WO2023197458A1 - 一种耦合储能系统且压缩流量可调的燃机系统及控制方法 - Google Patents

一种耦合储能系统且压缩流量可调的燃机系统及控制方法 Download PDF

Info

Publication number
WO2023197458A1
WO2023197458A1 PCT/CN2022/102369 CN2022102369W WO2023197458A1 WO 2023197458 A1 WO2023197458 A1 WO 2023197458A1 CN 2022102369 W CN2022102369 W CN 2022102369W WO 2023197458 A1 WO2023197458 A1 WO 2023197458A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air supply
gas
medium
supply section
Prior art date
Application number
PCT/CN2022/102369
Other languages
English (en)
French (fr)
Inventor
韩伟
宋晓辉
付康丽
陆续
姬海民
赵亮
谢贝贝
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023197458A1 publication Critical patent/WO2023197458A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes

Definitions

  • the present invention relates to the field of energy storage technology, specifically a gas turbine system and a control method coupled with an energy storage system and with adjustable compression flow.
  • gas turbine systems have been widely used in combination with energy storage systems due to their flexible operation and fast response rate.
  • the compressor rotor, turbine rotor and generator rotor are coaxially rigidly arranged.
  • the power consumption of the compressor accounts for 50% to 60% of the power consumption of the entire unit.
  • the temperature and pressure of the compressor outlet have a strong coupling relationship. , too high outlet temperature will limit the gas turbine's ability to carry high loads. Therefore, how to effectively reduce the power consumption of the compressor, while decoupling the compressor outlet temperature and pressure, and further improving the thermal efficiency of the gas turbine has become a key technology that needs breakthroughs in the future.
  • the present invention provides a gas turbine system and a control method coupled with an energy storage system and with adjustable compressed air flow; a full-angle inlet adjustable guide vane is used at the compressor inlet, and the compressor outlet is provided with
  • the high-pressure gas storage system can extract high-pressure air from the existing gas turbine system and store it.
  • the heat exchange system stores the heat generated by the compressor during the compression process, and achieves temperature-pressure decoupling through optimized management of heat
  • the integrated air supply system can provide low/medium temperature/low temperature according to the different gas needs of the gas turbine. High temperature compressed air source.
  • the technical solution adopted by the present invention is: a gas turbine system coupled with an energy storage system and with adjustable compression flow, including a high-pressure gas storage system, a heat exchange system, an integrated gas supply system and a gas turbine system; a gas turbine system
  • a full-angle inlet adjustable guide vane is provided at the entrance of the compressor chamber in the system.
  • a compressor outlet adjustment baffle is provided between the compressor chamber outlet and the combustion chamber. The compressor outlet adjustment baffle is connected to a compressor outlet adjustment baffle.
  • a compressor anti-surge valve is installed on the external pipeline connecting the compressor room and the combustion chamber in the gas turbine system; a gas storage tank, a low-temperature gas supply section, a medium-temperature gas supply section and a high-temperature gas supply are provided in the integrated gas supply system Section;
  • the heat exchange system includes a low-temperature medium container, a first heat exchanger, a high-temperature medium container, and a second heat exchanger connected in sequence.
  • the hot side outlet of the second heat exchanger is connected to the low-temperature medium container; the heat of the first heat exchanger
  • the side outlet is connected to the gas storage tank, and an exhaust port is provided at the outlet of the compressor chamber.
  • the exhaust port is connected to the hot side inlet of the first heat exchanger; the air supply outlet of the gas storage tank is respectively connected to the cold side of the second heat exchanger.
  • the inlet, medium temperature air supply section and low temperature air supply section, and the cold side outlet of the second heat exchanger are connected to the medium temperature air supply section and the high temperature air supply section respectively; the outlets of the high temperature air supply section, the medium temperature air supply section and the low temperature air supply section are all connected Combustion chamber in a gas turbine system.
  • the outlet of the low-temperature medium container is provided with a low-temperature medium conveying device, and the outlet of the high-temperature medium container is provided with a high-temperature medium conveying device.
  • a gas supply regulating valve is provided at the outlet of the gas storage tank.
  • a cold air regulating valve is provided between the valve of the air supply valve and the medium-temperature air supply section.
  • a regulating valve is provided between the exhaust port and the hot side of the first heat exchanger.
  • Low-temperature air supply The outlets of the low-temperature air supply section, the medium-temperature air supply section and the high-temperature air supply section are respectively equipped with a low-temperature section air supply flow regulating valve, a medium-temperature section air supply flow regulating valve and a high-temperature section air supply flow regulating valve; the low-temperature air supply section, the medium temperature air supply section and the high-temperature air supply section
  • the air supply section is equipped with temperature measuring points.
  • a flow monitoring device is provided at the entrance of the compressor chamber.
  • the flow monitoring device, the control end of the full-angle inlet adjustable guide vane, and the control end of the compressor outlet adjustment baffle control valve are connected to the control center, and the compressor anti-surge valve is controlled. Connect to the control center.
  • valve actuator control signal input ends of the low-temperature section air supply flow regulating valve, the medium-temperature section air supply flow regulating valve, the high-temperature section air supply flow regulating valve and the cold air regulating valve are connected to the control center; the temperature measuring points are all connected to the control center.
  • the gas storage tank is also connected to an external gas storage system, and a valve is provided at the inlet of the external gas storage system to the gas storage tank.
  • the working medium in the heat exchange system is molten salt, thermal oil or solid transportable particles.
  • the energy storage stage when the power supply of the power grid is sufficient and peak cutting is required, gradually close the compressor outlet adjustment baffle control valve to maintain the full operation of the compressor.
  • the compressor anti-surge valve When the angle inlet adjustable guide vane is at the maximum opening of 0°, corresponding to the fully open position, the compressor anti-surge valve is fully closed, the compressor is in full flow working state, and the low-temperature medium is exchanged with high-temperature and high-pressure gas through the first heat exchanger. After being heated, it enters the high-temperature medium container, and the high-temperature and high-pressure air is discharged from the compressor chamber and enters the first heat exchanger to release heat and then enter the gas storage tank;
  • Energy release stage gradually adjust the full-angle inlet adjustable guide vane to 90°, the compressor anti-surge valve of the gas turbine system is opened in automatic mode, and the compressor operates safely at the minimum flow rate; the high-temperature medium enters the second heat exchanger and is released After heating, it enters the low-temperature medium container.
  • the high-pressure air is divided into two paths from the gas storage tank. The first path is further divided into two paths and enters the low-temperature air supply section and the medium-temperature air supply section. The second path enters the second heat exchanger to absorb heat and is then divided. The two paths enter the high-temperature air supply section and the medium-temperature air supply section respectively.
  • the low-temperature air supply section, the medium-temperature air supply section and the high-temperature air supply section jointly supply air to different locations of the gas turbine system.
  • the high-temperature air supply section 12 is connected to the combustion chamber of the gas turbine system
  • the low-temperature air supply section 11 is connected to the instrument air and gas turbine cooling purge part of the gas turbine system
  • the medium-temperature air supply section 13 is connected to Gas turbine turbine blade cooling system in the gas turbine system.
  • Energy storage stage First, start the low-temperature medium conveying device to establish low-temperature medium circulation; secondly, adjust the opening of the baffle according to the compressor outlet, and gradually open the regulating valve entering the gas storage tank.
  • the high-temperature and high-pressure gas at the compressor outlet of the gas turbine system is adjusted
  • the valve enters the gas side of the first heat exchanger and releases heat.
  • the heat-released gas enters the gas storage tank and starts the low-temperature medium transport device.
  • the low-temperature medium enters the first heat exchanger to absorb heat and then enters the high-temperature medium container for heat storage;
  • Energy release stage start the high-temperature medium conveying device to establish high-temperature medium circulation; open the valve at the outlet of the gas tank, and high-pressure air enters the second heat exchanger to absorb heat.
  • the high-temperature medium releases heat in the second heat exchanger and then enters the low-temperature medium.
  • the container the high-pressure air after absorbing heat enters the high-temperature air supply section and the medium-temperature air supply section; the other high-pressure air directly enters the medium-temperature air supply section and the low-temperature air supply section, and the high-temperature air and low-temperature air entering the medium-temperature air supply section are mixed and input , the temperature of the mid-temperature air supply section is adjusted through the cold air regulating valve.
  • the high-temperature section air supply flow regulating valve, the mid-temperature section air supply flow regulating valve and the low-temperature section air supply flow regulating valve are controlled automatically.
  • the current value is automatically tracked, and the target value is manually controlled. Enter or adjust in real time according to the calculated value; the temperature of the low-temperature air supply section is the same as the temperature of the gas storage tank, and the temperature of the high-temperature air supply section is the same as the working fluid temperature at the outlet of the second heat exchanger; gradually adjust the full-angle inlet adjustable guide vane to 90°, the compressor anti-surge valve opens in automatic mode to ensure safe operation of the compressor at minimum flow.
  • the regulating valve and the compressor outlet regulating baffle are put into automatic operation mode to automatically track the compressor outlet flow.
  • the present invention has the following beneficial technical effects:
  • the gas turbine compressor adopts a full-angle imported adjustable guide vane and an outlet baffle that are jointly adjusted to realize load reduction or even zero-output operation of the gas turbine compressor, effectively reducing the power consumption of the compressor;
  • the high-pressure gas storage system can not only store the high-pressure gas generated by the gas turbine during the low period of electricity consumption, but also send the externally stored high-pressure gas into the combustion chamber for consumption during the peak period of electricity consumption, realizing peak shaving-storage. Comprehensive utilization of energy-generated electricity;
  • Figure 1 is a schematic diagram of a gas turbine system coupled with an energy storage system and with adjustable compression flow.
  • 1-gas turbine system 2-regulating valve, 3-first heat exchanger, 4-gas storage tank, 5-external gas storage system, 6-cold oil tank; 7-cold oil pump; 8-heat Oil tank; 9-hot oil pump, 10-second heat exchanger, 11-low temperature air supply section, 12-high temperature air supply section, 13-medium temperature air supply section, 14-full-angle inlet adjustable guide vane, 15-adjustment Baffle, 16-compressor outlet adjustment baffle control valve, 17-compressor anti-surge valve, 18-high temperature section air supply flow regulating valve, 19-medium temperature section air supply flow regulating valve; 20-low temperature section air supply flow Regulating valve; 21-air conditioning regulating valve.
  • the high temperature and low temperature mentioned in the present invention are two relative working states of the medium.
  • the present invention provides a gas turbine system and a control method coupled with an energy storage system and with adjustable compressed air flow.
  • the system includes a high-pressure gas storage system, a heat exchange system, a comprehensive air supply system and an adjustable pressure gas system.
  • the biggest difference between the gas turbine system 1 and the existing gas turbine is that the compressor inlet adopts a full-angle inlet adjustable guide vane 14, and the compressor outlet is provided with an adjusting baffle 15, so as to realize the control of the compressor outlet.
  • Flow regulation A compressor anti-surge valve 17 is provided on the external pipeline connecting the compressor chamber and the combustion chamber in the gas turbine system; the high-pressure gas storage system can not only extract high-pressure air from the existing gas turbine system for storage, but also store externally stored air.
  • the high-pressure air source absorbs and reduces the power consumption of the gas turbine itself; the heat exchange system stores the heat generated by the compressor during the compression process, and achieves temperature-pressure decoupling through optimized management of heat; the integrated air supply system can Provides low/medium/high temperature compressed air sources according to the machine's different air needs.
  • the comprehensive gas supply system is provided with a gas storage tank 4, a low-temperature gas supply section 11, a medium-temperature gas supply section 13 and a high-temperature gas supply section 12;
  • the heat exchange system includes a low-temperature medium container, a first heat exchanger 3, and a high-temperature medium container connected in sequence.
  • the second heat exchanger 10 the hot side outlet of the second heat exchanger 10 is connected to the low-temperature medium container;
  • the hot side outlet of the first heat exchanger 3 is connected to the gas storage tank 4, and an exhaust port is provided at the outlet of the compressor chamber, so The exhaust port is connected to the hot side inlet of the first heat exchanger 3;
  • the air supply outlet of the gas storage tank 4 is respectively connected to the cold side inlet of the second heat exchanger 10, the medium temperature air supply section 13 and the low temperature air supply section 11.
  • the cold side outlets of the second heat exchanger 10 are respectively connected to the medium temperature air supply section 13 and the high temperature air supply section 12; the outlets of the high temperature air supply section 12, the medium temperature air supply section 13 and the low temperature air supply section 11 are all connected to the combustion chamber in the gas turbine system. ;
  • the outlet of the gas storage tank 4 is provided with a gas supply regulating valve.
  • the outlet of the low-temperature medium container is provided with a low-temperature medium conveying device, and the outlet of the high-temperature medium container is provided with a high-temperature medium conveying device.
  • the gas source of the high-pressure gas storage system comes from two parts. One is from the external gas storage system 5 and enters the gas storage tank 4. The other is the compressor outlet of the auto-ignition engine system 1 through the regulating valve 2 and then through the first heat exchanger 3. After heat exchange on the gas side, it enters the gas storage tank 4.
  • a flow monitoring device is provided at the entrance of the compressor chamber.
  • the flow monitoring device, the control end of the full-angle inlet adjustable guide vane 14, and the control end of the compressor outlet adjustment baffle control valve 16 are all connected to the control center to prevent surge of the compressor.
  • the control ends of the valve 17 are all connected to the control center; the low-temperature section air supply flow regulating valve 20, the medium-temperature section air supply flow regulating valve 19, the high-temperature section air supply flow regulating valve 18 and the valve actuator control signal input end of the cold air regulating valve 21 are connected Control center; the temperature measuring points are all connected to the control center.
  • Control method of the high-pressure gas storage system, energy storage stage When the power supply of the power grid is sufficient and peak cutting is required, gradually close the compressor outlet adjustment baffle control valve 16, and maintain the compressor's full-angle inlet adjustable guide vane 14 at the maximum opening 0°, corresponding to the fully open position, the compressor anti-surge valve 17 is fully closed to ensure that the compressor is in full flow working state. At this time, the power consumption of the compressor is the largest and the net power generation of the gas turbine generator is the smallest, reaching peak cutting. energy storage effect.
  • the working medium in the heat exchange system is molten salt, heat transfer oil or transportable solid particles.
  • the corresponding high-temperature medium transport devices respectively adopt high-temperature molten salt transport pumps, hot oil pumps, high-temperature solid particle transport pumps, and low-temperature medium transport devices respectively.
  • the heat exchange system When the working medium of the heat exchange system is heat transfer oil, the heat exchange system includes a cold oil tank 6, a cold oil pump 7, the oil side of the first heat exchanger 3, a hot oil tank 8, and a hot oil pump that are connected in sequence along the flow direction of the heat transfer oil. 9. The oil side of the second heat exchanger 10; the second heat exchanger 10 is connected to the cold oil tank 6.
  • the heat exchange system When the working medium of the heat exchange system is molten salt, the heat exchange system includes a low-temperature molten salt storage tank, a low-temperature molten salt transfer pump, a cold side of the first heat exchanger 3, and a high-temperature molten salt storage tank connected in sequence along the flow direction of the molten salt.
  • Tank 8 high-temperature molten salt transfer pump, hot side of the second heat exchanger 10; the second heat exchanger 10 is connected to the low-temperature molten salt storage tank.
  • the heat exchange system When the working medium of the heat exchange system is solid particles, the heat exchange system includes a low-temperature solid particle storage tank, a low-temperature solid particle transfer pump, a cold side of the first heat exchanger 3, and a high-temperature solid particle storage tank connected in sequence along the flow direction of the solid particles.
  • Tank 8 high-temperature solid particle transfer pump, and the hot side of the second heat exchanger 10; the second heat exchanger 10 is connected to the low-temperature solid particle storage tank.
  • Energy storage stage First start the cold oil pump 7 to establish cold oil circulation; secondly, according to the opening of the compressor outlet baffle regulating valve, gradually open the regulating valve 2 entering the gas storage tank. Both can be put into automatic mode to automatically track the compressor. The outlet flow rate; finally, the high-temperature and high-pressure gas at the compressor outlet of the gas turbine system 1 enters the gas side of the first heat exchanger 3 through the regulating valve 2 and releases heat, and the heat-released gas enters the gas storage tank 4.
  • Energy release stage first start the hot oil pump 9 to establish hot oil circulation; secondly open the isolation valve on the pipeline from the air storage tank 4 to the integrated air supply system to allow high-pressure air to enter the second heat exchanger 10 to absorb heat.
  • the air source of the comprehensive air supply system comes from the air storage tank 4.
  • the low-temperature air supply section 11, the medium-temperature air supply section 13 and the high-temperature air supply section 12 are set according to the air supply parameters.
  • Each air supply section has a high-temperature section that controls the air supply flow.
  • the air supply flow regulating valve 18, the air supply flow regulating valve 19 in the middle temperature section and the air supply flow regulating valve 20 in the low temperature section are equipped with a flow cold air regulating valve 21 for adjusting the air supply temperature.
  • Each air supply section is equipped with a temperature control valve.
  • the measuring points are respectively the temperature measuring point T1 in the high-temperature air supply section, the temperature measuring point T2 in the medium-temperature air supply section, and the temperature measuring point T3 in the low-temperature air supply section.
  • control of the integrated air supply system is limited to the energy release stage.
  • the control method is as follows:
  • the temperature T3 of the gas section is the same as the temperature of the gas storage tank.
  • the temperature T1 of the high-temperature gas supply section is the same as the working fluid temperature at the outlet of the second heat exchanger 10.
  • the temperature T2 of the medium-temperature gas supply section is adjusted by using the cold air regulating valve 21.
  • the cold air regulating valve The opening of 21 is automatically based on the target temperature T2; the high-temperature section air supply flow regulating valve 18, the mid-temperature section air supply flow regulating valve 19 and the low-temperature section air supply flow regulating valve 20 adopt automatic control, automatically tracking the current value, and the target value can Manual input can also change in real time based on calculated values.
  • the gas turbine system with adjustable compressor outlet flow includes gas turbine inlet chamber a, compressor chamber b, combustion chamber c, exhaust chamber d, generator e, full-angle inlet adjustable guide vane 14, and compressor outlet adjustment
  • the baffle 15, the compressor outlet adjustment baffle control valve 16, and the compressor anti-surge valve 17 are arranged on the external pipeline connecting the compressor chamber b and the combustion chamber c.
  • the outlet of the comprehensive air supply system is connected to the air inlet of the combustion chamber c.
  • the compressor outlet adjustment baffle 15 is provided on the passage connecting the compressor chamber b and the combustion chamber c.
  • An exhaust port is provided at the outlet of the compressor chamber b.
  • the exhaust pipe is connected to the high-pressure air inlet of the comprehensive air supply system, and the full-angle inlet adjustable guide vane 14 is arranged at the entrance of the compressor chamber b.
  • the full-angle inlet adjustable guide vane 14 has an adjustable range of 0 to 90°.
  • the full-angle inlet adjustable guide vane 14 corresponds to the inlet being fully open, and the gas turbine has the maximum air intake flow.
  • the full-angle inlet adjustable guide vane 14 is 90°, the corresponding inlet opening is the smallest, and the gas turbine has the smallest air intake flow, but it can still ensure that the gas turbine does not surge.
  • the full-angle inlet adjustable guide vane 14 is kept at 0°, and the compressor outlet baffle is at the minimum opening to ensure that the compressor operates at maximum power consumption while minimizing the gas turbine power generation, and the remaining high-pressure gas in the compression process enters Gas tank 4.
  • Energy release stage gradually adjust the full-angle inlet adjustable guide vane from 14 to 90°, and automatically open the compressor anti-surge valve to ensure that the compressor operates at the minimum safe flow rate;
  • an angle monitoring device is provided on the full-angle inlet adjustable guide vane 14.
  • the angle monitoring device is connected to the input end of the control center, and the output end of the control center is connected to the compressor anti-surge valve 17.
  • the angle monitoring device When the signal is sent to adjust to 90°, the control center sends an opening command to the compressor anti-surge valve.
  • a flow monitoring device can also be provided at the entrance of the compressor chamber b.
  • the flow monitoring device is connected to the input end of the control center.
  • the output end of the control center is connected to the compressor anti-surge valve 17.
  • the flow monitoring device emits a flow rate.
  • the control center sends an opening command to the compressor anti-surge valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种耦合储能系统且压缩流量可调的燃机系统及控制方法,系统包括高压储气系统、换热系统、综合供气系统及燃机系统;燃机系统中的压气机室入口处和出口处分别设置全角度进口可调导叶(14)和压气机出口调节挡板(15),压气机出口调节挡板(15)连接有压气机出口调节挡板控制阀(16);燃机系统中设置压气机防喘振阀(17);综合供气系统中设置储气罐(4)、低温供气段(11)、中温供气段(13)和高温供气段(12);换热系统吸收高温高压空气热量并存储,再将热量放出至高压空气,通过综合供气系统出口输送至燃机系统;实现了燃机压气机的减负荷甚至零出力运行,有效降低压气机的功耗,在用电高峰期将外部储存的高压气体送入燃烧室进行消纳,实现了调峰-储能-发电的综合利用。

Description

一种耦合储能系统且压缩流量可调的燃机系统及控制方法 技术领域
本发明涉及储能技术领域,具体为一种耦合储能系统且压缩流量可调的燃机系统及控制方法。
背景技术
各类储能技术快速发展,其中以压缩空气储能技术为代表的新型储能型式以其储能容量大、充能周期长、系统效率高、运行寿命长、比投资小等优点,近些年得到快速发展。而大规模的压缩空气储能技术必然带了大量的高压储气,高压储气的合理高效消纳也成为一项难题。
另外燃机系统由于运行灵活,响应速率快,已经被广泛的应用在与储能系统的结合中。燃机系统中压气机转子、透平转子和发电机转子同轴刚性布置,其中压气机的功耗占据整个机组功耗的50%~60%,同时压气机出口的温度与压力具有强耦合关系,过高的出口温度将限制燃机带高负荷的能力。因此如何有效降低压气机的功耗,同时实现压气机出口温度与压力的解耦,进一步提升燃机的热效率,也成为未来需要突破的一个关键技术。
发明内容
针对现有技术中存在的问题,本发明提供了一种耦合储能系统且压缩空气流量可调的燃机系统及控制方法;在压气机入口采用全角度进口可调导叶,压气机出口设置调节挡板,从而实现对压气机出口流量的调节,高压储气系统即可实现从现有燃机系统抽取高压空气存储,同时还可以将外部存储的高压气源进行消纳、降低燃机本身的功耗;换热系统将压气机在压缩过程产生的热量进行存储,通过对热量的优化管理实现温度-压力解耦;综合供气系统可根据燃机不同的用气需求提供低温/中温/高温的压缩空气气源。
为了实现上述目的,本发明采用的技术方案是:一种耦合储能系统且压缩流量可调的燃机系统,包括高压储气系统、换热系统、综合供气系统及燃机系统;燃机系统中的压气机室入口处设置全角度进口可调导叶,所述压气机室出口与燃烧室之间设置压气机出口调节挡板,压气机出口调节挡板连接有压气机出口调节挡板控制阀;燃机系统中的压气机室与燃烧室连通的外部管道上设置压气机防喘振阀;综合供气系统中设置储气罐、低温供气段、中温供气段和高温供气段;换热系统包括依次连接的低温介质容器、第一换热器、高温介质容器、第二换热器,第二换热器的热侧出口连接低温介质容器;第一换热器的热侧出口连接储气罐,压气机室出口处设排气口,所述排气口连接第一换热器的热侧入口;储气罐的供气出口分别连接第二换热器的冷侧入口、中温供气段和低温供气段,第二换热器的冷侧出口分别连接中温供气段和高温供气段;高温供气段、中温供气段和低温供气段出口均连接燃机系统中的燃烧室。
低温介质容器的出口设置低温介质输送装置,高温介质容器的出口设置高温介质输送装置。
储气罐的出口设置供气调节阀,所述供气阀的阀后至中温供气段设置冷气调节阀,所述排气口至第一换热器的热侧设置调节阀,低温供气段、中温供气段和高温供气段的出口分别设置低温段供气流量调节阀、中温段供气流量调节阀和高温段供气流量调节阀;低温供气段、中温供气段和高温供气段均设置有温度测点。
压气机室入口处设置流量监测装置,所述流量监测装置、全角度进口可调导叶的控制端、压气机出口调节挡板控制阀的控制端连接控制中心,压气机防喘振阀的控制端连接至控制中心。
低温段供气流量调节阀、中温段供气流量调节阀、高温段供气流量调节阀以及冷气调节阀的阀门执行机构控制信号输入端连接控制中心;所述温度测点均连接控制中心。
储气罐还连接有外部储气系统,外部储气系统至储气罐的入口设置阀门。
换热系统中的工作介质为熔盐、导热油或固体可输送颗粒。
本发明所述耦合储能系统且压缩流量可调燃机系统的控制方法,储能阶段:在电网供电量富裕需要削峰时段,逐步关小压气机出口调节挡板控制阀,维持压气机全角度进口可调导叶在最大开度0°,对应的全开位置,压气机防喘振阀处于全关,压气机处于全流量工作状态,低温介质经第一换热器与高温高压气体换热后进入高温介质容器,高温高压空气从压气机室排出进入第一换热器放热后进入储气罐;
释能阶段:逐步调节全角度进口可调导叶至90°,燃机系统的压气机防喘振阀投自动模式开启,压气机在最小流量下安全运行;高温介质进入第二换热器放热后进入低温介质容器,高压空气从储气罐分两路,第一路再分为两路进入低温供气段和中温供气段,第二路进入第二换热器吸热后再分为两路分别进入高温供气段和中温供气段,低温供气段、中温供气段和高温供气段共同向燃机系统的不同位置供气。
作为可选的实施例,高温供气段12连接至燃机系统的燃烧室,低温供气段11连接至燃机系统的仪用空气及燃机冷却吹扫部分,中温供气段13连接至燃机系统中的燃机透平叶片冷却系统。
储能阶段:首先启动低温介质输送装置,建立低温介质循环;其次根据压气机出口调节挡板的开度,逐步开启进入储气罐的调节阀,燃机系统压气机出口的高温高压气体经调节阀进入第一换热器气侧放热,放热后的气体进入储气罐,启动低温介质输送装置,低温介质进入第一换热器吸热后进入高温介质容器储热;
释能阶段:启动高温介质输送装置,建立高温介质循环;打开储气罐出口的阀门,一路高压空气进入第二换热器吸热,高温介质在第二换热器中放热后进入低温介质容器中;吸热后的高压空气进入高温供气段和中温供气段;另一路高压空气直接进入中温供气段和低温供气段,进入中温供气段的高温空气和低温空气混合后输入,中温供气段的温度通过冷气调节阀调整,高温段供气流量调节阀、中温段供气流量调节阀与低温段供气流量调节阀的控制采用自动控制, 自动跟踪目前值,目标值手动输入或根据计算值实时调整;低温供气段的温度与储气罐温度相同,高温供气段的温度与第二换热器出口的工质温度相同;逐步调节全角度进口可调导叶至90°,压气机防喘振阀投自动模式开启,以满足压气机在最小流量下安全运行。
调节阀和压气机出口调节挡板投自动运行模式,自动跟踪压气机的出口流量。
与现有技术相比,本发明具有以下有益的技术效果:
1)燃机压气机采用全角度进口可调导叶与出口挡板共同调节,实现了燃机压气机的减负荷甚至零出力运行,有效降低压气机的功耗;
2)高压储气系统不仅可以在用电低谷期将燃机产生的高压气体进行存储,还可以在用电高峰期将外部储存的高压气体送入燃烧室进行消纳,实现了调峰-储能-发电的综合利用;
3)综合供气系统与换热系统合理设计,通过对压缩热量的优化管理实现压气机出口温度与压力解耦,给燃机系统提供不同等级参数的供气气源,满足燃机全负荷阶段的气源需求。
附图说明
图1为耦合储能系统且压缩流量可调的燃机系统示意图。
附图中,1-燃机系统,2-调节阀,3-第一换热器,4-储气罐,5-外部储气系统,6-冷油罐;7-冷油泵;8-热油罐;9-热油泵,10-第二换热器,11-低温供气段,12-高温供气段,13-中温供气段,14-全角度进口可调导叶,15-调节挡板,16-压气机出口调节挡板控制阀,17-压气机防喘振阀,18-高温段供气流量调节阀、19-中温段供气流量调节阀;20-低温段供气流量调节阀;21-冷气调节阀。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明所述高温和低温是介质两种相对的工作状态。
参考图1,本发明提供了一种耦合储能系统且压缩空气流量可调的燃机系统及控制方 法,所述系统包括高压储气系统、换热系统、综合供气系统及可调压气机出口流量的燃机系统1;燃机系统1与现有燃机最大的区别在于压气机入口采用全角度进口可调导叶14,压气机出口设置调节挡板15,从而实现对压气机出口流量的调节。燃机系统中的压气机室与燃烧室连通的外部管道上设置压气机防喘振阀17;高压储气系统既可实现从现有燃机系统抽取高压空气存储,同时还可以将外部存储的高压气源进行消纳、降低燃机本身的功耗;换热系统将压气机在压缩过程产生的热量进行存储,通过对热量的优化管理实现温度-压力解耦;综合供气系统可根据燃机不同的用气需求提供低温/中温/高温的压缩空气气源。
综合供气系统中设置储气罐4、低温供气段11、中温供气段13和高温供气段12;换热系统包括依次连接的低温介质容器、第一换热器3、高温介质容器、第二换热器10,第二换热器10的热侧出口连接低温介质容器;第一换热器3的热侧出口连接储气罐4,压气机室出口处设排气口,所述排气口连接第一换热器3的热侧入口;储气罐4的供气出口分别连接第二换热器10的冷侧入口、中温供气段13和低温供气段11,第二换热器10的冷侧出口分别连接中温供气段13和高温供气段12;高温供气段12、中温供气段13和低温供气段11出口均连接燃机系统中的燃烧室;储气罐4的出口设置供气调节阀。
低温介质容器的出口设置低温介质输送装置,高温介质容器的出口设置高温介质输送装置。
其中高压储气系统的气源来自于两部分,一是自外部储气系统5进入储气罐4,二是自燃机系统1的压气机出口经调节阀2,再经第一换热器3气侧换热后进入储气罐4。
压气机室入口处设置流量监测装置,所述流量监测装置、全角度进口可调导叶14的控制端、压气机出口调节挡板控制阀16的控制端均连接控制中心,压气机防喘振阀17的控制端均连接控制中心;低温段供气流量调节阀20、中温段供气流量调节阀19、高温段供气流量调节阀18 以及冷气调节阀21的阀门执行机构控制信号输入端连接控制中心;所述温度测点均连接控制中心。
高压储气系统的控制方法,储能阶段:在电网供电量富裕需要削峰时段,逐步关小压气机出口调节挡板控制阀16,维持压气机全角度进口可调导叶14在最大开度0°,对应的全开位置,压气机防喘振阀17处于全关,保证压气机处于全流量工作状态,此时压缩机耗功量最大,燃机发电机净发电量最小,达到削峰储能效果。
释能阶段:在电网用电量不足需要顶峰时段,逐步开大压气机出口调节挡板控制阀16,逐步关小压气机全角度进口可调导叶14至最小开度,比如85°对应接近全关位置,此处压气机防喘振阀17投入自动保持全开,保证压气机处于最小流量工作状态且不发生喘振,此时压缩机耗功量最小;另一方面自综合供气系统来的高压高温(温度300~460℃,压力10~30MPa等级)气体直接送入燃机燃烧室与燃气燃烧做功,达到顶峰或填谷的释能效果。
换热系统中的工作介质为熔盐、导热油或可输送固体颗粒,其对应的高温介质输送装置分别对应采用高温熔盐输送泵、热油泵7、高温固体颗粒输送泵,低温介质输送装置分别采用低温熔盐输送泵、冷油泵7、低温固体颗粒输送泵。
当换热系统的工作介质为导热油时,换热系统包括沿着导热油的流向依次连接的冷油罐6、冷油泵7、第一换热器3油侧、热油罐8、热油泵9、第二换热器10油侧;第二换热器10连接冷油罐6。
当换热系统的工作介质为熔盐时,换热系统包括沿着熔盐的流向依次连接的低温熔盐储罐、低温熔盐输送泵、第一换热器3冷侧、高温熔盐储罐8、高温熔盐输送泵、第二换热器10热侧;第二换热器10连接低温熔盐储罐。
当换热系统的工作介质为固体颗粒时,换热系统包括沿着固体颗粒的流向依次连接的低温固体颗粒储罐、低温固体颗粒输送泵、第一换热器3冷侧、高温固体颗粒储罐8、高温固体颗 粒输送泵、第二换热器10热侧;第二换热器10连接低温固体颗粒储罐。
换热系统的控制方法:
储能阶段:首先启动冷油泵7,建立冷油循环;其次根据压气机出口挡板调节阀的开度,逐步开启进入储气罐的调节阀2,二者可投自动模式,自动跟踪压气机的出口流量;最后燃机系统1压气机出口的高温高压气体经调节阀2进入第一换热器3气侧放热,放热后的气体进入储气罐4。
释能阶段:首先启动热油泵9,建立热油循环;其次打开储气罐4至综合供气系统管路上的隔离阀门让高压空气进入第二换热器10吸热。
综合供气系统的气源来自储气罐4,根据供气参数高低设置低温供气段11、中温供气段13和高温供气段12,各供气段均有控制供气流量的高温段供气流量调节阀18、中温段供气流量调节阀19和低温段供气流量调节阀20,中温供气段设置了调节供气温度的流量冷气调节阀21,各供气段均配置有温度测点,分别为高温供气段温度测点T1、中温供气段温度测点T2、低温供气段温度测点T3。
以导热油作为工作介质为例,综合供气系统的控制仅限在释能阶段,其控制方法如下:
首先保持热油泵运行,热油循环建立;其次确认储气罐4出口的气源根据使用参数的要求,分别进入低温供气段11、中温供气段13和高温供气段12;调节低温供气段的温度T3与储气罐温度相同,高温供气段的温度T1与第二换热器10出口的工质温度相同,中温供气段温度T2的调节采用冷气调节阀21,冷气调节阀21的开度自动根据目标温度T2;高温段供气流量调节阀18、中温段供气流量调节阀19与低温段供气流量调节阀20的控制采用自动控制,自动跟踪目前值,目标值可手动输入也可根据计算值实时变化。
可调压气机出口流量的燃机系统包括燃机进气室a、压气机室b、燃烧室c、排气室d、发电机e、全角度进口可调导叶14、压气机出口调节挡板15、压气机出口调节挡板控制阀16、 压气机防喘振阀17,压气机防喘振阀17设置在压气机室b与燃烧室c连通的外部管道上。综合供气系统的出口连接燃烧室c的进气口处,压气机出口调节挡板15设置在压气机室b与燃烧室c连通的通道上,压气机室b的出口处设置排气口,所述排气口管道连接综合供气系统的高压进气口,全角度进口可调导叶14设置在压气机室b的入口处。
可调压气机出口流量的燃机系统的控制方法:
储能阶段:全角度进口可调导叶14具有0~90°的可调区间,当全角度进口可调导叶14为0°对应进口全开,燃机具有最大的进气流量,相反当全角度进口可调导叶14为90°时对应进口开度最小,燃机具有最小的进气流量,但仍能保证燃机不发生喘振。储能阶段保持全角度进口可调导叶14在0°,压气机出口挡板在最小开度,以满足压气机在最大功耗工作的同时燃机发电量最小,压缩过程剩余的高压气进入储气罐4。
释能阶段:逐步调节全角度进口可调导叶14至90°,自动开启压气机防喘振阀,以满足压气机在最小安全流量下运行;
作为可选的实施方式,全角度进口可调导叶14上设置角度监测装置,所述角度监测装置连接控制中心的输入端,控制中心的输出端连接压气机防喘振阀17,角度监测装置发出调至90°信号时,控制中心向压气机防喘振阀发送开启指令。
当然还可以通过在压气机室b的入口处设置流量监测装置,所述流量监测装置连接控制中心的输入端,控制中心的输出端连接压气机防喘振阀17,所述流量监测装置发出流量最小信号时,控制中心向压气机防喘振阀发送开启指令。

Claims (10)

  1. 一种耦合储能系统且压缩流量可调的燃机系统,其特征在于,包括高压储气系统、换热系统、综合供气系统及燃机系统;燃机系统中的压气机室入口处设置全角度进口可调导叶(14),所述压气机室出口与燃烧室之间设置压气机出口调节挡板(15),压气机出口调节挡板(15)连接有压气机出口调节挡板控制阀(16);燃机系统中的压气机室与燃烧室连通的外部管道上设置压气机防喘振阀(17);综合供气系统中设置储气罐(4)、低温供气段(11)、中温供气段(13)和高温供气段(12);换热系统包括依次连接的低温介质容器、第一换热器(3)、高温介质容器、第二换热器(10),第二换热器(10)的热侧出口连接低温介质容器;第一换热器(3)的热侧出口连接储气罐(4),压气机室出口处设排气口,所述排气口连接第一换热器(3)的热侧入口;储气罐(4)的供气出口分别连接第二换热器(10)的冷侧入口、中温供气段(13)和低温供气段(11),第二换热器(10)的冷侧出口分别连接中温供气段(13)和高温供气段(12);高温供气段(12)、中温供气段(13)和低温供气段(11)出口连接燃机系统。
  2. 根据权利要求1所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,低温介质容器的出口设置低温介质输送装置,高温介质容器的出口设置高温介质输送装置。
  3. 根据权利要求1所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,储气罐(4)的出口设置供气调节阀,所述供气阀的阀后至中温供气段(13)设置冷气调节阀(21),所述排气口至第一换热器(3)的热侧设置调节阀(2),低温供气段(11)、中温供气段(13)和高温供气段(12)的出口分别设置低温段供气流量调节阀(20)、中温段供气流量调节阀(19)和高温段供气流量调节阀(18);低温供气段(11)、中温供气段(13)和高温供气段(12)均设置有温度测点。
  4. 根据权利要求3所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,压气机室入口处设置流量监测装置,所述流量监测装置、全角度进口可调导叶(14)的控制端、压气 机出口调节挡板控制阀(16)的控制端均连接控制中心,压气机防喘振阀(17)的控制端连接控制中心。
  5. 根据权利要求3所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,低温段供气流量调节阀(20)、中温段供气流量调节阀(19)、高温段供气流量调节阀(18)以及冷气调节阀(21)的阀门执行机构控制信号输入端连接控制中心;所述温度测点均连接控制中心。
  6. 根据权利要求1所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,储气罐(4)还连接有外部储气系统(5),外部储气系统(5)至储气罐(4)的入口设置控制阀门。
  7. 根据权利要求1所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,换热系统中的工作介质为熔盐、导热油或固体可输送颗粒。
  8. 根据权利要求1所述的耦合储能系统且压缩流量可调的燃机系统,其特征在于,高温供气段(12)连接至燃机系统的燃烧室,低温供气段(11)连接至燃机系统的仪用空气及燃机冷却吹扫部分,中温供气段(13)连接至燃机系统中的燃机透平叶片冷却系统。
  9. 权利要求1至8中任一项所述耦合储能系统且压缩流量可调燃机系统的控制方法,其特征在于,储能阶段:在电网供电量富裕需要削峰时段,逐步关小压气机出口调节挡板控制阀(16),维持压气机全角度进口可调导叶(14)在最大开度0°,对应的全开位置,压气机防喘振阀(17)处于全关,压气机处于全流量工作状态,低温介质经第一换热器(3)与高温高压气体换热后进入高温介质容器,高温高压空气从压气机室排出进入第一换热器(3)放热后进入储气罐(4);
    释能阶段:逐步调节全角度进口可调导叶(14)至90°,燃机系统的压气机防喘振阀(17)投自动模式开启,压气机在最小安全流量下运行;高温介质进入第二换热器(10)放热后进入低温介质容器,高压空气从储气罐(4)分两路,第一路再分为两路进入低温供气段(11)和中温供气段(13),第二路进入第二换热器(10)吸热后再分为两路分别进入高温供气段(12) 和中温供气段(13),低温供气段(11)、中温供气段(13)和高温供气段(12)共同向燃机系统各个位置供气。
  10. 根据权利要求9所述的控制方法,其特征在于,储能阶段:首先启动低温介质输送装置,建立低温介质循环;其次根据压气机出口调节挡板(15)的开度,逐步开启进入储气罐(4)的调节阀(2),燃机系统(1)压气机出口的高温高压气体经调节阀(2)进入第一换热器(3)气侧放热,放热后的气体进入储气罐(4),启动低温介质输送装置,低温介质进入第一换热器(3)吸热后进入高温介质容器储热;
    释能阶段:启动高温介质输送装置,建立高温介质循环;打开储气罐(4)出口的阀门,一路高压空气进入第二换热器(10)吸热,高温介质在第二换热器(10)中放热后进入低温介质容器中;吸热后的高压空气进入高温供气段(12)和中温供气段(13);另一路高压空气直接进入中温供气段(13)和低温供气段(11),进入中温供气段(13)的高温空气和低温空气混合后输入,中温供气段(13)的温度通过冷气调节阀(21)调整,高温段供气流量调节阀(18)、中温段供气流量调节阀(19)与低温段供气流量调节阀(20)的控制采用自动控制,自动跟踪目标值,目标值可手动输入或根据计算值实时调整;低温供气段(11)的温度与储气罐温度相同,高温供气段(12)的温度与第二换热器(10)出口的工质温度相同;逐步调节全角度进口可调导叶(14)至90°,压气机防喘振阀(17)投自动模式开启,以满足压气机在最小流量下安全运行;调节阀(2)和压气机出口调节挡板(15)投自动运行模式,自动跟踪压气机的出口流量。
PCT/CN2022/102369 2022-04-12 2022-06-29 一种耦合储能系统且压缩流量可调的燃机系统及控制方法 WO2023197458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210380667.3 2022-04-12
CN202210380667.3A CN114810351A (zh) 2022-04-12 2022-04-12 一种耦合储能系统且压缩流量可调的燃机系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023197458A1 true WO2023197458A1 (zh) 2023-10-19

Family

ID=82534522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102369 WO2023197458A1 (zh) 2022-04-12 2022-06-29 一种耦合储能系统且压缩流量可调的燃机系统及控制方法

Country Status (2)

Country Link
CN (1) CN114810351A (zh)
WO (1) WO2023197458A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB671539A (en) * 1949-01-19 1952-05-07 Svenska Turbinfab Ab Improvements in a gas turbine plant operating on the open system, for delivering a large useful power of short duration
US20070031238A1 (en) * 2005-08-03 2007-02-08 Mitsubishi Heavy Industries, Ltd. Inlet guide vane control device of gas turbine
US20110318160A1 (en) * 2010-06-24 2011-12-29 Gabriele Mariotti Turboexpander and method for using moveable inlet guide vanes at compressor inlet
US20150075173A1 (en) * 2012-04-12 2015-03-19 Nuovo Pignone Srl Compressed-air energy-storage system
CN110462181A (zh) * 2017-03-29 2019-11-15 株式会社神户制钢所 压缩空气储能发电装置
CN113202574A (zh) * 2021-05-24 2021-08-03 国网浙江省电力有限公司电力科学研究院 耦合压缩空气储能的调峰发电系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211006B2 (ja) * 2012-01-30 2017-10-11 パワーフェイズ・エルエルシー ガスタービンエネルギー蓄電及びエネルギー供給システム及びその製造及び使用方法
US9970360B2 (en) * 2012-03-05 2018-05-15 Siemens Aktiengesellschaft Gas turbine engine configured to shape power output
CN103410616B (zh) * 2013-08-22 2015-10-21 华北电力大学 大容量压缩空气储能高效发电系统
CN107956748B (zh) * 2017-12-05 2024-04-30 南京航空航天大学 一种可调导流组合叶片及离心压气机
CN108730203A (zh) * 2018-05-03 2018-11-02 西北工业大学 一种带有可转导流叶片的压气机
CN110566440A (zh) * 2019-07-19 2019-12-13 东莞理工学院 一种先进多能互补的冷热电联供压缩空气储能系统及应用方法
CN110454411A (zh) * 2019-08-26 2019-11-15 西北工业大学 带有叶角可调风扇的压气机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB671539A (en) * 1949-01-19 1952-05-07 Svenska Turbinfab Ab Improvements in a gas turbine plant operating on the open system, for delivering a large useful power of short duration
US20070031238A1 (en) * 2005-08-03 2007-02-08 Mitsubishi Heavy Industries, Ltd. Inlet guide vane control device of gas turbine
US20110318160A1 (en) * 2010-06-24 2011-12-29 Gabriele Mariotti Turboexpander and method for using moveable inlet guide vanes at compressor inlet
US20150075173A1 (en) * 2012-04-12 2015-03-19 Nuovo Pignone Srl Compressed-air energy-storage system
CN110462181A (zh) * 2017-03-29 2019-11-15 株式会社神户制钢所 压缩空气储能发电装置
CN113202574A (zh) * 2021-05-24 2021-08-03 国网浙江省电力有限公司电力科学研究院 耦合压缩空气储能的调峰发电系统及方法

Also Published As

Publication number Publication date
CN114810351A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2020181675A1 (zh) 一种灵活燃煤发电系统及运行方法
CN210239765U (zh) 一种安全节能型灵活调整低压缸进汽的抽汽供热系统
CN113137293B (zh) 一种超临界二氧化碳循环系统以及透平调节和紧急停机方法
CN111577410A (zh) 燃气轮机进气温度控制装置及燃气轮机进气温度控制方法
CN108678931B (zh) 一种压气机抽气储能提高冷热电联产系统灵活性的方法
CN114135891A (zh) 一种用于稳定余热锅炉入口烟气参数的烟气储热系统
WO2023197458A1 (zh) 一种耦合储能系统且压缩流量可调的燃机系统及控制方法
CN114837757B (zh) 一种配置蒸汽引射器的火电厂高加给水旁路调频系统及工作方法
CN113879507B (zh) 一种利用余热作为热源的船舶供热装置
CN114635797A (zh) 一种燃机进气温度的控制系统
CN112902501A (zh) 带负荷平衡冷凝器的直燃型溴化锂吸收式热泵机组
CN214403773U (zh) 一种重型燃气电厂天然气冷能利用系统
CN217109522U (zh) 一种凝结水泵再循环阀的配置系统
CN214501741U (zh) 高温热媒油炉
CN216346223U (zh) 一种应用于余热锅炉入口粉尘的冷却系统
CN215952312U (zh) 一种能实现余热回收的储热调峰系统
CN218722400U (zh) 一种烟气余热利用溴化锂制冷制热系统
CN217482834U (zh) 一种太阳能无霜式双源热泵供暖系统
CN209944794U (zh) 余热锅炉尾部供热制冷系统
CN214221275U (zh) 一种适于大抽汽量一次调频的抽汽式热电联产机组
CN217899841U (zh) 一种空压机热能利用系统
CN220963486U (zh) 电化学储能系统用的热管理系统
CN212720293U (zh) 一种用于调压站的天然气加热系统
CN214501789U (zh) 带负荷平衡热交换器的直燃型溴化锂吸收式热泵机组
CN216744540U (zh) 一种通过相变储热装置来调整空压余热回收供热的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937096

Country of ref document: EP

Kind code of ref document: A1