WO2023198151A1 - 一种生物电阻抗断层成像装置和方法 - Google Patents

一种生物电阻抗断层成像装置和方法 Download PDF

Info

Publication number
WO2023198151A1
WO2023198151A1 PCT/CN2023/088075 CN2023088075W WO2023198151A1 WO 2023198151 A1 WO2023198151 A1 WO 2023198151A1 CN 2023088075 W CN2023088075 W CN 2023088075W WO 2023198151 A1 WO2023198151 A1 WO 2023198151A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
impedance tomography
bioelectrical impedance
flexible belt
Prior art date
Application number
PCT/CN2023/088075
Other languages
English (en)
French (fr)
Inventor
李孝锦
周永方
金晓东
张中伟
王波
康焰
Original Assignee
四川大学华西医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学华西医院 filed Critical 四川大学华西医院
Publication of WO2023198151A1 publication Critical patent/WO2023198151A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography

Definitions

  • the invention belongs to the technical field of medical devices, and specifically relates to a bioelectrical impedance tomography imaging device and method.
  • Bioelectrical Impedance Tomography (EIT) technology is a new type of medical functional imaging technology. Its principle is to apply a safe excitation current on the surface of the human body and measure the voltage response values on other electrodes. According to the relationship between voltage and current The relationship between them reconstructs the internal electrical impedance value or the change value of the electrical impedance of the human body. Compared with X-ray and MRI, this imaging method has the characteristics of no radiation and real-time, and can be monitored at the bedside for a long time.
  • EIT When EIT is used for pulmonary ventilation imaging, a series of electrodes (for example, 16 or 32) are equidistantly spaced around the patient's chest. One pair of electrodes are excitation electrodes, and the other electrodes are used as detection electrodes to obtain a set of data, which are then passed through The switching circuit switches the excitation and detection electrodes to estimate the electrical impedance distribution and algorithmically achieve image reconstruction of lung ventilation.
  • Such reconstruction algorithms are usually based on treating the chest contour as a circle or ellipse, but the actual situation is that the human chest contour is irregular; the chests of different people are also different. This causes considerable deviations in image reconstruction.
  • a priori chest contour is often input, such as X-ray, CT or MRI scan images of the patient's chest in advance to determine the patient's chest boundary, and then combined with impedance imaging.
  • X-ray, CT or MRI scan images of the patient's chest in advance to determine the patient's chest boundary, and then combined with impedance imaging.
  • CT or MRI scan images of the patient's chest in advance to determine the patient's chest boundary, and then combined with impedance imaging.
  • this field currently needs a simpler and faster method to determine the thoracic boundary, so as to smoothly perform impedance imaging.
  • the present invention provides a bioelectrical impedance tomography imaging device and method, aiming to determine the thoracic boundary through a simpler and faster method in bioelectrical impedance tomography.
  • a bioelectrical impedance tomography imaging device includes a flexible belt, an equal number of electrodes and inertial sensors are provided on the flexible belt, and the electrodes and the inertial sensors are arranged in pairs.
  • the flexible belt is provided with an electrode buckle, the electrode is connected to the flexible belt through the electrode buckle, and the inertial sensor is arranged inside the electrode buckle.
  • the number of electrodes and inertial sensors is 8 to 64 respectively.
  • the number of electrodes and inertial sensors is 16 respectively.
  • the distance between adjacent electrodes on the flexible belt is equal.
  • the distance between adjacent electrodes on the flexible belt is 1 cm to 15 cm.
  • the distance between adjacent inertial sensors on the flexible belt is equal.
  • the distance between adjacent inertial sensors on the flexible belt is 1 cm to 15 cm.
  • the electrodes are ECG electrode pads.
  • the inertial sensor is selected from a gyroscope, a single-axis acceleration sensor, a dual-axis acceleration sensor, a three-axis acceleration sensor or an inclination sensor.
  • the present invention also provides a method for imaging using the above-mentioned bioelectrical impedance tomography device.
  • the distance between the inertial sensors and the angle between the inertial sensors and the direction of gravity are used to determine the coordinates of the electrodes and calculate the distance between the electrodes. distance to determine the patient's chest, and then use electrodes to perform bioelectrical impedance tomography detection.
  • the coordinates of the electrode are determined as follows:
  • the first electrode is attached under the xiphoid process, and the coordinates are marked (x1, y1);
  • the coordinates of the second electrode are (x1+r1 ⁇ sin ⁇ 1 ,y1-r1+r1 ⁇ sin ⁇ 1 ),
  • r1 is the radius length of an arc with arc length d and central angle ⁇ 1.
  • the value of d is the distance between the first electrode and the second electrode on the flexible belt.
  • the value of ⁇ 1 is The angle ⁇ 2 detected by the inertial sensor corresponding to the second electrode and the direction of gravity;
  • the coordinates of the nth electrode are (x n-1 +180 ⁇ d ⁇ (sin ⁇ n -sin ⁇ n-1 )/(( ⁇ n - ⁇ n-1 ) ⁇ ), y n-1 +180 ⁇ d ⁇ (cos ⁇ n -cos ⁇ n-1 )/(( ⁇ n - ⁇ n-1 ) ⁇ )),
  • x n-1, y n-1 are the coordinates of the n-1th electrode
  • ⁇ n is the angle between the sensor provided by the n-th electrode and the direction of gravity.
  • the detection and calculation of the patient's thorax is realized through inertial sensors arranged in pairs with electrodes. This eliminates the need to use X-ray, CT or MRI scanning images to detect the patient's chest in advance in the existing bioelectrical impedance tomography technology.
  • the invention can effectively simplify the process of bioelectrical impedance tomography, improve efficiency, reduce costs, and has good application prospects.
  • Figure 1 is a front view of the bioelectrical impedance tomography device of Embodiment 1;
  • Figure 2 is a front view of the bioelectrical impedance tomography imaging device of Embodiment 1 with electrodes removed;
  • Figure 3 is a cross-sectional view of the bioelectrical impedance tomography imaging device of Embodiment 1 with electrodes removed;
  • Figure 4 is a schematic diagram of the principle of the single-axis accelerometer in Embodiment 1;
  • Figure 5 is a schematic flow chart of Embodiment 2.
  • Figure 6 is a schematic diagram of the reference point in Embodiment 2.
  • FIG. 7 is a schematic diagram for determining the coordinates of the first reference point and the second reference point in Embodiment 2.
  • Embodiment 1 Bioelectrical Impedance Tomography Imaging Device
  • the bioelectrical impedance tomography imaging device of this embodiment is shown in Figures 1-3, and includes a flexible belt 1 provided with 16 electrode buckles 2.
  • the distance between adjacent electrode buckles 2 is equal, and the size is set to d , the value of d can be selected from 1cm to 15cm, and is preferably 5cm in this embodiment.
  • the number of electrodes 3 is 16.
  • the electrodes 3 are ECG electrode sheets, which are fixed on the flexible belt 1 through the electrode buckles 2. During use, the ECG electrode sheets are directly pasted on the surface of the human body.
  • An inertial sensor 4 is also provided in the electrode buckle 2.
  • a single-axis accelerometer is used as the inertial sensor to provide the angle between its axial direction and the direction of gravity (the angle between the y-axis and the gravity g in Figure 4).
  • angle ⁇ Since the position of the active part of the electrode 3 can be regarded as equivalent to the position of the inertial sensor 4 . Therefore, this angle can be regarded as the angle between the electrode 3 and the direction of gravity.
  • the flexible belt 1 in this embodiment is made of soft and breathable fabric.
  • the electrode 3 is pasted on the surface of the human body, it should be ensured that the flexible belt 1 stretches without wrinkles or bulges.
  • This embodiment uses the bioelectrical impedance tomography imaging device described in Embodiment 1 for imaging, and its working process is shown in Figure 5, specifically as follows:
  • the distance d between the inertial sensors 4 on the flexible belt 1 and its angle with the direction of gravity are used to determine the coordinates of the electrodes 3, calculate the distance between each electrode 3, and determine the patient to be detected of the thorax, and then use electrode 3 for bioelectrical impedance tomography detection.
  • the coordinates of electrode 3 are determined as follows:
  • the position of the inertial sensor 4 is also fixed, so that the electrodes 3 are all in the same plane, that is, the gravity plane (that is, the vertical plane).
  • the first inertial sensor at one end of the flexible belt 1 is taken as the first reference point 301 .
  • the distance between the first reference point and the second inertial sensor (second reference point 302 ) adjacent to the first reference point 301 is the distance d between the electrode buttons 2 .
  • the inertial sensor 4 is a gyroscope, or a single-axis, dual-axis or three-axis acceleration sensor, or an inclination sensor can be directly used. As shown in Figure 4, each inertial sensor 4 has its own coordinate system, and the tilt angle can be obtained through the difference between the gravity acceleration and its own coordinate system.
  • the following coordinate system refers to the plane coordinate system of the irregular image formed by electrode 3: the X-axis points horizontally to the right, and the Y-axis points vertically upward.
  • the positioning of the second reference point 302 (ie, the second electrode) and the third reference point 303 (ie, the third electrode) is explained with reference to FIG. 7 .
  • the first reference point 301 is attached under the xiphoid process, and the gravity acceleration direction coincides with its own y-axis coordinate. At this time, it is a zero tilt angle, and its coordinates are marked (x1, y1).
  • the inertial sensor 4 of the second reference point 302 correspondingly outputs the angle ⁇ between the gravitational acceleration and the y-axis of its own coordinate system.
  • Using an inclination sensor or an angle sensor can directly output the included angle.
  • the ⁇ 2 value of the deflection angle between the first reference point 301 (gravitational acceleration direction) and the first reference point 301 (gravitational acceleration direction) can be calculated.
  • the distance (arc length) between the first reference point 301 and the second reference point 302 is d
  • the central angle corresponding to the arc length d is ⁇ 1
  • the size of ⁇ 1 is the same as the size of ⁇ 2 .
  • the coordinates (x2, y2) of the second reference point 302 After positioning the coordinates (x2, y2) of the second reference point 302, the coordinates (x3, y3) of the third reference point 303 are determined.
  • the angle between the output of the second inertial sensor 4 and the acceleration of gravity is ⁇ 2
  • the angle between the output of the third inertial sensor 4 and the acceleration of gravity is ⁇ 3
  • the arc formed by the second reference point 302 and the third reference point 303 corresponds to
  • the central angle ⁇ 2 is ( ⁇ 3 - ⁇ 2 )
  • the central angle coordinates corresponding to the second arc (x2-r2 ⁇ sin ⁇ 2 , y2-r2 ⁇ cos ⁇ 2 ) are simply written as (x0, y0).
  • the third coordinate can be calculated (x0+r2 ⁇ sin ⁇ 3 , y0+r2 ⁇ cos ⁇ 3 ).
  • the coordinate values of other electrodes relative to the first reference point 301 are determined.
  • the coordinates of the nth electrode are (x n-1 +180 ⁇ d ⁇ (sin ⁇ n -sin ⁇ n-1 )/(( ⁇ n - ⁇ n-1 ) ⁇ ), y n-1 +180 ⁇ d ⁇ (cos ⁇ n -cos ⁇ n-1 )/(( ⁇ n - ⁇ n-1 ) ⁇ )),
  • x n-1, y n-1 are the coordinates of the n-1th electrode
  • ⁇ n is the angle between the sensor provided by the n-th electrode and the direction of gravity.
  • L 2 (x n -x n+1 ) 2 +(y n -y n+1 ) 2 .
  • the actual contour formed by the electrode 3 ie, the patient's chest
  • the actual contour formed by the electrode 3 ie, the patient's chest
  • the present invention provides a new bioelectrical impedance tomography imaging device and imaging method, which can determine the patient's thorax in a simple and fast method, avoiding the need to use other imaging methods to determine the thorax in the prior art.
  • the invention can effectively simplify the process of bioelectrical impedance tomography, improve efficiency, reduce costs, and has good application prospects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明属于医疗器械技术领域,具体涉及一种生物电阻抗断层成像装置和方法。本发明的装置包括柔性带,所述柔性带上设置有数量相等的电极和惯性传感器,所述电极和所述惯性传感器成对设置。本发明的成像方法是利用所述惯性传感器之间的距离及其与重力方向的夹角对所述电极的坐标进行确定,计算各电极之间的距离,确定被检测患者的胸廓,然后使用电极进行生物电阻抗断层成像检测。本发明能够有效地简化生物电阻抗断层成像的过程,提高效率,降低成本,具有很好的应用前景。

Description

一种生物电阻抗断层成像装置和方法 技术领域
本发明属于医疗器械技术领域,具体涉及一种生物电阻抗断层成像装置和方法。
背景技术
生物电阻抗断层成像(Electrical Impedance Tomography,EIT)技术是一种新型医学功能成像技术,它的原理是在人体表面施加安全激励电流,并测得其他电极上的电压响应值,根据电压与电流之间的关系重构出人体内部电阻抗值或者电阻抗的变化值。这种成像方法与X-ray、MRI相比具有无辐射、实时的特点,可以长时间床旁监测。
EIT用于肺通气成像时通过围绕患者胸腔一圈的一系列电极(例如,16或32个)等间距电极实现,其中一对电极为激励电极,其他电极作为检测电极得到一组数据,再通过开关电路对激励和检测电极进行转换,从而估计电阻抗分布并通过算法实现肺通气的图像重建。这样的重建算法通常是建立在将胸腔轮廓当作圆形或椭圆的基础上,但实际情况是:人体胸腔轮廓是不规则的;不同人的胸廓也不同。因此在图像重建时造成不小的偏差。
目前为了克服上述问题,常采用输入先验的胸部轮廓,如事先对患者进行胸腔的X光、CT或MRI扫描图像等并以此确定该患者的胸腔边界,再结合阻抗成像。但当患者呼吸情况不良或出现紧急情况,不便进行影像学检查时。因此,本领域目前需要一种更加简单、快速的方法实现胸廓边界的确定,进而顺利进行阻抗成像。
发明内容
针对现有技术的缺陷,本发明提供一种生物电阻抗断层成像装置和方法,目的在于在生物电阻抗断层成像中,通过更加简单、快捷的方法实现胸廓边界的确定。
一种生物电阻抗断层成像装置,包括柔性带,所述柔性带上设置有数量相等的电极和惯性传感器,所述电极和所述惯性传感器成对设置。
优选的,所述柔性带上设置有电极扣,电极通过电极扣与所述柔性带连接,所述惯性传感器设置在电极扣内部。
优选的,所述电极和惯性传感器的数量分别为8~64个。
优选的,所述电极和惯性传感器的数量分别为16个。
优选的,所述柔性带上相邻电极的距离相等。
优选的,所述柔性带上相邻电极之间的距离为1cm~15cm。
优选的,所述柔性带上相邻惯性传感器的距离相等。
优选的,所述柔性带上相邻惯性传感器之间的距离为1cm~15cm。
优选的,所述电极为心电电极片。
优选的,所述惯性传感器选自陀螺仪、单轴加速传感器、双轴加速传感器、三轴加速传感器或倾角传感器。
本发明还提供一种利用上述生物电阻抗断层成像装置进行成像的方法,利用所述惯性传感器之间的距离及其与重力方向的夹角对所述电极的坐标进行确定,计算各电极之间的距离,确定被检测患者的胸廓,然后使用电极进行生物电阻抗断层成像检测。
优选的,所述电极的坐标按照如下方法进行确定:
1)第一个电极贴于剑突下,坐标记为(x1,y1);
2)第二个电极的坐标为(x1+r1×sinθ1,y1-r1+r1×sinθ1),
其中,r1为弧长为d、圆心角为θ1的圆弧的半径长度,d的取值为第一个电极和第二个电极在所述柔性带上的距离,θ1的取值为第二个电极对应的惯性传感器检测得到的与重力方向的夹角α2
3)自第三个电极起,第n个电极的坐标为(xn-1+180×d×(sinαn-sinαn-1)/((αnn-1)×π),yn-1+180×d×(cosαn-cosαn-1)/((αnn-1)×π)),
其中,xn-1,yn-1为第n-1个电极的坐标,αn为第n个电极对应的传感器提供的与重力方向的夹角。
本发明在生物电阻抗断层成像装置中,通过与电极成对设置的惯性传感器实现对患者胸廓的检测和计算。从而省去了现有的生物电阻抗断层成像技术中需要预先用X光、CT或MRI扫描图像检测患者胸廓的麻烦。本发明能够有效地简化生物电阻抗断层成像的过程,提高效率,降低成本,具有很好的应用前景。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为实施例1的生物电阻抗断层成像装置的主视图;
图2为实施例1的生物电阻抗断层成像装置去掉电极后的主视图;
图3为实施例1的生物电阻抗断层成像装置去掉电极后的剖视图;
图4为实施例1中单轴加速度计的原理示意图;
图5为实施例2的流程示意图;
图6为实施例2中参考点的示意图;
图7为实施例2中确定第一参考点和第二参考点坐标的示意图。
其中,1-柔性带,2-电极扣,3-电极,301-第一参考点,302-第二参考点,
303-第三参考点,4-惯性传感器。
具体实施方式
需要特别说明的是,实施例中未具体说明的数据采集、传输、储存和处理等步骤的算法,以及未具体说明的硬件结构、电路连接等均可通过现有技术已公开的内容实现。
实施例1生物电阻抗断层成像装置
本实施例的生物电阻抗断层成像装置如图1-3所示,包括设有16个电极扣2的柔性带1,在本实施例中,相邻电极扣2的间距相等,大小设置为d,d的取值可在1cm~15cm中选取,本实施例中优选为5cm。
在本实施例中,电极3数量为16个,电极3为心电电极片,通过电极扣2固定在柔性带1上,使用时将心电电极片直接粘贴在人体表面。
电极扣2内还设置有惯性传感器4,在本实施例中,惯性传感器选用单轴加速度计,用于提供其轴向方向与重力方向的夹角(图4中的y轴与重力g的夹角α)。由于电极3的作用部分的位置可视为等同于惯性传感器4的位置。因此可将此夹角作为电极3与重力方向的夹角。
本实施例中的柔性带1为柔软透气的织物,当电极3粘贴在人体表面时,应保证柔性带1伸展,没有褶皱或凸起。
实施例2生物电阻抗断层成像方法
本实施例采用实施例1所述的生物电阻抗断层成像装置进行成像,其工作过程如图5所示,具体为:
利用柔性带1上所述惯性传感器4之间的距离d及其与重力方向的夹角对所述电极3的坐标进行确定,计算各电极3之间的距离,确定被检测患者 的胸廓,然后使用电极3进行生物电阻抗断层成像检测。
电极3的坐标按照如下方法进行确定:
如图6,每个电极3黏贴于人体胸腔表面后,惯性传感器4的位置也固定了,使电极3均在同一平面内,即重力平面(也即是竖直平面)上。
以柔性带1一端的第一个惯性传感器为第一参考点301。第一参考点距离与第一参考点301相邻的第二惯性传感器(第二点参考点302)之间的距离则为电极扣2间距d。
通常围绕胸腔一圈的柔性带1看作一平面形状,惯性传感器4选用陀螺仪、或单轴、双轴三轴加速度传感器,也可以直接选用倾角传感器等。如图4,每一个惯性传感器4有自己的坐标系,通过重力加速度与其自身的坐标系的差异可得到倾斜角度。
以下坐标系是指电极3形成的不规则图像的平面坐标系:X轴是水平指向右的,Y轴是垂直向上的。以图7来说明第二参考点302(即第二个电极)、第三参考点303(即第三个电极)的定位。
在本实施例中,第一参考点301贴于剑突下,重力加速度方向与其自身y轴坐标重合,此时为零倾斜角度,其坐标记为(x1,y1)。
第二参考点302的惯性传感器4相应输出重力加速度与其自身坐标y轴的夹角α,当选用加速度计时,在其坐标系y轴的重力加速度gy,∠α=arccos(gy/g);当选用倾角传感器或角度传感器则可直接输出夹角大小。计算可知其与第一参考点301(重力加速度方向)的偏角度的α2值。则以第一参考点301作为起点,第一参考点301和第二参考点302的间距(弧长)为d,弧长d对应的圆心角为θ11大小与α2大小相同。求得该段弧长对应半径r1,r1=180×d/(θ1×π)。则该段圆弧对应圆心角坐标(x1,y1-r1).计算可得第二参考点302的坐标(x1+r1×sinθ1,y1-r1+r1×cosθ1)。
第二参考点302的坐标(x2,y2)定位后确定第三参考点303的坐标(x3,y3)。第二个惯性传感器4输出与重力加速度的角度为α2,第三个惯性传感器4输出与重力加速度的角度为α3,则第二参考点302和第三参考点303形成的圆弧对应的圆心角θ2为(α32),已知弧长d,则半径r2=180*d/(θ2×π)。第二弧线对应的圆心角坐标(x2-r2×sinα2,y2-r2×cosα2),简易记为(x0,y0)计算可得第三坐标(x0+r2×sinα3,y0+r2×cosα3)。
以此类推,确定的相对于第一参考点301的其他电极的坐标值。第n个电极的坐标为(xn-1+180×d×(sinαn-sinαn-1)/((αnn-1)×π),yn-1+180×d× (cosαn-cosαn-1)/((αnn-1)×π)),
其中,xn-1,yn-1为第n-1个电极的坐标,αn为第n个电极对应的传感器提供的与重力方向的夹角。
进一步的,可求得相邻两个电极间的实际直线距离L的大小,L2=(xn-xn+1)2+(yn-yn+1)2
由此可确定电极3实际构成的轮廓(即患者的胸廓)。
通过上述实施例可以看到,本发明提供了新的生物电阻抗断层成像装置和成像方法,能够用简单、快速的方法确定患者的胸廓,避免了现有技术中需要用其他影像学方法确定胸廓的问题。本发明能够有效地简化生物电阻抗断层成像的过程,提高效率,降低成本,具有很好的应用前景。

Claims (10)

  1. 一种生物电阻抗断层成像装置,其特征在于:包括柔性带(1),所述柔性带(1)上设置有数量相等的电极(3)和惯性传感器(4),所述电极(3)和所述惯性传感器(4)成对设置。
  2. 按照权利要求1所述的生物电阻抗断层成像装置,其特征在于:所述柔性带(1)上设置有电极扣(2),电极(3)通过电极扣(2)与所述柔性带连接,所述惯性传感器(4)设置在电极扣(2)内部。
  3. 按照权利要求1所述的生物电阻抗断层成像装置,其特征在于:所述电极(3)和惯性传感器(4)的数量分别为8~64个。
  4. 按照权利要求1所述的生物电阻抗断层成像装置,其特征在于:所述柔性带(1)上相邻电极(3)的距离相等。
  5. 按照权利要求4所述的生物电阻抗断层成像装置,其特征在于:所述柔性带(1)上相邻电极(3)之间的距离为1cm~15cm。
  6. 按照权利要求1所述的生物电阻抗断层成像装置,其特征在于:所述柔性带(1)上相邻惯性传感器(4)的距离相等。
  7. 按照权利要求1所述的生物电阻抗断层成像装置,其特征在于:所述电极(3)为心电电极片。
  8. 按照权利要求1所述的生物电阻抗断层成像装置,其特征在于:所述惯性传感器(4)选自陀螺仪、单轴加速传感器、双轴加速传感器、三轴加速传感器或倾角传感器。
  9. 一种利用权利要求1-8任一项所述的生物电阻抗断层成像装置进行成像的方法,其特征在于:利用所述惯性传感器之间的距离及其与重力方向的夹角对所述电极的坐标进行确定,计算各电极之间的距离,确定被检测患者的胸廓,然后使用电极进行生物电阻抗断层成像检测。
  10. 按照权利要求9所述的方法,其特征在于:所述电极的坐标按照如下方法进行确定:
    1)第一个电极贴于剑突下,坐标记为(x1,y1);
    2)第二个电极的坐标为(x1+r1×sinθ1,y1-r1+r1×sinθ1),
    其中,r1为弧长为d、圆心角为θ1的圆弧的半径长度,d的取值为第一个电极和第二个电极在所述柔性带上的距离,θ1的取值为第二个电极对应的惯性传感器检测得到的与重力方向的夹角α2
    3)自第三个电极起,第n个电极的坐标为,(xn-1+180×d×(sinαn-sinαn-1) /((αnn-1)×π),yn-1+180×d×(cosαn-cosαn-1)/((αnn-1)×π)),
    其中,xn-1,yn-1为第n-1个电极的坐标,αn为第n个电极对应的传感器提供的与重力方向的夹角。
PCT/CN2023/088075 2022-04-14 2023-04-13 一种生物电阻抗断层成像装置和方法 WO2023198151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210391829.3 2022-04-14
CN202210391829.3A CN114847913B (zh) 2022-04-14 2022-04-14 一种生物电阻抗断层成像装置和方法

Publications (1)

Publication Number Publication Date
WO2023198151A1 true WO2023198151A1 (zh) 2023-10-19

Family

ID=82630828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088075 WO2023198151A1 (zh) 2022-04-14 2023-04-13 一种生物电阻抗断层成像装置和方法

Country Status (2)

Country Link
CN (1) CN114847913B (zh)
WO (1) WO2023198151A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114847913B (zh) * 2022-04-14 2023-10-27 四川大学华西医院 一种生物电阻抗断层成像装置和方法
CN116458865B (zh) * 2023-04-14 2024-02-02 南京航空航天大学 一种基于多原点变换的电阻抗成像断层边界提取方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153180A (zh) * 2010-10-07 2013-06-12 斯威斯托姆公开股份有限公司 用于电阻抗断层成像的传感器装置、电阻抗断层成像装置和电阻抗断层成像方法
US20180344200A1 (en) * 2017-05-31 2018-12-06 Cardiac Pacemakers, Inc. Electrical impedance tomography using the internal thoracic vein
CN112450910A (zh) * 2020-12-04 2021-03-09 桂林电子科技大学 一种电阻抗断层成像的边界测量装置及方法
JP2021097916A (ja) * 2019-12-23 2021-07-01 国立大学法人千葉大学 生体内物質の可視化装置
CN113069100A (zh) * 2021-03-03 2021-07-06 桂林电子科技大学 一种可旋转电阻抗断层成像的三维边界测量结构及方法
CN215738930U (zh) * 2021-09-15 2022-02-08 中国人民解放军总医院第一医学中心 一种电阻抗成像辅助装置
CN114847913A (zh) * 2022-04-14 2022-08-05 四川大学华西医院 一种生物电阻抗断层成像装置和方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1135791A (fr) * 1954-08-05 1957-05-03 Hollandse Signaalapparaten Bv Perfectionnement apporté à un dispositif pour déterminer les coordonnées et, si nécessaire, la vitesse d'un objet se trouvant dans l'espace
US20060074287A1 (en) * 2004-09-30 2006-04-06 General Electric Company Systems, methods and apparatus for dual mammography image detection
US8054073B2 (en) * 2008-05-21 2011-11-08 Entanglement Technologies, Llc Method and apparatus for implementing EIT magnetometry
CN101564294B (zh) * 2009-06-01 2011-04-20 中国人民解放军第四军医大学 一种结构信息融合的电阻抗断层成像方法
BR112014017767A8 (pt) * 2012-01-27 2017-07-11 Swisstom Ag Cinta de medição de impedância de eletrodo, método para medição de impedância de eletrodo, e, uso de uma cinta de impedância de eletrodo
CN102727194B (zh) * 2012-05-04 2014-01-22 燕山大学 一种脑电电极空间定位系统和定位方法
WO2013177126A2 (en) * 2012-05-21 2013-11-28 General Electric Company Electrode assembly
WO2014201163A1 (en) * 2013-06-11 2014-12-18 Somatis Sensor Solutions LLC Systems and methods for sensing objects
RU2679533C2 (ru) * 2014-09-04 2019-02-11 Леомо, Инк. Информационное терминальное устройство, система сбора данных о движениях и способ сбора данных о движениях
CN104352238A (zh) * 2014-11-08 2015-02-18 天津大学 人体胸腔电阻层析数据采集方法
CN107743378B (zh) * 2015-05-06 2020-10-20 爱尔兰国立高威大学 对尿液的回流的非侵入式检测
US20170119318A1 (en) * 2015-10-28 2017-05-04 Blumio, Inc. System and method for biometric measurements
CN105411587B (zh) * 2015-12-07 2018-06-01 天津大学 用于人体胸腔电阻抗层析成像的胸腔轮廓数据采集方法
WO2017105432A1 (en) * 2015-12-16 2017-06-22 Halliburton Energy Services, Inc. Electrical impedance tomography using a switchable array
KR102386000B1 (ko) * 2016-03-17 2022-04-13 주식회사 바이랩 수면 무호흡 모니터링 시스템
CN105997096B (zh) * 2016-06-22 2019-04-26 合肥诺和电子科技有限公司 基于3d加速计的电阻抗断层肺成像方法
US11793418B2 (en) * 2016-11-11 2023-10-24 Sentec Ag Sensor belt and positioning aid for electro-impedance tomography imaging in neonates
KR101812587B1 (ko) * 2016-11-18 2018-01-30 주식회사 바이랩 피험자의 영상 모니터링 장치 및 그 방법과, 영상 모니터링 시스템
DE102016014251B4 (de) * 2016-11-30 2023-02-02 Drägerwerk AG & Co. KGaA Vorrichtung und Verfahren zur Ermittlung einer axialen Position einer Elektrodenanordnung zur Elektro-Impedanz-Tomographie
WO2018217060A1 (en) * 2017-05-25 2018-11-29 Samsung Electronics Co., Ltd. Method and wearable device for performing actions using body sensor array
CN107898461A (zh) * 2017-10-20 2018-04-13 北京招通致晟科技有限公司 便携式24通道人体生物电阻抗检测装置及检测方法
US11493993B2 (en) * 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US10378975B1 (en) * 2018-01-27 2019-08-13 Nextiles Inc. Systems, methods, and devices for static and dynamic body measurements
DE212020000509U1 (de) * 2019-01-14 2021-08-25 Analog Devices International Unlimited Company Multisensorvorrichtung zur Gesundheitsüberwachung
KR102305179B1 (ko) * 2019-10-16 2021-09-27 주식회사 바이랩 전기 임피던스 단층촬영을 이용한 심폐기능 모니터링 방법 및 시스템
US11717173B2 (en) * 2020-04-16 2023-08-08 Warsaw Orthopedic, Inc. Device for mapping a sensor's baseline coordinate reference frames to anatomical landmarks
US20220087565A1 (en) * 2020-07-17 2022-03-24 The Regents Of The University Of California Smart elastic fabric tape for distributed skin strain, movement, and muscle engagement monitoring
CN112380943B (zh) * 2020-11-06 2022-12-06 北京航空航天大学 一种基于电阻抗的多部位肢体动作捕捉方法
CN113080925B (zh) * 2021-03-03 2024-03-01 桂林电子科技大学 一种电阻抗断层成像的三维边界测量结构及方法
CN115137340A (zh) * 2022-05-16 2022-10-04 思澜科技(成都)有限公司 一种用于eit成像的装置、系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153180A (zh) * 2010-10-07 2013-06-12 斯威斯托姆公开股份有限公司 用于电阻抗断层成像的传感器装置、电阻抗断层成像装置和电阻抗断层成像方法
US20180344200A1 (en) * 2017-05-31 2018-12-06 Cardiac Pacemakers, Inc. Electrical impedance tomography using the internal thoracic vein
JP2021097916A (ja) * 2019-12-23 2021-07-01 国立大学法人千葉大学 生体内物質の可視化装置
CN112450910A (zh) * 2020-12-04 2021-03-09 桂林电子科技大学 一种电阻抗断层成像的边界测量装置及方法
CN113069100A (zh) * 2021-03-03 2021-07-06 桂林电子科技大学 一种可旋转电阻抗断层成像的三维边界测量结构及方法
CN215738930U (zh) * 2021-09-15 2022-02-08 中国人民解放军总医院第一医学中心 一种电阻抗成像辅助装置
CN114847913A (zh) * 2022-04-14 2022-08-05 四川大学华西医院 一种生物电阻抗断层成像装置和方法

Also Published As

Publication number Publication date
CN114847913A (zh) 2022-08-05
CN114847913B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2023198151A1 (zh) 一种生物电阻抗断层成像装置和方法
US10881316B2 (en) Automatically determining 3D catheter location and orientation using 2D fluoroscopy only
JP6093421B2 (ja) 電気インピーダンストモグラフィーイメージング計器及び電気インピーダンストモグラフィーイメージング方法
JP6436182B2 (ja) 動態画像解析装置
DE112010000978B4 (de) System und Verfahren zum Bestimmen der Tiefe von Brustkorbkompressionen
JP7129097B2 (ja) 新生児の電気インピーダンストモグラフィーイメージングのためのセンサベルトおよび位置決め補助具
Lapi et al. Respiratory rate assessments using a dual-accelerometer device
JP6418091B2 (ja) 胸部画像表示システム及び画像処理装置
JP2017018681A (ja) 動態解析システム
JP2000139866A (ja) 電気インピ―ダンストモグラフィ装置
US11562511B2 (en) Medical image processing apparatus, x-ray diagnostic apparatus, and storage medium
CN108113674A (zh) 确定电阻抗断层成像的电极装置的轴向位置的设备和方法
US11457832B2 (en) Measurement device, shape estimation device, measurement method, shape estimation method, and non-transitory recording medium recording program
JP5854608B2 (ja) X線診断装置
Gavriely et al. Radiographic visualization of airway wall movement during oscillatory flow in dogs
Young et al. The normal vectorcardiogram. I
CN206333905U (zh) Ct兼容呼吸训练及自主调节装置
US20220378314A1 (en) Devices, systems, and methods for assessing lung characteristics via regional impedance and patient positioning
US10034620B2 (en) Measuring lung volume changes by impedance pneumography
Duan et al. Evaluation of three approaches used for respiratory measurement in healthy subjects
Conwell et al. An operator-passive thoracic impedance approach for respiratory motion gating in myocardial perfusion SPECT
Templeton et al. Left ventricular coordinate systems
JPH06209910A (ja) 心電図マッピングのための評価法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787793

Country of ref document: EP

Kind code of ref document: A1