WO2023199659A1 - Resist material, method for producing resist pattern, and resist pattern - Google Patents

Resist material, method for producing resist pattern, and resist pattern Download PDF

Info

Publication number
WO2023199659A1
WO2023199659A1 PCT/JP2023/009016 JP2023009016W WO2023199659A1 WO 2023199659 A1 WO2023199659 A1 WO 2023199659A1 JP 2023009016 W JP2023009016 W JP 2023009016W WO 2023199659 A1 WO2023199659 A1 WO 2023199659A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
resist pattern
exposure
extreme ultraviolet
ultraviolet rays
Prior art date
Application number
PCT/JP2023/009016
Other languages
French (fr)
Japanese (ja)
Inventor
公男 吉村
亮 出崎
洋揮 山本
タンフン ヂン
雅彦 石野
将元 錦野
康成 前川
孝弘 古澤
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Publication of WO2023199659A1 publication Critical patent/WO2023199659A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a resist material, a method for manufacturing a resist pattern, and a resist pattern.
  • Photolithography is widely used in which a photomask is two-dimensionally patterned with areas that transmit light and areas that do not transmit light, and the pattern of the photomask is transferred to a photoresist layer.
  • the fineness of the pattern that can be transferred using photolithography depends on the wavelength of the light used for exposure. Theoretically, the shorter the wavelength of the light used for exposure, the finer the pattern can be transferred to the photoresist layer. Therefore, when attempting to transfer a pattern as fine as possible using photolithography, ultraviolet rays (for example, wavelengths of 193 nm, 248 nm, etc.) are often used as light for exposure. Such photolithography is called ultraviolet (UV) lithography.
  • UV ultraviolet
  • the width of a thin line that can be transferred using UV lithography is, for example, 18 nm (see, for example, Patent Document 1).
  • EB lithography has become popular as a form of lithography different from photolithography.
  • an electron beam having a shorter wavelength than ultraviolet light for example, a wavelength of 1 nm
  • the resist layer is exposed by irradiating the resist layer with a focused electron beam while scanning it in a desired pattern.
  • the width of a thin line that can be drawn using EB lithography is, for example, 10 nm (see, for example, Patent Document 2).
  • EUV extreme ultraviolet
  • a photoresist layer can be exposed using a photomask while using light with a shorter wavelength than in UV lithography. Therefore, a pattern with higher definition than UV lithography can be obtained with a shorter exposure time than EB lithography.
  • a photoresist material is a photoresist material for extreme ultraviolet lithography, and is one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane. Contains a polymer alloy containing at least one of these or a metal alkoxide.
  • a method for manufacturing a resist pattern uses a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane, or A coating step of applying a resist material containing a metal alkoxide onto a substrate, an exposure step of bringing a photomask close to the substrate coated with the resist material and exposing the resist material, and developing the exposed resist material. A developing step.
  • a resist pattern according to one embodiment of the present invention is an amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride, It consists of an amorphous film patterned two-dimensionally.
  • a resist material having high dry etching resistance can be provided. Furthermore, it is possible to provide a method for manufacturing a resist pattern using such a resist material, and a resist pattern.
  • FIG. 7 is a flowchart of a resist pattern manufacturing method M10 according to Embodiment 3 of the present invention.
  • 7 is a flowchart of a resist pattern manufacturing method M20 according to Embodiment 4 of the present invention.
  • FIG. 7 is a diagram showing a resist pattern 1 according to Embodiment 5 of the present invention.
  • FIG. 3 is a diagram showing a sensitivity curve created by measuring the film thickness of the remaining pattern in the samples of Examples 1 and 2 that were subjected to EB irradiation or EUV irradiation.
  • FIG. 7 is a diagram showing a sensitivity curve created by measuring the film thickness of the remaining pattern in the samples of Examples 3 to 5 that were subjected to EB irradiation or EUV irradiation.
  • FIG. 3 is a diagram showing a resist film before and after firing conversion.
  • FIG. 3 is a diagram showing the etching resistance of Example 2 after development or baking conversion, and Comparative Example 1 after coating.
  • FIG. 3 is a diagram showing the etching resistance of Examples after development or baking conversion, and Comparative Examples after coating.
  • (a) is the etching resistance of Example 3 and Comparative Examples 1 to 4
  • (b) is the etching resistance of Example 4 and Comparative Examples 1 to 4
  • (c) is Example 5 and Comparative Examples 1 to 4. shows etching resistance.
  • a resist pattern of Example 2 produced by irradiating pulsed EUV is shown.
  • a resist pattern of Example 5 produced by irradiating pulsed EUV is shown.
  • the photoresist material according to Embodiment 1 of the present invention is a photoresist material for extreme ultraviolet lithography, and includes a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane. include.
  • silicon carbide or the like is converted into a ceramic by crosslinking or firing conversion by irradiation with extreme ultraviolet rays. Therefore, by exposing the photoresist material according to this embodiment to extreme ultraviolet rays, a resist pattern made of ceramics such as silicon carbide can be obtained.
  • a resist pattern made of ceramics such as silicon carbide has higher density and hardness than a resist pattern made of a conventionally used polymer resin. Therefore, a resist pattern made of ceramics such as silicon carbide has higher dry etching resistance than a resist pattern made of polymer resin. Therefore, according to the present resist material, a photoresist material having high dry etching resistance can be provided.
  • the photoresist material according to the present embodiment is crosslinked or converted by baking when irradiated with extreme ultraviolet rays, a strong network can be constructed.
  • "calcination conversion” refers to converting an organic substance into an inorganic substance by calcination. Therefore, the photoresist material according to this embodiment can prevent evaporation of the photoresist material even when exposed using high-intensity extreme ultraviolet rays such as pulsed extreme ultraviolet rays.
  • pulsed extreme ultraviolet light refers to extreme ultraviolet light whose waveform has an extremely narrow half-width when viewed along the time axis. In this specification, pulsed extreme ultraviolet rays refer to extreme ultraviolet rays whose half-width is 1 nanosecond or less.
  • Such pulsed extreme ultraviolet rays have a very high intensity per pulse.
  • the intensity per pulse of the pulsed extreme ultraviolet rays is not limited, but is, for example, 10 9 W/cm 2 or more and 10 14 W/cm 2 or less.
  • the photoresist material according to this embodiment can prevent evaporation of the photoresist material even when exposed using such high-intensity pulsed extreme ultraviolet rays. Therefore, when exposing using high-intensity pulsed extreme ultraviolet rays, the photoresist material according to this embodiment can shorten the exposure time.
  • polymer alloy contains at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane.
  • polymer alloy means a polymer multicomponent system, and includes a mixture of a polymer and a monomer having a double bond.
  • Polycarbosilane is a polymer whose main chain is a skeleton in which silicon atoms and carbon atoms are alternately bonded.
  • the main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure.
  • the substituent on the polycarbosilane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, or a carbon chain having two or more carbon atoms that may contain a hetero atom.
  • the heteroatom is preferably selected from boron (B), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S).
  • the polycarbosilane preferably has a molecular weight of 200 or more and 40,000 or less.
  • the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
  • allylhydridopolycarbosilane is preferred among carbosilanes.
  • Polysiloxane is a polymer whose main chain is a skeleton in which silicon atoms and oxygen atoms are alternately bonded.
  • the main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure.
  • the substituent on the polysiloxane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, or a carbon chain having two or more carbon atoms that may contain a hetero atom.
  • the polysiloxane preferably has a molecular weight of 200 or more and 40,000 or less. When the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
  • Polysilazane is a polymer whose main chain is a skeleton in which silicon atoms and nitrogen atoms are alternately bonded.
  • the main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure.
  • the substituent on polysilazane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, or a carbon chain having two or more carbon atoms that may contain a hetero atom.
  • the polysilazane preferably has a molecular weight of 200 or more and 40,000 or less. When the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
  • Polyorganobolosilazane is a polymer whose main chain is a skeleton consisting of a combination of silicon-nitrogen-silicon, silicon-nitrogen-boron, and boron-nitrogen-boron.
  • the main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure.
  • the substituent on the polyorganoborosilazane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, and a carbon chain having two or more carbon atoms that may contain a hetero atom.
  • the polyorganobolosilazane preferably has a molecular weight of 200 or more and 40,000 or less.
  • the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
  • the polymer alloy may contain other polymers and monomers in addition to at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane.
  • examples include polymers containing antioxidants and light stabilizers, resist materials, and nanoparticles (metal oxide precursors) that are coordination-stabilized with high-boiling monomers and vinyl monomers described below.
  • polycarbosilane and allylhydridopolycarbosilane are employed as the polymers constituting the polymer alloy.
  • the structure of polycarbosilane is shown in the following general formula (I)
  • the structure of allylhydridopolycarbosilane is shown in the following general formula (II).
  • 1 wt % allylhydridopolycarbosilane is added to polycarbosilane and dissolved in cyclohexane.
  • a polymer alloy is produced by stirring a cyclohexane solution containing polycarbosilane and allylhydridopolycarbosilane for 10 minutes, and then removing the cyclohexane.
  • a photoresist solution is prepared by dissolving the obtained polymer alloy in toluene at a concentration of 5 wt%.
  • the photoresist solution configured in this manner can be used in photolithography, including spin coating, exposure, and development on a substrate.
  • the ratio of allylhydridopolycarbosilane to polycarbosilane is preferably 0.1 wt% or more and 50 wt% or less, and 1 wt% or more and 10 wt%. % or less is more preferable.
  • a resist pattern is obtained in which the photoreaction progresses in the exposed area and does not progress in the area shielded by the photomask, and which can be exposed with a realistic exposure time. be able to.
  • the term "photoreaction” refers to the formation of crosslinks in the resist material by exposure to light or conversion by firing.
  • the polymer alloy can be obtained using a known production method. For example, it can be obtained by dissolving it in an organic solvent, stirring it, and then removing the organic solvent.
  • the organic solvent is preferably a solvent that dissolves the polymer contained in the polymer alloy, and can be appropriately selected by those skilled in the art depending on the polymer used.
  • the film thickness of the photoresist material coated on the substrate is determined from the viewpoint of forming a high-definition resist pattern and suppressing peeling of the resist pattern.
  • the thickness is preferably 10 nm or more and 250 nm or less.
  • the wavelength is 250 nm or more, effects such as crosslinking due to exposure do not reach the substrate, and peeling and chipping are likely to occur during development.
  • a photoresist material according to Embodiment 2 of the present invention is a photoresist material for extreme ultraviolet lithography, and includes a metal oxide precursor.
  • the metal oxide is converted into a ceramic by crosslinking or firing conversion by irradiation with extreme ultraviolet rays. Therefore, by exposing the photoresist material according to this embodiment to extreme ultraviolet rays, a resist pattern made of metal oxide ceramics can be obtained.
  • a resist pattern made of metal oxide ceramics has higher hardness than a resist pattern made of a conventionally used polymer resin. Furthermore, because the film density increases through crosslinking or firing conversion, and at the same time it becomes inorganic ceramic, a resist pattern made of metal oxide ceramics has higher dry etching resistance than a resist pattern made of polymer resin. Therefore, according to the present resist material, a photoresist material having high dry etching resistance can be provided.
  • the photoresist material according to this embodiment is crosslinked or converted by baking when irradiated with extreme ultraviolet rays, so that a strong network can be constructed. Therefore, the photoresist material according to this embodiment can prevent evaporation of the photoresist material even when exposed using high-intensity extreme ultraviolet rays such as pulsed extreme ultraviolet rays. Therefore, when exposing using high-intensity pulsed extreme ultraviolet rays, the photoresist material according to this embodiment can shorten the exposure time.
  • the metal oxide precursor preferably contains any one of titanium, zirconium, and hafnium.
  • a resist pattern of ceramics made of metal oxide can be obtained by exposure using extreme ultraviolet rays. Therefore, the present photoresist material can provide a photoresist material with high dry etching resistance.
  • the metal oxide precursor should contain hafnium because the larger the radiation absorption cross section, the higher the sensitivity to the electron beam or EUV light. is more preferable.
  • An example of the metal oxide precursor is shown in the following general formula (III). Note that in formula (III), MO x means a metal oxide.
  • the metal oxide precursor can be obtained by a known production method. For example, it can be obtained by stirring and reacting a metal alkoxide and methyl methacrylate in a suitable organic solvent.
  • examples of the metal alkoxide include titanium (IV) tetraisoprooxide, zirconium (IV) tetraisoprooxide, and hafnium (IV) tetraisoprooxide.
  • the film thickness of the photoresist material is 5 nm or more and 120 nm or more from the viewpoint of forming a high-definition resist pattern and suppressing collapse of the resist pattern. It is preferable that it is below.
  • a resist pattern produced using a photoresist material containing a metal oxide precursor according to one embodiment of the present invention can be used as a dielectric film for a high refractive lens or a waveguide of a millimeter wave device.
  • the photoresist material according to one embodiment of the present invention may contain other components as necessary in addition to the polymer alloy or the metal oxide precursor.
  • other components include antioxidants, photoacid generators, surfactants, amines, dissolution inhibiting compounds, dyes, plasticizers, photosensitizers, and light absorbers.
  • the photoresist material according to one embodiment of the present invention can be manufactured by dissolving a polymer alloy or a metal oxide precursor and, if necessary, other components in an organic solvent component.
  • Any organic solvent may be used as long as it can dissolve each component to be used and form a uniform solution, and any organic solvent may be selected as appropriate from those conventionally known as solvents for photoresist materials. be able to. Examples include toluene, 1-propanol, alkylene glycol monoalkyl ether carboxylates such as propylene glycol monomethyl ether acetate (PGMEA), and the like.
  • FIG. 1 is a flowchart of a resist pattern manufacturing method M10 according to Embodiment 1 of the present invention.
  • the manufacturing method M10 includes a coating step S11, an exposure step S12, and a developing step S13. According to the manufacturing method M10, since the photoresist material is crosslinked or converted by firing by exposing it to light, a resist pattern made of ceramics can be obtained as a result. According to the present resist material, a photoresist material having high dry etching resistance can be provided.
  • the coating step S11 is a step of coating the substrate with a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane, or a resist material containing a metal oxide precursor.
  • the resist material used in this embodiment is the photoresist described in either Embodiment 1 or Embodiment 2. Therefore, in this embodiment, description regarding the photoresist will be omitted.
  • the resist material can be applied onto the substrate by a known method. For example, it can be applied by spin coating, spraying, drop casting, or the like. Of the pair of main surfaces of the substrate, at least the main surface to which the resist material is applied is preferably flat. However, the smoothness of the main surface of the substrate is not particularly limited. Furthermore, the material constituting the substrate is not limited. Examples of materials constituting the substrate include insulators such as quartz and sapphire, semiconductors such as silicon and gallium arsenide, and metals such as aluminum and copper.
  • the exposure step S12 is a step in which the resist material is exposed using extreme ultraviolet rays or electron beams.
  • extreme ultraviolet light including pulsed extreme ultraviolet light
  • a desired pattern is transferred to the resist material by stacking a photomask in close proximity to the resist material applied in the coating step S11.
  • the photomask is not particularly limited as long as it has a desired pattern formed by regions that transmit extreme ultraviolet rays and regions that block extreme ultraviolet rays.
  • a desired pattern is drawn on the resist material by scanning the electron beam.
  • extremely short ultraviolet rays and electron beams are collectively referred to as radiation unless they need to be particularly distinguished.
  • the radiation used in the exposure step S12 may be any radiation that causes a chemical reaction in the resist material, and examples thereof include electron beams, ultraviolet rays, extreme ultraviolet rays, and the like.
  • An example of a chemical reaction is a photoreaction.
  • the form of the chemical reaction is not limited to this.
  • Examples of extreme ultraviolet rays include continuous wave extreme ultraviolet rays whose intensity does not change over time and pulsed extreme ultraviolet rays.
  • the light used in the exposure step S12 is preferably extreme ultraviolet light, and among extreme ultraviolet light, pulsed extreme ultraviolet light is more preferable. By using extreme ultraviolet rays, a pattern with higher definition can be obtained in a shorter exposure time than when using ultraviolet rays.
  • the radiation used in the exposure step S12 can be irradiated with a normal irradiation device used in the technical field.
  • the exposure amount or irradiation amount in the exposure step S12 may be an exposure amount or irradiation amount that causes at least a chemical reaction of crosslinking in the resist material.
  • the intensity of the pulsed extreme ultraviolet rays is preferably 10 9 W/cm 2 or more and 10 14 W/cm 2 or less.
  • the exposure amount or irradiation amount in the exposure step S12 may be adjusted as appropriate by the exposure time, the number of pulses, or attenuation by the metal filter.
  • the exposure amount or irradiation amount may be an exposure amount or irradiation amount that causes firing conversion in addition to crosslinking in the resist material. According to this configuration, a fired resist pattern can be obtained by simply performing the exposure step S12. Therefore, a resist pattern having higher dry etching resistance than a resist pattern made of a crosslinked resist material can be obtained.
  • the developing step S13 is a step of developing the resist pattern by immersing the exposed resist material in a developer.
  • the developer used for development can be appropriately determined depending on the resist material. For example, when the resist material includes a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane, toluene is suitable as the developer. Further, for example, when the resist material contains a metal oxide precursor, cyclohexanone is suitable as the developer.
  • the exposure step S12 may include a first exposure step of exposing the resist material using extreme ultraviolet rays, and a second exposure step.
  • the amount of exposure of extreme ultraviolet rays irradiated to the resist material in the second exposure step is determined to exceed the amount of exposure of extreme ultraviolet rays irradiated to the resist material in the first exposure step.
  • the amount of exposure to extreme ultraviolet rays in the first exposure step is preferably such that a crosslinking photoreaction proceeds in the resist material.
  • the exposure amount of extreme ultraviolet rays in the second exposure step is an exposure amount that converts the resist material into baking.
  • the resist material can be crosslinked in the first exposure step, and the resist material can be baked and converted in the second exposure step. I can do it. Therefore, a resist pattern made of ceramic can be obtained by firing and converting the resist material using only the exposure step S12 using extreme ultraviolet rays. In other words, a resist pattern made of ceramic can be obtained without performing a firing process using a furnace. Therefore, a resist pattern with improved dry etching resistance can be obtained in a short time.
  • the second exposure process uses high-intensity extreme ultraviolet rays. Therefore, it is preferable to use pulsed extreme ultraviolet rays in the second exposure step. Note that when pulsed extreme ultraviolet rays are used in the second exposure step, it is preferable to use pulsed extreme ultraviolet rays also in the first exposure step.
  • FIG. 1 is a flowchart of a resist pattern manufacturing method M20 according to Embodiment 1 of the present invention.
  • the manufacturing method M20 includes a coating step S21, an exposure step S22, a developing step S23, and a baking step S24.
  • Each of the coating process S21, the exposure process S22, and the developing process S23 is the same as each of the coating process S11, the exposure process S12, and the developing process S13 in the manufacturing method M10. Therefore, in this embodiment, descriptions of the coating process S21, the exposure process S22, and the developing process S23 are omitted. Note that the exposure amount or irradiation amount in the exposure step S22 is determined so that the crosslinking photoreaction proceeds in the resist material.
  • the baking step S24 is a step carried out after the developing step S23, and is a step of converting the developed resist material into baking to obtain a layered member made of an insulator or semiconductor to which the pattern of the photomask has been transferred. be.
  • an electric furnace is used to bake the developed resist material.
  • the firing step S24 is performed after the exposure step S22, so the resist material can be reliably turned into ceramic. Therefore, it is possible to reduce the non-ceramic components that may be contained in the obtained resist pattern, so that the dry etching resistance of the resist pattern can be further improved. Further, when using a resist material containing a metal oxide precursor, the film density of the pattern can be improved without changing the state of the metal oxide due to baking, so that etching resistance can be improved. Furthermore, since excess organic matter can be removed by firing, the generation of outgas can be significantly suppressed.
  • Baking conversion can be performed by heating the developed resist material. Heating is not particularly limited, but from the viewpoint of preventing oxidation, it is preferable to perform the heating in a vacuum or under an argon atmosphere. From the viewpoint of thermal decomposition and calcination conversion temperature, the heating temperature is preferably 400°C or higher, more preferably 600°C or higher, and particularly preferably 800°C or higher. Further, from the viewpoint of protecting the substrates, it is preferable that the melting point of each substrate is 100° C. or lower. The density of ceramics can be adjusted as appropriate by adjusting the heating time. When heating at 400°C or higher, heating is preferably at least 10 hours; when heating at 600°C or higher, heating is preferably at least 5 hours; when heating at 800°C or higher, heating is preferably at least 2 hours. .
  • the method for manufacturing a resist pattern according to one aspect of the present invention may include steps other than the steps shown in Embodiments 1 and 2.
  • Other processes include, for example, a wet etching process, a dry etching process, and the like. Other steps can be performed using known methods.
  • FIG. 3 is a perspective view of the resist pattern 1.
  • the resist pattern 1 is an amorphous film made of silicon carbide and is two-dimensionally patterned.
  • the resist pattern 1 may be an amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride. According to such a configuration, the ceramic insulating film can be formed using lithography technology.
  • the resist pattern 1 includes a substrate 10 and a resist 11.
  • the resist 11 is directly formed on one main surface (the upper main surface in FIG. 3) of the substrate 10.
  • one or more other layers for example, a metal layer, a semiconductor layer, etc.
  • one or more other layers for example, a metal layer, a semiconductor layer, etc.
  • Resist 11 is made of silicon carbide.
  • the resist 11 can be produced by using a polymer alloy containing at least polycarbosilane among the polymer alloys described in [Photoresist Material].
  • the resist 11 may be made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride.
  • the resist 11 can be produced by using at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane among the polymer alloys described in [Photoresist material].
  • the substrate 10 is the same as the substrate used in the manufacturing method M10 shown in FIG. Therefore, in this embodiment, description of the substrate 10 is omitted.
  • the resist pattern 1 can be manufactured by using the resist material described in Embodiment 1 and implementing the manufacturing method M10 shown in FIG. 1 or the manufacturing method M20 shown in FIG. 2. Therefore, in this embodiment, description of the resist 11 is omitted.
  • Example 2 A sample for irradiation with a film thickness of about 200 nm was obtained by performing the same operation as in Example 1, except that the amount of allylhydridopolycarbosilane added was changed to 5 wt%.
  • Example 3 A metal alkoxide (titanium (IV) tetraisoprooxide) was reacted with methyl methacrylate in a 1-propanol solution with stirring at room temperature for 1 hour to prepare a metal oxide precursor. Next, a sample for irradiation with a film thickness of about 80 nm was prepared by spin coating on a silicon wafer.
  • Example 4 A sample for irradiation with a film thickness of about 80 nm was prepared in the same manner as in Example 3 except that zirconium (IV) tetraisoprooxide was used as the metal alkoxide.
  • Example 5 A sample for irradiation with a film thickness of about 80 nm was prepared in the same manner as in Example 3 except that hafnium (IV) tetraisoprooxide was used as the metal alkoxide.
  • Comparative example 2 A sample for irradiation with a film thickness of about 200 nm was obtained in the same manner as in Comparative Example 1 except that ZEP520A (manufactured by Nippon Zeon Co., Ltd.) was used as the resist polymer.
  • ZEP520A manufactured by Nippon Zeon Co., Ltd.
  • Comparative example 3 A sample for irradiation with a film thickness of about 200 nm was obtained in the same manner as in Comparative Example 1 except that UVIII (manufactured by ROHM and HRRS) was used as the resist polymer.
  • Comparative example 4 A sample for irradiation with a film thickness of about 200 nm was obtained in the same manner as in Comparative Example 1 except that PHS (polyhydroxystyrene, Mw ⁇ 15,000, manufactured by Aldrich) was used as the resist polymer.
  • PHS polyhydroxystyrene, Mw ⁇ 15,000, manufactured by Aldrich
  • EB-ENGINE electron beam irradiation device
  • Scan irradiation was applied to a 1 cm square area of each sample so that the absorbed dose was 100 ⁇ C/cm 2 to 600 ⁇ C/cm 2 .
  • EUV Extreme ultraviolet
  • EUV exposure device ENERGETIQ, EQ-10, Electrodeless Z-Pinch TM , 10Watt
  • the sample was spot irradiated.
  • Pulsed EUV irradiation Pulsed EUV (1 to 17 nJ/pulse) with a spot size of about 7 ⁇ m was irradiated using a pulsed EUV irradiation device manufactured by the Kansai Photon Science Institute of the Quantum Science and Technology Research and Development Organization (QST). In addition, pulsed EUV (1 to 17 nJ/pulse) with a spot size of approximately 7 ⁇ m was irradiated at the X-ray free electron laser facility SACLA of the Synchrotron Radiation Research Center.
  • QST Quantum Science and Technology Research and Development Organization
  • FIG. 5 shows the results of Examples 3 to 5 in which EB or EUV irradiation was performed.
  • (a) is the sensitivity curve of Example 3 subjected to EB irradiation
  • (b) is the sensitivity curve of Example 4 subjected to EB irradiation
  • (c) is the sensitivity curve of Example 5 subjected to EB irradiation
  • ( d) shows the sensitivity curve of Example 3 with EUV irradiation
  • (e) shows the sensitivity curve of Example 4 with EUV irradiation
  • (f) shows the sensitivity curve of Example 5 with EUV irradiation.
  • the vertical axis indicates the standardized film thickness (nm)
  • the horizontal axis indicates the irradiation amount or exposure amount ( ⁇ C/cm 2 or mJ/cm 2 ).
  • FIG. 6 shows the appearance of the resist films of Examples 2 and 3 and Comparative Example 1 before and after the baking conversion.
  • (a) shows the state of the resist film of Example 2 before and after the baking conversion
  • (b) shows the state of the resist film of Example 3 before and after the baking conversion
  • (c) shows the state of the resist film of Example 3 before and after the baking conversion.
  • the state of the resist film of Comparative Example 1 before and after conversion is shown.
  • FIG. 6 if the shape (square) of the resist film before firing conversion remains after firing conversion, it can be determined that the resist pattern remains.
  • Examples 2 and 3 exhibited high heat resistance, and it was confirmed that the pattern remained even after the firing conversion. On the other hand, in Comparative Example 1, evaporation occurred due to thermal decomposition, and no resist pattern remained. In Comparative Examples 2 and 3 as well, evaporation due to thermal decomposition occurred and no resist pattern remained.
  • Example 2 and Comparative Example 1 The etching resistance of Example 2 and Comparative Example 1 is shown in FIG. 7, and the etching resistance of Example 3 and Comparative Examples 1 to 4 is shown in FIG. 8(a). is shown in FIG. 8(b), and the etching resistance of Example 5 and Comparative Examples 1 to 4 is shown in FIG. 8(c).
  • the vertical axis shows the film thickness (nm) after etching
  • the horizontal axis shows the etching time (seconds).
  • approximate curves are shown in which the intercept of each etching time with respect to the film thickness is set to 0 for developed Examples 3 to 5, baked-converted Examples 3 to 5, and Comparative Example 1.
  • Example 2 As shown in FIG. 7, when the etching resistance of Example 2 was compared with Comparative Example 1, it was found that the etching resistance was significantly improved. In addition, it was found that Example 2, which underwent firing conversion, had further improved etching resistance.
  • the photoresist material of the present invention has sufficient pattern forming ability even with a pulsed EUV light source.
  • Resist patterns produced using Examples 2 and 5 by irradiation with EUV (wavelength: 13.5 nm) light derived from a free electron laser are shown in FIGS. 9 and 10, respectively.
  • the photoresist material according to aspect 1 of the present invention is a photoresist material for extreme ultraviolet lithography, and is a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane, or , including metal alkoxides.
  • the photoresist material configured as described above is crosslinked or converted by firing by being irradiated with extreme ultraviolet rays, and as a result, a resist pattern made of ceramics can be obtained. According to the present resist material, a photoresist material having high dry etching resistance can be provided.
  • the photoresist material according to aspect 2 of the present invention in addition to the configuration of the photoresist material according to aspect 1, a configuration including a polymer alloy containing polycarbosilane and allylhydridopolycarbosilane is adopted. .
  • An example of a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane includes a polymer alloy containing polycarbosilane and allylhydridopolycarbosilane. According to the above configuration, a ceramic resist pattern made of silicon carbide can be obtained by exposure using extreme ultraviolet rays. Therefore, the present photoresist material can provide a photoresist material with high dry etching resistance.
  • the ratio of allylhydridopolycarbosilane to polycarbosilane is 0.1 wt% or more and 50 wt% or less. configuration has been adopted.
  • the metal alkoxide contains any one of titanium, zirconium, and hafnium.
  • the metal alkoxide preferably contains any one of titanium, zirconium, and hafnium. According to the above configuration, a resist pattern of ceramics made of metal oxide can be obtained by exposure using extreme ultraviolet rays. Therefore, the present photoresist material can provide a photoresist material with high dry etching resistance.
  • a method for manufacturing a resist pattern according to aspect 5 of the present invention is to apply a resist material containing a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane or a metal alkoxide onto a substrate.
  • an exposure step of bringing a photomask close to a substrate coated with the resist material to expose the resist material and a developing step of developing the exposed resist material.
  • the resist material configured as described above is crosslinked or fired by being exposed to light, and becomes a two-dimensional pattern of ceramics.
  • a resist pattern made of ceramics can be obtained. Therefore, a photoresist pattern having high dry etching resistance can be provided.
  • a baking step performed after the developing step in which the developed resist material is A configuration is adopted which further includes a firing step of obtaining a layered member made of an insulator or semiconductor onto which the pattern of the photomask is transferred by performing firing conversion.
  • the resist pattern can be reliably made into ceramic. Therefore, the dry etching resistance of the obtained resist pattern can be further improved.
  • the light used in the exposure step is extreme ultraviolet rays.
  • the present manufacturing method produces the same effects as the photoresist material according to Aspect 1 described above. Further, according to the present manufacturing method, a pattern with higher definition can be obtained in a shorter exposure time than when exposing using ultraviolet rays.
  • the exposure step includes a first exposure step of exposing the resist material using extreme ultraviolet rays. and a second exposure step, and the amount of exposure of the extreme ultraviolet rays irradiated to the resist material in the second exposure step is equal to the amount of exposure of the extreme ultraviolet rays irradiated to the resist material in the first exposure step. exceed.
  • the resist pattern according to aspect 9 of the present invention is an amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride, and is a two-dimensionally patterned amorphous film. Consisting of
  • the ceramic insulating film can be formed using lithography technology.
  • Resist pattern 10 Substrate 11 Resist M10 Resist pattern manufacturing method M20 Resist pattern manufacturing method S11 Coating process S12 Exposure process S13 Developing process S21 Coating process S22 Exposure process S23 Developing process S24 Baking process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

For the purpose of providing a photoresist material having strong resistance to dry etching, this photoresist material according to one embodiment of the present invention is for use in extreme-ultraviolet lithography and comprises a metal oxide precursor or a polymer alloy containing at least one from among polycarbosilanes, polysiloxanes, polysilazanes, and polyorganoborosilazanes.

Description

レジスト材料、レジストパターンの製造方法、及び、レジストパターンResist material, resist pattern manufacturing method, and resist pattern
 本発明は、レジスト材料、レジストパターンの製造方法、及び、レジストパターンに関する。 The present invention relates to a resist material, a method for manufacturing a resist pattern, and a resist pattern.
 光を透過する領域と、光を透過させない領域とが2次元的にパターニングされたフォトマスクを用いて、当該フォトマスクのパターンをフォトレジスト層に転写するフォトリソグラフィが広く普及している。 Photolithography is widely used in which a photomask is two-dimensionally patterned with areas that transmit light and areas that do not transmit light, and the pattern of the photomask is transferred to a photoresist layer.
 フォトリソグラフィを用いて転写することができるパターンの精細さは、露光に用いる光の波長に異存する。理論的には、露光に用いる光の波長が短ければ短いほど、より精細なパターンをフォトレジスト層に転写することができる。したがって、フォトリソグラフィを用いてできるだけ精細なパターンを転写しようとする場合、露光に用いる光として紫外線(例えば、波長が193nmや248nmなど)を用いる場合が多い。このようなフォトリソグラフィは、紫外線(UV)リソグラフィと呼ばれる。UVリソグラフィを用いて転写することができる細線の幅は、例えば、18nmである(例えば、特許文献1参照)。 The fineness of the pattern that can be transferred using photolithography depends on the wavelength of the light used for exposure. Theoretically, the shorter the wavelength of the light used for exposure, the finer the pattern can be transferred to the photoresist layer. Therefore, when attempting to transfer a pattern as fine as possible using photolithography, ultraviolet rays (for example, wavelengths of 193 nm, 248 nm, etc.) are often used as light for exposure. Such photolithography is called ultraviolet (UV) lithography. The width of a thin line that can be transferred using UV lithography is, for example, 18 nm (see, for example, Patent Document 1).
日本国特開2021-21953号公報Japanese Patent Application Publication No. 2021-21953 日本国特表2017-526171号公報Japan Special Table No. 2017-526171
 また、フォトリソグラフィとは別の態様のリソグラフィとして、電子線(EB)リソグラフィが普及している。EBリソグラフィでは、レジスト層を露光するために紫外線よりも波長が短い電子線(例えば、波長が1nmなど)を用いる。EBリソグラフィでは、収束した電子線を所望のパターンに走査しながらレジスト層に照射することによってレジスト層を露光する。EBリソグラフィを用いて描画することができる細線の幅は、例えば、10nmである(例えば、特許文献2参照)。 Additionally, electron beam (EB) lithography has become popular as a form of lithography different from photolithography. In EB lithography, an electron beam having a shorter wavelength than ultraviolet light (for example, a wavelength of 1 nm) is used to expose a resist layer. In EB lithography, the resist layer is exposed by irradiating the resist layer with a focused electron beam while scanning it in a desired pattern. The width of a thin line that can be drawn using EB lithography is, for example, 10 nm (see, for example, Patent Document 2).
 このように、EBリソグラフィを用いた場合、高精細なパターンをレジスト層に描画することができる。しかしながら、電子線を走査することによって露光を実施するため、露光に時間が掛かるという問題がEBリソグラフィにはある。 In this way, when EB lithography is used, a high-definition pattern can be drawn on the resist layer. However, since exposure is performed by scanning an electron beam, EB lithography has a problem in that exposure takes time.
 そこで、極端紫外線あるいは軟X線と呼ばれる光(例えば、波長が13.5nmなど)を用いてフォトレジスト層を露光する極端紫外線(EUV)リソグラフィが普及しつつある(例えば、非特許文献1参照)。EUVリソグラフィでは、UVリソグラフィよりも波長が短い光を用いつつ、フォトマスクを用いてフォトレジスト層を露光することができる。したがって、UVリソグラフィよりも高精細なパターンを、EBリソグラフィよりも短い露光時間で得ることができる。 Therefore, extreme ultraviolet (EUV) lithography, which exposes a photoresist layer using light called extreme ultraviolet rays or soft X-rays (for example, a wavelength of 13.5 nm), is becoming popular (for example, see Non-Patent Document 1). . In EUV lithography, a photoresist layer can be exposed using a photomask while using light with a shorter wavelength than in UV lithography. Therefore, a pattern with higher definition than UV lithography can be obtained with a shorter exposure time than EB lithography.
 ところで、フォトレジスト層又はレジスト層に転写するパターンの精細度が高ければ高い程、フォトレジスト層又はレジスト層の厚みがより薄い方が好ましいため、フォトレジスト層又はレジスト層を構成する材料には、高いドライエッチング耐性(ドライエッチング抵抗とも呼ばれる)を有することが求められる。現在、広く普及しているフォトレジスト材料は、露光プロセス及び現像プロセスを経て、ポリマー樹脂からなるレジストパターンに変換される。ポリマー樹脂からなるレジストパターンのドライエッチング耐性は、総じて低い。 By the way, the higher the definition of the photoresist layer or the pattern to be transferred to the resist layer, the thinner the thickness of the photoresist layer or resist layer is. It is required to have high dry etching resistance (also called dry etching resistance). Photoresist materials, which are currently widely used, are converted into a resist pattern made of polymer resin through an exposure process and a development process. The dry etching resistance of resist patterns made of polymer resins is generally low.
 本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、高いドライエッチング耐性を有するレジスト材料を提供することである。また、その目的は、そのようなレジスト材料を用いたレジストパターンの製造方法、及び、レジストパターンを提供することである。 One aspect of the present invention has been made in view of the above-mentioned problems, and its purpose is to provide a resist material that has high dry etching resistance. Another object of the present invention is to provide a method for manufacturing a resist pattern using such a resist material, and a resist pattern.
 上記の課題を解決するために、本発明の一態様に係るフォトレジスト材料は、極端紫外線リソグラフィ用のフォトレジスト材料であって、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、金属アルコキシドを含む。 In order to solve the above problems, a photoresist material according to one embodiment of the present invention is a photoresist material for extreme ultraviolet lithography, and is one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane. Contains a polymer alloy containing at least one of these or a metal alkoxide.
 上記の課題を解決するために、本発明の一態様に係るレジストパターンの製造方法は、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、金属アルコキシドを含むレジスト材料を基板上に塗布する塗布工程と、前記レジスト材料を塗布された基板にフォトマスクを近接させ、前記レジスト材料を露光させる露光工程と、露光された前記レジスト材料を現像する現像工程と、を含む。 In order to solve the above problems, a method for manufacturing a resist pattern according to one embodiment of the present invention uses a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane, or A coating step of applying a resist material containing a metal alkoxide onto a substrate, an exposure step of bringing a photomask close to the substrate coated with the resist material and exposing the resist material, and developing the exposed resist material. A developing step.
 上記の課題を解決するために、本発明の一態様に係るレジストパターンは、炭化ケイ素、二酸化ケイ素、窒化ケイ素、及び、ボロシリコンカーボナイトライドのうち少なくとも何れかにより構成されたアモルファス膜であって、2次元的にパターニングされたアモルファス膜からなる。 In order to solve the above problems, a resist pattern according to one embodiment of the present invention is an amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride, It consists of an amorphous film patterned two-dimensionally.
 本発明の一態様によれば、高いドライエッチング耐性を有するレジスト材料を提供することができる。また、そのようなレジスト材料を用いたレジストパターンの製造方法、及び、レジストパターンを提供することができる。 According to one aspect of the present invention, a resist material having high dry etching resistance can be provided. Furthermore, it is possible to provide a method for manufacturing a resist pattern using such a resist material, and a resist pattern.
本発明の実施形態3に係るレジストパターンの製造方法M10のフローチャートである。7 is a flowchart of a resist pattern manufacturing method M10 according to Embodiment 3 of the present invention. 本発明の実施形態4に係るレジストパターンの製造方法M20のフローチャートである。7 is a flowchart of a resist pattern manufacturing method M20 according to Embodiment 4 of the present invention. 本発明の実施形態5に係るレジストパターン1を示した図である。FIG. 7 is a diagram showing a resist pattern 1 according to Embodiment 5 of the present invention. EB照射又はEUV照射した実施例1~2のサンプルにおいて、残存したパターンの膜厚を測定して作成した感度曲線を示した図である。(a)は、EB照射した実施例1の感度曲線、(b)は、EB照射した実施例2の感度曲線、(c)は、EUV照射した実施例1の感度曲線、(d)は、EUV照射した実施例2の感度曲線を示す。FIG. 3 is a diagram showing a sensitivity curve created by measuring the film thickness of the remaining pattern in the samples of Examples 1 and 2 that were subjected to EB irradiation or EUV irradiation. (a) is the sensitivity curve of Example 1 with EB irradiation, (b) is the sensitivity curve of Example 2 with EB irradiation, (c) is the sensitivity curve of Example 1 with EUV irradiation, (d) is The sensitivity curve of Example 2 subjected to EUV irradiation is shown. EB照射又はEUV照射した実施例3~5のサンプルにおいて、残存したパターンの膜厚を測定して作成した感度曲線を示した図である。(a)は、EB照射した実施例3の感度曲線、(b)は、EB照射した実施例4の感度曲線、(c)は、EB照射した実施例5の感度曲線、(d)は、EUV照射した実施例3の感度曲線、(e)は、EUV照射した実施例4の感度曲線、(f)は、EUV照射した実施例5の感度曲線を示す。FIG. 7 is a diagram showing a sensitivity curve created by measuring the film thickness of the remaining pattern in the samples of Examples 3 to 5 that were subjected to EB irradiation or EUV irradiation. (a) is the sensitivity curve of Example 3 with EB irradiation, (b) is the sensitivity curve of Example 4 with EB irradiation, (c) is the sensitivity curve of Example 5 with EB irradiation, (d) is (e) shows the sensitivity curve of Example 3 subjected to EUV irradiation, (e) shows the sensitivity curve of Example 4 subjected to EUV irradiation, and (f) shows the sensitivity curve of Example 5 subjected to EUV irradiation. 焼成転換前後のレジスト膜を示した図である。(a)は、焼成転換前後の実施例2のレジスト膜の様子を示し、(b)は、焼成転換前後の実施例3のレジスト膜の様子を示し、(c)は、焼成転換前後の比較例1のレジスト膜の様子を示す。FIG. 3 is a diagram showing a resist film before and after firing conversion. (a) shows the appearance of the resist film of Example 2 before and after the firing conversion, (b) shows the appearance of the resist film of Example 3 before and after the firing conversion, and (c) shows a comparison before and after the firing conversion. The state of the resist film of Example 1 is shown. 現像後、又は焼成転換後の実施例2、及び塗布後の比較例1のエッチング耐性を示した図である。FIG. 3 is a diagram showing the etching resistance of Example 2 after development or baking conversion, and Comparative Example 1 after coating. 現像後、又は焼成転換後の実施例、及び塗布後の比較例のエッチング耐性を示した図である。(a)は、実施例3及び比較例1~4のエッチング耐性、(b)は、実施例4及び比較例1~4のエッチング耐性、(c)は、実施例5及び比較例1~4のエッチング耐性を示す。FIG. 3 is a diagram showing the etching resistance of Examples after development or baking conversion, and Comparative Examples after coating. (a) is the etching resistance of Example 3 and Comparative Examples 1 to 4, (b) is the etching resistance of Example 4 and Comparative Examples 1 to 4, and (c) is Example 5 and Comparative Examples 1 to 4. shows etching resistance. パルスEUVを照射して作製した実施例2のレジストパターンを示す。A resist pattern of Example 2 produced by irradiating pulsed EUV is shown. パルスEUVを照射して作製した実施例5のレジストパターンを示す。A resist pattern of Example 5 produced by irradiating pulsed EUV is shown.
 〔実施形態1〕
 <フォトレジスト材料>
 本発明の実施形態1に係るフォトレジスト材料は、極端紫外線リソグラフィ用のフォトレジスト材料であって、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイを含む。本実施形態に係るフォトレジスト材料は、極端紫外線を照射されることによって架橋又は焼成転換されることにより、炭化ケイ素等がセラミックス化する。したがって、極端紫外線を用いて、本実施形態に係るフォトレジスト材料を露光することにより、炭化ケイ素等のセラミックスにより構成されたレジストパターンを得ることができる。
[Embodiment 1]
<Photoresist material>
The photoresist material according to Embodiment 1 of the present invention is a photoresist material for extreme ultraviolet lithography, and includes a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane. include. In the photoresist material according to the present embodiment, silicon carbide or the like is converted into a ceramic by crosslinking or firing conversion by irradiation with extreme ultraviolet rays. Therefore, by exposing the photoresist material according to this embodiment to extreme ultraviolet rays, a resist pattern made of ceramics such as silicon carbide can be obtained.
 炭化ケイ素等のセラミックスにより構成されたレジストパターンは、従来から用いられているポリマー樹脂により構成されたレジストパターンと比較して、高い密度と硬度を有する。したがって、炭化ケイ素等のセラミックスにより構成されたレジストパターンは、ポリマー樹脂により構成されたレジストパターンよりも高いドライエッチング耐性を有する。したがって、本レジスト材料によれば、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。 A resist pattern made of ceramics such as silicon carbide has higher density and hardness than a resist pattern made of a conventionally used polymer resin. Therefore, a resist pattern made of ceramics such as silicon carbide has higher dry etching resistance than a resist pattern made of polymer resin. Therefore, according to the present resist material, a photoresist material having high dry etching resistance can be provided.
 また、本実施形態に係るフォトレジスト材料は、極端紫外線を照射されることによって架橋又は焼成転換されるため、強固なネットワークを構築することができる。本明細書において「焼成転換」とは、焼成により、有機物を無機物に転換することを指す。したがって、本実施形態に係るフォトレジスト材料は、パルス極端紫外線のように強度が高い極端紫外線を用いて露光される場合であっても、フォトレジスト材料の蒸発を防ぐことができる。なお、パルス極端紫外線とは、時間軸に沿ってみた場合に、波形の半値幅が極めて狭い極端紫外線を指す。本願明細書においてパルス極端紫外線という場合、その半値幅が1ナノ秒以下である極端紫外線を指す。このようなパルス極端紫外線は、1パルス当たりの強度がとても高い。パルス極端紫外線の1パルス当たりの強度は、限定されないが、例えば10W/cm以上1014W/cm以下である。本実施形態に係るフォトレジスト材料は、このように高強度なパルス極端紫外線を用いて露光する場合であっても、フォトレジスト材料の蒸発を防ぐことができる。したがって、高強度なパルス極端紫外線を用いて露光する場合、本実施形態に係るフォトレジスト材料は、露光時間を短縮することができる。 Moreover, since the photoresist material according to the present embodiment is crosslinked or converted by baking when irradiated with extreme ultraviolet rays, a strong network can be constructed. As used herein, "calcination conversion" refers to converting an organic substance into an inorganic substance by calcination. Therefore, the photoresist material according to this embodiment can prevent evaporation of the photoresist material even when exposed using high-intensity extreme ultraviolet rays such as pulsed extreme ultraviolet rays. Note that pulsed extreme ultraviolet light refers to extreme ultraviolet light whose waveform has an extremely narrow half-width when viewed along the time axis. In this specification, pulsed extreme ultraviolet rays refer to extreme ultraviolet rays whose half-width is 1 nanosecond or less. Such pulsed extreme ultraviolet rays have a very high intensity per pulse. The intensity per pulse of the pulsed extreme ultraviolet rays is not limited, but is, for example, 10 9 W/cm 2 or more and 10 14 W/cm 2 or less. The photoresist material according to this embodiment can prevent evaporation of the photoresist material even when exposed using such high-intensity pulsed extreme ultraviolet rays. Therefore, when exposing using high-intensity pulsed extreme ultraviolet rays, the photoresist material according to this embodiment can shorten the exposure time.
 (ポリマーアロイ)
 ポリマーアロイは、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含む。本明細書において「ポリマーアロイ」とは、高分子多成分系を意味し、高分子と二重結合を有するモノマーとの混合物も含まれる。
(polymer alloy)
The polymer alloy contains at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane. As used herein, "polymer alloy" means a polymer multicomponent system, and includes a mixture of a polymer and a monomer having a double bond.
 ポリカルボシランは、ケイ素原子と炭素原子が交互に結合した骨格を主鎖とした重合体である。当該主鎖は、直鎖でもよく、分岐状又は環状で、三次元架橋構造を有していてもよい。ポリカルボシラン上の置換基は、本発明の効果を損ねるものでなければよく、任意の構造を有していてもよい。置換基としては、例えば、水素以外にもメチル基、ベンゼン環、ベンゼン誘導体、又はヘテロ原子を含み得る炭素数2以上の炭素鎖等が挙げられる。なお、ヘテロ原子は、ホウ素(B)、窒素(N)、酸素(O)、リン(P)、及び、硫黄(S)から選択されることが好ましい。また、ポリカルボシランは、分子量が200以上40,000以下であることが好ましい。分子量が200以下では真空中での蒸発が起こりやすくなり、40,000以上では高分子鎖の体積が大きくなり微細パターンを得ることが困難になる。架橋剤として作用させる観点からは、カルボシランの中でも、アリルヒドリドポリカルボシランが好ましい。 Polycarbosilane is a polymer whose main chain is a skeleton in which silicon atoms and carbon atoms are alternately bonded. The main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure. The substituent on the polycarbosilane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, or a carbon chain having two or more carbon atoms that may contain a hetero atom. Note that the heteroatom is preferably selected from boron (B), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S). Further, the polycarbosilane preferably has a molecular weight of 200 or more and 40,000 or less. When the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern. From the viewpoint of acting as a crosslinking agent, allylhydridopolycarbosilane is preferred among carbosilanes.
 ポリシロキサンは、ケイ素原子と酸素原子が交互に結合した骨格を主鎖とした重合体である。当該主鎖は、直鎖でもよく、分岐状又は環状で、三次元架橋構造を有していてもよい。ポリシロキサン上の置換基は、本発明の効果を損ねるものでなければよく、任意の構造を有していてもよい。置換基としては、例えば、水素以外にもメチル基、ベンゼン環、ベンゼン誘導体、又はヘテロ原子を含み得る炭素数2以上の炭素鎖等が挙げられる。また、ポリシロキサンは、分子量が200以上40,000以下であることが好ましい。分子量が200以下では真空中での蒸発が起こりやすくなり、40,000以上では高分子鎖の体積が大きくなり微細パターンを得ることが困難になる。 Polysiloxane is a polymer whose main chain is a skeleton in which silicon atoms and oxygen atoms are alternately bonded. The main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure. The substituent on the polysiloxane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, or a carbon chain having two or more carbon atoms that may contain a hetero atom. Further, the polysiloxane preferably has a molecular weight of 200 or more and 40,000 or less. When the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
 ポリシラザンは、ケイ素原子と窒素原子が交互に結合した骨格を主鎖とした重合体である。当該主鎖は、直鎖でもよく、分岐状又は環状で、三次元架橋構造を有していてもよい。ポリシラザン上の置換基は、本発明の効果を損ねるものでなければよく、任意の構造を有していてもよい。置換基としては、例えば、水素以外にもメチル基、ベンゼン環、ベンゼン誘導体、又はヘテロ原子を含み得る炭素数2以上の炭素鎖等が挙げられる。また、ポリシラザンは、分子量が200以上40,000以下であることが好ましい。分子量が200以下では真空中での蒸発が起こりやすくなり、40,000以上では高分子鎖の体積が大きくなり微細パターンを得ることが困難になる。 Polysilazane is a polymer whose main chain is a skeleton in which silicon atoms and nitrogen atoms are alternately bonded. The main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure. The substituent on polysilazane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, or a carbon chain having two or more carbon atoms that may contain a hetero atom. Further, the polysilazane preferably has a molecular weight of 200 or more and 40,000 or less. When the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
 ポリオルガノボロシラザンは、ケイ素-窒素-ケイ素、ケイ素-窒素-ホウ素、及び、ホウ素-窒素-ホウ素の組み合わせからなる骨格を主鎖とした重合体である。当該主鎖は、直鎖でもよく、分岐状又は環状で、三次元架橋構造を有していてもよい。ポリオルガノボロシラザン上の置換基は、本発明の効果を損ねるものでなければよく、任意の構造を有していてもよい。置換基としては、例えば、水素以外にもメチル基、ベンゼン環、ベンゼン誘導体、またはヘテロ原子を含んでもよい炭素数2以上の炭素鎖等が挙げられる。また、ポリオルガノボロシラザンは、分子量が200以上40,000以下であることが好ましい。分子量が200以下では真空中での蒸発が起こりやすくなり、40,000以上では高分子鎖の体積が大きくなり微細パターンを得ることが困難になる。 Polyorganobolosilazane is a polymer whose main chain is a skeleton consisting of a combination of silicon-nitrogen-silicon, silicon-nitrogen-boron, and boron-nitrogen-boron. The main chain may be linear, branched or cyclic, and may have a three-dimensional crosslinked structure. The substituent on the polyorganoborosilazane may have any structure as long as it does not impair the effects of the present invention. Examples of the substituent include, in addition to hydrogen, a methyl group, a benzene ring, a benzene derivative, and a carbon chain having two or more carbon atoms that may contain a hetero atom. Further, the polyorganobolosilazane preferably has a molecular weight of 200 or more and 40,000 or less. When the molecular weight is less than 200, evaporation in vacuum tends to occur, and when it is more than 40,000, the volume of the polymer chain becomes large, making it difficult to obtain a fine pattern.
 ポリマーアロイは、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れか以外に、他のポリマー及びモノマーを含んでいてもよい。例えば、酸化防止剤及び光安定剤を含むポリマー、レジスト材料、並びに、高沸点モノマー及び後述のビニルモノマーで配位安定化されたナノ粒子(酸化金属前駆体)等が挙げられる。 The polymer alloy may contain other polymers and monomers in addition to at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane. Examples include polymers containing antioxidants and light stabilizers, resist materials, and nanoparticles (metal oxide precursors) that are coordination-stabilized with high-boiling monomers and vinyl monomers described below.
 本実施形態では、ポリマーアロイを構成するポリマーとして、ポリカルボシランと、アリルヒドリドポリカルボシランとを採用する。ポリカルボシランの構造を下記一般式(I)に示し、アリルヒドリドポリカルボシランの構造を下記一般式(II)に示す。本実施形態では、ポリカルボシランに1wt%のアリルヒドリドポリカルボシランを添加し、シクロヘキサンに溶解させる。ポリカルボシラン及びアリルヒドリドポリカルボシランを含むシクロヘキサン溶液を10分間撹拌した後、シクロヘキサンを取り除くことによりポリマーアロイを作製する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
In this embodiment, polycarbosilane and allylhydridopolycarbosilane are employed as the polymers constituting the polymer alloy. The structure of polycarbosilane is shown in the following general formula (I), and the structure of allylhydridopolycarbosilane is shown in the following general formula (II). In this embodiment, 1 wt % allylhydridopolycarbosilane is added to polycarbosilane and dissolved in cyclohexane. A polymer alloy is produced by stirring a cyclohexane solution containing polycarbosilane and allylhydridopolycarbosilane for 10 minutes, and then removing the cyclohexane.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本実施形態では、トルエンに得られたポリマーアロイを5wt%の濃度で溶解させることにより、フォトレジスト液を作製する。このように構成されたフォトレジスト液は、基板上にスピンコートする、露光する、及び、現像する、といったフォトリソグラフィに用いることができる。 In this embodiment, a photoresist solution is prepared by dissolving the obtained polymer alloy in toluene at a concentration of 5 wt%. The photoresist solution configured in this manner can be used in photolithography, including spin coating, exposure, and development on a substrate.
 ポリマーアロイが、ポリカルボシラン、及び、アリルヒドリドポリカルボシランを含む場合、ポリカルボシランに対するアリルヒドリドポリカルボシランの割合が、0.1wt%以上50wt%以下であることが好ましく、1wt%以上10wt%以下であることがより好ましい。このような範囲であることにより、露光した領域において光反応が進み、フォトマスクで遮光した領域においては光反応が進まないレジストパターンであって、現実的な露光時間で露光可能なレジストパターンを得ることができる。本明細書において「光反応」とは、レジスト材料が露光によって架橋を形成する、又は焼成転換することを指す。 When the polymer alloy contains polycarbosilane and allylhydridopolycarbosilane, the ratio of allylhydridopolycarbosilane to polycarbosilane is preferably 0.1 wt% or more and 50 wt% or less, and 1 wt% or more and 10 wt%. % or less is more preferable. By having such a range, a resist pattern is obtained in which the photoreaction progresses in the exposed area and does not progress in the area shielded by the photomask, and which can be exposed with a realistic exposure time. be able to. As used herein, the term "photoreaction" refers to the formation of crosslinks in the resist material by exposure to light or conversion by firing.
 ポリマーアロイは、公知の作製方法を用いて得ることができる。一例として、有機溶剤に溶解させて、撹拌し、その後、当該有機溶剤を除去することによって得ることができる。有機溶剤としては、ポリマーアロイに含まれるポリマーが溶解する溶剤が好ましく、使用するポリマーに合わせて、当業者が適宜選択することができる。 The polymer alloy can be obtained using a known production method. For example, it can be obtained by dissolving it in an organic solvent, stirring it, and then removing the organic solvent. The organic solvent is preferably a solvent that dissolves the polymer contained in the polymer alloy, and can be appropriately selected by those skilled in the art depending on the polymer used.
 本発明の一態様に係るフォトレジスト材料がポリマーアロイを含む場合、高精細なレジストパターンを形成し、且つ、レジストパターンの剥離を抑制する観点から、基板上に塗布するフォトレジスト材料の膜厚は10nm以上250nm以下であることが好ましい。250nm以上では、露光による架橋等の効果が基板まで到達せず、現像時に剥離や欠けなどが生じやすくなる。 When the photoresist material according to one embodiment of the present invention includes a polymer alloy, the film thickness of the photoresist material coated on the substrate is determined from the viewpoint of forming a high-definition resist pattern and suppressing peeling of the resist pattern. The thickness is preferably 10 nm or more and 250 nm or less. When the wavelength is 250 nm or more, effects such as crosslinking due to exposure do not reach the substrate, and peeling and chipping are likely to occur during development.
 〔実施形態2〕
 <フォトレジスト材料>
 本発明の実施形態2に係るフォトレジスト材料は、極端紫外線リソグラフィ用のフォトレジスト材料であって、酸化金属前駆体を含む。本実施形態に係るフォトレジスト材料は、極端紫外線を照射されることによって架橋又は焼成転換されることにより、金属酸化物がセラミックス化する。したがって、極端紫外線を用いて、本実施形態に係るフォトレジスト材料を露光することにより、酸化金属のセラミックスにより構成されたレジストパターンを得ることができる。
[Embodiment 2]
<Photoresist material>
A photoresist material according to Embodiment 2 of the present invention is a photoresist material for extreme ultraviolet lithography, and includes a metal oxide precursor. In the photoresist material according to this embodiment, the metal oxide is converted into a ceramic by crosslinking or firing conversion by irradiation with extreme ultraviolet rays. Therefore, by exposing the photoresist material according to this embodiment to extreme ultraviolet rays, a resist pattern made of metal oxide ceramics can be obtained.
 酸化金属のセラミックスにより構成されたレジストパターンは、従来から用いられているポリマー樹脂により構成されたレジストパターンと比較して、高い硬度を有する。さらに、架橋又は焼成転換により膜密度が上昇すると同時に無機セラミック化されるため、酸化金属のセラミックスにより構成されたレジストパターンは、ポリマー樹脂により構成されたレジストパターンよりも高いドライエッチング耐性を有する。したがって、本レジスト材料によれば、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。 A resist pattern made of metal oxide ceramics has higher hardness than a resist pattern made of a conventionally used polymer resin. Furthermore, because the film density increases through crosslinking or firing conversion, and at the same time it becomes inorganic ceramic, a resist pattern made of metal oxide ceramics has higher dry etching resistance than a resist pattern made of polymer resin. Therefore, according to the present resist material, a photoresist material having high dry etching resistance can be provided.
 また、本実施形態に係るフォトレジスト材料は、実施形態1に係るフォトレジスト材料と同様に、極端紫外線を照射されることによって架橋又は焼成転換されるため、強固なネットワークを構築することができる。したがって、本実施形態に係るフォトレジスト材料は、パルス極端紫外線のように強度が高い極端紫外線を用いて露光される場合であっても、フォトレジスト材料の蒸発を防ぐことができる。したがって、高強度なパルス極端紫外線を用いて露光する場合、本実施形態に係るフォトレジスト材料は、露光時間を短縮することができる。
 (酸化金属前駆体)
 本発明の一態様に係るフォトレジスト材料において、酸化金属前駆体は、チタン、ジルコニウム、及び、ハフニウムのうち何れかを含むことが好ましい。上記の構成によれば、極端紫外線を用いて露光することにより酸化金属からなるセラミックスのレジストパターンを得ることができる。したがって、本フォトレジスト材料は、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。また、電子線やEUV光を照射してレジストパターンを作製する場合、放射線の吸収断面積が大きいほど、電子線やEUV光に対する感度が向上する観点から、酸化金属前駆体は、ハフニウムを含むことがより好ましい。酸化金属前駆体の一例を、下記一般式(III)に示す。なお、式(III)中、MOは、金属酸化物を意味する。
Figure JPOXMLDOC01-appb-C000003
Further, like the photoresist material according to Embodiment 1, the photoresist material according to this embodiment is crosslinked or converted by baking when irradiated with extreme ultraviolet rays, so that a strong network can be constructed. Therefore, the photoresist material according to this embodiment can prevent evaporation of the photoresist material even when exposed using high-intensity extreme ultraviolet rays such as pulsed extreme ultraviolet rays. Therefore, when exposing using high-intensity pulsed extreme ultraviolet rays, the photoresist material according to this embodiment can shorten the exposure time.
(metal oxide precursor)
In the photoresist material according to one embodiment of the present invention, the metal oxide precursor preferably contains any one of titanium, zirconium, and hafnium. According to the above configuration, a resist pattern of ceramics made of metal oxide can be obtained by exposure using extreme ultraviolet rays. Therefore, the present photoresist material can provide a photoresist material with high dry etching resistance. In addition, when producing a resist pattern by irradiating electron beams or EUV light, the metal oxide precursor should contain hafnium because the larger the radiation absorption cross section, the higher the sensitivity to the electron beam or EUV light. is more preferable. An example of the metal oxide precursor is shown in the following general formula (III). Note that in formula (III), MO x means a metal oxide.
Figure JPOXMLDOC01-appb-C000003
 酸化金属前駆体は、公知の作製方法によって得ることができる。一例として、適当な有機溶剤中で金属アルコキシドと、メタクリル酸メチルと、を撹拌させ、反応させることによって得ることができる。 The metal oxide precursor can be obtained by a known production method. For example, it can be obtained by stirring and reacting a metal alkoxide and methyl methacrylate in a suitable organic solvent.
 上述の方法で作製する場合、金属アルコキシドとしては、例えば、チタン(IV)テトライソプロキシド、ジルコニウム(IV)テトライソプロキシド、及びハフニウム(IV)テトライソプロキシド等が挙げられる。 When produced by the above method, examples of the metal alkoxide include titanium (IV) tetraisoprooxide, zirconium (IV) tetraisoprooxide, and hafnium (IV) tetraisoprooxide.
 本発明の一態様に係るフォトレジスト材料が酸化金属前駆体を含む場合、高精細なレジストパターンを形成し、且つ、レジストパターンの倒れを抑制する観点から、フォトレジスト材料の膜厚は5nm以上120nm以下であることが好ましい。 When the photoresist material according to one embodiment of the present invention includes a metal oxide precursor, the film thickness of the photoresist material is 5 nm or more and 120 nm or more from the viewpoint of forming a high-definition resist pattern and suppressing collapse of the resist pattern. It is preferable that it is below.
 本発明の一態様に係る酸化金属前駆体を含むフォトレジスト材料を用いて作製されたレジストパターンは、高屈折レンズやミリ波用デバイスの導波路などの誘電体膜として利用することができる。 A resist pattern produced using a photoresist material containing a metal oxide precursor according to one embodiment of the present invention can be used as a dielectric film for a high refractive lens or a waveguide of a millimeter wave device.
 (任意成分)
 本発明の一態様に係るフォトレジスト材料は、ポリマーアロイ、又は酸化金属前駆体に加えて、必要に応じて他の成分を含有していてもよい。他の成分としては、例えば、酸化防止剤、光酸発生剤、界面活性剤、アミン、溶解阻止化合物、染料、可塑剤、光増感剤、及び光吸収剤等が挙げられる。
(optional ingredient)
The photoresist material according to one embodiment of the present invention may contain other components as necessary in addition to the polymer alloy or the metal oxide precursor. Examples of other components include antioxidants, photoacid generators, surfactants, amines, dissolution inhibiting compounds, dyes, plasticizers, photosensitizers, and light absorbers.
 本発明の一態様に係るフォトレジスト材料は、ポリマーアロイ、又は酸化金属前駆体と、必要に応じて他の成分と、を有機溶剤成分に溶解させて製造することができる。有機溶剤としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、フォトレジスト材料の溶剤として公知のものの中から任意のものを適宜選択して使用することができる。例えば、トルエン、1-プロパノール、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などのアルキレングリコールモノアルキルエーテルカルボキシレート等が挙げられる。 The photoresist material according to one embodiment of the present invention can be manufactured by dissolving a polymer alloy or a metal oxide precursor and, if necessary, other components in an organic solvent component. Any organic solvent may be used as long as it can dissolve each component to be used and form a uniform solution, and any organic solvent may be selected as appropriate from those conventionally known as solvents for photoresist materials. be able to. Examples include toluene, 1-propanol, alkylene glycol monoalkyl ether carboxylates such as propylene glycol monomethyl ether acetate (PGMEA), and the like.
 〔実施形態3〕
 <レジストパターンの製造方法>
 図1を参照して、実施形態3に係るレジストパターンの製造方法M10(以下、単に「製造方法M10」とも称する)について説明する。図1は、本発明の実施形態1に係るレジストパターンの製造方法M10のフローチャートである。
[Embodiment 3]
<Resist pattern manufacturing method>
With reference to FIG. 1, a resist pattern manufacturing method M10 (hereinafter also simply referred to as "manufacturing method M10") according to the third embodiment will be described. FIG. 1 is a flowchart of a resist pattern manufacturing method M10 according to Embodiment 1 of the present invention.
 図1に示すように、製造方法M10は、塗布工程S11と、露光工程S12と、現像工程S13と、を含む。製造方法M10によれば、フォトレジスト材料を露光させることによって架橋又は焼成転換されるため、結果としてセラミックスにより構成されるレジストパターンを得ることができる。本レジスト材料によれば、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。 As shown in FIG. 1, the manufacturing method M10 includes a coating step S11, an exposure step S12, and a developing step S13. According to the manufacturing method M10, since the photoresist material is crosslinked or converted by firing by exposing it to light, a resist pattern made of ceramics can be obtained as a result. According to the present resist material, a photoresist material having high dry etching resistance can be provided.
 塗布工程S11は、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、酸化金属前駆体を含むレジスト材料を基板上に塗布する工程である。本実施形態で用いるレジスト材料は、実施形態1及び実施形態2の何れかで説明したフォトレジストである。したがって、本実施形態では、フォトレジストに関する説明を省略する。 The coating step S11 is a step of coating the substrate with a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane, or a resist material containing a metal oxide precursor. The resist material used in this embodiment is the photoresist described in either Embodiment 1 or Embodiment 2. Therefore, in this embodiment, description regarding the photoresist will be omitted.
 レジスト材料の基板上への塗布は、公知の方法によって行うことができる。例えば、スピンコート法、スプレー法、ドロップキャスト法等によって塗布することができる。基板の一対の主面のうち、少なくともレジスト材料を塗布する主面は、平坦であることが好ましい。ただし、基板の主面の平滑性は、特に限定されない。また、基板を構成する材料も限定されない。基板を構成する材料の例としては、石英や、サファイアなどの絶縁体、及び、シリコンやガリウムヒ素などの半導体、及び、アルミニウムや銅などの金属が挙げられる。 The resist material can be applied onto the substrate by a known method. For example, it can be applied by spin coating, spraying, drop casting, or the like. Of the pair of main surfaces of the substrate, at least the main surface to which the resist material is applied is preferably flat. However, the smoothness of the main surface of the substrate is not particularly limited. Furthermore, the material constituting the substrate is not limited. Examples of materials constituting the substrate include insulators such as quartz and sapphire, semiconductors such as silicon and gallium arsenide, and metals such as aluminum and copper.
 露光工程S12は、極端紫外線又は電子線を用いて、前記レジスト材料を露光させる工程である。パルス極端紫外線を含む極端紫外線を用いて露光する場合、塗布工程S11において塗布されたレジスト材料にフォトマスクを近接させた状態で積層することにより、所望のパターンをレジスト材料に転写する。フォトマスクは、極端紫外線を透過する領域と遮断する領域とにより所望のパターンが形成されているものであればよく、特に限定されない。一方、電子線を用いて露光する場合、電子線を走査することによって所望のパターンをレジスト材料に描画する。以下において、極短紫外線と電子線とを特に区別しなくてよい場合には、これらをまとめて放射線と呼ぶ。 The exposure step S12 is a step in which the resist material is exposed using extreme ultraviolet rays or electron beams. In the case of exposure using extreme ultraviolet light including pulsed extreme ultraviolet light, a desired pattern is transferred to the resist material by stacking a photomask in close proximity to the resist material applied in the coating step S11. The photomask is not particularly limited as long as it has a desired pattern formed by regions that transmit extreme ultraviolet rays and regions that block extreme ultraviolet rays. On the other hand, when exposing using an electron beam, a desired pattern is drawn on the resist material by scanning the electron beam. In the following, extremely short ultraviolet rays and electron beams are collectively referred to as radiation unless they need to be particularly distinguished.
 露光工程S12において用いる放射線は、レジスト材料に化学反応が起きるものであればよく、例えば、電子線、紫外線、極端紫外線等が挙げられる。化学反応の一例としては、光反応が挙げられる。ただし、化学反応の態様は、これに限定されない。極端紫外線としては、強度が時間的に変化しない連続波の極端紫外線と、パルス極端紫外線とが挙げられる。露光工程S12において用いる光は、極端紫外線が好ましく、極端紫外線の中では、パルス極端紫外線がより好ましい。極端紫外線を用いることにより、紫外線を用いる場合よりも高精細なパターンを、より短い露光時間で得ることができる。露光工程S12おいて用いる放射線は、当技術分野で用いられる通常の照射装置によって照射することができる。 The radiation used in the exposure step S12 may be any radiation that causes a chemical reaction in the resist material, and examples thereof include electron beams, ultraviolet rays, extreme ultraviolet rays, and the like. An example of a chemical reaction is a photoreaction. However, the form of the chemical reaction is not limited to this. Examples of extreme ultraviolet rays include continuous wave extreme ultraviolet rays whose intensity does not change over time and pulsed extreme ultraviolet rays. The light used in the exposure step S12 is preferably extreme ultraviolet light, and among extreme ultraviolet light, pulsed extreme ultraviolet light is more preferable. By using extreme ultraviolet rays, a pattern with higher definition can be obtained in a shorter exposure time than when using ultraviolet rays. The radiation used in the exposure step S12 can be irradiated with a normal irradiation device used in the technical field.
 露光工程S12における露光量又は照射量は、レジスト材料において少なくとも架橋の化学反応が起きる露光量又は照射量であればよい。パルス極端紫外線を用いて露光する場合、パルス極端紫外線の強度は、10W/cm以上1014W/cm以下であることが好ましい。露光工程S12における露光量又は照射量は、露光時間、パルス数、又は金属フィルターによる減衰によって適宜調整すればよい。 The exposure amount or irradiation amount in the exposure step S12 may be an exposure amount or irradiation amount that causes at least a chemical reaction of crosslinking in the resist material. When exposing using pulsed extreme ultraviolet rays, the intensity of the pulsed extreme ultraviolet rays is preferably 10 9 W/cm 2 or more and 10 14 W/cm 2 or less. The exposure amount or irradiation amount in the exposure step S12 may be adjusted as appropriate by the exposure time, the number of pulses, or attenuation by the metal filter.
 なお、露光量又は照射量は、レジスト材料において架橋に加えて焼成転換が起きる露光量又は照射量であってもよい。この構成によれば、露光工程S12を実施するだけで焼成転換されたレジストパターンを得ることができる。したがって、架橋されたレジスト材料により構成されたレジストパターンよりもドライエッチング耐性が高いレジストパターンを得ることができる。 Note that the exposure amount or irradiation amount may be an exposure amount or irradiation amount that causes firing conversion in addition to crosslinking in the resist material. According to this configuration, a fired resist pattern can be obtained by simply performing the exposure step S12. Therefore, a resist pattern having higher dry etching resistance than a resist pattern made of a crosslinked resist material can be obtained.
 現像工程S13は、露光された前記レジスト材料を現像液に浸漬することによって、レジストパターンを現像する工程である。現像に用いる現像液は、レジスト材料に応じて適宜定めることができる。例えば、レジスト材料がポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイを含む場合、現像液としてはトルエンが好適である。また、例えば、レジスト材料が酸化金属前駆体を含む場合、現像液としてはシクロヘキサノンが好適である。 The developing step S13 is a step of developing the resist pattern by immersing the exposed resist material in a developer. The developer used for development can be appropriately determined depending on the resist material. For example, when the resist material includes a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane, toluene is suitable as the developer. Further, for example, when the resist material contains a metal oxide precursor, cyclohexanone is suitable as the developer.
 (変形例)
 露光工程S12は、極端紫外線を用いて前記レジスト材料を露光させる第1の露光工程、及び、第2の露光工程を含んでいてもよい。
(Modified example)
The exposure step S12 may include a first exposure step of exposing the resist material using extreme ultraviolet rays, and a second exposure step.
 本変形例において、第2の露光工程においてレジスト材料に照射する極端紫外線の露光量は、第1の露光工程においてレジスト材料に照射する極端紫外線の露光量を上回るように定められている。第1の露光工程における極端紫外線の露光量は、レジスト材料において架橋の光反応が進行する露光量であることが好ましい。また、第2の露光工程における極端紫外線の露光量は、レジスト材料を焼成転換させる露光量であることが好ましい。 In this modification, the amount of exposure of extreme ultraviolet rays irradiated to the resist material in the second exposure step is determined to exceed the amount of exposure of extreme ultraviolet rays irradiated to the resist material in the first exposure step. The amount of exposure to extreme ultraviolet rays in the first exposure step is preferably such that a crosslinking photoreaction proceeds in the resist material. Further, it is preferable that the exposure amount of extreme ultraviolet rays in the second exposure step is an exposure amount that converts the resist material into baking.
 第1の露光工程及び第2の露光工程の各々における露光量をこのように設定することで、第1の露光工程によってレジスト材料を架橋させ、第2の露光工程によってレジスト材料を焼成転換することができる。したがって、極端紫外線を用いた露光工程S12のみを用いてレジスト材料を焼成転換させ、セラミックからなるレジストパターンを得ることができる。換言すれば、炉を用いた焼成工程を実施することなく、セラミックからなるレジストパターンを得ることができる。したがって、ドライエッチング耐性が向上したレジストパターンを短時間で得ることができる。 By setting the exposure amount in each of the first exposure step and the second exposure step in this way, the resist material can be crosslinked in the first exposure step, and the resist material can be baked and converted in the second exposure step. I can do it. Therefore, a resist pattern made of ceramic can be obtained by firing and converting the resist material using only the exposure step S12 using extreme ultraviolet rays. In other words, a resist pattern made of ceramic can be obtained without performing a firing process using a furnace. Therefore, a resist pattern with improved dry etching resistance can be obtained in a short time.
 なお、第1の露光工程及び第2の露光工程のうち、第2の露光工程は、高強度な極端紫外線を用いる。したがって、第2の露光工程においては、パルス極端紫外線を用いることが好ましい。なお、第2の露光工程においてパルス極端紫外線を用いる場合、第1の露光工程においてもパルス極端紫外線を用いることが好ましい。 Note that among the first exposure process and the second exposure process, the second exposure process uses high-intensity extreme ultraviolet rays. Therefore, it is preferable to use pulsed extreme ultraviolet rays in the second exposure step. Note that when pulsed extreme ultraviolet rays are used in the second exposure step, it is preferable to use pulsed extreme ultraviolet rays also in the first exposure step.
 〔実施形態4〕
 <レジストパターンの製造方法>
 図2を参照して、実施形態4に係るレジストパターンの製造方法M20(以下、単に「製造方法M20」とも称する)について説明する。図1は、本発明の実施形態1に係るレジストパターンの製造方法M20のフローチャートである。
[Embodiment 4]
<Resist pattern manufacturing method>
With reference to FIG. 2, a resist pattern manufacturing method M20 (hereinafter also simply referred to as "manufacturing method M20") according to the fourth embodiment will be described. FIG. 1 is a flowchart of a resist pattern manufacturing method M20 according to Embodiment 1 of the present invention.
 図2に示すように、製造方法M20は、塗布工程S21と、露光工程S22と、現像工程S23と、焼成工程S24と、を含む。塗布工程S21、露光工程S22、及び、現像工程S23の各々は、それぞれ、製造方法M10における塗布工程S11、露光工程S12、及び、現像工程S13の各々と同様である。したがって、本実施形態では、塗布工程S21、露光工程S22、及び、現像工程S23の説明を省略する。なお、露光工程S22における露光量又は照射量は、レジスト材料において架橋の光反応が進行するように定められている。 As shown in FIG. 2, the manufacturing method M20 includes a coating step S21, an exposure step S22, a developing step S23, and a baking step S24. Each of the coating process S21, the exposure process S22, and the developing process S23 is the same as each of the coating process S11, the exposure process S12, and the developing process S13 in the manufacturing method M10. Therefore, in this embodiment, descriptions of the coating process S21, the exposure process S22, and the developing process S23 are omitted. Note that the exposure amount or irradiation amount in the exposure step S22 is determined so that the crosslinking photoreaction proceeds in the resist material.
 焼成工程S24は、現像工程S23の後に実施する工程であって、現像されたレジスト材料を焼成転換することにより、前記フォトマスクのパターンを転写された絶縁体又は半導体製の層状部材を得る工程である。焼成工程S24においては、現像されたレジスト材料を焼成転換するために電気炉を用いる。 The baking step S24 is a step carried out after the developing step S23, and is a step of converting the developed resist material into baking to obtain a layered member made of an insulator or semiconductor to which the pattern of the photomask has been transferred. be. In the baking step S24, an electric furnace is used to bake the developed resist material.
 製造方法M20においては、露光工程S22のあとに焼成工程S24を実施するため、レジスト材料を確実にセラミックス化することができる。したがって、得られるレジストパターンに含まれ得るセラミックス化されていない成分を低減することができるので、レジストパターンのドライエッチング耐性をさらに向上させることができる。また、酸化金属前駆体を含むレジスト材料を用いる場合、焼成による金属酸化物の状態が変化しないままパターンの膜密度を向上できるため、エッチング耐性を高めることができる。さらに、焼成によって余分な有機物を除去できるため、アウトガスの発生を大幅に抑制できる効果がある。 In the manufacturing method M20, the firing step S24 is performed after the exposure step S22, so the resist material can be reliably turned into ceramic. Therefore, it is possible to reduce the non-ceramic components that may be contained in the obtained resist pattern, so that the dry etching resistance of the resist pattern can be further improved. Further, when using a resist material containing a metal oxide precursor, the film density of the pattern can be improved without changing the state of the metal oxide due to baking, so that etching resistance can be improved. Furthermore, since excess organic matter can be removed by firing, the generation of outgas can be significantly suppressed.
 焼成転換は、現像されたレジスト材料を加熱することで行うことができる。加熱は、特に限定されないが、酸化を防止する観点から、真空又はアルゴン雰囲気下で行うことが好ましい。加熱温度は、熱分解及び焼成転換温度の観点から、400℃以上が好ましく、600℃以上がより好ましく、800℃以上が特に好ましい。また、基板の保護の観点から、それぞれの基板の融点の100℃以下であることが好ましい。セラミックスの緻密性は、加熱時間によって適宜調整することができる。400℃以上で加熱する場合、少なくとも10時間加熱することが好ましく、600℃以上で加熱する場合、少なくとも5時間加熱することが好ましく、800℃以上で加熱する場合、少なくとも2時間加熱することが好ましい。 Baking conversion can be performed by heating the developed resist material. Heating is not particularly limited, but from the viewpoint of preventing oxidation, it is preferable to perform the heating in a vacuum or under an argon atmosphere. From the viewpoint of thermal decomposition and calcination conversion temperature, the heating temperature is preferably 400°C or higher, more preferably 600°C or higher, and particularly preferably 800°C or higher. Further, from the viewpoint of protecting the substrates, it is preferable that the melting point of each substrate is 100° C. or lower. The density of ceramics can be adjusted as appropriate by adjusting the heating time. When heating at 400°C or higher, heating is preferably at least 10 hours; when heating at 600°C or higher, heating is preferably at least 5 hours; when heating at 800°C or higher, heating is preferably at least 2 hours. .
 本発明の一態様に係るレジストパターンの製造方法は、実施形態1及び2に示した各工程以外の他の工程を含んでいてもよい。他の工程としては、例えば、ウェットエッチング工程、ドライエッチング工程等が挙げられる。他の工程は、公知の方法を用いて行うことができる。 The method for manufacturing a resist pattern according to one aspect of the present invention may include steps other than the steps shown in Embodiments 1 and 2. Other processes include, for example, a wet etching process, a dry etching process, and the like. Other steps can be performed using known methods.
 〔実施形態5〕
 〔レジストパターン〕
 図3を参照して、実施形態5に係るレジストパターン1について説明する。図3は、レジストパターン1の斜視図である。
[Embodiment 5]
[Resist pattern]
With reference to FIG. 3, resist pattern 1 according to the fifth embodiment will be described. FIG. 3 is a perspective view of the resist pattern 1.
 レジストパターン1は、炭化ケイ素により構成されたアモルファス膜であって、2次元的にパターニングされたアモルファス膜からなる。ただし、レジストパターン1は、炭化ケイ素、二酸化ケイ素、窒化ケイ素、及び、ボロシリコンカーボナイトライドのうち少なくとも何れかにより構成されたアモルファス膜であってもよい。このような構成によれば、セラミックスの絶縁膜を、リソグラフィ技術を用いて形成することができる。 The resist pattern 1 is an amorphous film made of silicon carbide and is two-dimensionally patterned. However, the resist pattern 1 may be an amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride. According to such a configuration, the ceramic insulating film can be formed using lithography technology.
 レジストパターン1は、基板10と、レジスト11と、を備えている。なお、図3に示したレジストパターン1においては、基板10の一方の主面(図3においては上側の主面)に、直接、レジスト11が形成されている。ただし、基板10とレジスト11との間に、1又は複数の別の層(例えば、金属層や半導体層など)が設けられていてもよい。また、レジスト11の上側に、且つ、レジスト11を覆うように、1又は複数の別の層(例えば、金属層や半導体層など)が設けられていてもよい。レジスト11は、炭化ケイ素により構成されている。レジスト11は、〔フォトレジスト材料〕において説明したポリマーアロイのうち、少なくともポリカルボシランを含むポリマーアロイを使用することで作製することができる。ただし、レジスト11は、炭化ケイ素、二酸化ケイ素、窒化ケイ素、及び、ボロシリコンカーボナイトライドのうち少なくとも何れかにより構成されていてもよい。この場合、レジスト11は、〔フォトレジスト材料〕において説明したポリマーアロイのうち、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを使用することで作製することができる。基板10は、図1に示す製造方法M10において用いる基板と同じである。したがって、本実施形態では、基板10の説明を省略する。 The resist pattern 1 includes a substrate 10 and a resist 11. In the resist pattern 1 shown in FIG. 3, the resist 11 is directly formed on one main surface (the upper main surface in FIG. 3) of the substrate 10. However, one or more other layers (for example, a metal layer, a semiconductor layer, etc.) may be provided between the substrate 10 and the resist 11. Further, one or more other layers (for example, a metal layer, a semiconductor layer, etc.) may be provided above the resist 11 and so as to cover the resist 11. Resist 11 is made of silicon carbide. The resist 11 can be produced by using a polymer alloy containing at least polycarbosilane among the polymer alloys described in [Photoresist Material]. However, the resist 11 may be made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride. In this case, the resist 11 can be produced by using at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane among the polymer alloys described in [Photoresist material]. . The substrate 10 is the same as the substrate used in the manufacturing method M10 shown in FIG. Therefore, in this embodiment, description of the substrate 10 is omitted.
 レジストパターン1は、実施形態1において説明したレジスト材料を用い、図1に示す製造方法M10又は図2に示す製造方法M20を実施することによって作製することができる。したがって、本実施形態では、レジスト11の説明を省略する。 The resist pattern 1 can be manufactured by using the resist material described in Embodiment 1 and implementing the manufacturing method M10 shown in FIG. 1 or the manufacturing method M20 shown in FIG. 2. Therefore, in this embodiment, description of the resist 11 is omitted.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
 〔照射用サンプルの作製〕
 (実施例1)
 ポリカルボシラン(NIPSI(登録商標)-Type A、日本カーボン株式会社製)に、アリルヒドリドポリカルボシラン(SMP-10、Starfire Systems、USA)を、ポリカルボシランに対するアリルヒドリドポリカルボシランの割合が1wt%となるように添加し、シクロヘキサンに溶解させて10分間攪拌した後、シクロヘキサンを取り除いてポリカルボシランのポリマーアロイを作製した。得られたポリマーアロイをトルエンに溶解し、5wt%の溶液とした後、シリコンウェハー上にスピンコートし、膜厚約200nmの照射用サンプルを得た。
[Preparation of sample for irradiation]
(Example 1)
Allylhydridopolycarbosilane (SMP-10, Starfire Systems, USA) was added to polycarbosilane (NIPSI (registered trademark) - Type A, manufactured by Nippon Carbon Co., Ltd.), and the ratio of allylhydridopolycarbosilane to polycarbosilane was After adding it to a concentration of 1 wt %, dissolving it in cyclohexane and stirring for 10 minutes, the cyclohexane was removed to produce a polycarbosilane polymer alloy. The obtained polymer alloy was dissolved in toluene to make a 5 wt % solution, and then spin coated onto a silicon wafer to obtain a sample for irradiation with a film thickness of about 200 nm.
 (実施例2)
 アリルヒドリドポリカルボシランの添加量を5wt%に変更した以外は、実施例1と同様の操作を行い、膜厚約200nmの照射用サンプルを得た。
(Example 2)
A sample for irradiation with a film thickness of about 200 nm was obtained by performing the same operation as in Example 1, except that the amount of allylhydridopolycarbosilane added was changed to 5 wt%.
 (実施例3)
 金属アルコシキド(チタン(IV)テトライソプロキシド)を、1-プロパノール溶液中でメタクリル酸メチルと室温で1時間攪拌しながら反応させ、酸化金属前駆体を作製した。次いで、シリコンウェハー上にスピンコートし、膜厚約80nmの照射用サンプルを作製した。
(Example 3)
A metal alkoxide (titanium (IV) tetraisoprooxide) was reacted with methyl methacrylate in a 1-propanol solution with stirring at room temperature for 1 hour to prepare a metal oxide precursor. Next, a sample for irradiation with a film thickness of about 80 nm was prepared by spin coating on a silicon wafer.
 (実施例4)
 金属アルコシキドとしてジルコニウム(IV)テトライソプロキシドを用いる以外は、実施例3と同様にして、膜厚約80nmの照射用サンプルを作製した。
(Example 4)
A sample for irradiation with a film thickness of about 80 nm was prepared in the same manner as in Example 3 except that zirconium (IV) tetraisoprooxide was used as the metal alkoxide.
 (実施例5)
 金属アルコシキドとしてハフニウム(IV)テトライソプロキシドを用いる以外は、実施例3と同様にして、膜厚約80nmの照射用サンプルを作製した。
(Example 5)
A sample for irradiation with a film thickness of about 80 nm was prepared in the same manner as in Example 3 except that hafnium (IV) tetraisoprooxide was used as the metal alkoxide.
 (比較例1)
 ポリメタクリル酸メチル(PMMA、Mw ~350,000、Aldrich製)をトルエンに溶解し、0.7wt%の溶液とした後、シリコンウェハー上にスピンコートして、膜厚約200nmの照射用サンプルを得た。
(Comparative example 1)
Polymethyl methacrylate (PMMA, Mw ~350,000, manufactured by Aldrich) was dissolved in toluene to make a 0.7 wt% solution, and then spin coated onto a silicon wafer to form a sample for irradiation with a film thickness of approximately 200 nm. Obtained.
 (比較例2)
 レジストポリマーとしてZEP520A(日本ゼオン株式会社製)を用いる以外は、比較例1と同様にして膜厚約200nmの照射用サンプルを得た。
(Comparative example 2)
A sample for irradiation with a film thickness of about 200 nm was obtained in the same manner as in Comparative Example 1 except that ZEP520A (manufactured by Nippon Zeon Co., Ltd.) was used as the resist polymer.
 (比較例3)
 レジストポリマーとしてUVIII(ROHM and HRRS製)を用いる以外は、比較例1と同様にして膜厚約200nmの照射用サンプルを得た。
(Comparative example 3)
A sample for irradiation with a film thickness of about 200 nm was obtained in the same manner as in Comparative Example 1 except that UVIII (manufactured by ROHM and HRRS) was used as the resist polymer.
 (比較例4)
 レジストポリマーとしてPHS(ポリヒドロキシスチレン、Mw ~15,000、Aldrich製)を用いる以外は、比較例1と同様にして膜厚約200nmの照射用サンプルを得た。
(Comparative example 4)
A sample for irradiation with a film thickness of about 200 nm was obtained in the same manner as in Comparative Example 1 except that PHS (polyhydroxystyrene, Mw ~15,000, manufactured by Aldrich) was used as the resist polymer.
 なお、実施例1~5及び比較例1~3において、製造元を記載していない試薬は、当技術分野で通常用いられるものを使用した。 Note that in Examples 1 to 5 and Comparative Examples 1 to 3, reagents whose manufacturers are not listed were those commonly used in the technical field.
 〔照射〕
 実施例1~5、及び比較例1~3を以下に示す方法を用いて照射した。
〔irradiation〕
Examples 1 to 5 and Comparative Examples 1 to 3 were irradiated using the method shown below.
 (電子線照射)
 電子線(EB)照射装置(EB-ENGINE(浜松ホトニクス社製)、50kV)を用い、サンプル側にステンレスの遮蔽版を接触させてマスクとした。各サンプルの1cm角の領域に吸収線量が100μC/cm~600μC/cmになるようにスキャン照射した。
(electron beam irradiation)
Using an electron beam (EB) irradiation device (EB-ENGINE (manufactured by Hamamatsu Photonics), 50 kV), a stainless steel shield plate was brought into contact with the sample side to serve as a mask. Scan irradiation was applied to a 1 cm square area of each sample so that the absorbed dose was 100 μC/cm 2 to 600 μC/cm 2 .
 (極端紫外線(EUV)照射)
 EUV露光装置(ENERGETIQ、EQ-10、Electrodeless Z-PinchtmTM、10Watt)を用いて、光源側に1cm角のマスクを挿入し、露光線量が1mJ/cm~250mJ/cmになるようにサンプルにスポット照射した。
(Extreme ultraviolet (EUV) irradiation)
Using an EUV exposure device (ENERGETIQ, EQ-10, Electrodeless Z-Pinch , 10Watt), insert a 1 cm square mask on the light source side so that the exposure dose is 1 mJ/cm 2 to 250 mJ/cm 2 The sample was spot irradiated.
 (パルスEUV照射)
 量子科学技術研究開発機構(QST)関西光科学研究所製のパルスEUV照射装置を用いて、スポットサイズが約7μmのパルスEUV(1~17nJ/pulse)を照射した。また、放射光科学研究センターのX線自由電子レーザー施設 SACLAにおいて、スポットサイズが約7μmのパルスEUV(1~17nJ/pulse)を照射した。
(Pulsed EUV irradiation)
Pulsed EUV (1 to 17 nJ/pulse) with a spot size of about 7 μm was irradiated using a pulsed EUV irradiation device manufactured by the Kansai Photon Science Institute of the Quantum Science and Technology Research and Development Organization (QST). In addition, pulsed EUV (1 to 17 nJ/pulse) with a spot size of approximately 7 μm was irradiated at the X-ray free electron laser facility SACLA of the Synchrotron Radiation Research Center.
 〔現像〕
 照射後のサンプルを現像液(トルエン:実施例1~2、シクロヘキサノン:実施例3~6、混合溶液(メチルイソブチルケトン(MIBK):イソプロピルアルコール(IPA)=1:3):比較例1、アニソールまたはZMD-B:比較例2、アルカリ現像液NMD-3:比較例3)に1分間浸漬した後、表面の溶媒をブロワーで除去し現像を行った。
〔developing〕
The sample after irradiation was processed using a developer (toluene: Examples 1 to 2, cyclohexanone: Examples 3 to 6, mixed solution (methyl isobutyl ketone (MIBK): isopropyl alcohol (IPA) = 1:3): Comparative example 1, anisole Alternatively, ZMD-B: Comparative Example 2, alkaline developer NMD-3: Comparative Example 3) was immersed for 1 minute, and then the solvent on the surface was removed with a blower and development was performed.
 〔感度の評価〕
 EB照射又はEUV照射した実施例1~5のサンプルにおいて、残存したパターンの膜厚を測定し、感度曲線を作成した。EB照射又はEUV照射した実施例1及び2の結果を図4に示した。図4中、(a)は、EB照射した実施例1の感度曲線、(b)は、EB照射した実施例2の感度曲線、(c)は、EUV照射した実施例1の感度曲線、(d)は、EUV照射した実施例2の感度曲線を示した。また、EB又はEUV照射した実施例3~5の結果を図5に示した。図5中、(a)は、EB照射した実施例3の感度曲線、(b)は、EB照射した実施例4の感度曲線、(c)は、EB照射した実施例5の感度曲線、(d)は、EUV照射した実施例3の感度曲線、(e)は、EUV照射した実施例4の感度曲線、(f)は、EUV照射した実施例5の感度曲線を示した。また、図4及び5において、縦軸は、規格化した膜厚(nm)を示し、横軸は、照射量又は露光量(μC/cm又はmJ/cm)を示す。
[Evaluation of sensitivity]
For the samples of Examples 1 to 5 that were subjected to EB irradiation or EUV irradiation, the film thickness of the remaining pattern was measured and a sensitivity curve was created. The results of Examples 1 and 2 in which EB irradiation or EUV irradiation was performed are shown in FIG. In FIG. 4, (a) is the sensitivity curve of Example 1 subjected to EB irradiation, (b) is the sensitivity curve of Example 2 subjected to EB irradiation, (c) is the sensitivity curve of Example 1 subjected to EUV irradiation, ( d) shows the sensitivity curve of Example 2 subjected to EUV irradiation. Further, the results of Examples 3 to 5 in which EB or EUV irradiation was performed are shown in FIG. In FIG. 5, (a) is the sensitivity curve of Example 3 subjected to EB irradiation, (b) is the sensitivity curve of Example 4 subjected to EB irradiation, (c) is the sensitivity curve of Example 5 subjected to EB irradiation, ( d) shows the sensitivity curve of Example 3 with EUV irradiation, (e) shows the sensitivity curve of Example 4 with EUV irradiation, and (f) shows the sensitivity curve of Example 5 with EUV irradiation. Further, in FIGS. 4 and 5, the vertical axis indicates the standardized film thickness (nm), and the horizontal axis indicates the irradiation amount or exposure amount (μC/cm 2 or mJ/cm 2 ).
 図4に示すように、実施例1と2の比較において、架橋剤として働くアリルヒドリドポリカルボシランの添加量を変えることで、EB照射、EUV照射ともに感度が向上していることがわかった。 As shown in FIG. 4, in a comparison between Examples 1 and 2, it was found that sensitivity was improved for both EB irradiation and EUV irradiation by changing the amount of allylhydridopolycarbosilane added, which acts as a crosslinking agent.
 図5に示すように、実施例3~5の比較において、放射線の吸収断面積の大きな重原子になるほどEBの感度が向上していることがわかった。また、EUV照射に対しては、実施例3~5の何れもEUVの吸収断面積の高さを反映して、著しく高い感度を示した。 As shown in FIG. 5, in the comparison of Examples 3 to 5, it was found that the sensitivity of EB improves as the heavy atoms have a larger radiation absorption cross section. Furthermore, with respect to EUV irradiation, all of Examples 3 to 5 exhibited extremely high sensitivity, reflecting the high absorption cross section of EUV.
 〔焼成転換〕
 現像後のEB照射サンプルをアルゴン雰囲気化、800℃で2時間加熱して焼成転換した。
[Firing conversion]
The EB irradiated sample after development was placed in an argon atmosphere and heated at 800° C. for 2 hours to convert it to firing.
 〔レジストパターンの残存評価〕
 焼成転換後の実施例2及び3のレジストパターンの残存を評価した。焼成転換前後の実施例2及び3、並びに比較例1のレジスト膜の様子を図6に示した。図6中、(a)は、焼成転換前後の実施例2のレジスト膜の様子を示し、(b)は、焼成転換前後の実施例3のレジスト膜の様子を示し、(c)は、焼成転換前後の比較例1のレジスト膜の様子を示した。図6中、焼成転換前のレジスト膜の形状(四角)が焼成転換後に残っていれば、レジストパターンが残存したと判断できる。
[Resist pattern residual evaluation]
The remaining resist patterns of Examples 2 and 3 after firing conversion were evaluated. FIG. 6 shows the appearance of the resist films of Examples 2 and 3 and Comparative Example 1 before and after the baking conversion. In FIG. 6, (a) shows the state of the resist film of Example 2 before and after the baking conversion, (b) shows the state of the resist film of Example 3 before and after the baking conversion, and (c) shows the state of the resist film of Example 3 before and after the baking conversion. The state of the resist film of Comparative Example 1 before and after conversion is shown. In FIG. 6, if the shape (square) of the resist film before firing conversion remains after firing conversion, it can be determined that the resist pattern remains.
 図6に示すように、実施例2及び3は、高い熱耐性を示し、焼成転換後もパターンの残存を確認できた。一方で、比較例1は熱分解による蒸発がおこり、レジストパターンが残らなかった。比較例2~3においても、熱分解による蒸発がおこり、レジストパターンは残らなかった。 As shown in FIG. 6, Examples 2 and 3 exhibited high heat resistance, and it was confirmed that the pattern remained even after the firing conversion. On the other hand, in Comparative Example 1, evaporation occurred due to thermal decomposition, and no resist pattern remained. In Comparative Examples 2 and 3 as well, evaporation due to thermal decomposition occurred and no resist pattern remained.
 〔エッチング耐性の評価〕
 現像した実施例2~5及び比較例1~4、並びに焼成転換した実施例2~5をドライエッチングし、エッチング耐性評価を行った。エッチング条件はAr/CFガスによるドライエッチングとして、時間(秒)に対する膜厚の減少量の傾きから評価した。なお、エッチング耐性を評価した実施例2~5は、全て電子線を照射したサンプルを用いた。また、比較例1~4は塗布したサンプルをそのまま用いた。
[Evaluation of etching resistance]
The developed Examples 2 to 5 and Comparative Examples 1 to 4, as well as the baked-converted Examples 2 to 5, were dry-etched and the etching resistance was evaluated. The etching conditions were dry etching using Ar/CF 4 gas, and evaluation was made from the slope of the amount of decrease in film thickness with respect to time (seconds). Note that in Examples 2 to 5 in which etching resistance was evaluated, samples that were irradiated with an electron beam were used. Furthermore, in Comparative Examples 1 to 4, the coated samples were used as they were.
 実施例2及び比較例1のエッチング耐性を図7に示し、実施例3及び比較例1~4のエッチング耐性を図8の(a)に示し、実施例4及び比較例1~4のエッチング耐性を図8の(b)に示し、実施例5及び比較例1~4のエッチング耐性を図8の(c)に示した。図7及び8において、縦軸は、エッチング後の膜厚(nm)を示し、横軸は、エッチング時間(秒)を示す。また、現像した実施例3~5、焼成転換した実施例3~5、及び比較例1の各エッチング時間の膜厚に対する切片を0とした場合の近似曲線を示す。 The etching resistance of Example 2 and Comparative Example 1 is shown in FIG. 7, and the etching resistance of Example 3 and Comparative Examples 1 to 4 is shown in FIG. 8(a). is shown in FIG. 8(b), and the etching resistance of Example 5 and Comparative Examples 1 to 4 is shown in FIG. 8(c). In FIGS. 7 and 8, the vertical axis shows the film thickness (nm) after etching, and the horizontal axis shows the etching time (seconds). In addition, approximate curves are shown in which the intercept of each etching time with respect to the film thickness is set to 0 for developed Examples 3 to 5, baked-converted Examples 3 to 5, and Comparative Example 1.
 図7に示すように、実施例2のエッチング耐性を比較例1と比較すると、大幅にエッチング耐性が向上していることがわかった。また、焼成転換した実施例2は、さらにエッチング耐性が向上することがわかった。 As shown in FIG. 7, when the etching resistance of Example 2 was compared with Comparative Example 1, it was found that the etching resistance was significantly improved. In addition, it was found that Example 2, which underwent firing conversion, had further improved etching resistance.
 図8に示すように、実施例3~5の何れも比較例1~4と比べ、非常に高いエッチング耐性を示した。焼成による金属酸化物の状態変化は起こらないため焼成前後の実施例3~5において、エッチング耐性の向上は少ないが、焼成によって余分な有機物を除去でき、アウトガスの発生を大幅に抑制できる効果がある。さらに、焼成によるパターンの膜密度の向上により、エッチング耐性を高める効果もある。 As shown in FIG. 8, all of Examples 3 to 5 exhibited extremely high etching resistance compared to Comparative Examples 1 to 4. Since the state of the metal oxide does not change due to firing, there is little improvement in etching resistance in Examples 3 to 5 before and after firing, but firing can remove excess organic matter and has the effect of greatly suppressing the generation of outgas. . Furthermore, the film density of the pattern is improved by baking, which has the effect of increasing etching resistance.
 〔パルスEUV照射のレジストパターン形成評価〕
 本発明のフォトレジスト材料は、パルスEUV光源に対しても十分なパターン形成能を有する。実施例2及び5を用いて、自由電子レーザー由来のEUV(波長13.5nm)光を照射して作製したレジストパターンを、それぞれ図9及び10に示す。
[Evaluation of resist pattern formation by pulsed EUV irradiation]
The photoresist material of the present invention has sufficient pattern forming ability even with a pulsed EUV light source. Resist patterns produced using Examples 2 and 5 by irradiation with EUV (wavelength: 13.5 nm) light derived from a free electron laser are shown in FIGS. 9 and 10, respectively.
 図9に示すように、1ショットあたりのエネルギーから、架橋に加え焼成転換に必要なエネルギーも付与されていると見積もられるため、架橋-焼成転換を経るパルスEUV用の無機レジスト材料有用性と露光プロセスを実証できていることがわかった。 As shown in Figure 9, it is estimated that the energy required for firing conversion in addition to crosslinking is provided from the energy per shot. Therefore, the usefulness of inorganic resist materials for pulsed EUV that undergoes crosslinking-baking conversion and the exposure It turned out that the process was proven.
 〔まとめ〕
 本発明の態様1に係るフォトレジスト材料は、極端紫外線リソグラフィ用のフォトレジスト材料であって、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、金属アルコキシドを含む。
〔summary〕
The photoresist material according to aspect 1 of the present invention is a photoresist material for extreme ultraviolet lithography, and is a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane, or , including metal alkoxides.
 上記のように構成されたフォトレジスト材料は、極端紫外線を照射されることによって架橋又は焼成転換され、結果としてセラミックスにより構成されたレジストパターンを得ることができる。本レジスト材料によれば、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。 The photoresist material configured as described above is crosslinked or converted by firing by being irradiated with extreme ultraviolet rays, and as a result, a resist pattern made of ceramics can be obtained. According to the present resist material, a photoresist material having high dry etching resistance can be provided.
 本発明の態様2に係るフォトレジスト材料においては、態様1に係るフォトレジスト材料の構成に加えて、ポリカルボシラン、及び、アリルヒドリドポリカルボシランを含むポリマーアロイを含む、構成が採用されている。 In the photoresist material according to aspect 2 of the present invention, in addition to the configuration of the photoresist material according to aspect 1, a configuration including a polymer alloy containing polycarbosilane and allylhydridopolycarbosilane is adopted. .
 ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイの例としては、ポリカルボシラン、及び、アリルヒドリドポリカルボシランを含むポリマーアロイが挙げられる。上記の構成によれば、極端紫外線を用いて露光することにより炭化ケイ素からなるセラミックスのレジストパターンを得ることができる。したがって、本フォトレジスト材料は、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。 An example of a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganoborosilazane includes a polymer alloy containing polycarbosilane and allylhydridopolycarbosilane. According to the above configuration, a ceramic resist pattern made of silicon carbide can be obtained by exposure using extreme ultraviolet rays. Therefore, the present photoresist material can provide a photoresist material with high dry etching resistance.
 本発明の態様3に係るフォトレジスト材料においては、態様2に係るフォトレジスト材料の構成に加えて、ポリカルボシランに対するアリルヒドリドポリカルボシランの割合が、0.1wt%以上50wt%以下である、構成が採用されている。 In the photoresist material according to aspect 3 of the present invention, in addition to the structure of the photoresist material according to aspect 2, the ratio of allylhydridopolycarbosilane to polycarbosilane is 0.1 wt% or more and 50 wt% or less. configuration has been adopted.
 上記の構成によれば、露光した領域において光反応が進み、フォトマスクで遮光した領域においては光反応が進まないレジストパターンであって、現実的な露光時間で露光可能なレジストパターンを得ることができる。 According to the above configuration, it is possible to obtain a resist pattern in which the photoreaction progresses in the exposed area and the photoreaction does not proceed in the area shielded by the photomask, and which can be exposed with a realistic exposure time. can.
 本発明の態様4に係るフォトレジスト材料においては、態様1に係るフォトレジスト材料の構成に加えて、金属アルコキシドは、チタン、ジルコニウム、及び、ハフニウムのうち何れかを含む、構成が採用されている。 In the photoresist material according to aspect 4 of the present invention, in addition to the configuration of the photoresist material according to aspect 1, a configuration is adopted in which the metal alkoxide contains any one of titanium, zirconium, and hafnium. .
 このように、金属アルコキシドは、チタン、ジルコニウム、及び、ハフニウムのうち何れかを含むことが好ましい。上記の構成によれば、極端紫外線を用いて露光することにより酸化金属からなるセラミックスのレジストパターンを得ることができる。したがって、本フォトレジスト材料は、高いドライエッチング耐性を有するフォトレジスト材料を提供することができる。 As described above, the metal alkoxide preferably contains any one of titanium, zirconium, and hafnium. According to the above configuration, a resist pattern of ceramics made of metal oxide can be obtained by exposure using extreme ultraviolet rays. Therefore, the present photoresist material can provide a photoresist material with high dry etching resistance.
 本発明の態様5に係るレジストパターンの製造方法は、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、金属アルコキシドを含むレジスト材料を基板上に塗布する塗布工程と、前記レジスト材料を塗布された基板にフォトマスクを近接させ、前記レジスト材料を露光させる露光工程と、露光された前記レジスト材料を現像する現像工程と、を含む。 A method for manufacturing a resist pattern according to aspect 5 of the present invention is to apply a resist material containing a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane or a metal alkoxide onto a substrate. an exposure step of bringing a photomask close to a substrate coated with the resist material to expose the resist material, and a developing step of developing the exposed resist material.
 上記のように構成されたレジスト材料は、露光されることによって架橋又は焼成転換され、セラミックスの2次元パターンになる。換言すれば、本製造方法によれば、セラミックスにより構成されたレジストパターンを得ることができる。したがって、高いドライエッチング耐性を有するフォトレジストパターンを提供することができる。 The resist material configured as described above is crosslinked or fired by being exposed to light, and becomes a two-dimensional pattern of ceramics. In other words, according to this manufacturing method, a resist pattern made of ceramics can be obtained. Therefore, a photoresist pattern having high dry etching resistance can be provided.
 本発明の態様6に係るレジストパターンの製造方法においては、態様5に係るレジストパターンの製造方法の手段に加えて、前記現像工程の後に実施する焼成工程であって、現像された前記レジスト材料を焼成転換することにより、前記フォトマスクのパターンを転写された絶縁体又は半導体製の層状部材を得る焼成工程、を更に含む、構成が採用されている。 In the resist pattern manufacturing method according to aspect 6 of the present invention, in addition to the means of the resist pattern manufacturing method according to aspect 5, there is provided a baking step performed after the developing step, in which the developed resist material is A configuration is adopted which further includes a firing step of obtaining a layered member made of an insulator or semiconductor onto which the pattern of the photomask is transferred by performing firing conversion.
 上記の手法によれば、露光工程のあとに焼成工程を実施するため、レジストパターンを確実にセラミックス化することができる。したがって、得られるレジストパターンのドライエッチング耐性をさらに向上させることができる。 According to the above method, since the firing process is performed after the exposure process, the resist pattern can be reliably made into ceramic. Therefore, the dry etching resistance of the obtained resist pattern can be further improved.
 本発明の態様7に係るレジストパターンの製造方法においては、態様5に係るレジストパターンの製造方法の手段に加えて、前記露光工程において用いる光は、極端紫外線である。 In the resist pattern manufacturing method according to Aspect 7 of the present invention, in addition to the means of the resist pattern manufacturing method according to Aspect 5, the light used in the exposure step is extreme ultraviolet rays.
 上記の手法によれば、本製造方法は、上述した態様1に係るフォトレジスト材料と同様の効果を奏する。また、本製造方法によれば、紫外線を用いて露光する場合よりも高精細なパターンを、より短い露光時間で得ることができる。 According to the above method, the present manufacturing method produces the same effects as the photoresist material according to Aspect 1 described above. Further, according to the present manufacturing method, a pattern with higher definition can be obtained in a shorter exposure time than when exposing using ultraviolet rays.
 本発明の態様8に係るレジストパターンの製造方法においては、態様7に係るレジストパターンの製造方法の手段に加えて、前記露光工程は、極端紫外線を用いて前記レジスト材料を露光させる第1の露光工程及び第2の露光工程を含み、前記第2の露光工程において前記レジスト材料に照射する前記極端紫外線の露光量は、前記第1の露光工程において前記レジスト材料に照射する前記極端紫外線の露光量を上回る。 In the resist pattern manufacturing method according to aspect 8 of the present invention, in addition to the means of the resist pattern manufacturing method according to aspect 7, the exposure step includes a first exposure step of exposing the resist material using extreme ultraviolet rays. and a second exposure step, and the amount of exposure of the extreme ultraviolet rays irradiated to the resist material in the second exposure step is equal to the amount of exposure of the extreme ultraviolet rays irradiated to the resist material in the first exposure step. exceed.
 上記の手法によれば、露光工程とは別の焼成工程を実施することなくフォトレジスト材料の焼成転換を行うことができる。したがって、ドライエッチング耐性が向上したレジストパターンを短時間で得ることができる。 According to the above method, it is possible to perform baking conversion of the photoresist material without performing a baking process separate from the exposure process. Therefore, a resist pattern with improved dry etching resistance can be obtained in a short time.
 本発明の態様9に係るレジストパターンは、炭化ケイ素、二酸化ケイ素、窒化ケイ素、及び、ボロシリコンカーボナイトライドのうち少なくとも何れかにより構成されたアモルファス膜であって、2次元的にパターニングされたアモルファス膜からなる。 The resist pattern according to aspect 9 of the present invention is an amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride, and is a two-dimensionally patterned amorphous film. Consisting of
 上記の構成によれば、セラミックスの絶縁膜を、リソグラフィ技術を用いて形成することができる。 According to the above configuration, the ceramic insulating film can be formed using lithography technology.
  1  レジストパターン
 10  基板
 11  レジスト
 M10 レジストパターンの製造方法
 M20 レジストパターンの製造方法
 S11 塗布工程
 S12 露光工程
 S13 現像工程
 S21 塗布工程
 S22 露光工程
 S23 現像工程
 S24 焼成工程
1 Resist pattern 10 Substrate 11 Resist M10 Resist pattern manufacturing method M20 Resist pattern manufacturing method S11 Coating process S12 Exposure process S13 Developing process S21 Coating process S22 Exposure process S23 Developing process S24 Baking process

Claims (9)

  1.  極端紫外線リソグラフィ用のフォトレジスト材料であって、ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、酸化金属前駆体を含む、
    ことを特徴とするフォトレジスト材料。
    A photoresist material for extreme ultraviolet lithography, comprising a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane, or a metal oxide precursor.
    A photoresist material characterized by:
  2.  ポリカルボシラン、及び、アリルヒドリドポリカルボシランを含むポリマーアロイを含む、
    ことを特徴とする請求項1に記載のフォトレジスト材料。
    including polycarbosilane and a polymer alloy containing allylhydridopolycarbosilane,
    2. The photoresist material of claim 1.
  3.  ポリカルボシランに対するアリルヒドリドポリカルボシランの割合が、0.1wt%以上50wt%以下である、
    ことを特徴とする請求項2に記載のフォトレジスト材料。
    The ratio of allylhydridopolycarbosilane to polycarbosilane is 0.1 wt% or more and 50 wt% or less,
    3. The photoresist material of claim 2.
  4.  酸化金属前駆体は、チタン、ジルコニウム、及び、ハフニウムのうち何れかを含む、
    ことを特徴とする請求項1に記載のフォトレジスト材料。
    The metal oxide precursor contains any one of titanium, zirconium, and hafnium,
    2. The photoresist material of claim 1.
  5.  ポリカルボシラン、ポリシロキサン、ポリシラザン、及び、ポリオルガノボロシラザンのうち少なくとも何れかを含むポリマーアロイ、又は、酸化金属前駆体を含むレジスト材料を基板上に塗布する塗布工程と、
     前記レジスト材料を塗布された基板にフォトマスクを近接させ、前記レジスト材料を露光させる露光工程と、
     露光された前記レジスト材料を現像する現像工程と、を含む、
    ことを特徴とするレジストパターンの製造方法。
    a coating step of applying a resist material containing a polymer alloy containing at least one of polycarbosilane, polysiloxane, polysilazane, and polyorganobolosilazane, or a metal oxide precursor onto the substrate;
    an exposure step of bringing a photomask close to the substrate coated with the resist material and exposing the resist material;
    a developing step of developing the exposed resist material;
    A method for manufacturing a resist pattern, characterized in that:
  6.  前記現像工程の後に実施する焼成工程であって、現像された前記レジスト材料を焼成転換することにより、前記フォトマスクのパターンを転写された絶縁体又は半導体製の層状部材を得る焼成工程、を更に含む、
    ことを特徴とする請求項5に記載のレジストパターンの製造方法。
    A firing step carried out after the developing step, in which a layered member made of an insulator or a semiconductor to which the pattern of the photomask is transferred is obtained by converting the developed resist material into a firing step. include,
    6. The method for manufacturing a resist pattern according to claim 5.
  7.  前記露光工程において用いる光は、極端紫外線である、
    ことを特徴とする請求項5に記載のレジストパターンの製造方法。
    The light used in the exposure step is extreme ultraviolet rays,
    6. The method for manufacturing a resist pattern according to claim 5.
  8.  前記露光工程は、極端紫外線を用いて前記レジスト材料を露光させる第1の露光工程及び第2の露光工程を含み、
     前記第2の露光工程において前記レジスト材料に照射する前記極端紫外線の露光量は、前記第1の露光工程において前記レジスト材料に照射する前記極端紫外線の露光量を上回る、
    ことを特徴とする請求項7に記載のレジストパターンの製造方法。
    The exposure step includes a first exposure step and a second exposure step of exposing the resist material using extreme ultraviolet rays,
    The amount of exposure of the extreme ultraviolet rays irradiated to the resist material in the second exposure step exceeds the amount of exposure of the extreme ultraviolet rays irradiated to the resist material in the first exposure step.
    8. The method of manufacturing a resist pattern according to claim 7.
  9.  炭化ケイ素、二酸化ケイ素、窒化ケイ素、及び、ボロシリコンカーボナイトライドのうち少なくとも何れかにより構成されたアモルファス膜であって、2次元的にパターニングされたアモルファス膜からなる、
    ことを特徴とするレジストパターン。
    An amorphous film made of at least one of silicon carbide, silicon dioxide, silicon nitride, and borosilicon carbonitride, the amorphous film being two-dimensionally patterned.
    A resist pattern characterized by:
PCT/JP2023/009016 2022-04-15 2023-03-09 Resist material, method for producing resist pattern, and resist pattern WO2023199659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022067860 2022-04-15
JP2022-067860 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023199659A1 true WO2023199659A1 (en) 2023-10-19

Family

ID=88329334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009016 WO2023199659A1 (en) 2022-04-15 2023-03-09 Resist material, method for producing resist pattern, and resist pattern

Country Status (2)

Country Link
TW (1) TW202349115A (en)
WO (1) WO2023199659A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115863A (en) * 1994-10-13 1996-05-07 Yamaha Corp Semiconductor device
JPH11288087A (en) * 1998-04-03 1999-10-19 Hitachi Chem Co Ltd Photosensitive resin composition
JP2003277612A (en) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd Polymer composition and method for forming pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115863A (en) * 1994-10-13 1996-05-07 Yamaha Corp Semiconductor device
JPH11288087A (en) * 1998-04-03 1999-10-19 Hitachi Chem Co Ltd Photosensitive resin composition
JP2003277612A (en) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd Polymer composition and method for forming pattern

Also Published As

Publication number Publication date
TW202349115A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP5300799B2 (en) Pattern forming method and polymer alloy base material
JP5318217B2 (en) Pattern formation method
US6753129B2 (en) Method and apparatus for modification of chemically amplified photoresist by electron beam exposure
JP4852360B2 (en) Method for forming a base layer composition, lithographic structure, material layer or material element comprising a heterocyclic aromatic structure used in a multilayer lithography process on a substrate
TWI361333B (en) Photoresist composition
JP2005070776A (en) Antireflective hardmask composition and method for manufacturing semiconductor device using same
TW201030804A (en) A hardmask process for forming a reverse tone image using polysilazane
TW201005036A (en) Aqueous curable imprintable medium and patterned layer forming method
TW201718676A (en) Novel compositions and processes for self-assembly of block copolymers
US20060166132A1 (en) Ultraviolet light transparent nanoparticles for photoresists
CN112462572B (en) Photoresist, patterning method of photoresist and method of generating printed circuit board
TWI754661B (en) Polymer compositions for self-assembly applications
JP2022541818A (en) Organometallic metal chalcogenide clusters and their application to lithography
KR102538628B1 (en) Inorganic photoresist and photolithography process
CN111965947B (en) Photoresist, patterning method of photoresist and etching method of integrated circuit board
WO2023199659A1 (en) Resist material, method for producing resist pattern, and resist pattern
KR100500453B1 (en) method of formation under layer in a bi-layer resist film
JP3503976B2 (en) Pattern formation method
TW201229693A (en) Gap embedding composition, method of embedding gap and method of producing semiconductor device by using the composition
EP1176468A1 (en) Resin bilayer for extreme ultraviolet photolithography and extreme ultraviolet photololithographic method
JP2675162B2 (en) Photosensitive resin composition and pattern forming method using the same
TW200807500A (en) Forming method of resist pattern and writing method using electric charge corpuscular ray
US6989227B2 (en) E-beam curable resist and process for e-beam curing the resist
JP3957533B2 (en) Resist material and resist pattern forming method
TW202419454A (en) Use of a metal and/or metalloid-comprising ketoacidoximate and/or a metal-compound-comprising ketoacidoximate as a patterning agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788081

Country of ref document: EP

Kind code of ref document: A1