WO2023197567A1 - 一种垂直起降飞行器和垂直起降飞行器的控制方法 - Google Patents
一种垂直起降飞行器和垂直起降飞行器的控制方法 Download PDFInfo
- Publication number
- WO2023197567A1 WO2023197567A1 PCT/CN2022/128570 CN2022128570W WO2023197567A1 WO 2023197567 A1 WO2023197567 A1 WO 2023197567A1 CN 2022128570 W CN2022128570 W CN 2022128570W WO 2023197567 A1 WO2023197567 A1 WO 2023197567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- aircraft
- tail
- fuselage
- tilt
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000000712 assembly Effects 0.000 claims abstract description 24
- 238000000429 assembly Methods 0.000 claims abstract description 24
- 230000033001 locomotion Effects 0.000 claims description 20
- 230000007246 mechanism Effects 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/30—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with provision for reducing drag of inoperative rotor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/28—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
- B64C27/50—Blades foldable to facilitate stowage of aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/52—Tilting of rotor bodily relative to fuselage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to the technical field of aircraft, and in particular to a vertical take-off and landing aircraft and a control method of the vertical take-off and landing aircraft.
- the present invention provides a vertical take-off and landing aircraft and a control method for the vertical take-off and landing aircraft to improve the layout pattern of the EVTOL manned aircraft in the prior art and increase the load capacity and endurance of the vertical take-off and landing aircraft. ability.
- the present invention provides a vertical take-off and landing aircraft, including: a fuselage, two first power assemblies, two second power assemblies and a tail.
- the fuselage is provided with wings; two first power assemblies are symmetrically installed on the wings on both sides of the fuselage; two second power assemblies are symmetrically installed on both sides of the fuselage on the wings, and are located outside the first power assembly respectively;
- the tail wing is installed at the tail of the fuselage; wherein the first power assembly and/or the second power assembly include respectively Tilt rotors and fixed rotors installed on both sides of the wing;
- the tilt rotor includes a rotor device and a rotor tilting mechanism used to drive the rotor device to tilt along the aircraft heading or perpendicular to the aircraft heading.
- the first power component and/or the second power component further includes a brace, and the brace is installed on the wing and extends in the same direction as the wing.
- the extension direction of the fuselage is parallel; the tilt rotor is installed on one end of the strut close to the nose of the aircraft, and is tilted and locked between the take-off position and the cruising position; the fixed rotor is installed on the strut close to the nose One end of the tail.
- the blade rotation surface of the tilt rotor and/or the fixed rotor moves along the wing from top to bottom.
- the span direction is tilted away from the fuselage side.
- the rotor tilting mechanism includes: a first link, a second link, a third link and a tilt drive device; the tilt drive device is installed on the strut and has a linear moving driving end; the first end of the first connecting rod is hinged with the linear moving driving end; the first end of the second connecting rod is hinged with the support rod; the first end of the first connecting rod is hinged with the linear moving driving end; The first end of the three-link is hingedly connected to the second end of the second link; a middle hinge portion is also provided between the first link and the second link, and the base of the rotor device respectively hinged with the second end of the first connecting rod and the second end of the third connecting rod.
- the tilt driving device includes a screw assembly and a drive unit.
- the screw assembly includes a screw and a screw nut.
- the drive unit is fixedly installed on the strut. on the screw, and the driving unit is connected to the screw to drive the screw to reciprocate, the screw nut is threadedly connected to the screw, and the linear movement driving end is arranged on the screw nut. superior.
- the driving device further includes a driving arm, one end of the driving arm is fixedly connected to the screw nut, and the other end of the driving arm is connected to the first connection
- the rods are hinged.
- the tilt driving device is an electric push rod, a hydraulic push rod, or a pneumatic push rod.
- the tilt angle of the rotor device is greater than or equal to 90°.
- the tail includes a first tail and two second tails.
- the first tail is installed at the tail of the fuselage, and its two ends are connected to both sides of the fuselage respectively.
- the two second tail wings are symmetrically connected to the first power components on both sides of the fuselage and extend upwards of the fuselage.
- the tail fin further includes two first tail fins; the two first tail fins are respectively installed on the two first power assemblies and are respectively connected with the two first tail fins.
- the second tail wing is positioned correspondingly and extends vertically downward.
- the tail includes a third tail, a fourth tail and a second tail fin.
- the second tail fin is connected to the tail of the fuselage and extends vertically downward.
- the third tail fin and the fourth tail fin are symmetrically arranged on both sides of the second tail fin, and extend obliquely upward on both sides of the fuselage respectively.
- the fixed rotor includes a folding rotor and a fixed rotor driving device; the folding rotor includes fixed blades and floating blades, and driven by the fixed rotor driving device, the The fixed blades and the floating blades rotate in a cross state.
- the fixed rotor driving device stops working, the fixed blades and the floating blades are closed, and the fixed blades in the fixed rotor are and the extension direction of the floating blades is consistent with the heading of the aircraft.
- the invention also provides a control method for a vertical take-off and landing aircraft, which includes the following processes:
- the tilt rotors on both sides of the fuselage are driven to rotate upward, and the tilt rotors and fixed rotors are driven to rotate;
- the rotating axes of the tilt rotors on both sides of the fuselage are controlled to gradually tilt forward, providing thrust for forward flight of the aircraft while maintaining the altitude of the aircraft; when the forward speed of the aircraft reaches the set After setting the threshold, make the rotation axis of the tilt rotor extend forward horizontally, close the fixed rotors on both sides of the fuselage, and make the extension direction of the fixed blades and floating blades in the fixed rotor consistent with the aircraft heading. consistent.
- control method further includes the following process:
- the fixed rotor When landing from the cruising state, the fixed rotor is driven to rotate to provide lift for the aircraft.
- the axis of the tilting rotor gradually tilts from the aircraft heading to the vertical aircraft heading.
- the forward speed of the aircraft decreases until the aircraft switches to the hovering state.
- the aircraft When the aircraft gradually lowers At the designated altitude, the aircraft switches to a multi-rotor state in which the tilt rotor axis is set upward and rotates simultaneously with the fixed rotor until the aircraft lands on the ground, the fixed rotor and the tilt rotor are closed, and the flight ends.
- the rotor device includes a first rotor and a first rotor driving device, and the first rotor is a five-blade propeller.
- the height above the ground of the fixed rotor and/or the height above the ground of the tilt rotor when in the take-off position is greater than or equal to 1.9m.
- the first power assembly and the second power assembly are arranged along the span of the wing.
- the installation positions of the fixed rotor and the installation position of the tilt rotor are centrally symmetrically arranged around the center of gravity of the entire aircraft.
- the blade rotation surfaces of the tilt rotor and/or the fixed rotor do not pass through the passenger compartment on the fuselage.
- the blade rotation surface of the tilt rotor and/or the fixed rotor is inclined from top to bottom along the span direction of the wing away from the fuselage side.
- the vertical takeoff and landing aircraft and control method of the present invention improve the layout pattern of the EVTOL manned aircraft in the prior art through multiple tilt rotors and fixed rotors, and increase the load capacity and endurance of the vertical takeoff and landing aircraft.
- Figure 1 is a top view of the overall layout of an embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 2 is a rear view of the overall layout of an embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 3 is a side view of the overall layout of an embodiment of the vertical take-off and landing aircraft of the present invention.
- Figure 4 is a side view of the overall layout of an embodiment of the vertical take-off and landing aircraft of the present invention.
- Figure 5 is a side view of the first power assembly/second power assembly in an embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 6 is an axial side view of the overall layout of the vertical take-off and landing aircraft in another embodiment of the vertical take-off and landing aircraft of the present invention.
- Figure 7 is a top view of the overall layout of the vertical take-off and landing aircraft in another embodiment of the vertical take-off and landing aircraft of the present invention.
- Figure 8 is a rear view of the overall layout of the vertical take-off and landing aircraft in another embodiment of the vertical take-off and landing aircraft of the present invention (the power unit is tilted along the span);
- Figure 9 is a side view of the overall layout of the vertical take-off and landing aircraft in another embodiment of the vertical take-off and landing aircraft of the present invention.
- Figure 10 is a schematic diagram of the movement process of the first extreme position in an embodiment of the vertical take-off and landing aircraft of the present invention.
- Figure 11 is a schematic diagram of the movement process of the third position of the vertical take-off and landing aircraft in one embodiment of the present invention.
- Figure 12 is a schematic diagram of the movement process of the fourth position of the vertical take-off and landing aircraft in one embodiment of the present invention.
- Figure 13 is a schematic diagram of the movement process of the second extreme position of the vertical take-off and landing aircraft in one embodiment of the present invention
- Figure 14 is a schematic diagram of a three-dimensional model of a tilt rotor in an embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 15 is a position diagram of the tilting rotor of an embodiment of the vertical take-off and landing aircraft of the present invention in a level flight state;
- Figure 16 is a position diagram of the tilt rotor when flying obliquely upward according to one embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 17 is a position diagram of the tilt rotor when flying vertically upward according to an embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 18 is a position diagram of the tilt rotor during reverse flight of an embodiment of the vertical take-off and landing aircraft of the present invention
- Figure 19 is a schematic diagram of another three-dimensional model of the tilt rotor in an embodiment of the vertical take-off and landing aircraft of the present invention.
- the present invention provides a vertical take-off and landing aircraft and a control method for the vertical take-off and landing aircraft to improve the layout pattern of the EVTOL manned aircraft in the prior art and increase the load capacity and endurance of the vertical take-off and landing aircraft.
- the vertical takeoff and landing aircraft includes: a fuselage 10 , two first power assemblies 40 , two second power assemblies 50 and a tail 30 .
- the fuselage 10 is provided with a wing 20; the two first power assemblies 40 are symmetrically installed on the wings 20 on both sides of the fuselage 10; the two second power assemblies 50 are symmetrically installed on the wings 20.
- the wings 20 on both sides of the fuselage 10 are respectively located outside the first power assembly 40; the tail wing 30 is installed at the tail of the fuselage 10; wherein, the first power assembly 40 includes a first tilting rotor 42 and a first fixed rotor 43 respectively installed on the front and rear sides of the wing 20; the second power assembly 50 includes a second tilting rotor 42 installed on the front and rear sides of the wing 20 respectively.
- Rotating rotor 52 and second fixed rotor 53 .
- the first tilting rotor 42 and the second tilting rotor 52 each include a rotor device 421 and a rotor tilting mechanism 422.
- the first power component 40 further includes a first support rod 41 .
- the first strut 41 is installed on the lower side of the wing 20, and its extending direction is parallel to the extending direction of the fuselage 10; the first tilting rotor 42 and the first fixed rotor 43 are respectively Located at the front and rear sides of the wing 20.
- the first tilt rotor 42 is installed on one end of the first strut 41 close to the nose of the aircraft, and can tilt and lock between the take-off position and the cruising position;
- the first fixed rotor 43 is installed on the first fixed rotor 43 .
- a support rod 41 is close to one end of the tail.
- connections between the wing 20 and the fuselage 10 , the wing 20 and the first strut 41 , and the first strut 41 and the tail 30 all adopt smooth curved chamfer transitions, so that the entire aircraft maintains a streamlined design.
- the second power assembly 50 further includes a second support rod 51 .
- the second strut 51 is installed on the lower side of the wing 20, and its extending direction is parallel to the extending direction of the fuselage 10; the second tilting rotor 52 and the second fixed rotor 53 are respectively Located at the front and rear sides of the wing 20.
- the second tilt rotor 52 is installed on one end of the second strut 51 near the nose of the aircraft, and can be tilted and locked between the takeoff position and the cruising position; the second fixed rotor 53 is installed on the first
- the two support rods 51 are close to one end of the tail.
- the four rotor tilting mechanisms 422 respectively drive the corresponding rotor devices 421 to the takeoff position.
- the rotating axes of the four rotor devices 421 are all arranged vertically upward or diagonally upward.
- the two first tilting rotors 42, The two second tilting rotors 52, the two first fixed rotors 43, and the two second fixed rotors 53 together form an 8-axis and 8-blade layout, which together provide power for the aircraft to take off vertically.
- the rotor device 421 can be driven to the cruising position.
- the rotating axes of the two first tilting rotors 42 and the two second tilting rotors 52 are arranged forward or diagonally forward along the horizontal plane.
- the four rotor devices 421 jointly provide traction force for horizontal movement of the aircraft.
- the corresponding first tilt rotor 42 or second tilt rotor 52 can also be replaced with a fixed rotor structure, but Compared with the above-mentioned four-tilt rotor structural layout, the vertical stability and vertical lift force of this structure are poorer.
- the blade rotation planes of the first tilt rotor 42 and the first fixed rotor 43, and the blade rotation planes of the second tilt rotor 52 and the second fixed rotor are all inclined from top to bottom along the span direction of the wing 20 away from the fuselage 10, so that the corresponding blade rotation planes of the tilt rotor and the fixed rotor do not pass through Describe the crew cabin on the fuselage 10.
- the two first tilt rotors The blade rotation planes of the rotor 42 , the two second tilt rotors 52 , the two first fixed rotors 43 and the two second fixed rotors 53 all follow the span of the wing 20 from top to bottom. Tilt toward the side away from the fuselage 10 so that all the blade rotation surfaces of the tilt rotor and the fixed rotor do not pass through the passenger compartment on the fuselage 10 .
- the blade rotation plane of the second fixed rotor 53 is tilted away from the fuselage 10 along the span direction of the wing 20 from top to bottom, and the angle ⁇ with the horizontal plane is 3° to 30°.
- the range can not only ensure that the rotating surface of the rotor blades does not pass through the passenger compartment on the fuselage 10, thereby minimizing the damage to the crew caused by the rotor rotor explosion, but also can be adjusted by adjusting the power when the aircraft needs to yaw or fly against crosswinds.
- the output signal of the system generates a yaw moment or a component force in the horizontal direction, which can improve the crosswind resistance and lateral maneuverability in the rotor mode during takeoff and landing, and can provide sufficient power and navigation stability.
- the rotor tilting mechanism 422 includes: a first link 4230, a second link 4240, a third link 4250 and a tilt drive.
- Device 4220 the tilt driving device 4220 is fixedly installed on the frame beam 481 in the skin 482, and has a linear moving driving end 4224 capable of reciprocating linear movement; the first end of the first connecting rod 4230 is connected to the first end of the first connecting rod 4230.
- the linearly moving driving end 4224 is hinged through the first hinge part 4271; a first base 4210 is installed on the inner wall of the skin 482 of the first strut 41 or the second strut 51, and the first base 4210 of the second connecting rod 4240 is The first end of the third link 4250 and the second end of the second link 4240 are hinged to the first base 4210 through the second hinge 4273; the first end of the third link 4250 and the second end of the second link 4240 are hinged to the third hinge 4274; the rotor The base 4260 of the device and the second end of the first link 4230 are hingedly connected through the fourth hinge 4275, and the base 4260 of the rotor device and the second end of the third link 4250 are hingedly connected through the fifth hinge.
- the first link 4230 and the second link 4240 are also provided with a middle hinge portion 4272, and the middle hinge portions 4272 are respectively provided at the first ends of the first link 4230. and the second end, and between the first end and the second end of the second connecting rod 4240.
- the rotor tilting mechanism 422 of the present invention relies on the linkage mechanism to transmit and convert the linear driving force, and then turns it into a flipping motion of the base 4260 of the rotor device. During the entire movement, the change range of the transmission ratio is always kept low. level, so that the whole movement process of the present invention can be kept in a relatively stable state.
- the tilting mechanism of the present invention has a simple structure, uses fewer parts, has lower weight and better structural stability.
- the drive device in an embodiment of the vertical take-off and landing aircraft of the present invention, in an embodiment of the tilt drive structure of the present invention, includes a screw assembly and a drive unit (not shown), and the screw assembly includes a screw 4222 and screw nut 4221.
- the screw rod 4222 is rotatably installed on the frame beam 481 in the support rod.
- the screw nut 4221 is threadedly connected to the screw rod 4222.
- the linear moving driving end 4224 is provided on on the screw nut 4221.
- the driving unit is also fixedly installed on the support rod, and the driving unit is connected to the screw rod 4222 to drive the screw rod 4222 to rotate back and forth.
- the driving device also includes a driving arm 4223.
- One end of the driving arm 4223 is fixedly connected to the screw nut 4221, and the other end of the driving arm 4223 serves as a linear moving driving end 4224 and is connected to the screw nut 4221.
- the first link 4230 is hinged through the first hinge part 4271, thereby using the screw assembly as a power source to output a linear driving force, and relying on the link mechanism to transmit and convert the linear driving force into a flip of the base 4260 of the rotor device. sports.
- This structure has a self-locking function. After the screw rod 4222 stops moving, the entire linkage mechanism will be locked; and during the entire movement of the linkage mechanism, the change range of the transmission ratio always remains at a low level, making the entire linkage mechanism of the present invention The movement process remains relatively stable.
- the driving unit may be a rotary driving component capable of driving the screw rod 4222 to rotate reciprocally, such as a motor or a combination of a motor and a reducer.
- the screw rod 4222 can drive the screw nut 4221 and drive the drive arm 4223 to make linear motion in the positive and negative directions of X.
- the driving arm 4223 moves in the positive direction of X
- the first link 4230 as a whole moves in the positive direction of
- the second hinge part 4273 is rotated clockwise with the center of the circle, and the fourth hinge part 4275 is driven by the first connecting rod 4230 to make a clockwise arc motion.
- the tilting base body 4260 is driven to move in a clockwise direction. Hour hand flip movement. .
- the driving arm 4223 moves in the opposite direction of 4275.
- the fifth hinge part 4276 moves in the reverse direction of the aforementioned movement, and the base 4260 of the rotor device makes a counterclockwise flipping movement under drive.
- the tilt driving device 4220 in the present invention can also be other driving devices that can realize linear reciprocating driving and have a self-locking function. Please refer to Figures 14 to 19.
- the tilt drive device 4220 is an electric push rod 4225 or a linear motion drive device such as a hydraulic push rod or a pneumatic push rod.
- the strut includes a skin 482 and a frame beam 481 provided in the skin 482, the first base 4210 is installed on the skin 482, and the The base of the tilt driving device 4220 is installed on the frame beam 481 .
- the frame beam 481 includes a plurality of reinforcing ribs 4811.
- the plurality of reinforcing ribs 4811 are arranged along the circumferential direction of the tilting drive device 4220 and are connected to the base of the tilting drive device 4220. This structural arrangement can The tilt driving device 4220 is maintained with high stability.
- the tilt driving device 4220 is a driving device with a controllable linear movement amount. So that the rotor device 421 can stop at any position during the tilting process.
- the tilting angle of the rotor device 421 is greater than or equal to 90°, so that when necessary, the base body to be tilted can be tilted toward the rear side and upward to meet the flight requirements of the aircraft retreating.
- the rotor device 421 has a first limit position with the rotation axis 4293 horizontally forward and a second limit position with the rotation axis 4293 tilting backward and upward.
- the rotor is in the tilt position.
- the rotation drive device 4220 is driven to be fixed at any position between the first limit position and the second limit position.
- the first link 4230 and/or the second link 4240 and/or the third link 4250 are provided with weight reduction holes (not labeled). Weight-reducing holes keep individual links lighter without compromising strength.
- the tilting component points in the positive direction of STA at this time, and the tilting rotor mechanism provides the aircraft with flight power in the positive direction of STA, and the aircraft is in a horizontal flight state.
- the base 4260 of the rotor device is separated from the opening of the skin 482.
- the tilt assembly is pointed obliquely in the positive direction of STA and the positive direction of WL. direction
- the tilt rotor provides the aircraft with oblique upward flight power along the positive direction of STA and the positive direction of WL, and the aircraft is in a transition state.
- the rotation axis 4293 of the tilt rotor points to the positive direction of WL, and the tilt rotor provides the aircraft with a direction along the positive direction of WL. flight power, the aircraft is in a vertical flight state.
- the rotation axis 4293 of the tilt rotor points to the negative direction of STA and the positive direction of WL, and the tilt rotor mechanism provides the aircraft with With the oblique upward flight power in the negative direction of STA and the positive direction of WL, the aircraft is in a backward flight state.
- the control system can freely control the moving distance of the moving parts of the tilt drive device 4220, and then freely control the pointing angle of the tilt component to achieve stepless changes in the tilt angle, allowing the aircraft to obtain a more flexible flight attitude.
- the present invention can utilize the power provided by the tilting drive device 4220 to drive the tilting rotor to achieve tilting.
- the tilting rotor can continuously change the tilting angle, allowing the aircraft to achieve four states: horizontal flight, transition state, vertical flight, and reverse flight. .
- the tilting mechanism in the present invention is simple and stable, has a low probability of mechanical failure, has a strong carrying capacity, and can be used in manned aircraft and logistics transport aircraft.
- the invention has a reasonable aerodynamic shape in a horizontal flight state and can ensure that the aircraft has lower flight resistance.
- the tail wing 30 includes a first tail wing 31 and two second tail wings (the second tail wing 33 and the second tail wing 34); the first tail wing 31 is installed At the tail of the fuselage 10, and both ends are respectively connected to the first power assembly 40 on both sides of the fuselage 10, two second tail wings (the second tail wing 33 and the second tail wing 34) They are respectively installed on the two first power assemblies 40 and extend upward toward the fuselage 10 .
- the structural form of the first tail 31 is not limited. It can be integral or composed of multiple connected units.
- the first tail 31 is installed at the tail of the fuselage 10 and includes a third tail.
- a connecting wing 311 and a second connecting wing 312, and two second tail wings are respectively marked as a second tail wing 33 and a second tail wing 34.
- the lower ends of the second tail wing 33 and the second tail wing 34 are symmetrically connected on both sides.
- the second tail wing 33 and the second tail wing 34 are The upper end extends upward.
- the present invention adopts a special tail 30 structure of the second tail 33, the second tail 34, and the first tail 31, which can decouple the longitudinal control and the lateral control of the aircraft, which is beneficial to the safety of the aircraft; and the structure of the tail 30
- the setting enlarges the distance between the first power components 40 on both sides.
- the fuselage blocks the tail 30 less, which enhances the aerodynamic efficiency of the tail 30 and is beneficial to the directional stability of the aircraft. , ensuring the high flight quality requirements of the aircraft.
- the tail wing 30 forms an over-constrained fit with the fuselage 10 and the first struts 41 of the first power components 40 on both sides, which will greatly improve the insufficient stiffness of the simple long-span tail wing. Cause complex vibration problems.
- the tail fin 30 further includes two tail fins.
- the two tail fins are respectively labeled as a first tail fin 35 and a first tail fin 36.
- the first tail fin 35 and The first tail fin 36 is installed on the two first power assemblies 40 on both sides of the fuselage 10 respectively.
- the first tail fin 35 corresponds to the position of the second tail 34 and extends vertically downward;
- the first tail fin 36 is positioned correspondingly to the second tail fin 34 and extends vertically downward.
- the first tail fin 35, the first tail fin 36, the second tail fin 33, the second tail fin 34, the first connecting wing 311 and the second connecting wing 312 are arranged vertically along the spanwise extension.
- the projection on the straight surface is distributed in an approximate "H" shape.
- the second tail wing 33 and the second tail wing 34 respectively extend obliquely upward and away from one side. Therefore, the upper opening of the approximately "H” shaped tail wing 30 is formed slightly toward both sides. tilt.
- first tilt rotor 42 at the front end of the first strut 41 when the first tilt rotor 42 at the front end of the first strut 41 is in the take-off position, its rotation axis is parallel to the rotation axis of the first fixed rotor 43 at the other end of the first strut 41, so The second tail 33 and the second tail 34 respectively extend obliquely upward away from the side, and the extension direction is consistent with the rotation axis of the first fixed rotor 43 installed on the strut and the first tilt in the take-off position.
- the rotation axes of the rotors 42 are parallel. This setting can achieve better flight stability with the aircraft.
- the tail 30 includes a connected third tail 37, a fourth tail 38 and a second tail. tail fin 39.
- the second tail fin 39 is connected to the tail of the fuselage 10 and extends vertically downward.
- the third tail fin 37 and the fourth tail fin 38 are symmetrically arranged on both sides of the second tail fin 39. And extend obliquely upward on both sides of the fuselage 10 respectively, thereby forming a "Y" shaped tail 30 structure.
- the “Y” shaped tail 30 has a high structural utilization rate and low manufacturing cost.
- the third tail 37 and the fourth tail 38 avoid the downwash of the wings 20 on both sides.
- the third tail wing 37 and the fourth tail wing 38 extend to a position higher than the wing 20.
- the third tail wing 37 and the fourth tail wing 38 are above the wing 20 from the perspective of the oncoming flow direction, so they are washed downward by the wing 20.
- the flow influence is small and the aerodynamic efficiency is high; in addition, the second tail fin 39 can greatly improve the problem of weak directional stability of the aircraft caused by the large fuselage 10, and can improve the lateral and directional dynamic stability mode of the aircraft, so it can be improved
- the existing EVTOL manned aircraft has the problem of low utilization rate of the tail 30 structure.
- the angle ⁇ between the third tail 3731 and the fourth tail 3832 is 40° ⁇ 140°. In this way, the angle between the third tail 3731 or the fourth tail 3832 and its symmetry plane is maintained in the range of 20° to 70°. This angle range allows the vertical take-off and landing aircraft to have better support in the vertical and horizontal directions. The floating force can better improve the stability of the aircraft.
- the rotor device 421 includes a first rotor 4211 and a first rotor driving device 4212.
- the first rotor 4211 is a five-blade propeller with five blades.
- the five blades Evenly distributed along the circumference with the rotating axis as the center. This greatly reduces the rotor speed within the entire flight envelope, thereby reducing rotor noise.
- those skilled in the art can understand that if better noise reduction performance is not considered, other blade arrangements can also be used.
- the first fixed rotor 43 and the second fixed rotor 53 each include a folding rotor 431 and a fixed rotor driving device 432 .
- the fixed rotor driving device 432 in the present invention can be a motor or a combination of a motor and a reducer.
- the folding rotor 431 includes fixed blades (not labeled) and floating blades (not labeled). When an aircraft When the aircraft is in the hovering stage, driven by the fixed rotor driving device 432, the fixed blades and the floating blades rotate in an intersecting "cross" shape.
- the fixed rotor When the aircraft is in the horizontal cruising stage, the fixed rotor When the driving device 432 stops working, the fixed blades and the floating blades are closed to form a "one" shape following the airflow, and the extension direction of each fixed blade and the floating blade is consistent with the heading of the aircraft.
- This setting method can reduce resistance during cruising. It should be noted that in the present invention, the fixed blades and the floating blades rotate in a cross state when rotating and fold when stopped, which can be realized by any suitable existing folding rotor 431 form, and will not be described again here.
- the above-mentioned fixed blades and blades can also be used only in the fixed rotor of the first power assembly 40 or the second power assembly 50 Collapsible blade form of floating paddle.
- the height above the ground of the four fixed rotors and the height above the ground of the four tilt rotors when the four tilt rotors are in the take-off position are both greater than or equal to 1.9m. This reduces the potential for the rotor to cause injury to the occupants as they enter and exit the aircraft.
- the first fixed rotor 43, the second fixed rotor 53, the first tilt rotor 42, and the second tilt rotor 52 are arranged The positions are centrally symmetrical around the center of gravity of the aircraft. In this way, when the tilt rotor is in the take-off position, if a single power system fails, the other centrally symmetrical power system can be shut down, thereby ensuring that the aircraft can safely hover and land, and satisfies the requirement that "a single failure is not allowed to cause any catastrophic failure.” "The airworthiness requirements of the power system.
- the invention also provides a control method for a vertical take-off and landing aircraft, which includes the following processes:
- the tilt rotors on both sides of the fuselage are driven to rotate upward, and the tilt rotors and fixed rotors are driven to rotate to provide lift for the aircraft.
- the rotating axes of the tilt rotors on both sides of the fuselage are controlled to gradually tilt forward, providing thrust for forward flight of the aircraft while maintaining the altitude of the aircraft; when the forward speed of the aircraft reaches the set After setting the threshold, make the rotation axis of the tilt rotor extend forward horizontally, close the fixed rotors on both sides of the fuselage, and make the extension direction of the fixed blades and floating blades in the fixed rotor consistent with the aircraft heading. consistent.
- control method further includes the following process:
- the fixed rotor When landing from the cruising state, the fixed rotor is driven to rotate to provide lift for the aircraft.
- the axis of the tilting rotor gradually tilts from the aircraft heading to the vertical aircraft heading.
- the forward speed of the aircraft decreases until the aircraft switches to the hovering state.
- the aircraft When the aircraft gradually lowers to At the specified altitude, the aircraft switches to a multi-rotor state in which the tilt-rotor axis is set upward and rotates simultaneously with the fixed rotor until the aircraft lands on the ground, the fixed rotor and tilt-rotor are closed, and the flight ends.
- the vertical takeoff and landing aircraft and control method of the present invention improve the layout pattern of the EVTOL manned aircraft in the prior art through multiple tilt rotors and fixed rotors, and increase the load capacity and endurance of the vertical takeoff and landing aircraft. Therefore, the present invention effectively overcomes some practical problems in the prior art and has high utilization value and usage significance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transmission Devices (AREA)
Abstract
一种垂直起降飞行器和垂直起降飞行器的控制方法,所述垂直起降飞行器包括:机身(10)、两个第一动力组件、两个第二动力组件和尾翼(30)。所述机身上设置有机翼(20);两个所述第一动力组件对称安装在所述机身两侧的所述机翼上;两个所述第二动力组件对称安装在所述机身两侧的所述机翼上,并分别位于所述第一动力组件的外侧;所述尾翼安装在所述机身的尾部;其中,所述第一动力组件和/或所述第二动力组件包括分别安装在所述机翼两侧的倾转旋翼和固定旋翼;所述倾转旋翼包括旋翼装置(421)和旋翼倾转(422)。所述垂直起降飞行器和垂直起降飞行器的控制方法可以改善现有技术中EVTOL载人飞行器的布局模式,增加垂直起降飞行器的载重能力和续航能力。
Description
本发明涉及飞行器技术领域,具体涉及一种垂直起降飞行器和垂直起降飞行器的控制方法。
垂直起降飞行器,例如EVTOL载人飞行器的垂直起降功能存在多种不同的实现方式,然而现有垂直起降飞行器的垂起升力系统在平飞巡航时所占比费阻较大,并且对于电动飞行器来说,航程短是复合翼布局的痛点;虽然多旋翼布局控制简单,成本较低,但低载重能力及续航难以满足载人城市出行的需求。因此需要提供一种垂直起降飞行器和垂直起降飞行器的控制方法以解决上述问题。
发明内容
鉴于以上现有技术的缺点,本发明提供一种垂直起降飞行器和垂直起降飞行器的控制方法,以改善现有技术中EVTOL载人飞行器的布局模式,增加垂直起降飞行器的载重能力和续航能力。
为实现上述目的及其它相关目的,本发明提供一种垂直起降飞行器,包括:机身、两个第一动力组件、两个第二动力组件和尾翼。所述机身上设置有机翼;两个所述第一动力组件对称安装在所述机身两侧的所述机翼上;两个所述第二动力组件对称安装在所述机身两侧的所述机翼上,并分别位于所述第一动力组件的外侧;所述尾翼安装在所述机身的尾部;其中,所述第一动力组件和/或所述第二动力组件包括分别安装在所述机翼两侧的倾转旋翼和固定旋翼;所述倾转旋翼包括旋翼装置和用以带动旋翼装置沿飞行器航向或垂直飞行器航向倾转的旋翼倾转机构。
在本发明垂直起降飞行器一实施例中,所述第一动力组件和/或所述第二动力组件还包括撑杆,所述撑杆安装在所述机翼上,且延伸方向与所述机身的延伸方向相平行;所述倾转旋翼安装在所述撑杆靠近机头的一端,并在起飞位和巡航位之间倾转和锁定;所述固定旋翼安装在所述撑杆靠近机尾的一端。
在本发明垂直起降飞行器一实施例中,在本发明一实施例中,在起飞离地时,所述倾转旋翼和/或所述固定旋翼的桨叶旋转面自上而下沿机翼展向向背离机身侧倾斜。
在本发明垂直起降飞行器一实施例中,所述旋翼倾转机构包括:第一连杆、第二连杆、第三连杆和倾转驱动装置;所述倾转驱动装置安装在撑杆上,并具有直线移动驱动端;所述第一连杆的第一端与所述直线移动驱动端相铰接;所述第二连杆的第一端与所述撑杆相铰接;所述第三连杆的第一端与所述第二连杆的第二端相铰接;所述第一连杆和所述第二连杆之间还设置有中部铰接部,所述旋翼装置的座体分别与所述第一连杆的第二端和所述第三连杆的第二端相铰接。
在本发明垂直起降飞行器一实施例中,所述倾转驱动装置包括丝杆组件和驱动单元,所述丝杆组件包括丝杆和丝杆螺母,所述驱动单元固定安装在所述撑杆上,且所述驱动单元与所述丝杆连接用以驱动所述丝杆往复转动,所述丝杆螺母螺纹连接在所述丝杆上,所述直线移动驱动端设置在所述丝杆螺母上。
在本发明垂直起降飞行器一实施例中,所述驱动装置还包括驱动臂,所述驱动臂的一端固定连接在所述丝杆螺母上,所述驱动臂的另一端与所述第一连杆相铰接。
在本发明垂直起降飞行器一实施例中,所述倾转驱动装置为电动推杆或液压推杆或气动推杆。
在本发明垂直起降飞行器一实施例中,所述旋翼装置的倾转角度大于等于90°。
在本发明垂直起降飞行器一实施例中,所述尾翼包括第一尾翼和两个第二尾翼,所述第一尾翼安装在所述机身的尾部,且两端分别与所述机身两侧的所述第一动力组件相连接,两个所述第二尾翼对称连接在所述机身两侧的所述第一动力组件上,并朝机身上方延伸。
在本发明垂直起降飞行器一实施例中,所述尾翼还包括两个第一尾鳍;两个所述第一尾鳍分别安装在两个所述第一动力组件上,且分别与两个所述第二尾翼的位置相对应,并竖直向下延伸。
在本发明垂直起降飞行器一实施例中,所述尾翼包括第三尾翼、第四尾翼和第二尾鳍,所述第二尾鳍连接在所述机身的尾部,并竖直向下延伸,所述第三尾翼和所述第四尾翼对称设置在所述第二尾鳍的两侧,且分别向所述机身两侧的斜上方延伸。
在本发明垂直起降飞行器一实施例中,所述固定旋翼包括折叠旋翼和固定旋翼驱动装置;所述折叠旋翼包括固定桨叶和浮动桨叶,在所述固定旋翼驱动装置驱动下,所述固定桨叶和所述浮动桨叶呈交叉状态旋转,在所述固定旋翼驱动装置停止工作时,所述固定桨叶和所述浮动桨叶相闭合,并使所述固定旋翼内的固定桨叶和浮动桨叶的延伸方向与飞行器航向一致。
本发明还提供一种垂直起降飞行器的控制方法,包括以下过程:
在起飞离地的过程中,驱动机身两侧的倾转旋翼至转轴向上,并驱动倾转旋翼和固定旋翼旋转;
待飞行器爬升到设定高度后,控制机身两侧的所述倾转旋翼的转轴逐渐向前倾斜,在保持飞行器高度的基础上为飞行器提供向前飞行的推力;当飞行器向前速度到达设定阈值后,使所述倾转旋翼的转轴向前水平延伸,关闭所述机身两侧的固定旋翼,并使所述固定旋翼内的固定桨叶和浮动桨叶的延伸方向与飞行器航向一致。
在本发明控制方法一实施例中,所述控制方法还包括以下过程:
由巡航状态降落时,驱动固定旋翼旋转,为飞行器提供升力,倾转旋翼的转轴逐渐由飞行器航向沿垂直飞行器航向倾转,飞行器的前进速度减小直至飞行器切换至悬停状态,当飞行器逐步降低到指定高度,飞行器切换至倾转旋翼转轴向上设置且和所述固定旋翼同时旋转的多旋翼状态,直至飞行器降落到地面,关闭固定旋翼和倾转旋翼,飞行结束。
在本发明一实施例中,所述旋翼装置包括第一旋翼和第一旋翼驱动装置,所述第一旋翼为五叶桨。
在本发明一实施例中,在悬停在地面上时,所述固定旋翼的离地高度和/或处于所述起飞位时所述倾转旋翼的离地高度大于等于1.9m。
在本发明一实施例中,所述第一动力组件和所述第二动力组件沿所述机翼的展向排布,在每一所述动力单元内的所述倾转旋翼处于起飞位时,所述固定旋翼的设置位置和所述倾转旋翼的设置位置围绕所述飞行器的整机重心呈中心对称布置。
在本发明一实施例中,所述倾转旋翼和/或所述固定旋翼的桨叶旋转面不通过所述机身上的乘员舱。
在本发明一实施例中,所述倾转旋翼和/或所述固定旋翼的桨叶旋转面自上而下沿所述机翼的展向向背离机身侧倾斜。
本发明垂直起降飞行器和控制方法,通过多个倾转旋翼和固定旋翼改善了现有技术中EVTOL载人飞行器的布局模式,增加了垂直起降飞行器的载重能力和续航能力。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明垂直起降飞行器一实施例中总体布局俯视图;
图2为本发明垂直起降飞行器一实施例中总体布局后视图;
图3为本发明垂直起降飞行器一实施例中总体布局轴侧图;
图4为本发明垂直起降飞行器一实施例中总体布局侧视图;
图5为本发明垂直起降飞行器一实施例中第一动力组件/第二动力组件的侧视图;
图6本发明垂直起降飞行器另一实施例中垂直起降飞行器的总体布局轴侧视图;
图7本发明垂直起降飞行器另一实施例中垂直起降飞行器的总体布局俯视图;
图8本发明垂直起降飞行器另一实施例中垂直起降飞行器的总体布局后视图(动力单元沿展向倾斜示意);
图9本发明垂直起降飞行器另一实施例中垂直起降飞行器的总体布局侧视图;
图10为本发明垂直起降飞行器一实施例中第一极限位置的运动过程示意图;
图11为本发明垂直起降飞行器一实施例中第三位置的运动过程示意图;
图12为本发明垂直起降飞行器一实施例中第四位置的运动过程示意图;
图13为本发明垂直起降飞行器一实施例中第二极限位置的运动过程示意图;
图14为本发明垂直起降飞行器一实施例中倾转旋翼的三维模型示意图;
图15为本发明垂直起降飞行器一实施例在平飞状态时倾转旋翼的位置图;
图16为本发明垂直起降飞行器一实施例向斜上方飞行时倾转旋翼的位置图;
图17为本发明垂直起降飞行器一实施例垂直向上飞行时倾转旋翼的位置图;
图18为本发明垂直起降飞行器一实施例倒退飞行时倾转旋翼的位置图;
图19为本发明垂直起降飞行器一实施例中的倾转旋翼的另一三维模型示意图。
元件标号说明
10、机身;20、机翼;30、尾翼;31、第一尾翼;311、第一连接翼;312、第二连接翼;33/34、第二尾翼;35/36、第一尾鳍;37、第三尾翼;38、第四尾翼;39、第二尾鳍;40、第一动力组件;41、第一撑杆;42、第一倾转旋翼;421、旋翼装置;4211、第一旋翼;4212、第一旋翼驱动装置;422、旋翼倾转机构;43、第一固定旋翼;431、折叠旋翼;432、固定旋翼驱动装置;50、第二动力组件;51、第二撑杆;52、第二倾转旋翼;53、第二固定旋翼;4210、第一底座;4220、倾转驱动装置;4221、丝杆螺母;4222、丝杆;4223、驱动臂;4224、驱动端;4225、电动推杆;4230、第一连杆;4240、第二连杆;4250、第三连杆;4260、旋翼装置的座体;4271、第一铰接部;4272、中部铰接部;4273、第二铰接部;4274、第三铰接部;4275、第四铰接部;4276、第五铰接部;4280、固定座体;481、框梁;4811、加强筋;482、蒙皮;4291、整流罩;4292、旋翼驱动装置;4293、旋转轴线。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过 另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
须知,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
本发明提供一种垂直起降飞行器和垂直起降飞行器的控制方法,以改善现有技术中EVTOL载人飞行器的布局模式,增加垂直起降飞行器的载重能力和续航能力。
请参阅图1至图5,所述垂直起降飞行器包括:机身10、两个第一动力组件40、两个第二动力组件50和尾翼30。所述机身10上设置有机翼20;两个所述第一动力组件40对称安装在所述机身10两侧的所述机翼20上;两个所述第二动力组件50对称安装在所述机身10两侧的所述机翼20上,并分别位于所述第一动力组件40的外侧;所述尾翼30安装在所述机身10的尾部;其中,所述第一动力组件40包括分别安装在所述机翼20前后两侧的第一倾转旋翼42和第一固定旋翼43;所述第二动力组件50包括分别安装在所述机翼20前后两侧的第二倾转旋翼52和第二固定旋翼53。所述第一倾转旋翼42和第二倾转旋 翼52均包括旋翼装置421和旋翼倾转机构422。
在本发明一实施例中,所述第一动力组件40还包括第一撑杆41。所述第一撑杆41安装在所述机翼20的下侧,且延伸方向与所述机身10的延伸方向相平行;所述第一倾转旋翼42和所述第一固定旋翼43分别位于机翼20的前后两侧。所述第一倾转旋翼42安装在所述第一撑杆41靠近机头的一端,并能够在起飞位和巡航位之间倾转和锁定;所述第一固定旋翼43安装在所述第一撑杆41靠近机尾的一端。本实施例中,机翼20与机身10、机翼20与第一撑杆41、第一撑杆41与尾翼30之间的连接均采用光滑曲面倒角过渡,使整个飞行器保持流线型设计。
在本发明一实施例中,所述第二动力组件50还包括第二撑杆51。所述第二撑杆51安装在所述机翼20的下侧,且延伸方向与所述机身10的延伸方向相平行;所述第二倾转旋翼52和所述第二固定旋翼53分别位于机翼20的前后两侧。所述第二倾转旋翼52安装在所述第二撑杆51靠近机头的一端,并能够在起飞位和巡航位之间倾转和锁定;所述第二固定旋翼53安装在所述第二撑杆51靠近机尾的一端。
起飞时,四个旋翼倾转机构422分别驱动对应的所述旋翼装置421到达起飞位,此时四个旋翼装置421的转轴均竖直向上或斜向上设置,两个第一倾转旋翼42、两个第二倾转旋翼52、两个第一固定旋翼43、两个第二固定旋翼53共同组成8轴8桨的布局形式,共同为飞行器提供垂直起飞的动力。待飞行平稳后到达巡航阶段时,可驱动所述旋翼装置421到达巡航位,此时两个第一倾转旋翼42、两个第二倾转旋翼52的转轴沿水平面向前方或斜前方设置,四个旋翼装置421共同为飞行器提供水平移动的牵引力。本领域技术人员可以理解的是,本发明中的第一动力组件40或第二动力组件50中也可以将对应的第一倾转旋翼42或第二倾转旋翼52替换成固定旋翼结构,但该种布局的垂起平稳性及垂起拉升力相较于上述四倾转旋翼的结构布局较差。
请参阅图2,在本发明一实施例中,所述第一倾转旋翼42和所述第一固定旋翼43的桨叶旋转平面,以及所述第二倾转旋翼52和所述第二固定旋翼53的桨叶旋转平面均自上而下沿机翼20展向向背离所述机身10侧倾斜,以使对应的所述倾转旋翼和所述固定旋翼的桨叶旋转面不通过所述机身10上的乘员舱。虽然仅倾转旋翼或固定旋翼的桨叶旋转面不通过所述机身10上的乘员舱已经能够具有保护乘员舱的作用,但较佳地,在实施例中,两个所述第一倾转旋翼42、两个所述第二倾转旋翼52、两个所述第一固定旋翼43和两个所述第二固定旋翼53的桨叶旋转平面均自上而下沿机翼20的展向向背离所述机身10侧倾斜,以使所有的所述倾转旋翼和所述固定旋翼的桨叶旋转面均不通过所述机身10上的乘员舱。
较佳地,请参阅图2,在本发明一实施例中,两个所述第一倾转旋翼42、两个所述第二倾转旋翼52、两个所述第一固定旋翼43和两个所述第二固定旋翼53的桨叶旋转平面自上而下沿机翼20的展向向背离所述机身10侧倾斜,且与水平面的夹角α为3°~30°,该角度范围既可以满足旋翼的桨叶旋转面不通过所述机身10上的乘员舱,最大程度降低旋翼转子爆破对乘员的伤害,而且在飞行器需要偏航或者抗侧风飞行时可通过调整各动力系统的输出信号,产生偏航力矩或水平方向的分力,这可以提高起降阶段旋翼模式下抗侧风性能及侧向操纵性,能够提供足够的动力和航行稳定性。
请参阅图10至图19,在本发明垂直起降飞行器一实施例中,所述旋翼倾转机构422包括:第一连杆4230、第二连杆4240、第三连杆4250和倾转驱动装置4220;所述倾转驱动装置4220固定安装在蒙皮482内的框梁481上,并具有能够往复直线移动的直线移动驱动端4224;所述第一连杆4230的第一端与所述直线移动驱动端4224通过第一铰接部4271相铰接;所述第一撑杆41或第二撑杆51的蒙皮482内壁上安装有第一底座4210,所述第二连杆4240的第一端与第一底座4210通过第二铰接部4273相铰接;所述第三连杆4250的第一端与所述第二连杆4240的第二端通过第三铰接部4274相铰接;所述旋翼装 置的座体4260与所述第一连杆4230的第二端通过第四铰接部4275相铰接,所述旋翼装置的座体4260和所述第三连杆4250的第二端通过第五铰接部4276相铰接;所述第一连杆4230和所述第二连杆4240之间还设置有中部铰接部4272,所述中部铰接部4272分别设置在所述第一连杆4230的第一端与第二端之间,以及所述第二连杆4240的第一端与第二端之间。本发明旋翼倾转机构422依靠连杆机构将直线驱动力传递和转换后,变成对旋翼装置的座体4260的翻转运动,在整个运动的过程中,传动比的变化幅度始终保持较低的水平,使本发明的全运动过程保持较平稳的状态。另外本发明倾转机构结构简单,使用零件数量较少,具有更低的重量和较佳的结构稳定性。
在本发明垂直起降飞行器一实施例中,在本发明倾转驱动结构一实施例中,所述驱动装置包括丝杆组件和驱动单元(未图示),所述丝杆组件包括丝杆4222和丝杆螺母4221,所述丝杆4222转动安装在所述撑杆内的框梁481上,所述丝杆螺母4221螺纹连接在所述丝杆4222上,所述直线移动驱动端4224设置在所述丝杆螺母4221上。所述驱动单元也固定安装在所述撑杆上,且所述驱动单元与所述丝杆4222连接用以驱动所述丝杆4222往复转动。
请参阅图10,所述驱动装置还包括驱动臂4223,所述驱动臂4223的一端固定连接在所述丝杆螺母4221上,所述驱动臂4223的另一端作为直线移动驱动端4224与所述第一连杆4230通过第一铰接部4271相铰接,从而利用丝杆组件作为动力源来输出直线驱动力,依靠连杆机构将直线驱动力传递和转换后变为旋翼装置的座体4260的翻转运动。该结构具有自锁功能,丝杆4222停止运动后,整个连杆机构将被锁死;并且连杆机构在全运动过程中,传动比的变化幅度始终保持较低的水平,使本发明的全运动过程保持较平稳的状态。
在本发明一实施例中,驱动单元可以为能够驱动所述丝杆4222往复转动的旋转类驱动组件,例如可以为电机或电机与减速机的组合。当驱动单元驱动丝杆4222转动时,丝杆4222可以驱动丝杆螺母4221并带动驱动臂4223沿X正 反方向做直线运动。当驱动臂4223沿X正方向运动时,第一连杆4230整体跟随向X正方向移动,同时沿中部铰接部4272顺时针旋转,第二连杆4240及中部铰接部4272、第三铰接部4274以第二铰接部4273为圆心顺时针旋转,第四铰接部4275在第一连杆4230的驱动下做顺时针的弧线运动,由于两个弧线的差异驱动待倾转座体4260做顺时针翻转运动。。当驱动臂4223沿X反方向运动时,第一连杆4230、第二连杆4240、第三连杆4250、第一铰接部4271、中部铰接部4272、第三铰接部4274、第四铰接部4275、第五铰接部4276沿前述运动的反向运动,旋翼装置的座体4260在驱动下做逆时针翻转运动。
本领域技术人员可以理解的是,本发明中的倾转驱动装置4220,也可以为其它一些可以实现直线往复驱动,并具有自锁功能的驱动装置,请参阅图14至图19,在本发明倾转驱动结构另外一实施例中,所述倾转驱动装置4220为电动推杆4225或液压推杆或气动推杆等直线移动驱动装置。
在本发明倾转旋翼一实施例中,所述撑杆包括蒙皮482和设置于所述蒙皮482内的框梁481,所述第一底座4210安装在所述蒙皮482上,所述倾转驱动装置4220的座体安装在所述框梁481上。所述框梁481包括有多个加强筋4811,所述多个加强筋4811沿倾转驱动装置4220的周向布设,并与所述倾转驱动装置4220的座体连接,此种结构设置可以使倾转驱动装置4220保持较高的稳定性。
在本发明垂直起降飞行器一实施例中所述倾转驱动装置4220为直线移动量可控的驱动装置。以使旋翼装置421可以停在倾转过程中的任一位置。所述旋翼装置421的倾转角度大于等于90°,这样必要时可以使待倾转座体朝后侧斜上方倾斜,以满足飞行器后退的飞行需求。所述旋翼装置421在所述倾转驱动装置4220的驱动下,具有旋转轴线4293水平向前的第一极限位置和旋转轴线4293向后上方倾斜的第二极限位置,所述旋翼在所述倾转驱动装置4220的驱动下固定在所述第一极限位置和所述第二极限位置之间的任意位置。
在本发明倾转驱动结构一实施例中,所述第一连杆4230和/或所述第二连杆4240和/或所述第三连杆4250上设置有减重孔(未标记)。减重孔可以在不影响强度的情况下,使各个连杆保持较轻的重量。
如图15所示,倾转驱动装置4220的运动部件处于STA负方向的最远端时,旋翼装置的座体4260与撑杆的蒙皮482开口完全合拢,倾转旋翼机构整体形成一个合理的气动外形,此时倾转组件指向STA正方向,倾转旋翼机构给飞行器提供沿着STA正方向的飞行动力,飞行器处于水平飞行状态。如图16所示,倾转驱动装置4220的运动部件沿STA正方向移动一段距离时,旋翼装置的座体4260与蒙皮482的开口分离,此时倾转组件斜指向STA正方向和WL正方向,倾转旋翼给飞行器提供沿着STA正方向和WL正方向的斜向上飞行动力,飞行器处于过渡状态。如图17所示,倾转驱动装置4220的运动部件沿STA正方向移动更远的距离时,此时倾转旋翼的旋转轴线4293指向WL正方向,倾转旋翼给飞行器提供沿着WL正方向的飞行动力,飞行器处于垂直飞行状态。如图18所示,倾转驱动装置4220的运动部件沿STA正方向移动到最远距离时,此时倾转旋翼的旋转轴线4293指向STA负方向和WL正方向,倾转旋翼机构给飞行器提供沿着STA负方向和WL正方向的斜向上飞行动力,飞行器处于倒退飞行状态。控制系统可以自由控制倾转驱动装置4220的运动部件的移动距离,进而自由控制倾转组件的指向角度,做到无级改变倾转角度,使飞行器获得更灵活的飞行姿态。所以本发明可以利用倾转驱动装置4220提供的动力驱动倾转旋翼实现倾转,倾转旋翼可以无级地改变倾转角度,使飞行器实现水平飞行、过渡状态、垂直飞行、倒退飞行四个状态。本发明中的倾转机构简单且稳固,发生机械故障的概率较低,承载能力强,可以用于载人飞行器和物流运输飞行器。本发明在水平飞行状态下拥有合理的气动外形,可以保证飞行器拥有较低的飞行阻力。
请参阅图1至图5,在本发明一实施例中,所述尾翼30包括第一尾翼31和两个第二尾翼(第二尾翼33和第二尾翼34);所述第一尾翼31安装在所述 机身10的尾部,且两端分别与所述机身10两侧的所述第一动力组件40相连接,两个所述第二尾翼(第二尾翼33和第二尾翼34)分别安装在两个所述第一动力组件40上并朝机身10上方延伸。所述第一尾翼31的结构形式不受限定,可以为整体式也可以由多个单元连接组成,本实施例中,所述第一尾翼31安装在所述机身10的尾部,且包括第一连接翼311和第二连接翼312,两个第二尾翼分别标记为第二尾翼33和第二尾翼34,所述第二尾翼33和所述第二尾翼34的下端对称连接在两侧的所述第一动力组件40的第一撑杆41上,且与分别所述第一连接翼311和第二连接翼312的位置相对应,所述第二尾翼33和所述第二尾翼34的上端向上延伸。本发明采用第二尾翼33、第二尾翼34、第一尾翼31的特殊尾翼30结构,可以将飞机的纵向控制和横航向控制进行解耦,有利于飞机的安全性;并且该尾翼30的结构设置拉大了两侧第一动力组件40之间的间距,当产生大侧滑的情况下,机身对尾翼30的遮挡较小,加强了尾翼30的气动效率,有利于飞机的航向稳定性,保障了飞行器的高飞行品质要求。另外本发明中这种尾翼30设置,尾翼30与机身10及两侧第一动力组件40的第一撑杆41之间形成过约束配合,这将极大的改善单纯大跨度尾翼因刚度不足造成复杂振动问题。
请参阅图2,在本发明垂直起降飞行器一实施例中,所述尾翼30还包括两个尾鳍,两个所述尾鳍分别标记为第一尾鳍35和第一尾鳍36,第一尾鳍35和第一尾鳍36分别安装在机身10两侧的两个所述第一动力组件40上,所述第一尾鳍35与所述第二尾翼34位置相对应,并竖直向下延伸;所述第一尾鳍36与所述第二尾翼34位置相对应,并竖直向下延伸。所述第一尾鳍35、所述第一尾鳍36、所述第二尾翼33、所述第二尾翼34、所述第一连接翼311和所述第二连接翼312在沿展向延伸的竖直面上的投影呈近似“H”形分布。在本发明一实施例中,所述第二尾翼33和所述第二尾翼34分别向相背离一侧的斜上方倾斜延伸,因此形成的近似“H”形尾翼30的上部开口向两侧略倾斜。在本发明一实施例中,第一撑杆41前端的第一倾转旋翼42在起飞位时,其旋转 轴线与该第一撑杆41另一端的第一固定旋翼43的旋转轴线平行,所述第二尾翼33和所述第二尾翼34分别向相背离一侧的斜上方倾斜延伸,且延伸方向与其所在撑杆上安装的第一固定旋翼43的旋转轴线及起飞位时第一倾转旋翼42的旋转轴线相平行。这样设置可以与飞行器获得较佳的飞行稳定性。
请参阅图6至图9,本发明飞行器的尾翼也可以采用其它的尾翼结构,在本发明另一实施例中,所述尾翼30包括相连接的第三尾翼37、第四尾翼38和第二尾鳍39,所述第二尾鳍39连接在所述机身10的尾部,并竖直向下延伸,所述第三尾翼37和所述第四尾翼38对称设置在第二尾鳍39的两侧,且分别向所述机身10两侧的斜上方延伸,从而形成一“Y”形尾翼30结构。“Y”形尾翼30的结构利用率较高,制造成本较低,并且进一步地,本实施例中,所述第三尾翼37与所述第四尾翼38避开两侧机翼20下洗流区设置,即第三尾翼37和第四尾翼38延伸至高于机翼20的位置,顺来流方向视角第三尾翼37和第四尾翼38处于机翼20之上,因此受机翼20下洗流影响较小,气动效率较高;另外第二尾鳍39可以极大的改善飞机由于大机身10造成的航向稳定性较弱的问题,并且能改善飞机横航向动稳定模态,所以可以改善现有EVTOL载人飞行器的尾翼30结构利用率较低的问题。
请参阅图8,在本发明一实施例中,所述第三尾翼3731与所述第四尾翼3832之间的夹角β为40°~140°。这样第三尾翼3731或第四尾翼3832与其对称面之间的夹角保持在20°~70°的范围内,该角度范围可以使垂直起降飞行器在竖直方向和水平方向具有较佳的托浮分力,能够更好的提高飞行器的平稳性。
请参阅图5,在本发明一实施例中,所述旋翼装置421包括第一旋翼4211和第一旋翼驱动装置4212,所述第一旋翼4211为具有五个叶片的五叶桨,五个叶片以转轴为中心沿圆周均布。这极大的降低了整个飞行包线内旋翼的转速,从而降低了旋翼的噪音。然而本领域技术人员可以理解的是若不考虑较佳的降噪性能,也可以采用其它桨叶设置形式。
在本发明一实施例中,所述第一固定旋翼43和第二固定旋翼53均包括折叠旋翼431和固定旋翼驱动装置432。本发明中的固定旋翼驱动装置432可以为电机、或电机与减速机的组合形式,本实施例中所述折叠旋翼431包括固定桨叶(未标识)和浮动桨叶(未标识),当飞行器处于悬停阶段时,在所述固定旋翼驱动装置432驱动下,所述固定桨叶和所述浮动桨叶呈交叉状态的“十”字形旋转,当飞行器处于水平巡航阶段时,所述固定旋翼驱动装置432停止工作时,所述固定桨叶和所述浮动桨叶闭合呈顺气流的“一”字形,且各所述固定桨叶和所述浮动桨叶的延伸方向与飞行器航向一致,此种设置方式可以减少巡航过程中的阻力。需要说明的是,本发明中固定桨叶和浮动桨叶在转动时交叉状态旋转,在停止时折叠的实现方式可以通过现有一切合适的折叠旋翼431形式实现,在此不再赘述。当然本领域技术人员可以理解的是,若不考虑较佳的效果,本发明中也可以仅在第一动力组件40或所述第二动力组件50的所述固定旋翼中采用上述固定桨叶和浮动桨叶的可折叠叶片形式。
在本发明一实施例中,在悬停在地面上时,四个所述固定旋翼的离地高度和四个倾转旋翼处于所述起飞位时所述倾转旋翼的离地高度均大于等于1.9m。这降低了旋翼在乘员进出飞行器时对乘员造成伤害的可能性。
在本发明一实施例中,在每一所述倾转旋翼处于起飞位时,所述第一固定旋翼43、第二固定旋翼53、第一倾转旋翼42、第二倾转旋翼52的设置位置围绕所述飞行器的整机重心呈中心对称布置。这样在倾转旋翼处于起飞位置时,若单一动力系统失效情况下,可关闭中心对称的另一动力系统,从而保障飞机能安全悬停降落,满足“单一失效不允许导致任何灾难性故障的发生”的动力系统的适航要求。
本发明还提供一种垂直起降飞行器的控制方法,包括以下过程:
在起飞离地的过程中,驱动机身两侧的倾转旋翼至转轴向上,并驱动倾转旋翼和固定旋翼旋转,以为飞行器提供升力。
待飞行器爬升到设定高度后,控制机身两侧的所述倾转旋翼的转轴逐渐向前倾斜,在保持飞行器高度的基础上为飞行器提供向前飞行的推力;当飞行器向前速度到达设定阈值后,使所述倾转旋翼的转轴向前水平延伸,关闭所述机身两侧的固定旋翼,并使所述固定旋翼内的固定桨叶和浮动桨叶的延伸方向与飞行器航向一致。
在本发明控制方法一实施例中,所述控制方法还包括以下过程:
由巡航状态降落时,驱动固定旋翼旋转,为飞行器提供升力,倾转旋翼的转轴逐渐由飞行器航向沿垂直飞行器航向倾斜,飞行器的前进速度减小直至飞行器切换至悬停状态,当飞行器逐步降低到指定高度,飞行器切换至倾转旋翼转轴向上设置且和所述固定旋翼同时旋转的多旋翼状态,直至飞行器降落到地面,关闭固定旋翼和倾转旋翼,飞行结束。
本发明垂直起降飞行器和控制方法,通过多个倾转旋翼和固定旋翼改善了现有技术中EVTOL载人飞行器的布局模式,增加了垂直起降飞行器的载重能力和续航能力。所以,本发明有效克服了现有技术中的一些实际问题从而有很高的利用价值和使用意义。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (13)
- 一种垂直起降飞行器,其特征在于,包括:机身,所述机身上设置有机翼;两个第一动力组件,两个所述第一动力组件对称安装在所述机身两侧的所述机翼上;两个第二动力组件,两个所述第二动力组件对称安装在所述机身两侧的所述机翼上,并分别位于所述第一动力组件的外侧;尾翼,安装在所述机身的尾部;其中,所述第一动力组件和/或所述第二动力组件包括分别安装在所述机翼两侧的倾转旋翼和固定旋翼;所述倾转旋翼包括旋翼装置和用以带动旋翼装置沿飞行器航向或垂直飞行器航向倾转的旋翼倾转机构。
- 根据权利要求1所述的垂直起降飞行器,其特征在于,所述第一动力组件和/或所述第二动力组件还包括撑杆,所述撑杆安装在所述机翼上,且延伸方向与所述机身的延伸方向相平行;所述倾转旋翼安装在所述撑杆靠近机头的一端,并在起飞位和巡航位之间倾转和锁定;所述固定旋翼安装在所述撑杆靠近机尾的一端。
- 根据权利要求2所述的垂直起降飞行器,其特征在于,所述旋翼倾转机构包括:第一连杆、第二连杆、第三连杆和倾转驱动装置;所述倾转驱动装置安装在所述撑杆上,并具有直线移动驱动端;所述第一连杆的第一端与所述直线移动驱动端相铰接;所述第二连杆的第一端与所述撑杆相铰接;所述第三连杆的第一端与所述第二连杆的第二端相铰接;所述第一连杆和所述第二连杆之间还设置有中部铰接部,所述旋翼装置的座体分别与所述第一连杆的第二端和所述第三连杆的第二端相铰接。
- 根据权利要求3所述的垂直起降飞行器,其特征在于,所述倾转驱动装置包括丝杆组件和驱动单元,所述丝杆组件包括丝杆和丝杆螺母,所述驱动单元固定安装在所述撑杆上,且所述驱动单元与所述丝杆连接用以驱动所述丝杆往复转动,所述丝杆螺母螺纹连接在所述丝杆上,所述直线移动驱动端设置在所述丝杆螺母上。
- 根据权利要求4所述的垂直起降飞行器,其特征在于,所述驱动装置还包括驱动臂,所述驱动臂的一端固定连接在所述丝杆螺母上,所述驱动臂的另一端与所述第一连杆相铰接。
- 根据权利要求3所述的垂直起降飞行器,其特征在于,所述倾转驱动装置为电动推杆或液压推杆或气动推杆。
- 根据权利要求1-6任一项所述的垂直起降飞行器,其特征在于,所述旋翼装置的倾转角度大于等于90°。
- 根据权利要求1所述的垂直起降飞行器,其特征在于,所述尾翼包括第一尾翼和两个第二尾翼,所述第一尾翼安装在所述机身的尾部,且两端分别与所述机身两侧的所述第一动力组件相连接,两个所述第二尾翼对称连接在所述机身两侧的所述第一动力组件上,并朝机身上方延伸。
- 根据权利要求8所述的垂直起降飞行器,其特征在于,所述尾翼还包括两个第一尾鳍;两个所述第一尾鳍分别安装在两个所述第一动力组件上,且分别与两个所述第二尾翼的位置相对应,并竖直向下延伸。
- 根据权利要求1所述的垂直起降飞行器,其特征在于,所述尾翼包括第三尾翼、第四尾翼和第二尾鳍,所述第二尾鳍连接在所述机身的尾部,并竖直向下延伸,所述第三尾翼和所述第四尾翼对称设置在所述第二尾鳍的两侧,且分别向所述机身两侧的斜上方延伸。
- 根据权利要求1所述的垂直起降飞行器,其特征在于,所述固定旋翼包括折叠旋翼和固定旋翼驱动装置;所述折叠旋翼包括固定桨叶和浮动桨叶,在所述固定旋翼驱动装置驱动下,所述固定桨叶和所述浮动桨叶呈交叉状态旋转;在所述固定旋翼驱动装置停止工作时,所述固定桨叶和所述浮动桨叶相闭合,且所述固定桨叶和所述浮动桨叶的延伸方向与所述飞行器航向相一致。
- 一种垂直起降飞行器的控制方法,其特征在于,包括以下过程:在起飞离地的过程中,驱动机身两侧的倾转旋翼至转轴向上,并驱动倾转旋翼和固定旋翼旋转;待飞行器爬升到设定高度后,控制机身两侧的所述倾转旋翼的转轴逐渐 向前倾斜,在保持飞行器高度的基础上为飞行器提供向前飞行的推力;当飞行器向前速度到达设定阈值后,使所述倾转旋翼的转轴向前水平延伸,关闭所述机身两侧的固定旋翼,并使所述固定旋翼内的固定桨叶和浮动桨叶的延伸方向与飞行器航向一致。
- 根据权利要求12所述的控制方法,其特征在于,还包括以下过程:由巡航状态降落时,驱动固定旋翼旋转,为飞行器提供升力,倾转旋翼的转轴逐渐由飞行器航向沿垂直飞行器航向倾转,飞行器的前进速度减小直至飞行器切换至悬停状态,当飞行器逐步降低到指定高度,飞行器切换至倾转旋翼转轴向上设置且和所述固定旋翼同时旋转的多旋翼状态,直至飞行器降落到地面,关闭固定旋翼和倾转旋翼,飞行结束。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210387417.2A CN114852327B (zh) | 2022-04-14 | 2022-04-14 | 一种垂直起降飞行器和垂直起降飞行器的控制方法 |
CN202210387417.2 | 2022-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023197567A1 true WO2023197567A1 (zh) | 2023-10-19 |
Family
ID=82631195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/128570 WO2023197567A1 (zh) | 2022-04-14 | 2022-10-31 | 一种垂直起降飞行器和垂直起降飞行器的控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114852327B (zh) |
WO (1) | WO2023197567A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114852327B (zh) * | 2022-04-14 | 2024-02-13 | 成都沃飞天驭科技有限公司 | 一种垂直起降飞行器和垂直起降飞行器的控制方法 |
WO2024113787A1 (zh) * | 2022-12-02 | 2024-06-06 | 峰飞航空科技(昆山)有限公司 | 快速添加鸭翼外段的方法 |
CN116853491B (zh) * | 2023-09-01 | 2023-11-07 | 成都沃飞天驭科技有限公司 | 倾转装置及其设计方法和飞行器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106573677A (zh) * | 2014-03-18 | 2017-04-19 | 杰欧比航空有限公司 | 具有枢转旋翼和收拢旋翼桨叶的气动高效的轻型垂直起飞和着陆飞机 |
CN209241317U (zh) * | 2018-11-30 | 2019-08-13 | 深圳飞马机器人科技有限公司 | 一种倾转机构及固定翼无人机 |
US20200391862A1 (en) * | 2019-06-14 | 2020-12-17 | Bell Textron Inc. | Vtol aircraft with tilting rotors and tilting ducted fans |
CN112937849A (zh) * | 2021-03-08 | 2021-06-11 | 四川腾盾科技有限公司 | 一种倾转式和固定式螺旋桨组合布局的垂直起降飞行器 |
CN216994842U (zh) * | 2022-04-14 | 2022-07-19 | 成都沃飞天驭科技有限公司 | 一种垂直起降飞行器 |
CN114852327A (zh) * | 2022-04-14 | 2022-08-05 | 成都沃飞天驭科技有限公司 | 一种垂直起降飞行器和垂直起降飞行器的控制方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140084114A1 (en) * | 2012-09-25 | 2014-03-27 | Ingo Valentin | VTOL Aircraft with Propeller tiltable around two Axes and a retractable Rotor |
-
2022
- 2022-04-14 CN CN202210387417.2A patent/CN114852327B/zh active Active
- 2022-10-31 WO PCT/CN2022/128570 patent/WO2023197567A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106573677A (zh) * | 2014-03-18 | 2017-04-19 | 杰欧比航空有限公司 | 具有枢转旋翼和收拢旋翼桨叶的气动高效的轻型垂直起飞和着陆飞机 |
CN209241317U (zh) * | 2018-11-30 | 2019-08-13 | 深圳飞马机器人科技有限公司 | 一种倾转机构及固定翼无人机 |
US20200391862A1 (en) * | 2019-06-14 | 2020-12-17 | Bell Textron Inc. | Vtol aircraft with tilting rotors and tilting ducted fans |
CN112937849A (zh) * | 2021-03-08 | 2021-06-11 | 四川腾盾科技有限公司 | 一种倾转式和固定式螺旋桨组合布局的垂直起降飞行器 |
CN216994842U (zh) * | 2022-04-14 | 2022-07-19 | 成都沃飞天驭科技有限公司 | 一种垂直起降飞行器 |
CN114852327A (zh) * | 2022-04-14 | 2022-08-05 | 成都沃飞天驭科技有限公司 | 一种垂直起降飞行器和垂直起降飞行器的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114852327B (zh) | 2024-02-13 |
CN114852327A (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023197567A1 (zh) | 一种垂直起降飞行器和垂直起降飞行器的控制方法 | |
US10301016B1 (en) | Stabilized VTOL flying apparatus and aircraft | |
CN107839875B (zh) | 用于倾转旋翼飞行器的机翼延伸小翼 | |
CN105539833B (zh) | 固定翼多轴飞行器 | |
CN108298064B (zh) | 非常规偏航控制系统 | |
WO2023000571A1 (zh) | 飞行汽车 | |
WO2023060679A1 (zh) | 飞行器、机翼组件及飞行汽车 | |
CN106218887A (zh) | 一种分布式动力装置布局的垂直起降飞行器 | |
WO2023197568A1 (zh) | 一种垂直起降飞行器和垂直起降飞行器的控制方法 | |
RU2749709C1 (ru) | Автомат перекоса многороторного летательного аппарата с жестким креплением лопастей и способ его работы | |
CN113525678A (zh) | 一种牵引-推进式倾转翼垂直起降载人飞行器 | |
CN116215852B (zh) | 一种垂直起降飞行器和垂直起降飞行器的控制方法 | |
CN114044122A (zh) | 一种可变翼垂直起降自抓载飞行器 | |
CN216994844U (zh) | 一种垂直起降飞行器 | |
CN113044212B (zh) | 一种中型倾转旋翼无人飞行器 | |
CN115675852B (zh) | 一种倾转机翼飞行器及其飞行控制方法 | |
CN210083543U (zh) | 一种四桨叶旋转机翼飞机气动布局 | |
CN216994842U (zh) | 一种垂直起降飞行器 | |
CN207029549U (zh) | 一种混合式倾转旋翼无人机 | |
CN114212252B (zh) | 一种串列式倾转机翼飞行器及控制方法 | |
CN213649894U (zh) | 一种推力矢量尾坐式垂直起降无人机 | |
CN109941430B (zh) | 一种四桨叶旋转机翼及旋转机翼飞机和控制方法 | |
WO2022010378A1 (ru) | Автомат перекоса однороторного летательного аппарата и способ его работы | |
CN216994843U (zh) | 一种垂直起降飞行器 | |
CN221794878U (zh) | 一种双轴倾转旋翼载人垂直起降飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22937200 Country of ref document: EP Kind code of ref document: A1 |