WO2023197683A1 - 一种丙烷脱氢工艺 - Google Patents

一种丙烷脱氢工艺 Download PDF

Info

Publication number
WO2023197683A1
WO2023197683A1 PCT/CN2022/142197 CN2022142197W WO2023197683A1 WO 2023197683 A1 WO2023197683 A1 WO 2023197683A1 CN 2022142197 W CN2022142197 W CN 2022142197W WO 2023197683 A1 WO2023197683 A1 WO 2023197683A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
reactor
heating furnace
tube
propane dehydrogenation
Prior art date
Application number
PCT/CN2022/142197
Other languages
English (en)
French (fr)
Inventor
张承贺
马士恒
舒高贵
韩昊学
Original Assignee
山东京博装备制造安装有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东京博装备制造安装有限公司 filed Critical 山东京博装备制造安装有限公司
Publication of WO2023197683A1 publication Critical patent/WO2023197683A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • C07C1/30Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms by splitting-off the elements of hydrogen halide from a single molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • the invention belongs to the technical field of propane dehydrogenation, and specifically relates to a propane dehydrogenation process.
  • Propylene is an important organic chemical raw material with wide application and large market demand. In recent years, with the rapid issuance of certifications in various industries such as chemical industry and manufacturing industry, the demand for propylene has continued to rise. Due to the growth in demand for propylene, system-related processes such as propane dehydrogenation and propylene preparation continue to flourish.
  • Propane dehydrogenation is the dehydrogenation of propane to produce propylene monomer, which is an important way to produce propylene.
  • Making propylene from propane requires the processing of a dehydrogenation device.
  • propane dehydrogenation needs to be carried out at a higher temperature, resulting in high energy consumption and high cost of propane dehydrogenation.
  • Conventional propane dehydrogenation equipment requires the use of heat exchangers for incoming and outgoing materials, and floating head heat exchangers are often used.
  • the structure is complex and the small floating head end cover cannot be inspected during operation. It has high sealing requirements. It consumes a lot of materials when starting work.
  • the tube bundle is easy to crack.
  • the present invention provides a propane dehydrogenation process.
  • a wound tube heat exchanger is selected for heat exchange.
  • the heat exchange effect is good, the load of the subsequent heating furnace is reduced, and the reaction is utilized at the same time.
  • the waste heat of the product heats the reaction raw materials, which not only effectively recycles the waste heat of the reaction product, but also effectively reduces the problem of energy consumption for heating the reaction product, and reduces the problem of high product temperature and large cooling load.
  • the propane consumption is effectively reduced.
  • the cost of dehydrogenation improves efficiency.
  • a propane dehydrogenation process The system used in the process is a propane dehydrogenation system.
  • the process includes the raw materials entering the reactor to react after being heated to obtain reaction products.
  • the reaction products are introduced into the subsequent treatment system.
  • the temperature-raising process first use the waste heat of the reaction product to exchange heat with the raw materials in the wound tube heat exchanger, then heat it through the heating furnace, and then enter the reactor for reaction.
  • the raw materials enter the reactor for reaction after being heat exchanged in a wound tube heat exchanger and heated by a heating furnace.
  • the obtained reaction product is heated by another heating furnace and then enters another reactor for reaction.
  • the obtained reaction product is then reacted. After being heated in the next heating furnace, it enters another reactor for reaction.
  • the obtained reaction product is transferred to the subsequent treatment system after exchanging heat with the raw materials in a wound tube heat exchanger.
  • Propane dehydrogenation is an endothermic process.
  • the dehydrogenation reaction requires a lot of heat. If there is only one set, the dehydrogenation reaction will be incomplete, which will cause waste of raw materials, low conversion rate, low yield and other problems. Increase to three sets. It can increase the conversion rate and improve the yield.
  • the raw material is first cooled, then heated, and finally enters the wound tube heat exchanger to exchange heat with the reaction product.
  • the raw material is cooled first to remove the hydrogen in the raw material.
  • the presence of hydrogen can cause serious defects in the steel, such as hydrogen embrittlement, hydrogen corrosion, cracks in the heat affected zone of the weld, etc.
  • the presence of hydrogen in the raw material is not conducive to the dehydrogenation reaction. proceeding. If the cooled raw materials directly enter the wound tube heat exchanger, the temperature difference in heating will be large, and the energy required will further increase. As a result, the energy consumption of the entire device will be very high, which is uneconomical.
  • the cooled raw materials will first A small increase in temperature also allows the raw materials to be heated evenly, avoiding the problem of uneven heating.
  • the propane dehydrogenation system includes a raw material storage tank, a wound tube heat exchanger, a reactor and a heating furnace; the raw material storage tank is connected in sequence to a raw material cooler, a cold feed heat exchanger, and a wound tube heat exchanger.
  • the tube side, heating furnace, reactor, shell side of wound tube heat exchanger, and subsequent treatment system is connected in sequence to a raw material cooler, a cold feed heat exchanger, and a wound tube heat exchanger.
  • a raw material cooler and a cold feed heat exchanger are provided between the raw material storage tank and the wound tube heat exchanger.
  • the reactor includes a first reactor, a second reactor and a third reactor
  • the heating furnace includes a first heating furnace, a second heating furnace and a third heating furnace
  • the tube of the wound tube heat exchanger The process outlet is connected in sequence to the first heating furnace, the first reactor, the second heating furnace, the second reactor, the third heating furnace, the third reactor, and the shell side inlet of the heat exchanger.
  • holes are provided on the tube plate on the wound tube heat exchanger, and the holes are arranged in an equilateral triangle.
  • the heat pipes are connected by deep hole welding, and the heat exchange tubes are connected to the holes on the tube plate.
  • the tube sheet adopts an equilateral triangle layout.
  • the equilateral triangle arrangement can arrange the maximum number of tubes in the same tube sheet area. The arrangement is compact.
  • the tube-side fluid directly flushes the heat exchange tubes, making the tube-side fluid distribution more uniform; the high-temperature end of the tube sheet It is easy for carbon ions to accumulate, and the aggregates will squeeze and deform the heat exchange tube. Therefore, deep hole welding is used to avoid this problem.
  • the hole spacing on the tube plate is 22 mm, and the spacing is small, so that more tubes can be laid out and the size of the tube plate can be reduced.
  • a flushing pipe is wound above and below the outside of the shell of the wound tube heat exchanger. Openings A are evenly provided on the flushing pipe. Openings A are provided with openings B at corresponding positions of the shell of the wound tube heat exchanger. , the opening A on the flushing pipe is connected to the opening B on the shell, the flushing pipe is connected to the flushing pipe, and a valve is provided on the flushing pipe; the tube-side inlet and tube-side outlet, shell-side inlet and shell-side of the wound tube heat exchanger The outlets are all provided with openings C. The openings C are connected to the flushing pipes, and the flushing pipes are provided with valves. Propane dehydrogenation is an endothermic reaction that requires high energy from the outside world.
  • reaction is limited by thermodynamic equilibrium. It requires a higher temperature to obtain a higher conversion rate, but in the medium temperature range (150-200°C) It is easy to produce floc, so it is necessary to add openings in the shell and each inlet and outlet to facilitate flushing.
  • An anti-collision plate is installed at the inlet of the shell of the wound tube heat exchanger to prevent fluid from directly scouring the heat exchange tubes in the wound tube heat exchanger and causing vibration, instability and corrosion of the heat exchange tubes.
  • the raw materials after the raw materials are heated to a certain temperature by the heat exchanger, they enter the heating furnace, and then are heated by the heating furnace and enter the reactor reaction.
  • the reaction products coming out of the reactor have a higher temperature and then pass into the heat exchanger. It exchanges heat with the raw materials, and the reaction products after heat exchange enter the subsequent treatment system or collection device. Choosing a wound tube heat exchanger has a good heat exchange effect and reduces the load on the subsequent heating furnace.
  • the waste heat of the reaction product is used to heat the reaction raw materials, which can not only provide heat for the raw materials, but also effectively recycle and utilize the waste heat of the reaction product.
  • Figure 1 is a schematic structural diagram of the process of the present invention
  • Figure 2 is a schematic structural diagram of the wound tube heat exchanger in the present invention.
  • Figure 3 is a schematic structural diagram of the tube plate of the wound tube heat exchanger
  • Figure 4 shows the distribution of holes on the tube plate of the wound tube heat exchanger in an equilateral triangle arrangement
  • Figure 5 is a schematic structural diagram of the tube plate and heat exchange tube of the wound tube heat exchanger
  • Figure 6 is a schematic structural diagram of the connection between the tube plate and the heat exchange tube of the wound tube heat exchanger
  • Figure 7 is a schematic diagram of the connection between the anti-collision plate and the shell side inlet
  • Figure 8 is a schematic structural diagram of the anti-collision plate
  • 1 is the raw material storage tank
  • 2 is the raw material cooler
  • 3 is the cold feed heat exchanger
  • 4 is the wound tube heat exchanger
  • 4-1 is the tube side outlet
  • 4-2 is the tube side inlet
  • 4 -3 is the shell side outlet
  • 4-4 is the shell side inlet
  • 4-5 is the opening C
  • 4-6 is the tube plate
  • 4-7 is the flushing pipe
  • 4-8 is the heat exchange tube
  • 4-9 is anti-collision Plate
  • 5 is the heating furnace
  • 5-1 is the first heating furnace
  • 5-2 is the second heating furnace
  • 5-3 is the third heating furnace
  • 6 is the reactor
  • 6-1 is the first reactor
  • 6- 2 is the second reactor
  • 6-3 is the third reactor
  • 7 is the subsequent treatment system.
  • a propane dehydrogenation process uses a propane dehydrogenation system.
  • the process includes the raw materials entering the reactor 6 after being heated to obtain reaction products.
  • the reaction products enter the wound tube heat exchanger.
  • the subsequent processing system 7 in the shell side of the reactor 4, it finally flows into the subsequent processing system 7; in the process of heating, the waste heat of the reaction product and the raw materials are first used to exchange heat in the wound tube heat exchanger 4, and then heated by the heating furnace 5, and then enter reaction in reactor 6.
  • the materials on the tube and shell side are exchanged to meet the process requirements.
  • the process documents require that the allowable pressure drop on the tube side is 13.8Kpa. If not exchanged, , the calculated pressure drop on the pipe side is 21.86Kpa, which does not meet the requirements.
  • the wound tube heat exchanger 4 is selected, which has good heat exchange effect and reduces the load of the subsequent heating furnace 5.
  • the waste heat of the reaction product is used to heat the reaction raw materials, which can not only provide heat for the raw materials, but also effectively recycle and utilize the reaction materials.
  • the waste heat of the product also effectively reduces the temperature of the reaction product, reduces the problem of high energy consumption for heating the reaction raw materials, reduces the problem of high product temperature and large cooling load, and effectively reduces the cost of propane dehydrogenation.
  • the heat exchange tubes 4-8 are alternately wound in a spiral shape in the space between the central cylinder and the outer shell.
  • the adjacent two layers of heat exchange tubes 4-8 are wound in opposite directions and adopt a certain shape. spacer to maintain a certain distance.
  • the raw materials undergo heat exchange in the wound tube heat exchanger 4 and are heated in the heating furnace 5 before entering the reactor 6 for reaction.
  • the obtained reaction product is heated in another heating furnace 5 and then enters another reactor 6 During the reaction, the obtained reaction product is heated by the next heating furnace 5 and then enters another reactor 6 for reaction.
  • the obtained reaction product is transferred to the subsequent treatment system after exchanging heat with the raw material in the wound tube heat exchanger 4. .
  • Propane dehydrogenation is an endothermic process.
  • the dehydrogenation reaction requires a lot of heat. If there is only one set, the dehydrogenation reaction will be incomplete, which will cause waste of raw materials, low conversion rate, low yield and other problems. Increase to three sets. It can increase the conversion rate and improve the yield.
  • the raw material is first cooled, then heated, and finally enters the wound tube heat exchanger 4 to exchange heat with the reaction product.
  • the raw material is cooled first to remove the hydrogen in the raw material.
  • the presence of hydrogen can cause serious defects in the steel, such as hydrogen embrittlement, hydrogen corrosion, cracks in the heat affected zone of the weld, etc.
  • the presence of hydrogen in the raw material is not conducive to the dehydrogenation reaction. proceeding.
  • the cooled raw materials directly enter the wound tube heat exchanger 4, the temperature difference in heating will be large, and the energy required will further increase. As a result, the energy consumption of the entire device will be very high, which is uneconomical.
  • the cooled raw materials Raising the temperature slightly first will also allow the raw materials to be heated evenly and avoid the problem of uneven heating.
  • the propane dehydrogenation system used in the above-mentioned propane dehydrogenation process includes a raw material storage tank 1, a wound tube heat exchanger 4, a reactor 6 and a heating furnace 5; the raw material storage tank 1 is connected in sequence to a raw material cooler 2, a cold feed Material heat exchanger 3, the tube side of the wound tube heat exchanger 4, the heating furnace 5, the reactor 6, the shell side of the wound tube heat exchanger 4, and the subsequent processing system 7.
  • the upper and lower sides of the outer shell of the wound tube heat exchanger 4 are respectively wound with flushing pipes 4-7.
  • the flushing pipes 4-7 are evenly provided with openings A, and the corresponding wound tube heat exchangers of the openings A are wound with flushing pipes 4-7.
  • the shell of the heater 4 is provided with an opening B, and the opening A on the flushing pipe 4-7 is connected to the opening B on the shell (so that the flushing liquid can pass through the flushing pipe 4-7, enter opening A, and then enter through opening B inside the shell), the flushing pipe 4-7 is connected to the flushing pipe, and a valve is provided on the flushing pipe; the tube-side outlet 4-1 and the tube-side inlet 4-2 of the wound tube heat exchanger 4, the shell-side outlet 4-3 and the shell
  • the process inlet 4-4 is provided with an opening C4-5, which is connected to the flushing pipeline, and the flushing pipeline is provided with a valve.
  • Propane dehydrogenation is an endothermic reaction that requires high energy from the outside world.
  • the flushing pipes 4-7 on the shell can be flushed online (that is, flushed during operation) or flushed during shutdown.
  • the flushing liquid is an aromatic hydrocarbon solvent.
  • an anti-collision plate 4-9 is provided at the shell side inlet 4-4 of the wound tube heat exchanger 4 to prevent the fluid from directly scouring the heat exchange tubes 4-8 in the wound tube heat exchanger 4 and causing the exchange of heat. Heat pipes 4-8 suffer from vibration instability and corrosion.
  • the anti-collision plate 4-9 is composed of an arc plate and four pillars. The four pillars are fixedly connected to the arc plate. The pillars are arranged on the back of the arc plate in the bending direction. The four pillars are connected to the inlet of the shell. The shaped plate is arranged in the shell, and there is a gap between the arc plate and the wound tube heat exchanger 4.
  • a raw material cooler 2 and a cold feed heat exchanger 3 are also provided between the raw material storage tank 1 and the heat exchanger.
  • the cold feed heat exchanger 3 adopts a plate heat exchanger;
  • the reactor 6 includes a first Reactor 6-1, second reactor 6-2 and third reactor 6-3,
  • heating furnace 5 includes first heating furnace 5-1, second heating furnace 5-2 and third heating furnace 5-3;
  • the tube side outlet 4-1 of the heat exchanger is connected in sequence to the first heating furnace 5-1, the first reactor 6-1, the second heating furnace 5-2, the second reactor 6-2, and the third heating furnace 5- 3.
  • the raw materials first undergo cooling and heating, and then enter the tube side of the wound tube heat exchanger 4, and then pass through the first heating furnace 5-1, the first reactor 6-1, the second heating furnace 5-2, and the second heating furnace 5-1.
  • the reaction product finally obtained from the reactor 6-2, the third heating furnace 5-3, and the third reactor 6-3 enters the shell side of the wound tube heat exchanger 4, and finally flows into the subsequent treatment system 7 or collection device middle. It avoids the existing technology problems of insufficient reaction, slow reaction rate, and low product yield and purity by only using one heating furnace and one reactor. By setting up continuous heating furnace 5 and reactor 6, the reaction can be Carry out fully, effectively increase the reaction rate, and improve the yield and purity of the product.
  • holes are provided on the tube sheets 4-6 of the wound tube heat exchanger 4, and the holes are arranged in an equilateral triangle.
  • -6 is connected to the heat exchange tube 4-8 on the wound tube heat exchanger 4 by deep hole welding, and the heat exchange tube 4-8 is connected with the hole on the tube plate 4-6.
  • the tube sheets 4-6 adopt an equilateral triangle arrangement.
  • the equilateral triangle arrangement (as shown in Figure 4) can arrange the largest number of tubes in the same tube sheet area. The arrangement is compact, and the tube side fluid directly flushes the heat exchange tubes 4-8.
  • the hole spacing on the tube plate is 22mm. The small spacing allows more tubes to be laid out and the size of the tube plate is reduced.
  • the raw material (propane) in the raw material storage tank 1 flows through the raw material cooler 2, is cooled to -87°C, then flows through the cold feed heat exchanger 3 to exchange heat and is heated to 45°C, and then enters the wound tube heat exchanger 4 , the reaction product is heated to 550°C through heat exchange, continues to flow, is heated to 620°C by the first heating furnace 5-1, and then enters the first reactor 6-1 to perform a dehydrogenation reaction. After the reaction, the reaction product at 550°C is obtained; The reaction product continues to flow and is heated to 625°C by the second heating furnace 5-2 and then enters the second reactor 6-2 to perform a dehydrogenation reaction.
  • reaction product that is cooled to 571°C is obtained; the reaction product continues to flow and is heated to 625°C by the second heating furnace 5-2.
  • the third heating furnace 5-3 is heated to 625°C and then enters the third reactor 6-3 for dehydrogenation reaction.
  • a reaction product cooled to 577°C is obtained; the reaction product continues to flow and enters the shell of the wound tube heat exchanger 4 During the process, the final product with a temperature of 140°C is obtained after exchanging heat with the raw material, and comes out of the shell side of the wound tube heat exchanger 4 and flows into the subsequent treatment system.
  • the propane dehydrogenation process provided by the invention selects a wound tube heat exchanger, which has good heat exchange effect and reduces the load of the subsequent heating furnace.
  • the waste heat of the reaction product is used to heat the reaction raw materials, which can save more than 10 million yuan in fuel every year. , it can not only provide heat for the raw materials, but also effectively recycle and utilize the waste heat of the reaction products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种丙烷脱氢工艺,该工艺所利用的系统为丙烷脱氢系统,该工艺包括原料经过升温后,进入反应器反应,得到反应产物,反应产物汇入后续处理系统,升温的过程,先利用反应产物的余热与原料在缠绕管式换热器中换热,再经过加热炉加热,再进入反应器中反应。该工艺中利用反应产物的余热对反应原料进行加热,既有效回收利用了反应产物的余热,同时有效降低了反应产物升温能耗的问题,降低了产物温度高冷却负荷大的问题,通过该系统,提高了反应速率,提高收率,有效降低了丙烷脱氢的成本。

Description

一种丙烷脱氢工艺 技术领域
本发明属于丙烷脱氢技术领域,具体涉及一种丙烷脱氢工艺。
背景技术
丙烯是一种重要的有机化工原料,具有应用广泛、市场需求大等特点。近年来,随着化工、制造业等各个行业的迅速发证,丙烯的需求量持续上升。由于丙烯需求的增长,也使得丙烷脱氢、丙烯制备等系统相关工艺持续蓬勃发展。
丙烷脱氢是由丙烷脱氢制成丙烯单体,是制丙烯的一种重要方式,以丙烷制作丙烯需要进行脱氢装置的处理。目前,由于丙烷脱氢需要在较高的温度进行,导致丙烷脱氢的能耗高,成本大;常规的丙烷脱氢装置进出料需要用到换热器,常采用浮头式换热器,其结构复杂且浮头端小盖在操作中无法检查,对密封要求较高,开工时物料消耗量大,管束易于开裂,其换热效果不佳,导致丙烷脱氢后续反应加热的负荷增大,加热时间长;同时丙烷脱氢得到产物温度较高,需要冷却后才能进入下一系统中,由于产物温度较高,冷却负荷较大、冷却时间长。
因此,由于上述原因,使得丙烷脱氢工艺成本大,效率低,严重阻碍了丙烯的生产。
发明内容
针对目前存在的技术问题,本发明提供了一种丙烷脱氢工艺,该工艺中换热,选择缠绕管式换热器换热,换热效果好,降低了后续加热炉的负荷,同时利用反应产物的余热对反应原料进行加热,既有效回收利用了反应产物的余热,同时有效降低了反应产物升温能耗的问题,降低了产物温度高冷却负荷大的问题,通过该工艺,有效降低了丙烷脱氢的成本,提高了效率。
本发明的技术方案如下:
一种丙烷脱氢工艺,该工艺所利用的系统为丙烷脱氢系统,该工艺过程包括原料经过升温后,进入反应器反应,得到反应产物,反应产物汇入后续处理系统,所述升 温的过程,先利用反应产物的余热与原料在缠绕管式换热器中换热,再经过加热炉加热,再进入反应器中反应。
优选地,原料经过缠绕管式换热器中换热、加热炉加热后进入反应器反应,得到的反应产物再经过另一个加热炉加热后再进入另一个反应器中反应,得到的反应产物再经过下一个加热炉加热后再进入另一个反应器中反应,得到的反应产物经过与原料在缠绕管式换热器中换热汇入后续的处理系统。丙烷脱氢是一个吸热的过程,脱氢反应需要大量的热,若只有一套,脱氢反应不完全,会造成原料的浪费,转化率低,收率低等问题,增加为三套,可提升转化率,提高了收率。
优选地,原料先经过降温、再升温,最后进入缠绕管式换热器与反应产物换热。原料先经过降温是为了除去原料中的氢气,氢气的存在可对钢材造成严重缺陷,例如:氢脆、氢蚀、焊缝热影响区裂缝等,同时原料中氢气的存在也不利于脱氢反应的进行。经过冷却后的原料如果直接进入缠绕管式换热器,升温的温差较大,需要提供的能量进一步增大如此以来整个装置的能耗就会很高,不经济,同时经过冷却后的原料先小幅度的升温,也是使得原料能够均匀受热,避免了受热不均的问题。
优选地,丙烷脱氢系统包括原料储罐、缠绕管式换热器、反应器和加热炉;所述原料储罐顺次连接原料冷却器、冷进料换热器、缠绕管式换热器的管程、加热炉、反应器、缠绕管式换热器的壳程、后续处理系统。
进一步优选地,原料储罐、缠绕管式换热器之间设置原料冷却器、冷进料换热器。
进一步优选地,反应器包括第一反应器、第二反应器和第三反应器,加热炉包括第一加热炉、第二加热炉和第三加热炉;所述缠绕管式换热器的管程出口依次连接第一加热炉、第一反应器、第二加热炉、第二反应器、第三加热炉、第三反应器,换热器的壳程进口。
进一步优选地,缠绕管式换热器上的管板上设置孔,孔呈正三角形排列,管板的高温端(高温端靠近管程出口)位置,管板与缠绕管式换热器上的换热管采用深孔焊连接,换热管与管板上的孔连通。管板采用正三角形布管,正三角形排列形式可以在同样的管板面积上排列最多的管数,排列紧凑,管程流体直接冲刷换热管,使管程流体分布更加均匀;管板高温端容易产生碳离子聚集,聚集物将换热管挤压 变形,因此采用深孔焊,避免此问题。进一步优选地,管板上孔间距为22mm,采用的间距小,可以多布管,减少管板的尺寸。
进一步优选地,缠绕管式换热器的壳体外侧的上方和下方缠绕有冲洗管,冲洗管上均匀设置有开口A,开口A对应的缠绕管式换热器的壳体位置设置有开口B,冲洗管上的开口A与壳体上的开口B连接,冲洗管连接冲洗管道,冲洗管道上设置有阀门;缠绕管式换热器的管程进口及管程出口、壳程进口及壳程出口上均设置有开口C,开口C连接冲洗管道,冲洗管道上设置有阀门。丙烷脱氢是一个吸热反应,需外界提供较高的能量,同时反应受到热力学平衡的限制,需要在较高的温度下才能获得较高的转化率,但在中温段(150-200℃)易产生絮状物,因此需要在壳体及各个进口和出口处增加开口,便于冲洗。
缠绕管式换热器的壳体进口处设置防冲板,防止流体直接冲刷缠绕管式换热器中换热管而引起换热管振动失稳和腐蚀。
本发明,原料经过换热器加热到一定温度后,进入到加热炉,再经过加热炉的加热进入反应器反应中,从反应器中出来的反应产物温度较高,再通入到换热器中与原料换热,经过换热后的反应产物进入到后续处理系统中或收集装置中。选择缠绕管式换热器,换热效果好,降低了后续加热炉的负荷,同时利用反应产物的余热对反应原料进行加热,既能够为原料提供热量,又有效回收利用了反应产物的余热,还有效降低了反应产物的温度,降低了反应原料需要较高能耗加热的问题,降低了产物温度高冷却负荷大的问题;将原浮头换热器更换为绕管换热器后,管壳程物料调换,才能满足工艺要求;通过该系统,有效降低了丙烷脱氢的成本,提高了生产效率。
附图说明
图1为本发明工艺的结构示意图;
图2为本发明中缠绕管式换热器的结构示意图;
图3为缠绕管式换热器的管板的结构示意图;
图4为缠绕管式换热器的管板上的孔分布正三角形排列;
图5为缠绕管式换热器的管板和换热管的结构示意图;
图6为缠绕管式换热器的管板和换热管的连接处结构示意图;
图7为防冲板与壳程进口的连接示意图;
图8为防冲板的结构示意图;
图中,1为原料储罐,2为原料冷却器,3为冷进料换热器,4为缠绕管式换热器,4-1为管程出口,4-2为管程进口,4-3为壳程出口,4-4为壳程进口,4-5为开口C,4-6为管板,4-7为冲洗管,4-8为换热管,4-9为防冲板,5为加热炉,5-1为第一加热炉,5-2为第二加热炉,5-3为第三加热炉,6为反应器,6-1为第一反应器,6-2为第二反应器,6-3为第三反应器,7为后续处理系统。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图所示,一种丙烷脱氢工艺,该工艺所利用的系统为丙烷脱氢系统,该工艺过程包括原料经过升温后,进入反应器6,得到反应产物,反应产物进入缠绕管式换热器4的壳程中,最后汇入后续处理系统7;所述升温的过程,先利用反应产物的余热与原料在缠绕管式换热器4中换热,再经过加热炉5加热,再进入反应器6中反应。
本发明中将现有技术中原浮头换热器更换为缠绕管式换热器4后,管壳程物料调换,才能满足工艺要求,工艺文件中要求管程允许压降为13.8Kpa,若不调换,管程计算压降为21.86Kpa,不符合要求。本发明中选择缠绕管式换热器4,换热效果好,降低了后续加热炉5的负荷,利用反应产物的余热对反应原料进行加热,既能够为原料提供热量,又有效回收利用了反应产物的余热,还有效降低了反应产物的温度,降低了反应原料需要较高能耗加热的问题,降低了产物温度高冷却负荷大的问题,有效降低了丙烷脱氢的成本。
上述缠绕管式换热器4,中心筒与外壳体之间的空间内将换热管4-8按螺旋形状交替缠绕,相邻两层换热管4-8缠绕方向相反,并采用一定形状的定距件使之保持一定间距。
另一种实施方式,原料经过缠绕管式换热器4中换热、加热炉5加热后进入反应器6反应,得到的反应产物再经过另一个加热炉5加热后再进入另一个反应器6中反应,得到的反应产物再经过下一个加热炉5加热后再进入另一个反应器6中反应,得到的反应产物经过与原料在缠绕管式换热器4中换热汇入后续的处理系统。丙烷脱氢是一个吸热的过程,脱氢反应需要大量的热,若只有一套,脱氢反应不完全,会造成原料的浪费,转化率低,收率低等问题,增加为三套,可提升转化率,提高了收率。
另一种实施方式,原料先经过降温、再升温,最后进入缠绕管式换热器4与反应产物换热。原料先经过降温是为了除去原料中的氢气,氢气的存在可对钢材造成严重缺陷,例如:氢脆、氢蚀、焊缝热影响区裂缝等,同时原料中氢气的存在也不利于脱氢反应的进行。经过冷却后的原料如果直接进入缠绕管式换热器4,升温的温差较大,需要提供的能量进一步增大如此以来整个装置的能耗就会很高,不经济,同时经过冷却后的原料先小幅度的升温,也是使得原料能够均匀受热,避免了受热不均的问题。
上述丙烷脱氢工艺中所用的丙烷脱氢系统包括原料储罐1、缠绕管式换热器4、反应器6和加热炉5;所述原料储罐1顺次连接原料冷却器2、冷进料换热器3、缠绕管式换热器4的管程、加热炉5、反应器6、缠绕管式换热器4的壳程、后续处理系统7。
另一种实施方式,缠绕管式换热器4的壳体外侧的上方和下方分别缠绕有冲洗管4-7,冲洗管4-7上均匀设置有开口A,开口A对应的缠绕管式换热器4的壳体位置设置有开口B,冲洗管4-7上的开口A与壳体上的开口B连接(使得冲洗液能够通过冲洗管4-7,进入开口A,再经开口B进入壳体内),冲洗管4-7连接冲洗管道,冲洗管道上设置有阀门;缠绕管式换热器4的管程出口4-1及管程进口4-2、壳程出口4-3及壳程进口4-4上都设置有开口C4-5,开口连接冲洗管道,冲洗管道上设置有阀门。丙烷脱氢是一个吸热反应,需外界提供较高的能量,同时反应受到 热力学平衡的限制,需要在较高的温度下才能获得较高的转化率,但在中温段(150-200℃)易产生絮状物,因此需要在壳体及各个进口和出口处增加开口,便于冲洗。壳体上的冲洗管4-7可以在线冲洗(即在运行的过程冲洗)、也可以停工冲洗,在线冲洗时,冲洗液选择芳烃溶剂,在线冲洗过程中,冲洗液与轻组分(产物)不相容,因此冲洗液不会对产物造成影响,各个进口和出口处的冲洗,需要停工冲洗。
另一种实施方式,缠绕管式换热器4的壳程进口4-4处设置防冲板4-9,防止流体直接冲刷缠绕管式换热器4中换热管4-8而引起换热管4-8振动失稳和腐蚀。防冲板4-9由一个弧形板和四个支柱构成,四个支柱固定连接在弧形板上,支柱设置在弧形板弯曲方向的背面,四个支柱与壳体的进口连接,弧形板设置壳体内,弧形板与缠绕管式换热器4之间有空隙。
另一种实施方式,原料储罐1与换热器之间还设置原料冷却器2、冷进料换热器3,冷进料换热器3采用板式换热器;反应器6包括第一反应器6-1、第二反应器6-2和第三反应器6-3,加热炉5包括第一加热炉5-1、第二加热炉5-2和第三加热炉5-3;换热器的管程出口4-1依次连接第一加热炉5-1、第一反应器6-1、第二加热炉5-2、第二反应器6-2、第三加热炉5-3、第三反应器6-3,缠绕管式换热器4的壳程进口4-4。原料先经过降温、升温,进入到缠绕管式换热器4的管程后,再依次通过第一加热炉5-1、第一反应器6-1、第二加热炉5-2、第二反应器6-2、第三加热炉5-3、第三反应器6-3,最终得到的反应产物,进入缠绕管式换热器4的壳程,最后流入到后续处理系统7或收集装置中。避免了现有技术仅通过一个加热炉一个反应器,会使得反应不充分,反应速率慢,产物的收率和纯度较等的问题,通过设置连续的加热炉5和反应器6,使得反应能够充分进行,有效提高反应速率,提高产物的收率和纯度。
另一种实施方式,缠绕管式换热器4上的管板4-6上设置孔,孔呈正三角形排列,管板4-6的高温端(高温端靠近管程出口)位置,管板4-6与缠绕管式换热器4上的换热管4-8采用深孔焊连接,换热管4-8与管板4-6上的孔连通。管板4-6采用正三角形布管,正三角形排列形式(如图4所示)可以在同样的管板面积上排列最多的管数,排列紧凑,管程流体直接冲刷换热管4-8,使管程流体分布更加均匀; 管板高温端容易产生碳离子聚集,将换热管涨破,因此采用深孔焊,连接牢固,有效解决开裂、涨破的问题。管板上孔间距为22mm,采用的间距小,可以多布管,减少管板的尺寸。
实施例1
一种丙烷脱氢工艺,具体步骤如下:
原料储罐1中的原料(丙烷)流经原料冷却器2,经过冷却降温至-87℃,再流经冷进料换热器3换热升温至45℃,进入缠绕管式换热器4,经反应产物换热升温至550℃,继续流动,经第一加热炉5-1加热至620℃后进入第一反应器6-1,进行脱氢反应,反应后得到550℃的反应产物;反应产物继续流动,经第二加热炉5-2加热至625℃后进入第二反应器6-2,进行脱氢反应,反应后得到降温至571℃的反应产物;反应产物继续流动,经第三加热炉5-3加热至625℃后进入第三反应器6-3进行脱氢反应,反应后得到降温至577℃的反应产物;反应产物继续流动,进入缠绕管式换热器4的壳程中,经与原料换热后得到温度为140℃的最终产物,从缠绕管式换热器4的壳程中出来流入后续的处理系统。
本发明提供的一种丙烷脱氢工艺,选择缠绕管式换热器,换热效果好,降低了后续加热炉的负荷,同时利用反应产物的余热对反应原料进行加热,每年可节约燃料1000余万元,既能够为原料提供热量,又有效回收利用了反应产物的余热,还有效降低了反应产物的温度,降低了反应原料需要较高能耗加热的问题,降低了产物温度高冷却负荷大的问题;将原浮头换热器更换为绕管换热器后,管壳程物料调换,才能满足工艺要求;通过该系统,有效降低了丙烷脱氢的成本,提高了生产效率。

Claims (10)

  1. 一种丙烷脱氢工艺,该工艺所利用的系统为丙烷脱氢系统,该工艺过程包括原料经过升温后,进入反应器(6)反应,得到反应产物,反应产物汇入后续处理系统(7),其特征在于,所述升温的过程,先利用反应产物的余热与原料在缠绕管式换热器(4)中换热,再经过加热炉(5)加热,再进入反应器(6)中反应。
  2. 根据权利要求1所述的一种丙烷脱氢工艺,其特征在于,所述原料经过缠绕管式换热器(4)中换热、加热炉(5)加热后进入反应器(6)反应,得到的反应产物再经过另一个加热炉(5)加热后再进入另一个反应器(6)中反应,得到的反应产物再经过下一个加热炉(5)加热后再进入另一个反应器(6)中反应,得到的反应产物经过与原料在缠绕管式换热器(4)中换热汇入后续的处理系统。
  3. 根据权利要求1所述的一种丙烷脱氢工艺,其特征在于,所述原料先经过降温、再升温,最后进入缠绕管式换热器(4)与反应产物换热。
  4. 根据权利要求1所述的一种丙烷脱氢工艺,其特征在于,所述丙烷脱氢系统包括原料储罐(1)、缠绕管式换热器(4)、反应器(6)和加热炉(5);所述原料储罐(1)顺次连接原料冷却器(2)、冷进料换热器(3)、缠绕管式换热器(4)的管程、加热炉(5)、反应器(6)、缠绕管式换热器(4)的壳程、后续处理系统(7)。
  5. 根据权利要求4所述的一种丙烷脱氢工艺,其特征在于,所述原料储罐(1)、缠绕管式换热器(4)之间设置原料冷却器(2)、冷进料换热器(3)。
  6. 根据权利要求4所述的一种丙烷脱氢工艺,其特征在于,所述反应器(6)包括第一反应器(6-1)、第二反应器(6-2)和第三反应器(6-3),加热炉(5)包括第一加热炉(5-1)、第二加热炉(5-2)和第三加热炉(5-3);所述缠绕管式换热器(4)的管程出口(4-1)依次连接第一加热炉(5- 1)、第一反应器(6-1)、第二加热炉(5-2)、第二反应器(6-2)、第三加热炉(5-3)、第三反应器(6-3),换热器的壳程进口(4-4)。
  7. 根据权利要求4所述的一种丙烷脱氢工艺,其特征在于,所述缠绕管式换热器(4)上的管板(4-6)上设置孔,孔呈正三角形排列,管板(4-6)的高温端,管板(4-6)与缠绕管式换热器(4)上的换热管(4-8)采用深孔焊连接,换热管(4-8)与管板(4-6)上的孔连通。
  8. 根据权利要求7所述的一种丙烷脱氢工艺,其特征在于,所述管板(4-6)上孔间距为22mm。
  9. 根据权利要求4所述的一种丙烷脱氢工艺,其特征在于,所述缠绕管式换热器(4)的壳体外侧的上方和下方分别缠绕有冲洗管(4-7),冲洗管(4-7)上均匀设置有开口A,开口A对应的缠绕管式换热器的壳体位置设置有开口B,冲洗管(4-7)上的开口A与壳体上的开口B连接,冲洗管(4-7)连接冲洗管道,冲洗管道上设置有阀门;缠绕管式换热器(4)的管程出口(4-1)及管程进口(4-2)、壳程出口(4-3)及壳程进口(4-4)上均设置有开口C(4-5),开口C(4-5)连接冲洗管道,冲洗管道上设置有阀门。
  10. 根据权利要求4所述的一种丙烷脱氢系统,其特征在于,所述缠绕管式换热器(4)的壳体进口(4-4)处设置防冲板(4-9)。
PCT/CN2022/142197 2022-10-28 2022-12-27 一种丙烷脱氢工艺 WO2023197683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211333107.9 2022-10-28
CN202211333107.9A CN115894145A (zh) 2022-10-28 2022-10-28 一种丙烷脱氢工艺

Publications (1)

Publication Number Publication Date
WO2023197683A1 true WO2023197683A1 (zh) 2023-10-19

Family

ID=86490387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142197 WO2023197683A1 (zh) 2022-10-28 2022-12-27 一种丙烷脱氢工艺

Country Status (2)

Country Link
CN (1) CN115894145A (zh)
WO (1) WO2023197683A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228463A (en) * 1961-06-12 1966-01-11 Sulzer Ag Heat exchanger
EP1367350A1 (en) * 2002-05-27 2003-12-03 Air Products And Chemicals, Inc. Coil wound heat exchanger
CN102472593A (zh) * 2009-07-16 2012-05-23 洛克希德马丁公司 用于换热器的螺旋状管束的配置
CN108160006A (zh) * 2018-02-13 2018-06-15 镇海石化建安工程有限公司 丙烷脱氢装置及丙烷脱氢方法
CN208098029U (zh) * 2018-02-13 2018-11-16 镇海石化建安工程有限公司 丙烷脱氢装置
CN213977483U (zh) * 2020-11-13 2021-08-17 洛阳智达石化工程有限公司 轻烃改质和丙烷脱氢联合生产丙烯的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228463A (en) * 1961-06-12 1966-01-11 Sulzer Ag Heat exchanger
EP1367350A1 (en) * 2002-05-27 2003-12-03 Air Products And Chemicals, Inc. Coil wound heat exchanger
CN102472593A (zh) * 2009-07-16 2012-05-23 洛克希德马丁公司 用于换热器的螺旋状管束的配置
CN108160006A (zh) * 2018-02-13 2018-06-15 镇海石化建安工程有限公司 丙烷脱氢装置及丙烷脱氢方法
CN208098029U (zh) * 2018-02-13 2018-11-16 镇海石化建安工程有限公司 丙烷脱氢装置
CN213977483U (zh) * 2020-11-13 2021-08-17 洛阳智达石化工程有限公司 轻烃改质和丙烷脱氢联合生产丙烯的系统

Also Published As

Publication number Publication date
CN115894145A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN101349514B (zh) 一种内外翅片插管式高温换热器
JPH03232703A (ja) 炭化水素の改質装置
CN101362951B (zh) 石油焦罐式煅烧炉冷却水套
CN204923960U (zh) 大型立式高效螺旋折流板换热器
WO2023246668A1 (zh) 一种具有氨气预加热功能的氨分解反应器
CN201444007U (zh) 可拆式螺旋板换热器
CN101782339A (zh) 螺旋盘管式换热装置
CN206095003U (zh) 一种管壳式高压换热器
WO2013139172A1 (zh) 一种换热器
WO2023197683A1 (zh) 一种丙烷脱氢工艺
CN201110727Y (zh) 高温段夹套冷却式保护空气预热器
CN105043142B (zh) 一种固体粒子冷却器
CN218689323U (zh) 一种丙烷脱氢系统
CN201514139U (zh) 双管板式换热器
CN212988115U (zh) 一种炭黑油降温装置
CN104949549B (zh) 一种外取热器
CN106829860A (zh) 一种氢气制备装置
CN204987960U (zh) 一种外取热器
CN209854079U (zh) 一种加氢裂化换热工艺的优化装置
CN210108079U (zh) 一种换热器
CN219037695U (zh) 绕管换热装置及其连续重整工艺系统、加氢换热工艺系统
CN212988116U (zh) 一种炭黑油热能调控利用装置
CN219200136U (zh) 方螺旋板式换热器
CN218673259U (zh) 一种节能耐腐换热装置
CN211695980U (zh) 应用于废水厌氧处理中的换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937310

Country of ref document: EP

Kind code of ref document: A1