WO2023197308A1 - 显示面板的驱动方法及显示装置 - Google Patents

显示面板的驱动方法及显示装置 Download PDF

Info

Publication number
WO2023197308A1
WO2023197308A1 PCT/CN2022/087147 CN2022087147W WO2023197308A1 WO 2023197308 A1 WO2023197308 A1 WO 2023197308A1 CN 2022087147 W CN2022087147 W CN 2022087147W WO 2023197308 A1 WO2023197308 A1 WO 2023197308A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
initial
lookup table
value
Prior art date
Application number
PCT/CN2022/087147
Other languages
English (en)
French (fr)
Inventor
胡鹏飞
黄建华
陈东川
曲莹莹
姚树林
杨越
马文鹏
张正
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/087147 priority Critical patent/WO2023197308A1/zh
Priority to CN202280000769.6A priority patent/CN117242510A/zh
Publication of WO2023197308A1 publication Critical patent/WO2023197308A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a driving method of a display panel and a display device.
  • Each pixel unit may include: multiple sub-pixels of different colors. By controlling the brightness corresponding to each sub-pixel, the desired display color is mixed to display a color image.
  • the current overdrive lookup table corresponding to the current temperature is calculated; wherein the initial overdrive lookup table includes: a plurality of different first overdrive lookup tables. A grayscale value, a plurality of different second grayscale values, and an initial grayscale value corresponding to any one of the first grayscale values and any one of the second grayscale values; the current overdrive lookup table Including: a plurality of different first gray scale values, a plurality of different second gray scale values, and a current gray scale value corresponding to any one of the first gray scale values and any one of the second gray scale values;
  • the sub-pixels in the display panel are driven to charge corresponding data voltages.
  • the number of set temperatures is M; where M is an integer and M ⁇ 2.
  • calculating the current overdrive lookup table corresponding to the current temperature based on the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature includes:
  • the current overdrive lookup table corresponding to the current temperature is calculated according to the current temperature and the initial overdrive lookup table corresponding to the prestored set temperature.
  • calculating the current overdrive lookup table corresponding to the current temperature based on the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature includes:
  • the initial overdrive lookup table corresponding to the mth set temperature and the initial overdrive lookup corresponding to the m+1th set temperature in the initial overdrive lookup tables corresponding to the M set temperatures.
  • Table wherein, the m-th set temperature is less than the current temperature, and the m+1-th set temperature is greater than the current temperature;
  • m is an integer, and 1 ⁇ m ⁇ M-1;
  • the initial overdrive lookup table corresponding to the mth set temperature and the initial overdrive lookup table corresponding to the m+1th set temperature is calculated. Drive each current grayscale value in the lookup table.
  • the calculated The current grayscale values in the current overdrive lookup table corresponding to the current temperature include:
  • the current overdrive is determined based on the current temperature, the m-th set temperature, the m+1-th set temperature, the first initial gray scale value and the second initial gray scale value.
  • the method is based on the current temperature, the m-th set temperature, the m+1-th set temperature, the first initial gray scale value and the second initial gray scale value. , determining the current grayscale value corresponding to the first initial grayscale value and the second initial grayscale value in the current overdrive lookup table, including:
  • a temperature-related calculation formula is obtained by fitting
  • the current grayscale value corresponding to the first initial grayscale value and the second initial grayscale value in the current overdrive lookup table is determined.
  • the current temperature corresponding to the first initial gray scale value and the second initial gray scale value in the current overdrive lookup table is determined based on the current temperature and the calculation formula.
  • Grayscale values including:
  • the intermediate grayscale value is not less than the minimum endpoint grayscale value and not greater than the maximum endpoint grayscale value, determine the intermediate grayscale value as the current grayscale value;
  • the maximum endpoint grayscale value is determined as the current grayscale value.
  • the calculation formula is:
  • D ab represents the first initial gray scale value and the intermediate gray scale value corresponding to the second initial gray scale value determined based on the principle of the same first gray scale value and the same second gray scale value
  • t represents the current temperature
  • a ab , B ab and C ab respectively represent the first initial gray scale value and the second initial gray scale determined based on the principle of the same first gray scale value and the same second gray scale value.
  • the fitting parameter corresponding to the value, a represents the first initial gray-scale value determined based on the principle of the same first gray-scale value and the same second gray-scale value
  • b represents the first initial gray-scale value based on the same first gray-scale value and the same second gray-scale value.
  • the second initial gray level value is determined based on the gray scale value principle.
  • the m-th set temperature is a set temperature that is smaller than and closest to the current temperature
  • the m+1-th set temperature is the set temperature that is greater than and closest to the current temperature.
  • M 3.
  • a setting among the M set temperatures that is the same as the current temperature is called according to the current temperature.
  • An initial overdrive lookup table corresponding to a given temperature is generated; and based on the called initial overdrive lookup table, the sub-pixels in the display panel are driven to charge corresponding data voltages.
  • a memory configured to store an initial overdrive lookup table corresponding to the set temperature
  • a temperature collector configured to detect the temperature of the display panel
  • a timing controller configured to obtain the current temperature of the display panel detected by the temperature collector; calculate the current temperature according to the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature. a corresponding current overdrive lookup table; and driving the sub-pixels in the display panel to charge the corresponding data voltage according to the current overdrive lookup table; wherein the initial overdrive lookup table includes: a plurality of different first overdrive lookup tables.
  • the current overdrive lookup table It includes: a plurality of different first gray scale values, a plurality of different second gray scale values, and a current gray scale value corresponding to any one of the first gray scale values and any one of the second gray scale values.
  • the timing controller is further configured to directly collect the temperature of the display panel detected by the temperature collector from the temperature collector, and obtain the current temperature according to the collected temperature.
  • the display device further includes: a system controller;
  • the system controller is configured to directly collect the temperature of the display panel detected by the temperature collector from the temperature collector, and send the collected temperature to the timing controller;
  • the timing controller is further configured to obtain the current temperature according to the received temperature.
  • At least one temperature collector is provided, and the temperature collector is provided in a non-display area of the display panel.
  • the temperature collectors are dispersedly arranged in the non-display area; and the current temperature is the temperature detected by each of the temperature collectors. average of;
  • the current temperature is the temperature detected by the temperature collector.
  • the temperature collector includes: at least one of a temperature sensor and a thermistor.
  • Figure 1 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a display panel provided by an embodiment of the present disclosure
  • Figure 3a is another structural schematic diagram of a display device provided by an embodiment of the present disclosure.
  • Figure 3b is another structural schematic diagram of a display device provided by an embodiment of the present disclosure.
  • Figure 3c is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • Figure 4 is some schematic diagrams provided by embodiments of the present disclosure.
  • Figure 5 is some flowcharts of a display panel driving method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of some initial overdrive lookup tables provided by embodiments of the present disclosure.
  • Figure 7 is a schematic diagram of other initial overdrive lookup tables provided by embodiments of the present disclosure.
  • Figure 8 is a schematic diagram of some current overdrive lookup tables provided by embodiments of the present disclosure.
  • Figure 9 is some signal timing diagrams provided by embodiments of the present disclosure.
  • Figure 10 is a schematic diagram of some curves provided by embodiments of the present disclosure.
  • Figure 11 is another schematic diagram of curves provided by embodiments of the present disclosure.
  • Figure 12 is a schematic diagram of some additional initial overdrive lookup tables provided by embodiments of the present disclosure.
  • Figure 13 is some further schematic diagrams of curves provided by embodiments of the present disclosure.
  • Figure 14 is another schematic diagram of curves provided by embodiments of the present disclosure.
  • the display device may include: a display panel 100 , a timing controller 200 , a system controller 300 and a backlight module 400 .
  • the display panel 100 may have a display area AA and a non-display area BB.
  • the display area AA may include a plurality of pixel units arranged in an array, a plurality of gate lines GA (for example, GA1, GA2, GA3, GA4), and a plurality of data lines DA (for example, DA1, DA2, DA3).
  • each pixel unit includes a plurality of sub-pixels SPX.
  • the pixel unit may include red sub-pixels, green sub-pixels and blue sub-pixels, so that red, green and blue colors can be mixed to achieve color display.
  • the pixel unit may also include red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels, so that the colors of red, green, blue and white can be mixed to achieve color display.
  • the luminous color of the sub-pixels in the pixel unit can be designed and determined according to the actual application environment, and is not limited here.
  • each sub-pixel SPX may include a transistor 01 and a pixel electrode 02 .
  • one row of sub-pixels SPX corresponds to one gate line
  • one column of sub-pixels SPX corresponds to one data line.
  • the gate of transistor 01 is electrically connected to the corresponding gate line
  • the source of transistor 01 is electrically connected to the corresponding data line
  • the drain of transistor 01 is electrically connected to pixel electrode 02.
  • the pixel array structure of the present disclosure can also be It is a double gate structure, that is, two gate lines are set between two adjacent rows of pixels. This arrangement can reduce the number of data lines by half, that is, it includes some data lines between two adjacent columns of pixels, and some between two adjacent columns. Data lines are not included between column pixels.
  • the specific pixel arrangement structure and data lines, and the arrangement of scan lines are not limited.
  • the non-display area BB may include a gate driving circuit 110 and a source driving circuit 120 .
  • the gate driving circuit 110 is coupled to the gate lines GA1, GA2, GA3, and GA4 respectively
  • the source driving circuit 120 is coupled to the data lines DA1, DA2, and DA3 respectively.
  • two source driving circuits 120 may be provided, one source driving circuit 120 is connected to half of the number of data lines, and the other source driving circuit 120 is connected to the other half of the number of data lines.
  • there can also be three, four, or more source driving circuits 120 which can be designed and determined according to actual application requirements, and are not limited here.
  • the connection relationship between the timing controller 200 and the display panel is illustrated.
  • 300 represents the system controller 300
  • 200 represents the timing controller 200
  • 210 represents the Printed Circuit Board (PCB) capable of transmitting display data (such as XPCB)
  • 220 represents the Chip On Film (COF).
  • 120 represents the source driver circuit
  • 240 represents the timing circuit board where the timing controller 200 is located.
  • the system controller 300 may receive display data of an image to be displayed for one display frame, and then send the display data to the timing controller 200 .
  • the timing controller 200 can input a clock control signal to the gate driving circuit 110 through a level shift circuit, so that the gate driving circuit 110 outputs a gate scanning signal to the gate lines, thereby driving the gate lines GA1, GA2, and GA3. ,GA4.
  • the timing controller 200 can also perform corresponding processing on the received display data, and send it to the source driving circuit 120 after performing corresponding processing.
  • the source driving circuit 120 can input data voltages to the data lines DA1, DA2, and DA3 according to the received display data, thereby charging the sub-pixel SPX, so that the sub-pixel SPX inputs the corresponding data voltage to realize the picture display function of the display frame.
  • the timing controller 200 can input the display data into the source driving circuit 120 through the PCB 210 and the COF 220.
  • the source driving circuit 120 then loads data voltages on the data lines in the display panel according to the display data.
  • system controller 300 may be configured as a System on Chip (SOC).
  • SOC System on Chip
  • the implementation of the system controller 300 can be determined according to the requirements of the actual application, and is not limited here.
  • the display panel in the embodiment of the present disclosure may be a liquid crystal display panel.
  • a liquid crystal display panel generally includes an array substrate and a counter substrate in a pair of cells, and liquid crystal molecules encapsulated between the array substrate and the counter substrate.
  • this voltage difference can form an electric field, so that the liquid crystal molecules move under the action of the electric field.
  • Deflect Since the electric fields of different strengths cause different degrees of deflection of liquid crystal molecules, the transmittance of the sub-pixel SPX is different, so that the sub-pixel SPX can achieve different gray-scale brightness, thereby achieving picture display.
  • Gray scale generally divides the brightness change between the darkest and the brightest into several parts to facilitate screen brightness control.
  • the displayed image consists of three colors: red, green, and blue. Each color can show different brightness levels, and the combination of red, green, and blue with different brightness levels can form different colors.
  • the gray scale number of the liquid crystal display panel is 6 bits, so the three colors of red, green, and blue each have 64 (that is, 2 6 ) gray scales, and these 64 gray scale values are 0 to 63 respectively.
  • the gray scale number of the LCD panel is 8 bits, so the three colors of red, green, and blue each have 256 (that is, 2 8 ) gray scales, and these 256 gray scale values are 0 to 255 respectively.
  • the gray scale number of the liquid crystal display panel is 10 bits, so the three colors of red, green, and blue each have 1024 (that is, 2 10 ) gray scales, and these 1024 gray scale values are 0 to 1023 respectively.
  • the gray scale number of the liquid crystal display panel is 12 bits, so the three colors of red, green and blue respectively have 4096 (ie 2 12 ) gray scales, and these 4096 gray scale values are 0 to 4093 respectively.
  • Vcom represents the common electrode voltage.
  • the liquid crystal molecules at the sub-pixel SPX when the data voltage input into the pixel electrode of the sub-pixel SPX is greater than the common electrode voltage Vcom, the liquid crystal molecules at the sub-pixel SPX can be made to have a positive polarity, then the polarity corresponding to the data voltage in the sub-pixel SPX is Positive polarity.
  • the common electrode voltage can be 8.3V.
  • the liquid crystal molecules at the sub-pixel SPX can be made to have a positive polarity.
  • the data voltage is the data voltage corresponding to the positive polarity.
  • a data voltage of 0.6V to 8.3V is input to the pixel electrode of the sub-pixel SPX, the liquid crystal molecules at the sub-pixel SPX can be made to have a negative polarity, and the data voltage of 0.6V to 8.3V is data corresponding to the negative polarity. Voltage.
  • the sub-pixel SPX can correspond to the brightness of the maximum gray scale value of the positive polarity. If a data voltage of 0.6V is input into the pixel electrode of the sub-pixel SPX, the sub-pixel SPX can correspond to the brightness of the maximum grayscale value of the negative polarity.
  • response time is a performance indicator unique to LCD panels.
  • the so-called response time refers to the response speed of each sub-pixel of the liquid crystal display panel to the input data voltage, that is, the time required for the sub-pixel to change from dark to bright or from bright to dark. The shorter the response time, the less likely users will feel smearing when watching dynamic images.
  • negative liquid crystals Compared with positive liquid crystals, negative liquid crystals have higher transmittance characteristics, which can significantly improve the brightness, clarity and contrast of the liquid crystal display panel, thus achieving an overall improvement in image quality.
  • negative liquid crystals also have inherent shortcomings, such as high rotational viscosity, resulting in insufficient response time of negative liquid crystals under the same conditions, and dynamic picture playback is prone to tailing defects, as shown in Figure 4.
  • circuit overdrive can be used to optimize it.
  • OD circuit overdrive
  • the rotation speed of negative liquid crystal is greatly affected by temperature, the lower the temperature, the slower the deflection speed.
  • the OD lookup table debugged at room temperature is used to drive the LCD panel to display the picture, if the temperature of the LCD panel is slightly If it rises, there will be poor color inversion of dynamic images caused by excessive overdrive. Therefore, the influence of temperature on response time cannot be ignored.
  • embodiments of the present disclosure provide a driving method for a display panel, which can obtain the current temperature of the display panel and then perform an initial overdrive corresponding to the obtained current temperature and the pre-stored set temperature.
  • Lookup table calculate the new current overdrive lookup table corresponding to the current temperature. That is to say, the current gray scale value is calculated based on the current temperature and the initial gray scale value, so that the current overdrive lookup table and the initial overdrive lookup table are different. Therefore, the overdrive lookup table can be dynamically adjusted according to the current temperature of the display panel, and the display panel display can be driven by the adjusted current overdrive lookup table, which can improve the problem of poor color inversion of dynamic pictures. This also eliminates the need to store an excessive number of initial overdrive lookup tables, thereby reducing the space occupied by storage, reducing the reading time during actual operation, and increasing the reading speed.
  • the display panel driving method provided by the embodiment of the present disclosure may include the following steps:
  • the display device may further include a temperature collector 500.
  • the temperature collector 500 can detect the temperature of the display panel.
  • the temperature collector 500 may detect the temperature of the display panel every time a set time passes.
  • the temperature collector 500 can detect the temperature of the display panel after every 10 minutes, 30 minutes, 1 hour, 10 hours, or 24 hours.
  • the temperature collector 500 may be disposed in the non-display area BB of the display panel. In this way, the temperature collector 500 can be prevented from occupying the area of the display area, and the temperature collector 500 can be prevented from affecting the display effect of the display area.
  • the temperature collector 500 is disposed on the opposing substrate of the display panel, and is disposed between the opposing substrate and the backlight module. In this way, the area of the display area can be further eliminated.
  • the temperature collector can also be arranged between the array substrate and the opposite substrate.
  • the temperature collector can be disposed in the liquid crystal cell formed by the array substrate and the counter substrate, for example, it can be disposed on the side of the array substrate close to the counter substrate, which is not limited here.
  • the timing controller 200 can directly collect the temperature of the display panel detected by the temperature collector 500 from the temperature collector 500, and obtain the current temperature according to the collected temperature. For example, as shown in FIG. 3a , this allows the temperature of the display panel detected by the temperature collector 500 to be directly transmitted to the timing controller 200 , so that the timing controller 200 can obtain the current temperature according to the received temperature. This allows the timing controller 200 to directly use the temperature of the display panel detected by the temperature collector 500 as the acquired current temperature. This can be achieved by adding a temperature control feedback pin to the conventional COF 220 and PCB 210.
  • the system controller 300 may directly collect the temperature of the display panel detected by the temperature collector 500 from the temperature collector 500 , and send the collected temperature to the timing controller 200 .
  • the timing controller 200 obtains the current temperature according to the received temperature.
  • signal interface wiring for example, General-Purpose Input/Output Ports, GPIO
  • GPIO General-Purpose Input/Output Ports
  • the system controller 300 sends the collected temperature to the timing controller 200 so that the timing controller 200 can obtain the current temperature according to the received temperature.
  • the system controller 300 sends the collected temperature to the timing controller 200 so that the timing controller 200 can obtain the current temperature according to the received temperature.
  • one temperature collector 500 can be set, and the current temperature is the temperature detected by the temperature collector 500 .
  • the timing controller 200 can directly use the received temperature as the current temperature. This can reduce costs, reduce the amount of calculation, and reduce the temperature collector 500 from occupying too much space in the non-display area.
  • the temperature collectors 500 can be dispersedly provided in the non-display area.
  • the positions of the temperature collectors 500 can be evenly distributed around the display panel, and the specific positions and number may depend on the actual display panel. This reduces interference effects on the display panel. Objectively speaking, the greater the number of temperature sensors, the more accurate the actual ambient temperature monitoring will be, but the changes in additional components will increase. For example, the number of additional temperature control feedback pins required on the COF and PCB will also increase.
  • the current temperature is the average of the temperatures detected by each temperature collector 500 .
  • the timing controller 200 can calculate the average value of these temperatures to obtain the current temperature.
  • the temperature collector 500 may include: at least one of a temperature sensor and a thermistor.
  • the temperature collector 500 can be configured as a temperature sensor.
  • the temperature of the display panel can be converted into an electrical signal (for example, a voltage signal or a current signal) through a temperature sensor, and the electrical signal is sequentially transmitted to the timing controller 200 through the COF 220 and the PCB 210.
  • temperature control feedback pins for transmitting the electrical signal are respectively reserved on COF 220 and PCB 210.
  • the temperature collector 500 can also be set as a thermistor.
  • the temperature of the display panel can be converted into an electrical signal (for example, a voltage signal or a current signal) through the thermistor, and the electrical signal is sequentially transmitted to the timing controller 200 through the COF 220 and the PCB 210.
  • temperature control feedback pins for transmitting the electrical signal are respectively reserved on COF 220 and PCB 210.
  • temperature collectors 500 can be determined according to the needs of the actual application, and are not limited here.
  • the operating temperature of the display panel can be tested to obtain the approximate temperature range of the display panel.
  • the minimum value of the obtained temperature range is set as the set temperature TL
  • the obtained The maximum value of the temperature range interval is set as the set temperature TH.
  • the obtained temperature range is 25°C to 40°C
  • TL 25°C
  • TH 40°C.
  • the specific values of TL and TH can be determined according to the needs of actual applications, and are not limited here.
  • the display device may further include: a memory 250.
  • the memory 250 may store an initial overdrive lookup table corresponding to the set temperature. For example, taking two set temperatures: set temperature TL and set temperature TH, the memory 250 can store an initial overdrive lookup table LUTL corresponding to the set temperature TL, and an initial overdrive lookup table corresponding to the set temperature TH. Table LUTH.
  • the memory 250 may include: at least one of an electrically erasable programmable read-only memory 250 (Electrically Erasable Programmable read only memory, EEPROM) and a flash memory (Flash).
  • the memory 250 can be disposed on the timing circuit board 240, so that the memory 250 and the timing controller 200 can be disposed closer to further reduce the signal transmission time.
  • the initial overdrive lookup table may include: a plurality of different first grayscale values, a plurality of different second grayscale values, and corresponding to any first grayscale value and any second grayscale value.
  • the initial grayscale value For example, the initial over-driving lookup table has corresponding gray-scale bits, that is, the first gray-scale value, the second gray-scale value and the initial gray-scale value in the initial over-driving look-up table have corresponding gray-scale bits.
  • the number of grayscale bits corresponding to the initial overdrive lookup table is 8 bits
  • the number of grayscale bits corresponding to the first grayscale value, the second grayscale value and the initial grayscale value can be 8bits, for example, the initial overdrive lookup table
  • the first grayscale value in can be all grayscale values from 0 to 255 grayscale values in 8bit
  • the second grayscale value can be all grayscale values from 0 to 255 grayscale values in 8bit.
  • the first grayscale value in the initial overdrive lookup table can be some of the grayscale values from 0 to 255 in 8 bits
  • the second grayscale value can be some of the grayscale values from 0 to 255 in 8bits. Partial grayscale value.
  • Figure 6 illustrates the initial overdrive lookup table LUTL corresponding to the set temperature TL in the embodiment of the present disclosure.
  • the initial overdrive lookup table LUTL may include part of the first gray level in 8 bits. value and part of the second grayscale value, and the initial grayscale value corresponding to these first grayscale value and second grayscale value.
  • the values in the first row in Figure 6 represent the first gray Level value
  • the value in the first column (such as 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255) represents the second gray level value
  • the remaining values (such as L1-1 ⁇ L17-17) represent the initial grayscale value.
  • the specific numerical values of the first gray scale value and the second gray scale value illustrated in FIG. 6 are only examples. In actual applications, it can be determined according to the needs of actual applications, and is not limited here.
  • the first grayscale value may correspond to the grayscale value of the sub-pixel in the previous display frame
  • the second grayscale value may correspond to the grayscale value of the sub-pixel in the current display frame.
  • Figure 7 illustrates the initial overdrive lookup table LUTH corresponding to the set temperature TH in the embodiment of the present disclosure.
  • the initial overdrive lookup table LUTH may include part of the first gray scale in 8 bits. value and part of the second grayscale value, and the initial grayscale value corresponding to these first grayscale value and second grayscale value.
  • the values in the first row in Figure 7 represent the first gray Level value
  • the value in the first column (such as 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255) represents the second gray level value
  • the remaining values (such as H1-1 ⁇ H17-17) represent the initial grayscale value.
  • the specific numerical values of the first grayscale value and the second grayscale value illustrated in FIG. 7 are only examples. In actual applications, it can be determined according to the needs of actual applications, and is not limited here.
  • the first grayscale value may correspond to the grayscale value of the sub-pixel in the previous display frame
  • the second grayscale value may correspond to the grayscale value of the sub-pixel in the current display frame.
  • the current overdrive lookup table may include: a plurality of different first grayscale values, a plurality of different second grayscale values, and corresponding to any first grayscale value and any second grayscale value.
  • the current grayscale value For example, the current over-driving lookup table has corresponding gray-scale number of bits, that is, the first gray-scale value, the second gray-scale value and the current gray-scale value in the current over-driving look-up table have corresponding gray-scale number of bits.
  • the number of grayscale bits corresponding to the initial overdrive lookup table and the number of grayscale bits corresponding to the current overdrive lookup table can be set to be the same.
  • the number of grayscale digits corresponding to the initial overdrive lookup table is 8 bits
  • the number of grayscale digits corresponding to the current overdrive lookup table can also be set to 8bit, that is, in the current overdrive lookup table, the first grayscale value
  • the number of grayscale bits corresponding to the second grayscale value and the current grayscale value can be 8 bits.
  • the first grayscale value in the current overdrive lookup table can be all grayscales from 0 to 255 grayscale values in 8bits.
  • the second grayscale value can be all grayscale values from 0 to 255 grayscale values in 8 bits.
  • the first grayscale value in the current overdrive lookup table can be some of the grayscale values from 0 to 255 in 8 bits
  • the second grayscale value can be some of the grayscale values from 0 to 255 in 8bits. Partial grayscale value.
  • Figure 8 illustrates the current overdrive lookup table LUTD corresponding to the current temperature TD in the embodiment of the present disclosure.
  • the current overdrive lookup table LUTD may include part of the first grayscale value in 8 bits. and part of the second grayscale value, and the current grayscale value calculated corresponding to these first grayscale value and second grayscale value.
  • the values in the first row in Figure 8 represent the first gray Level value
  • the value in the first column (such as 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255) represents the second gray level value
  • the remaining values (such as D1-1 ⁇ D17-17) represent the current grayscale value.
  • the specific numerical values of the first grayscale value and the second grayscale value illustrated in FIG. 8 are only examples. In actual applications, it can be determined according to the needs of actual applications, and is not limited here.
  • the first grayscale value may correspond to the grayscale value of the sub-pixel in the previous display frame
  • the second grayscale value may correspond to the grayscale value of the sub-pixel in the current display frame.
  • the current overdrive lookup table LUTD corresponding to the current temperature TD may be stored in the timing controller.
  • the current overdrive lookup table LUTD corresponding to the current temperature TD can also be stored in the memory, which is not limited here. In this way, based on the current overdrive lookup table, the stored current overdrive lookup table LUTD can be called from the timing controller or the memory to drive the subpixels in the display panel to charge the corresponding data voltage.
  • the current overdrive lookup table LUTD can also be calculated in real time, so that the current overdrive lookup table LUTD corresponding to the calculated current temperature TD does not need to be stored, which can save storage space. In this way, based on the current overdrive lookup table, the current overdrive lookup table LUTD can be directly calculated in real time to drive the sub-pixels in the display panel to charge the corresponding data voltage.
  • the timing controller may calculate the current overdrive lookup table corresponding to the current temperature based on the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature. For example, calculating the current overdrive lookup table corresponding to the current temperature according to the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature may include: first, calling M corresponding set temperature tables according to the current temperature. In the initial overdrive lookup table, there is an initial overdrive lookup table corresponding to the mth set temperature and an initial overdrive lookup table corresponding to the m+1th set temperature.
  • the current overdrive lookup table corresponding to the current temperature is calculated.
  • Each current grayscale value For example, the m-th set temperature is smaller than the current temperature, and the m+1-th set temperature is larger than the current temperature; m is an integer, and 1 ⁇ m ⁇ M-1.
  • the m-th set temperature is the set temperature that is smaller than and closest to the current temperature.
  • the m+1th set temperature is the set temperature that is greater than and closest to the current temperature.
  • the first set temperature is the set temperature that is smaller than and closest to the current temperature
  • the second set temperature is the set temperature that is greater than and closest to the current temperature.
  • the current overdrive lookup table corresponding to the current temperature is calculated.
  • Driving each current grayscale value in the lookup table may include: first, based on the principle of the same first grayscale value and the same second grayscale value, that is, selecting a first grayscale value and a second grayscale value, To determine the first initial gray scale value in the initial overdrive lookup table corresponding to the mth set temperature, and the second initial grayscale value in the initial overdrive lookup table corresponding to the m+1th set temperature.
  • the m-th set temperature, the m+1-th set temperature, the first initial gray scale value and the second initial gray scale value determine the current overdrive lookup table and the first initial gray scale value.
  • the current grayscale value corresponding to the second initial grayscale value For example, based on the current temperature, the m-th set temperature, the m+1-th set temperature, the first initial gray scale value and the second initial gray scale value, determine the current overdrive lookup table and the first initial gray scale value.
  • D ab represents the first initial gray-scale value determined based on the principle of the same first gray-scale value and the same second gray-scale value (that is, based on the selected first gray-scale value and a second gray-scale value , the determined first initial gray scale value) and the second initial gray scale value (that is, the second initial gray scale value determined based on a selected first gray scale value and a second gray scale value) correspond to The current gray-scale value of The fitting parameter corresponding to the gray-scale value, a represents the first initial gray-scale value determined based on the principle of the same first gray-scale value and the same second gray-scale value (that is, based on a selected first gray-scale value and a second gray-scale value, the determined first initial gray-scale value), b represents the second initial gray-scale value determined based on the principle of the same first gray-scale value and the same second gray-scale value (that is, based on the selected A first grayscale value and a second grayscale value are obtained, and a second initial grayscale value is
  • the minimum endpoint grayscale value can be determined as the current grayscale value.
  • the memory 250 stores two initial overdrive lookup tables: the first initial overdrive lookup table LUTL corresponding to the set temperature TL (for example, 25°C), and the second initial overdrive lookup table corresponding to the second set temperature TH (for example, 40°C). Lookup table LUTH. Since the current temperature obtained by the timing controller 200 is 33°C, the timing controller 200 can determine that the current temperature is equal to the first set temperature TL (for example, 25°C) and the second set temperature TH (for example, 40°C).
  • the timing controller 200 can call the initial overdrive lookup table LUTL and the initial overdrive lookup table LUTH from the memory 250 .
  • the timing controller 200 can select a first grayscale value and a second grayscale value. For example, when the first grayscale value is 0 and the second grayscale value is 128, the timing controller 200 can search from the initial overdrive.
  • the first initial gray scale value is determined to be L9-1 from the table LUTL
  • the timing controller 200 can adjust the first set temperature TL (for example, 25°C), the second set temperature TH (for example, 40°C), the first initial gray scale value L9-1 and the second The initial gray scale value H9-1 can be fitted to obtain the temperature-related curve S 0-128 .
  • D 32-160 A 32-160 t 2 +B 32-160 t+C 32-160 .
  • the timing controller 200 can adjust the first set temperature TL (for example, 25°C), the second set temperature TH (for example, 40°C), the first initial gray scale value L11-3 and the second The initial gray scale value H11-3 can be fitted to obtain the temperature-related curve S 32-160 .
  • the memory 250 stores two initial overdrive lookup tables: the first initial overdrive lookup table LUTL corresponding to the set temperature TL (for example, 25°C), and the second initial overdrive lookup table corresponding to the second set temperature TZ (for example, 30°C).
  • Lookup table LUTZ initial overdrive lookup table LUTH corresponding to the third set temperature TH (for example, 40°C).
  • Figure 12 illustrates the initial overdrive lookup table LUTZ corresponding to the set temperature TZ in the embodiment of the present disclosure.
  • the initial overdrive lookup table LUTZ may include part of the first gray level in 8 bits. value and part of the second grayscale value, and the initial grayscale value corresponding to these first grayscale value and second grayscale value.
  • the values in the first row in Figure 12 (such as 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255) represent the first gray Level value
  • the value in the first column (such as 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255) represents the second gray level value
  • the remaining values (such as Z1-1 ⁇ Z17-17) represent the initial grayscale value.
  • first grayscale value may correspond to the grayscale value of the sub-pixel in the previous display frame
  • second grayscale value may correspond to the grayscale value of the sub-pixel in the current display frame
  • the timing controller 200 can determine the difference between the current temperature and the first set temperature TL (for example, 25°C), the second set temperature TZ (for example, 30°C), and The second set temperature TH (for example, 40°C) is different. Then the timing controller 200 can call from the memory 250 the initial overdrive lookup table LUTZ corresponding to the second set temperature TZ that is closest to the current temperature and smaller than the current temperature, and the third set temperature TZ that is closest to the current temperature and larger than the current temperature. Set the initial overdrive lookup table LUTH corresponding to the set temperature TH. The timing controller 200 can select a first grayscale value and a second grayscale value.
  • the timing controller 200 can search from the initial overdrive.
  • the first initial gray scale value is determined to be Z9-1 from the table LUTZ
  • D ab is D 0-128
  • a ab is A 0-128
  • B ab is B 0-128
  • the timing controller 200 can adjust the second set temperature TZ (for example, 30°C), the third set temperature TH (for example, 40°C), the first initial gray scale value Z9-1 and the second
  • the initial gray scale value H9-1 can be fitted to obtain the temperature-related curve S 0-128 .
  • the timing controller 200 can select a first gray scale value and a second gray scale value from the initial process.
  • the first initial grayscale value is determined to be Z11-3 in the drive lookup table LUTZ
  • D 32-160 A 32-160 t 2 +B 32-160 t+C 32-160 .
  • the timing controller 200 can adjust the second set temperature TZ (for example, 30°C), the third set temperature TH (for example, 40°C), the first initial gray scale value Z11-3 and the second The initial gray scale value H11-3 can be fitted to obtain the temperature-related curve S 32-160 .
  • the number of initial overdrive lookup tables stored in the memory 250 can be set to 2 or 3, so that the number of initial overdrive lookup tables can be reduced as much as possible to save storage space.
  • the number of initial overdrive lookup tables can also be determined according to actual application requirements, and is not limited here.
  • S300 Drive the sub-pixels in the display panel to charge the corresponding data voltage according to the current over-driving lookup table.
  • step S300 may include, in each display frame after the current over-driving look-up table is determined, driving the sub-pixels in the display panel to charge the corresponding data voltage according to the current over-driving look-up table.
  • the timing controller 200 can be based on the display data of the current display frame (such as a display frame after determining the current over-driving lookup table) (the display data includes one-to-one data carrying corresponding grayscale values for each sub-pixel). The digital voltage form of the voltage) determines the grayscale value corresponding to each sub-pixel of the current display frame.
  • the gray scale value corresponding to each sub-pixel of the current display frame is determined.
  • the current grayscale value corresponding to the subpixel is determined from the current overdrive lookup table.
  • the timing controller 200 can send the determined current grayscale value to the source driving circuit 120 , and the source driving circuit 120 can load a data voltage corresponding to the current grayscale value to the data line connected to the sub-pixel according to the current grayscale value. , so that the sub-pixel can be charged with the data voltage corresponding to the current grayscale value.
  • the current grayscale value corresponding to the sub-pixel is determined from the current overdrive lookup table, and the grayscale value of the previous display frame used may be the current grayscale value of the previous display frame.
  • the current grayscale value corresponding to the sub-pixel is determined from the current overdrive lookup table, and the grayscale value of the previous display frame used may be the original grayscale value of the previous display frame.
  • the original grayscale value may be the grayscale value corresponding to the received display data.
  • the current grayscale value corresponding to the sub-pixel is determined from the current overdrive lookup table, and the grayscale value of the current display frame used may be the original grayscale value of the current display frame.
  • the original grayscale value may be the grayscale value corresponding to the received display data.
  • the display panel works in multiple consecutive display frames, and each display frame may include a data refresh phase and a blanking time (Blanking Time) phase.
  • the display frame F1 and the display frame F2 may include a data refresh phase TS and a blanking time (Blanking Time) phase TB.
  • the display frame F2 is used as the first display frame after the current overdrive lookup table is determined. Taking the sub-pixels A1 in the first row, the sub-pixels A2 in the second row, the sub-pixels A3 in the third row and the sub-pixels A4 in the fourth row in the same column connected by the data line DA1 as an example.
  • the grayscale value of sub-pixel A1 in display frame F1 is 32 and the grayscale value in display frame F2 is 128, we can find the current grayscale value corresponding to sub-pixel A1 from the current overdrive lookup table as D9- 3. In the same way, it can be found that the current grayscale value corresponding to sub-pixel A2 is D16-4, the current grayscale value corresponding to sub-pixel A3 is found to be D12-6, and the current grayscale value corresponding to sub-pixel A4 is found to be D6-7.
  • the current grayscale values of D9-3, D16-4, D12-6 and D6-7 can be input to the source driving circuit 120.
  • the gate driving circuit 110 pairs the gate lines GA1 loads the signal ga1, the gate line GA2 loads the signal ga2, the gate line GA3 loads the signal ga3, and the gate line GA4 loads the signal ga4.
  • the gate turn-on voltage (such as the voltage corresponding to the high level) appears in the signals ga1 ⁇ ga4 , can control the corresponding transistor 010 to turn on.
  • the source driving circuit 120 sequentially loads the data line DA1 with the data voltage VD9-3 corresponding to the current gray scale value D9-3, the data voltage VD16-4 corresponding to the current gray scale value D16-4, and the data voltage VD16-4 corresponding to the current gray scale value D12-6.
  • the transistors 01 in the first row of sub-pixels can be controlled to be turned on, and the corresponding data voltage VD9-3 is loaded on the data line DA1, so that the first row of sub-pixels
  • the pixel electrode 02 of the sub-pixel A1 inputs the data voltage VD9-3.
  • the transistors 01 in the second row of sub-pixels can be controlled to be turned on, and the corresponding data voltage VD16-4 is loaded on the data line DA1, so that the sub-pixel A2 in the second row of sub-pixels
  • the pixel electrode 02 inputs the data voltage VD16-4.
  • the transistors 01 in the third row of sub-pixels can be controlled to be turned on, and the corresponding data voltage VD12-6 is loaded on the data line DA1, so that the sub-pixel A3 in the third row of sub-pixels
  • the pixel electrode 02 inputs the data voltage VD12-6.
  • the transistors 01 in the fourth row of sub-pixels can be controlled to be turned on, and the corresponding data voltage VD6-7 is loaded on the data line DA1, so that the sub-pixel A4 in the fourth row of sub-pixels
  • the pixel electrode 02 inputs the data voltage VD6-7.
  • the rest of the lines can be deduced in this way and will not be described in detail here.
  • the signals ga1 to ga4 are all low level, and the transistor 01 in each sub-pixel is in a cut-off state.
  • the data lines DA1 to DA3 do not need to be loaded with voltage and are all in a floating state.
  • each time the temperature collector 500 detects the temperature of the display panel it will determine the current overdrive lookup table. And in each display frame after the current over-driving look-up table is determined, the sub-pixels in the display panel are driven to charge the corresponding data voltage according to the current over-driving look-up table. That is to say, if the above steps S100 to S200 are executed again and the new current overdrive lookup table is determined, in each display frame after the current overdrive lookup table is determined, according to the new current overdrive lookup table, The sub-pixels in the display panel are driven to charge corresponding data voltages.
  • step S200 Calculate the current overdrive lookup table corresponding to the current temperature according to the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature, which may include: calculating the current temperature and M When the set temperatures are different, the current overdrive lookup table corresponding to the current temperature is calculated based on the current temperature and the initial overdrive lookup table corresponding to the pre-stored set temperature. In this way, since the current temperature is different from the M set temperatures, the lookup table corresponding to the current temperature cannot be retrieved from the stored initial overdrive lookup tables. In this way, the calculation can be calculated based on the current temperature and the stored initial overdrive lookup tables.
  • the initial process corresponding to the set temperature among the M set temperatures that is the same as the current temperature can be called based on the current temperature.
  • the timing controller 200 can determine that the current temperature is the same as the first set temperature TL, and can call the initial overdrive lookup table LUTL from the memory 250 . In this way, in each display frame after the initial overdrive lookup table LUTL corresponding to the same set temperature as the current temperature, the subpixels in the display panel are driven to charge the corresponding data voltage according to the call of the initial overdrive lookup table LUTL.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage 250, CD-ROM, optical storage 250, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage 250, CD-ROM, optical storage 250, etc.
  • These computer program instructions may also be stored in a computer-readable memory 250 that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory 250 produce an article of manufacture including the instructions means,
  • the instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

公开了一种显示面板的驱动方法及显示装置,显示面板的驱动方法包括:获取显示面板的当前温度(S100);根据当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表(S200);其中,初始过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的初始灰阶值;当前过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的当前灰阶值;根据当前过驱动查找表,驱动显示面板中的子像素充入相庆的数据电压(S300)。

Description

显示面板的驱动方法及显示装置 技术领域
本公开涉及显示技术领域,特别涉及显示面板的驱动方法及显示装置。
背景技术
在诸如液晶显示器(Liquid Crystal Display,LCD)和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器中,一般包括多个像素单元。每个像素单元可以包括:多个不同颜色的子像素。通过控制每个子像素对应的亮度,从而混合出所需显示的色彩来显示彩色图像。
发明内容
本公开实施例提供的显示面板的驱动方法,包括:
获取所述显示面板的当前温度;
根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表;其中,所述初始过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的初始灰阶值;所述当前过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的当前灰阶值;
根据所述当前过驱动查找表,驱动所述显示面板中的子像素充入相应的数据电压。
在一些示例中,所述设定温度为M个;其中,M为整数且M≥2。
在一些示例中,所述根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表,包括:
在所述当前温度与所述M个设定温度不同时,根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的 当前过驱动查找表。
在一些示例中,所述根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表,包括:
根据所述当前温度,调用所述M个设定温度对应的初始过驱动查找表中第m个设定温度对应的初始过驱动查找表和第m+1个设定温度对应的初始过驱动查找表;其中,所述第m个设定温度小于所述当前温度,所述第m+1个设定温度大于所述当前温度;m为整数,且1≤m≤M-1;
根据所述当前温度,所述第m个设定温度对应的初始过驱动查找表以及所述第m+1个设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表中的各当前灰阶值。
在一些示例中,所述根据所述当前温度,所述第m个设定温度对应的初始过驱动查找表以及所述第m+1个设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表中的各当前灰阶值,包括:
基于同一第一灰阶值和同一第二灰阶值的原则,确定所述第m个设定温度对应的初始过驱动查找表中的第一初始灰阶值,以及所述第m+1个设定温度对应的初始过驱动查找表中的第二初始灰阶值;
根据所述当前温度、所述第m个设定温度、所述第m+1个设定温度、所述第一初始灰阶值以及所述第二初始灰阶值,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值。
在一些示例中,所述根据所述当前温度、所述第m个设定温度、所述第m+1个设定温度、所述第一初始灰阶值以及所述第二初始灰阶值,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值,包括:
根据所述第m个设定温度、所述第m+1个设定温度、所述第一初始灰阶值以及所述第二初始灰阶值,拟合得到与温度相关的计算公式;
根据所述当前温度和所述计算公式,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值。
在一些示例中,所述根据所述当前温度和所述计算公式,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值,包括:
根据所述当前温度和所述计算公式,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的中间灰阶值;
在确定所述中间灰阶值不小于最小端点灰阶值且不大于最大端点灰阶值时,将所述中间灰阶值确定为所述当前灰阶值;
在确定所述中间灰阶值小于所述最小端点灰阶值时,将所述最小端点灰阶值确定为所述当前灰阶值;
在确定所述中间灰阶值大于所述最大端点灰阶值时,将所述最大端点灰阶值确定为所述当前灰阶值。
在一些示例中,所述计算公式为:
D a-b=A a-bt 2+B a-bt+C a-b
其中,D a-b代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第一初始灰阶值以及所述第二初始灰阶值对应的所述中间灰阶值,t代表当前温度,A a-b、B a-b以及C a-b分别代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第一初始灰阶值以及所述第二初始灰阶值对应的拟合参数,a代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第一初始灰阶值,b代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第二初始灰阶值。
在一些示例中,所述第m个设定温度为小于且最接近所述当前温度的设定温度;
所述第m+1个设定温度为大于且最接近所述当前温度的设定温度。
在一些示例中,M≤3。
在一些示例中,在所述当前温度与所述M个设定温度中的一个设定温度相同时,根据所述当前温度,调用所述M个设定温度中与所述当前温度相同的设定温度对应的初始过驱动查找表;并根据调用的所述初始过驱动查找表, 驱动所述显示面板中的子像素充入相应的数据电压。
本公开实施例提供的显示装置,包括:
显示面板;
存储器,被配置为存储设定温度对应的初始过驱动查找表;
温度采集器,被配置为检测所述显示面板的温度;
时序控制器,被配置为获取所述温度采集器检测到的所述显示面板的当前温度;根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表;以及根据所述当前过驱动查找表,驱动所述显示面板中的子像素充入相应的数据电压;其中,所述初始过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的初始灰阶值;所述当前过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的当前灰阶值。
在一些示例中,所述时序控制器还被配置为直接从所述温度采集器中采集所述温度采集器检测到的所述显示面板的温度,并根据采集到的温度获取所述当前温度。
在一些示例中,所述显示装置还包括:系统控制器;
所述系统控制器被配置为直接从所述温度采集器中采集所述温度采集器检测到的所述显示面板的温度,并将采集到的所述温度发送给所述时序控制器;
所述时序控制器还被配置为根据接收到的所述温度获取所述当前温度。
在一些示例中,所述温度采集器设置为至少一个,且所述温度采集器设置于所述显示面板的非显示区中。
在一些示例中,在所述温度采集器设置为至少两个时,所述温度采集器分散设置于所述非显示区中;并且,所述当前温度为各所述温度采集器检测到的温度的平均值;
在所述温度采集器设置为至一个时,所述当前温度为所述温度采集器检 测到的温度。
在一些示例中,所述温度采集器包括:温度传感器和热敏电阻中的至少一个。
附图说明
图1为本公开实施例提供的显示装置的一些结构示意图;
图2为本公开实施例提供的显示面板的一些结构示意图;
图3a为本公开实施例提供的显示装置的另一些结构示意图;
图3b为本公开实施例提供的显示装置的又一些结构示意图;
图3c为本公开实施例提供的显示面板的另一些结构示意图;
图4为本公开实施例提供的一些示意图;
图5为本公开实施例提供的显示面板的驱动方法的一些流程图;
图6为本公开实施例提供的一些初始过驱动查找表的示意图;
图7为本公开实施例提供的另一些初始过驱动查找表的示意图;
图8为本公开实施例提供的一些当前过驱动查找表的示意图;
图9为本公开实施例提供的一些信号时序图;
图10为本公开实施例提供的一些曲线示意图;
图11为本公开实施例提供的另一些曲线示意图;
图12为本公开实施例提供的又一些初始过驱动查找表的示意图;
图13为本公开实施例提供的又一些曲线示意图;
图14为本公开实施例提供的又一些曲线示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所 描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
结合图1至图3a所示,显示装置可以包括:显示面板100、时序控制器200、系统控制器300以及背光模组400。其中,显示面板100可以具有显示区AA和非显示区BB。其中,显示区AA可以包括多个阵列排布的像素单元,多条栅线GA(例如,GA1、GA2、GA3、GA4),多条数据线DA(例如,DA1、DA2、DA3)。示例性地,每个像素单元包括多个子像素SPX。例如,像素单元可以包括红色子像素,绿色子像素以及蓝色子像素,这样可以通过红绿蓝进行混色,以实现彩色显示。或者,像素单元也可以包括红色子像素,绿色子像素、蓝色子像素以及白色子像素,这样可以通过红绿蓝白进行混色,以实现彩色显示。当然,在实际应用中,像素单元中的子像素的发光颜色可以根据实际应用环境来设计确定,在此不作限定。
参见图2所示,每个子像素SPX中可以包括晶体管01和像素电极02。其中,一行子像素SPX对应一条栅线,一列子像素SPX对应一条数据线。晶体管01的栅极与对应的栅线电连接,晶体管01的源极与对应的数据线电连接,晶体管01的漏极与像素电极02电连接,需要说明的是,本公开像素阵列结构还可以是双栅结构,即相邻两行像素之间设置两条栅极线,此排布方 式可以减少一半的数据线,即包含相邻两列像素之间有的数据线,有的相邻两列像素之间不包括数据线,具体像素排布结构和数据线,扫描线的排布方式不限定。
结合图1至图3c所示,非显示区BB可以包括栅极驱动电路110以及源极驱动电路120。其中,栅极驱动电路110分别与栅线GA1、GA2、GA3、GA4耦接,源极驱动电路120分别与数据线DA1、DA2、DA3耦接。示例性地,源极驱动电路120可以设置为2个,其中一个源极驱动电路120连接一半数量的数据线,另一个源极驱动电路120连接另一半数量的数据线。当然,源极驱动电路120也可以设置3个、4个、或更多个,其可以根据实际应用的需求进行设计确定,在此不作限定。
在本公开一些实施例中,如图3a与图3b所示,示意出了时序控制器200与显示面板之间的连接关系。其中,300代表系统控制器300,200代表时序控制器200,210代表能够传输显示数据的印刷电路板(Printed Circuit Board,PCB)(例如XPCB),220代表覆晶薄膜(Chip On Film,COF),120代表源极驱动电路,240代表时序控制器200所在的时序电路板。示例性地,系统控制器300可以接收一个显示帧的待显示图像的显示数据,然后将该显示数据发送给时序控制器200。时序控制器200可以通过电平转换(Level Shift)电路向栅极驱动电路110输入时钟控制信号,以使栅极驱动电路110对栅线输出栅极扫描信号,从而驱动栅线GA1、GA2、GA3、GA4。以及,时序控制器200还可以将接收到的显示数据进行相应处理,并在进行相应处理后发送给源极驱动电路120。源极驱动电路120可以根据接收到的显示数据向数据线DA1、DA2、DA3输入数据电压,从而对子像素SPX充电,使子像素SPX输入相应的数据电压,实现该显示帧的画面显示功能。示例性地,时序控制器200可以通过PCB 210以及COF 220,将显示数据输入到源极驱动电路120中。源极驱动电路120再根据显示数据对显示面板中的数据线加载数据电压。
示例性地,系统控制器300可以设置为系统级芯片(System on Chip,SOC)。当然,在实际应用中,可以根据实际应用的需求确定系统控制器300的实施 方式,在此不作限定。
需要说明的是,本公开实施例中的显示面板可以时钟为液晶显示面板。示例性地,液晶显示面板一般包括对盒的阵列基板和对向基板,以及封装在阵列基板和对向基板之间的液晶分子。在显示画面时,由于加载在各子像素SPX的像素电极上的数据电压和公共电极上的公共电极电压之间具有电压差,该电压差可以形成电场,从而使液晶分子在该电场的作用下进行偏转。由于不同强度的电场使液晶分子的偏转程度不同,从而导致子像素SPX的透过率不同,以使子像素SPX实现不同灰阶的亮度,进而实现画面显示。
灰阶,一般是将最暗与最亮之间的亮度变化区分为若干份,以便于进行屏幕亮度管控。例如,以显示的图像由红、绿、蓝三种颜色组成,其中每一个颜色都可以显现出不同的亮度级别,并且不同亮度层次的红、绿、蓝组合起来,可以形成不同的色彩。例如,液晶显示面板的灰阶位数为6bit,则红、绿、蓝这三种颜色分别具有64(即2 6)个灰阶,这64个灰阶值分别为0~63。液晶显示面板的灰阶位数为8bit,则红、绿、蓝这三种颜色分别具有256(即2 8)个灰阶,这256个灰阶值分别为0~255。液晶显示面板的灰阶位数为10bit,则红、绿、蓝这三种颜色分别具有1024(即2 10)个灰阶,这1024个灰阶值分别为0~1023。液晶显示面板的灰阶位数为12bit,则红、绿、蓝这三种颜色分别具有4096(即2 12)个灰阶,这4096个灰阶值分别为0~4093。
示例性地,以一个子像素SPX为例,Vcom代表公共电极电压。其中,在该子像素SPX的像素电极中输入的数据电压大于公共电极电压Vcom时,可以使该子像素SPX处的液晶分子为正极性,则该子像素SPX中的数据电压对应的极性为正极性。在子像素SPX的像素电极中输入的数据电压小于公共电极电压Vcom时,可以使该子像素SPX处的液晶分子为负极性,则该子像素SPX中的数据电压对应的极性为负极性。例如,公共电极电压可以为8.3V,若在该子像素SPX的像素电极中输入了8.3V~16V的数据电压,可以使该子像素SPX处的液晶分子为正极性,则8.3V~16V的数据电压为对应正极性的数据电压。若在该子像素SPX的像素电极中输入了0.6V~8.3V的数据电压, 可以使该子像素SPX处的液晶分子为负极性,则0.6V~8.3V的数据电压为对应负极性的数据电压。示例性地,以8bit的0~255灰阶为例,若在子像素SPX的像素电极中输入16V的数据电压时,该子像素SPX可以对应正极性的最大灰阶值的亮度。若在子像素SPX的像素电极中输入0.6V的数据电压时,该子像素SPX可以对应负极性的最大灰阶值的亮度。
通常,响应时间是液晶显示面板特有的一个性能指标。所谓响应时间,是指液晶显示面板各子像素对输入的数据电压的反应速度,即子像素由暗转亮或由亮转暗所需要的时间。响应时间越短则使用者在看动态画面时越不会有拖尾的感觉。相比正性液晶,负性液晶具有更高的透过率特性,可显著提高液晶显示面板的亮度、清晰度以及对比度,从而达到画质的整体提升。但负性液晶也具有天生缺点,如旋转粘度高,导致同等条件下负性液晶响应时间不足,播放动态画面容易出现拖尾不良,如图4所示。结合图4所示,以灰阶位数为8bit的显示面板为例,在显示面板显示以255灰阶作为背景且0灰阶作为数字8的测试画面时,W1对应的数字8为第一个显示帧的画面中数字8所在的位置,W2为第二个显示帧的画面中数字8所在的位置,W3为第三个显示帧的画面中数字8所在的位置。通过图4可知,在第三个显示帧中显示W3对应的数字8时,W1对应的数字8和W2对应的数字8还会出现一些残留影像,从而形成了拖尾。
针对旋转粘度高导致的拖尾不良,可通过电路过驱动(Over Drive,OD)进行优化。然而,由于负性液晶的旋转速度受温度影响较大,温度越低,偏转速度越慢,导致在采用常温下调试好的OD查找表驱动液晶显示面板显示画面时,若液晶显示面板的温度略微升高,便会出现因过度过驱导致的动态画面反色不良。因此温度对于响应时间的影响仍不容忽视。
为了改善温度对应于相应时间的影响,本公开实施例提供了显示面板的驱动方法,可以通过获取显示面板的当前温度,再根据获取到的当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的新的当前过驱动查找表。也就是说,当前灰阶值是根据当前温度和初始灰阶 值计算得到的,使得当前过驱动查找表和初始过驱动查找表是不同的。从而可以根据显示面板的当前温度,来动态调整过驱动查找表,以通过调整后的当前过驱动查找表驱动显示面板显示,可以改善动态画面的反色不良的问题。这样还可以不用存储过多数量的初始过驱动查找表,从而可以降低存储所占用的空间,以及降低实际运行过程中的读取时间,提高读取速度。
结合图5所示,本公开实施例提供的显示面板的驱动方法,可以包括如下步骤:
S100、获取显示面板的当前温度。
在本公开一些实施例中,如图3a所示,显示装置还可以包括温度采集器500。该温度采集器500可以检测显示面板的温度。示例性地,温度采集器500可以在每经过设定时间后进行检测显示面板的温度的工作。例如,温度采集器500可以在每经过10min、30min、1h、10h或24h等时间后进行检测显示面板的温度的工作。
示例性地,温度采集器500可以设置于显示面板的非显示区BB中。这样可以避免温度采集器500占用显示区的面积,以及避免温度采集器500对显示区的显示效果造成影响。示例性地,温度采集器500才设置在显示面板的对向基板上,并且设置在对向基板与背光模组之间。这样可以进一步不用占用显示区的面积,可选的,温度采集器也可以设置在阵列基板和对向基板之间。例如对于液晶显示而言,温度采集器可以设置在阵列基板和对向基板形成的液晶盒内,例如可以设置在阵列基板靠近对向基板的一侧上,在此不做限定。
在本公开一些实施例中,时序控制器200可以直接从温度采集器500中采集温度采集器500检测到的显示面板的温度,并根据采集到的温度获取当前温度。示例性地,结合图3a所示,这样可以使温度采集器500检测到的显示面板的温度直接传递给时序控制器200,以使时序控制器200可以根据接收到的温度获取当前温度。这样可以使时序控制器200将该温度采集器500检测到的显示面板的温度,直接作为获取到的当前温度。这样可以在常规的COF 220及PCB 210上增加温控反馈引脚即可实现。
在本公开一些实施例中,系统控制器300可以直接从温度采集器500中采集温度采集器500检测到的显示面板的温度,并将采集到的温度发送给时序控制器200。时序控制器200根据接收到的温度获取当前温度。示例性地,结合图3b所示,可以采用信号接口走线(例如,通用型输入输出接口(General-Purpose Input/Output Ports,GPIO)走线)将显示面板100与系统控制器300连接起来。并将温度采集器500的引线连接至该信号接口走线上。这样可以使温度采集器500检测到的显示面板的温度先传递至系统控制器300,以使系统控制器300采集到该温度采集器500检测到的显示面板的温度。之后,系统控制器300再将采集到的温度发送给时序控制器200,以使时序控制器200可以根据接收到的温度获取当前温度。这样无需变更常规的COF 220及PCB 210设计,无需在COF 220和PCB 210上增加冗余的引脚,而是需要时序控制器200输入端口增加一个信号引脚即可实现。
在本公开一些实施例中,如图3a与图3b所示,可以将温度采集器500设置为一个,则当前温度为温度采集器500检测到的温度。这样可以使时序控制器200将接收到的温度,直接作为当前温度即可。这样可以降低成本,降低计算量以及降低温度采集器500占用过多的非显示区的空间。
在本公开一些实施例中,如图3c所示,在温度采集器500设置为至少两个时,可以将温度采集器500分散设置于非显示区中。示例性地,可以将温度采集器500的位置平均分布于显示面板的四周,具体位置和个数可视实际显示面板的而定。这样可以降低显示面板的干涉影响。客观来说,温度传感器的数量越多,实际监测环境温度越准确,但附加的元器件的变更会增多,例如,在COF和PCB上所需额外增加的温控反馈引脚也会增多。
在本公开一些实施例中,在温度采集器500设置为至少两个时,当前温度为各温度采集器500检测到的温度的平均值。这样可以使时序控制器200接收到每一个温度传输器的温度后,将这些温度进行计算确定出平均值,即可得到当前温度。
在本公开一些实施例中,温度采集器500可以包括:温度传感器和热敏电阻中的至少一个。示例性地,可以将温度采集器500设置为温度传感器。结合图3a所示,这样可以通过温度传感器将显示面板的温度转换为电信号(例如,电压信号或电流信号),该电信号依次COF 220、以及PCB 210传递至时序控制器200中。其中,COF 220和PCB 210上分别预留用于传输该电信号的温控反馈引脚。或者,也可以将温度采集器500设置为热敏电阻。结合图3a所示,这样可以通过热敏电阻将显示面板的温度转换为电信号(例如,电压信号或电流信号),该电信号依次通过COF 220、以及PCB 210传递至时序控制器200中。其中,COF 220和PCB 210上分别预留用于传输该电信号的温控反馈引脚。
需要说明的是,温度采集器500的数量、位置以及具体实施方式,可以根据实际应用的需求进行确定,在此不作限定。
S200、根据当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表。
在本公开一些实施例中,可以将设定温度设置为多个。示例性地,设定温度设置为M个,则预先存储了M个初始过驱动查找表,且一个设定温度对应一个初始过驱动查找表。其中,M为整数且M≥2。例如,可以使M=2,这样可以使设定温度设置为两个:设定温度TL和设定温度TH。且TL<TH。则设定温度TL对应一个初始过驱动查找表LUTL,设定温度TH对应另一个初始过驱动查找表LUTH。示例性地,可以将设定温度TL和设定温度TH分别设定为温度的下限和上限。例如,在显示面板未出厂前,对显示面板工作时的温度进行测试,可以得到显示面板的大致温度范围区间,这样将得到的温度范围区间的最小值设定为设定温度TL,将得到的温度范围区间的最大值设定为设定温度TH。例如,若得到的温度范围区间为25℃~40℃,则可以将TL=25℃,TH=40℃。当然,在实际应用中,可以根据实际应用的需求确定TL和TH的具体数值,在此不作限定。
在本公开一些实施例中,如图3a所示,显示装置还可以包括:存储器250。 该存储器250可以存储设定温度对应的初始过驱动查找表。例如,以设定温度为两个:设定温度TL和设定温度TH为例,存储器250可以存储设定温度TL对应的初始过驱动查找表LUTL,以及设定温度TH对应的初始过驱动查找表LUTH。示例性地,存储器250可以包括:带电可擦可编程只读存储器250(Electrically Erasable Programmable read only memory,EEPROM)和闪存(Flash)中至少一种。示例性地,存储器250可以设置在时序电路板上240,这样可以将存储器250与时序控制器200设置的较近,进一步降低信号传输时间。
示例性地,初始过驱动查找表可以包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的初始灰阶值。示例性地,初始过驱动查找表具有对应的灰阶位数,即初始过驱动查找表中的第一灰阶值、第二灰阶值以及初始灰阶值具有对应的灰阶位数。例如,初始过驱动查找表对应的灰阶位数为8bit,则第一灰阶值、第二灰阶值以及初始灰阶值对应的灰阶位数可以为8bit,例如,初始过驱动查找表中的第一灰阶值可以为8bit中的0~255灰阶值中的所有灰阶值,第二灰阶值可以为8bit中的0~255灰阶值中的所有灰阶值。或者,初始过驱动查找表中的第一灰阶值可以为8bit中的0~255灰阶值中的部分灰阶值,第二灰阶值可以为8bit中的0~255灰阶值中的部分灰阶值。
示例性地,如图6所示,图6示意出了本公开实施例中的设定温度TL对应的初始过驱动查找表LUTL,该初始过驱动查找表LUTL可以包括8bit中部分第一灰阶值和部分第二灰阶值,以及这些第一灰阶值和第二灰阶值对应的初始灰阶值。图6中的第一行中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第一灰阶值,第一列中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第二灰阶值,其余数值(如L1-1~L17-17)代表初始灰阶值。需要说明的是,图6中示意的第一灰阶值和第二灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确 定的,在此不作限定。需要说明的是,第一灰阶值可以对应上一个显示帧中子像素的灰阶值,第二灰阶值可以对应当前显示帧中子像素的灰阶值。
示例性地,如图7所示,图7示意出了本公开实施例中的设定温度TH对应的初始过驱动查找表LUTH,该初始过驱动查找表LUTH可以包括8bit中部分第一灰阶值和部分第二灰阶值,以及这些第一灰阶值和第二灰阶值对应的初始灰阶值。图7中的第一行中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第一灰阶值,第一列中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第二灰阶值,其余数值(如H1-1~H17-17)代表初始灰阶值。需要说明的是,图7中示意的第一灰阶值和第二灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。需要说明的是,第一灰阶值可以对应上一个显示帧中子像素的灰阶值,第二灰阶值可以对应当前显示帧中子像素的灰阶值。
示例性地,当前过驱动查找表可以包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的当前灰阶值。示例性地,当前过驱动查找表具有对应的灰阶位数,即当前过驱动查找表中的第一灰阶值、第二灰阶值以及当前灰阶值具有对应的灰阶位数。例如,初始过驱动查找表对应的灰阶位数和当前过驱动查找表对应的灰阶位数可以设置为相同。例如,初始过驱动查找表对应的灰阶位数为8bit,则可以将当前过驱动查找表对应的灰阶位数也设置为8bit,即在当前过驱动查找表中,第一灰阶值、第二灰阶值以及当前灰阶值对应的灰阶位数可以为8bit,例如,当前过驱动查找表中的第一灰阶值可以为8bit中的0~255灰阶值中的所有灰阶值,第二灰阶值可以为8bit中的0~255灰阶值中的所有灰阶值。或者,当前过驱动查找表中的第一灰阶值可以为8bit中的0~255灰阶值中的部分灰阶值,第二灰阶值可以为8bit中的0~255灰阶值中的部分灰阶值。
示例性地,如图8所示,图8示意出了本公开实施例中的当前温度TD对应的当前过驱动查找表LUTD,该当前过驱动查找表LUTD可以包括8bit中 部分第一灰阶值和部分第二灰阶值,以及这些第一灰阶值和第二灰阶值对应计算得到的当前灰阶值。图8中的第一行中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第一灰阶值,第一列中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第二灰阶值,其余数值(如D1-1~D17-17)代表当前灰阶值。需要说明的是,图8中示意的第一灰阶值和第二灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。需要说明的是,第一灰阶值可以对应上一个显示帧中子像素的灰阶值,第二灰阶值可以对应当前显示帧中子像素的灰阶值。
在本公开一些实施例中,当前温度TD对应的当前过驱动查找表LUTD可以存储在时序控制器中。或者,当前温度TD对应的当前过驱动查找表LUTD也可以存储在存储器中,在此不作限定。这样在后面根据当前过驱动查找表,可以从时序控制器中或存储器中调用存储的当前过驱动查找表LUTD,以驱动显示面板中的子像素充入相应的数据电压。
在本公开一些实施例中,也可以使实时计算当前过驱动查找表LUTD,这样可以不存储计算出的当前温度TD对应的当前过驱动查找表LUTD,可以节省存储空间。这样在后面根据当前过驱动查找表,可以直接通过实时计算出的当前过驱动查找表LUTD,以驱动显示面板中的子像素充入相应的数据电压。
在本公开一些实施例中,时序控制器可以根据当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表。示例性地,根据当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表,可以包括:首先,根据当前温度,调用M个设定温度对应的初始过驱动查找表中第m个设定温度对应的初始过驱动查找表和第m+1个设定温度对应的初始过驱动查找表。之后,再根据当前温度,第m个设定温度对应的初始过驱动查找表以及第m+1 个设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表中的各当前灰阶值。示例性地,第m个设定温度小于当前温度,第m+1个设定温度大于当前温度;m为整数,且1≤m≤M-1。例如,第m个设定温度为小于且最接近当前温度的设定温度。第m+1个设定温度为大于且最接近当前温度的设定温度。例如,M=2时,第一个设定温度即为小于且最接近当前温度的设定温度,第二个设定温度即为大于且最接近当前温度的设定温度。M=3时,若当前温度大于第一设定温度且小于第二设定温度,则第一个设定温度即为小于且最接近当前温度的设定温度,第二个设定温度即为大于且最接近当前温度的设定温度。若当前温度大于第二设定温度且小于第三设定温度,则第二个设定温度即为小于且最接近当前温度的设定温度,第三个设定温度即为大于且最接近当前温度的设定温度。
在本公开一些实施例中,根据当前温度,第m个设定温度对应的初始过驱动查找表以及第m+1个设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表中的各当前灰阶值,可以包括:首先,基于同一第一灰阶值和同一第二灰阶值的原则,即选定一个第一灰阶值和一个第二灰阶值,以确定第m个设定温度对应的初始过驱动查找表中的第一初始灰阶值,以及第m+1个设定温度对应的初始过驱动查找表中的第二初始灰阶值。之后,根据当前温度、第m个设定温度、第m+1个设定温度、第一初始灰阶值以及第二初始灰阶值,确定当前过驱动查找表中与第一初始灰阶值和第二初始灰阶值对应的当前灰阶值。例如,根据当前温度、第m个设定温度、第m+1个设定温度、第一初始灰阶值以及第二初始灰阶值,确定当前过驱动查找表中与第一初始灰阶值和第二初始灰阶值对应的当前灰阶值,可以包括:首先,根据第m个设定温度、第m+1个设定温度、第一初始灰阶值以及第二初始灰阶值,拟合得到与温度相关的计算公式:D a-b=A a-bt 2+B a-bt+C a-b。之后,根据当前温度和计算公式,确定当前过驱动查找表中与第一初始灰阶值和第二初始灰阶值对应的当前灰阶值。其中,D a-b代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的第一初始灰阶值(即根据选定出的一个第一灰阶 值和一个第二灰阶值,确定出的第一初始灰阶值)以及第二初始灰阶值(即根据选定出的一个第一灰阶值和一个第二灰阶值,确定出的第二初始灰阶值)对应的当前灰阶值,t代表当前温度,A a-b、B a-b以及C a-b分别代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的第一初始灰阶值以及第二初始灰阶值对应的拟合参数,a代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的第一初始灰阶值(即根据选定出的一个第一灰阶值和一个第二灰阶值,确定出的第一初始灰阶值),b代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的第二初始灰阶值(即根据选定出的一个第一灰阶值和一个第二灰阶值,确定出的第二初始灰阶值)。
需要说明的是,上述拟合得到的与温度相关的计算公式:D a-b=A a-bt 2+B a-bt+C a-b,仅是一种示意,在实际应用中,还可以根据上述条件拟合得到其他可适用的公式。因此,在实际应用中,可以根据实际应用环境的需求根据上述条件拟合得到所适用的公式,具体在此不作限定。
在本公开一些实施例中,根据当前温度和计算公式,确定当前过驱动查找表中与第一初始灰阶值和第二初始灰阶值对应的当前灰阶值,可以包括:首先,根据当前温度和计算公式:D a-b=A a-bt 2+B a-bt+C a-b,确定当前过驱动查找表中与第一初始灰阶值和第二初始灰阶值对应的中间灰阶值。其中,在确定中间灰阶值不小于最小端点灰阶值且不大于最大端点灰阶值时,可以将中间灰阶值确定为当前灰阶值。在确定中间灰阶值小于最小端点灰阶值时,可以将最小端点灰阶值确定为当前灰阶值。以及,在确定中间灰阶值大于最大端点灰阶值时,可以将最大端点灰阶值确定为当前灰阶值。例如,以8bit为例,若根据D a-b=A a-bt 2+B a-bt+C a-b计算得到D a-b=127时,可以直接将127作为当前灰阶值写入当前过驱动查找表。若根据D a-b=A a-bt 2+B a-bt+C a-b计算得到D a-b=-3时,可以直接将0作为当前灰阶值写入当前过驱动查找表。若根据D a-b=A a-bt 2+B a-bt+C a-b计算得到D a-b=300时,可以直接将255作为当前灰阶值写入当前过驱动查找表。
下面以M=2,当前温度为33℃为例,对本公开实施例提供的计算当前温 度对应的当前过驱动查找表的过程进行说明。存储器250存储了两个初始过驱动查找表:第一个设定温度TL(例如25℃)对应的初始过驱动查找表LUTL,第二个设定温度TH(例如40℃)对应的初始过驱动查找表LUTH。由于时序控制器200获取到的当前温度为33℃,则时序控制器200可以确定当前温度与第一个设定温度TL(例如25℃)和第二个设定温度TH(例如40℃)均不同,则时序控制器200可以从存储器250中调用初始过驱动查找表LUTL和初始过驱动查找表LUTH。时序控制器200可以根据选定的一个第一灰阶值和一个第二灰阶值,例如选定了第一灰阶值为0,第二灰阶值为128时,可以从初始过驱动查找表LUTL中确定出第一初始灰阶值为L9-1,以及从初始过驱动查找表LUTH中确定出第二初始灰阶值为H9-1。即公式中D a-b=A a-bt 2+B a-bt+C a-b,a=0,b=128。则D ab为D 0-128,A a-b为A 0-128,B a-b为B 0-128,C a-b为C 0-128。即,D 0-128=A 0-128t 2+B 0-128t+C 0-128。结合图10所示,时序控制器200可以根据第一个设定温度TL(例如25℃)、第二个设定温度TH(例如40℃)、第一初始灰阶值L9-1以及第二初始灰阶值H9-1,可以拟合得到与温度相关的曲线S 0-128,该曲线S 0-128的计算公式可以为:D 0-128=A 0-128t 2+B 0-128t+C 0-128。将当前温度33℃,代入公式D 0-128=A 0-128t 2+B 0-128t+C 0-128,可以计算得到第一灰阶值为0和第二灰阶值为128时对应的中间灰阶值D 0-128=D9-1,在该中间灰阶值D 0-128=D9-1不小于0且不大于255时,可以将D9-1确定为当前灰阶值写入当前过驱动查找表LUTD中。
以及,时序控制器200可以根据选定的一个第一灰阶值和一个第二灰阶值,例如选定了第一灰阶值为32,第二灰阶值为160时,可以从初始过驱动查找表LUTL中确定出第一初始灰阶值为L11-3,以及从初始过驱动查找表LUTH中确定出第二初始灰阶值为H11-3。即公式中D a-b=A a-bt 2+B a-bt+C a-b,a=32,b=160。则D ab为D 32-160,A a-b为A 32-160,B a-b为B 32-160,C a-b为C 32-160。即,D 32-160=A 32-160t 2+B 32-160t+C 32-160。结合图11所示,时序控制器200可以根据第一个设定温度TL(例如25℃)、第二个设定温度TH(例如40℃)、第一初始灰阶值L11-3以及第二初始灰阶值H11-3,可以拟合得到与温度相关的曲线S 32-160, 该曲线S 32-160的计算公式可以为:D 32-160=A 32-160t 2+B 32-160t+C 32-160。将当前温度33℃,代入公式D 32-160=A 32-160t 2+B 32-160t+C 32-160,可以计算得到第一灰阶值为32和第二灰阶值为160时对应的中间灰阶值D 32-160=D11-3,在该中间灰阶值D 32-160=D11-3不小于0且不大于255时,可以将D11-3确定为当前灰阶值写入当前过驱动查找表LUTD中。需要说明的是,图10与图11中,横坐标Tem代表时间,纵坐标GL代表灰阶值。并且,其余第一灰阶值和第二灰阶值对应的当前灰阶值的计算过程,与上述过程基本相同,可以此类推,在此不作赘述。
下面以M=3,当前温度为33℃为例,对本公开实施例提供的计算当前温度对应的当前过驱动查找表的过程进行说明。存储器250存储了两个初始过驱动查找表:第一个设定温度TL(例如25℃)对应的初始过驱动查找表LUTL,第二个设定温度TZ(例如30℃)对应的初始过驱动查找表LUTZ,第三个设定温度TH(例如40℃)对应的初始过驱动查找表LUTH。示例性地,如图12所示,图12示意出了本公开实施例中的设定温度TZ对应的初始过驱动查找表LUTZ,该初始过驱动查找表LUTZ可以包括8bit中部分第一灰阶值和部分第二灰阶值,以及这些第一灰阶值和第二灰阶值对应的初始灰阶值。图12中的第一行中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第一灰阶值,第一列中的数值(如0、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255)代表第二灰阶值,其余数值(如Z1-1~Z17-17)代表初始灰阶值。需要说明的是,图12中示意的第一灰阶值和第二灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。需要说明的是,第一灰阶值可以对应上一个显示帧中子像素的灰阶值,第二灰阶值可以对应当前显示帧中子像素的灰阶值。
由于时序控制器200获取到的当前温度为33℃,则时序控制器200可以确定当前温度与第一个设定温度TL(例如25℃)、第二个设定温度TZ(例如30℃)以及第二个设定温度TH(例如40℃)均不同。则时序控制器200可以 从存储器250中调用当前温度最接近的且小于当前温度的第二个设定温度TZ对应的初始过驱动查找表LUTZ和当前温度最接近的且大于当前温度的第三个设定温度TH对应的初始过驱动查找表LUTH。时序控制器200可以根据选定的一个第一灰阶值和一个第二灰阶值,例如选定了第一灰阶值为0,第二灰阶值为128时,可以从初始过驱动查找表LUTZ中确定出第一初始灰阶值为Z9-1,以及从初始过驱动查找表LUTH中确定出第二初始灰阶值为H9-1。即公式中D a-b=A a-bt 2+B a-bt+C a-b,a=0,b=128。则D ab为D 0-128,A a-b为A 0-128,B a-b为B 0-128,C a-b为C 0-128。即,D 0-128=A 0-128t 2+B 0-128t+C 0-128。结合图13所示,时序控制器200可以根据第二个设定温度TZ(例如30℃)、第三个设定温度TH(例如40℃)、第一初始灰阶值Z9-1以及第二初始灰阶值H9-1,可以拟合得到与温度相关的曲线S 0-128,该曲线S 0-128的计算公式可以为:D 0-128=A 0-128t 2+B 0-128t+C 0-128。将当前温度33℃,代入公式D 0-128=A 0-128t 2+B 0-128t+C 0-128,可以计算得到第一灰阶值为0和第二灰阶值为128时对应的中间灰阶值D 0-128=D9-1,在该中间灰阶值D 0-128=D9-1不小于0且不大于255时,可以将D9-1确定为当前灰阶值写入当前过驱动查找表LUTD中。
以及,时序控制器200可以根据选定的一个第一灰阶值和一个第二灰阶值,例如选定了第一灰阶值为32,第二灰阶值为160时,可以从初始过驱动查找表LUTZ中确定出第一初始灰阶值为Z11-3,以及从初始过驱动查找表LUTH中确定出第二初始灰阶值为H11-3。即公式中D a-b=A a-bt 2+B a-bt+C a-b,a=32,b=160。则D ab为D 32-160,A a-b为A 32-160,B a-b为B 32-160,C a-b为C 32-160。即,D 32-160=A 32-160t 2+B 32-160t+C 32-160。结合图14所示,时序控制器200可以根据第二个设定温度TZ(例如30℃)、第三个设定温度TH(例如40℃)、第一初始灰阶值Z11-3以及第二初始灰阶值H11-3,可以拟合得到与温度相关的曲线S 32-160,该曲线S 32-160的计算公式可以为:D 32-160=A 32-160t 2+B 32-160t+C 32-160。将当前温度33℃,代入公式D 32-160=A 32-160t 2+B 32-160t+C 32-160,可以计算得到第一灰阶值为32和第二灰阶值为160时对应的中间灰阶值D 32-160=D11-3,在该中间灰阶值D 32-160=D11-3不小于0且不大于255时,可以将D11-3确定为当前灰阶值 写入当前过驱动查找表LUTD中。需要说明的是,图13与图14中,横坐标Tem代表时间,纵坐标GL代表灰阶值。并且,其余第一灰阶值和第二灰阶值对应的当前灰阶值的计算过程,与上述过程基本相同,可以以此类推,在此不作赘述。
需要说明的是,存储器250存储的初始过驱动查找表的数量可以设置为2个或3个,这样可以尽可能的降低初始过驱动查找表的数量,以节省存储空间。当然,初始过驱动查找表的数量也可以根据实际应用的需求进行确定,在此不作限定。
S300、根据当前过驱动查找表,驱动显示面板中的子像素充入相应的数据电压。
在本公开实施例中,步骤S300可以包括,在确定出当前过驱动查找表后的每一个显示帧中,根据当前过驱动查找表,驱动显示面板中的子像素充入相应的数据电压。例如,时序控制器200可以根据当前显示帧(如确定出当前过驱动查找表后的一个显示帧)的显示数据(该显示数据包括每一个子像素一一对应的携带有相应灰阶值的数据电压的数字电压形式),确定出当前显示帧每一个子像素对应的灰阶值。根据上一个显示帧显示数据(该显示数据包括每一个子像素一一对应的携带有相应灰阶值的数据电压的数字电压形式),确定出当前显示帧每一个子像素对应的灰阶值。根据当前显示帧和上一个显示帧中对应同一子像素的灰阶值,从当前过驱动查找表中确定出该子像素对应的当前灰阶值。时序控制器200可以将确定出来的当前灰阶值发送给源极驱动电路120,源极驱动电路120可以根据该当前灰阶值对该子像素连接的数据线加载对应当前灰阶值的数据电压,以使该子像素可以充入对应当前灰阶值的数据电压。
示例性地,从当前过驱动查找表中确定出该子像素对应的当前灰阶值,所使用的上一个显示帧的灰阶值可以为上一个显示帧的当前灰阶值。当然,从当前过驱动查找表中确定出该子像素对应的当前灰阶值,所使用的上一个显示帧的灰阶值可以为上一个显示帧的原始灰阶值。该原始灰阶值可以为接 收到的显示数据对应的灰阶值。
示例性地,从当前过驱动查找表中确定出该子像素对应的当前灰阶值,所使用的当前显示帧的灰阶值可以为当前显示帧的原始灰阶值。该原始灰阶值可以为接收到的显示数据对应的灰阶值。
示例性地,显示面板工作在连续的多个显示帧中,每个显示帧可以包括数据刷新阶段和空白时间(Blanking Time)阶段。结合图9所示,以显示帧F1和F2为例,显示帧F1和显示帧F2可以包括数据刷新阶段TS和空白时间(Blanking Time)阶段TB。并且,显示帧F2作为确定出当前过驱动查找表后的第一个显示帧。以数据线DA1连接的同一列中的,第一行中子像素A1、第二行中子像素A2、第三行中子像素A3以及第四行中子像素A4为例。若子像素A1在显示帧F1中的灰阶值为32,在显示帧F2中的灰阶值为128,从而可以从当前过驱动查找表中,找到子像素A1对应的当前灰阶值为D9-3。同理,可以找到子像素A2对应的当前灰阶值为D16-4,找到子像素A3对应的当前灰阶值为D12-6,找到子像素A4对应的当前灰阶值为D6-7。
并且,当前灰阶值为D9-3、D16-4、D12-6以及D6-7可以输入到源极驱动电路120中,在显示帧F2的数据刷新阶段TS,栅极驱动电路110对栅线GA1加载信号ga1,对栅线GA2加载信号ga2,对栅线GA3加载信号ga3,对栅线GA4加载信号ga4,在信号ga1~ga4中出现栅极开启电压(例如高电平对应的电压)时,可以控制对应的晶体管010导通。源极驱动电路120依次对数据线DA1加载对应当前灰阶值D9-3的数据电压VD9-3、对应当前灰阶值D16-4的数据电压VD16-4、对应当前灰阶值D12-6的数据电压VD12-6、以及对应当前灰阶值D6-7的数据电压VD6-7。示例性地,在信号ga1出现栅极开启电压时,可以控制第一行子像素中的晶体管01均导通,对数据线DA1加载相应的数据电压VD9-3,以使第一行子像素中的子像素A1的像素电极02输入数据电压VD9-3。在信号ga2出现栅极开启电压时,可以控制第二行子像素中的晶体管01均导通,对数据线DA1加载相应的数据电压VD16-4,以使第二行子像素中的子像素A2的像素电极02输入数据电压VD16-4。在信 号ga3出现栅极开启电压时,可以控制第三行子像素中的晶体管01均导通,对数据线DA1加载相应的数据电压VD12-6,以使第三行子像素中的子像素A3的像素电极02输入数据电压VD12-6。在信号ga4出现栅极开启电压时,可以控制第四行子像素中的晶体管01均导通,对数据线DA1加载相应的数据电压VD6-7,以使第四行子像素中的子像素A4的像素电极02输入数据电压VD6-7。其余行以此类推,在此不作赘述。以及,在空白时间(Blanking Time)阶段TB中,信号ga1~ga4均为低电平,每个子像素中的晶体管01均处于截止状态。并且,数据线DA1~DA3可以不加载电压,均处于浮接状态。
需要说明的是,在温度采集器500每一次进行检测显示面板的温度后,都会确定一次当前过驱动查找表。并且在确定出当前过驱动查找表后的每一个显示帧中,根据当前过驱动查找表,驱动显示面板中的子像素充入相应的数据电压。也就是说,若再次执行上述步骤S100~S200,确定出了新的当前过驱动查找表后,在确定出当前过驱动查找表后的每一个显示帧中,根据新的当前过驱动查找表,驱动显示面板中的子像素充入相应的数据电压。
在本公开一些实施例中,步骤S200:根据当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表,可以包括:在当前温度与M个设定温度不同时,根据当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表。这样由于当前温度与M个设定温度均不同,从而不能从存储的这些初始过驱动查找表中调取到对应当前温度的查找表,这样可以根据当前温度以及存储的初始过驱动查找表,计算得到当前温度对应的当前过驱动查找表,从而可以根据显示面板的当前温度,来动态调整过驱动查找表,以通过调整后的当前过驱动查找表驱动显示面板显示,可以改善动态画面的反色不良的问题。
在本公开一些实施例中,在当前温度与M个设定温度中的一个设定温度相同时,可以根据当前温度,调用M个设定温度中与当前温度相同的设定温度对应的初始过驱动查找表。并根据调用的初始过驱动查找表,驱动显示面 板中的子像素充入相应的数据电压。示例性地,以M=2,当前温度为25℃为例,存储器250存储了两个初始过驱动查找表:第一个设定温度TL(例如25℃)对应的初始过驱动查找表LUTL,第二个设定温度TH(例如40℃)对应的初始过驱动查找表LUTH。则时序控制器200可以确定当前温度与第一个设定温度TL相同,可以从存储器250中调用初始过驱动查找表LUTL。这样可以在与当前温度相同的设定温度对应的初始过驱动查找表LUTL后的每一个显示帧中,根据调用初始过驱动查找表LUTL,驱动显示面板中的子像素充入相应的数据电压。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器250、CD-ROM、光学存储器250等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器250中,使得存储在该计算机可读存储器250中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种显示面板的驱动方法,包括:
    获取所述显示面板的当前温度;
    根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表;其中,所述初始过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的初始灰阶值;所述当前过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的当前灰阶值;
    根据所述当前过驱动查找表,驱动所述显示面板中的子像素充入相应的数据电压。
  2. 如权利要求1所述的显示面板的驱动方法,其中,所述设定温度为M个;其中,M为整数且M≥2。
  3. 如权利要求2所述的显示面板的驱动方法,其中,所述根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表,包括:
    在所述当前温度与所述M个设定温度不同时,根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表。
  4. 如权利要求3所述的显示面板的驱动方法,其中,所述根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表,包括:
    根据所述当前温度,调用所述M个设定温度对应的初始过驱动查找表中第m个设定温度对应的初始过驱动查找表和第m+1个设定温度对应的初始过驱动查找表;其中,所述第m个设定温度小于所述当前温度,所述第m+1个设定温度大于所述当前温度;m为整数,且1≤m≤M-1;
    根据所述当前温度,所述第m个设定温度对应的初始过驱动查找表以及所述第m+1个设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表中的各当前灰阶值。
  5. 如权利要求4所述的显示面板的驱动方法,其中,所述根据所述当前温度,所述第m个设定温度对应的初始过驱动查找表以及所述第m+1个设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表中的各当前灰阶值,包括:
    基于同一第一灰阶值和同一第二灰阶值的原则,确定所述第m个设定温度对应的初始过驱动查找表中的第一初始灰阶值,以及所述第m+1个设定温度对应的初始过驱动查找表中的第二初始灰阶值;
    根据所述当前温度、所述第m个设定温度、所述第m+1个设定温度、所述第一初始灰阶值以及所述第二初始灰阶值,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值。
  6. 如权利要求5所述的显示面板的驱动方法,其中,所述根据所述当前温度、所述第m个设定温度、所述第m+1个设定温度、所述第一初始灰阶值以及所述第二初始灰阶值,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值,包括:
    根据所述第m个设定温度、所述第m+1个设定温度、所述第一初始灰阶值以及所述第二初始灰阶值,拟合得到与温度相关的计算公式;
    根据所述当前温度和所述计算公式,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值。
  7. 如权利要求6所述的显示面板的驱动方法,其中,所述根据所述当前温度和所述计算公式,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的所述当前灰阶值,包括:
    根据所述当前温度和所述计算公式,确定所述当前过驱动查找表中与所述第一初始灰阶值和所述第二初始灰阶值对应的中间灰阶值;
    在确定所述中间灰阶值不小于最小端点灰阶值且不大于最大端点灰阶值 时,将所述中间灰阶值确定为所述当前灰阶值;
    在确定所述中间灰阶值小于所述最小端点灰阶值时,将所述最小端点灰阶值确定为所述当前灰阶值;
    在确定所述中间灰阶值大于所述最大端点灰阶值时,将所述最大端点灰阶值确定为所述当前灰阶值。
  8. 如权利要求7所述的显示面板的驱动方法,其中,所述计算公式为:
    D a-b=A a-bt 2+B a-bt+C a-b
    其中,D a-b代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第一初始灰阶值以及所述第二初始灰阶值对应的所述中间灰阶值,t代表当前温度,A a-b、B a-b以及C a-b分别代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第一初始灰阶值以及所述第二初始灰阶值对应的拟合参数,a代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第一初始灰阶值,b代表基于同一第一灰阶值和同一第二灰阶值的原则确定出的所述第二初始灰阶值。
  9. 如权利要求4-8任一项所述的显示面板的驱动方法,其中,所述第m个设定温度为小于且最接近所述当前温度的设定温度;
    所述第m+1个设定温度为大于且最接近所述当前温度的设定温度。
  10. 如权利要求2-9任一项所述的显示面板的驱动方法,其中,M≤3。
  11. 如权利要求2所述的显示面板的驱动方法,其中,在所述当前温度与所述M个设定温度中的一个设定温度相同时,根据所述当前温度,调用所述M个设定温度中与所述当前温度相同的设定温度对应的初始过驱动查找表;并根据调用的所述初始过驱动查找表,驱动所述显示面板中的子像素充入相应的数据电压。
  12. 一种显示装置,包括:
    显示面板;
    存储器,被配置为存储设定温度对应的初始过驱动查找表;
    温度采集器,被配置为检测所述显示面板的温度;
    时序控制器,被配置为获取所述温度采集器检测到的所述显示面板的当前温度;根据所述当前温度以及预先存储的设定温度对应的初始过驱动查找表,计算得到所述当前温度对应的当前过驱动查找表;以及根据所述当前过驱动查找表,驱动所述显示面板中的子像素充入相应的数据电压;其中,所述初始过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的初始灰阶值;所述当前过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一所述第一灰阶值和任一所述第二灰阶值对应的当前灰阶值。
  13. 如权利要求12所述的显示装置,其中,所述时序控制器还被配置为直接从所述温度采集器中采集所述温度采集器检测到的所述显示面板的温度,并根据采集到的温度获取所述当前温度。
  14. 如权利要求12所述的显示装置,其中,所述显示装置还包括:系统控制器;所述系统控制器被配置为直接从所述温度采集器中采集所述温度采集器检测到的所述显示面板的温度,并将采集到的所述温度发送给所述时序控制器;
    所述时序控制器还被配置为根据接收到的所述温度获取所述当前温度。
  15. 如权利要求12-14任一项所述的显示装置,其中,所述温度采集器设置为至少一个,且所述温度采集器设置于所述显示面板的非显示区中。
  16. 如权利要求15所述的显示装置,其中,在所述温度采集器设置为至少两个时,所述温度采集器分散设置于所述非显示区中;并且,所述当前温度为各所述温度采集器检测到的温度的平均值;
    在所述温度采集器设置为至一个时,所述当前温度为所述温度采集器检测到的温度。
  17. 如权利要求12-16任一项所述的显示装置,其中,所述温度采集器包括:温度传感器和热敏电阻中的至少一个。
PCT/CN2022/087147 2022-04-15 2022-04-15 显示面板的驱动方法及显示装置 WO2023197308A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/087147 WO2023197308A1 (zh) 2022-04-15 2022-04-15 显示面板的驱动方法及显示装置
CN202280000769.6A CN117242510A (zh) 2022-04-15 2022-04-15 显示面板的驱动方法及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087147 WO2023197308A1 (zh) 2022-04-15 2022-04-15 显示面板的驱动方法及显示装置

Publications (1)

Publication Number Publication Date
WO2023197308A1 true WO2023197308A1 (zh) 2023-10-19

Family

ID=88328639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087147 WO2023197308A1 (zh) 2022-04-15 2022-04-15 显示面板的驱动方法及显示装置

Country Status (2)

Country Link
CN (1) CN117242510A (zh)
WO (1) WO2023197308A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909052A (zh) * 2005-07-27 2007-02-07 三菱电机株式会社 图像处理电路
US20170092217A1 (en) * 2015-09-25 2017-03-30 Canon Kabushiki Kaisha Video display apparatus, information processing method, and storage medium
US20190066608A1 (en) * 2017-08-24 2019-02-28 Japan Display Inc. Electronic device, display device and display control method
CN110782850A (zh) * 2018-07-25 2020-02-11 夏普株式会社 液晶显示装置及其驱动方法
CN112053658A (zh) * 2019-06-07 2020-12-08 苹果公司 用于像素驱动补偿的二维温度补偿
US20200388224A1 (en) * 2019-06-07 2020-12-10 Apple Inc. Pixel drive compensation with pixel modification writeback

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909052A (zh) * 2005-07-27 2007-02-07 三菱电机株式会社 图像处理电路
US20170092217A1 (en) * 2015-09-25 2017-03-30 Canon Kabushiki Kaisha Video display apparatus, information processing method, and storage medium
US20190066608A1 (en) * 2017-08-24 2019-02-28 Japan Display Inc. Electronic device, display device and display control method
CN110782850A (zh) * 2018-07-25 2020-02-11 夏普株式会社 液晶显示装置及其驱动方法
CN112053658A (zh) * 2019-06-07 2020-12-08 苹果公司 用于像素驱动补偿的二维温度补偿
US20200388224A1 (en) * 2019-06-07 2020-12-10 Apple Inc. Pixel drive compensation with pixel modification writeback

Also Published As

Publication number Publication date
CN117242510A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
KR101329438B1 (ko) 액정표시장치
US8605023B2 (en) Apparatus and method for driving liquid crystal display device
JP4856052B2 (ja) 液晶表示装置とその駆動方法
US8520032B2 (en) Liquid crystal display and method of driving the same
CN101188093B (zh) 液晶显示器及其驱动方法
US10417980B2 (en) Liquid crystal display device and driving method thereof
US11030967B2 (en) Display device and method of driving the same
KR101623582B1 (ko) 액정표시장치와 그 응답시간 보상방법
KR101324552B1 (ko) 액정표시장치 및 그 구동방법
KR20180096880A (ko) 표시 장치의 구동 방법
CN113284470A (zh) 一种公共电压补偿方法及液晶显示装置
KR101630330B1 (ko) 액정표시장치 및 이의 구동방법
JP2006317566A (ja) 表示装置および電子機器
KR20100060735A (ko) 액정표시장치 및 그 구동 방법
CN113270076A (zh) 显示面板的驱动方法和显示装置
US20030222836A1 (en) Method and circuit for driving a liquid crystal display and liquid crystal display incorporating the same
WO2023197308A1 (zh) 显示面板的驱动方法及显示装置
KR20110030215A (ko) 액정표시장치와 그 구동방법
KR20070051441A (ko) 액정 표시 장치의 계조 조정 방법 및 시스템
CN108962172B (zh) 显示电压的设定方法和液晶显示装置
US9818324B2 (en) Transmission device, display device, and display system
WO2023155628A1 (zh) 显示面板的驱动方法及显示装置
US11410626B1 (en) Method for driving display panel, display panel and display device
KR101136277B1 (ko) 휘도 보상장치 및 이를 구비한 액정표시장치
CN116884329A (zh) 一种显示调试电路及调试方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000769.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936953

Country of ref document: EP

Kind code of ref document: A1