WO2023198715A1 - Élement de structure muni d'inserts rapportés pour une structure composite acoustique et procédé de fabrication associé - Google Patents

Élement de structure muni d'inserts rapportés pour une structure composite acoustique et procédé de fabrication associé Download PDF

Info

Publication number
WO2023198715A1
WO2023198715A1 PCT/EP2023/059447 EP2023059447W WO2023198715A1 WO 2023198715 A1 WO2023198715 A1 WO 2023198715A1 EP 2023059447 W EP2023059447 W EP 2023059447W WO 2023198715 A1 WO2023198715 A1 WO 2023198715A1
Authority
WO
WIPO (PCT)
Prior art keywords
inserts
skin
structural element
resistive
insert
Prior art date
Application number
PCT/EP2023/059447
Other languages
English (en)
Inventor
Mehdi Marin
Stéphane BESSEMOULIN
Florian RAVISE
Original Assignee
Institut De Recherche Technologique Jules Verne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut De Recherche Technologique Jules Verne filed Critical Institut De Recherche Technologique Jules Verne
Publication of WO2023198715A1 publication Critical patent/WO2023198715A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the invention relates, in general, to the technical field of acoustic attenuation structures or panels.
  • the invention relates to the manufacture of composite panels comprising a honeycomb-type central honeycomb core sandwiched between two skins, in particular applied to acoustic attenuation structures used to reduce noise produced in restrictive environments, for example in the aeronautical field in aircraft engines as well as in gas turbines or exhausts thereof, or even in the railway field.
  • Acoustic attenuation structures are conventionally made up of, on the one hand, an acoustic plate or skin called “resistive” skin permeable to the acoustic waves that it is desired to attenuate and, on the other hand, a plate or full skin called “reflective” skin, between which is placed a core forming a cellular body, for example a honeycomb-type alveolar structure.
  • the acoustic skin is generally acoustically porous and perforated with a multitude of orifices allowing fluid communication between the exterior and the interior of the cellular core of the composite structure, to thus form an acoustic attenuation structure.
  • acoustic composite panel type is generally acoustically porous and perforated with a multitude of orifices allowing fluid communication between the exterior and the interior of the cellular core of the composite structure, to thus form an acoustic attenuation structure.
  • such acoustic attenuation structures form Helmholtz type resonators which make it possible to attenuate acoustic waves in a certain frequency range, each of the cells of the alveolar core open at the level of the perforation associated with the acoustic skin forming a Helmholtz resonator.
  • These acoustic attenuation structures generally have a honeycomb-type honeycomb core and acoustic performance obtained are thus limited to the absorption of a relatively narrow range of frequencies depending on the shape and dimensions of each of the cells.
  • the composite attenuation structure with a cellular core can be a structure with 1 degree of freedom (SDOF structure, SDOF for “Simple Degree Of Freedom” ), with 2 degrees of freedom (DDOF structure, DDOF for “Double Degree Of Freedom”) or, more generally, with M degrees of freedom (MDOF structure, MDOF for “Multiple Degree Of Freedom”), M being an integer greater than 2.
  • SDOF structure SDOF for “Simple Degree Of Freedom”
  • DDOF structure DDOF for “Double Degree Of Freedom”
  • M degrees of freedom MDOF structure, MDOF for “Multiple Degree Of Freedom”
  • the acoustic composite structure When the acoustic composite structure has several degrees of freedom, it comprises several layers of cellular bodies or superimposed cellular cores, two layers of neighboring stacked cellular cores being separated by a septum. It is known that this septum consists of a microporous wall pierced with holes so that, for two given cells of a pair of superimposed cells, each belonging to one and the other two layers of stacked cellular cores distinct and neighboring, said cells of the given pair of cells communicate acoustically with each other. The septum is therefore similar to an intermediate resistive skin.
  • Such an acoustic composite structure has a greater total thickness, such a characteristic makes it possible to enlarge the volume of each cavity forming a Helmholtz resonator and to consequently extend the frequency band of the attenuated acoustic waves towards lower frequencies. , for example between 500 and 1000 Hz.
  • Drilling the wall constituting the septum is well known and relatively simple to implement for planar acoustic composite structures, forming regular planar acoustic panels. However, such drilling is complex to implement for acoustic composite structures having curved or even complex shapes.
  • inserts intended to be housed in each of the cells of the cellular structure to improve the acoustic performance of an acoustic panel.
  • truncated cones are connected together by bars at their large bases which must be positioned in notches made at the end of the cells. The truncated cones are designed to each be housed inside an associated cell, each large base being inscribed in a section of the interior space of the associated cell.
  • the invention aims to remedy all or part of the drawbacks of the state of the art by proposing in particular a solution making it possible to obtain a simple composite acoustic structure and which constitutes an efficient acoustic insulator.
  • a structural element for an acoustic composite structure, the structural element comprising at least one cellular core comprising a network of hollow cells delimited by partitions extending between two faces of the cellular core, and at least one resistive skin covering one of the faces of the cellular core, the structural element being remarkable in that it comprises a plurality of attached inserts, each insert having a through tubular body open at its ends and a collar projecting from the associated tubular body, and in that the resistive skin is perforated by each of the inserts positioned opposite all or part of the cells so that, for each insert, the collar is positioned against the resistive skin on a first side, and the tubular body opens onto a second side, opposite the first side.
  • the inserts are formed in one piece, the tubular body of each of the inserts extending between a first end presenting the collar and a second end.
  • the second end is circumferentially beveled, that is to say that the tubular body has a reduction or narrowing in its external diameter towards, preferably as far as, the second end.
  • the end then has a frustoconical outer envelope.
  • Such a beveled end makes it easier to perforate the resistive skin.
  • the first side of the resistive skin corresponds to the exterior side of the structural element with respect to the resistive skin, opposite the cellular core, the second side of the resistive skin being the side next to the alveolar core.
  • the resistive skin is formed of a multilayer composite structure.
  • the resistive skin comprises a prepreg fabric, more preferably a layer of fabric interposed between two layers of glue.
  • the characteristics of the structural element during its manufacture are also the same once the structural element has been manufactured.
  • the autoclave cooking which allows the manufacturing to be finalized does not in fact modify the structure of the structural element nor of the acoustic composite structure in which it is integrated if applicable.
  • the tubular body of each of the inserts extends between a first and a second end along an opening axis, the tubular body having, at the first end, the flange extending in plane orthogonal to the opening axis, the tubular body being open axially at its two ends.
  • the tubular body of the inserts has a constant section, for example cylindrical.
  • the inserts are distinct from each other. In this way the inserts are not secured to each other before the perforation of resistive skin. The rigidity of the structural element obtained is thus minimized.
  • the added inserts are formed in one piece, preferably in thermoplastic material(s), more preferably obtained by molding, for example by injection.
  • thermoplastic material(s) more preferably obtained by molding, for example by injection.
  • Such inserts are simple to manufacture, resistant, and inexpensive.
  • the acoustic structure can form a simple acoustic panel, in particular when a reflective skin is added so as to cover the other of the two faces of the cellular core, namely the opposite face of the resistive skin relative to the cellular core.
  • a simple acoustic composite structure forming a panel, planar or not, whose cellular core is interposed between the reflective and resistive skins.
  • the acoustic composite structure comprises a composite structure with N degrees of freedom comprising a superposition of N layers of cellular cores, N being greater than or equal to 2, the composite structure comprising at least one septum separating two layers of neighboring stacked cellular cores, the resistive layer perforated by the inserts forming the septum or one of the septa of the acoustic composite structure.
  • the composite structure forms a DDOF, the resistive layer perforated by the inserts forming the septum of the DDOF.
  • An acoustic composite structure is obtained whose exterior resistive skin, that is to say open to the outside, can have an aerodynamic shape and which at the same time responds to the problems of absorption of sounds at low frequencies and at high frequencies. frequencies by a Helmholtz resonator adapted using tubular inserts.
  • the invention also relates to a method of manufacturing a structural element for an acoustic composite structure, the structural element comprising at least one cellular core comprising a network of hollow cells delimited by partitions extending between two faces of the cellular core, and at least one resistive skin covering one of the faces of the cellular core, the structural element comprising a plurality of attached inserts, each insert having a through tubular body open at its ends and a collar projecting from the associated tubular body, the resistive skin being perforated by each of the inserts positioned opposite all or part cells so that, for each insert, the collar is positioned against the resistive skin on a first side, and the tubular body emerges from a second side, opposite the first side, the method of manufacturing the structural element being remarkable in that it includes the following stages: manufacturing of the cellular core; positioning of the resistive skin so that it covers one of the faces of the cellular core; positioning of the inserts in the resistive skin opposite all or part of the cells so that, for each
  • the method of manufacturing the structural element comprises a step of coating a preparation such as an adhesive, for example based on polymer material(s), so as to coat the first side of the resistive skin perforated by the added inserts and the upper faces of the collars of the inserts, the coating step being preferably followed by a crosslinking step, more preferably by adding heat.
  • a preparation such as an adhesive, for example based on polymer material(s)
  • the resistive skin with the inserted inserts is thus covered with a film of a predetermined preparation such as a film of glue, for example an epoxy glue which will be crosslinked with the addition of heat, in particular around the orifices delimited by the tubular body of the inserts in order to free the orifices from the glue.
  • a film of glue for example an epoxy glue which will be crosslinked with the addition of heat, in particular around the orifices delimited by the tubular body of the inserts in order to free the orifices from the glue.
  • the glue also has the advantage of ensuring a dual function, on the one hand to ensure the maintenance of the inserts against the associated skin, and on the other hand, to ensure bonding of the two layers of cellular cores of the DDOF structure when the skin perforated by the inserts constitutes the septum which separates them.
  • the step of positioning the inserts in the resistive skin comprises at least: a first positioning step in which a tool carries at least one punch and comes opposite a cell, the punch having a head configured to come into contact against the collar of the associated insert, and a rod, the rod passing axially through the tubular body of the associated insert along its opening axis; a second positioning step, subsequent to the first positioning step, in which the punch is moved by an axial translation along the opening axis so as to perforate the resistive skin, the head of the punch pushing the insert up to that its collar comes into contact directly against the resistive skin; and a third positioning step in which the punch withdraws leaving the insert in the resistive skin.
  • the method of manufacturing the acoustic composite structure being characterized in that it comprises the following steps: manufacturing a structural element according to the method described above; assembly of the structural element with at least one skin, preferably a resistive or reflective skin, covering the other of the two faces of the cellular core.
  • This distinct skin to which the structural element is assembled is in particular a reflective skin, for example in the case of an SDOF structure or can for example be another reflective skin, for example if the reflective skin of the structural element is intended to form the septum of a DDOS structure.
  • the method of manufacturing the acoustic composite structure comprises a step of superimposing at least one layer of cellular core with the acoustic composite structure
  • the reflective skin is draped in the form of a prepreg, an autoclave cooking step preferably also being implemented after assembly.
  • Figure 1 a schematic sectional view of a part of an acoustic composite structure of complex shape according to a first embodiment
  • Figure 2 a schematic sectional view of a part of an acoustic composite structure of planar shape according to another embodiment, shown without the resistive and reflective skins on the end faces
  • Figure 3 an isometric perspective view, from below, of the acoustic composite structure of Figure 2
  • Figure 4 a top view of the acoustic composite structure of Figure 2
  • Figure 5A a view of a first step of positioning an insert in the resistive skin of a method of manufacturing a structural element according to one embodiment
  • Figure 5B a view of a second step of positioning the insert in the resistive skin of the method of manufacturing a structural element, this second step being subsequent to the first step of Figure 5A
  • Figure 5C a view of a third step of positioning the insert in the resist
  • Figure 1 illustrates a schematic sectional view of a part of an acoustic composite structure 100 according to one embodiment of the invention.
  • the acoustic attenuation structure 100 here comprises a structure with two degrees of freedom, commonly called “DDOF”.
  • the acoustic attenuation structure 100 comprises a superposition of two cellular cores 20, 20', a lower cellular core 20 and an upper cellular core 20', each comprising a network of hollow cells 21, 21' delimited by partitions 22, 22'.
  • the two cellular cores 20, 20' are separated from each other by a septum 30'.
  • Each of these cellular cores 20, 20' are here made up of a honeycomb type structure, for example of the NIDA® type.
  • each of the cellular cores 20, 20' is preferably made of at least one metallic material(s), more preferably of metallic material(s) capable of to withstand high temperatures depending on the desired uses. In the field of aeronautics for example, one can choose one or more metallic material(s) capable of resisting hot ejection temperatures.
  • the materials used to constitute the network of cells 21, 21' can of course be different, for example in thermoplastic material(s) or in synthetic material(s), for example in aramid. It will also be noted that other shapes of cells 21, 21' can be used, and not only in hexagonal shapes in the case of honeycombs.
  • the cellular structure formed by the superposition of the two cellular cores 20, 20' is covered: on one of its two faces, with a resistive skin 31, also called acoustic skin, permeable to the acoustic waves that we wish to attenuate. and covered, and on another of its two faces, opposite the face covered by the resistive skin 31, with a reflective skin 32, also called solid skin, which is generally oriented opposite a noise source, either at the rear in relation to the acoustic composite structure.
  • a resistive skin 31 also called acoustic skin
  • a reflective skin 32 also called solid skin
  • the septum 30' forms an intermediate resistive skin separating the two cellular cores 20, 20'.
  • each of the alveoli of this central cellular structure namely each of the alveoli of the two alveolar cores 20, 20', forms a Helmholtz resonator.
  • the resonator is thus constituted by a bottle, formed by a cell of the nest of bees and a collar formed by piercing the resistive skin.
  • the septum 30' is itself also pierced and the entire thickness of the DDOF structure is thus used to attenuate the acoustic waves, the cells of the two cellular cores 20, 20' being superimposed , a given pair of superimposed cells 21, 21' communicating with each other via an orifice 55 of the septum 30'. In this way, the septum 30' forms an intermediate resistive skin, between the two cellular cores 20, 20'.
  • Each insert 50 has a through tubular body 51 open at its ends 53, 54 and a collar 52 projecting from the associated tubular body 51.
  • the tubular body 51 being through, it allows the communication of acoustic waves through it between two cells 21, 21' of a given pair of superimposed cells of the cell cores 20, 20'.
  • the intermediate resistive skin 30 formed here by the septum 30' is perforated by each of the attached inserts 50, which are positioned opposite all or part of the cells 21 of the lower cellular core 20.
  • the lower cellular core 20 and the septum 30' together form a structural element 10.
  • a structural element 10 comprising the septum 30' forming a resistive skin and the upper cellular core 20' is also possible but more complex to be manufactured because this implies that for each positioned insert, the collar is positioned against the resistive skin on a first side, and the tubular body opens out on a second side, opposite the first side, the first side of the resistive skin corresponding to the interior side, facing the cellular core, the second side of the resistive skin being the exterior side of the structural element relative to the resistive skin, opposite the cellular core.
  • the structural element 10 can be integrated into a structure other than a DDOF.
  • the acoustic composite structure could be a simple composite panel formed from the cellular core 20 sandwiched between the reflective 31 and resistive skins 30, 32.
  • the acoustic composite structure could comprise more than 2 degrees of freedom, for example 3.
  • the resistive skin pierced by the inserted inserts 50 can be one of the intermediate skins forming the septum, or even the exterior resistive skin.
  • the resistive skin pierced by the inserts 50 forms a septum separating two of the layers of cellular cores, for example to guarantee the flatness of the exterior resistive layer in order to guarantee optimal aerodynamic performance.
  • the structural element 10 thus formed is configured so that, for each insert 50: the flange 52 of said inserts 50 is positioned against the associated resistive skin 30, here the septum 30', d a first side here exterior of the structural element 10 relative to the associated resistive skin 30, namely here on the side opposite the lower cellular core 20, and the tubular body 51 opens onto a second side, opposite the first side, in particular in one of the associated cells 21 of the lower cellular core 20.
  • the added inserts 50 are independent of each other, that is to say they are not linked together, other than of course by the septum 30' once positioned on them. In other words, they are not linked by dedicated fixing means, unlike the prior art.
  • the tubular body 51 of the inserts 50 is cylindrical and open axially at its two ends 53, 54. This allows the communication of acoustic waves through the hollow space open in a traversing manner of the tubular body 51 delimiting the associated orifice 55.
  • the tubular body 51 of each of the inserts 50 extends between its two ends, namely a first and a second end 53, 54 along an opening axis A.
  • the opening axis A is such that it is oriented at least locally perpendicular to the face of the cellular core 20 covered by the septum 30'.
  • the tubular body 51 carries at the first end 53 the flange 52 which extends in a plane P orthogonal to the opening axis A.
  • the flange 52 has the shape of a disc crown coaxially surrounding the tubular portion of the first end 53 of the tubular body 51.
  • the inserts 50 are each formed in one piece, preferably in thermoplastic materials, more preferably obtained by molding, for example by injection.
  • thermoplastic materials that can be used, we can cite for example polyetheretherketone (PEEK), polyetherimide (PEI), polyphenylene sulfide (PPS), or even polycarbonate (PC).
  • PEEK polyetheretherketone
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • other materials alone or in combination can be used.
  • other manufacturing processes can be used such as extrusion or additive manufacturing.
  • Each insert 50 may have a second end 54 beveled circumferentially in the direction of a narrowing in diameter of the tubular body towards the second end 54.
  • This bevel may make it easier to position the associated insert 50 during perforation. of the skin, this even if the second end 54 is not intended to itself ensure the perforation of said skin, for example when using a punch 60 (see Figures 5A, 5B and 5C described below).
  • This bevel can also be obtained to facilitate the manufacture of the insert 50 by forming an undercut.
  • the internal diameter of the tubular body 51 is predetermined and calibrated according to the use for which the acoustic composite structure 100 is intended, its dimensions and the frequency ranges of acoustic waves to be attenuated.
  • the collar 52 and the tubular body 51 are connected by a fillet oriented towards the second end 54.
  • the fillet offers the advantage of allowing a cooling rate more homogeneous, if the insert 50 is made of metallic material(s) in particular, or to ensure good flow in the mold and therefore good filling, if the insert 50 is made of material(s) thermoplastic(s) in particular, or more simply to guarantee good demoulding of the part.
  • Figures 2, 3 and 4 illustrate schematic views of a part of an acoustic composite structure 100 shown without the resistive 32 and reflective 31 skins on the end faces, in respectively sectional views, in isometric perspective from below and above.
  • This second embodiment illustrated in these Figures 2, 3 and 4 differs from the first embodiment of Figure 1 essentially in that it is planar, that is to say that it does not present a complex curved shape.
  • a first step of the manufacturing process consists of manufacturing the structural element 10. Firstly, the cellular core 20 is manufactured, intended to form the lower cellular core 20 of the final DDOS, the cellular core 20here presenting the shape of a honeycomb structure.
  • the cellular core 20 can then be formed at this stage of the process.
  • the resistive skin 30 of the structural element 10 is positioned so as to cover one of the faces 23, 24 of the cellular core 20.
  • the resistive skin is formed of a multilayer composite structure. It is draped on the associated face of the cellular core 20 in the form of a prepreg film composed of several layers.
  • This multilayer prepreg skin notably comprises at least one structural ply, for example a fabric formed of glass fibers pre-impregnated with epoxy resin.
  • This structural addition is also interposed between two films of epoxy glue, one of the layers of glue of which will be in contact with one end of the partitions 22 of the network of cells 21 of the lower cellular core 20, on the side of the face covered by the skin.
  • each layer constituting the resistive skin 30 of the structural element 10 may be different.
  • the layers may be woven or non-woven. Several structural folds can be superimposed, which is particularly advantageous in terms of resistance. Strength is further increased when the fibers in the different woven plies have different orientations. The orientation of the fibers is configured to ensure the best resistance depending on the desired end use.
  • the layers of glue(s) can also vary and be screened or not.
  • the fabric of the woven ply(s) may also be in a material other than glass, for example carbon fibers.
  • One of the layers can also be a thermoplastic film or fabric.
  • a multi-layer skin comprising an air-impermeable barrier, at least one of the layers being impermeable to air and having a resistance to air flow equal to or greater than approximately 50 rayls MKS, or 50 kg s -1 ⁇ m " 2 in fundamental units SL
  • FIG. 5A, 5B and 5C This method of positioning the inserts 50 is illustrated in detail in Figures 5A, 5B and 5C.
  • a first step of positioning an insert 50 in the resistive skin 30 of the structural element 10 in which a tool (not illustrated) carries a punch 60 and comes opposite a cell 21, the punch 60 having a head 62 configured to come into contact against the collar 52 of the insert 50, and a rod 61, the rod 61 passing axially through the body 51 tubular of the insert 50 along its opening axis A.
  • the rod 61 extends axially under the head 62 and has a length greater than that of the insert 50 which guarantees the fact that the rod 61 passes through on either side the tubular body 51 of the insert 50.
  • the external diameter of the rod 61 is chosen so as to be substantially equal to the internal diameter of the tubular body 51 so that the friction generated between the punch 60 and the insert 50 are sufficient to keep the insert 50 fitted on the punch during this first step, without however constraining it too much so that it remains possible to remove the insert 50; a second step of positioning the insert 50 in the resistive skin 30 of the method of manufacturing the structural element 10, this second step being subsequent to the first step.
  • the punch 60 is moved along the opening axis A so as to perforate the skin 30, the head 62 of the punch pushing the insert 50 until its collar 52 comes into contact directly against the prepreg 30. During this step, the collar 52 sticks against the first layer of the prepreg reflective skin.
  • the tool can be for example a robotic arm provided at its end with punch 60.
  • the robotic arm can be configured to place an insert 50 each time, and include a single punch 60, or well carry several punches 60 and be thus configured to position several inserts 50 in a synchronized manner.
  • the advantage of a positioning tool carried by a robotic arm is to facilitate the installation of the inserts 50 along a complex surface.
  • the robotic arm is for example a 6-axis robotic arm.
  • a step of coating a preparation 40 is implemented.
  • the preparation may for example be a glue, for example based on polymer materials.
  • This step consists in particular of coating at least on the one hand the exterior side of the resistive skin 30 perforated by the inserts 50, side against which the lower faces of the flanges 52 of the inserts 50 are in contact, and on the other hand the upper faces flanges 52 of inserts 50.
  • the coating step is followed by a crosslinking step, for example by adding heat.
  • the multilayer resistive skin 30 provided with inserts 50 then inserted through said skin is thus covered with a film of epoxy glue which is then crosslinked with the addition of heat around the orifices 55 of the inserts 50 in order to to release them from the glue (see Figures 6A and 6 B).
  • the crosslinking of the glue hardens the glue, and the glue possibly placed in the orifices 55 of the tubular bodies 51 is withdrawn locally leaving these orifices 55 free.
  • This additional layer 40 allows the embedding of the flanges 52 of the inserts 50 between the additional layer of preparation on the one hand, and the resistive skin 30 on the other hand, this to guarantee the maintenance of the inserts 50 during the operating life of the acoustic composite structure 100.
  • the structural element 10 is assembled with at least one skin, such as a resistive skin 32 (see for example Figure 1) so that it covers the other of the two faces of the cellular core 20.
  • a resistive skin 32 see for example Figure 1
  • another cellular core 20' and its reflective skin 31 are also assembled by being glued.
  • the assembly is placed in an autoclave to undergo a cooking step.
  • the different septa 30' which separate the different layers of cellular cores 20, 20', the different layers of cellular cores 20, 20', the rear reflective skin 32 and the front exterior resistive skin 31 are assembled under the shape of a single piece before being introduced into the autoclave.
  • the structural element alone can be cooked in an autoclave and then the structural element can be integrated into an acoustic composite structure by means of another process, for example by brazing.

Abstract

L'invention concerne un élément de structure (10) pour une structure composite acoustique (100), l'élément de structure comprenant au moins une âme alvéolaire (20) comportant un réseau d'alvéoles (21) creuses délimitées par des cloisons (22) s'étendant entre deux faces (23, 24) de l'âme alvéolaire (20), et au moins une peau résistive (30) recouvrant une des faces de l'âme alvéolaire (20), l'élément de structure (10) étant caractérisé en ce qu'il comprend une pluralité d'inserts (50) rapportés, chaque insert (50) présentant un corps (51) tubulaire traversant ouvert à ses extrémités (53, 54) et une collerette (52) saillante depuis le corps (51) tubulaire associé, et en ce que la peau résistive (30) est perforée par chacun des inserts (50) positionnés en face de tout ou partie des alvéoles (21) de sorte que, pour chaque insert (50), la collerette (52) est positionnée contre la peau résistive (30) d'un premier côté, et le corps (51) tubulaire débouche d'un deuxième côté, opposé au premier côté.

Description

DESCRIPTION
ÉLÉMENT DE STRUCTURE MUNI D'INSERTS RAPPORTES POUR UNE STRUCTURE COMPOSITE ACOUSTIQUE ET PROCEDE DE FABRICATION ASSOCIE
DOMAINE TECHNIQUE DE L'INVENTION
[0001] L' invention concerne, de façon générale, le domaine technique des structures ou panneaux d'atténuation acoustiques.
[0002] L’ invention se rapporte à la fabrication de panneaux composites comprenant une âme centrale alvéolaire du type nid d’abeille prise en sandwich entre deux peaux, en particulier appliqués à des structures d'atténuation acoustiques utilisées pour réduire les bruits produits dans des environnements contraignants, par exemple dans le domaine aéronautique dans les moteurs d'avion comme dans les turbines à gaz ou échappement de ceux-ci, ou encore dans le domaine ferroviaire.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
[0003] Les structures d'atténuation acoustique sont classiquement constituées d'une part, d’une plaque ou peau acoustique dite peau « résistive » perméable aux ondes acoustiques que l'on souhaite atténuer et, d’autre part, d'une plaque ou peau pleine dite peau « réflective », entre lesquelles est disposée une âme formant un corps cellulaire, par exemple une structure alvéolaire de type nid d'abeille.
[0004] La peau acoustique est généralement acoustiquement poreuse et perforée d’une multitude d’orifices permettant une communication fluidique entre l’extérieur et l’intérieur de l’âme alvéolaire de la structure composite, pour former ainsi une structure d’atténuation acoustique de type panneau composite acoustique.
[0005] De façon bien connue, de telles structures d’atténuation acoustique forment des résonateurs de type Helmholtz qui permettent d'atténuer dans une certaine gamme de fréquences les ondes acoustiques, chacune des cellules de l’âme alvéolaire ouverte au niveau de la perforation associée de la peau acoustique formant un résonateur de Helmholtz. Ces structures d'atténuation acoustique présentent généralement une âme alvéolaire de type nid d’abeille et les performances acoustiques obtenues sont ainsi limitées à l’absorption d'une gamme de fréquences relativement étroite dépendante de la forme et des dimensions de chacune des alvéoles.
[0006] Une solution pour augmenter la gamme de fréquences d'atténuation acoustique d’une structure acoustique est de superposer plusieurs éléments de structure comportant chacun une âme alvéolaire, les alvéoles ayant des formes et des dimensions similaires ou différentes. Dans une telle configuration, la structure d’atténuation composite à âme alvéolaire, c’est-à-dire la structure en nid d'abeille peut être une structure à 1 degré de liberté (structure SDOF, SDOF pour « Simple Degree Of Freedom »), à 2 degrés de liberté (structure DDOF, DDOF pour « Double Degree Of Freedom ») ou, plus généralement, à M degrés de liberté (structure MDOF, MDOF pour « Multiple Degree Of Freedom »), M étant un entier supérieur à 2.
[0007] Lorsque la structure composite acoustique possède plusieurs degrés de liberté, elle comprend plusieurs couches de corps cellulaires ou d’âmes alvéolaires superposées, deux couches d’âmes alvéolaires empilées voisines étant séparées par un septum. Il est connu que ce septum soit constitué d’une paroi microporeuse percée de trous de sorte que, pour deux alvéoles données d’une paire d’alvéoles superposées, chacune appartenant à l’une et l’autre deux couches d’âmes alvéolaires empilées distinctes et voisines, lesdites alvéoles de la paire d’alvéoles donnée communiquent acoustiquement entre elles. Le septum s’apparente donc à une peau résistive intermédiaire. Bien qu’une telle structure composite acoustique présente une épaisseur totale plus importante, une telle caractéristique permet d’agrandir le volume de chaque cavité formant résonateur de Helmholtz et d’étendre en conséquence la bande de fréquence des ondes acoustiques atténuées vers des fréquences plus basses, comprises par exemple entre 500 et 1000 Hz.
[0008] Le perçage de la paroi constituant le septum est bien connu et relativement simple à mettre en œuvre pour des structures composites acoustiques planes, formant des panneaux acoustiques plans réguliers. Toutefois, un tel perçage est complexe à mettre en œuvre pour des structures composites acoustiques présentant des formes courbes, voire complexes. [0009] On connaît aussi l’utilisation de pièces rapportées destinées à se loger dans chacune des alvéoles de la structure cellulaires pour améliorer les performances acoustiques d’un panneau acoustique. Dans le document FR 3 082 987 par exemple, des troncs de cônes sont reliés entre eux par des barrettes au niveau de leurs grandes bases qui doivent être positionnées dans des encoches réalisées à l’extrémité des alvéoles. Les troncs de cônes sont prévus pour venir se loger chacun à l’intérieur d’une alvéole associée, chaque grande base étant inscrite dans une section de l’espace intérieur de l’alvéole associée.
[0010] Cependant, cette solution est difficile à mettre œuvre en particulier en ce qui concerne le contrôle du positionnement entre les troncs de cône et les alvéoles ainsi que l’étanchéité entre ces éléments. En effet, si la géométrie des encoches ainsi que celle des barrettes ne correspondent pas parfaitement, certaines barrettes ne sont pas correctement positionnées dans les encoches, ce qui entraîne des jeux avec la peau acoustique. Les performances et l’étanchéité de la structure d'atténuation acoustique sont alors dégradées. Le procédé de fabrication est également plus difficile à mettre en œuvre dans le cas de pièces courbes du fait de la rigidité conférée à la structure acoustique par l’utilisation des troncs de cônes.
[0011] Outre la complexité du procédé de fabrication, l’utilisation d’une telle structure rapportée dans les alvéoles d’une âme alvéolaire d’un panneau acoustique augmente substantiellement la masse du panneau acoustique obtenu, ce qui est critique dans certaines applications comme en aéronautique.
[0012] Par ailleurs, dans le cas de la fabrication de structure à multiples degrés de liberté (DDOF et MDOF), les processus de fabrication du septum perforé sont souvent complexes à mettre en œuvre dans le procédé de fabrication global de la structure acoustique. En particulier, il est connu d’utiliser un procédé de drapage d’un tissu préimprégné sur un corps cellulaire, puis autoclavé. La multiplication des étapes de positionnement d’inserts avec ce type de procédé de fabrication en combinaison avec les autres étapes de fabrication habituelles de la structure composite acoustique implique une durée de fabrication importante et de facto un coût de fabrication plus important. [0013] D’autres solutions existent consistant par exemple à définir les trous d’une peau acoustiquement poreuse en même temps que la peau elle-même. C’est le cas notamment en utilisant des procédés de fabrication additive. Toutefois, même si un tel procédé de fabrication de la peau acoustiquement poreuse peut être mis en œuvre en parallèle d’un procédé de fabrication d’une structure composite complète, de tels procédés sont particulièrement longs à mettre en œuvre, et présentent des contraintes supplémentaires propres à ce type de procédé de fabrication.
EXPOSE DE L'INVENTION
[0014] L’ invention vise à remédier à tout ou partie des inconvénients de l’état de la technique en proposant notamment une solution permettant d’obtenir une structure acoustique composite simple à et qui constitue un isolant acoustique qui soit performant.
[0015] Pour ce faire est proposé, selon un premier aspect de l'invention, un élément de structure pour une structure composite acoustique, l’élément de structure comprenant au moins une âme alvéolaire comportant un réseau d’alvéoles creuses délimitées par des cloisons s’étendant entre deux faces de l’âme alvéolaire, et au moins une peau résistive recouvrant une des faces de l’âme alvéolaire, l’élément de structure étant remarquable en ce qu’il comprend une pluralité d’inserts rapportés, chaque insert présentant un corps tubulaire traversant ouvert à ses extrémités et une collerette saillante depuis le corps tubulaire associé, et en ce que la peau résistive est perforée par chacun des inserts positionnés en face de tout ou partie des alvéoles de sorte que, pour chaque insert, la collerette est positionnée contre la peau résistive d’un premier côté , et le corps tubulaire débouche d’un deuxième côté, opposé au premier côté.
[0016] Grâce à une telle combinaison de caractéristiques, la conception des inserts rapportés, c’est-à-dire distincts de la peau résistive, est simplifiée et sa mise en place sur une peau résistive d’un élément de structure est simple, même si la face associée de l’âme alvéolaire présente une forme non plane. Par ailleurs, l’utilisation de tels inserts rapportés ne rigidifie pas l’ensemble de manière excessive. Enfin, de tels inserts tubulaires permettent d’améliorer les performances acoustiques, ceci pour un poids relativement minimisé comparativement à des solutions de l’art antérieur. [0017] Selon un mode de réalisation, les inserts sont formés d’un seul tenant, le corps tubulaire de chacun des inserts s’étendant entre une première extrémité présentant la collerette et une deuxième extrémité. De préférence, la deuxième extrémité est biseautée circonférentiellement, c’est-à-dire que le corps tubulaire présente une diminution ou un rétrécissement de son diamètre extérieur vers, de préférence jusque, la deuxième extrémité. Dans une telle configuration, l’extrémité présente alors une enveloppe extérieure tronconique. Une telle extrémité biseautée permet de faciliter la perforation de la peau résistive.
[0018] Selon un mode de réalisation, le premier côté de la peau résistive correspond au côté extérieur de l’élément de structure par rapport à la peau résistive, opposé à l’âme alvéolaire, le deuxième côté de la peau résistive étant le côté en regard de l’âme alvéolaire.
[0019] Selon un mode de réalisation, la peau résistive est formée d’une structure composite multicouches. De préférence, la peau résistive comporte un tissu préimprégné, de préférence encore une couche de tissu interposée entre deux couches de colle. On notera que les caractéristiques de l’élément de structure lors de sa fabrication (sous forme de préimprégné par exemple) sont également les mêmes une fois l’élément de structure fabriqué. La cuisson en autoclave qui permet de finaliser la fabrication ne modifie en effet pas la structure de l’élément de structure ni de la structure composite acoustique dans laquelle elle est intégrée le cas échéant.
[0020] Selon un mode de réalisation, le corps tubulaire de chacun des inserts s’étend entre une première et une deuxième extrémités suivant un axe d’ouverture, le corps tubulaire présentant, à la première extrémité, la collerette s’étendant dans plan orthogonal à l’axe d’ouverture, le corps tubulaire étant ouvert axialement à ses deux extrémités.
[0021] Selon un mode de réalisation, le corps tubulaire des inserts présente une section constante, par exemple cylindrique.
[0022] Selon un mode de réalisation, les inserts sont distincts les uns des autres. De cette manière les inserts ne sont pas solidaires les uns des autres avant la perforation de la peau résistive. On minimise ainsi la rigidité de l’élément de structure obtenu.
[0023] Selon un mode de réalisation, les inserts rapportés sont formés d’un seul tenant, de préférence en matériau(x) thermoplastique(s), de préférence encore obtenu par moulage, par exemple par injection. De tels inserts sont simples à fabriquer, résistants, et peu coûteux.
[0024] Selon un autre aspect de l’invention, celle-ci a trait à une structure composite acoustique remarquable en ce qu’elle comprend au moins un élément de structure tel que décrit ci-avant.
[0025] Selon un mode de réalisation, la structure acoustique peut former un simple panneau acoustique, notamment lorsqu’une peau réflective est ajoutée de sorte à recouvrir l’autre des deux faces de l’âme alvéolaire, à savoir la face opposée de la peau résistive par rapport à l’âme alvéolaire. On obtient une structure composite acoustique simple formant un panneau, plan ou non, dont l’âme alvéolaire est interposée entre les peaux réflective et résistive.
[0026] Selon un mode de réalisation, la structure composite acoustique comprend une structure composite à N degrés de liberté comprenant une superposition de N couches d’âmes alvéolaires, N étant supérieur ou égal à 2, la structure composite comprenant au moins un septum séparant deux des couches d’âmes alvéolaires empilées voisines, la couche résistive perforée par les inserts formant le septum ou l’un des septums de la structure composite acoustique.
[0027] Dans le cas où N est égal à 2, la structure composite forme un DDOF, la couche résistive perforée par les inserts formant le septum du DDOF. On obtient une structure composite acoustique dont la peau résistive extérieure, c’est-à-dire ouverte vers l’extérieur, peut présenter une forme aérodynamique et qui répond dans le même temps aux problématiques d’absorption des sons à basses fréquences et à hautes fréquences par un résonateur de Helmholtz adapté grâce aux inserts tubulaires.
[0028] Selon un autre aspect, l’invention concerne également un procédé de fabrication d’un élément de structure pour une structure composite acoustique, l’élément de structure comprenant au moins une âme alvéolaire comportant un réseau d’alvéoles creuses délimitées par des cloisons s’étendant entre deux faces de l’âme alvéolaire, et au moins une peau résistive recouvrant une des faces de l’âme alvéolaire, l’élément de structure comprenant une pluralité d’inserts rapportés, chaque insert présentant un corps tubulaire traversant ouvert à ses extrémités et une collerette saillante depuis le corps tubulaire associé, la peau résistive étant perforée par chacun des inserts positionnés en face de tout ou partie des alvéoles de sorte que, pour chaque insert, la collerette est positionnée contre la peau résistive d’un premier côté , et le corps tubulaire débouche d’un deuxième côté, opposé au premier côté, le procédé de fabrication de l’élément de structure étant remarquable en ce qu’il comprend les étapes suivantes : fabrication de l’âme alvéolaire ; positionnement de la peau résistive de sorte à ce qu’elle recouvre une des faces de l’âme alvéolaire ; positionnement des inserts dans la peau résistive en face de tout ou partie des alvéoles de sorte que, pour chaque insert positionné, la collerette est positionnée contre la peau résistive d’un premier côté, et le corps tubulaire débouche d’un deuxième côté, opposé au premier côté.
[0029] Selon un mode de réalisation, le procédé de fabrication de l’élément de structure comprend une étape d’enduction d’une préparation telle qu’une colle, par exemple à base de matériau(x) polymère(s), de sorte à enduire le premier côté de la peau résistive perforée par les inserts rapportés et des faces supérieures des collerettes des inserts, l’étape d’enduction étant de préférence suivie par une étape de réticulation, de préférence encore par apport de chaleur.
[0030] La peau résistive avec les inserts insérés est ainsi recouverte d’un film d’une préparation prédéterminée tel qu’un film de colle, par exemple une colle époxy qui sera réticulée avec apport de chaleur, notamment autour des orifices délimités par le corps tubulaire des inserts afin de libérer les orifices de la colle. Cette couche supplémentaire de colle permet l’encastrement des collerettes des inserts entre deux couches, la peau résistive associée d’une part, et la préparation à réticuler d’autre part, ceci pour garantir un maintien amélioré des inserts durant la durée de vie de fonctionnement de la structure acoustique. Dans le cas d’un DDOF, la colle a en outre l’avantage d’assurer une double fonction, d’une part d’assurer le maintien des inserts contre la peau associée, et d’autre part, d’assurer le collage des deux couches d’âmes alvéolaires de la structure DDOF lorsque la peau perforée par les inserts constitue le septum qui les sépare.
[0031] Selon un mode de réalisation, l’étape de positionnement des inserts dans la peau résistive comprend au moins : une première étape de positionnement dans laquelle un outil porte au moins un poinçon et vient en regard d’une alvéole, le poinçon présentant une tête configurée pour venir en contact contre la collerette de l’insert associé , et une tige, la tige traversant axialement le corps tubulaire de l’insert associé suivant son axe d’ouverture ; une deuxième étape de positionnement, ultérieure à la première étape de positionnement, dans laquelle le poinçon est déplacé par une translation axiale suivant l’axe d’ouverture de sorte à perforer la peau résistive, la tête du poinçon poussant l’insert jusqu’à ce que sa collerette vienne en contact directement contre la peau résistive ; et une troisième étape de positionnement dans laquelle le poinçon se retire laissant l’insert dans la peau résistive.
[0032] Selon un autre aspect de l’invention, celle-ci concerne également un procédé de fabrication d’une structure composite acoustique tel que décrit ci-avant, le procédé de fabrication de la structure composite acoustique étant caractérisé en ce qu’il comprend les étapes suivantes : fabrication d’un élément de structure selon le procédé décrit ci-avant ; assemblage de l’élément de structure avec au moins une peau, de préférence une peau résistive ou réflective, recouvrant l’autre des deux faces de l’âme alvéolaire.
[0033] Cette peau distincte à laquelle l’élément de structure est assemblé est notamment une peau réflective, par exemple dans le cas d’une structure SDOF ou peut être par exemple une autre peau réflective, par exemple si la peau réflective de l’élément de structure est destinée à former le septum d’une structure DDOS.
[0034] Selon un mode de réalisation, le procédé de fabrication de la structure composite acoustique comprend une étape de superposition d’au moins une couche d’âme alvéolaire avec la structure composite acoustique
[0035] De préférence la peau réflective est drapée sous forme de préimprégné, une étape de cuisson en autoclave étant de préférence encore mise en œuvre après l’assemblage.
BRÈVE DESCRIPTION DES FIGURES
[0036] D’autres caractéristiques et avantages de l’invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent : figure 1 : une vue en coupe schématique d’une partie d’une structure composite acoustique de forme complexe selon un premier mode de réalisation ; figure 2 : une vue en coupe schématique d’une partie d’une structure composite acoustique de forme plane selon un autre mode de réalisation, représentée sans les peaux résistive et réflective aux faces d’extrémités ; figure 3 : une vue en perspective isométrique, de dessous, de la structure composite acoustique de la figure 2 ; figure 4 : une vue de dessus de la structure composite acoustique de la figure 2 ; figure 5A : une vue d’une première étape de positionnement d’un insert dans la peau résistive d’un procédé de fabrication d’un élément de structure selon un mode de réalisation ; figure 5B : une vue d’une deuxième étape de positionnement de l’insert dans la peau résistive du procédé de fabrication d’un élément de structure, cette deuxième étape étant ultérieure à la première étape de la figure 5A ; figure 5C : une vue d’une troisième étape de positionnement de l’insert dans la peau résistive du procédé de fabrication d’un élément de structure, cette troisième étape étant ultérieure à la deuxième étape de la figure 5 B ; figure 6A : une vue en coupe schématique prise localement au niveau d’un insert d’une étape d’enduction d’une préparation, de sorte à enduire le côté extérieur d’une peau résistive perforée par les inserts et des faces supérieures des collerettes des inserts ; figure 6B : une vue similaire à la figure 6A dans laquelle, l’étape d’enduction de la préparation a été suivie d’une étape de réticulation.
[0037] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l’ensemble des figures.
DESCRIPTION DÉTAILLÉE D'UN MODE DE RÉALISATION
[0038] La figure 1 illustre une vue en coupe schématique d’une partie d’une structure composite acoustique 100 selon un mode de réalisation de l’invention.
[0039] La structure d’atténuation acoustique 100 comprend ici une structure à deux degrés de liberté, communément appelée « DDOF ». La structure d’atténuation acoustique 100 comprend une superposition de deux âmes alvéolaires 20, 20', une âme alvéolaire inférieure 20 et une âme alvéolaire supérieure 20', comportant chacune un réseau d’alvéoles 21, 21' creuses délimitées par des cloisons 22, 22'. Les deux âmes alvéolaires 20, 20' sont séparées l’une de l’autre par un septum 30'. Chacune de ces âmes alvéolaires 20, 20' est ici constituée d’une structure de type nid d’abeille, par exemple de type NIDA®. On choisira par exemple que les alvéoles 21, 21' des différentes couches d'alvéoles 20, 20' aient des épaisseurs différentes selon les couches afin d'atténuer des ondes acoustiques de bandes de fréquences différentes. La structure en nid d'abeille de chacune des âmes alvéolaires 20, 20' est de préférence constituée d’au moins un matériau(x) métallique(s), de préférence encore de matériau(x) métallique(s) apte(s) à résister à des températures élevées en fonction des usages souhaités. Dans le domaine de l’aéronautique par exemple, on peut choisir un ou des matériau(x) métallique(s) apte(s) à résister à des températures d'éjection chaude. Les matériaux utilisés pour constituer le réseau d’alvéoles 21, 21' peuvent bien entendu être différents, par exemple en matériau(x) thermoplastique(s) ou en matériau(x) synthétique(s), par exemple en aramide. On notera également que d’autres formes d’alvéoles 21, 21' peuvent être utilisées, et pas seulement en forme hexagonales s’agissant de nid d’abeille.
[0040] La structure cellulaire formée par la superposition des deux âmes alvéolaires 20, 20' est recouverte : sur une première de ses deux faces, d’une peau résistive31, aussi appelée peau acoustique, perméable aux ondes acoustiques que l'on souhaite atténuer et recouverte, et sur une autre de ses deux faces, opposée à la face recouverte par la peau résistive 31, d’ une peau réflective 32, aussi appelé peau pleine, qui est orientée généralement à l’opposée d’une source de bruit, soit à l’arrière par rapport à la structure composite acoustique.
[0041] Le septum 30' forme quant à lui une peau résistive intermédiaire séparant les deux âmes alvéolaires 20, 20'.
[0042] L’ espace intérieur des cellules est particulièrement important en ce que chacune des alvéoles cette structure cellulaire centrale, à savoir de chacune des alvéoles des deux âmes alvéolaires 20, 20', forme un résonateur de Helmholtz. Le résonateur est ainsi constitué par une bouteille, formée par une alvéole du nid d’abeilles et un col formé par un perçage de la peau résistive. Afin d’optimiser les performances acoustiques le septum 30' est lui-même également percé et l’intégralité de l’épaisseur de la structure DDOF est ainsi utilisée pour atténuer les ondes acoustiques, les alvéoles des deux âmes alvéolaires 20, 20' étant superposées, une paire d’alvéoles 21, 21' superposées donnée communiquant entre elles par l’intermédiaire d’un orifice 55 du septum 30'. De cette manière le septum 30' forme une peau résistive intermédiaire, entre les deux âmes alvéolaires 20, 20'.
[0043] Ces orifices 55 sont délimités chacun par un insert 50. Chaque insert 50 présente un corps 51 tubulaire traversant ouvert à ses extrémités 53, 54 et une collerette 52 saillante depuis le corps 51 tubulaire associé. Le corps tubulaire 51 étant traversant, il permet la communication des ondes acoustiques à travers lui entre deux alvéoles 21, 21' d’une paire d’alvéoles superposées donnée des âmes alvéolaires 20, 20'.
[0044] La peau résistive 30 intermédiaire formée ici par le septum 30' est perforée par chacun des inserts 50 rapportés, lesquels sont positionnés en face de tout ou partie des alvéoles 21 de l’âme alvéolaire inférieure 20. L’âme alvéolaire 20 inférieure et le septum 30' forment ensemble un élément de structure 10. On notera de manière alternative que la fabrication d’un élément de structure 10 comportant le septum 30' formant peau résistive et l’âme alvéolaire 20' supérieure est également possible mais plus complexe à fabriquer car cela implique que pour chaque insert positionné, la collerette est positionnée contre la peau résistive d’un premier côté, et le corps tubulaire débouche d’un deuxième côté, opposé au premier côté, le premier côté de la peau résistive correspondant au côté intérieur, en regard de l’âme alvéolaire, le deuxième côté de la peau résistive étant le côté extérieur de l’élément de structure par rapport à la peau résistive, opposé à l’âme alvéolaire.
[0045] On notera également que l’élément de structure 10 peut être intégré dans une autre structure qu’un DDOF. Par exemple, la structure composite acoustique pourrait être un simple panneau composite formé de l’âme alvéolaire 20 prise en sandwich entre les peaux réflective 31 et résistive 30, 32. Selon un autre exemple, la structure composite acoustique pourrait comporter plus de 2 degrés de liberté, par exemple 3. Dans ce cas la peau résistive percée par les inserts 50 rapportés peut être l’une des peaux intermédiaires formant septum, voire même la peau résistive extérieure. De préférence, on choisira une configuration dans laquelle la peau résistive percée par les inserts 50 forme un septum séparant deux des couches d’âmes alvéolaires, par exemple pour garantir la planéité de la couche résistive extérieure afin de garantir des performances aérodynamiques optimales.
[0046] Dans ce mode de réalisation, l’élément de structure 10 ainsi formé est configuré de sorte que, pour chaque insert 50 : la collerette 52 desdits inserts 50 est positionnée contre la peau résistive 30 associée, ici le septum 30', d’un premier côté ici extérieur de l’élément de structure 10 par rapport à la peau résistive 30 associée, à savoir ici du côté opposé à l’âme alvéolaire 20 inférieure, et le corps 51 tubulaire débouche d’un deuxième côté, opposé au premier côté, notamment dans l’une des alvéoles 21 associée de l’âme alvéolaire 20 inférieure.
[0047] Les inserts 50 rapportés sont indépendants les uns des autres, c’est-à-dire qu’ils ne sont pas liés entre eux, autrement bien entendu que par le septum 30' une fois positionnés dessus. En d’autres termes, ils ne sont pas liés par des moyens de fixation dédiés, à la différence de l’art antérieur.
[0048] Le corps 51 tubulaire des inserts 50 est cylindrique et ouvert axialement à ses deux extrémités 53, 54. On permet ainsi la communication des ondes acoustiques à travers l’espace creux ouvert de manière traversante du corps tubulaire 51 délimitant l’orifice associé 55.
[0049] Le corps 51 tubulaire de chacun des inserts 50 s’étend entre ses deux extrémités, à savoir une première et une deuxième extrémités 53, 54 suivant un axe d’ouverture A. Une fois un insert 50 positionné sur la peau résistive formant ici le septum 30', l’axe d’ouverture A est tel qu’il est orienté au moins localement perpendiculairement à la face de l’âme alvéolaire 20 recouverte par le septum 30'. [0050] Le corps 51 tubulaire porte à la première extrémité 53, la collerette 52 qui s’étend dans plan orthogonal P à l’axe d’ouverture A. La collerette 52 présente la forme d’une couronne discale entourant coaxialement la portion tubulaire de la première extrémité 53 du corps tubulaire 51. Les inserts 50 sont enfoncés à travers la peau résistive formant ici septum 30' de sorte que la collerette 52 vient en contact directement contre ladite peau associée.
[0051] Pour simplifier la fabrication, les inserts 50 sont formés chacun d’un seul tenant, de préférence en matériaux thermoplastiques, de préférence encore obtenu par moulage, par exemple par injection. Parmi les matériaux thermoplastiques pouvant être utilisés, on peut citer par exemple le polyetheretherketone (PEEK), le polyétherimide (PEI), le sulfure de polyphénylène (PPS), ou encore le polycarbonate (PC). Bien entendu, d’autres matériaux seuls ou en combinaison peuvent être utilisés. De même d’autres procédés de fabrication peuvent être utilisés tels que l’extrusion ou la fabrication additive.
[0052] Chaque insert 50 peut présenter une deuxième extrémité 54 biseautée circonférentiellement dans le sens d’un rétrécissement de diamètre du corps tubulaire vers la deuxième extrémité 54. Ce biseau peut permettre de faciliter le positionnement de l’insert 50 associé lors de la perforation de la peau, ceci quand bien même si la deuxième extrémité 54 n’est pas prévue pour assurer elle-même la perforation de ladite peau, par exemple lors de l’utilisation d’un poinçon 60 (voir les figures 5A, 5B et 5C décrite ci-après). Ce biseau peut également être obtenu pour faciliter la fabrication de l’insert 50 en formant une dépouille.
[0053] Le diamètre intérieur du corps tubulaire 51 est prédéterminé et calibré en fonction de l’usage auquel est destinée la structure composite acoustique 100, ses dimensions et des plages de fréquences d’ondes acoustiques à atténuer.
[0054] La collerette 52 et le corps tubulaire 51 sont raccordés par un congé orienté du côté de la deuxième extrémité 54. Dans le cas où l’insert est fabriqué en étant moulé, le congé offre l’avantage de permettre une vitesse de refroidissement plus homogène, si l’insert 50 est en matériau(x) métallique(s) notamment, ou d’assurer un bon écoulement dans le moule et donc un bon remplissage, si l’insert 50 est en matériau(x) thermoplastique(s) notamment, ou plus simplement de garantir un bon démoulage de la pièce. Une fois inséré à travers la peau résistive 30, formée ici par le septum 30', le congé vient au contact de la peau perforée dans laquelle l’insert 50 est inséré et adouci l’angle pour préserver intact le bord de la peau au niveau de la perforation.
[0055] Les figures 2, 3 et 4 illustrent des vues schématiques d’une partie d’une structure composite acoustique 100 représentée sans les peaux résistive 32 et réflective 31 aux faces d’extrémités, dans des vues respectivement en coupe, en perspective isométrique de dessous, et de dessus.
[0056] Ce deuxième mode de réalisation illustré sur ces figures 2, 3 et 4 diffère du premier mode de réalisation de la figure 1 essentiellement en ce qu’il est plan, c’est-à- dire qu’il ne présente pas une forme complexe courbe.
[0057] La fabrication de ce type de panneau sera mieux comprise à la lumière de la description qui suit.
[0058] Une première étape de procédé de fabrication consiste à fabriquer l’élément de structure 10. Dans un premier temps, on fabrique l’âme alvéolaire 20, destinée à former l’âme alvéolaire 20 inférieure du DDOS final, l’âme alvéolaire 20présentant ici la forme d’une structure en nid d’abeille.
[0059] Si l’âme alvéolaire présente une forme complexe, par exemple une forme courbe non plane, comme illustrée sur la figure 1 par exemple, l’âme alvéolaire 20 peut alors être formée à ce stade du procédé.
[0060] Ensuite, la peau résistive 30 de l’élément de structure 10 est positionnée de sorte à recouvrir une des faces 23, 24 de l’âme alvéolaire 20. La peau résistive est formée d’une structure composite multicouches. Elle est drapée sur la face associée de l’âme alvéolaire 20 sous forme d’un film préimprégné composé de plusieurs couches. Cette peau préimprégnée multicouche comprend notamment au moins un pli structural, par exemple un tissu formé de fibres de verre préimprégné par de la résine époxyde. Ce plus structural est également interposé entre deux films de colle époxyde dont une des couches de colle sera en contact avec une extrémité des cloisons 22 du réseau d’alvéoles 21 de l’âme alvéolaire inférieure 20, du côté de la face recouverte par la peau.
[0061] Bien entendu, la nature de chaque couche constituant la peau résistive 30 de l’élément de structure 10 peut être différente. Par exemple, les couches peuvent être tissées ou non tissées. Plusieurs plis structuraux peuvent être superposés, ce qui est particulièrement avantageux en termes de résistance. La résistance est encore accrue lorsque les fibres dans les différents plis tissés présentent des orientations différentes. L’orientation des fibres est configurée de sorte à assurer la meilleure résistance suivant l’usage final souhaité. Les couches de colle(s) peuvent varier également et être tramées ou non. Le tissu du ou des pli(s) tissés peut également être dans un autre matériau que le verre, par exemple en fibres de carbone. Une des couches peut également être un film ou tissu thermoplastique.
[0062] Pour garantir une étanchéité parfaite de la peau résistive associée, ce qui est particulièrement important pour garantir une bonne absorbation acoustique, on choisira de préférence une peau multicouches comportant une barrière imperméable à l'air, une des couches au moins étant imperméable à l'air et présentant une résistance au flux d'air égale ou supérieure à environ 50 rayls MKS, soit 50 kg s -1 ■ m "2 en unités fondamentales SL
[0063] Une fois que la peau résistive 30 préimprégnée est positionnée en recouvrant une des faces 23, 24 de l’âme alvéolaire 20, on vient positionner l’ensemble des inserts 50 dans la peau résistive 30 en face de tout ou partie des alvéoles 21 de l’âme alvéolaire 20 de sorte que, dans cet exemple et pour chaque insert 50 positionné, la collerette 52 est située directement contre la peau résistive 30 du côté extérieur de l’élément de structure 10 par rapport à la peau résistive 30, opposé à l’âme alvéolaire 20, et le corps tubulaire 51 débouche dans l’alvéole 21 associée.
[0064] Cette méthode de positionnement des inserts 50 est illustrée en détail sur les figures 5A, 5B et 5C. En particulier, sont illustrées respectivement : une première étape de positionnement d’un insert 50 dans la peau résistive 30 de l’élément de structure 10 dans laquelle un outil (non illustré) porte un poinçon 60 et vient en regard d’une alvéole 21, le poinçon 60 présentant une tête 62 configurée pour venir en contact contre la collerette 52 de l’insert 50, et une tige 61, la tige 61 traversant axialement le corps 51 tubulaire de l’insert 50 suivant son axe d’ouverture A. La tige 61 s’étend axialement sous la tête 62 et présente une longueur plus importante que celle de l’insert 50 ce qui garantit le fait que la tige 61 traverse de part et d’autre le corps tubulaire 51 de l’insert 50. Le diamètre externe de la tige 61 est choisi de sorte à être sensiblement égal au diamètre interne du corps 51 tubulaire de sorte que les frictions engendrées entre le poinçon 60 et l’insert 50 suffisent à maintenir l’insert 50 emmanché sur le poinçon durant cette première étape, sans toutefois trop le contraindre de sorte à ce qu’il reste possible de retirer l’insert 50 ; une deuxième étape de positionnement de l’insert 50 dans la peau résistive 30 du procédé de fabrication de l’élément de structure 10, cette deuxième étape étant ultérieure à la première étape. On vient ici déplacer le poinçon 60 par une translation axiale, suivant l’axe d’ouverture A. La tige 61 traversant axialement le corps 51 tubulaire de l’insert 50 suivant son axe d’ouverture A, l’extrémité distale de la tige 61 vient en contact en premier, soit avant l’insert 50, contre la peau résistive 30 durant le déplacement de l’insert 50 par le poinçon 60. L’extrémité distale de la tige 61 est munie d’une pointe pour faciliter la perforation de la peau résistive 30. Le poinçon 60 est déplacé suivant l’axe d’ouverture A de sorte à perforer la peau 30, la tête 62 du poinçon poussant l’insert 50 jusqu’à ce que sa collerette 52 vienne en contact directement contre le préimprégné 30. Lors de cette étape, la collerette 52 vient se coller contre la première couche de la peau réflective préimprégnée. Le choix d’une couche supérieure de la peau 30 préimprégnée doit ainsi permettre de garantir le collage de l’insert 50 et ainsi, lorsque le poinçon 60 se déplace en sens inverse pour se retirer, l’insert 50 reste en position tandis que le poinçon 60 se retire ; une troisième étape de positionnement de l’insert 50 dans la peau résistive 30 dans laquelle le poinçon 60 se retire laissant l’insert 50 dans la peau 30 grâce à une pégosité de la peau résistive 30 supérieure aux efforts de frictions maintenant l’insert 50 sur le poinçon 60 ; ensuite le poinçon 60 va chercher un autre insert 50 puis réitérer les étapes de positionnement de l’insert 50, jusqu’à ce que tous les inserts 60 soient positionnés sur l’élément de structure 10.
[0065] On notera que l’outil peut être par exemple un bras robotisé muni à son extrémité du poinçon 60. Par ailleurs, le bras robotisé peut être configuré pour placer un insert 50 à chaque fois, et comporter un unique poinçon 60, ou bien porter plusieurs poinçons 60 et être configuré ainsi pour positionner plusieurs inserts 50 de façon synchronisée. L’avantage d’un outil de positionnement porté par un bras robotisé est de faciliter la mise en place des inserts 50 suivant une surface complexe. Le bras robotisé est par exemple un bras robotisé 6 axes.
[0066] Selon une caractéristique, on veille à ce que la longueur de l’insert 50, c’est- à-dire de son corps tubulaire 51, soit strictement inférieure à la profondeur de l’alvéole 21 associée. De cette manière on s’assure pour chaque insert 50, que celui-ci présente un jeu entre un fond de l’alvéole associée et la deuxième extrémité 54 distale de l’insert 50. De cette manière l’insert 50 n’interfère pas avec la peau qui sera positionnée sur l’autre face de l’âme alvéolaire 20 avant son drapage. De même, une fois l’élément de structure formé, après cuisson, une telle caractéristique garantit une bonne absorption acoustique.
[0067] Une fois tous les inserts 50 positionnés, une étape d’enduction d’une préparation 40 est mise en œuvre. La préparation peut être par exemple une colle, par exemple à base de matériaux polymères. Cette étape consiste notamment à enduire au moins d’une part le côté extérieur de la peau résistive 30 perforée par les inserts 50, côté contre lequel les faces inférieures des collerettes 52 des inserts 50 sont en contact, et d’autre part les faces supérieures des collerettes 52 des inserts 50. L’étape d’enduction est suivie par une étape de réticulation, par exemple par apport de chaleur. [0068] En d’autres termes, la peau résistive 30 multicouches pourvue des inserts 50 alors insérés à travers ladite peau est ainsi recouverte d’un film de colle époxyde qui est ensuite réticulée avec apport de chaleur autour des orifices 55 des inserts 50 afin de les libérer de la colle (voir les figures 6A et 6 B). La réticulation de la colle durcit la colle, et la colle éventuellement placée dans les orifices 55 des corps tubulaires 51 se retire localement laissant libre ces orifices 55. Cette couche supplémentaire 40 permet l’encastrement des collerettes 52 des inserts 50 entre la couche additionnelle de préparation d’une part, et la peau résistive 30 d’autre part, ceci pour garantir le maintien des inserts 50 durant la durée de vie de fonctionnement de la structure composite acoustique 100. On choisira une collerette 52 pour chaque insert 50 avec une épaisseur minimale pour assurer la planéité de la peau une fois les inserts rapportés et insérés dans la peau 30 multicouches et encastrés avec la couche de préparation réticulée.
[0069] Une fois l’élément de structure 10 formé, il est assemblé avec au moins une peau, telle qu’une peau résistive 32 (voir la par exemple la figure 1) de sorte à ce qu’elle recouvre l’autre des deux faces de l’âme alvéolaire 20. Dans le cas d’un DDOF, une autre âme alvéolaire 20' et sa peau réflective 31 sont également assemblé en étant collés.
[0070] Une fois la structure composite assemblée, l’ensemble est placé dans un autoclave pour subir une étape de cuisson. De cette manière, les différents septums 30' qui séparent les différentes couches d’âmes alvéolaires 20, 20', les différentes couches d’âmes alvéolaires 20, 20', la peau réflective arrière 32 et la peau résistive extérieure avant 31 sont assemblés sous la forme d'une pièce unique avant d'être introduits dans l’autoclave.
[0071] On obtient ainsi une structure composite acoustique s’étendant suivant la forme souhaitée et présentant des caractéristiques techniques optimales.
[0072] Naturellement, l’invention est décrite dans ce qui précède à titre d’exemple. Il est entendu que l’homme du métier est à même de réaliser différentes variantes de réalisation de l’invention sans pour autant sortir du cadre de l’invention. [0073] Par exemple, on peut prévoir une cuisson en autoclave de l’élément de structure seul puis l’élément de structure peut être intégré à une structure composite acoustique au moyen d’un autre procédé, par exemple par brasage.
[0074] Il est souligné que toutes les caractéristiques, telles qu’elles se dégagent pour un homme du métier à partir de la présente description, des dessins et des revendications attachées, même si concrètement elles n’ont été décrites qu’en relation avec d’autres caractéristiques déterminées, tant individuellement que dans des combinaisons quelconques, peuvent être combinées à d’autres caractéristiques ou groupes de caractéristiques divulguées ici, pour autant que cela n’a pas été expressément exclu ou que des circonstances techniques rendent de telles combinaisons impossibles ou dénuées de sens.

Claims

REVENDICATIONS Élément de structure (10) pour une structure composite acoustique (100), l’élément de structure comprenant au moins une âme alvéolaire (20) comportant un réseau d’alvéoles (21) creuses délimitées par des cloisons (22) s’étendant entre deux faces (23, 24) de l’âme alvéolaire (20), et au moins une peau résistive (30, 30’) recouvrant une des faces de l’âme alvéolaire (20), l’élément de structure (10) comprenant une pluralité d’inserts (50) rapportés, chaque insert (50) présentant un corps (51) tubulaire traversant ouvert à ses extrémités (53, 54) et une collerette (52) saillante depuis le corps (51) tubulaire associé, la peau résistive (30, 30’) étant perforée par chacun des inserts (50) positionnés en face de tout ou partie des alvéoles (21) de sorte que, pour chaque insert (50), la collerette (52) est positionnée contre la peau résistive (30, 30’) d’un premier côté, et le corps (51) tubulaire débouche d’un deuxième côté, opposé au premier côté, l’élément de structure (10) étant caractérisé en ce que les inserts (50) sont formés d’un seul tenant, le corps (51) tubulaire de chacun des inserts (50) s’étendant entre une première extrémité (53) présentant la collerette (52) et une deuxième extrémité (54), ladite deuxième extrémité (54) étant biseautée circonférentiellement. Élément de structure (10) selon la revendication 1, caractérisé en ce que la peau résistive (30, 30’) est formée d’une structure composite multicouches. Élément de structure (10) selon la revendication 1 ou 2, caractérisé en ce que le corps (51) tubulaire de chacun des inserts (50) s’étend entre une première et une deuxième extrémités (53, 54) suivant un axe d’ouverture (A), le corps (51) tubulaire présentant, à la première extrémité (53), la collerette s’étendant dans plan orthogonal (P) à l’axe d’ouverture (A), le corps (51) tubulaire étant ouvert axialement à ses deux extrémités (53, 54). Élément de structure (10) selon la revendication 2 ou 3, caractérisé en ce que le corps (51) tubulaire des inserts (50) présente une section constante, par exemple cylindrique. Élément de structure (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que les inserts (50) sont distincts les uns des autres. Élément de structure (10) selon l’une quelconque des revendications précédentes, caractérisé en ce que les inserts (50) rapportés sont formés en matériau(x) thermoplastique(s), de préférence obtenu par moulage, par exemple par injection. Structure composite acoustique (100) caractérisée en ce qu’elle comprend au moins un élément de structure (10) selon l’une quelconque des revendications précédentes. Structure composite acoustique (100) selon la revendication précédente, caractérisée en ce qu’elle comprend N degrés de liberté formée par une superposition de N couches d’âmes alvéolaires (20, 20’), N étant supérieur ou égal à 2, la structure composite acoustique (100) comprenant au moins un septum (30’) séparant deux des couches d’âmes alvéolaires (20, 20’) empilées voisines, la couche résistive (30) perforée par les inserts (50) formant le septum (30’) ou l’un des septums (30’) de la structure composite acoustique (100). Procédé de fabrication d’un élément de structure (10) pour une structure composite acoustique (100), l’élément de structure comprenant au moins une âme alvéolaire (20) comportant un réseau d’alvéoles (21) creuses délimitées par des cloisons (22) s’étendant entre deux faces (23, 24) de l’âme alvéolaire (20), et au moins une peau résistive (30, 30’) recouvrant une des faces de l’âme alvéolaire (20), l’élément de structure (10) comprenant une pluralité d’inserts (50) rapportés, chaque insert (50) présentant un corps (51) tubulaire traversant ouvert à ses extrémités (53, 54) et une collerette (52) saillante depuis le corps (51) tubulaire associé, la peau résistive (30, 30’) étant perforée par chacun des inserts (50) positionnés en face de tout ou partie des alvéoles (21) de sorte que, pour chaque insert (50), la collerette (52) est positionnée contre la peau résistive (30, 30’) d’un premier côté , et le corps (51) tubulaire débouche d’un deuxième côté, opposé au premier côté, le procédé de fabrication de l’élément de structure (10) étant caractérisé en ce qu’il comprend les étapes suivantes : fabrication de l’âme alvéolaire (20) ; positionnement de la peau résistive (30, 30’) de sorte à ce qu’elle recouvre une des faces (23, 24) de l’âme alvéolaire (20) ; positionnement des inserts (50) dans la peau résistive (30, 30’) en face de tout ou partie des alvéoles (21) de l’âme alvéolaire (20) de sorte que, pour chaque insert (50) positionné, la collerette (52) est positionnée contre la peau résistive (30, 30’) d’un premier côté , et le corps tubulaire débouche d’un deuxième côté, opposé au premier côté. Procédé de fabrication selon la revendication 9, caractérisé en ce qu’il comprend une étape d’enduction d’une préparation (40) telle qu’une colle, par exemple à base de matériau(x) polymère(s), de sorte à enduire le premier côté de la peau résistive (30, 30’) perforée par les inserts (50) rapportés et des faces supérieures des collerettes (52) des inserts (50), l’étape d’enduction étant de préférence suivie par une étape de réticulation, de préférence encore par apport de chaleur. Procédé de fabrication selon la revendication 9 ou 10, caractérisé en ce que l’étape de positionnement des inserts (50) dans la peau résistive (30, 30’) comprend au moins : une première étape de positionnement dans laquelle un outil porte au moins un poinçon (60) et vient en regard d’une alvéole (21), le poinçon (60) présentant une tête (62) configurée pour venir en contact contre la collerette (52) de l’insert (50) associé, et une tige (61), la tige (61) traversant axialement le corps (51) tubulaire de l’insert (50) associé suivant son axe d’ouverture (A) ; une deuxième étape de positionnement, ultérieure à la première étape de positionnement, dans laquelle le poinçon (60) est déplacé par une translation axiale suivant l’axe d’ouverture (A) de sorte à perforer la peau résistive, la tête (62) du poinçon poussant l’insert (50) jusqu’à ce que sa collerette (52) vienne en contact directement contre la peau résistive ; et une troisième étape de positionnement dans laquelle le poinçon (60) se retire laissant l’insert (50) dans la peau résistive.
12. Procédé de fabrication d’une structure composite acoustique du type comprenant N degrés de liberté formée par une superposition de N couches d’âmes alvéolaires (20, 20’), N étant supérieur ou égal à 2, la structure composite acoustique (100) comprenant au moins un septum (30’) séparant deux des couches d’âmes alvéolaires (20, 20’) empilées voisines, la couche résistive (30) perforée par les inserts (50) formant le septum (30’) ou l’un des septums (30’) de la structure composite acoustique (100)., le procédé de fabrication de la structure composite acoustique (100) étant caractérisé en ce qu’il comprend les étapes suivantes : fabrication d’un élément de structure (10) selon l’une des revendications 9 à 11 ; assemblage de l’élément de structure (10) avec au moins une peau, de préférence une peau résistive (32) ou réflective (31), recouvrant l’autre des deux faces de l’âme alvéolaire (20).
13. Procédé de fabrication selon la revendication 12, caractérisé en ce qu’il comprend une étape de superposition d’au moins une couche d’âme alvéolaire avec la structure composite acoustique (100).
PCT/EP2023/059447 2022-04-11 2023-04-11 Élement de structure muni d'inserts rapportés pour une structure composite acoustique et procédé de fabrication associé WO2023198715A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203325 2022-04-11
FR2203325A FR3134340A1 (fr) 2022-04-11 2022-04-11 Élément de structure muni d’inserts rapportés pour une structure composite acoustique et procédé de fabrication associe

Publications (1)

Publication Number Publication Date
WO2023198715A1 true WO2023198715A1 (fr) 2023-10-19

Family

ID=82482725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/059447 WO2023198715A1 (fr) 2022-04-11 2023-04-11 Élement de structure muni d'inserts rapportés pour une structure composite acoustique et procédé de fabrication associé

Country Status (2)

Country Link
FR (1) FR3134340A1 (fr)
WO (1) WO2023198715A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082987A1 (fr) 2018-06-25 2019-12-27 Airbus Operations Structure constituant un isolant acoustique
EP3590843A1 (fr) * 2018-07-04 2020-01-08 Airbus Operations (S.A.S.) Procede de fabrication d'un panneau acoustique comportant des inserts
EP3670329A1 (fr) * 2018-12-19 2020-06-24 Rohr, Inc. Panneau acoustique bidirectionnel
FR3113169A1 (fr) * 2020-07-31 2022-02-04 Airbus Operations Procédé de fabrication d’un panneau acoustique à peau capsulaire et panneau acoustique intégrant une telle peau

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082987A1 (fr) 2018-06-25 2019-12-27 Airbus Operations Structure constituant un isolant acoustique
EP3590843A1 (fr) * 2018-07-04 2020-01-08 Airbus Operations (S.A.S.) Procede de fabrication d'un panneau acoustique comportant des inserts
EP3670329A1 (fr) * 2018-12-19 2020-06-24 Rohr, Inc. Panneau acoustique bidirectionnel
FR3113169A1 (fr) * 2020-07-31 2022-02-04 Airbus Operations Procédé de fabrication d’un panneau acoustique à peau capsulaire et panneau acoustique intégrant une telle peau

Also Published As

Publication number Publication date
FR3134340A1 (fr) 2023-10-13

Similar Documents

Publication Publication Date Title
EP2504832B1 (fr) Panneau acoustique pour nacelle d'aeronef et procédé de fabrication correspondant
EP2714384B1 (fr) Procédé de fabrication d'un panneau d'atténuation acoustique
EP2300315B1 (fr) Panneau de fuselage d'aeronef renforce et procede de fabrication
FR2951400A1 (fr) Piece structurale en materiau composite renforcee localement et procede de realisation d'une telle piece
EP3674530B1 (fr) Procédé de fabrication d'une structure d'absorption acoustique comprenant un panneau alvéolaire intégrant des éléments acoustiques et structure d' absorption acoustique obtenue à partir dudit procédé
CA2707851A1 (fr) Procede de jonction de panneaux acoustiques alveolaires
FR2919283A1 (fr) Piece mecanique comportant un insert en materiau composite.
EP3823831A1 (fr) Procede de fabrication d'un panneau acoustique
WO2013041795A1 (fr) Peau intermediaire acoustique et sa mise en oeuvre
EP2419262B1 (fr) Procede de fabrication d'une bielle en materiau composite ayant des extremites renforcees
WO2013186476A1 (fr) Procédé de fabrication de panneaux cellulaires, destinés notamment au domaine de l'aéronautique
EP3931821A1 (fr) Procédé d'élaboration d'âmes alvéolaires à formes coniques internes ouvertes
WO2023198715A1 (fr) Élement de structure muni d'inserts rapportés pour une structure composite acoustique et procédé de fabrication associé
WO2015036716A1 (fr) Procédé de réparation d'une peau d'un panneau composite
EP3916717B1 (fr) Structure alvéolaire d'insonorisation incluant un diaphragme muni d'un tube configuré pour traiter différentes fréquences acoustiques, procédé de fabrication d'une telle structure alvéolaire d'insonorisation, et outil associé
WO2022184997A1 (fr) Aube comprenant une structure en matériau composite et procédé de fabrication associé
FR3100918A1 (fr) Panneau acoustique pour un ensemble propulsif d’aeronef, et son procede de fabrication
FR3113169A1 (fr) Procédé de fabrication d’un panneau acoustique à peau capsulaire et panneau acoustique intégrant une telle peau
WO2011070279A1 (fr) Procédé de fabrication de panneau acoustique pour nacelle d'aéronef
EP4002352B1 (fr) Coque de peau résistive intégrant des bandes métalliques perforées, et paroi interne acoustique d'une entrée d'air d'aéronef formée à partir de telles coques de peau résistive
WO2023031540A1 (fr) Panneau acoustique à cavités obliques
FR3039149A1 (fr) Materiau ceramique poreux obtenu par tissage et panneau acoustique comportant un tel materiau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23716620

Country of ref document: EP

Kind code of ref document: A1