조작하기 어려운 청소 환경인 경우(예: 매트, 고밀도 카펫), 흡입력 세기와 드럼 RPM을 낮게 조절함으로써, 사용성(조작성)을 개선할 수 있다. 무선 청소기(100)는, 흡입력이 강하게 필요한 청소 환경인 경우(예: 일반 카펫, 코너), 흡입력 세기를 높게 조절함으로써, 청소 효율(청소 성능)을 높일 수 있다.
도 14는 본 개시의 일 실시예에 따른 무선 청소기(100)가 브러시 장치(2000)의 유형에 따라 AI 모델을 선택하는 방법을 설명하기 위한 도면이다.
단계 S1410에서, 무선 청소기(100)는 청소기 본체(1000)에 연결된 브러시 장치(2000)의 제1 유형을 식별할 수 있다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)가 식별 저항(2500, 도 6 참조)을 포함하는 경우, 무선 청소기(100)는 브러시 장치(2000)의 식별 저항(2500)을 이용하여, 브러시 장치(2000)의 제1 유형을 식별할 수 있다.
예를 들어, 청소기 본체(1000)의 제1 프로세서(1131)는, 무선 청소기(100)에 브러시 장치(2000)가 결합된 것으로 판단된 경우, 제1 프로세서(1131)의 입력 포트로 입력되는 전압 값에 기초하여, 브러시 장치(2000)의 유형을 식별할 수 있다. 무선 청소기(100)가 브러시 장치(2000)의 식별 저항(2500)을 이용하여, 브러시 장치(2000)의 유형을 식별하는 동작에 대해서는 도 6에서 전술하였으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 제1 프로세서(1131) 또는 메인 프로세서(1800)는 신호선 통신을 통해 브러시 장치(2000)로부터 수신된 신호에 기초하여, 브러시 장치(2000)의 제1 유형을 식별할 수 있다. 예를 들어, 브러시 장치(2000)는 신호선 통신 시 전송되는 데이터 신호에 브러시 장치(2000)의 제1 유형을 나타내는 비트를 삽입할 수 있다. 청소기 본체(1000)가 브러시 장치(2000)로부터 수신된 신호에 기초하여, 브러시 장치(2000)의 유형을 식별하는 동작에 대해서는 도 29를 참조하여 후에 조금 더 살펴보기로 한다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 제1 프로세서(1131)가 브러시 장치(2000)의 제1 유형을 식별한 경우, 제1 프로세서(1131)는 브러시 장치(2000)의 제1 유형에 관한 정보를 메인 프로세서(1800)로 전달할 수 있다.
단계 S1420에서, 무선 청소기(100)는 복수의 AI 모델 중에서 브러시 장치(2000)의 제1 유형에 대응하는 제1 AI 모델을 선택할 수 있다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)의 유형에 따라 브러시 장치(2000)의 사용 환경 상태를 추론하기 위한 AI 모델이 달라질 수 있다. 따라서, 청소기 본체(1000)는 브러시 장치(2000)의 유형 별로 복수의 AI 모델을 메모리(1900)에 저장하고, 브러시 장치(2000)의 유형이 제1 유형으로 식별됨에 따라 브러시 장치(2000)의 제1 유형에 대응하는 제1 AI 모델을 선택할 수 있다.
예를 들어, 도 15a를 참조하면, 무선 청소기(100)의 적어도 하나의 프로세서(1001)는, 브러시 장치(2000)가 멀티 브러시(501)인 경우 멀티 브러시(501)에 대응하는 제1 SVM 모델(1510)을 선택할 수 있다. 도 16a를 참조하면, 브러시 장치(2000)가 마루 브러시(502)인 경우, 무선 청소기(100)의 적어도 하나의 프로세서(1001)는 마루 브러시(502)에 대응하는 제2 SVM 모델(1610)을 선택할 수 있다. 멀티 브러시(501)에 대응하는 제1 SVM 모델(1510)의 초 평면들(1511, 1512, 1513)의 형태와 마루 브러시(502)에 대응하는 제2 SVM 모델(1610)의 초 평면들(1611, 1612, 1613)의 형태는 상이할 수 있다.
단계 S1430에서, 무선 청소기(100)는 선택된 제1 AI 모델에 흡입 모터(1110)의 흡입력 세기를 적용하여, 제1 AI 모델의 파라미터 값을 수정할 수 있다.
본 개시의 일 실시예에 의하면, 제1 AI 모델의 파라미터 값은 흡입 모터(1110)의 흡입력 세기(소비 전력)에 따라 달라질 수 있다. 따라서, 청소기 본체(1000)의 메인 프로세서(1800)는, 제1 AI 모델에 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 입력하기 전에, 흡입 모터(1110)의 흡입력의 세기를 적용하여 제1 AI 모델의 파라미터 값을 수정할 수 있다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)의 사용 환경 상태가 변함에 따라 흡입 모터(1110)의 흡입력 세기(소비 전력)가 변경되는 경우, 청소기 본체(1000)의 메인 프로세서(1800)는, 제1 AI 모델에 변경된 흡입력 세기를 적용하여 제1 AI 모델의 파라미터 값을 다시 수정할 수도 있다.
단계 S1440에서, 무선 청소기(100)는 파라미터 값이 수정된 제1 AI 모델에 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 메인 프로세서(1800)는 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 획득할 수 있다. 청소기 본체(1000)의 메인 프로세서(1800)는 부하 감지 센서(1134)를 통해 브러시 장치(2000)의 부하와 관련된 데이터를 획득할 수 있다. 그리고 청소기 본체(1000)의 메인 프로세서(1800)는, 흡입 모터(1100)의 흡입력 세기(소비 전력)에 따라 파라미터 값이 수정된 제1 AI 모델에 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다.
예를 들어, 파라미터 값이 수정된 제 1 AI 모델에 제1 유로 압력 값과 제1 부하 값이 적용되는 경우, 파라미터 값이 수정된 제 1 AI 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘마루(hard floor)’를 출력할 수 있고, 파라미터 값이 수정된 제 1 AI 모델에 제2 유로 압력 값과 제2 부하 값이 적용되는 경우, 파라미터 값이 수정된 제 1 AI 모델은 브러시 장치(2000)의 사용 환경 상태로서 ‘매트’를 출력할 수 있다.
단계 S1440은, 도 8의 단계 S830에 대응되므로, 구체적인 설명은 생략하기로 한다.
단계 S1450에서, 무선 청소기(100)는, 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 흡입 모터(1110)의 흡입력 세기 또는 브러시 장치(2000)의 회전솔의 RPM(이하, 목표 RPM이라고도 함)을 결정할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 브러시 장치(2000)의 현재 사용 환경 상태가 마루(hard floor)를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 중간 강도인 제1 세기로 결정하고, 브러시 장치(2000)의 목표 RPM을 중간 레벨로 결정할 수 있다. 예를 들어, 청소기 본체(1000)는, 흡입 모터(1110)의 소비 전력을 70W로 결정하고, 브러시 장치(2000)의 목표 RPM을 2000rpm으로 결정할 수 있다.
청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태가 매트(또는 고밀도 카펫)을 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 제1 세기보다 낮은 제2 세기로 결정할 수 있다. 사용자가 매트 또는 고밀도 카펫을 청소할 때, 브러시 장치(2000)가 피청소면에 과밀착되어 사용자가 무선 청소기(100)를 이동시키기 어렵다. 따라서, 청소기 본체(1000)는, 마루를 청소할 때 보다 매트 또는 고밀도 카펫을 청소할 때 흡입력 세기를 낮게 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 58W로 결정할 수 있다. 또한, 청소기 본체(1000)는 브러시 장치(2000)의 현재 사용 환경 상태가 매트를 청소하는 상태인 경우, 브러시 장치(2000)의 목표 RPM을 가장 저단(예: 1000rpm)으로 결정할 수도 있다. 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 사용자가 브러시 장치(2000)를 매트 위로 옮겼을 때 자동으로 흡입 모터(1110)의 흡입력 세기와 브러시 장치(2000)의 회전 속도를 감소시킴으로써, 사용자의 사용 편의성을 개선할 수 있다.
청소기 본체(1000)는 브러시 장치(2000)의 현재 사용 환경 상태가 일반 카펫을 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 제1 세기보다 높은 제3 세기로 결정할 수 있다. 마루보다 일반 카펫에서 먼지나 이물질을 흡입하기 위해서는 더 큰 흡입력이 필요할 수 있다. 따라서, 청소기 본체(1000)는 마루보다 일반 카펫을 청소할 때 흡입력 세기를 높게 결정하고, 브러시 장치(2000)의 목표 RPM도 높게 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 115W로 결정하고, 브러시 장치(2000)의 목표 RPM을 3800rpm으로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 사용자가 브러시 장치(2000)를 카펫 위로 옮겼을 때 자동으로 흡입 모터(1110)의 흡입력 세기와 브러시 장치(2000)의 회전 속도를 증가시킴으로써, 카펫에서의 청소 성능을 높일 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태가 피청소면으로부터 일정 거리 이상 들린 상태(이하, 들림 상태)인 경우, 흡입 모터(1110)의 흡입력 세기를 최소 강도로 결정하고, 브러시 장치(2000)의 목표 RPM을 가장 저단으로 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 40W로 결정하고, 브러시 장치(2000)의 목표 RPM을 1500rpm으로 결정할 수 있다. 브러시 장치(2000)가 들림 상태(또는 idle 상태)인 경우, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력과 브러시 장치(2000)의 회전속도를 줄여 불필요하게 소비되는 전력을 줄일 수 있으므로, 배터리(1500)의 사용시간도 연장될 수 있다.
한편, 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 브러시 장치(2000)의 현재 사용 환경 상태가 벽면 코너를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 최대 강도로 결정할 수도 있다. 예를 들어, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 200W로 결정할 수 있다. 따라서, 청소기 본체(1000)는 사용자가 벽면 코너를 청소할 때 자동으로 흡입 모터(1110)의 흡입력 세기를 증가시킴으로써, 벽면 코너에서의 청소 성능을 높일 수 있다.
단계 S1460에서, 무선 청소기(100)는, 흡입 모터(1110)의 흡입력 세기 및 브러시 장치(2000)의 회전솔의 RPM을 조절할 수 있다.
본 개시의 일 실시예에 의하면, 메인 프로세서(1800)는 결정된 흡입력 세기 및 브러시 장치(2000)의 목표 RPM을 제1 프로세서(1131)로 전달할 수 있다. 이때, 제1 프로세서(1131)는 흡입 모터(1110)의 흡입력 세기를 결정된 흡입력 세기로 조절할 수 있다. 그리고 제1 프로세서(1131)는 신호선(30)에 연결된 제1 소위치 소자(1132)의 동작을 제어함으로써, 브러시 장치(2000)의 목표 RPM을 제2 프로세서(2410)로 전송할 수 있다. 본 개시의 일 실시예에 의하면, 제1 프로세서(1131)는 UART나 I2C를 이용하여 브러시 장치(2000)의 목표 RPM을 제2 프로세서(2410)로 전송할 수도 있다. 제1 프로세서(1131)가 제2 프로세서(2410)로 신호를 전송하는 동작에 대해서는 도 20 내지 도 24, 도 27 내지 도 34를 참조하여 후에 자세히 설명하기로 한다. 제2 프로세서(2410)는, 브러시 장치(2000)의 목표 RPM을 청소기 본체(1000)로부터 수신한 경우, 브러시 장치(2000)의 드럼 RPM을 목표 RPM으로 조절할 수 있다.
이하에서는 도 15a 내지 도 16c를 참조하여 무선 청소기(100)가 브러시 장치(2000)의 제1 유형에 대응하는 제1 AI 모델에 흡입 모터(1110)의 흡입력 세기를 적용하여, 제1 AI 모델의 파라미터 값을 수정하는 동작에 대해서 구체적으로 살펴보기로 한다.
도 15a는 본 개시의 일 실시예에 따른 멀티 브러시(501)에 대응하는 제1 SVM 모델(1510)을 설명하기 위한 도면이다. 도 15b는 흡입 모터(1110)의 소비 전력 변화에 따라 멀티 브러시(501)에 대응하는 제1 SVM 모델(1510)의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다. 도 15c는 흡입 모터(1110)의 소비 전력 변화에 따라 멀티 브러시(501)에 대응하는 제1 SVM 모델(1510)의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다.
도 15a 내지 도 15c에서는 브러시 장치(2000)의 사용 환경 상태가 마루(hf: hard floor), 카펫(carpet), 매트(mat), 들림(lift)과 같이 네 가지로 구분되는 경우를 예로 들어 설명하기로 한다.
도 15a에 도시된 멀티 브러시(501)에 대응하는 제1 SVM 모델(1510)은 카펫을 매트 또는 마루와 구분하기 위한 제1 초 평면(1511), 마루와 매트를 구분하기 위한 제2 초 평면(1512), 카펫과 들림을 구분하기 위한 제3 초 평면(1513)으로 구성될 수 있다. 각각의 초 평면은 직선 방정식(y = ax + b)으로 표현될 수 있고, 직선 방정식에서 a, b는 매개변수(parameter)일 수 있다. 제1 초 평면(1511), 제2 초 평면(1512), 제3 초 평면(1513) 각각의 파라미터 값은 흡입 모터(1110)의 소비 전력이 40W인 경우에 대응할 수 있다.
도 15b를 참조하면, 흡입 모터(1110)의 소비 전력이 40W에서 58W로 변경되는 경우, 제1 SVM 모델(1510)의 파라미터 값이 수정될 수 있다. 파라미터 값이 수정된 제1-1 SVM 모델(1520)은 마루와 카펫을 구분하기 위한 제1-1 초 평면(1521), 매트와 카펫을 구분하기 위한 제2-1 초 평면(1522), 카펫과 들림을 구분하기 위한 제3-1 초 평면(1523)으로 구성될 수 있다. 제1-1 초 평면(1521)은 제1 초 평면(1511)에 비해 기울기(a)가 작아질 수 있으며, 제2-1 초 평면(1522)은 제2 초 평면(1512)에 비해 기울기(a)가 커질 수 있다.
도 15c를 참조하면, 흡입 모터(1110)의 소비 전력이 40W에서 115W로 변경되는 경우, 제1 SVM 모델(1510)의 파라미터 값이 수정될 수 있다. 파라미터 값이 수정된 제1-2 SVM 모델(1530)은 마루와 카펫을 구분하기 위한 제1-2 초 평면(1531), 카펫과 들림을 구분하기 위한 제3-2 초 평면(1533)으로 구성될 수 있다. 제1-2 SVM 모델(1530)은 제1 SVM 모델(1510)에 비해 마루와 매트를 구분하기 위한 제2 초 평면(1512)을 포함하지 않을 수 있다. 예를 들어, 흡입 모터(1110)의 소비 전력이 40W에서 115W로 변경되는 경우, 제2 초 평면(1512)의 기울기(a)는 0으로 수정될 수 있다.
도 16a는 본 개시의 일 실시예에 따른 마루 브러시(502)에 대응하는 제2 SVM 모델(1610)을 설명하기 위한 도면이다. 도 16b는 흡입 모터(1110)의 소비 전력 변화에 따라 마루 브러시(502)에 대응하는 제2 SVM 모델(1610)의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다. 도 16c는 흡입 모터(1110)의 소비 전력 변화에 따라 마루 브러시(502)에 대응하는 제2 SVM 모델(1610)의 파라미터 값이 수정되는 동작을 설명하기 위한 도면이다.
도 16a 내지 도 16c에서는 브러시 장치(2000)의 사용 환경 상태가 마루(hf: hard floor), 카펫(carpet), 매트(mat), 들림(lift)과 같이 네 가지로 구분되는 경우를 예로 들어 설명하기로 한다.
도 16a에 도시된 마루 브러시(502)에 대응하는 제2 SVM 모델(1610)은 마루와 매트를 구분하기 위한 제1 초 평면(1611), 마루와 카펫을 구분하기 위한 제2 초 평면(1612), 카펫과 들림을 구분하기 위한 제3 초 평면(1613)으로 구성될 수 있다. 각각의 초 평면은 직선 방정식(y = ax + b)으로 표현될 수 있고, 직선 방정식에서 a, b는 매개변수(parameter)일 수 있다. 제1 초 평면(1611), 제2 초 평면(1612), 제3 초 평면(1613) 각각의 파라미터 값은 흡입 모터(1110)의 소비 전력이 40W인 경우에 대응할 수 있다.
도 16b를 참조하면, 흡입 모터(1110)의 소비 전력이 40W에서 58W로 변경되는 경우, 제2 SVM 모델(1610)의 파라미터 값이 수정될 수 있다. 파라미터 값이 수정된 제2-1 SVM 모델(1620)은 마루와 매트를 구분하기 위한 제1-1 초 평면(1621), 마루와 카펫을 구분하기 위한 제2-1 초 평면(1622), 카펫과 들림을 구분하기 위한 제3-1 초 평면(1623)으로 구성될 수 있다.
도 16c를 참조하면, 흡입 모터(1110)의 소비 전력이 40W에서 115W로 변경되는 경우, 제2 SVM 모델(1610)의 파라미터 값이 수정될 수 있다. 파라미터 값이 수정된 제2-2 SVM 모델(1630)은 마루와 매트를 구분하기 위한 제1-2 초 평면(1631), 마루와 카펫을 구분하기 위한 제2-2 초 평면(1632), 카펫과 들림을 구분하기 위한 제3-2 초 평면(1633)으로 구성될 수 있다.
도 17은 본 개시의 일 실시예에 따른 무선 청소기(100)가 브러시 장치(2000)의 사용 환경 상태 천이를 식별하는 방법을 설명하기 위한 순서도이다.
단계 S1710에서, 무선 청소기(100)는 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 획득할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 적어도 하나의 프로세서(1001)는, 압력 센서(1400)에서 측정된 압력 값을 획득할 수 있다. 예를 들어, 메인 프로세서(1800)는 I2C 통신을 통해 압력 센서(1400)에서 측정된 압력 값을 압력 센서(1400)로부터 수신할 수 있다. 압력 센서(1400)는 유로 내에 위치하여 유로 내부의 압력(유로 압력)을 측정할 수 있다. 예를 들어, 압력 센서(1400)는 흡입 덕트(40) 또는 모터 어셈블리(1100) 내에 위치할 수 있으나, 이에 한정되는 것은 아니다.
단계 S1720에서, 청소기 본체(1000)는 부하 감지 센서(1134)를 통해 브러시 장치(2000)의 부하와 관련된 데이터를 획득할 수 있다.
본 개시의 일 실시예에 의하면, 부하 감지 센서(1134)는 모터 어셈블리(1100)의 구동 회로(1130) 내에 위치하며, 션트 저항, 전류 감지 회로, 부하 감지 회로 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 청소기 본체(1000)의 메인 프로세서(1800)는 모터 어셈블리(1100) 내의 제1 프로세서(1131)로부터 브러시 장치(2000)의 부하와 관련된 데이터를 수신할 수 있다.
단계 S1730은, 청소기 본체(1000)는 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 기 학습된 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다.
예를 들어, 청소기 본체(1000)의 메인 프로세서(1800)는, 기 저장된 AI 모델에 압력 센서(1400)로부터 획득된 유로 압력에 관한 데이터 및 제1 프로세서(1131)로부터 획득된 브러시 장치(2000)의 부하와 관련된 데이터를 입력하고, AI 모델의 추론 결과로서 브러시 장치(2000)의 현재 사용 환경 상태(예: 마루, 매트, 카펫, 들림, 코너)를 획득할 수 있다.
단계 S1710 내지 단계 S1730은 도 8의 단계 S810 내지 단계 S830에 대응되므로, 구체적인 설명은 생략하기로 한다.
단계 S1740에서, 무선 청소기(100)는, 브러시 장치(2000)의 현재 사용 환경 상태가 천이된 것인지 판단할 수 있다. 예를 들어, 청소기 본체(1000)의 메인 프로세서(1800)는, 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 AI 모델에 적용하여, 브러시 장치(2000)의 사용 환경 상태의 천이(이하, 상태 천이라 함)를 식별할 수 있다.
본 개시의 일 실시예에 의하면, AI 모델이 SVM 모델인 경우, 현재 사용 환경 상태를 추론하기 위한 초 평면과 상태 천이를 추론하기 위한 초 평면이 상이할 수 있다. 예를 들어, 도 18을 참조하면, 마루와 카펫을 구분하는 제1 초 평면(1810)은, 마루에서 카펫으로의 상태 천이를 식별하기 위한 제1-1 초 평면(1801) 및 카펫에서 마루로의 상태 천이를 식별하기 위한 제1-2 초 평면(1802)과 상이할 수 있다. 즉, 무선 청소기(100)가 마루를 청소하다가 브러시 장치(2000)의 부하가 약간 증가하는 경우, 제1 초 평면(1810)을 기준으로 현재 사용 환경 상태가 카펫으로 추론될 수 있다. 하지만, 제1-1 초 평면(1801)을 기준으로는 현재 사용 환경 상태가 마루로 추론될 수 있다. 이 경우, 무선 청소기(100)는 사용 환경 상태가 마루에서 카펫으로 천이되지 않았다고 판단할 수 있다.
반면, 제1 초 평면(1810)을 기준으로도 현재 사용 환경 상태가 카펫으로 추론되고, 제1-1 초 평면(1801)을 기준으로도 현재 사용 환경 상태가 카펫으로 추론된 경우, 무선 청소기(100)는, 사용 환경 상태가 마루에서 카펫으로 천이되었다고 판단할 수 있다.
단계 S1750에서, 무선 청소기(100)는, 상태 천이가 식별되지 않은 경우, 현재 흡입력 세기 및 현재 회전 솔의 RPM을 유지할 수 있다.
단계 S1760에서, 무선 청소기(100)는, 상태 천이가 식별된 경우, 천이된 사용 환경 상태에 대응하는 흡입력 세기 및 회전 솔의 RPM(목표 RPM이라고도 함)을 결정할 수 있다.
예를 들어, 청소기 본체(1000)의 메인 프로세서(1800)는 마루에서 카펫으로의 상태 천이가 식별된 경우, 흡입력 세기와 회전 솔의 RPM을 현재보다 높게 결정할 수 있다. 반면에 카펫에서 마루로의 상태 천이가 식별된 경우, 청소기 본체(1000)의 메인 프로세서(1800)는 흡입력 세기와 회전 솔의 RPM을 현재보다 낮게 결정할 수 있다.
단계 S1770에서, 무선 청소기(100)는 흡입 모터(1110)의 흡입력 세기 및 회전 솔의 RPM을 조절할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 메인 프로세서(1800)는 결정된 흡입력 세기 및 브러시 장치(2000)의 목표 RPM을 제1 프로세서(1131)로 전달할 수 있다. 이때, 제1 프로세서(1131)는 흡입 모터(1110)의 흡입력 세기를 결정된 흡입력 세기로 조절할 수 있다. 그리고 제1 프로세서(1131)는 신호선(30)에 연결된 제1 소위치 소자(1132)의 동작을 제어함으로써, 브러시 장치(2000)의 목표 RPM을 제2 프로세서(2410)로 전송할 수 있다. 본 개시의 일 실시예에 의하면, 제1 프로세서(1131)는 UART나 I2C를 이용하여 브러시 장치(2000)의 목표 RPM을 제2 프로세서(2410)로 전송할 수도 있다.
이하에서는 메인 프로세서(1800)가 제1 프로세서(1131)를 통해 목표 RPM을 제2 프로세서(2410)로 전달하는 동작에 대해서 도 19를 참조하여 조금 더 살펴보기로 한다.
도 19는 본 개시의 일 실시예에 따른 메인 프로세서(1800)가 제1 프로세서(1131)를 통해 제2 프로세서(2410)와 통신하는 동작을 설명하기 위한 도면이다.
도 19를 참조하면, 메인 프로세서(1800)는, 기 저장된 AI 모델(예: SVM 모델)을 이용하여, 흡입 모터(1110)의 RPM(소비 전력, 흡입력의 세기), 브러시 장치(2000)의 드럼(2200)의 목표 RPM, 구속 레벨 등을 결정할 수 있다. 메인 프로세서(1800)는 사용자 인터페이스(1700)를 통한 사용자의 흡입 강도 조절 입력에 기초하여 흡입 모터(1110)의 RPM을 결정할 수도 있다.
단계 S1910에서, 메인 프로세서(1800)는, 흡입 모터(1110)의 RPM(소비 전력, 흡입력의 세기), 브러시 장치(2000)의 드럼(2200)의 목표 RPM, 목표 구속 레벨 등을 포함하는 데이터를 제1 프로세서(1131)로 전달할 수 있다. 예를 들어, 메인 프로세서(1800)는 UART를 이용하여 제1 프로세서(1131)로 데이터를 전달할 수 있으나, 이에 한정되는 것은 아니다.
단계 S1920에서, 제1 프로세서(1131)는 메인 프로세서(1800)로부터 수신된 데이터 중에서 브러시 장치(2000)의 제어와 관련된 데이터를 신호선 통신을 통해 제2 프로세서(2410)로 전달할 수 있다. 예를 들어, 제1 프로세서(1131)는 드럼(2200)의 목표 RPM, 목표 구속 레벨 등을 포함하는 데이터를 제2 프로세서(2410)로 전달할 수 있다. 이때, 제1 프로세서(1131)는 목표 RPM 및 목표 구속 레벨에 대응하는 동작 조건을 나타내는 데이터를 제2 프로세서(2410)로 전달할 수도 있다. 제1 프로세서(1131)와 제2 프로세서(2410)가 동작 조건을 나타내는 데이터를 송수신하는 동작에 대해서는 도 21을 참조하여 후에 자세히 살펴보기로 한다.
브러시 장치(2000)의 제2 프로세서(2410)는 제1 프로세서(1131)로부터 제어와 관련된 데이터를 수신한 경우, 브러시 장치(2000)의 동작을 제어할 수 있다. 예를 들어, 제2 프로세서(2410)는 드럼(2200)의 RPM을 목표 RPM으로 변경하거나 구속 레벨을 목표 구속 레벨로 변경할 수 있다.
단계 S1930에서, 브러시 장치(2000)의 제2 프로세서(2410)는, 제1 프로세서(1131)로부터 제어와 관련된 데이터를 수신한 경우, 동작 상태 피드백 데이터를 제1 프로세서(1131)로 신호선 통신을 통해 전송할 수 있다. 동작 상태 피드백 데이터는, 브러시 장치(2000)의 이상 유무, 현재 드럼(2200)의 RPM 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
단계 S1940에서, 청소기 본체(1000)의 제1 프로세서(1131)는 브러시 장치(2000)의 제2 프로세서(2410)로부터 동작 상태 피드백 데이터를 수신한 경우, 메인 프로세서(1800)로 제2 프로세서(2410)의 동작 상태 피드백 데이터를 전송할 수 있다. 제1 프로세서(1131)는 메인 프로세서(1800)로 UART를 통해 제2 프로세서(2410)의 동작 상태 피드백 데이터를 전송할 수 있다. 제1 프로세서(1131)는 제2 프로세서(2410)의 동작 상태 피드백 데이터 외에 흡입 모터(1110)의 이상 유무, 흡입 모터(1110)의 흡입력의 세기, 브러시 장치(2000)의 부하, 브러시 장치(2000)의 유형 등을 포함하는 데이터를 메인 프로세서(1800)로 더 전달할 수도 있다.
메인 프로세서(1800)는 제1 프로세서(1131)로부터 수신된 데이터에 기초하여, 흡입 모터(1110)의 동작 상태 및 브러시 장치(2000)의 동작 상태를 파악할 수 있다. 그리고 메인 프로세서(1800)는, 브러시 장치(2000)의 사용 환경 상태를 모니터링하고, 브러시 장치(2000)의 사용 환경 상태에 따라 지속적으로 브러시 장치(2000)의 동작을 제어할 수 있다. 예를 들어, 단계 S1910 내지 단계 S1940가 반복적으로 수행됨으로써, 제1 프로세서(1131)가 메인 프로세서(1800)의 제어 명령을 제2 프로세서(2410)로 전달할 수 있다.
이하에서는, 도 20을 참조하여, 제1 프로세서(1131)와 제2 프로세서(2410) 간의 신호선 통신을 위한 회로의 일례를 구체적으로 살펴보기로 한다.
도 20은 본 개시의 일 실시예에 따른 무선 청소기(100)의 신호선 통신을 위한 회로를 설명하기 위한 도면이다. 도 20에서는 설명의 편의를 위해 A가 330KΩ이고, B가 330KΩ이고, C가 82KΩ인 경우를 예로 들어 설명하기로 한다.
제1 프로세서(1131)는 입력 포트(AD 포트)로 입력되는 전압에 기초하여, 브러시 장치(2000)의 유형을 식별할 수 있다. 예를 들어, 제1 프로세서(1131)의 AD 포트 입력 전압이 2.785V(= 배터리 공급 전압* C/(A+B+C) )이므로, 제1 프로세서(1131)는 AD 포트 입력 전압인 2.785V에 대응하는 330KΩ의 식별 저항(2500)을 갖는 멀티 브러시(501)가 청소기 본체(1000)에 연결된 것을 식별할 수 있다(도 7의 표(700) 참조).
무선 청소기(100)에 결합된 브러시 장치(2000)가 구동 회로(2400)를 포함하는 멀티 브러시(501)로 식별된 경우, 청소기 본체(1000)는 브러시 장치(2000)와 신호선 통신을 수행할 수 있다.
청소기 본체(1000)의 제1 프로세서(1131)는 입력 포트를 이용하여 신호를 수신하고, 출력 포트를 이용하여 신호를 송신할 수 있다. 예를 들어, 제1 프로세서(1131)가 출력 포트를 통해 Low 신호를 출력하는 경우, 제1 스위치 소자(1132)는 턴 오프될 수 있다. 제1 스위치 소자(1132)가 턴 오프됨에 따라 신호선(30)의 전압은 약 14V(= 배터리 공급 전압*(B+C)/(A+B+C))로, High 상태가 될 수 있다. 신호선(30)의 전압이 약 14V인 경우 5V보다 크므로, PNP 트랜지스터(2425)가 오프(OFF)되고, 제2 프로세서(2410)의 입력 포트에는 Low(0V) 신호가 입력될 수 있다. 반대로, 제1 프로세서(1131)가 출력 포트를 통해 High 신호를 출력하는 경우, 제1 스위치 소자(1132)는 턴 온될 수 있다. 제1 스위치 소자(1132)가 턴 온됨에 따라 신호선(30)의 전압은 0V(GND)로 바뀌어, Low 상태가 될 수 있다. 신호선(30)의 전압이 0V인 경우 PNP 트랜지스터(2425)가 온(ON)되고, 제2 프로세서(2410)의 입력 포트에는 High 신호(약 4.8V)가 입력될 수 있다. 즉, 제1 프로세서(1131)가 출력 포트를 통해 Low 신호를 출력하는 경우 제2 프로세서(2410)의 입력 포트에는 Low 신호가 입력되고, 제1 프로세서(1131)가 출력 포트를 통해 High 신호를 출력하는 경우 제2 프로세서(2410)의 입력 포트에도 High 신호가 입력될 수 있다.
브러시 장치(2000)의 제2 프로세서(2410)는 입력 포트를 이용하여 신호를 수신하고, 출력 포트를 이용하여 신호를 발신할 수 있다. 예를 들어, 제2 프로세서(2410)가 출력 포트를 통해 High 신호를 출력하는 경우, 제2 스위치 소자(2435)는 턴 온될 수 있다. 제2 스위치 소자(2435)가 턴 온됨에 따라 신호선(30)의 전압은 0V(GND)로 바뀌어, Low 상태가 될 수 있다. 신호선(30)의 전압이 0V인 경우 제1 프로세서(1131)의 입력 포트에는 Low 신호(0V)가 입력될 수 있다. 반대로, 제2 프로세서(2410)가 출력 포트를 통해 Low 신호를 출력하는 경우, 제2 스위치 소자(2435)는 턴 오프될 수 있다. 제2 스위치 소자(2435)가 턴 오프됨에 따라 신호선(30)의 전압은 약 14V(= 배터리 공급 전압*(B+C)/(A+B+C))로, High 상태가 될 수 있다. 신호선(30)의 전압이 약 14V인 경우, 제1 프로세서(1131)의 입력 포트에는 2.785V가 입력될 수 있다. 이때, 청소기 본체(1000)의 구동 회로(1130)는 전압 분배기(1137)를 포함하므로 신호선(30)의 높은 전압(14V)이 분배되어 제1 프로세서(1131)의 입력 포트로 2.785V가 입력될 수 있다. 즉, 제2 프로세서(2410)가 출력 포트를 통해 High 신호를 출력하는 경우 제1 프로세서(1131)의 입력 포트에는 Low 신호(0V)가 입력되고, 제2 프로세서(2410)가 출력 포트를 통해 Low 신호를 출력하는 경우 제1 프로세서(1131)의 입력 포트에는 2.785V(약 2.8V)가 입력될 수 있다.
도 20에서는 브러시 장치(2000)의 구동 회로(2400)에 스위치 소자로서 PNP 트랜지스터(2425)가 포함되는 경우를 예로 들어 설명하였으나, 이에 한정되는 것은 아니다. 예를 들어, PNP 트랜지스터(2425) 대신에 P-channel FET가 스위치 소자로 이용될 수도 있다.
본 개시의 일 실시예에 의하면, 제1 프로세서(1131)가 제2 프로세서(2410)로부터 신호를 수신할 때, 청소기 본체(1000)의 신호선 통신을 위한 구동 회로(1130)는 전압 분배기(1137)를 포함하므로, 신호선(30)의 노이즈 영향을 최소화함으로써 안정적인 신호 전송이 가능하다. 즉, 청소기 본체(1000)의 구동 회로(1130)는 전압 분배기(1137)를 포함하므로, 신호선(30)에 노이즈 전압이 인가되더라도, 노이즈 전압도 분배되어 제1 프로세서(1131)의 입력 포트(AD 포트)로 입력될 수 있다. ±1.5V의 노이즈가 발생하는 경우를 예로 들어 설명하기로 한다.
일반적인 회로에서는, 노이즈가 발생하지 않은 상황(정상)에서의 AD 포트 전압이 3.3V이고, ±1.5V의 노이즈가 발생하는 상황에서의 AD 포트 전압은 1.8V에서 4.8V가 될 수 있다. 즉, 일반적인 회로에서 노이즈가 발생하면, AD 포트 전압은 마이컴의 AD 포트 최대 전압(예: 3.3V)을 초과할 수 있으므로, 제1 프로세서(1131)가 쉽게 소손될 수 있다. 또한, 일반적인 회로에서는, 노이즈(±1.5V)에 의해서 High 신호를 Low 신호로(또는, Low 신호를 High 신호로) 오 인식 할 수 있다.
하지만, 본 개시의 일 실시예에 따른 구동 회로(1130)에 의하면, 노이즈가 발생하지 않은 상황(정상)에서의 제1 프로세서(1131)의 입력 포트 전압은 2.78V일 수 있으며, ±1.5V의 노이즈가 발생하더라도 제1 프로세서(1131)의 입력 포트 전압은 2.49V ~ 3.08V일 수 있다. 즉, 전압 분배기(1137)를 포함하는 구동 회로(1130)에 의하면 노이즈가 발생하더라도 제1 프로세서(1131)의 입력 포트 전압이 마이컴의 AD 포트 최대 전압(예: 3.3V)을 초과하지 않으므로, 강인한 신호 전송이 가능하다. 또한, 신호선(30)에 ±1.5V의 노이즈가 발생하더라도 제1 프로세서(1131)의 입력 포트에는 약 ±0.3V 정도의 영향만 미치므로, 신호 왜곡 현상(예: High 신호를 Low 신호로 오인식, 또는 Low 신호를 High 신호로 오인식)을 최소화 할 수 있다.
이하에서는 청소기 본체(1000)와 브러시 장치(2000) 간의 신호 전송에 대해서 도 21 내지 도 24를 참조하여 조금 더 자세히 살펴보기로 한다.
도 21은 본 개시의 일 실시예에 따른 청소기 본체(1000)와 브러시 장치(2000) 간에 전달되는 신호에 포함된 데이터 포맷을 설명하기 위한 도면이다.
도 21을 참조하면, 청소기 본체(1000)의 메모리(1900) 및 브러시 장치(2000)의 메모리 각각에는, 동작 조건(2101)에 대응하는 무선 청소기(100)의 동작 정보(2102) 및 동작 조건(2101)을 나타내는 데이터(2103)를 포함하는 룩업 테이블(2110)이 저장될 수 있다. 이때, 동작 조건(2101)에 대응하는 무선 청소기(100)의 동작 정보(2102)는, 흡입 모터(1110)의 소비 전력, 브러시 장치(2000)의 드럼 RPM, 브러시 장치(2000)의 구속 레벨(Trip level) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한, 동작 조건(2101)을 나타내는 데이터(2103)는 8비트의 데이터일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 동작 조건(2101)을 나타내는 데이터(2103)는 5비트의 데이터일 수도 있다.
본 개시의 일 실시예에 의하면, 동작 조건(2101)을 나타내는 데이터(2103)가 8비트로 구성되는 경우, 동작 조건(2101)을 나타내는 데이터(2103)는 1개의 시작(start) 비트와 3개의 커맨드(command) 비트, 3개의 패리티(parity) 비트, 1개의 종료(stop) 비트로 구성될 수 있다. 도 21에서는 커맨드 비트가 3개이므로, 동작 조건(2101)이 8개로 구분되었으나, 커맨드 비트가 더 늘어나는 경우 동작 조건은 더 많아질 수 있다.
동작 조건(2101)은, 브러시 장치(2000)의 유형, 브러시 장치(2000)의 사용 환경 상태(예: 피청소면의 상태(마루, 카펫, 매트, 코너 등), 피청소면에서 들린 상태 등), 흡입 모터(1110)의 이상 등에 따라 구분될 수 있다.
도 21의 룩업 테이블(2110)을 참조하면, 제1 동작 조건은 피청소면의 상태가 마루일 때를 나타내며, 제1 동작 조건일 때의 제1 동작 정보는 “흡입 모터(1110)의 소비 전력: 70W, 드럼 RPM: 2000, 구속 레벨(Trip level): 4.0A”일 수 있다. 즉, 메인 프로세서(1800)에서 현재 피청소면의 상태가 마루인 것을 식별하면, 무선 청소기(100)는 제1 동작 조건에 대응하는 제1 동작 정보에 기초하여 동작하기로 결정할 수 있다. 따라서, 메인 프로세서(1800)는 제1 동작 조건에 관한 정보를 제1 프로세서(1131)로 전달할 수 있고, 제1 프로세서(1131)는 제1 동작 조건에 대응하는 제1 동작 정보를 확인하고, 흡입 모터(1110)의 소비 전력을 70W로 조절할 수 있다. 또한, 제1 프로세서(1131)는, 제1 동작 조건을 나타내는 데이터(00011101)를 제2 프로세서(2410)로 전송할 수 있다. 제2 프로세서(2410)는, 제1 동작 조건을 나타내는 데이터(00011101)를 수신하는 경우 제1 동작 조건에 대응하는 제1 동작 정보를 확인하고, 드럼 RPM을 2000rpm으로 조절하고, 구속 레벨을 4.0A로 설정할 수 있다.
제2 동작 조건은 피청소면의 상태가 카펫(정상부하)일 때를 나타내며, 제2 동작 조건일 때의 제2 동작 정보는 “흡입 모터(1110)의 소비 전력: 115W, 드럼 RPM: 3800, 구속 레벨(Trip level): 4.9A”일 수 있다. 즉, 메인 프로세서(1800)에서 현재 피청소면의 상태가 카펫(정상부하)인 것을 식별하면, 무선 청소기(100)는 제2 동작 조건에 대응하는 제2 동작 정보에 기초하여 동작하기로 결정할 수 있다. 따라서, 메인 프로세서(1800)는 제2 동작 조건에 관한 정보를 제1 프로세서(1131)로 전달할 수 있고, 제1 프로세서(1131)는 제2 동작 조건에 대응하는 제2 동작 정보를 확인하고, 흡입 모터(1110)의 소비 전력을 115W로 조절할 수 있다. 또한, 제1 프로세서(1131)는, 제2 동작 조건을 나타내는 데이터(00101011)를 제2 프로세서(2410)로 전송할 수 있다. 제2 프로세서(2410)는, 제2 동작 조건을 나타내는 데이터(00101011)를 수신하는 경우, 제2 동작 조건에 대응하는 제2 동작 정보를 확인하고, 드럼 RPM을 3800rpm으로 조절하고, 구속 레벨을 4.9A로 설정할 수 있다. 피청소면의 상태가 마루일 때보다 카펫(정상부하)일 때, 흡입 모터(1110)의 소비 전력(흡입력 세기)이 더 커지므로 구속 레벨 또한 4.0A에서 4.9A로 더 커질 수 있다. 구속 레벨은 브러시 장치(2000)의 과부하를 방지하기 위한 것으로, 브러시 장치(2000)의 부하가 4.9A에 도달하면 모터(2100)가 정지할 수 있다.
제3 동작 조건은 피청소면의 상태가 카펫(과부하, 고밀도 카펫)일 때를 나타내며, 제3 동작 조건일 때의 제3 동작 정보는 “흡입 모터(1110)의 소비 전력: 40W, 드럼 RPM: 2000, 구속 레벨(Trip level): 4.9A”일 수 있다. 피청소면의 상태가 카펫(정상부하)일 때보다 카펫(과부하)일 때 브러시 장치(2000)가 피청소면에 과밀착될 수 있으므로, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 낮추고, 브러시 장치(2000)의 드럼 RPM도 낮출 수 있다. 메인 프로세서(1800)에서 현재 피청소면의 상태가 카펫(과부하)인 것을 식별하면, 무선 청소기(100)는 제3 동작 조건에 대응하는 제3 동작 정보에 기초하여 동작하기로 결정할 수 있다. 따라서, 메인 프로세서(1800)는 제3 동작 조건에 관한 정보를 제1 프로세서(1131)로 전달할 수 있고, 제1 프로세서(1131)는 제3 동작 조건에 대응하는 제3 동작 정보를 확인하고, 흡입 모터(1110)의 소비 전력을 40W로 조절할 수 있다. 또한, 제1 프로세서(1131)는, 제3 동작 조건을 나타내는 데이터(00111001)를 제2 프로세서(2410)로 전송할 수 있다. 제2 프로세서(2410)는, 제3 동작 조건을 나타내는 데이터(00111001)를 수신하는 경우, 제3 동작 조건에 대응하는 제3 동작 정보를 확인하고, 드럼 RPM을 2000rpm으로 조절하고, 구속 레벨을 4.9A로 설정할 수 있다.
제4 동작 조건은 브러시 장치(2000)가 피청소면에서 들린 상태(이하, 들림 상태라고도 함)일 때를 나타내며, 제4 동작 조건일 때의 제4 동작 정보는 “흡입 모터(1110)의 소비 전력: 40W, 드럼 RPM: 1000, 구속 레벨(Trip level): 4.0A”일 수 있다. 들림 상태일 때는 흡입력의 세기가 클 필요가 없으므로, 청소기 본체(1000)는 흡입 모터(1110)의 소비 전력을 최저 소비 전력(예: 40W)으로 낮추고, 브러시 장치(2000)의 드럼 RPM도 최저 RPM(1000rpm)으로 낮출 수 있다. 메인 프로세서(1800)에서 현재 피청소면의 상태가 들림 상태인 것을 식별하면, 무선 청소기(100)는 제4 동작 조건에 대응하는 제4 동작 정보에 기초하여 동작하기로 결정할 수 있다. 따라서, 메인 프로세서(1800)는 제4 동작 조건에 관한 정보를 제1 프로세서(1131)로 전달할 수 있고, 제1 프로세서(1131)는 제4 동작 조건에 대응하는 제4 동작 정보를 확인하고, 흡입 모터(1110)의 소비 전력을 40W로 조절할 수 있다. 또한, 제1 프로세서(1131)는, 제4 동작 조건을 나타내는 데이터(01000111)를 제2 프로세서(2410)로 전송할 수 있다. 제2 프로세서(2410)는, 제4 동작 조건을 나타내는 데이터(01000111)를 수신하는 경우, 제4 동작 조건에 대응하는 제4 동작 정보를 확인하고, 드럼 RPM을 1000rpm으로 조절하고, 구속 레벨을 4.0A로 설정할 수 있다.
제5 동작 조건은 피청소면의 상태가 매트일 때를 나타내며, 제5 동작 조건일 때의 제5 동작 정보는 “흡입 모터(1110)의 소비 전력: 58W, 드럼 RPM: 1000, 구속 레벨(Trip level): 4.9A”일 수 있다. 즉, 메인 프로세서(1800)에서 현재 피청소면의 상태가 매트인 것을 식별하면, 무선 청소기(100)는 제5 동작 조건에 대응하는 제5 동작 정보에 기초하여 동작하기로 결정할 수 있다. 따라서, 메인 프로세서(1800)는 제5 동작 조건에 관한 정보를 제1 프로세서(1131)로 전달할 수 있고, 제1 프로세서(1131)는 제5 동작 조건에 대응하는 제5 동작 정보를 확인하고, 흡입 모터(1110)의 소비 전력을 58W로 조절할 수 있다. 또한, 제1 프로세서(1131)는, 제5 동작 조건을 나타내는 데이터(01010101)를 제2 프로세서(2410)로 전송할 수 있다. 제2 프로세서(2410)는, 제5 동작 조건을 나타내는 데이터(01010101)를 수신하는 경우 제5 동작 조건에 대응하는 제5 동작 정보를 확인하고, 드럼 RPM을 1000rpm으로 조절하고, 구속 레벨을 4.9A로 설정할 수 있다.
제6 동작 조건은, 무선 청소기(100)의 동작을 중지해야 할 때를 나타내며, 제6 동작 조건일 때의 제6 동작 정보는 “흡입 모터(1110)의 소비 전력: 58W, 드럼 RPM: 0, 구속 레벨(Trip level): 0A”일 수 있다. 예를 들어, 청소기 본체(1000)는 브러시 장치(2000)에 포함된 모터(2100)(이하, 브러시 모터(2100)라고도 함)의 이상(abnormality)을 식별함에 따라 브러시 모터(2100)의 동작을 중지시키기로 결정할 수 있다. 메인 프로세서(1800)에서 브러시 모터(2100)의 이상을 식별하여 브러시 모터(2100)의 동작을 중지시킬 수도 있고, 제1 프로세서(1131)에서 브러시 모터(2100)의 이상을 식별하여 브러시 모터(2100)의 동작을 중지시킬 수도 있다. 제1 프로세서(1131)는, 브러시 모터(2100)의 동작을 중지시키기로 결정한 경우, 제1 스위치 소자(1132)의 온/오프 동작을 제어하여, 브러시 장치(2000)의 동작을 중지시키기 위한 신호(예: 제6 동작 조건을 나타내는 데이터(01100011))를 신호선(30)을 통해 브러시 장치(2000)의 제 2 프로세서(2410)로 전송할 수 있다. 제2 프로세서(2410)는, 제6 동작 조건을 나타내는 데이터(01100011)를 수신하는 경우, 제6 동작 조건에 대응하는 제6 동작 정보(드럼 RPM: 0, 구속 레벨(Trip level): 0A)를 확인하고, 브러시 모터(2100)의 동작을 중지시킬 수 있다.
이하에서는, 도 22을 참조하여, 청소기 본체(1000)의 제1 프로세서(1131)가 브러시 장치(2000)의 제2 프로세서(2410)로 제5 동작 조건(매트)을 나타내는 8비트의 데이터(01010101)를 전송하는 일례에 대해서 구체적으로 살펴보기로 한다.
도 22는 본 개시의 일 실시예에 따른 청소기 본체(1000)에서 브러시 장치(2000)로 신호를 전송하는 동작을 설명하기 위한 도면이다.
도 22에서는, 청소기 본체(1000)가 제5 동작 조건을 나타내는 8비트의 신호(01010101)를 브러시 장치(2000)로 전송하며, 1 비트당 10ms의 전송 시간을 가지는 경우를 예로 들어 설명하기로 한다.
본 개시의 일 실시예에 따른 통신 프로토콜에 의하면, 0과 1은 신호선(30)의 상태를 기준으로 구분될 수 있다. 예를 들어, 신호선(30)이 Low 상태(L)일 때 “0” 비트가 전송되고, 신호선(30)이 High 상태(H)일 때 “1” 비트가 전송될 수 있다. 따라서, 제1 프로세서(1131)는, 제1 스위치 소자(1132)를 턴 온하여, 신호선(30)에 임계값보다 낮은 제1 레벨의 전압이 인가되도록 하여 코드 0을 전송하고, 제1 스위치 소자(1132)를 턴 오프하여, 신호선(30)에 임계값보다 높은 제2 레벨의 전압이 인가되도록 하여 코드 1을 전송할 수 있다.
제1 프로세서(1131)는, 제5 동작 조건을 나타내는 01010101을 제2 프로세서(2410)로 전송하기 위해서 신호선(30)의 상태를 LHLHLHLH로 만들 수 있다. 예를 들어, 제1 프로세서(1131)는 처음 10ms 동안은 출력 포트를 통해 High 신호(5V 또는 3.3V)를 출력하여 제1 스위치 소자(1132)를 턴 온시켜 신호선(30)의 상태를 Low(0V)로 만들고, 그 다음 10ms 동안은 출력 포트를 통해 Low 신호(0V)를 출력하여 제1 스위치 소자(1132)를 턴 오프시켜 신호선(30)의 상태를 High (14V)로 만드는 동작을 네 번 반복 할 수 있다. 이 경우, 제1 프로세서(1131)는 80ms 동안 01010101을 제2 프로세서(2410)로 전달할 수 있다. 제1 프로세서(1131)가 신호를 전송하는 동안 제2 프로세서(2410)의 출력 포트는 Low(0V) 상태를 유지할 수 있다.
제2 프로세서(2410)는 제5 동작 조건을 나타내는 제1 신호(01010101)를 청소기 본체(1000)로부터 수신하는 경우, 브러시 장치(2000)의 메모리에 저장된 룩업 테이블(2110)에서 제5 동작 조건에 대응하는 제5 동작 정보(흡입 모터(1110)의 소비 전력: 58W, 드럼 RPM: 1000, 구속 레벨(Trip level): 4.9A)를 확인할 수 있다. 그리고 제2 프로세서(2410)는 드럼 RPM을 1000rpm으로 조절하고, 구속 레벨(Trip level)을 4.9A로 설정할 수 있다. 이후 제2 프로세서(2410)는 제1 신호에 대한 응답으로 현재 상태를 나타내는 제2 신호를 제1 프로세서(1131)로 전송할 수 있다. 예를 들어, 제2 프로세서(2410)는 제5 동작 조건에 대응하는 제5 동작 정보에 기초하여 설정을 변경하였으므로, 현재 상태가 제5 동작 조건에 대응하는 상태라는 제2 신호(예: 01010101)를 제1 프로세서(1131)로 전송할 수 있다. 제2 프로세서(2410)가 현재 상태를 나타내는 제2 신호(예: 01010101)를 제1 프로세서(1131)로 전송하는 동작에 대해서는 도 23을 참조하여 살펴보기로 한다.
도 23은 본 개시의 일 실시예에 따른 브러시 장치(2000)에서 청소기 본체(1000)로 신호를 전송하는 동작을 설명하기 위한 도면이다.
도 23에서는 브러시 장치(2000)가 현재 상태가 제5 동작 조건에 대응하는 상태라는 제2 신호(예: 01010101)를 청소기 본체(1000)로 전송하며, 1 비트당 10ms의 전송 시간을 가지는 경우를 예로 들어 설명하기로 한다.
본 개시의 일 실시예에 따른 통신 프로토콜에 의하면, 0과 1은 신호선(30)의 상태를 기준으로 구분될 수 있다. 예를 들어, 신호선(30)이 Low 상태(L)일 때 0이 전송되고, 신호선(30)이 High 상태(H)일 때 1이 전송될 수 있다. 따라서, 제2 프로세서(2410)는, 제2 스위치 소자(2435)를 턴 온하여, 신호선(30)에 임계값보다 낮은 제1 레벨의 전압이 인가되도록 하여 코드 0을 전송하고, 제2 스위치 소자(2435)를 턴 오프하여, 신호선(30)에 임계값보다 높은 제2 레벨의 전압이 인가되도록 하여 코드 1을 전송할 수 있다.
제2 프로세서(2410)는, 현재 제5 동작 조건에 대응하는 상태로 동작하고 있음을 나타내는 제2 신호(예: 01010101)를 제1 프로세서(1131)로 전송하기 위해서 신호선(30)의 상태를 LHLHLHLH로 만들 수 있다. 예를 들어, 제2 프로세서(2410)는 처음 10ms동안은 출력 포트를 통해 High 신호(5V 또는 3.3V)를 출력하여 제2 스위치 소자(2435)를 턴 온시켜 신호선(30)의 상태를 Low(0V)로 만들고, 그 다음 10ms 동안은 출력 포트를 통해 Low 신호(0V)를 출력하여 제2 스위치 소자(2435)를 턴 오프시켜 신호선(30)의 상태를 High(14V)로 만드는 동작을 네 번 반복 할 수 있다. 이 경우, 제2 프로세서(2410)는 80ms 동안 01010101을 제2 프로세서(2410)로 전달할 수 있다. 제2 프로세서(2410)가 신호를 전송하는 동안 제1 프로세서(1131)의 출력 포트는 Low(0V) 상태를 유지할 수 있다.
제1 프로세서(1131)는 제5 동작 조건을 나타내는 제2 신호(예: 01010101)를 브러시 장치(2000)의 제2 프로세서(2410)로부터 수신하는 경우, 청소기 본체(1000)의 메모리(1900)에 저장된 룩업 테이블(2110)에서 제5 동작 조건에 대응하는 제5 동작 정보(흡입 모터(1110)의 소비 전력: 58W, 드럼 RPM: 1000, 구속 레벨(Trip level): 4.9A)를 확인할 수 있다. 그리고 제1 프로세서(1131)는 브러시 장치(2000)의 현재 드럼 RPM이 1000rpm이고, 현재 구속 레벨(Trip level)이 4.9A임을 식별할 수 있다.
청소기 본체(1000)와 브러시 장치(2000)간에 신호를 송수신하는 동작에 대해서 도 24를 참조하여 조금 더 살펴보기로 한다.
도 24는 본 개시의 일 실시예에 따른 청소기 본체(1000)와 브러시 장치(2000) 간에 신호를 상호 전송하는 동작을 설명하기 위한 순서도이다. 도 24에서는, 청소기 본체(1000)가 마스터 기기 (또는 프라이머리 기기(Primary device))로 동작하고, 브러시 장치(2000)가 슬레이브 기기로 동작하는 경우를 예로 들어 설명하기로 한다.
청소기 본체(1000)는 전원을 켜는 사용자 입력을 수신할 수 있다(S2410). 청소기 본체(1000)의 전원이 켜지는 경우, 청소기 본체(1000)는 무선 청소기(100)에 결합된 브러시 장치(2000)와 신호선(30)을 통해 통신을 수행할 수 있다. 예를 들어, 청소기 본체(1000)는, 브러시 장치(2000)로 제1 동작 조건을 나타내는 A1 신호(A1-A)를 전송할 수 있다(S2420). A1 신호(A1-A)는 80ms 동안 전송될 수 있다. 브러시 장치(2000)가 A1 신호(A1-A)를 수신한 경우, 브러시 장치(2000)는 현재 상태를 나타내는 A1 응답 신호(A1-R)를 청소기 본체(1000)로 전송할 수 있다(S2430). A1 응답 신호(A1-R)도 80ms 동안 전송될 수 있다.
브러시 장치(2000)는 A1 신호(A1-A)에 따라 지령을 수행할 수 있다(S2440). 예를 들어, 브러시 장치(2000)는, 제1 동작 조건에 대응하는 제1 동작 정보에 기초하여 드럼 RPM, 구속 레벨 등을 조절할 수 있다.
청소기 본체(1000)는 A1 신호(A1-A)를 전송한 후 소정 시간이 경과하면 A2 신호(A2-A)를 브러시 장치(2000)로 전송할 수 있다(S2450). 도 24에서는 소정 시간이 200ms인 경우를 예로 들어 설명하나 이에 한정되는 것은 아니다. 브러시 장치(2000)의 사용 환경 상태(예: 마루, 카펫, 매트, 코너, 들림 등)가 A1 신호(A1-A)를 전송하고 A2 신호(A2-A)를 전송할 때까지 변경되지 않았으면, A2 신호(A2-A)는 제1 동작 조건을 계속 나타낼 수 있다. 반면, 브러시 장치(2000)의 사용 환경 상태가 A1 신호(A1-A)의 전송과 A2 신호(A2-A)의 전송 사이에 변경된 경우, A2 신호(A2-A)는 제1 동작 조건이 아닌 제2 동작 조건을 나타낼 수 있다.
브러시 장치(2000)가 A2 신호(A2-A)를 수신한 경우, 브러시 장치(2000)는 현재 상태를 나타내는 A2 응답 신호(A2-R)를 청소기 본체(1000)로 전송할 수 있다(S2460). A2 응답 신호(A2-R)도 80ms 동안 전송될 수 있다. 이때, A2 응답 신호(A2-R)에는 브러시 장치(2000)의 지령 수행 결과가 포함될 수 있다. 예를 들어, 브러시 장치(2000)가 제1 동작 조건에 대응하는 제1 동작 정보에 기초하여 드럼 RPM, 구속 레벨 등을 조절한 경우, A2 응답 신호(A2-R)에는 제1 동작 조건을 나타내는 데이터(또는, 드럼 RPM, 구속 레벨을 나타내는 데이터)가 포함될 수 있다.
청소기 본체(1000)는 A2 신호(A2-A)를 전송한 후 소정 시간(200ms)이 경과하면 A3 신호(A3-A)를 브러시 장치(2000)로 전송할 수 있다(S2470). 브러시 장치(2000)는 A3 신호(A3-A)를 수신한 경우 현재 상태를 나타내는 A3 응답 신호(A3-A)를 청소기 본체(1000)로 전송할 수 있다.
따라서, 청소기 본체(1000)는 브러시 장치(2000)와 소정 시간(200ms) 간격으로 계속 통신을 수행함으로써, 브러시 장치(2000)의 사용 환경 상태(예: 마루, 카펫, 매트, 코너, 들림 등)에 따라 브러시 장치(2000)의 동작을 적응적으로 제어할 수 있다.
예를 들어, 사용자가 무선 청소기(100)로 마루를 청소하는 중인 경우 청소기 본체(1000)는 마루에 대응하는 제1 동작 조건을 나타내는 데이터를 브러시 장치(2000)에 전송하게 되면 브러시 장치(2000)가 마루에 대응하는 제1 동작 조건에 기초하여 드럼 RPM을 2000rpm으로 변경할 수 있다. 사용자가 마루를 청소하는 동안에는 청소기 본체(1000)는 마루에 대응하는 제1 동작 조건을 나타내는 데이터를 200ms마다 브러시 장치(2000)에 전송할 수 있고, 브러시 장치(2000)는 현재 상태(마루에 대응하는 제1 동작 조건에 기반하여 동작)를 청소기 본체(1000)에 응답할 수 있다. 사용자가 마루 대신에 카펫(정상부하)을 청소하게 된 경우, 청소기 본체(1000)는 카펫(정상부하)에 대응하는 제2 동작 조건을 나타내는 데이터를 브러시 장치(2000)에 전송할 수 있고, 브러시 장치(2000)는 카페(정상부하)에 대응하는 제2 동작 조건에 기초하여 드럼 RPM을 3800rpm으로 변경할 수 있다. 그리고 브러시 장치(2000)는 현재 상태(카펫에 대응하는 제2 동작 조건에 기반하여 동작)를 청소기 본체(1000)에 응답할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 신호선(30)을 통해 제1 신호를 전송한 후에 소정 시간 동안 브러시 장치(2000)로부터 제2 신호를 수신하지 못한 경우, 브러시 장치(2000)와의 통신이 불가능하다고 결정할 수 있다. 예를 들어, 청소기 본체(1000)는 브러시 장치(2000)로 제1 신호를 세 번 전송하는 동안 브러시 장치(2000)로부터 응답 신호(제2 신호)가 수신되지 않는 경우, 브러시 장치(2000)와의 통신이 불가능하다고 결정할 수 있다.
청소기 본체(1000)는, 브러시 장치(2000)와의 통신이 불가능하다고 결정됨에 따라 동작 모드를 AI 모드에서 일반 모드로 전환할 수 있다. AI 모드는 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기 또는 브러시 장치(2000)의 드럼 RPM이 자동으로 조절되는 모드이며, 일반 모드는 사용자가 흡입 모터(1110)의 흡입력 세기를 수동으로 조절해야하는 모드일 수 있다. 브러시 장치(2000)와의 통신이 불가능한 경우, 청소기 본체(1000)는 브러시 장치(2000)의 드럼 RPM을 조절하라는 데이터를 브러시 장치(2000)로 전송할 수 없으므로, AI 모드로 더 이상 동작할 수 없다.
청소기 본체(1000)는, 브러시 장치(2000)와의 통신이 불가능하다고 결정됨에 따라, AI 모드로 동작이 불가능함을 나타내는 알림을 출력 인터페이스를 통해 출력할 수 있다. 청소기 본체(1000)가 알림을 출력하는 동작에 대해서는 도 36을 참조하여 후에 자세히 살펴보기로 한다.
한편, 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 브러시 장치(2000)와의 통신이 불가능하다고 결정되는 경우, 브러시 장치(2000)의 드럼 RPM은 조절하지 않고, 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기만 조절할 수도 있다.
도 25는 본 개시의 일 실시예에 따른 청소기 본체(1000)가 브러시 장치(2000)로부터 수신된 신호에 기초하여, 브러시 장치(2000)의 유형을 식별하는 동작을 설명하기 위한 도면이다.
도 25를 참조하면, 브러시 장치(2000)는, 신호선 통신 시 전송되는 데이터 신호의 시작(start) 비트를 이용하여, 브러시 장치(2000)의 유형을 나타낼 수도 있다. 예를 들어, 브러시 장치(2000)는, 브러시 장치(2000)가 A타입의 브러시인 경우 시작 비트를 11로 정의하고, B타입의 브러시인 경우 시작 비트를 10으로 정의하고, C타입의 브러시인 경우 시작 비트를 01로 정의하고, D타입의 브러시인 경우 시작 비트를 00으로 정의할 수 있으나, 이에 한정되는 것은 아니다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는, 브러시 장치(2000)에서 전송하는 데이터 신호의 시작 비트를 분석하여 브러시 장치(2000)의 유형을 식별할 수 있다. 예를 들어, 시작 비트에 11이 포함되어 있는 경우, 청소기 본체(1000)는 브러시 장치(2000)를 A 타입의 브러시로 식별하고, 시작 비트에 10이 포함되어 있는 경우, 청소기 본체(1000)는 브러시 장치(2000)를 B 타입의 브러시로 식별할 수 있다.
본 개시의 일 실시예에 의하면, 브러시 장치(2000)의 유형이 4개를 초과하는 경우, 시작 비트의 수가 늘어날 수 있다. 한편, 본 개시의 일 실시예에 의하면, 시작 비트 대신에 브러시 장치(2000)의 유형을 나타내기 위한 별도의 비트가 데이터 신호에 추가될 수도 있다.
도 26은 본 개시의 일 실시예에 따른 브러시 장치(2000)의 사용 환경 상태에 따라 조명 장치(2300)가 제어되는 동작을 설명하기 위한 도면이다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 브러시 장치(2000)의 사용 환경 상태(예: 마루, 매트, 일반 카펫, 고밀도 카펫, 들림, 벽면 코너 등)에 따라, 흡입 모터(1110)의 소비 전력 및 브러시 장치(2000)의 드럼 RPM 이외에 브러시 장치(2000)의 조명 밝기, 조명 색상 등을 결정할 수도 있다. 그리고 청소기 본체(1000)는 결정된 조명 밝기 또는 결정된 조명 색상에 관한 데이터를 신호선 통신을 통해 브러시 장치(2000)의 제2 프로세서(2410)로 전송할 수 있다. 이때, 브러시 장치(2000)의 제2 프로세서(2410)는, 청소기 본체(1000)에서 결정된 조명 밝기 또는 조명 색상에 기초하여, 조명 장치(2300)를 제어할 수 있다.
예를 들어, 브러시 장치(2000)의 사용 환경 상태가 들림(2601)인 경우, 청소기 본체(1000)는 조명 장치(2300)의 색상을 흰색(white)으로 결정할 수 있으며, 청소기 본체(1000)의 제어에 따라 조명 장치(2300)는 흰색의 빛을 출력할 수 있다. 또한, 브러시 장치(2000)의 사용 환경 상태가 마루(2602)인 경우 청소기 본체(1000)는 조명 장치(2300)의 색상을 초록색(green)으로 결정할 수 있고, 브러시 장치(2000)의 사용 환경 상태가 매트(2603)인 경우 청소기 본체(1000)는 조명 장치(2300)의 색상을 노란색(yellow)으로 결정할 수 있고, 브러시 장치(2000)의 사용 환경 상태가 카펫(2604, 2605)인 경우 청소기 본체(1000)는 조명 장치(2300)의 색상을 파란색(blue)으로 결정할 수 있고, 브러시 장치(2000)의 사용 환경 상태가 벽면(코너)(2606)인 경우 청소기 본체(1000)는 조명 장치(2300)의 색상을 주황색(orange)으로 결정할 수 있다.
본 개시의 일 실시예에 의하면, 사용자는 조명 장치(2300)의 색상이 변경되는 것을 통해 브러시 장치(2000)의 사용 환경 상태의 변화를 인지할 수 있다.
이하에서는 도 27 내지 도 34를 참조하여 청소기 본체(1000)와 브러시 장치(2000)간의 통신을 가능하게 하는 다양한 회로에 대해서 살펴보기로 한다.
도 27은 본 개시의 일 실시예에 따른 무선 청소기(100)의 신호선 통신을 위한 회로를 설명하기 위한 도면이다.
도 27에 도시된 청소기 본체(1000)의 구동 회로(1130)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 27에 도시된 브러시 장치(2000)의 구동 회로(2400-1)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
도 27을 참조하면, 브러시 장치(2000)의 구동 회로(2400-1)는 청소기 본체(1000)의 구동 회로(1130)와 같이 전압 분배기를 포함할 수 있다. 따라서, 설명의 편의를 위해, 청소기 본체(1000)의 전압 분배기는 제1 전압 분배기(1137)로 표현하고, 브러시 장치(2000)의 전압 분배기는 제2 전압 분배기(2427)로 표현하기로 한다.
제2 전압 분배기(2427)는 신호선(30)에서 제2 프로세서(2410)의 입력 포트로 입력되는 전압을 분배하기 위한 것이다. 브러시 장치(2000)의 구동 회로(2400-1)가 제2 전압 분배기(2427)를 포함하는 경우, 신호선(30)에 노이즈 전압이 인가되더라도, 노이즈 전압도 분배되어 제2 프로세서(2410)의 입력 포트(AD 포트)로 입력될 수 있다.
따라서, 본 개시의 일 실시예에 의하면, 제2 프로세서(2410)가 제1 프로세서(1131)로부터 신호를 수신할 때, 브러시 장치(2000)의 신호선 통신을 위한 구동 회로(2400-1)는 제2 전압 분배기(2427)를 포함하므로, 신호선(30)의 노이즈 영향을 최소화함으로써 안정적인 신호 수신이 가능하다.
도 27에서는 설명의 편의를 위해 A가 180KΩ이고, B가 330KΩ이고, C가 82KΩ이고, D가 330KΩ이고, E가 82KΩ인 경우를 예로 들어 설명하기로 한다. 이때, 신호선 전압은 13.4487V(= 배터리 공급 전압*((D+E)∥(B+C))/(A+((D+E)∥(B+C)))= 25.2V*206/386)일 수 있다.
제1 프로세서(1131)는 입력 포트(AD 포트)로 입력되는 전압에 기초하여, 브러시 장치(2000)의 유형을 식별할 수 있다. 예를 들어, 제1 프로세서(1131)의 AD 포트 입력 전압이 2.677V(= 신호선 전압*E/(D+E)=13.4487V*82K/((82K+330K)))인 경우, 제1 프로세서(1131)는 AD 포트 입력 전압인 2.677V에 대응하는 180KΩ(A)의 식별 저항(2500)을 갖는 멀티 브러시(501)가 청소기 본체(1000)에 연결된 것을 식별할 수 있다.
청소기 본체(1000)는 무선 청소기(100)에 결합된 브러시 장치(2000)가 구동 회로(2400-1)를 포함하는 멀티 브러시(501)로 식별된 경우, 청소기 본체(1000)는 브러시 장치(2000)와 신호선 통신을 수행할 수 있다.
청소기 본체(1000)의 제1 프로세서(1131)는 입력 포트를 이용하여 신호를 수신하고, 출력 포트를 이용하여 신호를 발신할 수 있다. 예를 들어, 제1 프로세서(1131)가 출력 포트를 통해 Low 신호를 출력하는 경우, 제1 스위치 소자(1132)는 턴 오프될 수 있다. 제1 스위치 소자(1132)가 턴 오프됨에 따라 신호선(30)의 전압은 13.4487V로, High 상태가 될 수 있다. 신호선(30)의 전압이 13.4487V인 경우, 제2 프로세서(2410)의 입력 포트에는 2.677V(= 신호선 전압* C/(B+C)=13.4487V*82K/((82K+330K)))가 입력될 수 있다. 이때, 브러시 장치(2000)의 구동 회로(2400-1)는 제2 전압 분배기(2427)를 포함하므로 신호선(30)의 높은 전압(13.4487V)이 분배되어 제2 프로세서(2410)의 입력 포트로 2.677V만 입력될 수 있다. 반대로, 제1 프로세서(1131)가 출력 포트를 통해 High 신호를 출력하는 경우, 제1 스위치 소자(1132)는 턴 온될 수 있다. 제1 스위치 소자(1132)가 턴 온됨에 따라 신호선(30)의 전압은 0V(GND)로 바뀌어, Low 상태가 될 수 있다. 신호선(30)의 전압이 0V인 경우 제2 프로세서(2410)의 입력 포트에는 Low 신호(0V)가 입력될 수 있다. 즉, 제1 프로세서(1131)가 출력 포트를 통해 Low 신호를 출력하는 경우 제2 프로세서(2410)의 입력 포트에는 High 신호(2.677V)가 입력되고, 제1 프로세서(1131)가 출력 포트를 통해 High 신호를 출력하는 경우 제2 프로세서(2410)의 입력 포트에는 Low 신호가 입력될 수 있다.
브러시 장치(2000)의 제2 프로세서(2410)는 입력 포트를 이용하여 신호를 수신하고, 출력 포트를 이용하여 신호를 송신할 수 있다. 예를 들어, 제2 프로세서(2410)가 출력 포트를 통해 High 신호를 출력하는 경우, 제2 스위치 소자(2435)는 턴 온될 수 있다. 제2 스위치 소자(2435)가 턴 온됨에 따라 신호선(30)의 전압은 0V(GND)로 바뀌어, Low 상태가 될 수 있다. 신호선(30)의 전압이 0V인 경우 제1 프로세서(1131)의 입력 포트에는 Low 신호(0V)가 입력될 수 있다. 반대로, 제2 프로세서(2410)가 출력 포트를 통해 Low 신호를 출력하는 경우, 제2 스위치 소자(2435)는 턴 오프될 수 있다. 제2 스위치 소자(2435)가 턴 오프됨에 따라 신호선(30)의 전압은 13.4487V로, High 상태가 될 수 있다. 신호선(30)의 전압이 13.4487V인 경우, 제1 프로세서(1131)의 입력 포트에는 2.677V가 입력될 수 있다. 이때, 청소기 본체(1000)의 구동 회로(1130)는 제1 전압 분배기(1137)를 포함하므로 신호선(30)의 높은 전압(13.4487V)이 분배되어 제1 프로세서(1131)의 입력 포트로 2.677V만 입력될 수 있다. 즉, 제2 프로세서(2410)가 출력 포트를 통해 High 신호를 출력하는 경우 제1 프로세서(1131)의 입력 포트에는 Low 신호(0V)가 입력되고, 제2 프로세서(2410)가 출력 포트를 통해 Low 신호를 출력하는 경우 제2 프로세서(2410)의 입력 포트에는 High 신호(2.677V)가 입력될 수 있다.
도 28은 본 개시의 일 실시예에 따른 무선 청소기(100)의 I2C 통신을 위한 회로를 설명하기 위한 도면이다.
도 28을 참조하면, 청소기 본체(1000)는 I2C(Inter-Integrated Circuit) 통신을 위한 구동 회로(1130a)를 포함할 수 있고, 브러시 장치(2000)도 I2C 통신을 위한 구동 회로(2400a)를 포함할 수 있다. 도 28에 도시된 청소기 본체(1000)의 구동 회로(1130a)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 28에 도시된 브러시 장치(2000)의 구동 회로(2400a)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 전원선(10, 20)에 연결되는 신호선(30) 대신에 I2C 통신을 위한 제1 통신선(41)과 제2 통신선(42)을 포함할 수 있다.
I2C 통신은, 동기화 통신 방식 중 하나로, 클럭(Clock) 신호를 이용해서 데이터의 전송 타이밍을 맞추는 방식이다. 따라서, 무선 청소기(100)는, SDA(Serial Data)를 송수신하기 위한 제1 통신선(41)과 SCL(Serial Clock)을 송수신하기 위한 제2 통신선(42)을 포함할 수 있다.
무선 청소기(100)의 특성 상 브러시 장치(2000)의 착탈 또는 무선 청소기(100)의 이동, 부딪힘 등에 의한 노이즈 발생이 많을 수밖에 없다. 따라서, 청소기 본체(1000)와 브러시 장치(2000) 간의 I2C 통신 시에 전기적 또는 기계적 손상(Damage)이나 스트레스(Stress)를 최소화하기 위해 SDA(Serial Data), SCL(Serial Clock)가 입력되는 입력단에 노이즈 저감 회로가 적용될 수 있다. 예를 들어, 청소기 본체(1000)는 제1 노이즈 저감 회로(1139)를 포함하고, 브러시 장치(2000)는 제2 노이즈 저감 회로(2450)를 포함할 수 있다.
제1 노이즈 저감 회로(1139) 및 제2 노이즈 저감 회로(2450)는, 저주파 통과 필터(Low Pass Filter), 고주파 통과 필터(High Pass Filter), 대역 통과 필터(Band Pass Filter), 댐핑 저항(Damping Resistor), 및 분배 저항 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
제2 프로세서(2410)에서 제1 통신선(41) 및 제2 통신선(42)을 통해 전송한 SDA(Serial Data), SCL(Serial Clock)은 제1 노이즈 저감 회로(1139)를 통해 제1 프로세서(1131)로 입력됨으로써, 노이즈의 영향을 최소화할 수 있다. 또한, 제1 프로세서(1131)에서 제1 통신선(41) 및 제2 통신선(42)을 통해 전송한 SDA(Serial Data), SCL(Serial Clock)은 제2 노이즈 저감 회로(2450)를 통해 제2 프로세서(2410)로 입력됨으로써, 노이즈의 영향을 최소화할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)가 마스터 기기로 동작하고, 브러시 장치(2000)가 슬레이브 기기로 동작함으로써, I2C 통신을 수행할 수 있다. I2C 통신 신호는 시작 신호(시작 비트), 데이터 신호(커맨드 비트), 정지 신호(종료 비트)로 이루어질 수 있다.
제1 프로세서(1131)는 동작 조건을 나타내는 신호를 제1 통신선(41)과 제2 통신선(42)을 통해 제2 프로세서(2410)로 전송할 수 있다. 동작 조건은 브러시 장치(2000)의 드럼(2200)의 목표 분당 회전 수(RPM), 브러시 장치(2000)의 목표 구속 레벨(trip level), 또는 청소기 본체(1000)에 포함된 흡입 모터(1110)의 소비 전력 중 적어도 하나를 포함할 수 있다.
브러시 장치(2000)의 제2 프로세서(2410)는 수신된 동작 조건에 대응하는 동작 정보에 기초하여, 지령을 수행할 수 있다. 예를 들어, 브러시 장치(2000)는 드럼 RPM, 구속 레벨 등을 조절할 수 있다. 또한, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제1 통신선(41)과 제2 통신선(42)을 통해 전송할 수 있다.
도 29는 본 개시의 일 실시예에 따른 무선 청소기(100)의 UART 전이중 통신을 위한 회로를 설명하기 위한 도면이다.
도 29를 참조하면, 청소기 본체(1000)는 UART 전이중(full duplex) 통신을 위한 구동 회로(1130b)를 포함할 수 있고, 브러시 장치(2000)도 UART 전이중 통신을 위한 구동 회로(2400b)를 포함할 수 있다. 도 29에 도시된 청소기 본체(1000)의 구동 회로(1130b)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 29에 도시된 브러시 장치(2000)의 구동 회로(2400b)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 전원선(10, 20)에 연결되는 신호선(30) 대신에 UART 전이중 통신을 위한 2개의 와이어를 포함할 수 있다. 예를 들어, 무선 청소기(100)는, 제3 통신선(51)과 제4 통신선(52)을 포함할 수 있다. 제3 통신선(51)은 제1 프로세서(1131)가 제2 프로세서(2410)로 신호를 전송하기 위한 선이고, 제4 통신선(52)은 제2 프로세서(2410)가 제1 프로세서(1131)로 신호를 전송하기 위한 선일 수 있다. 제1 프로세서(1131)와 제2 프로세서(2410)는 각각 제3 통신선(51)과 제4 통신선(52)을 통해 동시에 신호를 송수신할 수 있다.
무선 청소기(100)의 특성 상 브러시 장치(2000)의 착탈 또는 무선 청소기(100)의 이동, 부딪힘 등에 의한 노이즈 발생이 많을 수밖에 없다. 따라서, 청소기 본체(1000)와 브러시 장치(2000) 간의 UART 통신 시에 전기적 또는 기계적 손상(Damage)이나 스트레스(Stress)를 최소화하기 위해 신호가 입력되는 입력단에 노이즈 저감 회로가 적용될 수 있다. 예를 들어, 청소기 본체(1000)는 제1 노이즈 저감 회로(1139)를 포함하고, 브러시 장치(2000)는 제2 노이즈 저감 회로(2450)를 포함할 수 있다.
제1 노이즈 저감 회로(1139) 및 제2 노이즈 저감 회로(2450)는, 저주파 통과 필터(Low Pass Filter), 고주파 통과 필터(High Pass Filter), 대역 통과 필터(Band Pass Filter), 댐핑 저항(Damping Resistor), 및 분배 저항 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
제1 프로세서(1131)에서 제3 통신선(51)을 통해 전송한 데이터 신호는 제2 노이즈 저감 회로(2450)를 통해 제2 프로세서(2410)로 입력됨으로써, 노이즈의 영향을 최소화할 수 있다. 또한, 제2 프로세서(2410)에서 제4 통신선(52)을 통해 전송한 데이터 신호는 제1 노이즈 저감 회로(1139)를 통해 제1 프로세서(1131)로 입력됨으로써, 노이즈의 영향을 최소화할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)가 마스터 기기로 동작하고, 브러시 장치(2000)가 슬레이브 기기로 동작함으로써, UART 전이중 통신을 수행할 수 있다. UART 통신 신호는 시작 신호(시작 비트), 데이터 신호(커맨드 비트), 정지 신호(종료 비트)로 이루어질 수 있다.
제1 프로세서(1131)는 동작 조건을 나타내는 신호를 제3 통신선(51)을 통해 제2 프로세서(2410)로 전송할 수 있다. 동작 조건은 브러시 장치(2000)의 드럼(2200)의 목표 분당 회전 수(RPM), 브러시 장치(2000)의 목표 구속 레벨(trip level), 또는 청소기 본체(1000)에 포함된 흡입 모터(1110)의 소비 전력 중 적어도 하나를 포함할 수 있다.
브러시 장치(2000)의 제2 프로세서(2410)는 수신된 동작 조건에 대응하는 동작 정보에 기초하여, 지령을 수행할 수 있다. 예를 들어, 브러시 장치(2000)는 드럼 RPM, 구속 레벨 등을 조절할 수 있다. 또한, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제4 통신선(52)을 통해 전송할 수 있다.
도 30은 본 개시의 일 실시예에 따른 무선 청소기(100)의 UART 반이중 통신을 위한 회로를 설명하기 위한 도면이다.
도 30을 참조하면, 청소기 본체(1000)는 UART 반이중(half-duplex) 통신을 위한 구동 회로(1130c)를 포함할 수 있고, 브러시 장치(2000)도 UART 반이중 통신을 위한 구동 회로(2400c)를 포함할 수 있다. 도 30에 도시된 청소기 본체(1000)의 구동 회로(1130c)는, 도 29에 도시된 청소기 본체(1000)의 구동 회로(1130b)에 대응될 수 있고, 도 30에 도시된 브러시 장치(2000)의 구동 회로(2400c)는 도 29에 도시된 구동 회로(2400b)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 전원선(10, 20)에 연결되는 신호선(30) 대신에 UART 반이중 통신을 위한 1개의 와이어를 포함할 수 있다. 예를 들어, 무선 청소기(100)는, 제5 통신선(53)을 포함할 수 있다. 제5 통신선(53)은 제1 프로세서(1131)와 제2 프로세서(2410)가 번갈아 가며 신호를 전송하기 위한 선일 수 있다. 제1 프로세서(1131)가 제5 통신선(53)을 통해 제1 신호를 전송할 때는 제2 프로세서(2410)는 제5 통신선(53)을 통해 제1 신호를 수신하고, 제2 프로세서(2410)가 제5 통신선(53)을 통해 제2 신호를 전송할 때는 제1 프로세서(1131)가 제5 통신선(53)을 통해 제2 신호를 수신할 수 있다.
한편, 제1 프로세서(1131)에서 제5 통신선(53)을 통해 전송한 데이터 신호는 제2 노이즈 저감 회로(2450)를 통해 제2 프로세서(2410)로 입력됨으로써, 노이즈의 영향을 최소화할 수 있다. 또한, 제2 프로세서(2410)에서 제5 통신선(53)을 통해 전송한 데이터 신호는 제1 노이즈 저감 회로(1139)를 통해 제1 프로세서(1131)로 입력됨으로써, 노이즈의 영향을 최소화할 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)가 마스터 기기로 동작하고, 브러시 장치(2000)가 슬레이브 기기로 동작함으로써, UART 반이중 통신을 수행할 수 있다. UART 통신 신호는 시작 신호(시작 비트), 데이터 신호(커맨드 비트), 정지 신호(종료 비트)로 이루어질 수 있다.
제1 프로세서(1131)는 동작 조건을 나타내는 신호를 제5 통신선(53)을 통해 제2 프로세서(2410)로 전송할 수 있다. 동작 조건은 브러시 장치(2000)의 드럼(2200)의 목표 분당 회전 수(RPM), 브러시 장치(2000)의 목표 구속 레벨(trip level), 또는 청소기 본체(1000)에 포함된 흡입 모터(1110)의 소비 전력 중 적어도 하나를 포함할 수 있다.
브러시 장치(2000)의 제2 프로세서(2410)는 수신된 동작 조건에 대응하는 동작 정보에 기초하여, 지령을 수행할 수 있다. 예를 들어, 브러시 장치(2000)는 드럼 RPM, 구속 레벨 등을 조절할 수 있다. 또한, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제5 통신선(53)을 통해 전송할 수 있다.
도 31은 본 개시의 일 실시예에 따른 무선 청소기(100)의 I2C 통신을 위한 회로를 설명하기 위한 도면이다.
도 31을 참조하면, 청소기 본체(1000)는 I2C(Inter-Integrated Circuit) 통신을 위한 구동 회로(1130d)를 포함할 수 있고, 브러시 장치(2000)도 I2C 통신을 위한 구동 회로(2400d)를 포함할 수 있다. 도 31에 도시된 청소기 본체(1000)의 구동 회로(1130d)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 31에 도시된 브러시 장치(2000)의 구동 회로(2400d)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 전원선(10, 20)에 연결되는 신호선(30) 대신에 I2C 통신을 위한 제1 통신선(41)과 제2 통신선(42)을 포함할 수 있다. 제1 통신선(41)은 SDA(Serial Data)를 송수신하기 위한 선이고, 제2 통신선(42)은 SCL(Serial Clock)을 송수신하기 위한 선일 수 있다.
본 개시의 일 실시예에 의하면, 노이즈에 강한 통신을 위해, 청소기 본체(1000)의 구동 회로(1130d)는 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142)를 포함할 수 있다. 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142) 각각은 스위치 소자와 주변 회로를 패킹(packing)한 레벨 쉬프트 IC(Intergrated Circuit)일 수도 있다. 브러시 장치(2000)의 구동 회로(2400d)는 제1 풀업 저항(2451), 제1 댐핑 저항(2452), 제2 풀업 저항(2453), 제2 댐핑 저항(2454)을 포함할 수 있다.
청소기 본체(1000)는 마스터 기기로 동작함으로써, 동작 조건을 나타내는 신호를 제1 통신선(41)과 제2 통신선(42)을 통해 제2 프로세서(2410)로 전송할 수 있다. 예를 들어, 제1 프로세서(1131)가 제1 레벨 쉬프터 회로(1141) 방향으로 High 신호(5V)를 출력하는 경우, 제1 레벨 쉬프터 회로(1141)에 포함된 스위치 소자(예: N-channel FET)가 OFF 상태가 되므로, 제1 통신선(41)에는 제1 풀업 저항(2451)에 연결된 3.3V(High)가 걸리게 되고, 제 2 프로세서(2410)에도 제1 댐핑 저항(2452)을 통해서 3.3V(High)가 입력될 수 있다. 반면, 제1 프로세서(1131)에서 제1 레벨 쉬프터 회로(1141) 방향으로 Low 신호(0V)를 출력하는 경우, 제1 레벨 쉬프터 회로(1141)에 포함된 스위치 소자(예: N-channel FET)가 ON 상태가 되므로, 제1 통신선(41)의 전압이 0V(Low)가 되고, 제2 프로세서(2410)에도 0V(Low)가 입력될 수 있다. 즉, 제1 프로세서(1131)가 제1 레벨 쉬프터 회로(1141) 방향으로 High 신호를 출력하는 경우 제1 통신선(41)을 통해 제2 프로세서(2410)에 High 신호가 입력되고, 제1 프로세서(1131)가 제1 레벨 쉬프터 회로(1141) 방향으로 Low 신호를 출력하는 경우, 제1 통신선(41)을 통해 제2 프로세서(2410)에 Low 신호가 입력될 수 있다.
마찬가지로, 제1 프로세서(1131)가 제2 레벨 쉬프터 회로(1142) 방향으로 High 신호를 출력하는 경우 제2 통신선(42)을 통해 제2 프로세서(2410)에 High 신호가 입력되고, 제1 프로세서(1131)가 제2 레벨 쉬프터 회로(1142) 방향으로 Low 신호를 출력하는 경우, 제2 통신선(42)을 통해 제2 프로세서(2410)에 Low 신호가 입력될 수 있다.
한편, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제1 통신선(41)과 제2 통신선(42)을 통해 전송할 수 있다. 예를 들어, 제2 프로세서(2410)가 제1 댐핑 저항(2452) 방향으로 High 신호(3.3V)를 출력하는 경우, 제1 통신선(41)에도 3.3V(High)가 걸리게 된다. 이때, 제1 레벨 쉬프터 회로(1141)에 포함된 스위치 소자(예: N-channel FET)가 동작하지 않으므로, 제1 프로세서(1131)에는 5V(High)가 입력된다. 즉, 제1 레벨 쉬프터 회로(1141)에서 +5V 전원이 10KΩ 저항과 스위치 소자(예: N-channel FET)의 바디 다이오드(Body Diode, BD)를 거처 제1 통신선(41)으로 흐르지 못하므로(전류 Path가 형성되지 않음), 제1 프로세서(1131)에는 5V가 입력되어 제1 프로세서(1131)의 SDA는 High(+5V)가 된다. 반면, 제2 프로세서(2410)가 제1 댐핑 저항(2452) 방향으로 Low 신호(0V)를 출력하는 경우, 제1 풀업 저항(2451)에 비해 제1 댐핑 저항(2452)의 크기가 매우 작으므로, 제1 통신선(41)에도 0에 가까운 전압(Low)이 걸리게 된다. 예를 들어, 제1 통신선(41)의 전압은 0.032673V (= 3.3V *[100/(10K+100)]로 LOW 상태가 될 수 있다. 또한, 제1 레벨 쉬프터 회로(1141)에 포함된 저항(10KΩ)이 크므로 전압 강하가 많이 돼서 제1 프로세서(1131)로도 0에 가까운 전압(Low)이 입력된다. 즉, 제1 레벨 쉬프터 회로(1141)에 포함된 스위치 소자(예: N-channel FET)는 OFF 상태이나, +5V는 저항(10KΩ) 및 스위치 소자(예: N-channel FET)의 바디 다이오드(BD)를 통해서 제1 통신선(41)으로 이동하는 전류 경로(Path)가 형성되어, 제1 프로세서(1131)의 SDA는 Low가 된다. 예를 들어, 스위치 소자(예: N-channel FET)의 바디 다이오드(BD)의 전압(VF)이 0.6V라고 가정하면, 제1 프로세서(1131)로 입력되는 전압(SDA 전압이라고도 함)은 다음과 같을 수 있다.
제1프로세서(1131)의 SDA 전압 = N-FET BD VF(0.6V) + 제1 통신선(41) 전압
= 0.6V + 0.032673V = 0.632673V (약 4.367V는 10KΩ 저항에 인가됨)
따라서, 제2 프로세서(2410)가 제1 댐핑 저항(2452) 방향으로 High 신호(3.3V)를 출력하는 경우, 제1 통신선(41)을 통해 제1 프로세서(1131)에도 High 신호(5V)가 입력되고, 제2 프로세서(2410)가 제1 댐핑 저항(2452) 방향으로 Low 신호(0V)를 출력하는 경우, 제1 통신선(41)을 통해 제1 프로세서(1131)에도 Low 신호(예: 대략 0V(
Figure PCTKR2023005000-appb-img-000001
0V))가 입력된다.
마찬가지로, 제2 프로세서(2410)가 제2 댐핑 저항(2454) 방향으로 High 신호(예: 3.3V)를 출력하는 경우, 제2 통신선(42)을 통해 제1 프로세서(1131)에도 High 신호(예: 5V)가 입력되고, 제2 프로세서(2410)가 제2 댐핑 저항(2454) 방향으로 Low 신호(예: 0V)를 출력하는 경우, 제2 통신선(42)을 통해 제1 프로세서(1131)에도 Low 신호(예: 대략 0V(
Figure PCTKR2023005000-appb-img-000002
0V))가 입력된다.
무선 청소기(100)가 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142)를 포함하는 경우, 제1 프로세서(1131)에서 출력되는 전압과 제2 프로세서(2410)에서 출력되는 전압이 상이하더라도, 청소기 본체(1000)와 브러시 장치(2000) 간의 I2C 통신이 가능하다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 구동 회로(1130d)가 제1 풀업 저항(2451), 제1 댐핑 저항(2452), 제2 풀업 저항(2453), 제2 댐핑 저항(2454)을 포함하고, 브러시 장치(2000)의 구동 회로(2400d)가 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142)를 포함할 수도 있다.
도 32는 본 개시의 일 실시예에 따른 무선 청소기(100)의 UART 통신을 위한 회로를 설명하기 위한 도면이다.
도 32를 참조하면, 청소기 본체(1000)는 UART 통신을 위한 구동 회로(1130e)를 포함할 수 있고, 브러시 장치(2000)도 UART 통신을 위한 구동 회로(2400e)를 포함할 수 있다. 도 32에 도시된 청소기 본체(1000)의 구동 회로(1130e)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 32에 도시된 브러시 장치(2000)의 구동 회로(2400e)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 전원선(10, 20)에 연결되는 신호선(30) 대신에 UART 전이중 통신을 위한 2개의 와이어를 포함할 수 있다. 예를 들어, 무선 청소기(100)는, 제3 통신선(51)과 제4 통신선(52)을 포함할 수 있다. 제3 통신선(51)은 제1 프로세서(1131)가 제2 프로세서(2410)로 신호를 전송하기 위한 선이고, 제4 통신선(52)은 제2 프로세서(2410)가 제1 프로세서(1131)로 신호를 전송하기 위한 선일 수 있다. 제1 프로세서(1131)와 제2 프로세서(2410)는 각각 제3 통신선(51)과 제4 통신선(52)을 통해 동시에 신호를 송수신할 수 있다.
본 개시의 일 실시예에 의하면, 노이즈에 강한 통신을 위해, 청소기 본체(1000)의 구동 회로(1130e)는 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142)를 포함할 수 있다. 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142) 각각은 스위치 소자와 주변 회로를 패킹(packing)한 레벨 쉬프트 IC일 수도 있다. 브러시 장치(2000)의 구동 회로(2400e)는 제1 풀업 저항(2451), 제1 댐핑 저항(2452), 제2 풀업 저항(2453), 제2 댐핑 저항(2454)을 포함할 수 있다.
청소기 본체(1000)는 마스터 기기로 동작함으로써, 동작 조건을 나타내는 신호를 제3 통신선(51)을 통해 제2 프로세서(2410)로 전송할 수 있다. 예를 들어, 제1 프로세서(1131)가 High 신호(5V)를 출력하는 경우, 제1 레벨 쉬프터 회로(1141)에 포함된 스위치 소자(예: N-channel FET)가 OFF 상태가 되므로, 제3 통신선(51)에는 제1 풀업 저항(2451)에 연결된 3.3V(High)가 걸리게 되고, 제 2 프로세서(2410)에도 제1 댐핑 저항(2452)을 통해서 3.3V(High)가 입력될 수 있다. 반면, 제1 프로세서(1131)에서 Low 신호(예: 0V)를 출력하는 경우, 제1 레벨 쉬프터 회로(1141)에 포함된 스위치 소자(예: N-channel FET)가 ON 상태가 되므로, 제3 통신선(51)의 전압이 0V(Low)가 되고, 제2 프로세서(2410)에도 0V(Low)가 입력될 수 있다. 즉, 제1 프로세서(1131)가 High 신호(예: 5V)를 출력하는 경우 제3 통신선(51)을 통해 제2 프로세서(2410)에 High 신호(예: 3.3V)가 입력되고, 제1 프로세서(1131)가 Low 신호(예: 0V)를 출력하는 경우, 제3 통신선(51)을 통해 제2 프로세서(2410)에 Low 신호(예: 0V)가 입력될 수 있다.
한편, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제4 통신선(52)을 통해 전송할 수 있다. 예를 들어, 제2 프로세서(2410)가 High 신호(예: 3.3V)를 출력하는 경우, 제4 통신선(52)에도 3.3V(High)가 걸리게 된다. 이때, 제2 레벨 쉬프터 회로(1142)에 포함된 스위치 소자(예: N-channel FET)가 동작하지 않으므로, 제1 프로세서(1131)에는 5V(High)가 입력된다. 반면, 제2 프로세서(2410)가 Low 신호(예: 0V)를 출력하는 경우, 제2 풀업 저항(2453)에 비해 제2 댐핑 저항(2454)의 크기가 매우 작으므로, 제4 통신선(52)에도 0에 가까운 전압(Low)이 걸리게 된다. 또한, 제2 레벨 쉬프터 회로(1142)에 포함된 저항(10K)이 크므로, 전압 강하가 많이 돼서 제1 프로세서(1131)로도 0에 가까운 전압(Low)이 입력된다. 즉, 제2 프로세서(2410)가 High 신호(예: 3.3V)를 출력하는 경우, 제4 통신선(52)을 통해 제1 프로세서(1131)에도 High 신호(예: 5V)가 입력되고, 제2 프로세서(2410)가 Low 신호(예: 0V)를 출력하는 경우, 제4 통신선(52)을 통해 제1 프로세서(1131)에도 Low 신호(예: 대략 0V(
Figure PCTKR2023005000-appb-img-000003
0V))가 입력된다. 도 32의 레벨 쉬프터 회로들(1141, 1142)의 동작은 도 31의 레벨 쉬프터 회로들(1141, 1142)의 동작과 동일하므로, 중복되는 설명은 생략하기로 한다.
무선 청소기(100)가 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142)를 포함하는 경우, 제1 프로세서(1131)에서 출력되는 전압과 제2 프로세서(2410)에서 출력되는 전압이 상이하더라도, 청소기 본체(1000)와 브러시 장치(2000) 간의 UART 통신이 가능하다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)의 구동 회로(1130e)가 제1 풀업 저항(2451), 제1 댐핑 저항(2452), 제2 풀업 저항(2453), 제2 댐핑 저항(2454)을 포함하고, 브러시 장치(2000)의 구동 회로(2400e)가 제1 레벨 쉬프터 회로(1141)와 제2 레벨 쉬프터 회로(1142)를 포함할 수도 있다.
도 33은 본 개시의 일 실시예에 따른 무선 청소기(100)의 UART 전이중 통신을 위한 회로를 설명하기 위한 도면이다.
도 33을 참조하면, 청소기 본체(1000)는 UART 통신을 위한 구동 회로(1130f)를 포함할 수 있고, 브러시 장치(2000)도 UART 통신을 위한 구동 회로(2400f)를 포함할 수 있다. 도 33에 도시된 청소기 본체(1000)의 구동 회로(1130f)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 33에 도시된 브러시 장치(2000)의 구동 회로(2400f)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 UART 통신을 위한 2개의 와이어를 포함할 수 있다. 예를 들어, 무선 청소기(100)는, 제3 통신선(51)과 제4 통신선(52)을 포함할 수 있다. 제3 통신선(51)은 제1 프로세서(1131)가 제2 프로세서(2410)로 신호를 전송하기 위한 선이고, 제4 통신선(52)은 제2 프로세서(2410)가 제1 프로세서(1131)로 신호를 전송하기 위한 선일 수 있다. 제1 프로세서(1131)와 제2 프로세서(2410)는 각각 제3 통신선(51)과 제4 통신선(52)을 통해 동시에 신호를 송수신할 수 있다.
본 개시의 일 실시예에 의하면, 노이즈에 강한 통신을 위해, 청소기 본체(1000)의 구동 회로(1130f)는 제1 레벨 쉬프터 회로(1141)와 유사한 형태의 제1 회로(1141a), 제3 댐핑 저항(1143), 제1 전압 분배기(1137)를 포함할 수 있다. 브러시 장치(2000)의 구동 회로(2400f)는 제2 전압 분배기(2427), 제1 댐핑 저항(2452), 제1 레벨 쉬프터 회로(1141)와 유사한 형태의 제2 회로(2455)를 포함할 수 있다.
청소기 본체(1000)는 마스터 기기로 동작함으로써, 동작 조건을 나타내는 신호를 제3 통신선(51)을 통해 제2 프로세서(2410)로 전송할 수 있다. 예를 들어, 제1 프로세서(1131)가 High 신호(5V)를 출력하는 경우, 제1 회로(1141a)에 포함된 스위치 소자(예: N-channel FET)가 OFF 상태가 되므로, 제3 통신선(51)에는 R1 저항을 통해 연결되는 +전원선(10)의 전압(예: 25.2V)(High)이 걸리게 된다. 이때, 제 2 프로세서(2410)에는, 제2 전압 분배기(2427)를 통해서 High 신호(예: Battery 전압(예: 25.2V) * R3/(R1+R2+R3))가 입력될 수 있다. 반면, 제1 프로세서(1131)에서 Low 신호(예: 0V)를 출력하는 경우, 제1 회로(1141a)에 포함된 스위치 소자(예: N-channel FET)가 ON 상태가 되므로, 제3 통신선(51)의 전압이 0V(Low)가 되고, 제2 프로세서(2410)에도 0V(Low)가 입력될 수 있다. 즉, 제1 프로세서(1131)가 High 신호(예: 5V)를 출력하는 경우 제3 통신선(51)을 통해 제2 프로세서(2410)에 High 신호(예: 3.3V)가 입력되고, 제1 프로세서(1131)가 Low 신호(예: 0V)를 출력하는 경우, 제3 통신선(51)을 통해 제2 프로세서(2410)에 Low 신호(예: 0V)가 입력될 수 있다.
한편, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제4 통신선(52)을 통해 전송할 수 있다. 예를 들어, 제2 프로세서(2410)가 High 신호(예: 3.3V)를 출력하는 경우, 제2 회로(2455)에 포함된 스위치 소자(예: N-channel FET)가 OFF 상태가 되므로, 제4 통신선(52)에는 R4 저항을 통해 연결되는 +전원선(10)의 전압(예: 25.2V)(High)가 걸리게 된다. 이때, 제 1 프로세서(1131)에는, 제1 전압 분배기(1137)를 통해서 High 신호(예: Battery 전압(예: 25.2V) * R6/(R4+R5+R6))가 입력될 수 있다. 반면, 제2 프로세서(2410)에서 Low 신호(예: 0V)를 출력하는 경우, 제2 회로(2455)에 포함된 스위치 소자(예: N-channel FET)가 ON 상태가 되므로, 제4 통신선(52)의 전압이 0V(Low)가 되고, 제1 프로세서(1131)에도 0V(Low)가 입력될 수 있다. 즉, 제2 프로세서(2410)가 High 신호(예: 3.3V)를 출력하는 경우 제4 통신선(52)을 통해 제1 프로세서(1131)에 High 신호가 입력되고, 제2 프로세서(2410)가 Low 신호(예: 0V)를 출력하는 경우, 제4 통신선(52)을 통해 제1 프로세서(1131)에 Low 신호(예: 0V)가 입력될 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)와 브러시 장치(2000)가 UART 통신할 때 제3 통신선(51) 및 제4 통신선(52)을 통해 고전압 신호가 송수신될 수 있으므로, 청소기 본체(1000)와 브러시 장치(2000)간의 통신이 노이즈에 강할 수 있다.
도 34는 본 개시의 일 실시예에 따른 무선 청소기(100)의 I2C 통신을 위한 회로를 설명하기 위한 도면이다.
도 34를 참조하면, 청소기 본체(1000)는 I2C(Inter-Integrated Circuit) 통신을 위한 구동 회로(1130g)를 포함할 수 있고, 브러시 장치(2000)도 I2C 통신을 위한 구동 회로(2400g)를 포함할 수 있다. 도 34에 도시된 청소기 본체(1000)의 구동 회로(1130g)는, 도 20에 도시된 청소기 본체(1000)의 구동 회로(1130)에 대응될 수 있고, 도 33에 도시된 브러시 장치(2000)의 구동 회로(2400g)는 도 20에 도시된 구동 회로(2400)에 대응될 수 있으므로, 중복되는 설명은 생략하기로 한다.
본 개시의 일 실시예에 의하면, 무선 청소기(100)는 I2C 통신을 위한 제6 통신선(43), 제7 통신선(44), 제8 통신선(45)을 포함할 수 있다. 제6 통신선(43)은 청소기 본체(1000)에서 브러시 장치(2000)로 SDA(Serial Data)를 송신하기 위한 선이고, 제7 통신선(44)은 브러시 장치(2000)에서 청소기 본체(1000)로 SDA(Serial Data)를 송신하기 위한 선이고, 제8 통신선(45)은 청소기 본체(1000)에서 브러시 장치(2000)로 SCL(Serial Clock)을 송신하기 위한 선일 수 있다.
본 개시의 일 실시예에 의하면, 노이즈에 강한 통신을 위해, 청소기 본체(1000)의 구동 회로(1130g)는 제1 레벨 쉬프터 회로(1141)와 유사한 형태의 제1 회로(1141a), 제2 레벨 쉬프터 회로(1142)와 유사한 형태의 제3 회로(1142a), 제3 댐핑 저항(1143), 제1 전압 분배기(1137)를 포함할 수 있다. 브러시 장치(2000)의 구동 회로(2400g)는 제2 전압 분배기(2427), 제1 댐핑 저항(2452), 제2 댐핑 저항(2454), 제1 레벨 쉬프터 회로(1141)와 유사한 형태의 제2 회로(2455)를 포함할 수 있다.
청소기 본체(1000)는 마스터 기기로 동작함으로써, 동작 조건을 나타내는 신호를 제6 통신선(43)과 제7 통신선(44)을 통해 제2 프로세서(2410)로 전송할 수 있다. 예를 들어, 제1 프로세서(1131)가 제1 회로(1141a) 방향으로 High 신호(예: 5V)를 출력하는 경우, 제1 회로(1141a)에 포함된 스위치 소자(예: N-channel FET)가 OFF 상태가 되므로, 제6 통신선(43)에는 R1 저항을 통해 연결되는 +전원선(10)의 전압(예: 25.2V)(High)이 걸리게 된다. 이때, 제 2 프로세서(2410)에는, 제2 전압 분배기(2427)를 통해서 High 신호(예: Battery 전압(예: 25.2V) * R3/(R1+R2+R3))가 입력될 수 있다. 반면, 제1 프로세서(1131)에서 제1 회로(1141a) 방향으로 Low 신호(예: 0V)를 출력하는 경우, 제1 회로(1141a)에 포함된 스위치 소자(예: N-channel FET)가 ON 상태가 되므로, 제6 통신선(43)의 전압이 0V(Low)가 되고, 제2 프로세서(2410)에도 0V(Low)가 입력될 수 있다. 즉, 제1 프로세서(1131)가 데이터 신호(예: SDA)를 송신하기 위해 High 신호(예: 5V)를 출력하는 경우 제6 통신선(43)을 통해 제2 프로세서(2410)에 High 신호(예: 3.3V)가 입력되고, 제1 프로세서(1131)가 데이터 신호(예: SDA)를 송신하기 위해 Low 신호(예: 0V)를 출력하는 경우, 제6 통신선(43)을 통해 제2 프로세서(2410)에 Low 신호(예: 0V)가 입력될 수 있다. 마찬가지로, 제1 프로세서(1131)가 클락 신호(예: SCL)를 전송하기 위해 High 신호(예: 5V)를 출력하는 경우 제7 통신선(44)을 통해 제2 프로세서(2410)에 High 신호(예: 3.3V)가 입력되고, 제1 프로세서(1131)가 클락 신호(예: SCL)를 전송하기 위해 Low 신호(예: 0V)를 출력하는 경우, 제7 통신선(44)을 통해 제2 프로세서(2410)에 Low 신호(예: 0V)가 입력될 수 있다.
한편, 브러시 장치(2000)의 제 2 프로세서(2410)는 현재 상태를 나타내는 응답 신호를 청소기 본체(1000)의 제1 프로세서(1131)로 제8 통신선(45) 및 제7 통신선(44)을 통해 전송할 수 있다. 예를 들어, 제2 프로세서(2410)가 High 신호(예: 3.3V)를 출력하는 경우, 제2 회로(2455)에 포함된 스위치 소자(예: N-channel FET)가 OFF 상태가 되므로, 제8 통신선(45)에는 R7 저항을 통해 연결되는 +전원선(10)의 전압(예: 25.2V)(High)이 걸리게 된다. 이때, 제 1 프로세서(1131)에는, 제1 전압 분배기(1137)를 통해서 High 신호(예: Battery 전압(예: 25.2V) * R9/(R7+R8+R9))가 입력될 수 있다. 반면, 제2 프로세서(2410)에서 Low 신호(예: 0V)를 출력하는 경우, 제2 회로(2455)에 포함된 스위치 소자(예: N-channel FET)가 ON 상태가 되므로, 제8 통신선(45)의 전압이 0V(Low)가 되고, 제1 프로세서(1131)에도 0V(Low)가 입력될 수 있다. 즉, 제2 프로세서(2410)가 데이터 신호(예: SDA)를 송신하기 위해 High 신호(예: 3.3V)를 출력하는 경우 제8 통신선(45)을 통해 제1 프로세서(1131)에 High 신호가 입력되고, 제2 프로세서(2410)가 데이터 신호(예: SDA)를 송신하기 위해 Low 신호(예: 0V)를 출력하는 경우, 제8 통신선(45)을 통해 제1 프로세서(1131)에 Low 신호(예: 0V)가 입력될 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)와 브러시 장치(2000)가 I2C를 이용하여 통신할 때 제6 통신선(43), 제7 통신선(44), 및 제8 통신선(45)을 통해 고전압 신호가 송수신될 수 있으므로, 청소기 본체(1000)와 브러시 장치(2000) 간의 통신이 노이즈에 강할 수 있다.
도 35는 본 개시의 일 실시예에 따른 무선 청소기(100)가 동작 상태 알림을 출력하는 동작을 설명하기 위한 도면이다.
본 개시의 일 실시예에 의하면, 사용자가 AI 모드를 선택한 경우, 청소기 본체(1000)는 출력 인터페이스(예: LCD)에 제1 GUI(3501)를 표시할 수 있다. 제1 GUI(3501)는 무선 청소기(100)가 AI 모드로 동작하고 있음을 나타낼 수 있으며, AI 모드 하에서 청소 가능 시간(남은 배터리 사용 시간)을 나타낼 수도 있다.
청소기 본체(1000)가 AI 모델을 이용하여 브러시 장치(2000)의 사용 환경 상태를 식별하고, 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기 또는 브러시 장치(2000)의 드럼 RPM을 조절한 경우, 청소기 본체(1000)의 출력 인터페이스에는 제2 GUI(3502)가 표시될 수 있다. 예를 들어, 제2 GUI(3502)는 “상황에 맞게 최적화했어요”라는 알림을 포함할 수 있다.
출력 인터페이스에 제2 GUI(3502)가 표시된 후 소정 시간(예: 3초)이 경과하면 다시 제1 GUI(3501)가 표시될 수 있다. 이후 브러시 장치(2000)의 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기 또는 브러시 장치(2000)의 드럼 RPM이 다시 변경된 경우, 제2 GUI(3502)가 다시 표시될 수 있다.
도 36은 본 개시의 일 실시예에 따른 무선 청소기(100)의 GUI를 설명하기 위한 도면이다.
본 개시의 일 실시예에 의하면, 사용자가 AI 모드를 선택하고, 청소기 본체(1000)와 브러시 장치(2000)가 통신이 가능한 경우, 청소기 본체(1000)는 출력 인터페이스(예: LCD)에 제1 GUI(3601)를 표시할 수 있다. 제1 GUI(3601)는 무선 청소기(100)가 AI 모드로 동작하고 있음을 나타낼 수 있다.
본 개시의 일 실시예에 의하면, 청소기 본체(1000)와 브러시 장치(2000) 간의 통신이 불가능한 경우, 청소기 본체(1000)는 출력 인터페이스(예: LCD)에 제2 GUI(3602)를 표시할 수 있다. 제2 GUI(3602)는 AI 모드로 동작이 불가능하는 알림을 포함할 수 있다. 예를 들어, 청소기 본체(1000)는 신호선(30)을 통해 제1 신호를 전송한 후에 소정 시간 동안 제2 신호를 수신하지 못한 경우, 브러시 장치(2000)와의 통신이 불가능하다고 결정할 수 있다. 청소기 본체(1000)는 브러시 장치(2000)와의 통신이 불가능하다고 결정됨에 따라, AI 모드로 동작이 불가능함을 나타내는 알림을 출력 인터페이스를 통해 출력할 수 있다.
본 개시의 일 실시예에 의하면, 사용자가 전원 버튼을 누르고 AI 모드를 선택하였으나, 브러시 장치(2000)의 동작 전류가 감지되지 않는 경우, 무선 청소기(100)에 브러시 장치(2000)가 제대로 결합되지 않은 것일 수 있다. 따라서, 청소기 본체(1000)는 브러시 장치(2000)의 상태를 확인해 보라는 제3 GUI(3603)를 표시할 수 있다. 또한, 본 개시의 일 실시예에 의하면, 브러시 장치(2000)와의 통신이 불가능하다고 결정되거나, 브러시 장치(2000)의 부하가 임계 값 이상인 경우(과부하 상태), 청소기 본체(1000)는 브러시 장치(2000)의 상태를 확인해 보라는 제3 GUI(3603)를 표시할 수 있다.
한편, 본 개시의 일 실시예에 의하면, 청소기 본체(1000)는 브러시 장치(2000)와의 통신이 불가능하다고 결정됨에 따라 동작 모드를 AI 모드에서 일반 모드로 전환하고, 일반 모드에 대응하는 GUI를 출력 인터페이스를 통해서 표시할 수도 있다.
본 개시의 일 실시예에 의하면, AI 모델을 이용하여 브러시 장치(2000)의 현재 사용 환경 상태를 식별하고, 브러시 장치(2000)의 현재 사용 환경 상태에 따라 흡입 모터(1110)의 흡입력 세기를 자동으로 조절해주는 무선 청소기(100)가 제공될 수 있다.
본 개시의 일 실시예에 의하면, AI 모델을 이용하여 브러시 장치(2000)의 현재 사용 환경 상태를 식별하고, 브러시 장치(2000)의 현재 사용 환경 상태에 따라 브러시 장치(2000)의 회전 솔의 RPM을 자동으로 조절하는 무선 청소기(100)가 제공될 수 있다.
본 개시의 일 실시예에 따른 무선 청소기(100)는, 무선 청소기(100) 내부에 진공을 만드는 흡입 모터(1110); 무선 청소기(100) 내부의 유로 압력을 측정하는 압력 센서(1400); 브러시 장치(2000)의 부하를 측정하기 위한 부하 감지 센서(1134); 브러시 장치(2000)의 사용 환경 상태를 추론하도록 학습된 AI 모델을 저장하는 메모리(1900); 및 적어도 하나의 프로세서(1001)를 포함할 수 있다. 적어도 하나의 프로세서(1001)는, 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 압력 센서(1400)로부터 획득할 수 있다. 적어도 하나의 프로세서(1001)는, 부하 감지 센서(1134)를 통해 브러시 장치(2000)의 부하와 관련된 데이터를 획득할 수 있다. 적어도 하나의 프로세서(1001)는, 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 메모리(1900)에 저장된 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다. 적어도 하나의 프로세서(1001)는, 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 흡입 모터(1110)의 흡입력 세기를 조절할 수 있다.
본 개시의 일 실시예에 따른 브러시 장치(2000)의 부하와 관련된 데이터는, 브러시 장치(2000)의 동작 전류, 브러시 장치(2000)로 인가되는 전압, 또는 브러시 장치(2000)의 소비 전력 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따른 브러시 장치(2000)의 현재 사용 환경 상태는, 브러시 장치(2000)가 현재 위치하는 피청소면의 상태, 피청소면 내에서 브러시 장치(2000)의 상대적 위치 상태, 또는 브러시 장치(2000)가 피청소면에서 들린 상태 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따른 적어도 하나의 프로세서(1001)는, 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 브러시 장치(2000)의 회전 솔의 목표 RPM을 결정할 수 있다. 적어도 하나의 프로세서(1001)는 결정된 회전 솔의 목표 RPM을 나타내는 제어 신호를 브러시 장치(2000)로 전송할 수 있다.
본 개시의 일 실시예에 따른 적어도 하나의 프로세서(1001)는, 제어 신호에 대한 응답으로, 브러시 장치(2000)로부터 브러시 장치(2000)의 현재 상태를 나타내는 신호를 수신할 수 있다.
본 개시의 일 실시예에 따른 적어도 하나의 프로세서(1001)는, 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 브러시 장치(2000)에 포함된 조명 장치(2300)의 색상 또는 밝기 중 적어도 하나를 결정할 수 있다. 적어도 하나의 프로세서(1001)는, 결정된 조명 장치(2300)의 색상 또는 밝기 중 적어도 하나를 나타내는 제어 신호를 브러시 장치(2000)로 전송할 수 있다.
적어도 하나의 프로세서(1001)는, 메모리(1900)에 저장된 복수의 AI 모델 중에서 브러시 장치(2000)의 제1 유형에 대응하는 제1 AI 모델을 선택할 수 있다. 적어도 하나의 프로세서(1001)는, 선택된 제1 AI 모델에 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다.
본 개시의 일 실시예에 따른 브러시 장치(2000)는, 브러시 장치(2000)의 제1 유형을 나타내는 제1 식별 저항을 포함할 수 있다. 적어도 하나의 프로세서(1001)는, 흡입 모터(1110)로 입력되는 제1 전압 값에 기초하여, 제1 식별 저항에 대응하는 브러시 장치(2000)의 제1 유형을 식별할 수 있다.
적어도 하나의 프로세서(1001)는, 브러시 장치(2000)로부터 브러시 장치(2000)의 제1 유형을 나타내는 데이터 신호를 수신할 수 있다.
적어도 하나의 프로세서(1001)는, 흡입 모터(1110)의 흡입력 세기를 AI 모델에 적용하여, AI 모델의 파라미터 값을 수정할 수 있다. 적어도 하나의 프로세서(1001)는, 파라미터 값이 수정된 AI 모델에 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별할 수 있다.
본 개시의 일 실시예에 따른 AI 모델은, SVM(Support Vector Machine) 모델, 신경망(Neural Networks) 모델, 랜덤 포레스트(Random Forest) 모델, 또는 그래픽 모델(Graphical Model) 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따른 압력 센서(1400)는, 절대압 센서 또는 상대압 센서 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따른 압력 센서(1400)는, 흡입 모터(1110)가 포함된 청소기 본체(1000)의 흡입 덕트(40)에 마련될 수 있다.
적어도 하나의 프로세서(1001)는, 흡입 모터(1110) 구동 전 압력 센서(1400)를 통해 측정된 제1 압력 값과 흡입 모터(1110) 구동 후 압력 센서(1400)를 통해 측정된 제2 압력 값의 차를 유로 압력에 관한 데이터로 획득할 수 있다.
적어도 하나의 프로세서(1001)는, 브러시 장치(2000)의 현재 사용 환경 상태가 마루(hard floor)를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 중간 강도인 제1 세기로 조정할 수 있다. 적어도 하나의 프로세서(1001)는, 브러시 장치(2000)의 현재 사용 환경 상태가 매트 또는 고밀도 카펫을 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 제1 세기보다 낮은 제2 세기로 조정할 수 있다. 적어도 하나의 프로세서(1001)는, 브러시 장치(2000)의 현재 사용 환경 상태가 일반 카펫을 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 제1 세기보다 높은 제3 세기로 조정할 수 있다.
적어도 하나의 프로세서(1001)는, 브러시 장치(2000)의 현재 사용 환경 상태가 피청소면으로부터 일정 거리 이상 들린 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 최소 강도로 조정하고, 브러시 장치(2000)의 목표 RPM을 가장 저단으로 결정할 수 있다.
적어도 하나의 프로세서(1001)는, 브러시 장치(2000)의 현재 사용 환경 상태가 벽면 코너를 청소하는 상태인 경우, 흡입 모터(1110)의 흡입력 세기를 최대 강도로 조정할 수 있다.
적어도 하나의 프로세서(1001)는, 조절된 흡입 모터(1110)의 흡입력 세기에 기초하여, 브러시 장치(2000)의 구속 레벨(trip level)을 조절할 수 있다.
적어도 하나의 프로세서(1001)는, 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태의 천이를 식별할 수 있다. 적어도 하나의 프로세서(1001)는, 브러시 장치(2000)의 현재 사용 환경 상태의 천이가 식별됨에 따라, 흡입 모터(1110)의 흡입력 세기를 조절할 수 있다.
본 개시의 일 실시예에 따른 무선 청소기(100)가 흡입 모터(1110)의 흡입력 세기를 자동으로 조절하는 방법은, 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 획득하는 단계, 부하 감지 센서(1134)를 통해 브러시 장치(2000)의 부하와 관련된 데이터를 획득하는 단계, 유로 압력에 관한 데이터 및 브러시 장치(2000)의 부하와 관련된 데이터를 기 학습된 AI 모델에 적용하여, 브러시 장치(2000)의 현재 사용 환경 상태를 식별하는 단계; 및 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 흡입 모터(1110)의 흡입력 세기를 조절하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 진공 청소기의 동작 방법은, 진공 청소기에 부착물을 결합하는 단계; 상기 진공 청소기의 프로세서에 의해, 진공 청소기에 결합된 부착물을 진공 청소기와 결합하도록 구성된 복수의 서로 다른 유형의 부착물 중에서 제1 부착물로 식별하는 단계; 상기 프로세서에 의해, 상기 복수의 서로 다른 유형의 부착물에 대응하는 복수의 서로 다른 AI 모델 중에서 상기 제1 부착물에 대응하는 제1 AI 모델을 선택하는 단계; 상기 진공 청소기의 배터리로부터 진공 청소기의 흡입 모터(1110)로 전력을 전달하고, 상기 흡입 모터의 소비전력량에 따라 상기 진공 청소기의 흡입력을 발생시키는 단계; 상기 프로세서에 의해, 상기 선택된 제1 모델의 적어도 일부에 기초하여, 배터리로부터 전달되는 전력량을 제어하여 흡입력을 동적으로 조절하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 진공 청소기의 동작 방법은, 프로세서에 의해, 제1 부착물의 사용 환경 상태를 결정하는 단계; 및 사용 환경 상태에 따라 전력량을 조절하는 단계를 더 포함할 수 있다.
본 개시의 일 실시예에 의하면, 사용 환경 상태를 결정하는 단계는, 프로세서와 신호 통신하는 압력 센서(1400)에 의해 진공 청소기 내부의 유로 압력을 측정하는 단계; 프로세서와 신호 통신하는 부하 감지 센서(1134)에 의해 부착물의 부하를 측정하는 단계; 및 AI 모델에 상기 유로 압력 데이터 및 브러시 장치(2000)의 부하 데이터를 적용하여 사용환경 상태를 판단하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 진공 청소기의 동작 방법은, 제1 부착물을 제1 부착물과 상이한 제2 부착물로 교체하는 단계; 프로세서에 의해, 제2 부착물을 식별하는 단계; 프로세서에 의해, 제2 부착물에 대응하는 제2 모델을 선택하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 진공 청소기의 동작 방법은, 프로세서에 의해, 흡입력을 동적으로 조정하기 위한 제2 모델의 적어도 일부에 기초하여, 배터리로부터 전달되는 전력량을 제어하는 단계를 포함할 수 있다.
기기로 읽을 수 있는 저장매체는, 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, ‘비일시적 저장매체'는 실재(tangible)하는 장치이고, 신호(signal)(예: 전자기파)를 포함하지 않는다는 것을 의미할 뿐이며, 이 용어는 데이터가 저장매체에 반영구적으로 저장되는 경우와 임시적으로 저장되는 경우를 구분하지 않는다. 예로, '비일시적 저장매체'는 데이터가 임시적으로 저장되는 버퍼를 포함할 수 있다.
일 실시예에 따르면, 본 문서에 개시된 다양한 실시예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory (CD-ROM))의 형태로 배포되거나, 또는 어플리케이션 스토어를 통해 또는 두개의 사용자 장치들(예: 스마트폰들) 간에 직접, 온라인으로 배포(예: 다운로드 또는 업로드)될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품(예: 다운로더블 앱(downloadable app))의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 기기로 읽을 수 있는 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.

Claims (15)

  1. 무선 청소기(100)에 있어서,
    상기 무선 청소기(100) 내부에 진공을 만드는 흡입 모터(1110);
    상기 무선 청소기(100) 내부의 유로 압력을 측정하는 압력 센서(1400);
    브러시 장치(2000)의 부하를 측정하기 위한 부하 감지 센서(1134);
    상기 브러시 장치(2000)의 사용 환경 상태를 추론하도록 학습된 적어도 하나의 AI 모델을 저장하는 메모리(1900); 및
    적어도 하나의 프로세서(1001)를 포함하고,
    상기 적어도 하나의 프로세서(1001)는,
    상기 압력 센서(1400)에 의해 측정된 상기 유로 압력에 관한 데이터를 상기 압력 센서(1400)로부터 획득하고,
    상기 부하 감지 센서(1134)를 통해 상기 브러시 장치(2000)의 부하와 관련된 데이터를 획득하고,
    상기 유로 압력에 관한 데이터 및 상기 브러시 장치(2000)의 부하와 관련된 데이터를 상기 메모리(1900)에 저장된 상기 적어도 하나의 AI 모델에 적용하여, 상기 브러시 장치(2000)의 현재 사용 환경 상태를 식별하고,
    상기 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 상기 흡입 모터(1110)의 흡입력 세기를 조절하는,
    무선 청소기(100).
  2. 제 1 항에 있어서, 상기 브러시 장치(2000)의 현재 사용 환경 상태는,
    상기 브러시 장치(2000)가 현재 위치하는 피청소면의 상태, 상기 피청소면 내에서 상기 브러시 장치(2000)의 상대적 위치 상태, 또는 상기 브러시 장치(2000)가 상기 피청소면에서 들린 상태 중 적어도 하나를 포함하는, 무선 청소기(100).
  3. 제 1 항 또는 제 2 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 상기 브러시 장치(2000)의 회전 솔의 목표 RPM을 결정하고,
    상기 결정된 회전 솔의 목표 RPM을 나타내는 제어 신호를 상기 브러시 장치(2000)로 전송하고,
    상기 제어 신호에 대한 응답으로, 상기 브러시 장치(2000)로부터 상기 브러시 장치(2000)의 현재 상태를 나타내는 신호를 수신하는, 무선 청소기(100).
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 상기 브러시 장치(2000)에 포함된 조명 장치(2300)의 색상 또는 밝기 중 적어도 하나를 결정하고,
    상기 결정된 조명 장치(2300)의 색상 또는 밝기 중 적어도 하나를 나타내는 제어 신호를 상기 브러시 장치(2000)로 전송하는, 무선 청소기(100).
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 메모리(1900)에 저장된 복수의 AI 모델 중에서 상기 브러시 장치(2000)의 제1 유형에 대응하는 제1 AI 모델을 선택하고,
    상기 선택된 제1 AI 모델에 상기 유로 압력에 관한 데이터 및 상기 브러시 장치(2000)의 부하와 관련된 데이터를 적용하여, 상기 브러시 장치(2000)의 현재 사용 환경 상태를 식별하는, 무선 청소기(100).
  6. 제 5 항에 있어서,
    상기 브러시 장치(2000)는, 상기 브러시 장치(2000)의 상기 제1 유형을 나타내는 제1 식별 저항을 포함하고,
    상기 적어도 하나의 프로세서(1001)는, 상기 흡입 모터(1110)로 입력되는 제1 전압 값에 기초하여, 상기 제1 식별 저항에 대응하는 상기 브러시 장치(2000)의 상기 제1 유형을 식별하는, 무선 청소기(100).
  7. 제 5 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 브러시 장치(2000)로부터 상기 브러시 장치(2000)의 상기 제1 유형을 나타내는 데이터 신호를 수신하는, 무선 청소기(100).
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 흡입 모터(1110)의 흡입력 세기를 상기 적어도 하나의 AI 모델에 적용하여, 상기 적어도 하나의 AI 모델의 파라미터 값을 수정하고,
    상기 파라미터 값이 수정된 적어도 하나의 AI 모델에 상기 유로 압력에 관한 데이터 및 상기 브러시 장치(2000)의 부하와 관련된 데이터를 적용하여, 상기 브러시 장치(2000)의 현재 사용 환경 상태를 식별하는, 무선 청소기(100).
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 압력 센서(1400)는,
    절대압 센서 또는 상대압 센서 중 적어도 하나를 포함하고,
    상기 압력 센서(1400)는, 상기 흡입 모터(1110)가 포함된 청소기 본체(1000)의 흡입 덕트(40)에 마련되는, 무선 청소기(100).
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 흡입 모터(1110) 구동 전 상기 압력 센서(1400)를 통해 측정된 제1 압력 값과 상기 흡입 모터(1110) 구동 후 상기 압력 센서(1400)를 통해 측정된 제2 압력 값의 차를 상기 유로 압력에 관한 데이터로 획득하는, 무선 청소기(100).
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 브러시 장치(2000)의 현재 사용 환경 상태가 마루(hard floor)를 청소하는 상태인 경우, 상기 흡입 모터(1110)의 흡입력 세기를 중간 강도인 제1 세기로 조정하고,
    상기 브러시 장치(2000)의 현재 사용 환경 상태가 매트 또는 고밀도 카펫을 청소하는 상태인 경우, 상기 흡입 모터(1110)의 흡입력 세기를 상기 제1 세기보다 낮은 제2 세기로 조정하고,
    상기 브러시 장치(2000)의 현재 사용 환경 상태가 일반 카펫을 청소하는 상태인 경우, 상기 흡입 모터(1110)의 흡입력 세기를 상기 제1 세기보다 높은 제3 세기로 조정하는, 무선 청소기(100).
  12. 제 11 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 브러시 장치(2000)의 현재 사용 환경 상태가 피청소면으로부터 일정 거리 이상 들린 상태인 경우, 상기 흡입 모터(1110)의 흡입력 세기를 상기 제2 세기보다 낮은 최소 강도인 제4 세기로 조정하고, 상기 브러시 장치(2000)의 목표 RPM을 가장 저단으로 결정하는, 무선 청소기(100).
  13. 제 11 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 브러시 장치(2000)의 현재 사용 환경 상태가 벽면 코너를 청소하는 상태인 경우, 상기 흡입 모터(1110)의 흡입력 세기를 상기 제3 세기보다 높은 최대 강도인 제5 세기로 조정하는, 무선 청소기(100).
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서, 상기 적어도 하나의 프로세서(1001)는,
    상기 조절된 흡입 모터(1110)의 흡입력 세기에 기초하여, 상기 브러시 장치(2000)의 구속 레벨(trip level)을 조절하는, 무선 청소기(100).
  15. 무선 청소기(100)가 상기 무선 청소기(100)의 흡입 모터(1110)의 흡입력 세기를 자동으로 조절하는 방법에 있어서,
    상기 무선 청소기(100)의 압력 센서(1400)에 의해 측정된 유로 압력에 관한 데이터를 획득하는 단계(S810);
    상기 무선 청소기(100)의 부하 감지 센서(1134)를 이용하여 브러시 장치(2000)의 부하와 관련된 데이터를 획득하는 단계(S820);
    상기 유로 압력에 관한 데이터 및 상기 브러시 장치(2000)의 부하와 관련된 데이터를 상기 무선 청소기(100)의 메모리(1900)에 저장된 적어도 하나의 AI 모델에 적용하여, 상기 브러시 장치(2000)의 현재 사용 환경 상태를 식별하는 단계(S830); 및
    상기 식별된 브러시 장치(2000)의 현재 사용 환경 상태에 기초하여, 상기 흡입 모터(1110)의 흡입력 세기를 조절하는 단계(S840)를 포함하는, 방법.
PCT/KR2023/005000 2022-04-15 2023-04-13 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기 WO2023200268A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380022760.XA CN118748922A (zh) 2022-04-15 2023-04-13 自动调节抽吸电机的抽吸力的方法及用于其的无线真空清洁器
EP23788617.1A EP4424220A1 (en) 2022-04-15 2023-04-13 Method for automatically adjusting suction force of suction motor, and wireless cleaner therefor
US18/136,287 US20230329499A1 (en) 2022-04-15 2023-04-18 Method of automatically adjusting strength of suction power of suction motor and cordless vacuum cleaner therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220047180 2022-04-15
KR10-2022-0047180 2022-04-15
KR10-2022-0143950 2022-11-01
KR1020220143950A KR20230148084A (ko) 2022-04-15 2022-11-01 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/136,287 Continuation US20230329499A1 (en) 2022-04-15 2023-04-18 Method of automatically adjusting strength of suction power of suction motor and cordless vacuum cleaner therefor

Publications (1)

Publication Number Publication Date
WO2023200268A1 true WO2023200268A1 (ko) 2023-10-19

Family

ID=88330023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005000 WO2023200268A1 (ko) 2022-04-15 2023-04-13 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기

Country Status (1)

Country Link
WO (1) WO2023200268A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210007569A1 (en) * 2019-07-11 2021-01-14 Sharkninja Operating, Llc Smart nozzle and a surface cleaning device implementing same
KR20210050843A (ko) * 2019-10-29 2021-05-10 엘지전자 주식회사 청소기 및 그 제어방법
KR20210105207A (ko) * 2020-02-18 2021-08-26 엘지전자 주식회사 청소기 및 청소기의 제어방법
WO2022008872A1 (en) * 2020-07-10 2022-01-13 Dyson Technology Limited Vacuum cleaner
KR20220019990A (ko) * 2020-08-11 2022-02-18 삼성전자주식회사 청소기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210007569A1 (en) * 2019-07-11 2021-01-14 Sharkninja Operating, Llc Smart nozzle and a surface cleaning device implementing same
KR20210050843A (ko) * 2019-10-29 2021-05-10 엘지전자 주식회사 청소기 및 그 제어방법
KR20210105207A (ko) * 2020-02-18 2021-08-26 엘지전자 주식회사 청소기 및 청소기의 제어방법
WO2022008872A1 (en) * 2020-07-10 2022-01-13 Dyson Technology Limited Vacuum cleaner
KR20220019990A (ko) * 2020-08-11 2022-02-18 삼성전자주식회사 청소기

Similar Documents

Publication Publication Date Title
WO2020218652A1 (ko) 공기 청정기
WO2018155999A2 (en) Moving robot and control method thereof
WO2017200353A1 (ko) 로봇 청소기
WO2016036042A1 (ko) 집진 장치, 상기 집진 장치를 이용하는 청소 장치 및 상기 청소 장치를 제어하는 방법
WO2020060155A1 (en) Robot cleaner, charging device and charging system
WO2021034057A1 (ko) 전자 장치 및 전자 장치의 제어 방법
WO2021020932A2 (ko) 이동 로봇 및 그 제어방법
WO2022035041A1 (ko) 청소기
WO2021020917A1 (ko) 인공지능 로봇청소기 및 그를 포함하는 로봇 시스템
AU2018281658B2 (en) Vacuum cleaner and control method thereof
WO2022055291A1 (ko) 전자 장치 및 전자 장치의 업데이트 방법
WO2016013705A1 (ko) 원격제어장치 및 그의 동작 방법
EP3993966A1 (en) Mobile robot using artificial intelligence and controlling method thereof
WO2023200268A1 (ko) 흡입 모터의 흡입력 세기를 자동으로 조절하는 방법 및 이를 위한 무선 청소기
WO2023200174A1 (ko) 청소기 본체 및 브러시 장치 간에 통신 가능한 무선 청소기
WO2016195429A1 (ko) Hdmi를 사용하여 전력을 송수신하기 위한 방법 및 그 장치
WO2022114636A1 (ko) 진공 청소기와 도킹 스테이션을 포함하는 청소 장치 및 그 제어 방법
WO2019004773A1 (ko) 이동 단말기 및 이를 포함하는 로봇 시스템
WO2024043718A1 (ko) 무선 청소기 및 무선 청소기의 동작 방법
WO2021006671A1 (en) Mobile robot using artificial intelligence and control method thereof
WO2021132889A1 (en) Electronic device and control method thereof
WO2024049173A1 (ko) 스테이션 장치 및 스테이션 장치의 동작 방법
WO2023234535A1 (ko) 자가 진단이 가능한 청소 시스템 및 청소 시스템의 자가 진단 방법
WO2023219362A1 (ko) 무선 청소기가 거치되는 스테이션 장치 및 스테이션 장치의 통신 방법
WO2024186020A1 (ko) 무선 청소기 및 무선 청소기의 동작 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023788617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023788617

Country of ref document: EP

Effective date: 20240531