WO2023197549A1 - 信号处理设备、系统和方法、信号传输子系统和系统 - Google Patents

信号处理设备、系统和方法、信号传输子系统和系统 Download PDF

Info

Publication number
WO2023197549A1
WO2023197549A1 PCT/CN2022/125836 CN2022125836W WO2023197549A1 WO 2023197549 A1 WO2023197549 A1 WO 2023197549A1 CN 2022125836 W CN2022125836 W CN 2022125836W WO 2023197549 A1 WO2023197549 A1 WO 2023197549A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical signal
optical
sent
time synchronization
Prior art date
Application number
PCT/CN2022/125836
Other languages
English (en)
French (fr)
Inventor
娄小伟
李俊杰
霍晓莉
胡骞
张安旭
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2023197549A1 publication Critical patent/WO2023197549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0617Systems characterised by the synchronising information used the synchronising signal being characterised by the frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to a signal processing device, a signal processing system and a signal processing method, a signal transmission subsystem and a signal transmission system.
  • time synchronization between communication equipment/systems can be performed through OTN (optical transport network)/WDM (Wavelength Division Multiplex) system.
  • OTN optical transport network
  • WDM Widelength Division Multiplex
  • a signal processing device including: a first photoelectric conversion module configured to receive an optical signal to be sent sent by a time synchronization device, and convert the optical signal to be sent into an electrical signal to be sent. signal, and transmit the electrical signal to be sent to the second photoelectric conversion module.
  • the optical signal to be sent is generated by the time synchronization device according to the initial electrical signal.
  • the initial electrical signal to be sent includes a business signal and a time synchronization signal.
  • the second photoelectric conversion module configured to convert the electrical signal to be sent into a first optical signal of a preset frequency, and send the first optical signal to the first optical path coupling device, so that the The first optical path coupling device couples the first optical signal to the optical signal transmission line for transmission.
  • the second photoelectric conversion module is further configured to receive a second optical signal of a preset frequency sent by the second optical path coupling device, and convert the second optical signal into a second electrical signal to be processed. , and sending the second electrical signal to be processed to the first photoelectric conversion module, where the second optical signal is obtained by the second optical path coupling device from the optical signal transmission line; the first The photoelectric conversion module is further configured to convert the second electrical signal to be processed into a second optical signal to be processed, and send the second optical signal to be processed to the time synchronization device.
  • the first optical signal and the second optical signal are optical signals with different wavelengths.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.
  • a signal processing device including: a second photoelectric conversion module configured to receive a first optical signal of a preset frequency sent by a first optical path coupling device, and convert the first optical signal into The signal is converted into a first electrical signal to be processed, and the first electrical signal to be processed is sent to the first photoelectric conversion module.
  • the first optical signal is obtained from the optical signal transmission line by the first optical path coupling device. acquired; and the first photoelectric conversion module, configured to convert the first electrical signal to be processed into a first optical signal to be processed, and send the first optical signal to be processed to the time synchronization device .
  • the first photoelectric conversion module is further configured to receive an optical signal to be sent from the time synchronization device, convert the optical signal to be sent into an electrical signal to be sent, and convert the optical signal to be sent to Send the electrical signal to the second photoelectric conversion module; the second photoelectric conversion module is also configured to convert the electrical signal to be sent into a second optical signal of a preset frequency, and send the second optical signal to and a second optical path coupling device, so that the second optical path coupling device couples the second optical signal to the optical signal transmission line for transmission.
  • the first optical signal and the second optical signal are optical signals with different wavelengths.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.
  • a signal processing system includes: a time synchronization device, a signal processing device as described in the first aspect, and a first optical path coupling device; the time synchronization device is configured In order to generate an optical signal to be sent according to an initial electrical signal, and send the optical signal to be sent to the signal processing device, the initial electrical signal includes a service signal and a time synchronization signal; the signal processing device is configured to The optical signal to be sent is converted into a first optical signal of a preset frequency, and the first optical signal is sent to the first optical path coupling device; the first optical path coupling device is configured to convert the first optical signal The signal is coupled to the optical signal transmission line for transmission.
  • a signal processing system includes: a time synchronization device, a signal processing device as described in the second aspect, and a first optical path coupling device; the first optical path coupling device Configured to obtain a first optical signal from the optical signal transmission line and send the first optical signal to the signal processing device; the signal processing device is configured to convert the first optical signal into a first optical signal. an optical signal to be processed, and the first optical signal to be processed is sent to the time synchronization device; the time synchronization device is configured to convert the first optical signal to be processed into a first target electrical signal.
  • a signal transmission subsystem includes a first signal processing system, a second signal processing system and an optical signal transmission line.
  • the first signal processing system is such as a second signal processing system.
  • the signal processing system according to the third aspect, or the second signal processing system is the signal processing system according to the third aspect, the first signal processing system and the second signal processing system transmit through the optical signal Line connection.
  • a signal transmission system includes a first signal transmission subsystem, a second signal transmission subsystem and a relay device.
  • the first signal transmission subsystem and the The second signal transmission subsystem is the signal transmission subsystem described in the fourth aspect.
  • the first photoelectric conversion module of the second signal processing system and the first photoelectric conversion module of the relay device In the second signal transmission subsystem, the first photoelectric conversion module of the first signal processing system is connected to the second end of the relay device.
  • a signal processing method including: receiving an optical signal to be sent sent by a time synchronization device, where the optical signal to be sent is generated by the time synchronization device based on an initial electrical signal,
  • the initial electrical signal includes a service signal and a time synchronization signal; converting the optical signal to be sent into an electrical signal to be sent; converting the electrical signal to be sent into a first optical signal of a preset frequency; and converting the first optical signal to a preset frequency.
  • An optical signal is sent to the first optical path coupling device, so that the first optical path coupling device couples the first optical signal to the optical signal transmission line for transmission.
  • the signal processing method further includes: receiving a second optical signal of a preset frequency sent by a second optical path coupling device, where the second optical signal is obtained by the second optical path coupling device from the optical signal. obtained from the transmission line; converting the second optical signal into a second electrical signal to be processed; converting the second electrical signal to be processed into a second optical signal to be processed; and converting the second optical signal to be processed Sent to the time synchronization device.
  • the first optical signal and the second optical signal are optical signals with different wavelengths.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.
  • a signal processing method including: receiving a first optical signal of a preset frequency sent by a first optical path coupling device, where the first optical signal is obtained by the first optical path coupling device from an optical signal. obtained from the signal transmission line; converting the first optical signal into a first electrical signal to be processed; converting the first electrical signal to be processed into a first optical signal to be processed; and converting the first optical signal to be processed The signal is sent to the time synchronization device.
  • the signal processing method further includes: receiving an optical signal to be sent sent by the time synchronization device; converting the optical signal to be sent into an electrical signal to be sent; and converting the electrical signal to be sent into a second optical signal of a preset frequency; and sending the second optical signal to a second optical path coupling device, so that the second optical path coupling device couples the second optical signal to the optical signal transmission line. transmission.
  • the first optical signal and the second optical signal are optical signals with different wavelengths.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.
  • Figure 1 shows a schematic structural diagram of a signal processing device in this exemplary embodiment
  • Figure 2 shows a schematic structural diagram of another signal processing device in this exemplary embodiment
  • Figure 3 shows a schematic structural diagram of a signal processing system in this exemplary embodiment
  • Figure 4 shows a schematic structural diagram of another signal processing system in this exemplary embodiment
  • Figure 5 shows a schematic structural diagram of yet another signal processing system in this exemplary embodiment
  • Figure 6 shows a schematic structural diagram of yet another signal processing system in this exemplary embodiment
  • Figure 7 shows a schematic structural diagram of a signal transmission subsystem in this exemplary embodiment
  • Figure 8 shows a schematic structural diagram of a signal transmission system in this exemplary embodiment
  • FIG. 9 shows a schematic flowchart of a signal processing method in this exemplary embodiment.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. be communicated to those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • numerous specific details are provided to provide a thorough understanding of embodiments of the disclosure.
  • those skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details described, or other methods, components, devices, steps, etc. may be adopted.
  • well-known technical solutions have not been shown or described in detail to avoid obscuring aspects of the disclosure.
  • time synchronization solution that uses OTN/WDM systems to transmit time synchronization signals between communication devices/systems.
  • time synchronization signals are usually encapsulated in business data.
  • optical monitoring equipment is usually required to extract the time synchronization signals from the business data, and then convert the time The synchronization signal is processed into an optical signal and coupled to the optical signal transmission line through a multiplexer for transmission.
  • the extraction and processing process of the time synchronization signal by the optical monitoring equipment takes a certain amount of time, which will lead to a deviation between the actual time of the time synchronization signal and the time of the extracted time synchronization signal, affecting the accuracy of the transmitted time synchronization signal. . That is, the implementation process of the time synchronization scheme between communication devices provided in the related art is complicated, the cost is high, and the accuracy of the synchronization results is poor.
  • exemplary embodiments of the present disclosure provide a signal processing device, thereby improving the accuracy of transmitted time synchronization signals.
  • the signal processing device can be applied in a time synchronization signal transmission scenario based on a wavelength division multiplexing system.
  • the signal processing device can include a first photoelectric conversion module and a second photoelectric conversion module; wherein: the first photoelectric conversion module is used to receive The time synchronization device sends the optical signal to be sent, converts the optical signal to be sent into an electrical signal to be sent, and transmits the electrical signal to be sent to the second photoelectric conversion module; the second photoelectric conversion module is used to convert the electrical signal to be sent Converting into a first optical signal of a preset frequency, and sending the first optical signal to the first optical path coupling device, so that the first optical path coupling device couples the first optical signal to the optical signal transmission line for transmission; wherein, to be sent The optical signal is generated by the time synchronization device based on the initial electrical signal, which includes the service signal and the time synchronization signal. When the signal processing equipment transmits the time synchronization signal, it is not necessary to extract the time synchronization signal from the service signal, which improves the accuracy of the transmitted time synchronization signal.
  • the embodiment of the present disclosure provides a signal processing device, which can be applied to a time synchronization signal sending node.
  • the signal processing device 100 includes a first photoelectric conversion module 101 and a second photoelectric conversion module 102. .
  • the first photoelectric conversion module 101 is used to receive the optical signal to be sent from the time synchronization device, convert the optical signal to be sent into an electrical signal to be sent, and transmit the electrical signal to be sent to the second photoelectric conversion module.
  • the signal is generated by the time synchronization device based on the initial electrical signal, which includes the service signal and the time synchronization signal.
  • the first photoelectric conversion module 101 is a first photoelectric converter.
  • the second photoelectric conversion module 102 is used to convert the electrical signal to be sent into a first optical signal of a preset frequency, and send the first optical signal to the first optical path coupling device, so that the first optical path coupling device converts the first optical signal
  • the signal is coupled to the optical signal transmission line for transmission.
  • the second photoelectric conversion module 102 is a second photoelectric converter.
  • the first photoelectric conversion module can receive the optical signal to be sent sent by the time synchronization device, convert the optical signal to be sent into the electrical signal to be sent, and convert the optical signal to be sent to the electrical signal to be sent.
  • the electrical signal is transmitted to the second photoelectric conversion module.
  • the second photoelectric conversion module can convert the electrical signal to be sent into a first optical signal of a preset frequency, and send the first optical signal to the first optical circuit coupling device, so that the first optical signal is An optical path coupling device couples the first optical signal to the optical signal transmission line for transmission.
  • the to-be-sent optical signal containing the time synchronization signal can be directly converted into an optical signal of a preset frequency for transmission. There is no need to extract the time synchronization signal from the to-be-sent optical signal and prevent the time synchronization signal from being extracted and processed.
  • the interference caused by the process to the accuracy of the time synchronization signal can improve the accuracy of the transmitted time synchronization signal.
  • the signal processing device may include an optical monitoring board, and the optical monitoring board may include a first photoelectric conversion module and a second photoelectric conversion module, wherein the first photoelectric conversion module and the second photoelectric conversion module
  • the module can be an SFP module (Small Form-factor Pluggsable, small hot-swappable optical transceiver integrated module).
  • the time synchronization signal sending node needs to receive the time synchronization signal sent by the time synchronization signal receiving node, so that the time synchronization signal sending node can receive the time synchronization signal of the node according to the time synchronization signal, and synchronize the time
  • the signal sending node performs time correction to keep the time of the time synchronization signal receiving node and the time synchronization signal sending node consistent.
  • the optical signal sent by the time synchronization signal sending node and the optical signal sent by the time synchronization signal receiving node are Different wavelengths of optical signals can improve the transmission stability and reliability of the optical signals sent by the time synchronization signal sending node and the optical signals sent by the time synchronization signal receiving node.
  • the first photoelectric conversion module of the signal processing device is also configured to receive the second optical signal of the preset frequency sent by the second optical path coupling device, and convert the Convert the two optical signals into a second electrical signal to be processed, and send the second electrical signal to be processed to the first photoelectric conversion module; the first photoelectric conversion module is used to convert the second electrical signal to be processed into the second optical signal to be processed signal, and sends the second optical signal to be processed to the time synchronization device.
  • the second optical signal is obtained by the second optical path coupling device from the optical signal transmission line; the second optical signal of the preset frequency may be transmitted by the time synchronization signal receiving node through the optical signal transmission line.
  • the second optical signal obtained from the optical signal transmission line can be directly converted into an electrical signal and an optical signal at the time synchronization signal sending node.
  • this process there is no need to extract and process the time synchronization signal, which can improve the accuracy of the acquired time synchronization signal. and efficiency; and the second optical signal in the optical signal transmission line and the first optical signal in the optical signal transmission line have different wavelengths, and there will be no interference between the two, which can improve the transmission stability and stability of the first optical signal and the second optical signal. reliability.
  • the transmission time of optical signals of different wavelengths is different.
  • the first optical signal and the second optical signal are optical signals with different wavelengths , the wavelength difference between the first optical signal and the second optical signal is less than or equal to the preset wavelength threshold, where the preset wavelength threshold can be determined based on actual needs, which is not limited in the embodiment of the present disclosure.
  • the wavelength of the first optical signal may be 196.0Thz
  • the wavelength of the second optical signal may be 196.1Thz. Since the wavelength difference between the first optical signal of 196.0Thz and the second optical signal of 196.1Thz is 0.1Thz, it can be The transmission delay of the first optical signal and the second optical signal in the optical signal transmission line is further reduced, and the accuracy of the time synchronization signal obtained by the time synchronization signal sending node and the time synchronization signal receiving node from the opposite end is further improved. It can be understood that the opposite end of the time synchronization signal sending node is the time synchronization signal receiving node; the opposite end of the time synchronization signal receiving node is the time synchronization signal sending node.
  • the embodiment of the present disclosure provides a signal processing device, which can be applied to a time synchronization signal receiving node.
  • the signal processing device 100 includes a second photoelectric conversion module 102 and a first photoelectric conversion module 101. .
  • the second photoelectric conversion module 102 is configured to receive a first optical signal of a preset frequency sent by the first optical path coupling device, convert the first optical signal into a first electrical signal to be processed, and send the first electrical signal to be processed.
  • the first photoelectric conversion module where the first optical signal is obtained by the first optical path coupling device from the optical signal transmission line, and the first optical signal of the preset frequency can be transmitted by the time synchronization signal sending node through the optical signal transmission line .
  • the second photoelectric conversion module 102 is a second photoelectric converter.
  • the first photoelectric conversion module 101 is used to convert the first electrical signal to be processed into a first optical signal to be processed, and send the first optical signal to be processed to the time synchronization device.
  • the first photoelectric conversion module 101 is a first photoelectric converter.
  • the second photoelectric conversion module can receive the first optical signal of the preset frequency sent by the first optical path coupling device, and convert the first optical signal into the first optical signal to be processed. electrical signal, and send the first electrical signal to be processed to the first photoelectric conversion module; the first photoelectric conversion module can convert the first electrical signal to be processed into a first optical signal to be processed, and send the first optical signal to be processed to the time synchronization equipment; the first optical signal obtained from the optical signal transmission line can be directly converted into an electrical signal and an optical signal at the time synchronization signal receiving node. In this process, there is no need to extract and process the time synchronization signal, which can improve the acquisition time. Accuracy and efficiency of synchronization signals.
  • the time synchronization signal receiving node needs to perform time correction on the time synchronization signal receiving node according to the time synchronization signal of the time synchronization signal sending node, so that the time synchronization signal receiving node and the time synchronization signal The time of the sending node remains consistent; in order to prevent the optical signal sent by the time synchronization signal sending node and the optical signal sent by the time synchronization signal receiving node from interfering with each other in the optical signal transmission line, the optical signal sent by the time synchronization signal sending node and The optical signals sent by the time synchronization signal receiving node have different wavelengths, which can improve the transmission stability and reliability of the optical signals sent by the time synchronization signal sending node and the optical signals sent by the time synchronization signal receiving node.
  • the first photoelectric conversion module of the signal processing device is also used to receive the to-be-sent optical signal sent by the time synchronization device, and convert the to-be-sent optical signal into the to-be-sent optical signal. electrical signal, and transmit the electrical signal to be sent to the second photoelectric conversion module; the second photoelectric conversion module is also used to convert the electrical signal to be sent into a second optical signal of a preset frequency, and send the second optical signal to The second optical path coupling device enables the second optical path coupling device to couple the second optical signal to the optical signal transmission line for transmission.
  • the to-be-sent optical signal containing the time synchronization signal can be directly converted into a second optical signal of a preset frequency for transmission. There is no need to extract the time synchronization signal from the to-be-sent optical signal, which can improve the time synchronization of transmission.
  • the accuracy of the signal; and the time synchronization signal receiving node is coupled to the second optical signal in the optical signal transmission line and the first optical signal in the optical signal transmission line have different wavelengths, there will be no interference between the two, and the first optical signal and the Transmission stability and reliability of the second optical signal.
  • the transmission time of optical signals of different wavelengths is different.
  • the first optical signal and the second optical signal are optical signals with different wavelengths , the wavelength difference between the first optical signal and the second optical signal is less than or equal to the preset wavelength threshold, where the preset wavelength threshold can be determined based on actual needs, which is not limited in the embodiment of the present disclosure.
  • the wavelength of the first optical signal may be 196.0Thz
  • the wavelength of the second optical signal may be 196.1Thz. Since the wavelength difference between the first optical signal of 196.0Thz and the second optical signal of 196.1Thz is 0.1Thz, it can be The transmission delay of the first optical signal and the second optical signal in the optical signal transmission line is further reduced, and the accuracy of the time synchronization signal obtained by the time synchronization signal sending node and the time synchronization signal receiving node from the opposite end is further improved. It can be understood that the opposite end of the time synchronization signal sending node is the time synchronization signal receiving node; the opposite end of the time synchronization signal receiving node is the time synchronization signal sending node.
  • the embodiment of the present disclosure provides a signal processing system 10.
  • the signal processing system can be applied to a time synchronization signal sending node.
  • the signal processing system 10 includes: a time synchronization device 200, a signal as in the above embodiment.
  • the time synchronization device 200 is configured to generate an optical signal to be sent based on the initial electrical signal, and send the optical signal to be sent to the signal processing device 100; where the initial electrical signal includes a service signal and a time synchronization signal.
  • the signal processing device 100 is configured to convert the optical signal to be sent into a first optical signal of a preset frequency, and send the first optical signal to the first optical path coupling device 300 .
  • the first optical path coupling device 300 is used to couple the first optical signal to the optical signal transmission line for transmission.
  • the signal processing system and time synchronization device can generate an optical signal to be sent based on the initial electrical signal, and send the optical signal to be sent to the signal processing device; the signal processing device can generate the optical signal to be sent.
  • the optical signal is converted into a first optical signal of a preset frequency, and the first optical signal is sent to a first optical path coupling device; the first optical path coupling device is used to couple the first optical signal to the optical signal transmission line for transmission.
  • the signal processing system can be used to directly convert the to-be-sent optical signal containing the time synchronization signal into the first optical signal for transmission. There is no need to extract the time synchronization signal from the to-be-sent optical signal, which can improve the transmission time. Accuracy of synchronization signals.
  • the time synchronization device may include a synchronous GE (Gigabit Ethernet, Gigabit Ethernet) interface and a time synchronization signal interface.
  • the synchronous GE interface is used to obtain service signals, and the time synchronization signal interface can obtain a clock.
  • the time synchronization signal sent by the device encapsulates the service signal and the time synchronization signal into an initial electrical signal, and converts the initial electrical signal into an optical signal to be sent, wherein the wavelength of the optical signal to be sent can be determined based on actual needs.
  • the wavelength of the optical signal to be sent may be 1310 nm (nanometer).
  • devices in the signal processing system are connected through interfaces on each device and optical signal transmission lines between the interfaces.
  • the time synchronization device 200 is connected to the second interface 103 on the signal processing device 100 through the first interface 201; the signal processing device 100 is connected to the first optical path coupling device 300 through the third interface 104 therein.
  • the fourth interface 301 is connected.
  • the time synchronization device 200 sends the optical signal to be sent to the second interface 103 of the signal processing device 100 through the first interface 201, and the signal processing device 100 obtains the optical signal to be sent through the second interface 103. , convert the optical signal to be sent into a first optical signal of a preset frequency, and send the first optical signal to the fourth interface 301 of the first optical path coupling device through the third interface 104.
  • the first optical path coupling device 302 can pass The fourth interface 301 acquires the first optical signal and couples the first optical signal to the optical signal transmission line for transmission.
  • the time synchronization signal sending node also needs to receive the time synchronization signal sent by the time synchronization signal receiving node to facilitate time synchronization; as shown in Figure 4, the signal processing system 10 also includes a second Optical path coupling device 400.
  • the second optical path coupling device 400 is used to obtain the second optical signal from the optical signal transmission line and send the second optical signal to the signal processing device 100, where the second optical signal is sent by the time synchronization signal receiving node.
  • the second optical signal is determined by the time synchronization signal sending node based on the initial electrical signal.
  • the initial electrical signal includes the service signal and the time synchronization signal.
  • the signal processing device 100 is configured to convert the second optical signal into a second optical signal to be processed, and send the second optical signal to be processed to the time synchronization device 200 .
  • the process of converting the second optical signal into the second to-be-processed optical signal by the signal processing device may refer to the above embodiments, and will not be described in detail in this disclosure.
  • the time synchronization device 200 is used to convert the second optical signal to be processed into a second target electrical signal.
  • the second target electrical signal carries the time synchronization signal of the time synchronization signal receiving node, which allows the time synchronization signal sending node to correct the time of the time synchronization signal sending node according to the time synchronization signal sent by the time synchronization signal receiving node, Ensure that the time of the time synchronization signal sending node and the time synchronization signal receiving node are consistent; and at the time synchronization signal sending node, the signal processing system can be used to directly obtain the second optical signal containing the time synchronization signal from the optical signal transmission line, and transmit the second optical signal to the time synchronization signal receiving node. Converting the second optical signal into the second target optical signal eliminates the need to extract the time synchronization signal from the second optical signal, which can improve the accuracy of the acquired time synchronization signal.
  • the devices in the signal processing system are connected through the interfaces on each device and the optical signal transmission lines between the interfaces; as shown in Figure 4, the time synchronization device 200 is connected through the The fifth interface 202 is connected to the sixth interface 105 on the signal processing device 100; the signal processing device 100 is connected to the eighth interface 401 in the second optical path coupling device 400 through the seventh interface 106 therein.
  • the second optical path coupling device 400 sends the second optical signal to the seventh interface 106 of the signal processing device 100 through the eighth interface 401; the signal processing device 100 obtains the second optical signal through the seventh interface 106.
  • two optical signals convert the second optical signal into a second optical signal to be processed, and send the second optical signal to be processed to the fifth interface 202 of the time synchronization device 200 through the sixth interface 105; the time synchronization device 200 can pass
  • the fifth interface 202 acquires the second optical signal to be processed and converts the second optical signal to be processed into a second target electrical signal.
  • the embodiment of the present disclosure provides a signal processing system 10.
  • the signal processing system can be applied to a time synchronization signal receiving node.
  • the signal processing system 10 includes: a time synchronization device 200, a signal processing device 200 as in the above embodiment.
  • the first optical path coupling device 300 is used to obtain the first optical signal from the optical signal transmission line and send the first optical signal to the signal processing device 100 .
  • the first optical signal is an optical signal sent by the time synchronization signal sending node, and the first optical signal is determined by the time synchronization signal sending node based on the initial electrical signal, and the initial electrical signal includes a service signal and a time synchronization signal.
  • the signal processing device 100 is configured to convert the first optical signal into a first optical signal to be processed, and send the first optical signal to be processed to the time synchronization device 200 .
  • the time synchronization device 200 is used to convert the first optical signal to be processed into a first target electrical signal.
  • the first target electrical signal carries the time synchronization signal of the time synchronization signal sending node, so that the time synchronization signal receiving node can correct the time of the time synchronization signal receiving node according to the time synchronization signal sent by the time synchronization signal sending node, Ensure that the time of the time synchronization signal sending node and the time synchronization signal receiving node are consistent.
  • the first optical path coupling device can obtain the first optical signal from the optical signal transmission line and send the first optical signal to the signal processing device; the signal processing device can transmit the first optical signal to the signal processing device.
  • An optical signal is converted into a first optical signal to be processed, and the first optical signal to be processed is sent to the time synchronization device.
  • the time synchronization device can convert the first optical signal to be processed into a first target electrical signal.
  • the signal processing system can be used to directly obtain the first optical signal containing the time synchronization signal from the optical signal transmission line, and convert the first optical signal into the first target optical signal without the need to obtain the first optical signal from the first optical signal. Extracting time synchronization signals can improve the accuracy of the acquired time synchronization signals.
  • the devices in the signal processing system are connected through the interfaces on each device and the optical signal transmission lines between the interfaces; as shown in Figure 5, the time synchronization device 200 is connected through the The first interface 201 is connected to the second interface 103 on the signal processing device 100; the signal processing device 100 is connected to the fourth interface 301 in the first optical path coupling device 300 through the third interface 104 therein.
  • the first optical path coupling device 300 after the first optical path coupling device 300 obtains the first optical signal from the optical signal transmission line, it sends the first optical signal to the third interface of the signal processing device 100 through the fourth interface 301 104;
  • the signal processing device 100 acquires the first optical signal through the third interface 104, converts the first optical signal into a first optical signal to be processed, and sends the first optical signal to be processed to the time synchronization device through the second interface 103
  • the first interface 201 of 200; the time synchronization device 200 acquires the first optical signal to be processed through the first interface 201, and converts the first optical signal to be processed into a first target electrical signal.
  • the time synchronization signal receiving node also needs to send a time synchronization signal to the time synchronization signal sending node to facilitate time synchronization; as shown in Figure 6, the signal processing system 10 also includes a second optical path Coupling device 400.
  • the time synchronization device 200 is configured to generate an optical signal to be sent based on the initial electrical signal, and send the optical signal to be sent to the signal processing device 100; where the initial electrical signal includes a service signal and a time synchronization signal.
  • the signal processing device 100 is configured to convert the optical signal to be sent into a second optical signal of a preset frequency, and send the second optical signal to the second optical path coupling device 400 .
  • the process in which the signal processing device converts the optical signal to be sent into a second optical signal of a preset frequency may refer to the above embodiments, and will not be described in detail in this disclosure.
  • the second optical path coupling device 400 is used to couple the second optical signal to the optical signal transmission line for transmission.
  • the signal processing system can be used at the time synchronization signal receiving node to directly convert the to-be-sent optical signal containing the time synchronization signal into a second optical signal for transmission. There is no need to extract the time synchronization signal from the to-be-sent optical signal, which can improve the transmission time. Accuracy of synchronization signals.
  • the devices in the signal processing system are connected through the interfaces on each device and the optical signal transmission lines between the interfaces; as shown in Figure 6, the time synchronization device 200 is connected through the The fifth interface 202 is connected to the sixth interface 105 on the signal processing device 100; the signal processing device 100 is connected to the eighth interface 401 in the second optical path coupling device 400 through the seventh interface 106 therein.
  • the time synchronization device 200 after the time synchronization device 200 generates the optical signal to be sent according to the initial electrical signal, the time synchronization device 200 sends the optical signal to be sent to the sixth interface 105 of the signal processing device 100 through the fifth interface 202; signal The processing device 100 acquires the optical signal to be sent through the sixth interface 105, converts the optical signal to be sent into a second optical signal of a preset frequency, and sends the second optical signal to the second optical path coupling device 400 through the seventh interface 106.
  • the eighth interface 401; the second optical path coupling device 400 obtains the second optical signal through the eighth interface 401, and couples the second optical signal to the optical signal transmission line for transmission.
  • Embodiments of the present disclosure provide a signal transmission subsystem.
  • the signal transmission subsystem includes a first signal processing system, a second signal processing system and an optical signal transmission line.
  • the first signal processing system is used for time synchronization signal transmission in the above embodiments.
  • the signal processing system of the node, or the second signal processing system is the signal processing system applied to the time synchronization signal receiving node in the above embodiment, wherein the first signal processing system and the second signal processing system are connected through an optical signal transmission line;
  • the first signal processing system is applied to the time synchronization signal sending node, and the second signal processing system is applied to the time synchronization signal receiving node;
  • the optical signal transmission line can be an optical fiber or an optical cable, etc.
  • Figure 7 shows a schematic structural diagram of a signal transmission subsystem.
  • the signal transmission subsystem 60 includes a first signal processing system 61 and a second signal processing system 62. and the optical signal transmission line 63, the first signal processing system is the signal processing system applied to the time synchronization signal sending node in the above embodiment, the second signal processing system is the signal processing system applied to the time synchronization signal receiving node in the above embodiment, Among them, the first signal processing system 61 and the second signal processing system 62 are connected through the optical signal transmission line 63; the first signal processing system is applied to the time synchronization signal sending node, and the second signal processing system 62 is applied to the time synchronization signal receiving node;
  • the optical signal transmission line can be an optical fiber or an optical cable.
  • the first signal processing system 61 is used to determine the first optical signal according to the initial electrical signal, and couple the first optical signal to the optical signal transmission line 63 so that the optical signal transmission line 63 The first optical signal is transmitted to the second signal processing system 62 .
  • the second signal processing system 62 is used to obtain the first optical signal from the optical signal transmission line 63 and determine the first target electrical signal according to the first optical signal to synchronize the time using the time synchronization signal in the first target electrical signal.
  • the time of the signal receiving node and the time synchronization signal sending node are synchronized.
  • the second signal processing system 62 is used to determine the second optical signal according to the initial electrical signal, and couple the second optical signal to the optical signal transmission line 63, so that the optical signal transmission line 63 The second optical signal is transmitted to the first signal processing system 61 .
  • the first signal processing system 61 is used to obtain the second optical signal from the optical signal transmission line 63 and determine the second target electrical signal according to the second optical signal, so as to use the second target electrical signal to send the time synchronization signal to the node and time.
  • the time of the synchronization signal receiving node is synchronized.
  • the first optical signal and the second optical signal are optical signals with different wavelengths, and the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.
  • the first signal processing system can directly convert the initial electrical signal containing the time synchronization signal into an optical signal for transmission, without the need to convert the initial electrical signal into an optical signal for transmission. Extracting the time synchronization signal from the signal can improve the accuracy of the transmitted time synchronization signal; at the time synchronization signal receiving node, the second signal processing system can directly obtain the optical signal containing the time synchronization signal from the optical signal transmission line, and convert the optical signal into Converting it into a target optical signal eliminates the need to extract the time synchronization signal from the optical signal, which can improve the accuracy of the acquired time synchronization signal.
  • the first optical signal sent by the first signal processing system and the second optical signal sent by the second signal processing system have different wavelengths, It can prevent interference between optical signals and ensure safe transmission of optical signals.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to the preset wavelength threshold, which can reduce the interference between the optical signal sent by the time synchronization signal sending node and the optical signal sent by the time synchronization signal receiving node on the optical signal transmission line.
  • the time delay in the signal transmission subsystem further improves the accuracy of the time synchronization signal obtained by the time synchronization signal sending node and the time synchronization signal receiving node corresponding to the signal transmission subsystem.
  • the embodiment of the present disclosure provides a signal transmission system 70, which can be applied in long-distance optical signal transmission scenarios.
  • the signal transmission system 70 includes a first signal transmission subsystem 71, a second signal transmission subsystem 71, and a second signal transmission subsystem 71.
  • the subsystem 72 and the relay device 73, the first signal transmission subsystem 71 and the second signal transmission subsystem 72 are the signal transmission subsystems in the above embodiment.
  • the first photoelectric conversion module 101 of the second signal processing system 62 is connected to the first end of the relay device 73.
  • the first photoelectric conversion module 101 of the first signal processing system 61 is connected in the second signal transmission subsystem 72.
  • a photoelectric conversion module is connected to the second end of the relay device 73 .
  • Embodiments of the present disclosure take a signal transmission system including a first signal transmission subsystem, a second signal transmission subsystem and a relay device in a long-distance optical signal transmission scenario as an example to illustrate the signal transmission system.
  • the first optical path coupling device can acquire the first signal sent by the first signal processing system 61 through the optical signal transmission line 63 . optical signal, and use the second photoelectric conversion module to process the first optical signal into a first optical signal to be processed, and then send the first optical signal to be processed to the first photoelectric conversion module, where the first photoelectric conversion module converts the first optical signal to a first optical signal to be processed. After the electrical signal to be processed is converted into the first optical signal to be processed, the first optical signal to be processed can be directly transmitted to the relay device 73 .
  • the relay device 73 can amplify and regenerate the first optical signal to be processed to obtain the regenerated first optical signal to be processed, and send the regenerated first optical signal to be processed to the first signal transmission subsystem 72 of the second signal transmission subsystem 72 .
  • the first photoelectric conversion module can determine the regenerated first optical signal to be processed as the optical signal to be sent, and convert the optical signal to be sent into the optical signal to be sent. electrical signal, then, the electrical signal to be sent is sent to the second photoelectric conversion module, the second photoelectric conversion module converts the electrical signal to be sent into a first optical signal of a preset frequency, and sends the first optical signal to the first optical path Coupling device, so that the first optical path coupling device couples the first optical signal to the optical signal transmission line 63 to transmit the first optical signal to the second signal processing system 62 of the second signal transmission subsystem 72 .
  • the second optical path coupling device in the first signal processing system 61 of the second signal transmission subsystem 72, can obtain the second signal sent by the second signal processing system 62 through the optical signal transmission line 63.
  • the second optical signal is processed into a second optical signal to be processed by using the second photoelectric conversion module.
  • the second optical signal to be processed is sent to the first photoelectric conversion module, and the first photoelectric conversion module 101 converts the second optical signal to a second optical signal to be processed.
  • the second optical signal to be processed can be directly transmitted to the relay device 73 .
  • the relay device 73 can amplify and regenerate the second optical signal to be processed to obtain the regenerated second optical signal to be processed, and send the regenerated second optical signal to be processed to the second optical signal of the first signal transmission subsystem 71
  • the first photoelectric conversion module in the signal processing system 62 can be amplify and regenerate the second optical signal to be processed to obtain the regenerated second optical signal to be processed, and send the regenerated second optical signal to be processed to the second optical signal of the first signal transmission subsystem 71.
  • the first photoelectric conversion module can determine the regenerated second optical signal to be processed as the optical signal to be sent, and convert the optical signal to be sent into the optical signal to be sent. electrical signal, then, the electrical signal to be sent is sent to the second photoelectric conversion module, the second photoelectric conversion module converts the electrical signal to be sent into a second optical signal of a preset frequency, and sends the second optical signal to the second optical path coupling device, so that the second optical path coupling device couples the second optical signal to the optical signal transmission line 63 to transmit the second optical signal to the first signal processing system 61 of the first signal transmission subsystem 71 .
  • the signal transmission system can enable the second signal processing system in the first signal transmission subsystem to directly obtain the information including time synchronization from the optical signal transmission line in the scenario where the signal is transmitted over a long distance.
  • the optical signal of the signal is converted into an optical signal to be processed. There is no need to extract the time synchronization signal from the optical signal. This prevents the time synchronization signal extraction and processing from interfering with the accuracy of the time synchronization signal, and can improve the transmission time. Accuracy of synchronization signals.
  • the optical signal to be processed is regenerated through the relay device to obtain a regenerated optical signal to be processed, and the regenerated optical signal to be processed is directly sent to the first signal processing system of the second signal transmission subsystem.
  • a photoelectric conversion module so that the first photoelectric conversion module determines the regenerated optical signal to be processed as an optical signal to be sent for transmission.
  • the optical signal does not need to be processed by a time synchronization device, which can further improve the efficiency of the transmitted time synchronization signal. Accuracy.
  • Embodiments of the present disclosure provide a signal processing method.
  • the signal processing method can be applied to the above-mentioned signal processing device.
  • the signal processing device can be a signal processing device of a time synchronization signal sending node. As shown in Figure 9, the method includes steps S901 to S904.
  • Step S901 Receive the to-be-sent optical signal sent by the time synchronization device.
  • the optical signal to be sent is generated by the time synchronization device based on the initial electrical signal.
  • the initial electrical signal includes the service signal and the time synchronization signal.
  • Step S902 Convert the optical signal to be sent into the electrical signal to be sent.
  • the first photoelectric conversion module of the signal processing device may convert the optical signal to be sent into the electrical signal to be sent, and transmit the electrical signal to be sent to the second photoelectric conversion module.
  • Step S903 Convert the electrical signal to be sent into a first optical signal of a preset frequency.
  • the second photoelectric conversion module of the signal processing device may convert the electrical signal to be sent into a first optical signal of a preset frequency.
  • Step S904 Send the first optical signal to the first optical path coupling device, so that the first optical path coupling device couples the first optical signal to the optical signal transmission line for transmission.
  • the signal processing method can receive the optical signal to be sent sent by the time synchronization device, convert the optical signal to be sent into the electrical signal to be sent, and then convert the electrical signal to be sent into the preset electrical signal.
  • the first optical signal of the frequency is transmitted without the need to extract the time synchronization signal from the optical signal to be sent. This prevents the time synchronization signal extraction and processing from interfering with the accuracy of the time synchronization signal, and can improve the accuracy of the transmitted time synchronization signal. .
  • the signal processing method further includes: receiving a second optical signal of a preset frequency sent by a second optical path coupling device, where the second optical signal is obtained by the second optical path coupling device from the optical signal. obtained from the transmission line; converting the second optical signal into a second electrical signal to be processed; converting the second electrical signal to be processed into a second optical signal to be processed; and converting the second optical signal to be processed Sent to the time synchronization device.
  • the first optical signal and the second optical signal are optical signals with different wavelengths.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.
  • the signal processing device may be a signal processing device of a time synchronization signal receiving node
  • the signal processing method includes: receiving the first optical signal sent by the first optical path coupling device, and converting the first optical signal Sent to the second photoelectric conversion module, the second photoelectric conversion module converts the first optical signal into a first electrical signal to be processed, and sends the first electrical signal to be processed to the first photoelectric conversion module; the first photoelectric conversion module can convert The first electrical signal to be processed is converted into a first optical signal to be processed, and the first optical signal to be processed is sent to the time synchronization device, where the first optical signal is obtained from the optical signal transmission line by the first optical path coupling device.
  • a signal processing method includes: receiving a first optical signal of a preset frequency sent by a first optical path coupling device, the first optical signal being obtained by the first optical path coupling device from an optical signal transmission line; Converting the optical signal into a first electrical signal to be processed; converting the first electrical signal to be processed into a first optical signal to be processed; and sending the first optical signal to be processed to a time synchronization device.
  • the signal processing method further includes: receiving an optical signal to be sent sent by the time synchronization device; converting the optical signal to be sent into an electrical signal to be sent; and converting the electrical signal to be sent into a second optical signal of a preset frequency; and sending the second optical signal to a second optical path coupling device, so that the second optical path coupling device couples the second optical signal to the optical signal transmission line. transmission.
  • the first optical signal and the second optical signal are optical signals with different wavelengths.
  • the wavelength difference between the first optical signal and the second optical signal is less than or equal to a preset wavelength threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本公开提供了一种信号处理设备、系统和方法、信号传输子系统和系统,涉及光通信技术领域。所述信号处理设备方法包括:第一光电转换模块,用于接收时间同步设备发送的待发送光信号,并将待发送光信号转换为待发送电信号,以及将待发送电信号传输至第二光电转换模块;第二光电转换模块,用于将待发送电信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备,以使第一光路耦合设备将第一光信号耦合至光信号传输线路进行传输。本公开提供了一种时间同步信号的处理方案,提高了传输的时间同步信号的精准度。

Description

信号处理设备、系统和方法、信号传输子系统和系统
相关申请的交叉引用
本申请是以CN申请号为202210376953.2,申请日为2022年4月11日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种信号处理设备、信号处理系统和信号处理方法、信号传输子系统和信号传输系统。
背景技术
在移动通信领域,通信设备/系统都有各自的设备/系统时间,为了保证信号的准确传输,需要将用于传输信号的通信设备/系统之间的时间偏差控制在一定的范围之内,因此,需要对通信设备/系统之间进行时间同步。
相关技术中,可以通过OTN(optical transport network,光传送网)/WDM(Wavelength Division Multiplex,波分复用)系统进行通信设备/系统之间的时间同步。
发明内容
根据本公开的第一方面,提供一种信号处理设备,包括:第一光电转换模块,被配置为接收时间同步设备发送的待发送光信号,并将所述待发送光信号转换为待发送电信号,以及将所述待发送电信号传输至第二光电转换模块,所述待发送光信号是所述时间同步设备根据初始电信号生成的,所述待初始电信号包括业务信号和时间同步信号;和所述第二光电转换模块,被配置为将所述待发送电信号转换为预设频率的第一光信号,并将所述第一光信号发送至第一光路耦合设备,以使所述第一光路耦合设备将所述第一光信号耦合至光信号传输线路进行传输。
在一些实施例中,所述第二光电转换模块还被配置为接收第二光路耦合设备发送的预设频率的第二光信号,并将所述第二光信号转换为第二待处理电信号,以及将所述第二待处理电信号发送至所述第一光电转换模块,所述第二光信号是所述第二光路耦合设备从所述光信号传输线路中获取的;所述第一光电转换模块还被配置为将所述 第二待处理电信号转换为第二待处理光信号,并将所述第二待处理光信号发送至所述时间同步设备。
在一些实施例中,所述第一光信号和所述第二光信号为波长不同的光信号。
在一些实施例中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
根据本公开的第二方面,提供一种信号处理设备,包括:第二光电转换模块,被配置为接收第一光路耦合设备发送的预设频率的第一光信号,并将所述第一光信号转换为第一待处理电信号,以及将所述第一待处理电信号发送至所述第一光电转换模块,所述第一光信号是所述第一光路耦合设备从光信号传输线路中获取的;和所述第一光电转换模块,被配置为将所述第一待处理电信号转换为第一待处理光信号,并将所述第一待处理光信号发送至所述时间同步设备。
在一些实施例中,所述第一光电转换模块还被配置为接收所述时间同步设备发送的待发送光信号,并将所述待发送光信号转换为待发送电信号,以及将所述待发送电信号传输至第二光电转换模块;所述第二光电转换模块还被配置为将所述待发送电信号转换为预设频率的第二光信号,并将所述第二光信号发送至第二光路耦合设备,以使所述第二光路耦合设备将所述第二光信号耦合至所述光信号传输线路进行传输。
在一些实施例中,所述第一光信号和所述第二光信号为波长不同的光信号。
在一些实施例中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
根据本公开的第三方面,提供一种信号处理系统,所述信号处理系统包括:时间同步设备、如第一方面所述的信号处理设备以及第一光路耦合设备;所述时间同步设备被配置为根据初始电信号生成待发送光信号,并将所述待发送光信号发送至所述信号处理设备,所述初始电信号包括业务信号和时间同步信号;所述信号处理设备被配置为将所述待发送光信号转换为预设频率的第一光信号,并将所述第一光信号发送至所述第一光路耦合设备;所述第一光路耦合设备被配置为将所述第一光信号耦合至所述光信号传输线路进行传输。
根据本公开的第四方面,提供一种信号处理系统,所述信号处理系统包括:时间同步设备、如第二方面所述的信号处理设备以及第一光路耦合设备;所述第一光路耦合设备被配置为从所述光信号传输线路中获取第一光信号,将所述第一光信号发送至所述信号处理设备;所述信号处理设备被配置为将所述第一光信号转换为第一待处理 光信号,并将所述第一待处理光信号发送至所述时间同步设备;所述时间同步设备被配置为将所述第一待处理光信号转换为第一目标电信号。
根据本公开的第五方面,提供一种信号传输子系统,所述信号传输子系统包括第一信号处理系统、第二信号处理系统和光信号传输线路,所述第一信号处理系统为如第二方面所述的信号处理系统,或者,所述第二信号处理系统为如第三方面所述的信号处理系统,所述第一信号处理系统和所述第二信号处理系统通过所述光信号传输线路连接。
根据本公开的第六方面,提供一种信号传输系统,所述信号传输系统包括第一信号传输子系统、第二信号传输子系统和中继设备,所述第一信号传输子系统和所述第二信号传输子系统为第四方面所述的信号传输子系统,所述第一信号传输子系统中,第二信号处理系统的所述第一光电转换模块和所述中继设备的第一端连接,所述第二信号传输子系统中,第一信号处理系统的所述第一光电转换模块和所述中继设备的第二端连接。
根据本公开的第七方面,提供一种信号处理方法,所述方法包括:接收时间同步设备发送的待发送光信号,所述待发送光信号是所述时间同步设备根据初始电信号生成的,所述初始电信号包括业务信号和时间同步信号;将所述待发送光信号转换为待发送电信号;将所述待发送电信号转换为预设频率的第一光信号;和将所述第一光信号发送至第一光路耦合设备,以使所述第一光路耦合设备将所述第一光信号耦合至光信号传输线路进行传输。
在一些实施例中,所述信号处理方法还包括:接收第二光路耦合设备发送的预设频率的第二光信号,所述第二光信号是所述第二光路耦合设备从所述光信号传输线路中获取的;将所述第二光信号转换为第二待处理电信号;将所述第二待处理电信号转换为第二待处理光信号;和将所述第二待处理光信号发送至所述时间同步设备。
在一些实施例中,所述第一光信号和所述第二光信号为波长不同的光信号。
在一些实施例中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
根据本公开的第八方面,提供一种信号处理方法,包括:接收第一光路耦合设备发送的预设频率的第一光信号,所述第一光信号是所述第一光路耦合设备从光信号传输线路中获取的;将所述第一光信号转换为第一待处理电信号;将所述第一待处理电信号转换为第一待处理光信号;和将所述第一待处理光信号发送至时间同步设备。
在一些实施例中,所述信号处理方法还包括:接收所述时间同步设备发送的待发送光信号;将所述待发送光信号转换为待发送电信号;将所述待发送电信号转换为预设频率的第二光信号;和将所述第二光信号发送至第二光路耦合设备,以使所述第二光路耦合设备将所述第二光信号耦合至所述光信号传输线路进行传输。
在一些实施例中,所述第一光信号和所述第二光信号为波长不同的光信号。
在一些实施例中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施方式,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本示例性实施方式中一种信号处理设备的结构示意图;
图2示出本示例性实施方式中另一种信号处理设备的结构示意图;
图3示出本示例性实施方式中一种信号处理系统的结构示意图;
图4示出本示例性实施方式中另一种信号处理系统的结构示意图;
图5示出本示例性实施方式中又一种信号处理系统的结构示意图;
图6示出本示例性实施方式中再一种信号处理系统的结构示意图;
图7示出本示例性实施方式中一种信号传输子系统的结构示意图;
图8示出本示例性实施方式中一种信号传输系统的结构示意图;
图9示出本示例性实施方式中一种信号处理方法的流程示意图。
具体实施方式
现在将参考附图更全面地描述示例性实施方式。然而,示例性实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例性实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中, 提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的步骤。例如,有的步骤还可以分解,而有的步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
相关技术中,出现了通过OTN/WDM系统在通信设备/系统之间传输时间同步信号进行时间同步方案。在该时间同步方案中,时间同步信号通常封装于业务数据中,在通信设备/系统之间进行时间同步的过程中,通常需光监控设备将时间同步信号从业务数据中提取出来,然后将时间同步信号处理为光信号,并通过复用器耦合至光信号传输线路进行传输。
其中,光监控设备对时间同步信号的提取处理过程需要耗费一定的时间,会导致时间同步信号的实际时间和提取到的时间同步信号的时间存在偏差,影响了被传输的时间同步信号的精准度。即,相关技术中提供的通信设备之间的时间同步方案的实现过程复杂,成本较高,且同步结果的精准度差。
鉴于上述问题,本公开的示例性实施方式提供一种信号处理设备,进而提升传输的时间同步信号的精准度。该信号处理设备可以应用于基于波分复用系统的时间同步信号传输场景中,该信号处理设备可以包括第一光电转换模块和第二光电转换模块;其中:第一光电转换模块,用于接收时间同步设备发送的待发送光信号,并将待发送光信号转换为待发送电信号,并将待发送电信号传输至第二光电转换模块;第二光电转换模块,用于将待发送电信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备,以使第一光路耦合设备将第一光信号耦合至光信号传输线路进行传输;其中,待发送光信号是时间同步设备根据初始电信号生成的,初始电信号包括业务信号和时间同步信号。信号处理设备在传输时间同步信号的过程中,无需在业务信号中提取时间同步信号,推升了 传输的时间同步信号的精准度。
本公开实施例提供了一种信号处理设备,该信号处理设备可以应用于时间同步信号发送节点,如图1所示,该信号处理设备100包括第一光电转换模块101和第二光电转换模块102。
第一光电转换模块101,用于接收时间同步设备发送的待发送光信号,并将待发送光信号转换为待发送电信号,以及将待发送电信号传输至第二光电转换模块,待发送光信号是时间同步设备根据初始电信号生成的,初始电信号包括业务信号和时间同步信号。例如,第一光电转换模块101为第一光电转换器。
第二光电转换模块102,用于将待发送电信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备,以使第一光路耦合设备将第一光信号耦合至光信号传输线路进行传输。例如,第二光电转换模块102为第二光电转换器。
综上所述,本公开实施例提供的信号处理设备,第一光电转换模块,可以接收时间同步设备发送的待发送光信号,并将待发送光信号转换为待发送电信号,以及将待发送电信号传输至第二光电转换模块,第二光电转换模块,可以将待发送电信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备,以使第一光路耦合设备将第一光信号耦合至光信号传输线路进行传输。可以在时间同步信号发送节点,直接将包含时间同步信号的待发送光信号转换为预设频率的光信号进行传输,无需从待发送光信号中提取时间同步信号,防止时间同步信号提取和处理等过程对时间同步信号的精度造成的干扰,可以提升传输的时间同步信号的精准度。
在一种可选的实施方式中,信号处理设备可以包括光监控板卡,光监控板卡可以包括第一光电转换模块和第二光电转换模块,其中,第一光电转换模块和第二光电转换模块可以为SFP模块(Small Form-factor Pluggsable,小型可热插拔光收发一体模块)。
需要说明的是,在本公开实施例中,时间同步信号发送节点需要接收时间同步信号接收节点发送的时间同步信号,便于时间同步信号发送节点根据时间同步信号接收节点的时间同步信号,对时间同步信号发送节点进行时间校正,以使时间同步信号接收节点和时间同步信号发送节点的时间保持一致。其中,为了防止时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号,在光信号传输线路中互相干扰,时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号的波长不同,可以提升时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号的传输稳定性和可靠性。
在一种可选的实施方式中,在时间同步信号发送节点,信号处理设备的第一光电转换模块,还用于接收第二光路耦合设备发送的预设频率的第二光信号,并将第二光信号转换为第二待处理电信号,以及将第二待处理电信号发送至第一光电转换模块;第一光电转换模块,用于将第二待处理电信号转换为第二待处理光信号,并将第二待处理光信号发送至时间同步设备。其中,第二光信号是第二光路耦合设备从光信号传输线路中获取的;预设频率的第二光信号可以是时间同步信号接收节点通过光信号传输线路传输的。可以在时间同步信号发送节点,直接将从光信号传输线路获取的第二光信号转换为电信号和光信号,该过程中无需对时间同步信号进行提取处理,可以提升获取的时间同步信号的精准度和效率;且光信号传输线路中的第二光信号和光信号传输线路中的第一光信号波长不同,二者不会存在干扰,可以提升第一光信号和第二光信号的传输稳定性和可靠性。
在一种可选的实施方式中,在光信号传输线路,不同波长的光信号的传输时间不同,为了降低时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号,在光信号传输线路中的时延,提升时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号的传输时延一致性;第一光信号和第二光信号为波长不同的光信号,第一光信号和第二光信号的波长差值小于或者等于预设波长阈值,其中,可以基于实际需要确定预设波长阈值,本公开实施例对此不作限定。可以降低时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号,在光信号传输线路中的时延,进一步提升时间同步信号发送节点和时间同步信号接收节点,获取的时间同步信号的精准度。
示例的,第一光信号的波长可以为196.0Thz,第二光信号的波长可以为196.1Thz,由于196.0Thz的第一光信号和196.1Thz的第二光信号的波长差值为0.1Thz,可以进一步减少第一光信号和第二光信号在光信号传输线路中的传输时延,进一步提升时间同步信号发送节点和时间同步信号接收节点从对端获取到的时间同步信号的精准度。可以理解的是,时间同步信号发送节点的对端是时间同步信号接收节点;时间同步信号接收节点的对端是时间同步信号发送节点。
本公开实施例提供了一种信号处理设备,该信号处理设备可以应用于时间同步信号接收节点,如图2所示,该信号处理设备100包括第二光电转换模块102和第一光电转换模块101。
第二光电转换模块102,用于接收第一光路耦合设备发送的预设频率的第一光信号,并将第一光信号转换为第一待处理电信号,以及将第一待处理电信号发送至第一光电转换模块,其中,第一光信号是第一光路耦合设备从光信号传输线路中获取的,预设频率的第 一光信号可以是时间同步信号发送节点通过光信号传输线路传输的。例如,第二光电转换模块102为第二光电转换器。
第一光电转换模块101,用于将第一待处理电信号转换为第一待处理光信号,并将第一待处理光信号发送至时间同步设备。例如,第一光电转换模块101为第一光电转换器。
综上所述,本公开实施例提供的信号处理设备,第二光电转换模块可以接收第一光路耦合设备发送的预设频率的第一光信号,并将第一光信号转换为第一待处理电信号,以及将第一待处理电信号发送至第一光电转换模块;第一光电转换模块可以将第一待处理电信号转换为第一待处理光信号,并将第一待处理光信号发送至时间同步设备;可以在时间同步信号接收节点,直接将从光信号传输线路获取的第一光信号转换为电信号和光信号,该过程中无需对时间同步信号进行提取处理,可以提升获取的时间同步信号的精准度和效率。
需要说明的是,在本公开实施例中,时间同步信号接收节点需要根据时间同步信号发送节点的时间同步信号,对时间同步信号接收节点进行时间校正,以使时间同步信号接收节点和时间同步信号发送节点的时间保持一致;其中,为了防止时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号,在光信号传输线路中互相干扰,时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号的波长不同,可以提升时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号的传输稳定性和可靠性。
在一种可选的实施方式中,在时间同步信号接收节点,信号处理设备的第一光电转换模块,还用于接收时间同步设备发送的待发送光信号,将待发送光信号转换为待发送电信号,以及将待发送电信号传输至第二光电转换模块;第二光电转换模块,还用于将待发送电信号转换为预设频率的第二光信号,并将第二光信号发送至第二光路耦合设备,以使第二光路耦合设备将第二光信号耦合至光信号传输线路进行传输。可以在时间同步信号接收节点,直接将包含时间同步信号的待发送光信号转换为预设频率的第二光信号进行传输,无需从待发送光信号中提取时间同步信号,可以提升传输的时间同步信号的精准度;且时间同步信号接收节点耦合至光信号传输线路中的第二光信号和光信号传输线路中的第一光信号波长不同,二者不会存在干扰,可以提升第一光信号和第二光信号的传输稳定性和可靠性。
在一种可选的实施方式中,在光信号传输线路,不同波长的光信号的传输时间不同,为了降低时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号,在光信号传输线路中的时延,提升时间同步信号发送节点发送的光信号和时间同步信号接收 节点发送的光信号的传输时延一致性;第一光信号和第二光信号为波长不同的光信号,第一光信号和第二光信号的波长差值小于或者等于预设波长阈值,其中,可以基于实际需要确定预设波长阈值,本公开实施例对此不作限定。可以降低时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号,在光信号传输线路中的时延,进一步提升时间同步信号发送节点和时间同步信号接收节点,获取的时间同步信号的精准度。
示例的,第一光信号的波长可以为196.0Thz,第二光信号的波长可以为196.1Thz,由于196.0Thz的第一光信号和196.1Thz的第二光信号的波长差值为0.1Thz,可以进一步减少第一光信号和第二光信号在光信号传输线路中的传输时延,进一步提升时间同步信号发送节点和时间同步信号接收节点从对端获取到的时间同步信号的精准度。可以理解的是,时间同步信号发送节点的对端是时间同步信号接收节点;时间同步信号接收节点的对端是时间同步信号发送节点。
本公开实施例提供了一种信号处理系统10,该信号处理系统可以应用于时间同步信号发送节点,如图3所示,信号处理系统10包括:时间同步设备200、如上述实施例中的信号处理设备100以及第一光路耦合设备300。
时间同步设备200,用于根据初始电信号生成待发送光信号,并将待发送光信号发送至信号处理设备100;其中,初始电信号包括业务信号和时间同步信号。
信号处理设备100,用于将待发送光信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备300。
其中,信号处理设备将待发送光信号转换为预设频率的第一光信号的过程可以参考上述实施例,本公开对此不作赘述。
第一光路耦合设备300,用于将第一光信号耦合至光信号传输线路进行传输。
综上所述,本公开实施例提供的信号处理系统,时间同步设备,可以根据初始电信号生成待发送光信号,并将待发送光信号发送至信号处理设备;信号处理设备,可以将待发送光信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备;第一光路耦合设备,用于将第一光信号耦合至光信号传输线路进行传输。可以在时间同步信号发送节点,利用该信号处理系统直接将包含时间同步信号的待发送光信号转换为第一光信号进行传输,无需从待发送光信号中提取时间同步信号,可以提升传输的时间同步信号的精准度。
在一种可选的实施方式中,时间同步设备可以包括同步GE(Gigabit Ethernet,千兆以太网)接口、时间同步信号接口,该同步GE接口用于获取业务信号,时间同步信号接 口可以获取时钟设备发送的时间同步信号,将业务信号和时间同步信号封装为初始电信号,并将初始电信号转化为待发送光信号,其中,可以基于实际需要确定待发送光信号的波长,本公开实施例对此不作限定。示例的,待发送光信号的波长可以为1310nm(纳米)。
需要说明的是,在本公开实施例中,信号处理系统中设备之间通过各设备上的接口,以及接口之间的光信号传输线路连接。例如,如图3所示,时间同步设备200通过其中的第一接口201和信号处理设备100上的第二接口103连接;信号处理设备100通过其中的第三接口104和第一光路耦合设备300中的第四接口301连接。
在一种可选的实施方式中,时间同步设备200通过第一接口201将待发送光信号发送至信号处理设备100的第二接口103,信号处理设备100通过第二接口103获取待发送光信号,并将待发送光信号转换为预设频率的第一光信号,以及将第一光信号通过第三接口104发送至第一光路耦合设备的第四接口301,第一光路耦合设备302可以通过第四接口301获取第一光信号,并将第一光信号耦合至光信号传输线路进行传输。
在一种可选的实施方式中,时间同步信号发送节点还需要接收时间同步信号接收节点发送的时间同步信号,以便于进行时间同步;则如图4所示,信号处理系统10还包括第二光路耦合设备400。
第二光路耦合设备400,用于从光信号传输线路中获取第二光信号,并将第二光信号发送至信号处理设备100,其中,第二光信号是时间同步信号接收节点发送的,第二光信号是时间同步信号发送节点根据初始电信号确定的,初始电信号包括业务信号和时间同步信号。
信号处理设备100,用于将第二光信号转换为第二待处理光信号,并将第二待处理光信号发送至时间同步设备200。
其中,信号处理设备将第二光信号转换为第二待处理光信号的过程可以参考上述实施例,本公开对此不作赘述。
时间同步设备200,用于将第二待处理光信号转换为第二目标电信号。
其中,第二目标电信号中携带有时间同步信号接收节点的时间同步信号,可以使时间同步信号发送节点根据时间同步信号接收节点发送的时间同步信号,对时间同步信号发送节点的时间进行校正,保证时间同步信号发送节点和时间同步信号接收节点的时间一致;且可以在时间同步信号发送节点,利用该信号处理系统直接从光信号传输线路获取包含时间同步信号的第二光信号,并将第二光信号转换为第二目标光信号,无需从第二光信号中提取时间同步信号,可以提升获取的时间同步信号的精准度。
需要说明的是,在本公开实施例中,信号处理系统中设备之间通过各设备上的接口,以及接口之间的光信号传输线路连接;如图4所示,时间同步设备200通过其中的第五接口202和信号处理设备100上的第六接口105连接;信号处理设备100通过其中的第七接口106和第二光路耦合设备400中的第八接口401连接。
在一种可选的实施方式中,第二光路耦合设备400通过第八接口401将第二光信号发送至信号处理设备100的第七接口106;信号处理设备100通过第七接口106获取将第二光信号,并将第二光信号转换为第二待处理光信号,以及将第二待处理光信号通过第六接口105发送至时间同步设备200的第五接口202;时间同步设备200可以通过第五接口202获取第二待处理光信号,并将第二待处理光信号转换为第二目标电信号。
本公开实施例提供了一种信号处理系统10,该信号处理系统可以应用于时间同步信号接收节点,如图5所示,信号处理系统10包括:时间同步设备200、如上述实施例中的信号处理设备100以及第一光路耦合设备300。
第一光路耦合设备300,用于从光信号传输线路中获取第一光信号,将第一光信号发送至信号处理设备100。
其中,第一光信号是时间同步信号发送节点发送的光信号,第一光信号是时间同步信号发送节点根据初始电信号确定的,初始电信号包括业务信号和时间同步信号。
信号处理设备100,用于将第一光信号转换为第一待处理光信号,并将第一待处理光信号发送至时间同步设备200。
其中,信号处理设备将第一光信号转换为第一待处理光信号的过程可以参考上述实施例,本公开对此不作赘述。
时间同步设备200,用于将第一待处理光信号转换为第一目标电信号。
其中,第一目标电信号中携带有时间同步信号发送节点的时间同步信号,可以使时间同步信号接收节点根据时间同步信号发送节点发送的时间同步信号,对时间同步信号接收节点的时间进行校正,保证时间同步信号发送节点和时间同步信号接收节点的时间一致。
综上所述,本公开实施例提供的信号处理系统,第一光路耦合设备可以从光信号传输线路中获取第一光信号,将第一光信号发送至信号处理设备;信号处理设备可以将第一光信号转换为第一待处理光信号,并将第一待处理光信号发送至时间同步设备,时间同步设备可以将第一待处理光信号转换为第一目标电信号。可以在时间同步信号接收节点,利用该信号处理系统直接从光信号传输线路获取包含时间同步信号的第一光信号,并将第一光信号转换为第一目标光信号,无需从第一光信号中提取时间同步信号,可以提升获取的时 间同步信号的精准度。
需要说明的是,在本公开实施例中,信号处理系统中设备之间通过各设备上的接口,以及接口之间的光信号传输线路连接;如图5所示,时间同步设备200通过其中的第一接口201和信号处理设备100上的第二接口103连接;信号处理设备100通过其中的第三接口104和第一光路耦合设备300中的第四接口301连接。
在一种可选的实施方式中,第一光路耦合设备300从光信号传输线路中获取到第一光信号后,通过第四接口301将第一光信号发送至信号处理设备100的第三接口104;信号处理设备100通过第三接口104获取第一光信号,并将第一光信号转换为第一待处理光信号,以及将第一待处理光信号通过第二接口103发送至时间同步设备200的第一接口201;时间同步设备200通过第一接口201获取第一待处理光信号,并将第一待处理光信号转换为第一目标电信号。
在一种可选的实施方式中,时间同步信号接收节点还需要向时间同步信号发送节点发送时间同步信号,以便于进行时间同步;则如图6所示,信号处理系统10还包括第二光路耦合设备400。
时间同步设备200,用于根据初始电信号生成待发送光信号,并将待发送光信号发送至信号处理设备100;其中,初始电信号包括业务信号和时间同步信号。
信号处理设备100,用于将待发送光信号转换为预设频率的第二光信号,并将第二光信号发送至第二光路耦合设备400。
其中,信号处理设备将待发送光信号转换为预设频率的第二光信号的过程可以参考上述实施例,本公开对此不作赘述。
第二光路耦合设备400,用于将第二光信号耦合至光信号传输线路进行传输。可以在时间同步信号接收节点,利用该信号处理系统直接将包含时间同步信号的待发送光信号转换为第二光信号进行传输,无需从待发送光信号中提取时间同步信号,可以提升传输的时间同步信号的精准度。
需要说明的是,在本公开实施例中,信号处理系统中设备之间通过各设备上的接口,以及接口之间的光信号传输线路连接;如图6所示,时间同步设备200通过其中的第五接口202和信号处理设备100上的第六接口105连接;信号处理设备100通过其中的第七接口106和第二光路耦合设备400中的第八接口401连接。
在一种可选的实施方式中,时间同步设备200在根据初始电信号生成待发送光信号后,并通过第五接口202将待发送光信号发送至信号处理设备100的第六接口105;信号处理 设备100通过第六接口105获取待发送光信号,并将待发送光信号转换为预设频率的第二光信号,以及将第二光信号通过第七接口106发送至第二光路耦合设备400的第八接口401;第二光路耦合设备400通过第八接口401获取第二光信号,并将第二光信号耦合至光信号传输线路进行传输。
本公开实施例提供了一种信号传输子系统,信号传输子系统包括第一信号处理系统、第二信号处理系统和光信号传输线路,第一信号处理系统为上述实施例中应用于时间同步信号发送节点的信号处理系统,或者,第二信号处理系统为上述实施例中应用于时间同步信号接收节点的信号处理系统,其中,第一信号处理系统和第二信号处理系统通过光信号传输线路连接;第一信号处理系统应用于时间同步信号发送节点,第二信号处理系统应用于时间同步信号接收节点;光信号传输线路可以为光纤或者光缆等。
在一种可选的实施方式中,如图7所示,图7示出了一种信号传输子系统的结构示意图,信号传输子系统60包括第一信号处理系统61、第二信号处理系统62和光信号传输线路63,第一信号处理系统为上述实施例中应用于时间同步信号发送节点的信号处理系统,第二信号处理系统为上述实施例中应用于时间同步信号接收节点的信号处理系统,其中,第一信号处理系统61和第二信号处理系统62通过光信号传输线路63连接;第一信号处理系统应用于时间同步信号发送节点,第二信号处理系统62应用于时间同步信号接收节点;光信号传输线路可以为光纤或者光缆等。
在一种可选的实施方式中,第一信号处理系统61,用于根据初始电信号确定第一光信号,并将第一光信号耦合至光信号传输线路63,以使光信号传输线路63将第一光信号传输至第二信号处理系统62。
第二信号处理系统62,用于从光信号传输线路63中获取第一光信号,并根据第一光信号确定第一目标电信号,以利用第一目标电信号中的时间同步信号将时间同步信号接收节点和时间同步信号发送节点的时间进行同步。
其中,第一信号处理系统根据初始电信号确定第一光信号的过程可以参考上述实施例,本公开对此不做赘述;第二信号处理系统根据第一光信号确定第一目标电信号可以参考上述实施例,本公开对此不做赘述。
在一种可选的实施方式中,第二信号处理系统62,用于根据初始电信号确定第二光信号,并将第二光信号耦合至光信号传输线路63,以使光信号传输线路63将第二光信号传输至第一信号处理系统61。
第一信号处理系统61,用于从光信号传输线路63中获取第二光信号,并根据第二光 信号确定第二目标电信号,以利用第二目标电信号将时间同步信号发送节点和时间同步信号接收节点的时间进行同步。
其中,第二信号处理系统根据初始电信号确定第二光信号的过程可以参考上述实施例,本公开对此不做赘述;第一信号处理系统根据第二光信号确定第二目标电信号可以参考上述实施例,本公开对此不做赘述。
在一种可选的实施方式中,第一光信号和第二光信号为波长不同的光信号,第一光信号和第二光信号的波长差值小于或者等于预设波长阈值。
综上所述,本公开实施例提供的信号传输子系统,在时间同步信号发送节点,第一信号处理系统可以直接将包含时间同步信号的初始电信号转换为光信号进行传输,无需从初始电信号中提取时间同步信号,可以提升传输的时间同步信号的精准度;在时间同步信号接收节点,第二信号处理系统可以直接从光信号传输线路获取包含时间同步信号的光信号,并将光信号转换为目标光信号,无需从光信号中提取时间同步信号,可以提升获取的时间同步信号的精准度。
进一步的,时间同步信号发送节点和时间同步信号接收节点分别向对端发送光信号时,第一信号处理系统发送的第一光信号和第二信号处理系统发送的第二光信号的波长不同,可以防止光信号之间的干扰,保证光信号的安全传输。
进一步的,第一光信号和第二光信号的波长差值小于或者等于预设波长阈值,可以降低时间同步信号发送节点发送的光信号和时间同步信号接收节点发送的光信号在光信号传输线路中的时延,进一步提升信号传输子系统对应的时间同步信号发送节点和时间同步信号接收节点,获取的时间同步信号的精准度。
本公开实施例提供一种信号传输系统70,该信号传输系统可以应用于光信号长距离传输场景中,如图8所示,信号传输系统70包括第一信号传输子系统71、第二信号传输子系统72和中继设备73,第一信号传输子系统71和第二信号传输子系统72为上述实施例中的信号传输子系统。
第一信号传输子系统71中,第二信号处理系统62的第一光电转换模块101和中继设备73的第一端连接,第二信号传输子系统72中,第一信号处理系统61的第一光电转换模块和中继设备73的第二端连接。
需要说明的是,在光信号长距离传输场景中,可以包括多个信号传输子系统,本公开实施例对此不作限定,其中,相邻两个信号传输子系统可以通过中继设备连接,以实现光信号的长距离传输的目标。
本公开实施例以光信号长距离传输场景中,包含一个第一信号传输子系统、一个第二信号传输子系统和一个中继设备的信号传输系统为例,对该信号传输系统进行说明。
在一种可选的实施方式中,在第一信号传输子系统71的第二信号处理系统62中,第一光路耦合设备可以获取第一信号处理系统61通过光信号传输线路63发送的第一光信号,并利用第二光电转换模块将第一光信号处理为第一待处理光信号,接着,将第一待处理光信号发送至第一光电转换模块,在第一光电转换模块将第一待处理电信号转换为第一待处理光信号后,可以直接将第一待处理光信号传输至中继设备73。
中继设备73可以对第一待处理光信号进行放大再生,得到再生后的第一待处理光信号,并将再生后的第一待处理光信号发送至第二信号传输子系统72的第一信号处理系统61中的第一光电转换模块。
在第二信号传输子系统72的第一信号处理系统61中,第一光电转换模块可以将再生后的第一待处理光信号确定为待发送光信号,并将待发送光信号转换为待发送电信号,接着,将待发送电信号发送至第二光电转换模块,第二光电转换模块将待发送电信号转换为预设频率的第一光信号,并将第一光信号发送至第一光路耦合设备,以使第一光路耦合设备将第一光信号耦合至光信号传输线路63,以将第一光信号传输至第二信号传输子系统72的第二信号处理系统62。
在一种可选的实施方式中,在第二信号传输子系统72的第一信号处理系统61中,第二光路耦合设备可以获取第二信号处理系统62通过光信号传输线路63发送的第二光信号,并利用第二光电转换模块将第二光信号处理为第二待处理光信号,接着,将第二待处理光信号发送至第一光电转换模块,在第一光电转换模块101将第二待处理电信号转换为第二待处理光信号后,可以直接将第二待处理光信号传输至中继设备73。
中继设备73可以对第二待处理光信号进行放大再生,得到再生后的第二待处理光信号,并将再生后的第二待处理光信号发送至第一信号传输子系统71的第二信号处理系统62中的第一光电转换模块。
在第二信号传输子系统71的第二信号处理系统62中,第一光电转换模块可以将再生后的第二待处理光信号确定为待发送光信号,并将待发送光信号转换为待发送电信号,接着,将待发送电信号发送至第二光电转换模块,第二光电转换模块将待发送电信号转换为预设频率的第二光信号,并将第二光信号发送至第二光路耦合设备,以使第二光路耦合设备将第二光信号耦合至光信号传输线路63,以将第二光信号传输至第一信号传输子系统71的第一信号处理系统61。
综上所述,本公开实施例提供的种信号传输系统,可以在信号长距离传出场景中,第一信号传输子系统中的第二信号处理系统可以直接从光信号传输线路获取包含时间同步信号的光信号,并将光信号转换为待处理光信号,无需从光信号中提取时间同步信号,防止时间同步信号提取和处理等过程对时间同步信号的精度造成的干扰,可以提升传输的时间同步信号的精准度。
进一步的,将待处理光信号经过中继设备进行再生得到再生后的待处理光信号,并将再生后的待处理光信号直接发送至第二信号传输子系统的第一信号处理系统中的第一光电转换模块,以使第一光电转换模块将再生后的待处理光信号确定为待发送光信号进行传输,其中,光信号无需经过时间同步设备进行处理,可以进一步提升传输的时间同步信号的精准度。
本公开实施例提供一种信号处理方法,信号处理方法可以应用于上述信号处理设备,该信号处理设备可以为时间同步信号发送节点的信号处理设备。如图9所示,该方法包括步骤S901至步骤S904。
步骤S901,接收时间同步设备发送的待发送光信号。
其中,待发送光信号是时间同步设备根据初始电信号生成的,初始电信号包括业务信号和时间同步信号。
步骤S902,将待发送光信号转换为待发送电信号。
在本步骤S901中,信号处理设备的第一光电转换模块可以将待发送光信号转换为待发送电信号,并将待发送电信号传输至第二光电转换模块。
步骤S903,将待发送电信号转换为预设频率的第一光信号。
在本步骤S901中,信号处理设备的第二光电转换模块可以将待发送电信号转换为预设频率的第一光信号。
步骤S904,将第一光信号发送至第一光路耦合设备,以使第一光路耦合设备将第一光信号耦合至光信号传输线路进行传输。
综上所述,本公开实施例提供的信号处理方法,可以接收时间同步设备发送的待发送光信号,将待发送光信号转换为待发送电信号,接着,将待发送电信号转换为预设频率的第一光信号进行传输,无需从待发送光信号中提取时间同步信号,防止时间同步信号提取和处理等过程对时间同步信号的精度造成的干扰,可以提升传输的时间同步信号的精准度。
在一些实施例中,所述信号处理方法还包括:接收第二光路耦合设备发送的预设频率的第二光信号,所述第二光信号是所述第二光路耦合设备从所述光信号传输线路 中获取的;将所述第二光信号转换为第二待处理电信号;将所述第二待处理电信号转换为第二待处理光信号;和将所述第二待处理光信号发送至所述时间同步设备。
在一些实施例中,所述第一光信号和所述第二光信号为波长不同的光信号。
在一些实施例中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
在一种可选的实施方式中,信号处理设备可以为时间同步信号接收节点的信号处理设备,则信号处理方法包括:接收第一光路耦合设备发送的第一光信号,并将第一光信号发送至第二光电转换模块,第二光电转换模块将第一光信号转换为第一待处理电信号,并将第一待处理电信号发送至第一光电转换模块;第一光电转换模块可以将第一待处理电信号转换为第一待处理光信号,并将第一待处理光信号发送至时间同步设备,其中,第一光信号是第一光路耦合设备从光信号传输线路中获取的。
在本公开另一些实施例中,提供一种信号处理方法。信号处理方法包括:接收第一光路耦合设备发送的预设频率的第一光信号,所述第一光信号是所述第一光路耦合设备从光信号传输线路中获取的;将所述第一光信号转换为第一待处理电信号;将所述第一待处理电信号转换为第一待处理光信号;和将所述第一待处理光信号发送至时间同步设备。
在一些实施例中,所述信号处理方法还包括:接收所述时间同步设备发送的待发送光信号;将所述待发送光信号转换为待发送电信号;将所述待发送电信号转换为预设频率的第二光信号;和将所述第二光信号发送至第二光路耦合设备,以使所述第二光路耦合设备将所述第二光信号耦合至所述光信号传输线路进行传输。
在一些实施例中,所述第一光信号和所述第二光信号为波长不同的光信号。
在一些实施例中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (20)

  1. 一种信号处理设备,包括:
    第一光电转换模块,被配置为接收时间同步设备发送的待发送光信号,并将所述待发送光信号转换为待发送电信号,以及将所述待发送电信号传输至第二光电转换模块,所述待发送光信号是所述时间同步设备根据初始电信号生成的,所述初始电信号包括业务信号和时间同步信号;和
    所述第二光电转换模块,被配置为将所述待发送电信号转换为预设频率的第一光信号,并将所述第一光信号发送至第一光路耦合设备,以使所述第一光路耦合设备将所述第一光信号耦合至光信号传输线路进行传输。
  2. 根据权利要求1所述的信号处理设备,其中,
    所述第二光电转换模块还被配置为接收第二光路耦合设备发送的预设频率的第二光信号,并将所述第二光信号转换为第二待处理电信号,以及将所述第二待处理电信号发送至所述第一光电转换模块,所述第二光信号是所述第二光路耦合设备从所述光信号传输线路中获取的;
    所述第一光电转换模块还被配置为将所述第二待处理电信号转换为第二待处理光信号,并将所述第二待处理光信号发送至所述时间同步设备。
  3. 根据权利要求2所述的信号处理设备,其中,所述第一光信号和所述第二光信号为波长不同的光信号。
  4. 根据权利要求2或3所述的信号处理设备,其中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
  5. 一种信号处理设备,包括:
    第二光电转换模块,被配置为接收第一光路耦合设备发送的预设频率的第一光信号,并将所述第一光信号转换为第一待处理电信号,以及将所述第一待处理电信号发送第一光电转换模块,所述第一光信号是所述第一光路耦合设备从光信号传输线路中获取的;和
    所述第一光电转换模块,被配置为将所述第一待处理电信号转换为第一待处理光信号,并将所述第一待处理光信号发送至时间同步设备。
  6. 根据权利要求5所述的信号处理设备,其中,
    所述第一光电转换模块还被配置为接收所述时间同步设备发送的待发送光信号,并将所述待发送光信号转换为待发送电信号,以及将所述待发送电信号传输至第二光电转换模块;
    所述第二光电转换模块还被配置为将所述待发送电信号转换为预设频率的第二光信号,并将所述第二光信号发送至第二光路耦合设备,以使所述第二光路耦合设备将所述第二光信号耦合至所述光信号传输线路进行传输。
  7. 根据权利要求6所述的信号处理设备,其中,所述第一光信号和所述第二光信号为波长不同的光信号。
  8. 根据权利要求6或7所述的信号处理设备,其中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
  9. 一种信号处理系统,包括:时间同步设备、如权利要求1至4任一所述的信号处理设备以及第一光路耦合设备;
    所述时间同步设备被配置为根据初始电信号生成待发送光信号,并将所述待发送光信号发送至所述信号处理设备,所述初始电信号包括业务信号和时间同步信号;
    所述信号处理设备被配置为将所述待发送光信号转换为预设频率的第一光信号,并将所述第一光信号发送至所述第一光路耦合设备;
    所述第一光路耦合设备被配置为将所述第一光信号耦合至光信号传输线路进行传输。
  10. 一种信号处理系统,包括:时间同步设备、如权利要求5至8任一所述的信号处理设备以及第一光路耦合设备;
    所述第一光路耦合设备被配置为从所述光信号传输线路中获取第一光信号,将所述第一光信号发送至所述信号处理设备;
    所述信号处理设备被配置为将所述第一光信号转换为第一待处理光信号,并将所述第一待处理光信号发送至所述时间同步设备;
    所述时间同步设备被配置为将所述第一待处理光信号转换为第一目标电信号。
  11. 一种信号传输子系统,包括第一信号处理系统、第二信号处理系统和光信号传输线路,所述第一信号处理系统为如权利要求9所述的信号处理系统,或者,所述第二信号处理系统为如权利要求10所述的信号处理系统,
    所述第一信号处理系统和所述第二信号处理系统通过所述光信号传输线路连接。
  12. 一种信号传输系统,包括第一信号传输子系统、第二信号传输子系统和中继设备,所述第一信号传输子系统和所述第二信号传输子系统为如权利要求11所述的信号传输子系统,
    所述第一信号传输子系统中,第二信号处理系统的所述第一光电转换模块和所述中继设备的第一端连接,所述第二信号传输子系统中,第一信号处理系统的所述第一光电转换模块和所述中继设备的第二端连接。
  13. 一种信号处理方法,包括:
    接收时间同步设备发送的待发送光信号,所述待发送光信号是所述时间同步设备根据初始电信号生成的,所述初始电信号包括业务信号和时间同步信号;
    将所述待发送光信号转换为待发送电信号;
    将所述待发送电信号转换为预设频率的第一光信号;和
    将所述第一光信号发送至第一光路耦合设备,以使所述第一光路耦合设备将所述第一光信号耦合至光信号传输线路进行传输。
  14. 根据权利要求13所述的信号处理方法,还包括:
    接收第二光路耦合设备发送的预设频率的第二光信号,所述第二光信号是所述第二光路耦合设备从所述光信号传输线路中获取的;
    将所述第二光信号转换为第二待处理电信号;
    将所述第二待处理电信号转换为第二待处理光信号;和
    将所述第二待处理光信号发送至所述时间同步设备。
  15. 根据权利要求14所述的信号处理方法,其中,所述第一光信号和所述第二光信号为波长不同的光信号。
  16. 根据权利要求14或15所述的信号处理方法,其中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
  17. 一种信号处理方法,包括:
    接收第一光路耦合设备发送的预设频率的第一光信号,所述第一光信号是所述第一光路耦合设备从光信号传输线路中获取的;
    将所述第一光信号转换为第一待处理电信号;
    将所述第一待处理电信号转换为第一待处理光信号;和
    将所述第一待处理光信号发送至时间同步设备。
  18. 根据权利要求17所述的信号处理方法,还包括:
    接收所述时间同步设备发送的待发送光信号;
    将所述待发送光信号转换为待发送电信号;
    将所述待发送电信号转换为预设频率的第二光信号;和
    将所述第二光信号发送至第二光路耦合设备,以使所述第二光路耦合设备将所述第二光信号耦合至所述光信号传输线路进行传输。
  19. 根据权利要求18所述的信号处理方法,其中,所述第一光信号和所述第二光信号为波长不同的光信号。
  20. 根据权利要求18或19所述的信号处理方法,其中,所述第一光信号和所述第二光信号的波长差值小于或者等于预设波长阈值。
PCT/CN2022/125836 2022-04-11 2022-10-18 信号处理设备、系统和方法、信号传输子系统和系统 WO2023197549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210376953.2A CN114696938B (zh) 2022-04-11 2022-04-11 信号处理设备、系统和方法、信号传输子系统和系统
CN202210376953.2 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023197549A1 true WO2023197549A1 (zh) 2023-10-19

Family

ID=82143832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125836 WO2023197549A1 (zh) 2022-04-11 2022-10-18 信号处理设备、系统和方法、信号传输子系统和系统

Country Status (2)

Country Link
CN (1) CN114696938B (zh)
WO (1) WO2023197549A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696938B (zh) * 2022-04-11 2023-11-07 中国电信股份有限公司 信号处理设备、系统和方法、信号传输子系统和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447850A (zh) * 2007-11-28 2009-06-03 中兴通讯股份有限公司 利用光监控通道进行时钟收发的装置和时钟传送方法
US20150139664A1 (en) * 2013-11-20 2015-05-21 Electronics And Telecommunications Research Institute Method and apparatus for time synchronization between nodes
CN110492941A (zh) * 2018-05-14 2019-11-22 华为技术有限公司 一种光信号收发装置
CN110995389A (zh) * 2019-12-23 2020-04-10 电信科学技术第五研究所有限公司 一种光纤单向时频同步信号传递方法、装置、介质及设备
CN114696938A (zh) * 2022-04-11 2022-07-01 中国电信股份有限公司 信号处理设备、系统和方法、信号传输子系统和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039161B (zh) * 2007-03-05 2011-10-26 华为技术有限公司 电光转换模块、光电转换模块
CN204948081U (zh) * 2015-09-06 2016-01-06 福建联拓科技有限公司 一种自动同步的光纤射频传输设备
CN105634611B (zh) * 2016-01-08 2019-09-03 华为技术有限公司 光模块及信号处理的方法
WO2018045088A1 (en) * 2016-08-30 2018-03-08 Finisar Corporation Bi-directional transceiver with time synchronization
CN110505021B (zh) * 2019-08-26 2021-04-09 光子算数(北京)科技有限责任公司 一种光通信装置、光通信系统及光信号处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447850A (zh) * 2007-11-28 2009-06-03 中兴通讯股份有限公司 利用光监控通道进行时钟收发的装置和时钟传送方法
US20150139664A1 (en) * 2013-11-20 2015-05-21 Electronics And Telecommunications Research Institute Method and apparatus for time synchronization between nodes
CN110492941A (zh) * 2018-05-14 2019-11-22 华为技术有限公司 一种光信号收发装置
CN110995389A (zh) * 2019-12-23 2020-04-10 电信科学技术第五研究所有限公司 一种光纤单向时频同步信号传递方法、装置、介质及设备
CN114696938A (zh) * 2022-04-11 2022-07-01 中国电信股份有限公司 信号处理设备、系统和方法、信号传输子系统和系统

Also Published As

Publication number Publication date
CN114696938A (zh) 2022-07-01
CN114696938B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US11585993B2 (en) Integrated passive optical tap and optical signal termination
WO2023197549A1 (zh) 信号处理设备、系统和方法、信号传输子系统和系统
CN112865880B (zh) 一种通过光口单向传输数据系统及方法
US20150155963A1 (en) Upscaling 20G Optical Transceiver Module
US8351784B2 (en) Packet-optical integrated switch without optical transponder
CN103138866A (zh) 一种时钟同步的sfp电口装置及系统
US6880078B2 (en) Xaui extender card
JP4680073B2 (ja) Ponシステム
US9106484B2 (en) Low latency NX10G form factor module to an enhanced small form-factor pluggable uplink extender to maximize host port density
EP2584717B1 (en) Method and system for testing jitter compatibility
US9485083B2 (en) Method and apparatus for time synchronization between nodes
CN108600127B (zh) 一种基于脉冲交叠的超奈奎斯特的通信系统及方法
US20170142502A1 (en) Optical-electrical receiving and transmitting method and device, and optical-electrical transceiving method and apparatus and optical-electrical transceiver
CN204190773U (zh) 一种光模块
CN104796201A (zh) 基于二次复分接的数字光端机
CN110912611A (zh) 一种基于分布式同步授时技术的sfp传输系统
CN117155503B (zh) 一种可扩展的级联量子时间同步系统
WO2022194290A1 (zh) 光网络中以太数据处理的方法、装置以及系统
CN113411696B (zh) 一种数据传输系统及方法
JP5398251B2 (ja) 波長分散測定装置及び波長分散測定方法
CN114915337B (zh) 基于时间内插的光学时间传递系统和传递方法
JP5730719B2 (ja) 通信装置、通信方法及び通信システム
KR101252826B1 (ko) 광트랜스폰더가 필요없는 패킷-광 통합스위치
CN101299659A (zh) 网络同步的数据接口
EP4016428A1 (en) Data processing device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937186

Country of ref document: EP

Kind code of ref document: A1