WO2023198046A1 - 信道传输方法及装置、终端 - Google Patents

信道传输方法及装置、终端 Download PDF

Info

Publication number
WO2023198046A1
WO2023198046A1 PCT/CN2023/087587 CN2023087587W WO2023198046A1 WO 2023198046 A1 WO2023198046 A1 WO 2023198046A1 CN 2023087587 W CN2023087587 W CN 2023087587W WO 2023198046 A1 WO2023198046 A1 WO 2023198046A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
psfch
channel
cot
side link
Prior art date
Application number
PCT/CN2023/087587
Other languages
English (en)
French (fr)
Inventor
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023198046A1 publication Critical patent/WO2023198046A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a channel transmission method and device, and a terminal.
  • the side-link channel structure of the related art there must be a symbol gap (gap) after the end of each transmission.
  • the gap is greater than 16 microseconds (us), so different side-link transmissions cannot be regarded as a transmission cluster ( transmission burst), each transmission requires the terminal to re-detect the channel to obtain the channel occupancy time, which seriously reduces the transmission efficiency.
  • Embodiments of the present application provide a channel transmission method, device, and terminal, which can improve transmission efficiency.
  • a channel transmission method including:
  • the first terminal obtains resource information for side link transmission in the unlicensed frequency band
  • the side link transmission is performed in a first manner; wherein the first manner includes at least one of the following:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type 1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, automatic gain control AGC symbols.
  • a channel transmission device including:
  • the acquisition module is used to obtain resource information for side link transmission in the unlicensed frequency band
  • a processing module configured to perform the side link transmission in a first manner according to the resource information; wherein the first manner includes at least one of the following:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type1 listen-before-talk LBT or Type2A LBT method uses the highest channel access priority of Type1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, and automatic gain control AGC symbols.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to obtain resource information for side link transmission in an unlicensed frequency band; according to the resource information, the first method is used to perform the The side link transmission; wherein, the first method includes at least one of the following:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type1 listen-before-talk LBT or Type2A LBT method uses the highest channel access priority of Type1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, and automatic gain control AGC symbols.
  • a side link transmission system including: a terminal, where the terminal can be configured to perform the steps of the channel transmission method described in the first aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect Channel transmission method.
  • the terminal when transmitting the side link channel in the unlicensed frequency band, uses the first method to perform side link transmission, in which the first time threshold can ensure that the transmission of the side link is a transmission burst, which can reduce The number of times the first terminal performs channel listening and/or the time it takes to perform channel sensing improves transmission efficiency; when using the highest channel access priority access channel of Type 1 LBT to transmit PSFCH, it can reduce the number of tasks performed by the first terminal.
  • Channel listening time while sharing the obtained COT with other terminals, can reduce the number of channel listening times and/or the time for other terminals to do channel listening, and improve transmission efficiency; when using Type2A LBT to access the channel, perform PSFCH When transmitting, it can reduce the time for the first terminal to do channel listening and improve the transmission efficiency; after determining the channel occupancy time COT initiated by the second terminal, the second terminal's COT transmission information can be shared, which can reduce the time for the first terminal to do channel listening. The number of listening times and/or the time spent doing channel listening can improve transmission efficiency.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of side link transmission
  • Figure 3 is a schematic flow chart of a channel transmission method according to an embodiment of the present application.
  • FIGS 4 to 12 are schematic diagrams of specific example channel transmission methods in this application.
  • Figure 13 is a schematic structural diagram of a channel transmission device according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • Ultra-Mobile Personal Computer UMPC
  • Mobile Internet Device MID
  • Augmented Reality AR
  • Virtual Reality VR
  • robots wearable devices
  • Wearable Device Vehicle User Equipment
  • VUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • personal Terminal devices such as computers (PCs), teller machines or self-service machines
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces , smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. It should be noted that the embodiment of the present application does not limit the specific type of the terminal 11.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless device.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Fidelity (WiF) node, etc.
  • the base station may be called a Node B, an Evolved Node B (eNB), or an access point.
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiving Point
  • the base station is not limited to specific technical terms. It should be noted that in this application, in the embodiment, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • Sidelink (sidelink, or translated as secondary link, side link, side link, etc.) transmission, that is, data transmission between terminals (User Equipment, UE) directly on the physical layer.
  • LTE sidelink is based on broadcast communication and can be used to support basic security communications of vehicle to everything (V2X).
  • the 5G NR (New Radio, NR) system supports more advanced sidelink transmission design, such as unicast, multicast or multicast, etc., thereby supporting more comprehensive service types.
  • unlicensed bands can be used as a supplement to licensed bands to help operators expand services.
  • unlicensed frequency bands can operate in the 5GHz, 37GHz and 60GHz frequency bands.
  • the large bandwidth (80 or 100MHz) of the unlicensed frequency band can reduce the base Implementation complexity of stations and UEs.
  • RATs such as WiFi, radar, LTE-licensed spectrum assisted access (LAA), etc.
  • LAA LTE-licensed spectrum assisted access
  • the use of unlicensed frequency bands must comply with Regulation to ensure that all devices can use the resource fairly, such as Listen Before Talk (LBT), Maximum Channel Occupancy Time (MCOT) and other rules.
  • LBT Listen Before Talk
  • MCOT Maximum Channel Occupancy Time
  • a transmission node When a transmission node needs to send information, it needs to perform LBT first and perform power detection (ED) on surrounding nodes. When the detected power is lower than a threshold, the channel is considered idle and the transmission node can perform send. Otherwise, the channel is considered busy and the transmitting node cannot send.
  • the transmission node can be a base station, UE, WiFi access point (Access Point, AP), etc. After the transmission node starts transmitting, the occupied channel time (Channel Occupancy Time, COT) cannot exceed MCOT.
  • COT Channel Occupancy Time
  • COT Channel Occupancy Time
  • the transmission node must occupy at least 70% (60GHz) or 80% (5GHz) of the entire frequency band during each transmission.
  • Type1 LBT is a channel listening mechanism based on back-off. When the transmission node detects that the channel is busy, it backs off and continues listening until it detects that the channel is empty.
  • Type2C means that the sending node does not perform LBT, that is, no LBT or immediate transmission.
  • Type2A and Type2B LBT are one-shot LBT, that is, the node performs an LBT before transmission. If the channel is empty, it will transmit, and if the channel is busy, it will not transmit.
  • Type2A performs LBT within 25us, which is suitable for shared COT when the gap between two transmissions is greater than or equal to 25us.
  • Type2B performs LBT within 16us, which is suitable for shared COT when the gap between the two transmissions is equal to 16us.
  • Type2 LBT which is suitable for LAA/enhanced LAA (enhanced LAA, eLAA)/further enhanced LAA (Further enhanced LAA, FeLAA).
  • the shared COT is used, the gap between the two transmissions is greater than or equal to 25us
  • eNB and UE can adopt Type 2 LBT.
  • the types of LBT are Type1, Type2 and Type3.
  • Type1 is a channel listening mechanism based on fallback
  • Type2 is one-shot LBT, which performs 5us LBT within 8us.
  • Type 3 does not do LBT.
  • a downlink (Down Load, DL)/uplink (Up Load, UL) transmission cluster (burst) is a group of transmissions sent by the base station or UE with a gap of no more than 16us.
  • the base station or UE can directly transmit without LBT after the gap.
  • the gap between transmissions is greater than 16us, it can be regarded as a separate DL/UL transmission burst.
  • an Automatic Gain Control (AGC) symbol is required before each sidelink (SL) transmission, and a gap symbol is required after each transmission.
  • AGC symbols are generally repeated transmissions of the next symbol, such as Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared CHannel (PSSCH) or Physical Sidelink Feedback Channel (Physical Sidelink Feedback CHannel, PSFCH).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared CHannel
  • PSFCH Physical Sidelink Feedback Channel
  • the time required for the UE to perform AGC is related to the sub-carrier space (Sub-Carrier Space, SCS). For 15KHz SCS, the AGC time is less than or equal to 35us, for 30KHz SCS, the AGC time is less than or equal to 18us, and for 60KHz SCS, the AGC time is less than or equal to 9us.
  • SCS sub-Carrier Space
  • This embodiment of the present application provides a channel transmission method, as shown in Figure 3, including:
  • Step 101 The first terminal obtains resource information for side link transmission in the unlicensed frequency band
  • Step 102 According to the resource information, use a first method to perform the side link transmission; wherein the first method includes at least one of the following:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type1 listen-before-talk LBT or Type2A LBT method uses the highest channel access priority of Type1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, and automatic gain control AGC symbols.
  • the first time threshold needs to ensure that the transmission of the side link is a transmission burst, which can reduce the number of channel listening times and/or the time for channel listening by the first terminal.
  • the first time threshold The value can be an absolute duration, or the number of slots, minislots, or symbols. Specifically, the first time threshold needs to be less than or equal to 16us.
  • the first terminal accesses the channel, including accessing the channel using Type1 LBT, or accessing the channel through Type2A, Type2B, or Type2C within the shared COT.
  • the highest channel access priority of Type1 LBT When using the highest channel access priority of Type1 LBT to transmit PSFCH, it can reduce the time for the first terminal to do channel listening. At the same time, the obtained COT can be shared with other terminals, which can reduce the time for other terminals to do channel listening. The number of listening times and/or the time for channel listening can improve transmission efficiency.
  • Type 2A listen-before-talk LBT When Type 2A listen-before-talk LBT is used to access the channel and transmit the PSFCH, it can reduce the time for the first terminal to listen to the channel and improve the transmission efficiency.
  • the COT transmission information of the second terminal can be shared, which can reduce the number of channel listening times and/or the time for channel listening by the first terminal and improve transmission efficiency.
  • the method further includes:
  • the first transmission resource includes at least one of the first PSSCH, the first PSCCH and the automatic gain control AGC symbol.
  • the first PSSCH for example, slot n
  • a second PSSCH or first PSFCH
  • the first PSSCH for example, slot n-1
  • the first signal is sent before the start time and/or the first signal is sent after the second PSSCH (or first PSFCH) end time.
  • the first terminal accesses the side link channel with a first priority, and the channel access priority of data transmitted by the first terminal within the COT is higher than or equal to the first priority,
  • the COT includes a COT initiated by the first terminal and a shared COT initiated by the second terminal.
  • the first PSSCH is located in the COT where the second PSSCH or the first PSFCH is located, and the COT includes a COT initiated by the first terminal and a shared COT initiated by the second terminal.
  • the time interval between the start time of the first PSSCH and the end time of the second PSSCH or the first PSFCH is D
  • the length of the first signal is greater than or equal to D-Y
  • Y is The first time threshold is, for example, 16 us
  • Y may be agreed upon by the protocol, configured by the network side device, or preconfigured.
  • the first signal when the first signal is sent before the start time of the first transmission resource, the first signal includes at least one of the following:
  • the first signal when the first signal is sent after the end time of the second PSSCH or the first PSFCH, the first signal includes at least one of the following:
  • the UE In the unlicensed frequency band, in order to improve transmission efficiency, when the UE accesses the channel, it detects that the channel is empty. The UE continuously transmits as much as possible within the COT to avoid additional LBT. For continuous transmission, the gap between multiple SL transmissions of the UE must be less than or equal to 16us. As shown in Figure 2, the gap between PSSCH and PSFCH is one symbol. Even for 60KHz SCS, the gap is still larger than 16us. Therefore, after acquiring the channel, the UE fills the gap between all SL transmissions that need to be sent, that is, The gap sends the first signal, making it less than or equal to 16us, which can avoid channel listening. In a specific example, padding can be performed through enhanced cyclic prefix CPE, that is, CPE is sent in the gap between all SL transmissions that need to be sent.
  • CPE enhanced cyclic prefix
  • SL transmission includes at least one of the following: PSCCH, PSSCH, and PSFCH.
  • SL transmissions may also include AGC symbols.
  • the priority of information transmitted within a COT cannot be lower than the priority of the COT, That is, the CAPC value of the transmitted information is less than or equal to the CAPC value of the COT obtained.
  • the channel access priority of the UE's SL transmission within a COT is higher than or equal to the channel access priority corresponding to the SL transmission of the COT. In other words, the channel access priority of the UE's SL transmission within a COT has priority.
  • the level value must be lower than or equal to the channel access priority value corresponding to the SL transmission of the COT.
  • UE1 accesses the channel through LBT, it obtains the COT.
  • PSSCH PSSCH
  • UE1 fills all the gaps between PSSCH (that is, sends the first signal in the gap) to make SL transmission continuous.
  • UE2 After receiving the information (PSCCH and/or PSSCH) sent by UE1, UE2 sends PSFCH and/or PSSCH to UE1.
  • UE2 can share the COT of UE1 and access the channel through type2A LBT. At this time, the gap between PSSCH and PSFCH does not need to be filled (that is, the first signal is not sent in the gap).
  • the gap between PSSCH and PSFCH needs to be filled with CPE (that is, CPE is sent in the gap) to 16us or less.
  • CPE that is, CPE is sent in the gap
  • UE2 fills the gap between PSFCH and multiple PSSCH transmissions (ie, sends the first signal in the gap) to achieve continuous transmission.
  • Type2A LBT or Type 1 LBT can be used as the channel access type of PFSCH.
  • the method when the first terminal uses a Type2A LBT access channel and the subcarrier spacing is 60KHz, the method further includes:
  • the first terminal performs puncturing operation in the first A microseconds of the first PSFCH symbol after the gap symbol, and sends the last B microseconds of the first PSFCH symbol.
  • the length of the first PSFCH symbol is A+ B microseconds, A, B are positive integers.
  • the first terminal performs channel sensing in the gap symbol before the first PSFCH symbol and A microseconds before the first PSFCH symbol.
  • the UE When the first terminal uses Type2A LBT to access the channel, for 15KHz and 30KHz SCS, the UE performs 25us LBT immediately adjacent to PSFCH in the gap symbol before PSFCH. For 60KHz SCS, since the size of the gap symbol is less than 25us, there is not enough time for LBT. In order to ensure that there is enough time for channel sensing, the UE only sends the last B microseconds in the first PSFCH symbol, such as the last 9us. , the A microseconds and gap symbols in front of the first PSFCH symbol are connected together to make Type 2A LBT, as shown in Figure 5. In this embodiment, the COT obtained through Type2A LBT It can only be used to transmit PSFCH and cannot be shared with other UEs.
  • the number of gap symbols is configured or preconfigured by the network side device or defined by the protocol.
  • the number may be a number other than 1 symbol, such as 1 symbol, 2 symbol, 3 symbol, or 0.5 symbol.
  • the number of gap symbols is related to SCS.
  • the method when the first terminal uses the highest channel access priority access channel of Type 1 LBT to perform PSFCH transmission, the method further includes:
  • the entry priority is the highest priority.
  • the channel access type of the third terminal may be Type2A.
  • the relevant information of the COT here may be stipulated in the agreement, or may be obtained from the first terminal.
  • the sending terminal of PSFCH (Transmit UE, Tx UE) can share the COT with the receiving terminal of PSFCH (Receive UE, Rx UE) .
  • the Rx UE of PSFCH can send PSCCH, PSSCH and/or PSFCH to the Tx UE of PSFCH.
  • the Rx UE of PSFCH shares the channel, it can use Type2A, Type2B, or Type2C LBT to access the channel.
  • the Rx UE of the PSFCH needs to fill the gap between SL transmissions (that is, send the first signal in the gap) to meet the gap requirements of Type2B or Type2C, that is, less than or equal to 16us .
  • the terminal can perform SL transmission through the shared COT.
  • the time and number of channel listening can be reduced and the transmission efficiency can be improved.
  • the method further includes:
  • the start time and end time of the shared COT are determined by the PSFCH period and/or the channel access priority indicated in the side link control information SCI.
  • the Rx UE within a PSFCH cycle, if the Rx UE receives the information sent by the Tx UE, it can share the COT of the Tx UE before the PSFCH to perform PSCCH/PSSCH. transmission.
  • the (virtual) end position of the Tx UE COT may be determined by the position and/or period of the PSFCH and the priority (priority) indicated by the sidelink control information (SCI). There is a mapping relationship between the priority indicated in the first stage SCI and the channel access priority.
  • the Rx UE can implicitly obtain the length of the COT through the priority.
  • the Rx UE receives the PSSCH in the second slot of the first cycle of the PSFCH, and the Rx UE assumes that the slot is the starting position of the COT. Based on the starting position and the length of the COT, if the end position of the COT is deduced to be before PSFCH, the end position of the COT is inferred based on the length of the COT. If the end position of COT is pushed after PSFCH, then the end position of COT is PSFCH.
  • Another implementation method is to calculate the virtual start position of the COT through the PSFCH cycle, and determine the end position of the COT based on the COT length implicitly obtained by priority in SCI.
  • the Rx UE detects the information sent by the Tx UE in any slot within the PSFCH cycle
  • the UE assumes that the starting position of the COT of the Tx UE is the starting position of the PSFCH cycle.
  • the end position of the COT is obtained by the starting position of the PSFCH cycle and the COT length; when the COT length corresponding to the priority is greater than the PSFCH cycle, the end position of the COT is the end position of the PSFCH cycle.
  • the method further includes:
  • the first terminal obtains the duration of the shared COT of the COT initiated by the second terminal, and the duration of the shared COT is indicated by a specific sequence or signal transmitted by the second terminal in the interval symbol.
  • Tx UE When the Tx UE accesses the channel, the Tx UE tries to transmit continuously to avoid additional LBT, which can improve transmission efficiency. Therefore, Rx UE can determine COT information by detecting on gap symbols.
  • Tx UE i.e. the above-mentioned second terminal
  • Tx UE can send specific sequences or signals on gap symbols. Different sequences or signals can represent different COT periods (duration). The corresponding relationship between different sequences or signals and COT duration can be It is configured or pre-configured by the network side device or defined by the protocol.
  • the Rx UE After detecting a specific sequence or signal, the Rx UE (i.e. the above-mentioned first terminal) can obtain the corresponding COT duration to determine whether the COT of the Tx UE can be shared.
  • the duration of the COT of the second terminal shared by the first terminal is determined by the value of the COT duration field in the first SCI received by the first terminal from the second terminal side. .
  • the first The value of the COT duration field in the second SCI sent by the terminal is 0 or an invalid value.
  • the Tx UE (i.e., the second terminal) can indicate the COT duration in the SCI, and all Rx UEs (i.e., the first terminal) that receive the SCI can share the COT of the Tx UE.
  • the receiving objects of PSCCH, PSSCH and/or PSFCH sent by Rx UE at least include Tx UE.
  • the COT duration indicated in the SCI sent by Rx UE is zero or an invalid value. In this way, the UE that receives the SCI sent by the Rx UE will not think that the Rx UE initiated the COT and further share the COT.
  • the first terminal preferentially uses the shared COT to transmit data. That is, when the UE is instructed to share COT sharing and non-COT sharing at the same time, the UE will give priority to COT sharing for information transmission based on COT information. This can reduce the number and time of channel listening and improve transmission efficiency. Information that cannot be transmitted within the COT can be transmitted using non-COT sharing, that is, the UE performs channel access and transmission according to the indicated Type 1 LBT.
  • the resources shared by the first terminal in the COT initiated by the second terminal can be indicated by the resource selection window location (Resource selection window location) field in SCI 2-C;
  • the resources of the shared COT are determined through the Resource combinations field, First resource location field, Reference slot location field and Number of sub-channels in SCI 2-C. subchannels) domain joint indication.
  • the resources indicated by default are all resources in the shareable COT. It accesses the channel through Type2A and transmits on the indicated resources.
  • the UE receives the indication of SCI 2-A or SCI 2-B there is no COT to share by default, and all SL transmissions use the Type 1 LBT access channel.
  • the UE selects absolute time continuous time slots (consecutive slots) for PSSCH transmission. If the UE can ensure uninterrupted transmission (that is, the signal interval sent by the UE is less than or equal to 16us), after the UE successfully performs LBT, it can Send signals in consecutive slots to improve LBT efficiency. That is, the first method also includes:
  • the first terminal transmits the first signal on PSFCH symbols, and the first signal includes a virtual PSFCH.
  • the form of consecutive slots selected by the UE may have many situations, including:
  • the first situation There is no PSFCH opportunity between consecutive slots. As shown in Figure 8, the terminal only needs to fill in the gap symbol between PSSCH and PSSCH, that is, only send the first signal in the gap symbol between PSSCH and PSSCH.
  • the second case There is a PSFCH occurrence between consecutive slots.
  • the UE needs to process the PSFCH symbol and the gap before and after the PSFCH to avoid having a negative impact on other UEs in the system performing CCA when sending PSFCH, or making the UE unable to receive the required PSFCH.
  • the UE cannot fill in the PSFCH symbol and/or the gap before and after PSFCH, that is, it does not send the first signal in the PSFCH symbol and/or the gap before and after PSFCH, as shown in Figure 9.
  • the protocol stipulates that when the UE actively selects consecutive slots (when N consecutive slots are used as alternative resources for resource selection), consecutive slots cannot be inserted into PSFCH occasions (for example, except for the slot at the end, other slots cannot contain PSFCH occasions).
  • the UE can conditionally fill in the PSFCH symbol and/or the gap before and after the PSFCH, that is, conditionally send the first signal on the PSFCH symbol and/or the gap before and after the PSFCH.
  • the UE fills in the PSFCH symbol and the gap before and after the PSFCH.
  • the UE may send a virtual PSFCH to fill the PSFCH, that is, send the virtual PSFCH on the PSFCH.
  • the first rule UE does not fill in the PSFCH symbol and the gap before and after PSFCH to ensure PSFCH reception.
  • the second rule UE can fill in the PSFCH symbol and the gap before and after PSFCH to ensure continuous transmission of PSSCH.
  • the network side can be configured and/or the protocol can agree on the behavior of the first rule or the second rule; or, according to the priority of PSFCH and PSSCH transmission, it is determined to use the first rule or The second rule is to ensure the reception of high priority messages.
  • the rules followed by the UE include at least one of the following: item:
  • the third rule UE does not fill in the PSFCH symbol and the gap before and after PSFCH to ensure PSFCH reception.
  • the fourth rule UE can fill in the PSFCH symbol and the gap before and after PSFCH to ensure continuous transmission of PSSCH.
  • the fifth rule As shown in Figure 12, the UE does not fill in the PSFCH symbol and the gap before and after PSFCH to ensure PSFCH reception. After the PSFCH, the UE can still send PSSCH on the next PSSCH slot (assuming that the UE transmitting PSSCH shares the COT to the PSFCH sending end UE, and then use the COT to send PSSCH again).
  • the execution subject may be a channel transmission device.
  • the channel transmission device performing the channel transmission method is taken as an example to illustrate the channel transmission device provided by the embodiment of the present application.
  • This embodiment of the present application provides a channel transmission device, as shown in Figure 13, applied to the first terminal 200, including:
  • the acquisition module 210 is used to acquire resource information for side link transmission in the unlicensed frequency band
  • the processing module 220 is configured to perform the side link transmission in a first manner according to the resource information; wherein the first manner includes at least one of the following:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type1 listen-before-talk LBT or Type2A LBT method uses the highest channel access priority of Type1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, and automatic gain control AGC symbols.
  • the first time threshold needs to ensure that the transmission of the side link is a transmission burst, which can reduce the number of channel listening times and/or the time for channel listening by the first terminal.
  • the first time threshold can be an absolute duration, or It can be the number of slots, minislots, and symbols. Specifically, the first time threshold needs to be less than or equal to 16us.
  • the first terminal accesses the channel, including accessing the channel using Type1 LBT, or accessing the channel through Type2A, Type2B, or Type2C within the shared COT.
  • the highest channel access priority of Type1 LBT When using the highest channel access priority of Type1 LBT to transmit PSFCH, it can reduce the time for the first terminal to do channel listening. At the same time, the obtained COT can be shared with other terminals, which can reduce the time for other terminals to do channel listening. The number of listening times and/or the time for channel listening can improve transmission efficiency.
  • Type 2A listen-before-talk LBT When Type 2A listen-before-talk LBT is used to access the channel and transmit the PSFCH, it can reduce the time for the first terminal to listen to the channel and improve the transmission efficiency.
  • the COT transmission information of the second terminal can be shared, which can reduce the number of channel listening times and/or the time for channel listening by the first terminal and improve transmission efficiency.
  • the two side link transmission resources when two side link transmission resources are adjacent, the two side link transmission resources include a first transmission resource and a second PSSCH or first PSFCH located before the first transmission resource,
  • the processing module 220 is specifically configured to send the first signal before the start time of the first transmission resource; and/or
  • the first transmission resource includes at least one of the first PSSCH, the first PSCCH and the automatic gain control AGC symbol.
  • the first terminal accesses the side link channel with a first priority, and the channel access priority of data transmitted by the first terminal within the COT is higher than or equal to the first priority,
  • the COT includes a COT initiated by the first terminal and a shared COT initiated by the second terminal.
  • the first PSSCH is located in a COT where the second PSSCH or the first PSFCH is located, and the COT includes a COT initiated by the first terminal and a shared COT initiated by the second terminal.
  • the time interval between the start time of the first PSSCH and the end time of the second PSSCH or the first PSFCH is D, and the length of the first signal is greater than or equal to In DY, Y is the first time threshold.
  • the first signal when the first signal is sent before the start time of the first transmission resource, the first signal includes at least one of the following:
  • the first signal when the first signal is sent after the end time of the second PSSCH or the first PSFCH, the first signal includes at least one of the following:
  • the processing module 220 when the first terminal adopts Type2A LBT access channel and the subcarrier spacing is 60KHz, the processing module 220 is used to process the first A microseconds of the first PSFCH symbol after the gap symbol. Perform puncturing operation and send the last B microseconds of the first PSFCH symbol.
  • the length of the first PSFCH symbol is A+B microseconds, and A and B are positive integers.
  • the processing module 220 is configured to perform channel sensing in the gap symbol before the first PSFCH symbol and the first A microseconds of the first PSFCH symbol.
  • the number of gap symbols is configured or pre-configured by the network side device or defined by the protocol.
  • the number of gap symbols is related to SCS.
  • the processing module 220 when the first terminal uses the highest channel access priority access channel of Type 1 LBT for PSFCH transmission, the processing module 220 is configured to share the COT of the first terminal with the third terminal. , causing the third terminal to send at least one of the following within the COT of the first terminal: PSCCH, PSSCH, PSFCH, and AGC symbols, where the channel access priority of the PSSCH is the highest priority.
  • the third terminal shares the COT of the first terminal to send at least one of the following: PSCCH, PSSCH, PSFCH, and AGC symbols, where the channel access priority of the PSSCH is the highest priority.
  • the processing module 220 is also configured to obtain the information of the shared COT of the COT initiated by the second terminal.
  • the start time and end time of the shared COT are controlled through the PSFCH cycle and/or side link.
  • the channel access priority indicated in the information SCI is determined.
  • the processing module 220 is also configured to obtain the duration of the shared COT of the COT initiated by the second terminal.
  • the duration of the shared COT is transmitted by the second terminal in the interval symbol. specific sequence or signal indication.
  • the duration of the COT of the second terminal shared by the first terminal is determined by the value of the COT duration field in the first SCI received by the first terminal from the second terminal side.
  • the value of the COT duration field in the second SCI sent by the first terminal is 0 or an invalid value.
  • the resources of the COT initiated by the first terminal shared by the second terminal are indicated by the Resource selection window location field in SCI 2-C;
  • the first terminal shares the resources of the COT initiated by the second terminal through the Resource combinations field, the First resource location field, the Reference slot location field and the number of sub-channels in the SCI 2-C Number of subchannels field joint indication.
  • the processing module 220 transmits the first signal on the PSFCH symbol, and the first signal includes a virtual PSFCH.
  • the channel transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the channel transmission device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 3 to 12 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 600, including a
  • the processor 601 and the memory 602 store programs or instructions that can be run on the processor 601.
  • the program or instructions are executed by the processor 601 to implement the above channel transmission.
  • Each step of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a terminal, which includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, the above is implemented. The steps of the channel transmission method.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface, wherein the communication interface is used to obtain resource information for side link transmission in the unlicensed frequency band; according to the resource information, the first method is used to perform The side link transmission; wherein, the first method includes at least one of the following:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type1 listen-before-talk LBT or Type2A LBT method uses the highest channel access priority of Type1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, and automatic gain control AGC symbols.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment. , and can achieve the same technical effect.
  • FIG. 15 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the end shown in Figure 15 The terminal structure does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and Direct Rambus RAM (DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM Direct Rambus RAM
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the processor 710 is configured to obtain resource information for side link transmission in the unlicensed frequency band; according to the resource information, use a first way to perform the side link transmission; wherein the first way includes the following At least one:
  • the side link transmission is performed on a plurality of side link transmission resources, wherein a first signal is filled between two side link transmission resources in the plurality of side link transmission resources, so that the two side link transmission resources
  • the interval between link transmission resources is less than or equal to the first time threshold
  • Type1 listen-before-talk LBT or Type2A LBT method uses the highest channel access priority of Type1 listen-before-talk LBT or Type2A LBT method to access the channel, and transmit the physical side link feedback channel PSFCH;
  • the side link transmission resources include at least one of the following: physical side link shared channel PSSCH, PSFCH, physical side link control channel PSCCH, and automatic gain control AGC symbols.
  • the first time threshold needs to ensure that the transmission of the side link is a transmission burst, which can reduce the number of channel listening times and/or the time for channel listening by the first terminal.
  • the first time threshold can be an absolute duration, or It can be the number of slots, minislots, and symbols. Specifically, the first time threshold needs to be less than or equal to 16us.
  • the first terminal accesses the channel, including accessing the channel using Type1 LBT, or accessing the channel through Type2A, Type2B, or Type2C within the shared COT.
  • the highest channel access priority of Type1 LBT When using the highest channel access priority of Type1 LBT to transmit PSFCH, it can reduce the time for the first terminal to do channel listening. At the same time, the obtained COT can be shared with other terminals, which can reduce the time for other terminals to do channel listening. The number of listening times and/or the time for channel listening can improve transmission efficiency.
  • Type2A listen-before-talk LBT access channel for PSFCH transmission It can reduce the time for the first terminal to do channel listening and improve the transmission efficiency.
  • the COT transmission information of the second terminal can be shared, which can reduce the number of channel listening times and/or the time for channel listening by the first terminal and improve transmission efficiency.
  • the two side link transmission resources when two side link transmission resources are adjacent, the two side link transmission resources include a first transmission resource and a second PSSCH or first PSFCH located before the first transmission resource,
  • the processor 710 is specifically configured to send the first signal before the start time of the first transmission resource; and/or
  • the first transmission resource includes at least one of the first PSSCH, the first PSCCH and the automatic gain control AGC symbol.
  • the first terminal accesses the side link channel with a first priority, and the channel access priority of data transmitted by the first terminal within the COT is higher than or equal to the first priority,
  • the COT includes a COT initiated by the first terminal and a shared COT initiated by the second terminal.
  • the first PSSCH is located in a COT where the second PSSCH or the first PSFCH is located, and the COT includes a COT initiated by the first terminal and a shared COT initiated by the second terminal.
  • the time interval between the start time of the first PSSCH and the end time of the second PSSCH or the first PSFCH is D
  • the length of the first signal is greater than or equal to D-Y
  • Y is The first time threshold
  • the first signal when the first signal is sent before the start time of the first transmission resource, the first signal includes at least one of the following:
  • the first signal when the first signal is sent after the end time of the second PSSCH or the first PSFCH, the first signal includes at least one of the following:
  • the processor 710 when the first terminal adopts the Type2A LBT access channel and the subcarrier spacing is 60KHz, the processor 710 is used for the first A microseconds of the first PSFCH symbol after the gap symbol. Perform puncturing operation and send the last B microseconds of the first PSFCH symbol.
  • the length of the first PSFCH symbol is A+B microseconds, and A and B are positive integers.
  • the processor 710 is configured to perform channel sensing in a gap symbol before the first PSFCH symbol and A microseconds before the first PSFCH symbol.
  • the number of gap symbols is configured or pre-configured by the network side device or defined by the protocol.
  • the number of gap symbols is related to SCS.
  • the processor 710 when the first terminal uses the highest channel access priority access channel of Type 1 LBT for PSFCH transmission, the processor 710 is configured to share the COT of the first terminal with the third terminal. , causing the third terminal to send at least one of the following within the COT of the first terminal: PSCCH, PSSCH, PSFCH, and AGC symbols, where the channel access priority of the PSSCH is the highest priority.
  • the processor 710 is also configured to obtain information about the shared COT initiated by the second terminal.
  • the start time and end time of the shared COT are determined through the PSFCH cycle and/or side link control information SCI.
  • the channel access priority indicated in is determined.
  • the processor 710 is further configured to obtain the duration of the shared COT initiated by the second terminal.
  • the duration of the shared COT is determined by the second terminal in the specified interval symbol transmission. Sequence or signal indication.
  • the duration of the COT of the second terminal shared by the first terminal is determined by the value of the COT duration field in the first SCI received by the first terminal from the second terminal side.
  • the value of the COT duration field in the second SCI sent by the first terminal is 0 or an invalid value.
  • the resources of the COT initiated by the first terminal shared by the second terminal are indicated by the Resource selection window location field in SCI 2-C;
  • the first terminal shares the resources of the COT initiated by the second terminal through the Resource combinations field, the First resource location field, the Reference slot location field and the number of sub-channels in the SCI 2-C Number of subchannels field joint indication.
  • the processor 710 when a PSFCH opportunity occurs between consecutive slots in absolute time, transmits the first signal on a PSFCH symbol, and the first signal includes a virtual PSFCH.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by the processor, the above channel is implemented. Each process of the transmission method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above channel transmission method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above channel transmission method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • Embodiments of the present application also provide a side link transmission system, including: a terminal, where the terminal can be configured to perform the steps of the channel transmission method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道传输方法及装置、终端,属于通信技术领域,本申请实施例的信道传输方法,包括:获取非授权频段上旁链路传输的资源信息;根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;采用类型Type1LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行PSFCH的传输;确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输。

Description

信道传输方法及装置、终端
相关申请的交叉引用
本申请主张在2022年4月12日在中国提交的中国专利申请No.202210384076.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信道传输方法及装置、终端。
背景技术
相关技术的旁链路信道结构中,每次传输结束之后必须有一个符号的间隔(gap),该gap大于16微秒(us),因此不同的旁链路传输不能看做是一个传输簇(transmission burst),每一个传输都需要终端重新做信道侦听以获取信道占用时长,严重降低了传输效率。
发明内容
本申请实施例提供一种信道传输方法及装置、终端,能够提高传输效率。
第一方面,提供了一种信道传输方法,包括:
第一终端获取非授权频段上旁链路传输的资源信息;
根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型(Type)1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道 PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
第二方面,提供了一种信道传输装置,包括:
获取模块,用于获取非授权频段上旁链路传输的资源信息;
处理模块,用于根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于获取非授权频段上旁链路传输的资源信息;根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
第五方面,提供了一种旁链路传输系统,包括:终端,所述终端可用于执行如第一方面所述的信道传输方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信道传输方法。
在本申请实施例中,在非授权频段传输旁链路信道时,终端采用第一方式执行旁链路传输,其中,第一时间阈值能够保证旁链路的传输是一个transmission burst,这样能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率;在采用Type1 LBT的最高信道接入优先级接入信道,进行PSFCH的传输时,可以减少第一终端做信道侦听的时间,同时将获取的COT共享给其他终端,能够减少其他终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率;在采用Type2A LBT接入信道,进行PSFCH的传输时,能够减少第一终端做信道侦听的时间,提高传输效率;确定第二终端发起的信道占用时间COT后,可以共享第二终端的COT传输信息,能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是旁链路传输的示意图;
图3是本申请实施例信道传输方法的流程示意图;
图4-图12是本申请具体示例信道传输方法的示意图;
图13是本申请实施例信道传输装置的结构示意图;
图14是本申请实施例通信设备的结构示意图;
图15是本申请实施例终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移 动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiF)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
旁链路(sidelink,或译为副链路,侧链路,边链路等)传输,即终端(User Equipment,UE)之间直接在物理层上进行数据传输。LTE sidelink是基于广播进行通讯的,可用于支持车联网(vehicle to everything,V2X)的基本安全类通信。5G NR(New Radio,NR)系统支持更加先进的sidelink传输设计,例如,单播,多播或组播等,从而可以支持更全面的业务类型。
在未来通信系统中,非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。为了与NR部署保持一致并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz,37GHz和60GHz频段。非授权频段的大带宽(80或者100MHz)能够减小基 站和UE的实施复杂度。由于非授权频段由多种技术(RATs)共用,例如WiFi,雷达,LTE-授权频谱辅助接入(License Assisted Access,LAA)等,因此在某些国家或者区域,非授权频段在使用时必须符合规则(regulation)以保证所有设备可以公平的使用该资源,例如先听后讲(Listen Before Talk,LBT),最大信道占用时间(Maximum Channel Occupancy Time,MCOT)等规则。当传输节点需要发送信息时,需要先做LBT,对周围的节点进行功率检测(Energy Detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。传输节点可以是基站,UE,WiFi接入点(Access Point,AP)等等。传输节点开始传输后,占用的信道时间(Channel Occupancy Time,COT)不能超过MCOT。此外,根据占用带宽(Occupied Channel Bandwidth,OCB)regulation,在非授权频段上,传输节点在每次传输时要占用整个频带的至少70%(60GHz)或者80%(5GHz)的带宽。
在免许可频段的空中接口(NR in Unlicensed Spectrum,NRU)中常用的LBT的类型(type)可以包括Type1,Type2A,Type2B和Type2C。Type1 LBT是基于回退(back-off)的信道侦听机制,当传输节点侦听到信道为忙时,进行回退,继续做侦听,直到侦听到信道为空。Type2C是发送节点不做LBT,即no LBT或者即时传输(immediate transmission)。Type2A和Type2B LBT是one-shot LBT,即节点在传输前做一次LBT,信道为空则进行传输,信道为忙则不传输。区别是Type2A在25us内做LBT,适用于在共享的COT时,两个传输之间的间隔(gap)大于或等于25us。而Type2B在16us内做LBT,适用于在共享的COT时,两个传输之间的gap等于16us。此外,还有Type2 LBT,适用于LAA/增强LAA(enhanced LAA,eLAA)/进一步增强LAA(Further enhanced LAA,FeLAA),当共享的COT时,两个传输之间的gap大于等于25us,eNB和UE可以采用Type 2 LBT。此外,在频率范围(frequency range)2-2中,LBT的类型有Type1,Type2和Type3,Type1是基于回退的信道侦听机制,Type2是one-shot LBT,在8us内做5us的LBT,Type3是不做LBT。
一个下行(Down Load,DL)/上行(Up Load,UL)传输(transmission)簇(burst)是由基站或者UE发送的一组gap不大于16us的传输。对于一个 DL/UL transmission burst中的传输,基站或者UE可以在gap后不做LBT直接传输。当传输之间的gap大于16us,可以被看做是单独的DL/UL transmission burst。
如图2所示,在每个旁链路(sidelink,SL)传输之前需要一个自动增益控制(Automatic Gain Control,AGC)符号,在每个传输之后需要一个gap符号。AGC符号一般是下一个符号的重复传输,例如物理旁链路控制信道(Physical Sidelink Control CHannel,PSCCH)/物理旁链路共享信道(Physical Sidelink Shared CHannel,PSSCH)或者物理旁链路反馈信道(Physical Sidelink Feedback CHannel,PSFCH)。图中2个符号的PSFCH,第一个符号用来做AGC。UE做AGC所需的时间与子载波间隔(Sub-Carrier Space,SCS)有关。对于15KHz的SCS,AGC时间小于等于35us,对于30KHz的SCS,AGC时间小于等于18us,对于60KHz的SCS,AGC时间小于等于9us。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信道传输方法进行详细地说明。
本申请实施例提供一种信道传输方法,如图3所示,包括:
步骤101:第一终端获取非授权频段上旁链路传输的资源信息;
步骤102:根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
其中,第一时间阈值需要保证旁链路的传输是一个transmission burst,这样能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,第一时间阈 值可以是绝对时长,也可以是时隙(slot)、子时隙(minislot)、符号(symbol)的数量,具体地,第一时间阈值需要小于或等于16us。
本实施例中,第一终端接入信道,包括采用Type1 LBT后接入信道,也包括在共享COT内通过Type2A、Type2B、或Type2C接入信道。
在在采用Type1 LBT的最高信道接入优先级接入信道,进行PSFCH的传输时,可以减少第一终端做信道侦听的时间,同时将获取的COT共享给其他终端,能够减少其他终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
在采用类型Type2A先听后讲LBT接入信道,进行PSFCH的传输时,能够减少第一终端做信道侦听的时间,提高传输效率。
在确定第二终端发起的COT后,可以共享第二终端的COT传输信息,能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
可以减少第一终端做信道侦听的时间,同时将获取的COT共享给其他终端一些实施例中,当两个旁链路传输资源相邻时,所述两个旁链路传输资源包括第一传输资源和位于第一传输资源之前的第二PSSCH或第一PSFCH,所述方法还包括:
在所述第一传输资源的开始时间之前发送第一信号;和/或
在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号;
其中,第一传输资源包括第一PSSCH、第一PSCCH和自动增益控制AGC符号中的至少一项。
比如,对于第一终端发送的第一PSSCH(例如slot n),如果在第一PSSCH之前(例如slot n-1)存在该UE发送的第二PSSCH(或第一PSFCH),则在第一PSSCH开始时间前发送第一信号和/或第二PSSCH(或第一PSFCH)结束时间后发送第一信号。
一些实施例中,所述第一终端以第一优先级接入旁链路信道,所述第一终端在COT内传输的数据的信道接入优先级高于或等于所述第一优先级,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
一些实施例中,所述第一PSSCH位于所述第二PSSCH或所述第一PSFCH所在的COT内,所述COT包括所述第一终端发起的COT和共享的 第二终端发起的COT。
一些实施例中,所述第一PSSCH的开始时间与所述第二PSSCH或所述第一PSFCH的结束时间之间的时间间隔为D,所述第一信号的长度大于或等于D-Y,Y为所述第一时间阈值,比如为16us,Y可以是协议约定、网络侧设备配置或预配置的。
一些实施例中,在所述第一传输资源的开始时间之前发送第一信号的情况下,所述第一信号包括以下至少一项:
第一PSSCH的循环前缀(Cyclic Prefix,CP)扩展;
第一PSSCH的自动增益控制AGC符号的CP扩展;
第一PSSCH特定符号的至少一部分;
特定导频信号。
一些实施例中,在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号的情况下,所述第一信号包括以下至少一项:
第二PSSCH的AGC符号;
第二PSSCH特定符号的至少一部分;
特定导频信号。
在非授权频段上,为了提高传输效率,当UE接入信道后,即侦听到信道为空,UE在COT内尽可能多地连续传输,避免额外的LBT。为了连续传输,UE的多个SL传输之间的gap必须小于或者等于16us。如图2所示,PSSCH和PSFCH之间的gap为一个符号,即使是60KHz的SCS,该gap仍然大于16us,因此UE在获取信道后,填充所有需要发送的SL传输之间的gap,即在gap发送第一信号,使之小于等于16us,能够避免进行信道侦听。一具体示例中,可以通过增强的循环前缀CPE进行填充,即在所有需要发送的SL传输之间的gap发送CPE。
本实施例中,SL传输包括以下至少一项:PSCCH,PSSCH,PSFCH。SL传输还可以包括AGC符号。
Type1 LBT有四个信道接入优先级(Channel Access Priority Class,CAPC),每个CAPC对应一个最大信道占用时间MCOT。其中p=1为最高优先级,p=4为最低优先级。在COT内传输的信息的优先级不能低于该COT的优先级, 即传输信息的CAPC取值小于等于获取该COT的CAPC取值。UE在一个COT内的SL传输的信道接入优先级要高于或者等于获取该COT的SL传输对应的信道接入优先级,也就是说,UE在一个COT内的SL传输的信道接入优先级取值要低于或者等于获取该COT的SL传输对应的信道接入优先级取值。
如图4所示,UE1通过LBT接入信道后,获取COT,UE1在发送PSSCH时,将所有的PSSCH之间的gap填充(即在gap发送第一信号),使得SL传输连续。UE2收到UE1发送的信息后(PSCCH和/或PSSCH),向UE1发送PSFCH和/或PSSCH。UE2可以共享UE1的COT,通过type2A LBT接入信道。此时PSSCH和PSFCH之间的gap不需要填充(即不在gap发送第一信号)。若UE2需要通过Type2B或者Type2C接入信道,则PSSCH和PSFCH之间的gap需要通过CPE填充(即在gap发送CPE)至16us或者小于16us。UE2在接入信道后,填充PSFCH和多个PSSCH传输之间的gap(即在gap发送第一信号),以实现连续的传输。
由于PSFCH信道承载的信息比较重要,且发送时间很短,因此可以采用Type2A LBT或者Type 1 LBT的最高优先级作为PFSCH的信道接入类型。
一些实施例中,在所述第一终端采用Type2A LBT接入信道,且子载波间隔为60KHz的情况下,所述方法还包括:
所述第一终端在gap符号后的第一个PSFCH符号的前A微秒进行打孔操作,并发送第一个PSFCH符号的后B微秒,所述第一个PSFCH符号的长度为A+B微秒,A,B为正整数。
所述第一终端在第一个PSFCH符号之前的间隔gap符号和所述第一个PSFCH符号的前A微秒进行信道侦听。
当第一终端采用Type2A LBT接入信道时,对于15KHz和30KHz的SCS,UE在PSFCH之前的gap符号内,紧邻着PSFCH做25us的LBT。对于60KHz的SCS,由于gap符号的大小小于25us,没有足够的时间做LBT,为了保证能够有足够的时间做信道侦听,则UE在第一个PSFCH符号只发送最后B微秒,比如最后9us,第一个PSFCH符号的前面的A微秒和gap符号连在一起做Type 2A LBT,如图5所示。本实施例中,通过Type2A LBT获取的COT 只能用来传输PSFCH,不能共享给其他UE。
一些实施例中,所述gap符号的数量为网络侧设备配置或预配置或协议定义的,所述数量可以为1symbol之外的数,例如1symbol,2symbol,3symbol,0.5symbol。
一些实施例中,所述gap符号的数量与SCS相关。
一些实施例中,所述第一终端在采用Type1 LBT的最高信道接入优先级接入信道进行PSFCH传输的情况下,所述方法还包括:
向第三终端共享所述第一终端的COT,使得所述第三终端在所述第一终端的COT内发送以下至少一项:PSCCH、PSSCH、PSFCH、AGC符号,其中所述PSSCH的信道接入优先级为最高优先级。
第三终端的信道接入类型可以是Type2A。这里COT的相关信息可以是协议约定的,也可以是从第一终端获取的。
当UE采用Type 1 LBT的最高优先级(p=1)接入信道发送PSFCH时,PSFCH的发送终端(Transmit UE,Tx UE)可以将该COT共享给PSFCH的接收终端(Receive UE,Rx UE)。此时PSFCH的Rx UE可以向PSFCH的Tx UE发送PSCCH、PSSCH和/或PSFCH。其中PSSCH的信道接入优先级也必须是p=1,否则该PSFCH的Rx UE不能共享信道发送PSSCH。PSFCH的Rx UE在共享信道时,可以采用Type2A,Type2B,或Type2C LBT接入信道。当采用Type2B,或Type2C LBT接入信道时,该PSFCH的Rx UE需要填充SL传输之间的gap(即在gap发送第一信号),使之满足Type2B或者Type2C的gap要求,即小于或等于16us。
本实施例中,终端可以通过共享的COT进行SL传输,在通过共享的COT进行SL传输时,能够减少信道侦听的时间和次数,提高传输效率。在通过共享的COT进行SL传输时,所述方法还包括:
获取所述第二终端发起的共享的COT的信息,所述共享的COT的开始时间和结束时间通过PSFCH周期和/或旁链路控制信息SCI中指示的信道接入优先级确定。
一具体实施例中,在一个PSFCH周期内,若Rx UE收到Tx UE发送的信息,则可以在PSFCH之前共享(share)Tx UE的COT进行PSCCH/PSSCH 的传输。可以通过PSFCH的位置和/或周期以及副链路控制信息,(Sidelink Control Information,SCI)指示的优先级(priority)确定Tx UE COT的(虚拟)结束位置。在一级(1st stage)SCI中指示的priority和信道接入优先级有映射关系,Rx UE可以通过priority隐式地得到COT的长度。如图6所示,Rx UE在PSFCH的第一个周期的第二个slot收到PSSCH,则Rx UE假设该slot为COT起始位置。根据该起始位置以及COT长度,如果推得COT的结束位置在PSFCH之前,按照COT的长度推断COT结束位置。若推得COT的结束位置在PSFCH之后,则COT的结束位置为PSFCH。
另外一种实现方式是通过PSFCH周期推算COT的虚拟开始位置,并根据SCI中priority隐式得到的COT长度来确定COT的结束位置。如图7所示,当Rx UE在PSFCH周期内任意一个slot检测到Tx UE发送的信息,UE假设Tx UE的COT的开始位置为PSFCH周期的开始位置。当priority对应的COT长度小于等于PSFCH周期时,COT的结束位置通过PSFCH周期起始位置和COT长度得到;当priority对应的COT长度大于PSFCH周期时,COT的结束位置为该PSFCH周期的结束位置。
另一具体实施例中,所述方法还包括:
第一终端获取所述第二终端发起的COT的共享的COT的持续时长,所述共享的COT的持续时长通过所述第二终端在所述间隔符号传输的特定序列或信号指示。
当Tx UE接入信道后,Tx UE尽量连续传输以避免额外的LBT,这样可以提高传输效率。因此,Rx UE可以通过在gap符号上检测确定COT信息。Tx UE(即上述第二终端)可以在gap符号上发送特定的序列或者信号,不同的序列或者信号可以代表不同的COT期间(duration),不同的序列或者信号与COT duration之间的对应关系可以是网络侧设备配置或预配置的或协议定义的,Rx UE(即上述第一终端)在检测到特定的序列或者信号后,可以得到对应的COT duration,从而确定是否可以共享Tx UE的COT。
另一具体实施例中,所述第一终端共享的所述第二终端的COT的持续时长由所述第一终端从所述第二终端侧接收的第一SCI中的COT duration域的值确定。在所述第一终端共享所述第二终端发起的COT的情况下,所述第一 终端发送的第二SCI中的COT duration域的值为0或无效值。
Tx UE(即第二终端)可以在SCI中指示COT duration,所有收到SCI的Rx UE(即第一终端)均可以共享该Tx UE的COT。Rx UE发送的PSCCH、PSSCH和/或PSFCH的接收对象至少包含Tx UE。Rx UE发送的SCI中指示的COT duration为零或者为无效值。这样,收到Rx UE发送的SCI的UE不会认为Rx UE发起了COT而进一步共享COT。
在所述第一终端被同时指示共享的COT和非共享的COT的情况下,所述第一终端优先采用所述共享的COT传输数据。即当UE被同时指示了COT共享(sharing)和non-COT sharing时,UE根据COT信息,优先采用COT sharing进行信息的传输,这样能够减少信道侦听的次数和时间,提高传输效率。在COT内传输不完的信息,可以采用non-COT sharing的方式传输,即UE根据指示的Type 1 LBT进行信道接入和传输。
另一具体实施例中,所述第一终端共享所述第二终端发起的COT的资源可以通过SCI 2-C中的资源选择窗口位置(Resource selection window location)域指示;
所述共享的COT的资源通过SCI 2-C中的资源组合(Resource combinations)域、第一个资源位置(First resource location域)、参考时隙位置(Reference slot location)域和子信道数量(Number of subchannels)域联合指示。UE在收到SCI 2-C时,默认指示的资源均为可共享COT内的资源,通过Type2A接入信道,在指示的资源上进行传输。当UE收到SCI 2-A或者SCI 2-B的指示,则默认没有COT可以共享,所有SL传输均采用Type 1 LBT接入信道。
一具体实施例中,UE选择绝对时间连续的时隙(consecutive slots)进行PSSCH传输,如果UE能够确保传输不间断(即UE发送的信号间隔小于或等于16us),UE做LBT成功后,可以在连续的slots上发送信号,以便提高LBT效率。即所述第一方式还包括:
所述第一终端在PSFCH符号上传输所述第一信号,所述第一信号包括虚拟PSFCH。
UE选择的consecutive slots形式可能有多种情况,包括:
第一种情况:consecutive slots之间没有PSFCH时机(occasion)。如图8所示,终端仅需要填充PSSCH和PSSCH之间的gap symbol,即仅在PSSCH和PSSCH之间的gap symbol发送第一信号。
第二种情况:consecutive slots之间有PSFCH occasion。这种情况下,UE需要处理PSFCH symbol和PSFCH前后的gap,避免对系统中其他UE发送PSFCH时做CCA造成负面影响,或者使该UE不能接收所需的PSFCH。
一种场景中,UE不能填充PSFCH symbol和/或PSFCH前后的gap,即不在PSFCH symbol和/或PSFCH前后的gap发送第一信号,如图9所示。或者,协议规定,UE主动选择consecutive slots时(以N consecutive slots作为备选资源进行资源选择时),consecutive slots不能插入PSFCH occasion(例如,除了结尾的slot,其他slot中不能包含PSFCH occasion)。
另一种场景中,UE可以条件性的填充PSFCH symbol和/或PSFCH前后的gap,即条件性的在PSFCH symbol和/或PSFCH前后的gap上发送第一信号。
如果是同一个UE进行PSFCH传输和PSSCH传输,那么如图10所示,对PSSCH和PSFCH之间的gap以及PSFCH和PSSCH之间的gap进行填充。
如果是不同的UE进行PSFCH传输和PSSCH传输,且进行PSSCH传输的UE不需要接收所述PSFCH,如图11所示,UE填充PSFCH symbol和PSFCH前后的gap。UE可以发送虚拟的PSFCH以填充PSFCH,即在PSFCH上发送虚拟的PSFCH。
如果是不同的UE进行PSFCH传输和PSSCH传输,传输PSSCH的UE需要接收PSFCH,那么,UE遵循以下至少一项规则:
第一项规则:UE不填充PSFCH symbol和PSFCH前后的gap,以便保证PSFCH接收。
第二项规则:UE可以填充PSFCH symbol和PSFCH前后的gap,以便保证PSSCH的连续发送。
其中,网络侧可以配置和/或协议可以约定第一项规则或者第二项规则的行为;或者,根据PSFCH和PSSCH传输的priority确定使用第一项规则或者 第二项规则,以保证高优先级信息的接收。
如果是不同的UE进行PSFCH传输和PSSCH传输,传输PSSCH的UE需要接收PSFCH,且该PSFCH为PSSCH传输的对端UE发送(例如PSFCH用于反馈PSSCH),那么,UE遵循的规则包括以下至少一项:
第三项规则:UE不填充PSFCH symbol和PSFCH前后的gap,以便保证PSFCH接收。
第四项规则:UE可以填充PSFCH symbol和PSFCH前后的gap,以便保证PSSCH的连续发送。
第五项规则:如图12所示,UE不填充PSFCH symbol和PSFCH前后的gap,以便保证PSFCH接收,UE在PSFCH过后,仍然可以在下一个PSSCH slot上发送PSSCH(假设PSSCH传输的UE把COT分享给PSFCH发送端UE,之后再次利用该COT发送PSSCH)。
本申请实施例提供的信道传输方法,执行主体可以为信道传输装置。本申请实施例中以信道传输装置执行信道传输方法为例,说明本申请实施例提供的信道传输装置。
本申请实施例提供一种信道传输装置,如图13所示,应用于第一终端200,包括:
获取模块210,用于获取非授权频段上旁链路传输的资源信息;
处理模块220,用于根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
其中,第一时间阈值需要保证旁链路的传输是一个transmission burst,这样能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,第一时间阈值可以是绝对时长,也可以是slot、minislot、symbol的数量,具体地,第一时间阈值需要小于或等于16us。
本实施例中,第一终端接入信道,包括采用Type1 LBT后接入信道,也包括在共享COT内通过Type2A、Type2B、或Type2C接入信道。
在在采用Type1 LBT的最高信道接入优先级接入信道,进行PSFCH的传输时,可以减少第一终端做信道侦听的时间,同时将获取的COT共享给其他终端,能够减少其他终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
在采用类型Type2A先听后讲LBT接入信道,进行PSFCH的传输时,能够减少第一终端做信道侦听的时间,提高传输效率。
在确定第二终端发起的COT后,可以共享第二终端的COT传输信息,能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
一些实施例中,当两个旁链路传输资源相邻时,所述两个旁链路传输资源包括第一传输资源和位于第一传输资源之前的第二PSSCH或第一PSFCH,
所述处理模块220具体用于在所述第一传输资源的开始时间之前发送第一信号;和/或
在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号;
其中,第一传输资源包括第一PSSCH、第一PSCCH和自动增益控制AGC符号中的至少一项。
一些实施例中,所述第一终端以第一优先级接入旁链路信道,所述第一终端在COT内传输的数据的信道接入优先级高于或等于所述第一优先级,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
一些实施例中,所述第一PSSCH位于所述第二PSSCH或所述第一PSFCH所在的COT内,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
一些实施例中,所述第一PSSCH的开始时间与所述第二PSSCH或所述第一PSFCH的结束时间之间的时间间隔为D,所述第一信号的长度大于或等 于D-Y,Y为所述第一时间阈值。
一些实施例中,在所述第一传输资源的开始时间之前发送第一信号的情况下,所述第一信号包括以下至少一项:
第一PSSCH的循环前缀CP扩展;
第一PSSCH的自动增益控制AGC符号的CP扩展;
第一PSSCH特定符号的至少一部分;
特定导频信号。
一些实施例中,在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号的情况下,所述第一信号包括以下至少一项:
第二PSSCH的AGC符号;
第二PSSCH特定符号的至少一部分;
特定导频信号。
一些实施例中,在所述第一终端采用Type2A LBT接入信道,且子载波间隔为60KHz的情况下,所述处理模块220用于在gap符号后的第一个PSFCH符号的前A微秒进行打孔操作,并发送第一个PSFCH符号的后B微秒,所述第一个PSFCH符号的长度为A+B微秒,A,B为正整数。
一些实施例中,所述处理模块220用于在第一个PSFCH符号之前的间隔gap符号和所述第一个PSFCH符号的前A微秒进行信道侦听。
一些实施例中,所述gap符号的数量为网络侧设备配置或预配置或协议定义的。
一些实施例中,所述gap符号的数量与SCS相关。
一些实施例中,所述第一终端在采用Type1 LBT的最高信道接入优先级接入信道进行PSFCH传输的情况下,所述处理模块220用于向第三终端共享所述第一终端的COT,使得所述第三终端在所述第一终端的COT内发送以下至少一项:PSCCH、PSSCH、PSFCH、AGC符号,其中所述PSSCH的信道接入优先级为最高优先级。
一些实施例中,所述第三终端共享所述第一终端的COT发送以下至少一项:PSCCH、PSSCH、PSFCH、AGC符号,其中所述PSSCH的信道接入优先级为最高优先级。
一些实施例中,所述处理模块220还用于获取所述第二终端发起的COT的共享的COT的信息,所述共享的COT的开始时间和结束时间通过PSFCH周期和/或旁链路控制信息SCI中指示的信道接入优先级确定。
一些实施例中,所述处理模块220还用于获取所述第二终端发起的COT的共享的COT的持续时长,所述共享的COT的持续时长通过所述第二终端在所述间隔符号传输的特定序列或信号指示。
一些实施例中,所述第一终端共享的所述第二终端的COT的持续时长由所述第一终端从所述第二终端侧接收的第一SCI中的COT duration域的值确定。
一些实施例中,在所述第一终端共享所述第二终端发起的COT的情况下,所述第一终端发送的第二SCI中的COT duration域的值为0或无效值。
一些实施例中,所述第一终端共享所述第二终端发起的COT的资源通过SCI 2-C中的资源选择窗口位置Resource selection window location域指示;
所述第一终端共享所述第二终端发起的COT的资源通过SCI 2-C中的资源组合Resource combinations域、第一个资源位置First resource location域、参考时隙位置Reference slot location域和子信道数量Number of subchannels域联合指示。
一些实施例中,在绝对时间连续的时隙consecutive slots之间存在PSFCH时机occasion的情况下,所述处理模块220在PSFCH符号上传输所述第一信号,所述第一信号包括虚拟PSFCH。
本申请实施例中的信道传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信道传输装置能够实现图3至图12的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图14所示,本申请实施例还提供一种通信设备600,包括处 理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述信道传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如上所述的信道传输方法的步骤。
本申请实施例还提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于获取非授权频段上旁链路传输的资源信息;根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
本申请实施例还提供一种终端,包括处理器和通信接口,该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图15中示出的终 端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和 直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
一些实施例中,处理器710用于获取非授权频段上旁链路传输的资源信息;根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
其中,第一时间阈值需要保证旁链路的传输是一个transmission burst,这样能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,第一时间阈值可以是绝对时长,也可以是slot、minislot、symbol的数量,具体地,第一时间阈值需要小于或等于16us。
本实施例中,第一终端接入信道,包括采用Type1 LBT后接入信道,也包括在共享COT内通过Type2A、Type2B、或Type2C接入信道。
在在采用Type1 LBT的最高信道接入优先级接入信道,进行PSFCH的传输时,可以减少第一终端做信道侦听的时间,同时将获取的COT共享给其他终端,能够减少其他终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
在采用类型Type2A先听后讲LBT接入信道,进行PSFCH的传输时, 能够减少第一终端做信道侦听的时间,提高传输效率。
在确定第二终端发起的COT后,可以共享第二终端的COT传输信息,能够减少第一终端做信道侦听的次数和/或做信道侦听的时间,提高传输效率。
一些实施例中,当两个旁链路传输资源相邻时,所述两个旁链路传输资源包括第一传输资源和位于第一传输资源之前的第二PSSCH或第一PSFCH,
所述处理器710具体用于在所述第一传输资源的开始时间之前发送第一信号;和/或
在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号;
其中,第一传输资源包括第一PSSCH、第一PSCCH和自动增益控制AGC符号中的至少一项。
一些实施例中,所述第一终端以第一优先级接入旁链路信道,所述第一终端在COT内传输的数据的信道接入优先级高于或等于所述第一优先级,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
一些实施例中,所述第一PSSCH位于所述第二PSSCH或所述第一PSFCH所在的COT内,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
一些实施例中,所述第一PSSCH的开始时间与所述第二PSSCH或所述第一PSFCH的结束时间之间的时间间隔为D,所述第一信号的长度大于或等于D-Y,Y为所述第一时间阈值。
一些实施例中,在所述第一传输资源的开始时间之前发送第一信号的情况下,所述第一信号包括以下至少一项:
第一PSSCH的循环前缀CP扩展;
第一PSSCH的自动增益控制AGC符号的CP扩展;
第一PSSCH特定符号的至少一部分;
特定导频信号。
一些实施例中,在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号的情况下,所述第一信号包括以下至少一项:
第二PSSCH的AGC符号;
第二PSSCH特定符号的至少一部分;
特定导频信号。
一些实施例中,在所述第一终端采用Type2A LBT接入信道,且子载波间隔为60KHz的情况下,所述处理器710用于在gap符号后的第一个PSFCH符号的前A微秒进行打孔操作,并发送第一个PSFCH符号的后B微秒,所述第一个PSFCH符号的长度为A+B微秒,A,B为正整数。
一些实施例中,所述处理器710用于在第一个PSFCH符号之前的间隔gap符号和所述第一个PSFCH符号的前A微秒进行信道侦听。
一些实施例中,所述gap符号的数量为网络侧设备配置或预配置或协议定义的。
一些实施例中,所述gap符号的数量与SCS相关。
一些实施例中,所述第一终端在采用Type1 LBT的最高信道接入优先级接入信道进行PSFCH传输的情况下,所述处理器710用于向第三终端共享所述第一终端的COT,使得所述第三终端在所述第一终端的COT内发送以下至少一项:PSCCH、PSSCH、PSFCH、AGC符号,其中所述PSSCH的信道接入优先级为最高优先级。
一些实施例中,所述处理器710还用于获取所述第二终端发起的共享的COT的信息,所述共享的COT的开始时间和结束时间通过PSFCH周期和/或旁链路控制信息SCI中指示的信道接入优先级确定。
一些实施例中,所述处理器710还用于获取所述第二终端发起的共享的COT的持续时长,所述共享的COT的持续时长通过所述第二终端在所述间隔符号传输的特定序列或信号指示。
一些实施例中,所述第一终端共享的所述第二终端的COT的持续时长由所述第一终端从所述第二终端侧接收的第一SCI中的COT duration域的值确定。
一些实施例中,在所述第一终端共享所述第二终端发起的COT的情况下,所述第一终端发送的第二SCI中的COT duration域的值为0或无效值。
一些实施例中,所述第一终端共享所述第二终端发起的COT的资源通过SCI 2-C中的资源选择窗口位置Resource selection window location域指示;
所述第一终端共享所述第二终端发起的COT的资源通过SCI 2-C中的资源组合Resource combinations域、第一个资源位置First resource location域、参考时隙位置Reference slot location域和子信道数量Number of subchannels域联合指示。
一些实施例中,在绝对时间连续的时隙consecutive slots之间存在PSFCH时机occasion的情况下,所述处理器710在PSFCH符号上传输所述第一信号,所述第一信号包括虚拟PSFCH。
并发送第一个PSFCH符号的后B微秒本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信道传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信道传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信道传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种旁链路传输系统,包括:终端,所述终端可用于执行如上所述的信道传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还 包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (22)

  1. 一种信道传输方法,包括:
    第一终端获取非授权频段上旁链路传输的资源信息;
    根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
    在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
    采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
    确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
    其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
  2. 根据权利要求1所述的方法,其中,当两个旁链路传输资源相邻时,所述两个旁链路传输资源包括第一传输资源和位于第一传输资源之前的第二PSSCH或第一PSFCH,所述方法还包括:
    在所述第一传输资源的开始时间之前发送第一信号;和/或
    在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号;
    其中,第一传输资源包括第一PSSCH、第一PSCCH和自动增益控制AGC符号中的至少一项。
  3. 根据权利要求2所述的方法,其中,所述第一终端以第一优先级接入旁链路信道,所述第一终端在COT内传输的数据的信道接入优先级高于或等于所述第一优先级,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
  4. 根据权利要求2所述的方法,其中,所述第一PSSCH位于所述第二PSSCH或所述第一PSFCH所在的COT内,所述COT包括所述第一终端发起的COT和共享的第二终端发起的COT。
  5. 根据权利要求2所述的方法,其中,所述第一PSSCH的开始时间与所述第二PSSCH或所述第一PSFCH的结束时间之间的时间间隔为D,所述第一信号的长度大于或等于D-Y,Y为所述第一时间阈值。
  6. 根据权利要求2所述的方法,其中,在所述第一传输资源的开始时间之前发送第一信号的情况下,所述第一信号包括以下至少一项:
    第一PSSCH的循环前缀CP扩展;
    第一PSSCH的自动增益控制AGC符号的CP扩展;
    第一PSSCH特定符号的至少一部分;
    特定导频信号。
  7. 根据权利要求2所述的方法,其中,在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号的情况下,所述第一信号包括以下至少一项:
    第二PSSCH的AGC符号;
    第二PSSCH特定符号的至少一部分;
    特定导频信号。
  8. 根据权利要求1所述的方法,其中,在所述第一终端采用Type2A LBT接入信道,且子载波间隔为60KHz的情况下,所述方法还包括:
    所述第一终端在间隔gap符号后的第一个PSFCH符号的前A微秒进行打孔操作,并发送第一个PSFCH符号的后B微秒,所述第一个PSFCH符号的长度为A+B微秒,A,B为正整数。
  9. 根据权利要求8所述的方法,所述方法还包括:
    所述第一终端在第一个PSFCH符号之前的gap符号和所述第一个PSFCH符号的前A微秒进行信道侦听。
  10. 根据权利要求1所述的方法,其中,所述第一终端在采用Type1 LBT的最高信道接入优先级接入信道进行PSFCH传输的情况下,所述方法还包括:
    所述第一终端向第三终端共享所述第一终端的COT,使得所述第三终端在所述第一终端的COT内发送以下至少一项:PSCCH、PSSCH、PSFCH、AGC符号,其中所述PSSCH的信道接入优先级为最高优先级。
  11. 根据权利要求1所述的方法,所述方法还包括:
    获取所述第二终端发起的COT的共享的COT的信息,所述共享的COT的开始时间和结束时间通过PSFCH周期和/或旁链路控制信息SCI中指示的信道接入优先级确定。
  12. 根据权利要求1所述的方法,所述方法还包括:
    获取所述第二终端发起COT的共享的COT的持续时长,所述共享的COT的持续时长通过所述第二终端在所述间隔符号传输的特定序列或信号指示。
  13. 根据权利要求1所述的方法,其中,所述第一终端共享的所述第二终端的COT的持续时长由所述第一终端从所述第二终端侧接收的第一SCI中的COT duration域的值确定。
  14. 根据权利要求1所述的方法,其中,在所述第一终端共享所述第二终端发起的COT的情况下,所述第一终端发送的第二SCI中的COT duration域的值为0或无效值。
  15. 根据权利要求1所述的方法,其中,在所述第一终端被同时指示共享的COT和非共享的COT的情况下,所述第一终端优先采用所述共享的COT传输数据。
  16. 根据权利要求1所述的方法,其中,所述第一终端共享所述第二终端发起的COT的资源通过SCI 2-C中的资源选择窗口位置Resource selection window location域指示;
    所述第一终端共享所述第二终端发起的COT的资源通过SCI 2-C中的资源组合Resource combinations域、第一个资源位置First resource location域、参考时隙位置Reference slot location域和子信道数量Number of subchannels域联合指示。
  17. 根据权利要求1-7中任一项所述的方法,其中,在绝对时间连续的时隙consecutive slots之间存在PSFCH时机occasion的情况下,所述第一方式还包括:
    所述第一终端在PSFCH符号上传输所述第一信号,所述第一信号包括虚拟PSFCH。
  18. 一种信道传输装置,包括:
    获取模块,用于获取非授权频段上旁链路传输的资源信息;
    处理模块,用于根据所述资源信息,采用第一方式执行所述旁链路传输;其中,所述第一方式包括以下至少一项:
    在多个旁链路传输资源上执行所述旁链路传输,其中,所述多个旁链路传输资源中两个旁链路传输资源之间填充有第一信号,使得所述两个旁链路传输资源之间的间隔小于或等于第一时间阈值;
    采用类型Type1先听后讲LBT的最高信道接入优先级或Type2A LBT方式接入信道,并进行物理旁链路反馈信道PSFCH的传输;
    确定第二终端发起的信道占用时间COT,通过共享第二终端发起的COT,执行所述旁链路传输;
    其中,所述旁链路传输资源包括以下至少一项:物理旁链路共享信道PSSCH、PSFCH、物理旁链路控制信道PSCCH、自动增益控制AGC符号。
  19. 根据权利要求18所述的装置,其中,当两个旁链路传输资源相邻时,所述两个旁链路传输资源包括第一传输资源和位于第一传输资源之前的第二PSSCH或第一PSFCH,所述处理模块还用于在所述第一传输资源的开始时间之前发送第一信号;和/或
    在所述第二PSSCH或所述第一PSFCH的结束时间之后发送第一信号;
    其中,第一传输资源包括第一PSSCH、第一PSCCH和自动增益控制AGC符号中的至少一项。
  20. 根据权利要求18所述的装置,其中,在采用Type2A LBT接入信道,且子载波间隔为60KHz的情况下,所述处理模块还用于在间隔gap符号后的第一个PSFCH符号的前A微秒进行打孔操作,并发送第一个PSFCH符号的后B微秒,所述第一个PSFCH符号的长度为A+B微秒,A,B为正整数。
  21. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的信道传输方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-19任一项所述的信道传输方法的步骤。
PCT/CN2023/087587 2022-04-12 2023-04-11 信道传输方法及装置、终端 WO2023198046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210384076.3 2022-04-12
CN202210384076.3A CN116963023A (zh) 2022-04-12 2022-04-12 信道传输方法及装置、终端

Publications (1)

Publication Number Publication Date
WO2023198046A1 true WO2023198046A1 (zh) 2023-10-19

Family

ID=88328964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087587 WO2023198046A1 (zh) 2022-04-12 2023-04-11 信道传输方法及装置、终端

Country Status (2)

Country Link
CN (1) CN116963023A (zh)
WO (1) WO2023198046A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114437A (zh) * 2020-01-13 2021-07-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021208031A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Cyclic prefix (cp) extension in channel occupancy time (cot) sharing for sidelink communication
WO2022061754A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Channel occupancy time for sidelink communication in unlicensed band

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114437A (zh) * 2020-01-13 2021-07-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021208031A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Cyclic prefix (cp) extension in channel occupancy time (cot) sharing for sidelink communication
WO2022061754A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Channel occupancy time for sidelink communication in unlicensed band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Channel access procedures for NR-U", 3GPP TSG RAN WG1 #99 R1-1912506, 9 November 2019 (2019-11-09), XP051823446 *

Also Published As

Publication number Publication date
CN116963023A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US20240172277A1 (en) Channel access method and processing method for sidelink feedback information, and related device
WO2023098684A1 (zh) 信息传输方法及设备
WO2023198046A1 (zh) 信道传输方法及装置、终端
WO2023246586A1 (zh) 传输方法、设备及可读存储介质
WO2023246587A1 (zh) 传输方法、设备及可读存储介质
WO2024022293A1 (zh) 物理侧链路反馈信道psfch发送方法及终端
WO2023143532A1 (zh) 资源选择方法及装置、终端
WO2023072209A1 (zh) 传输处理方法、装置、终端及可读存储介质
WO2023236856A1 (zh) 数据发送方法及终端
WO2023246583A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2023202577A1 (zh) 同步信息发送方法、装置、ue及可读存储介质
WO2024027558A1 (zh) 侧链路信道占用时间cot共享方法及终端
WO2023207804A1 (zh) 信道接入方法、装置及通信设备
WO2024022283A1 (zh) 物理侧链路反馈信道psfch发送方法及终端
WO2023116903A1 (zh) Sl信号处理方法、设备及可读存储介质
WO2023066129A1 (zh) 信息上报方法、设备及可读存储介质
WO2022257934A1 (zh) Pdcch监听方法、终端及网络侧设备
WO2023138587A1 (zh) Bwp上的波形确定方法及终端方法
WO2024067306A1 (zh) 能力指示方法、装置、终端及介质
WO2023072208A1 (zh) 传输处理方法、装置、终端及可读存储介质
WO2023246615A1 (zh) 共享信道的方法、设备及可读存储介质
WO2023083304A1 (zh) 随机接入的方法、终端及网络侧设备
WO2023051540A1 (zh) 收端辅助信息的传输方法、装置、终端及网络侧设备
WO2023246619A1 (zh) 共享信道的方法、设备及可读存储介质
WO2024017322A1 (zh) 传输处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787690

Country of ref document: EP

Kind code of ref document: A1