WO2023155628A1 - 显示面板的驱动方法及显示装置 - Google Patents

显示面板的驱动方法及显示装置 Download PDF

Info

Publication number
WO2023155628A1
WO2023155628A1 PCT/CN2023/070192 CN2023070192W WO2023155628A1 WO 2023155628 A1 WO2023155628 A1 WO 2023155628A1 CN 2023070192 W CN2023070192 W CN 2023070192W WO 2023155628 A1 WO2023155628 A1 WO 2023155628A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
target
grayscale
row
grayscale value
Prior art date
Application number
PCT/CN2023/070192
Other languages
English (en)
French (fr)
Inventor
李清
赵盼辉
周留刚
戴珂
汪俊
孙建伟
梁云云
黄艳庭
权宇
陈韫璐
潘正汝
刘建涛
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023155628A1 publication Critical patent/WO2023155628A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a driving method of a display panel and a display device.
  • Display panels such as Liquid Crystal Display (LCD) and Organic Light-Emitting Diode (OLED) generally include a plurality of pixel units.
  • Each pixel unit may include: a red sub-pixel, a green sub-pixel and a blue sub-pixel. By controlling the brightness corresponding to each sub-pixel, the required display color is mixed to display a color image.
  • a data voltage is input to the data line in the display panel, so that each of the subpixels in the mth row is charged with a corresponding data voltage.
  • the target grayscale of each subpixel in the mth row is determined according to the original grayscale value of the mth row in the same column and the target grayscale value of the subpixel in the m-1th row Order values, including:
  • nth column determine the grayscale difference between the original grayscale value corresponding to the subpixel in the mth row and the target grayscale value corresponding to the subpixel in the m-1th row; where n is greater than 0 integer;
  • the target grayscale value of the target grayscale value and the target lookup grayscale value in the pre-stored target lookup table after reducing the original grayscale value of the subpixel in the mth row, it is determined as the subpixel in the mth row in the nth column
  • the target grayscale value of the pixel wherein, the target lookup table includes: a plurality of different first grayscale values, a plurality of different second grayscale values, and any first grayscale value and any second grayscale value The grayscale value corresponding to the target search grayscale value.
  • the set threshold is greater than 1 and less than or equal to the maximum gray scale value.
  • the target grayscale value of the subpixel in the m-1th row is determined as the target grayscale value of the subpixel in the mth row in the nth column after reducing the original grayscale value of the subpixel in the mth row, including:
  • the target grayscale value of the mth row of subpixels in the nth column After the original grayscale value of the subpixel in the mth row in the nth column is reduced by the absolute value of the target grayscale conversion value, it is determined as the target grayscale value of the mth row of subpixels in the nth column order value.
  • the target grayscale corresponding to the mth row of sub-pixels in the nth column is determined according to the determined target search grayscale value, the first set value and the second set value Conversion values, including:
  • the first set value and the second set value determine the first grayscale conversion value corresponding to the subpixel in the mth row in the nth column ;
  • Z11 represents the first grayscale conversion value
  • Y11 represents the target search grayscale value
  • A11 represents the first set value
  • A12 represents the second set value
  • A12 2 k : where , k represents the difference between the gray-scale digits corresponding to the target lookup table and the gray-scale digits corresponding to the display panel; Y11 ⁇ A11;
  • the first grayscale conversion value is rounded according to a rounding rule to determine the target grayscale conversion value.
  • the overdrive lookup table includes: a plurality of different first grayscale values , a plurality of different second gray scale values, and an overdrive search gray scale value corresponding to any first gray scale value and any second gray scale value.
  • the original grayscale value of the subpixel in the mth row in the nth column is determined as the The target grayscale value corresponding to the sub-pixel in the mth row in the nth column.
  • the inputting a data voltage to a data line in the display panel according to the target grayscale value of each subpixel in the mth row includes:
  • the n-th While inputting a data voltage to the data line connected to the sub-pixel in the m-th row in the n-th column according to the target grayscale value of the sub-pixel in the m-th row in the n-th column, the n-th The data line connected to the sub-pixels in the m-th row in the column is loaded with the compensation voltage corresponding to the sub-pixels in the m-th row in the n-th column.
  • the original grayscale value of the subpixel in the mth row in the nth column, the target grayscale value of the subpixel in the m-1th row, and the pre-stored overdrive lookup table Find the grayscale value of the overdrive, and determine the compensation voltage corresponding to the sub-pixel in the m-th row in the n-th column, including:
  • the data voltage corresponding to the absolute value of the target overdrive gray scale conversion value of the sub-pixel in the m-th row in the n-th column is determined as the compensation voltage corresponding to the sub-pixel in the m-th row in the n-th column.
  • the target overdrive corresponding to the mth row of sub-pixels in the nth column is determined according to the determined overdrive search grayscale value, third set value, and fourth set value.
  • Drive grayscale conversion values including:
  • the following formula is used to determine the second gray-scale conversion corresponding to the m-th row of sub-pixels in the n-th column according to the determined overdrive search gray-scale value, the third set value, and the fourth set value value;
  • Z21 represents the second grayscale conversion value
  • Y21 represents the overdrive search grayscale value
  • A22 represents the fourth set value
  • A21 represents the third set value
  • A21 2 k :
  • k represents the difference between the gray-scale digits corresponding to the overdrive lookup table and the gray-scale digits corresponding to the display panel;
  • the second gray scale conversion value is rounded according to a rounding rule to determine the target overdrive gray scale conversion value.
  • the acquiring the original grayscale value of each sub-pixel in the mth row includes:
  • a display panel including a source drive circuit
  • the timing controller is configured to: determine the original grayscale value of each subpixel in the mth row and the target grayscale value corresponding to the data voltage charged by each subpixel in the m-1th row; the mth row in the same column When the original grayscale value of the subpixel is greater than the target grayscale value corresponding to the data voltage charged to the subpixel in the m-1th row, according to the same column, the original grayscale value of the mth row and the mth row - the target grayscale value of subpixels in one row, determining the target grayscale value of each subpixel in the m-th row; and providing the determined target grayscale value to the source driving circuit; wherein, m is an integer greater than 1; the display panel adopts a column flipping method;
  • the source driving circuit is configured to: input a data voltage to a data line in the display panel according to the target gray scale value of each sub-pixel in the m-th row, so that each of the sub-pixels in the m-th row The pixels are charged with corresponding data voltages.
  • the timing controller includes an image quality function processing module; the image quality function processing module stores a target lookup table and an overdrive lookup table;
  • the target lookup table includes: a plurality of different first grayscale values, a plurality of different second grayscale values, and a target lookup corresponding to any first grayscale value and any second grayscale value gray scale value;
  • the overdrive lookup table includes: a plurality of different first grayscale values, a plurality of different second grayscale values, and an overdrive lookup corresponding to any first grayscale value and any second grayscale value grayscale value.
  • the image quality function processing module includes: a first determination module, a second determination module and a data buffer;
  • the first determination module is configured to store one of the two target lookup tables, and according to the original grayscale value of the sub-pixel in the m-th row in the n-th column, the sub-pixel in the m-1th row
  • the target grayscale value of the pixel and the target lookup grayscale value in the pre-stored target lookup table are determined as the mth row in the nth column after reducing the original grayscale value of the subpixel in the mth row the target grayscale value of the sub-pixel, and provide the determined target grayscale value to the source driving circuit; wherein, n is an integer greater than 0;
  • the second determination module is configured to store the other one of the two target lookup tables, and according to the original grayscale value of the subpixel in the mth row in the nth column, the m-1th row
  • the target grayscale value of the sub-pixel and the target lookup grayscale value in the pre-stored target lookup table are determined as the mth in the nth column after reducing the original grayscale value of the subpixel in the mth row the target grayscale value of the row sub-pixel, and provide the determined target grayscale value to the data buffer;
  • the data buffer is configured to store the target grayscale value output by the second determination module.
  • the first determining module is further configured to obtain a target grayscale value corresponding to the data voltage charged to each subpixel in the m-1th row from the data buffer;
  • the second determining module is further configured to obtain a target gray scale value corresponding to the data voltage charged in each sub-pixel in the m-1th row from the data buffer.
  • the timing controller further includes: an original grayscale processing module;
  • the original grayscale processing module is configured to convert the original grayscale of sub-pixels in the mth row in the nth column to value, determined as the target grayscale value corresponding to the sub-pixel in the mth row in the nth column.
  • the timing controller further includes: an overdrive processing module; wherein the overdrive processing module is configured to store an overdrive lookup table, and in the grayscale difference value corresponding to the nth column
  • the overdrive processing module is configured to store an overdrive lookup table, and in the grayscale difference value corresponding to the nth column
  • the source driving circuit is configured to input data to the data line connected to the sub-pixel in the m-th row in the n-th column according to the target grayscale value of the sub-pixel in the m-th row in the n-th column At the same time, the compensation voltage corresponding to the sub-pixel in the m-th row in the n-th column is applied to the data line connected to the sub-pixel in the m-th row in the n-th column.
  • FIG. 1 is a schematic structural diagram of a display device in an embodiment of the present disclosure
  • Fig. 2a is some structural schematic diagrams of a display panel in an embodiment of the present disclosure
  • FIG. 2b is a schematic structural diagram of some sub-pixels in a display panel in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of some structures of checkerboard images in an embodiment of the present disclosure.
  • Fig. 4a is some structural schematic diagrams of data voltage changes in an embodiment of the present disclosure.
  • FIG. 4b is another schematic structural diagram of data voltage changes in an embodiment of the present disclosure.
  • FIG. 4c is another schematic structural diagram of data voltage changes in an embodiment of the present disclosure.
  • FIG. 4d is another schematic structural diagram of data voltage changes in an embodiment of the present disclosure.
  • FIG. 4e is another schematic structural diagram of data voltage changes in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of some structures of grayscale images in an embodiment of the present disclosure.
  • FIG. 6 is another schematic structural diagram of data voltage changes in an embodiment of the present disclosure.
  • Fig. 7 is some flowcharts of the driving method in the embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a timing controller in an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of some image quality function processing modules in an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a target lookup table in an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of an overdrive look-up table in an embodiment of the present disclosure.
  • the display device may include a display panel 100 and a timing controller 200 .
  • the display panel 100 may include a plurality of pixel units arranged in an array, a plurality of gate lines GA (for example, GA1, GA2, GA3, GA4), a plurality of data lines DA (for example, DA1, DA2, DA3), gate
  • the driving circuit 110 and the source driving circuit 120 are coupled to the gate lines GA1 , GA2 , GA3 , GA4 respectively, and the source driving circuit 120 is coupled to the data lines DA1 , DA2 , DA3 respectively.
  • the timing controller 200 may input a control signal to the gate driving circuit 110 through a level shift (Level Shift) circuit, thereby driving the gate lines GA1, GA2, GA3, GA4.
  • the timing controller 200 inputs signals to the source driving circuit 120 so that the source driving circuit 120 inputs data voltages to the data lines, thereby charging the sub-pixels SPX and making the sub-pixels SPX input corresponding data voltages to realize the image display function.
  • the number of source driving circuits 120 can be set to two, wherein one source driving circuit 120 is connected to half the number of data lines, and the other source driving circuit 120 is connected to the other half of the number of data lines.
  • three, four, or more source driving circuits 120 can also be provided, which can be designed and determined according to the requirements of practical applications, and are not limited here.
  • each sub-pixel SPX includes a transistor 01 and a pixel electrode 02 .
  • one row of sub-pixels SPX corresponds to one gate line
  • one column of sub-pixels SPX corresponds to one data line.
  • the gate of the transistor 01 is electrically connected to the corresponding gate line
  • the source of the transistor 01 is electrically connected to the corresponding data line
  • the drain of the transistor 01 is electrically connected to the pixel electrode 02.
  • the pixel array structure of the present disclosure can also be It is a double-gate structure, that is, two gate lines are set between two adjacent rows of pixels.
  • This arrangement can reduce half of the data lines, that is, there are data lines between two adjacent columns of pixels, and some adjacent two rows of pixels.
  • the data lines are not included between the pixels in the columns, and the specific arrangement structure of the pixels and the data lines, and the arrangement of the scanning lines are not limited.
  • each pixel unit includes a plurality of sub-pixels SPX.
  • a pixel unit may include red sub-pixels, green sub-pixels and blue sub-pixels, so that red, green and blue colors can be mixed to achieve color display.
  • the red sub-pixel R11, green sub-pixel G11, and blue sub-pixel B11 can be used as a pixel unit
  • the red sub-pixel R12, green sub-pixel G12, and blue sub-pixel B12 can be used as a pixel unit. Analogy, not repeat them here.
  • the pixel unit may also include red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels, so that color mixing can be performed through red, green, blue and white to achieve color display.
  • the luminous color of the sub-pixels in the pixel unit can be designed and determined according to the practical application environment, which is not limited here.
  • the display panel in the embodiments of the present disclosure may be a liquid crystal display panel.
  • the liquid crystal display panel mostly adopts a polarity inversion driving method, that is, it is necessary to switch the positive and negative polarities of the voltages of the data signals input to the sub-pixels.
  • the driving modes of polarity inversion include frame inversion, row inversion, column inversion and dot inversion. For example, for two adjacent frames of images, the voltage polarity of the data signal input to the pixel electrode in one frame of image is positive (that is, positive frame driving), and the voltage polarity of the data signal input to the same pixel electrode in the other frame of image is positive.
  • the polarity is negative (that is, negative frame driving is performed); or, for two adjacent rows of subpixels, the voltage polarity of the data signal input to the pixel electrode of one row of subpixels is positive, and the data input to the pixel electrode of another row of subpixels The voltage polarity of the signal is negative.
  • Grayscale generally divides the brightness change between the darkest and the brightest into several parts for easy screen brightness control.
  • the displayed image consists of three colors of red, green, and blue, each of which can show different brightness levels, and the combination of red, green, and blue at different brightness levels can form different colors.
  • the number of gray scale bits of the liquid crystal display panel is 6 bits
  • the three colors of red, green and blue have 64 (ie 2 6 ) gray scales respectively, and the 64 gray scale values are 0-63 respectively.
  • the number of gray scale digits of the liquid crystal display panel is 8 bits, and the three colors of red, green, and blue have 256 (ie, 2 8 ) gray scales respectively, and the 256 gray scale values are 0-255 respectively.
  • the number of grayscale digits of the liquid crystal display panel is 10 bits, and the three colors of red, green, and blue have 1024 (ie, 2 10 ) grayscales respectively, and these 1024 grayscale values are 0-1023 respectively.
  • the number of grayscale digits of the liquid crystal display panel is 12 bits, and the three colors of red, green, and blue have 4096 (ie, 2 12 ) grayscales respectively, and the 4096 grayscale values are 0-4093 respectively.
  • the liquid crystal molecules at the sub-pixel SPX can be made to be positive, and the sub-pixel The polarity corresponding to the data voltage Vda1 in the pixel SPX is positive.
  • the liquid crystal molecules at the sub-pixel SPX can be made to have a negative polarity, and then the polarity corresponding to the data voltage Vda2 in the sub-pixel SPX is negative.
  • the common electrode voltage can be 8.3V.
  • a data voltage of 8.8V-16V is input to the pixel electrode of the sub-pixel SPX, the liquid crystal molecules at the sub-pixel SPX can be made positive, and the 8.8V-16V
  • the data voltage is a data voltage corresponding to positive polarity. If a data voltage of 0.6V-7.8V is input into the pixel electrode of the sub-pixel SPX, the liquid crystal molecules at the sub-pixel SPX can be negatively polarized, and the data voltage of 0.6V-7.8V is data corresponding to the negative polarity. Voltage.
  • the sub-pixel SPX can use the data voltage of positive polarity to realize the maximum gray scale value (that is, 255 grayscale value) brightness. If a data voltage of 0.6V is input to the pixel electrode of the sub-pixel SPX, the sub-pixel SPX can use the data voltage of negative polarity to achieve the brightness of the maximum gray scale value (ie, 255 gray scale values).
  • the common electrode voltage is 8.3V
  • the data voltage corresponding to the positive polarity of the 0 grayscale value may be 8.8V, corresponding to 0
  • the data voltage of the negative polarity of the gray scale value may be 7.8V.
  • the data voltage of the 0 grayscale value and the common electrode voltage may also be the same. In practical applications, it can be determined according to the needs of practical applications, and no limitation is made here.
  • the gray scale value of the black grid is 0, and the corresponding positive data voltage is V9, which The data voltage corresponding to the negative polarity is V10.
  • the grayscale value of the white grid is 255, which corresponds to a data voltage of positive polarity V1, and which corresponds to a data voltage of negative polarity of V18.
  • the entire display area of the display panel can be divided into 7*5 grids.
  • a black-and-white checkerboard image When switching from a black-and-white checkerboard image to a lower grayscale picture (for example, a picture with a grayscale value of 127), taking two sub-pixels in the same row in the black grid as an example, as shown in Figure 4b, the nth display frame F_n Among the two sub-pixels in the same row in the black grid, a negative data voltage V10 is input to one sub-pixel to display the image of the black grid.
  • the sub-pixel In the (n+1)th display frame F_n+1, the sub-pixel inputs a positive data voltage V2 to display an image with 127 grayscale values, and the data voltage undergoes a charging process of V10 ⁇ V2. As shown in FIG.
  • the other sub-pixel of the two sub-pixels in the same row in the black grid inputs the positive data voltage V9 to display the image of the black grid.
  • the sub-pixel inputs the negative data voltage V3 to display an image with 127 gray scale values, and the data voltage undergoes a discharge process of V9 ⁇ V3.
  • the sub-pixel inputs a negative data voltage V18 to display an image of a white grid.
  • the sub-pixel inputs a positive data voltage V2 to display an image with 127 grayscale values, and the data voltage undergoes a charging process of V18 ⁇ V2.
  • the sub-pixel inputs a positive data voltage V1 to display an image of the white grid.
  • the sub-pixel inputs the negative data voltage V3 to display an image with 127 gray scale values, and the data voltage undergoes a charging process of V1 ⁇ V3.
  • the charging time of the charging process of the data voltage is Tr1
  • the discharging time of the discharging process of the data voltage is Tf1 .
  • Tr1 is greater than Tf1 , so that there is a large difference between Tr1 and Tf1 .
  • the liquid crystal charge accumulation difference of the positive and negative polarity sub-pixels occurs, and the charging rate of the sub-pixels under the positive and negative polarity is different to form a DC voltage bias.
  • the bias voltage makes the transmittance of the liquid crystal larger than other positions, forming afterimages of bright lines.
  • An embodiment of the present disclosure provides a driving method for a display panel.
  • the data voltage can be input to the data lines in the display panel according to the target grayscale value of each subpixel in the mth row, so that each subpixel in the mth row is charged with the corresponding data voltage, thereby improving the problem of line afterimage.
  • the driving method of the display panel provided by the embodiment of the present disclosure may include the following steps:
  • the display panel is displayed in a column inversion manner.
  • the data voltage corresponding to one column of sub-pixels is negative polarity
  • the data voltage corresponding to another column of sub-pixels is positive polarity
  • the positive polarity column sub-pixels and the negative polarity column sub-pixels are arranged alternately.
  • obtaining the original gray scale value of each sub-pixel in the m-th row may include: receiving the original display data of each sub-pixel in the m-th row, the original display data includes each sub-pixel carrying corresponding The digital voltage form of the data voltage of the gray scale value, and the gray scale value corresponding to the data voltage is the original gray scale value.
  • the original gray scale value of each sub-pixel in the m-th row can be determined according to the original display data of each sub-pixel in the m-th row.
  • the target grayscale value corresponding to the data voltage charged in the subpixel is different from the original grayscale value corresponding to the subpixel. Moreover, after the target gray scale value corresponding to the data voltage charged in each sub-pixel in the m-1th row is determined, it can be stored at the same time, so as to determine the target grayscale value corresponding to the data voltage charged in each sub-pixel in the m-th row Get the grayscale value.
  • m is an integer greater than 1.
  • m can be a value such as 2, 3, 4, 5, etc., which can be determined according to actual application requirements, and is not limited here.
  • the target grayscale value Lmr11 corresponding to the red subpixel R11 and the original grayscale value Lyr21 corresponding to the red subpixel R21 can be obtained.
  • the target grayscale value Lmg11 corresponding to the green subpixel G11 and the original grayscale value Lyg21 corresponding to the green subpixel G21 can be obtained.
  • the target grayscale value Lmb11 corresponding to the blue subpixel B11 and the original grayscale value Lyg21 corresponding to the blue subpixel B21 can be obtained. The rest are the same, and can be deduced in turn, and will not be repeated here.
  • the target grayscale value is to determine the target grayscale value of each sub-pixel in the mth row.
  • the step S200 of determining the target grayscale value of each subpixel in the mth row according to the original grayscale value of the mth row in the same column and the target grayscale value of the subpixel in the m-1th row may include: For the nth (n is an integer greater than 0, for example, n can be 1, 2, 3, 4 and other values, which are not limited here.) column, determine the original grayscale value corresponding to the mth row of sub-pixels and the mth- The grayscale difference between the target grayscale values corresponding to the subpixels in one row.
  • the target grayscale value of the subpixel in the m-1th row and the pre-stored is determined as the target grayscale value of the subpixel in the mth row in the nth column after reducing the original grayscale value of the subpixel in the mth row.
  • the set threshold may be greater than 1 and less than or equal to the maximum gray scale value.
  • the set threshold can be greater than 1 and less than or equal to 255.
  • the set threshold can be greater than 1 and less than or equal to 1023.
  • the set threshold can be greater than 1 and less than or equal to 4095.
  • the set threshold may be 1, 2, 3, 5, 8, 10 or a value such as the maximum gray scale value, which is not limited herein.
  • a target lookup table may be stored in the image quality function processing module 210 of the timing controller.
  • the target lookup table may include: a plurality of different first grayscale values, a plurality of different second grayscale values, and a target lookup grayscale corresponding to any first grayscale value and any second grayscale value order value.
  • the target look-up table has corresponding gray-scale digits, that is, the first gray-scale value, the second gray-scale value, and the target look-up gray-scale value in the target look-up table have corresponding gray-scale digits.
  • the grayscale digits corresponding to the target lookup table are 10 bits
  • the grayscale digits corresponding to the first grayscale value, the second grayscale value, and the target lookup grayscale value may be 10 bits.
  • the first grayscale value in the target lookup table The first grayscale value may be all grayscale values in 0-1024 grayscale values in 10bit
  • the second grayscale value may be all grayscale values in 0-1024 grayscale values in 10bit.
  • the first grayscale value in the target lookup table may be a part of grayscale values in the 0-1024 grayscale values in 10bit
  • the second grayscale value may be a part of grayscale values in the 0-1024 grayscale values in 10bit order value.
  • the first grayscale value may correspond to the target grayscale value of each subpixel in the m-1th row
  • the second grayscale value may correspond to the original grayscale value of each subpixel in the mth row.
  • the red sub-pixels R11 and R21 in the first column it is possible to determine the difference between the target grayscale value Lmr11 corresponding to the red subpixel R11 and the original grayscale value Lyr21 corresponding to the red subpixel R21.
  • the gray scale difference Lyr21-Lmr11 When the gray-scale difference Lyr21-Lmr11 is greater than the set threshold, it indicates that there is a large afterimage.
  • the target gray-scale value Lmr11 corresponding to the red sub-pixel R11 the original gray-scale value Lyr21 corresponding to the red sub-pixel R21 and the preset
  • the target search gray-scale value corresponding to the target gray-scale value Lmr11 and the original gray-scale value Lyr21 in the stored target look-up table is determined as the target gray-scale value corresponding to the red sub-pixel R21 after reducing the original gray-scale value Lyr21 of the red sub-pixel R21 order value.
  • the gray-scale difference Lyr21-Lmr11 is not greater than the set threshold, it means that afterimages are less likely to occur, so the original gray-scale value Lyr21 of the red sub-pixel R21 can be determined as the target gray-scale value corresponding to the red sub-pixel R21.
  • the grayscale between the target grayscale value Lmg11 corresponding to the green subpixel G11 and the original grayscale value Lyg21 corresponding to the green subpixel G21 can be determined.
  • Step difference Lyg21-Lmg11 When the gray-scale difference Lyg21-Lmg11 is greater than the set threshold, it indicates that there is a large afterimage.
  • the target search gray-scale value corresponding to the target gray-scale value Lmg11 and the original gray-scale value Lyg21 in the stored target look-up table is determined as the target corresponding to the green sub-pixel G21 after reducing the original gray-scale value Lyg21 corresponding to the green sub-pixel G21 grayscale value.
  • the grayscale difference Lyg21-Lmg11 is not greater than the set threshold, it means that the afterimage is relatively small, so the original grayscale value Lyg21 corresponding to the green subpixel G21 can be determined as the target grayscale value corresponding to the green subpixel G21 .
  • the distance between the target gray-scale value Lmb11 corresponding to the blue sub-pixel B11 and the original gray-scale value Lyb21 corresponding to the blue sub-pixel B21 can be determined.
  • Gray scale difference Lyb21-Lmb11 When the grayscale difference Lyb21-Lmb11 is greater than the set threshold, it indicates that there is a large afterimage.
  • the target grayscale value Lmb11 corresponding to the blue sub-pixel B11 and the original grayscale value Lyb21 corresponding to the blue sub-pixel B21 And the target search gray-scale value corresponding to the target gray-scale value Lmb11 and the original gray-scale value Lyb21 in the target look-up table stored in advance, after reducing the original gray-scale value Lyb21 corresponding to the blue sub-pixel B21, determine it as a blue sub-pixel The target grayscale value corresponding to B21.
  • the grayscale difference Lyb21-Lmb11 is not greater than the set threshold, it means that the afterimage is relatively small, so the original grayscale value Lyb21 corresponding to the blue subpixel B21 can be determined as the target grayscale corresponding to the blue subpixel B21 order value.
  • the target grayscale value of the subpixel in the m-1th row is determined as the target grayscale value of the subpixel in the mth row in the nth column after reducing the original grayscale value of the subpixel in the mth row, which may include:
  • the target lookup table determines the target search gray scale value corresponding to the original gray scale value of the subpixel in the mth row in the nth column and the target grayscale value of the subpixel in the m ⁇ 1th row.
  • the gray scale digits corresponding to the display panel may be different from the gray scale digits corresponding to the target lookup table.
  • the number of grayscale digits corresponding to the display panel is 8 bits
  • the grayscale digits of the stored target lookup table is 10 bits.
  • the value is converted to 1023 grayscale values of 10bit, and the grayscale values of 1 to 254 of 8bit are multiplied by 4 and then converted to 10bit grayscale values. That is, the minimum grayscale value in the grayscale digits corresponding to the display panel corresponds to the minimum grayscale value in the grayscale digits of the target lookup table, and the maximum grayscale value in the grayscale digits corresponding to the display panel corresponds to the grayscale value in the target lookup table.
  • the remaining gray-scale values in the gray-scale digits corresponding to the display panel can be converted into gray-scale values in the gray-scale digits of the target lookup table after being multiplied by 2 k . Then, with reference to FIG. 10 , the corresponding target search grayscale value is found from the target look-up table.
  • FIG. 10 schematically shows part of the first grayscale value and part of the second grayscale value in 10 bits, and the target difference grayscale value corresponding to the first grayscale value and the second grayscale value.
  • the numerical values in the first row in FIG. 10 represent the first gray scale values
  • the numerical values in the first column represent the second gray scale values
  • the rest of the numerical values represent target difference gray scale values.
  • the specific numerical values of the grayscale values shown in FIG. 10 are only for illustration. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • the first grayscale value may correspond to the target grayscale value of each subpixel in the m-1th row
  • the second grayscale value may correspond to the original grayscale value of each subpixel in the mth row.
  • the corresponding target lookup grayscale value can be found directly from the target lookup table.
  • the grayscale digits corresponding to the display panel and the grayscale digits corresponding to the target lookup table are different, the original grayscale value of the sub-pixel in the mth row in the nth column and the subpixel in the m-1th row
  • the target gray-scale value is converted into the gray-scale value corresponding to the gray-scale digit corresponding to the target lookup table
  • the corresponding target look-up gray-scale value is found from the target lookup table.
  • the 8-bit gray scale value of 0 can be converted to the 10-bit gray scale value of 0, and the 8-bit gray scale value of 255
  • the scale value is converted into 1023 grayscale values of 10bit, and the grayscale values of 1 ⁇ 254 of 8bit are multiplied by 4 respectively, and then converted into grayscale values of 10bit.
  • the corresponding target search grayscale value is found from the target look-up table.
  • the target grayscale value Lmg11 corresponding to the green sub-pixel G11 is an 8-bit gray-scale value of 0, it is converted to a 10-bit gray-scale value of 0, and the green sub-pixel G21 corresponds to
  • the original grayscale value Lyg21 is the 8bit grayscale value of 255, which is converted to the 10bit grayscale value of 1023. It can be found from Figure 10 that the grayscale value of 0 and the grayscale value of 1023 correspond to 450, and the target search grayscale value is 450. The rest of the sub-pixels are the same, and can be deduced in turn, and will not be repeated here.
  • the target gray scale conversion value corresponding to the sub-pixel in the mth row in the nth column is determined.
  • Z11 represents the first gray scale conversion value
  • Y11 represents the target search gray scale value
  • A11 represents the first set value
  • A12 represents the second set value
  • A12 2 k : where k represents the target lookup table corresponding The difference between the grayscale digits and the corresponding grayscale digits of the display panel; Y11 ⁇ A11.
  • Z11 when Z11 is an integer, Z11 may be directly used as the target grayscale conversion value.
  • Z11 When Z11 is a decimal, it may be rounded to an integer, so that the rounded integer may be used as the target grayscale conversion value.
  • -15.5 may be rounded as the target grayscale conversion value, and the target grayscale conversion value is -16.
  • the value after the decimal point can also be discarded directly, and the integer part can be directly used as the target grayscale conversion value.
  • -15.5 may directly use the integer part as the target grayscale conversion value, and the target grayscale conversion value is -15.
  • the integer part after directly discarding the value after the decimal point is taken as an example for illustration.
  • the first set value may be a value stored in advance, or may also be a value obtained from a lookup table.
  • the overdrive lookup table may be stored in the image quality function processing module 210 of the timing controller.
  • the overdrive lookup table may include: a plurality of different first grayscale values, a plurality of different second grayscale values, and an overdrive corresponding to any first grayscale value and any second grayscale value Find the grayscale value.
  • the first grayscale value and the second grayscale value in the overdrive lookup table are the same as the first grayscale value and the second grayscale value in the target lookup table. That is, the gray scale bits corresponding to the target lookup table and the overdrive lookup table are the same.
  • the overdrive lookup table can be all the grayscale values in the 0-1024 grayscale values in 10bit
  • the second grayscale value can be all the grayscale values in the 0-1024 grayscale values in the 10bit. grayscale value.
  • the first grayscale value in the overdrive lookup table may be part of the grayscale values of 0 to 1024 in 10bit
  • the second grayscale value may be part of the grayscale values of 0 to 1024 in 10bit. grayscale value.
  • the overdrive lookup grayscale values corresponding to different first grayscale values and different second grayscales may be the same or different, and details are not described here.
  • FIG. 11 schematically shows part of the first grayscale value and part of the second grayscale value in 10 bits, and the overdrive search grayscale corresponding to these first grayscale values and the second grayscale value order value.
  • the numerical values in the first row in FIG. 11 represent the first gray scale value
  • the numerical values in the first column represent the second gray scale value
  • the rest of the numerical values represent overdrive search gray scale values.
  • the specific numerical values of the grayscale values shown in FIG. 11 are only for illustration. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • the first grayscale value may correspond to the target grayscale value of each subpixel in the m-1th row
  • the second grayscale value may correspond to the original grayscale value of each subpixel in the mth row.
  • the overdrive value corresponding to the original grayscale value of the subpixel in the mth row in the nth column and the target grayscale value of the subpixel in the m-1th row can be determined from the pre-stored overdrive lookup table. Find the gray scale value, and determine the determined overdrive search gray scale value as the first set value. For example, in combination with Fig. 2a, Fig. 10 and Fig.
  • the target grayscale value Lmg11 corresponding to the green sub-pixel G11 is an 8-bit gray-scale value of 0, it is converted to a 10-bit gray-scale value of 0, and the green sub-pixel G21 corresponds to
  • the original grayscale value of Lyg21 is 8bit 255 grayscale value, which is converted to 10bit 1023 grayscale value. It can be found from Figure 11 that 0 grayscale value and 1023 grayscale value correspond to 512, then overdrive to find the grayscale value for 512. The rest of the sub-pixels are the same, and can be deduced in turn, and will not be repeated here.
  • the target grayscale value of the subpixel in the mth row in the nth column After reducing the original grayscale value of the subpixel in the mth row in the nth column by the absolute value of the target grayscale conversion value, it is determined as the target grayscale value of the subpixel in the mth row in the nth column.
  • the original gray-scale value corresponding to the red sub-pixel R21 is reduced to 255 gray-scale values of 8 bits by
  • the original gray-scale value corresponding to the green sub-pixel G21 is reduced to 255 gray-scale values of 8 bits by
  • the target grayscale value for is 240 grayscale values.
  • the target grayscale value corresponding to the data voltage input by the red sub-pixel R11 is 0 grayscale value
  • the original grayscale value corresponding to the red subpixels R21-R51 is 255 grayscale value example for explanation.
  • the target grayscale value corresponding to the red sub-pixel R11 is a grayscale value of 0, and the original grayscale value corresponding to the red subpixel R21 is a grayscale value of 255, so the target grayscale value corresponding to the red subpixel R11 is the grayscale value corresponding to the red subpixel R21.
  • the gray scale value of 255 with a scale value of 8 bits is reduced by
  • the target gray scale value corresponding to the red sub-pixel R21 is 240 gray scale value, and the original gray scale value corresponding to the red sub-pixel R31 is 255 gray scale value, then the target gray scale value corresponding to the red sub-pixel R21 is the same as the gray scale value corresponding to the red sub-pixel R31.
  • the gray scale value of 255 with a scale value of 8 bits is reduced by
  • the target grayscale value corresponding to the red subpixel R31 is 254 grayscale values, and the original grayscale value corresponding to the red subpixel R41 is 255 grayscale values, so the target grayscale value corresponding to the red subpixel R31 is the same as the grayscale value corresponding to the red subpixel R41.
  • the gray-scale difference between the original gray-scale values is 1, which is not greater than the set threshold (for example, the set threshold is 3), and the original gray-scale value corresponding to the red sub-pixel R41: 255 gray-scale values can be directly used as its target grayscale value. In this way, the data voltage corresponding to the grayscale value of 255 can be input to the data line, so that the red sub-pixel R41 can input the corresponding data voltage.
  • the target gray scale value corresponding to the red sub-pixel R41 is 255 gray scale values
  • the original gray scale value corresponding to the red sub-pixel R51 is 255 gray scale values
  • the target gray scale value corresponding to the red sub-pixel R41 is the same as the gray scale value corresponding to the red sub-pixel R51.
  • the gray-scale difference between the original gray-scale values is 0, not greater than the set threshold (for example, the set threshold is 3), and the original gray-scale value corresponding to the red sub-pixel R51: 255 gray-scale value can be directly used as its target grayscale value. In this way, the data voltage corresponding to the grayscale value of 255 can be input to the data line, so that the red sub-pixel R51 can input the corresponding data voltage.
  • the data voltage corresponding to the target gray-scale value can be input to the data line, so that the red sub-pixel The pixel R21 inputs the data voltage corresponding to the target gray scale value.
  • the data voltage corresponding to the target gray-scale value can be input to the data line, so that the green sub-pixel G21 can input a corresponding The data voltage of the target grayscale value.
  • the data voltage corresponding to the target gray-scale value can be input to the data line, so that the blue sub-pixel The pixel B21 inputs the data voltage corresponding to the target gray scale value.
  • the rest of the sub-pixels are the same and will not be repeated here.
  • the absolute value of the grayscale difference value corresponding to the nth column when the absolute value of the grayscale difference value corresponding to the nth column is greater than the set threshold, it indicates that there is a greater possibility of afterimages. At this time, the original grayscale value of the subpixel in the mth row can be reduced Finally, it is determined as the target grayscale value of the subpixel in the mth row in the nth column, so that the data voltage corresponding to the reduced grayscale value is input into the mth row of the subpixel in the nth column, which can improve the problem of line afterimage .
  • V1' represents that the red sub-pixel R21 in the display frame F_n is charged
  • V1 represents the data voltage corresponding to the original gray scale value charged by the red sub-pixel R21 in the display frame F_n in the prior art
  • V18' represents the display frame F_n+ In 1
  • the data voltage corresponding to the gray scale value after the original gray scale value is lowered by the red sub-pixel R21 is charged
  • V18 represents the data voltage corresponding to the original gray scale value charged by the red sub-pixel R21 in the display frame F_n+1 in the prior art.
  • Tr2 is smaller than Tr1
  • Tf2 is smaller than Tf1.
  • the absolute value of Tr2-Tf2 is smaller than the absolute value of Tr1-Tf1, so that the difference between Tr2 and Tf2 is reduced, thereby reducing the difference in charging rate of the red sub-pixel R21 between display frames F_n and F_n+1, Reduce the size of the DC bias voltage, thereby improving line afterimage.
  • the timing controller can determine the original grayscale value of each subpixel in the mth row and the target grayscale value corresponding to the data voltage charged by each subpixel in the m-1th row; , the original grayscale value of the mth row and the target grayscale value of the subpixel in the m-1th row, determine the target grayscale value of each subpixel in the mth row; and provide the determined target grayscale value to the source Drive circuit.
  • the source driving circuit may input data voltages to the data lines in the display panel according to the target grayscale value of each subpixel in the mth row, so that each subpixel in the mth row is charged with the corresponding data voltage.
  • the timing controller may determine, for the nth column, the grayscale difference between the original grayscale value corresponding to the subpixel in the mth row and the target grayscale value corresponding to the subpixel in the m ⁇ 1th row.
  • the absolute value of the grayscale difference corresponding to the nth column is greater than the set threshold, according to the original grayscale value of the subpixel in the mth row in the nth column, the target grayscale value of the subpixel in the m-1th row and the pre-stored
  • the target lookup grayscale value in the target lookup table is determined as the target grayscale value of the subpixel in the mth row in the nth column after reducing the original grayscale value of the subpixel in the mth row.
  • the original grayscale value of the subpixel in the mth row in the nth column is determined as the target corresponding to the mth row of subpixels in the nth column grayscale value.
  • the embodiments of the present disclosure provide some other driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the absolute value of the grayscale difference value corresponding to the nth column is not greater than the set threshold, according to the original grayscale value of the subpixel in the mth row in the nth column,
  • the target grayscale value of the subpixel in the m-1th row and the overdrive lookup grayscale value stored in advance in the overdrive lookup table determine the compensation voltage corresponding to the subpixel in the mth row in the nth column.
  • inputting the data voltage to the data line in the display panel includes: according to the target grayscale value of the subpixel in the mth row in the nth column, for the nth column While inputting the data voltage to the data line connected to the sub-pixel in the m-th row in the n-th column, the compensation voltage corresponding to the sub-pixel in the m-th row in the n-th column is applied to the data line connected to the sub-pixel in the m-th row in the n-th column.
  • the timing controller may, according to the original grayscale value of the subpixel in the mth row in the nth column, the subpixel in the m-1th row.
  • the target grayscale value of the pixel and the overdrive lookup grayscale value in the pre-stored overdrive lookup table determine the compensation voltage corresponding to the subpixel in the mth row in the nth column.
  • the source drive circuit inputs the data voltage to the data line connected to the sub-pixel in the m-th row in the n-th column according to the target grayscale value of the sub-pixel in the m-th row in the n-th column
  • the compensation voltage corresponding to the sub-pixels in the m-th row in the n-th column is applied to the data line connected to the sub-pixels in the m-th row in the n-th column.
  • the difference between the data voltage input to the sub-pixel and the common electrode voltage is greater than the difference between the data voltage corresponding to the original gray scale value and the common electrode voltage, so that the sub-pixel can be overdriven Increase the charge rate, thereby further reducing the difference in charge rate and further improving line afterimage.
  • the grayscale is searched according to the original grayscale value of the subpixel in the mth row in the nth column, the target grayscale value of the subpixel in the m-1th row, and the overdrive lookup table stored in advance.
  • Determine the compensation voltage corresponding to the sub-pixel in the m-th row in the n-th column which may include: first, from the overdrive lookup table, determine the original grayscale value of the m-th row sub-pixel in the n-th column and the m-1th row
  • the grayscale digits corresponding to the display panel is 8 bits and the grayscale digits corresponding to the target lookup table is 10 bits, taking the red sub-pixels R11 and R21 in the first column as an example, if The target grayscale value Lmr11 corresponding to the red sub-pixel R11 is an 8-bit grayscale value of 0, which is converted to a 10-bit grayscale value of 0, and the original grayscale value corresponding to the red sub-pixel R21 is an 8-bit grayscale value of 255, which is converted to For the 10bit 1023 grayscale value, it can be found from Figure 11 that the 0 grayscale value and the 1023 grayscale value correspond to 512, so the overdrive search grayscale value is 512.
  • the target grayscale value Lmg11 corresponding to the green sub-pixel G11 is an 8-bit gray-scale value of 0, it is converted to a 10-bit gray-scale value of 0, and the green sub-pixel G21 corresponds to
  • the original grayscale value of Lyg21 is 8bit 255 grayscale value, which is converted to 10bit 1023 grayscale value. It can be found from Figure 11 that 0 grayscale value and 1023 grayscale value correspond to 512, then overdrive to find the grayscale value for 512. The rest of the sub-pixels are the same, and can be deduced in turn, and will not be repeated here.
  • the target overdrive grayscale conversion value corresponding to the subpixel in the mth row in the nth column is determined.
  • the second gray scale conversion value is rounded according to the rounding rule to determine the target overdrive gray scale conversion value.
  • Z21 represents the second gray scale conversion value
  • Y21 represents the overdrive search gray scale value
  • A22 represents the fourth set value
  • A21 represents the third set value
  • A21 2 k : among them
  • k represents the overdrive lookup table
  • the fourth set value may be a value stored in advance, or may also be a value obtained from a lookup table, which is not limited herein.
  • Z21 when Z21 is an integer, Z21 may be directly used as the target overdrive gray scale conversion value.
  • Z21 when Z21 is a decimal, it may be rounded to an integer, so that the rounded integer may be used as the target overdrive gray scale conversion value.
  • Z21 when Z21 is a decimal, the value after the decimal point can also be discarded directly, and the integer part can be directly used as the target overdrive gray scale conversion value.
  • the data voltage corresponding to the absolute value of the target overdrive gray scale conversion value of the sub-pixels in the m-th row in the n-th column is determined as the compensation voltage corresponding to the m-th row of sub-pixels in the n-th column.
  • the red sub-pixel R21 in the first column if the absolute value
  • the green sub-pixel G21 in the second column if the absolute value
  • the timing controller not only has an image quality function processing module 210 , but also includes: an original grayscale processing module 220 and an overdrive processing module 230 .
  • the image quality function processing module 210 is configured such that when the absolute value of the grayscale difference value corresponding to the nth column is greater than the set threshold, according to the original grayscale value of the subpixel in the mth row in the nth column, the m-1th The target grayscale value of the row subpixel and the target lookup grayscale value in the pre-stored target lookup table are determined as the target of the mth row subpixel in the nth column after reducing the original grayscale value of the mth row subpixel grayscale value.
  • the original grayscale processing module 220 is configured to determine the original grayscale value of the sub-pixel in the mth row in the nth column as the first grayscale value when the absolute value of the grayscale difference corresponding to the nth column is not greater than the set threshold.
  • the overdrive processing module 230 is configured to store an overdrive lookup table, and when the absolute value of the gray scale difference corresponding to the nth column is not greater than the set threshold, according to the original The grayscale value, the target grayscale value of the subpixel in the m-1th row, and the overdrive lookup grayscale value in the pre-stored overdrive lookup table determine the compensation voltage corresponding to the subpixel in the mth row in the nth column.
  • the specific implementation process of the timing controller may be basically the same as the implementation process in the above-mentioned driving method, which will not be repeated here.
  • Embodiments of the present disclosure provide still some driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • two target lookup tables may be stored in the image quality function processing module 210 of the timing controller.
  • the image quality function processing module 210 includes: a first determining module 211 , a second determining module 212 and a data buffer 213 .
  • the first determination module 211 is configured to store one of the two target lookup tables, and according to the original gray scale value of the sub-pixel in the mth row in the nth column, the target gray scale value of the sub-pixel in the m-1th row, and The grayscale value of the target search in the pre-stored target lookup table is determined as the target grayscale value of the subpixel in the mth row in the nth column after reducing the original grayscale value of the subpixel in the mth row, and the determined The target gray scale value is provided to the source driving circuit.
  • n is an integer greater than 0.
  • the second determining module 212 is configured to store the other of the two target lookup tables, and according to the original grayscale value of the subpixel in the mth row in the nth column, the target grayscale value of the subpixel in the m ⁇ 1th row and the target lookup grayscale value in the prestored target lookup table, after reducing the original grayscale value of the subpixel in the mth row, determine it as the target grayscale value of the subpixel in the mth row in the nth column, and determine the The target grayscale value of is provided to the data buffer 213 .
  • the data buffer 213 is configured to store the target grayscale value output by the second determining module 212 .
  • the first determination module 211 is further configured to acquire the target gray scale value corresponding to the data voltage charged in each sub-pixel in the m-1th row from the data buffer 213 .
  • the second determining module 212 is further configured to acquire the target gray scale value corresponding to the data voltage charged in each sub-pixel in the m-1th row from the data buffer 213 .
  • the display device may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should they be used as limitations on the present disclosure.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板的驱动方法及显示装置,包括:获取第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值(S100);其中,m为大于1的整数;在同一列中第m行子像素的原始灰阶值大于第m-1行子像素充入的数据电压对应的目标灰阶值时,根据同一列中第m行的原始灰阶值和第m-1行子像素的目标灰阶值,确定第m行中各子像素的目标灰阶值(S200);根据第m行中各子像素的目标灰阶值,对显示面板中的数据线输入数据电压,以使第m行各子像素充入相应的数据电压(S300)。

Description

显示面板的驱动方法及显示装置
相关申请的交叉引用
本申请要求在2022年02月17日提交中国专利局、申请号为202210145069.8、申请名称为“显示面板的驱动方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及显示面板的驱动方法及显示装置。
背景技术
在诸如液晶显示面板(Liquid Crystal Display,LCD)和有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板中,一般包括多个像素单元。每个像素单元可以包括:红色子像素、绿色子像素以及蓝色子像素。通过控制每个子像素对应的亮度,从而混合出所需显示的色彩来显示彩色图像。
发明内容
本公开实施例提供的显示面板的驱动方法,包括:
获取第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值;其中,m为大于1的整数;所述显示面板采用列翻转方式;
在同一列中第m行子像素的原始灰阶值大于所述第m-1行子像素充入的数据电压对应的目标灰阶值时,根据同一列中所述第m行的原始灰阶值和所述第m-1行子像素的目标灰阶值,确定所述第m行中各子像素的目标灰阶值;
根据所述第m行中各子像素的目标灰阶值,对所述显示面板中的数据线输入数据电压,以使所述第m行各所述子像素充入相应的数据电压。
在一些示例中,所述根据同一列中所述第m行的原始灰阶值和所述第m-1 行子像素的目标灰阶值,确定所述第m行中各子像素的目标灰阶值,包括:
针对第n列,确定所述第m行子像素对应的原始灰阶值与所述第m-1行子像素对应的目标灰阶值之间的灰阶差值;其中,n为大于0的整数;
在所述第n列对应的灰阶差值的绝对值大于设定阈值时,根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值;其中,所述目标查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的目标查找灰阶值。
在一些示例中,所述设定阈值大于1且小于或等于最大灰阶值。
在一些示例中,所述根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值,包括:
从所述目标查找表中,确定所述第n列中所述第m行子像素的原始灰阶值和所述第m-1行子像素的目标灰阶值对应的目标查找灰阶值;
根据确定出的所述目标查找灰阶值、第一设定值以及第二设定值,确定所述第n列中所述第m行子像素对应的目标灰阶转换值;
将所述第n列中所述第m行子像素的原始灰阶值降低所述目标灰阶转换值的绝对值后,确定为所述第n列中所述第m行子像素的目标灰阶值。
在一些示例中,所述根据确定出的所述目标查找灰阶值、第一设定值以及第二设定值,确定所述第n列中所述第m行子像素对应的目标灰阶转换值,包括:
采用如下公式,根据确定出的所述目标查找灰阶值、第一设定值以及第二设定值,确定所述第n列中所述第m行子像素对应的第一灰阶转换值;
Z11=(Y11-A11)/A12;
其中,Z11代表所述第一灰阶转换值,Y11代表所述目标查找灰阶值, A11代表所述第一设定值,A12代表所述第二设定值,且A12=2 k:其中,k代表所述目标查找表对应的灰阶位数和所述显示面板对应的灰阶位数之间的差值;Y11≤A11;
根据取整规则对所述第一灰阶转换值进行取整,确定出所述目标灰阶转换值。
在一些示例中,从预先存储的过驱动查找表中,确定所述第n列中所述第m行子像素的原始灰阶值和所述第m-1行子像素的目标灰阶值对应的过驱动查找灰阶值,并将确定出的所述过驱动查找灰阶值确定为所述第一设定值;其中,所述过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的过驱动查找灰阶值。
在一些示例中,在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,将所述第n列中所述第m行子像素的原始灰阶值,确定为所述第n列中所述第m行子像素对应的目标灰阶值。
在一些示例中,在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定所述第n列中所述第m行子像素对应的补偿电压;
所述根据所述第m行中各子像素的目标灰阶值,对所述显示面板中的数据线输入数据电压,包括:
在根据所述第n列中所述第m行子像素的目标灰阶值,对所述第n列中所述第m行子像素连接的数据线输入数据电压的同时,对所述第n列中所述第m行子像素连接的数据线加载所述第n列中所述第m行子像素对应的补偿电压。
在一些示例中,所述根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定所述第n列中所述第m行子像素对应的补偿电压,包括:
从所述过驱动查找表中,确定所述第n列中所述第m行子像素的原始灰 阶值和所述第m-1行子像素的目标灰阶值对应的过驱动查找灰阶值;
根据确定出的所述过驱动查找灰阶值、第三设定值以及第四设定值,确定所述第n列中所述第m行子像素对应的目标过驱动灰阶转换值;
将所述第n列中所述第m行子像素的目标过驱动灰阶转换值的绝对值对应的数据电压,确定为所述第n列中所述第m行子像素对应的补偿电压。
在一些示例中,所述据确定出的所述过驱动查找灰阶值、第三设定值以及第四设定值,确定所述第n列中所述第m行子像素对应的目标过驱动灰阶转换值,包括:
采用如下公式,根据确定出的所述过驱动查找灰阶值、第三设定值以及第四设定值,确定所述第n列中所述第m行子像素对应的第二灰阶转换值;
Z21=(Y21-A22)/A21;
其中,Z21代表所述第二灰阶转换值,Y21代表所述过驱动查找灰阶值,A22代表所述第四设定值,A21代表所述第三设定值,且A21=2 k:其中,k代表所述过驱动查找表对应的灰阶位数和所述显示面板对应的灰阶位数之间的差值;
根据取整规则对所述第二灰阶转换值进行取整,确定出所述目标过驱动灰阶转换值。
在一些示例中,所述获取第m行中各子像素的原始灰阶值,包括:
接收第m行中各子像素的原始显示数据;
根据所述第m行中各子像素的所述原始显示数据,确定所述第m行中各子像素的原始灰阶值。
本公开实施例提供的显示装置,包括:
显示面板,包括源极驱动电路;
时序控制器,被配置为:确定第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值;在同一列中第m行子像素的原始灰阶值大于所述第m-1行子像素充入的数据电压对应的目标灰阶值时,根据同一列中,所述第m行的原始灰阶值和所述第m-1行子像素的目标灰阶 值,确定所述第m行中各子像素的目标灰阶值;并将确定出的所述目标灰阶值提供给所述源极驱动电路;其中,m为大于1的整数;所述显示面板采用列翻转方式;
所述源极驱动电路被配置为:根据所述第m行中各子像素的目标灰阶值,对所述显示面板中的数据线输入数据电压,以使所述第m行各所述子像素充入相应的数据电压。
在一些示例中,所述时序控制器包括画质功能处理模块;所述画质功能处理模块存储有目标查找表和过驱动查找表;
其中,所述目标查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的目标查找灰阶值;
所述过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的过驱动查找灰阶值。
在一些示例中,所述目标查找表为两个;
所述画质功能处理模块包括:第一确定模块、第二确定模块以及数据缓存器;
所述第一确定模块被配置为存储所述两个目标查找表中的一个,并根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值,并将确定出的所述目标灰阶值提供给所述源极驱动电路;其中,n为大于0的整数;
所述第二确定模块被配置为存储所述两个目标查找表中的另一个,并根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值,并将确定出的所述目标灰阶值提供给所述数据缓存器;
所述数据缓存器被配置为存储所述第二确定模块输出的所述目标灰阶值。
在一些示例中,所述第一确定模块还被配置为从所述数据缓存器获取第m-1行中各子像素充入的数据电压对应的目标灰阶值;
所述第二确定模块还被配置为从所述数据缓存器获取第m-1行中各子像素充入的数据电压对应的目标灰阶值。
在一些示例中,所述时序控制器还包括:原始灰阶处理模块;
所述原始灰阶处理模块被配置为在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,将所述第n列中所述第m行子像素的原始灰阶值,确定为所述第n列中所述第m行子像素对应的目标灰阶值。
在一些示例中,所述时序控制器还包括:过驱动处理模块;其中,所述过驱动处理模块被配置为存储有过驱动查找表,并在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定所述第n列中所述第m行子像素对应的补偿电压;
所述源极驱动电路被配置为在根据所述第n列中所述第m行子像素的目标灰阶值,对所述第n列中所述第m行子像素连接的数据线输入数据电压的同时,对所述第n列中所述第m行子像素连接的数据线加载所述第n列中所述第m行子像素对应的补偿电压。
附图说明
图1为本公开实施例中的显示装置的结构示意图;
图2a为本公开实施例中的显示面板的一些结构示意图;
图2b为本公开实施例中的显示面板中的子像素的一些结构示意图;
图3为本公开实施例中的棋盘格图像的一些结构示意图;
图4a为本公开实施例中的数据电压变化的一些结构示意图;
图4b为本公开实施例中的数据电压变化的另一些结构示意图;
图4c为本公开实施例中的数据电压变化的又一些结构示意图;
图4d为本公开实施例中的数据电压变化的又一些结构示意图;
图4e为本公开实施例中的数据电压变化的又一些结构示意图;
图5为本公开实施例中的灰阶图像的一些结构示意图;
图6为本公开实施例中的数据电压变化的另一些结构示意图;
图7为本公开实施例中的驱动方法的一些流程图;
图8为本公开实施例中的时序控制器的一些结构示意图;
图9为本公开实施例中的画质功能处理模块的一些结构示意图;
图10为本公开实施例中的目标查找表的示意图;
图11为本公开实施例中的过驱动查找表的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
参见图1与图2a所示,显示装置可以包括显示面板100以及时序控制器200。其中,显示面板100可以包括多个阵列排布的像素单元,多条栅线GA(例如,GA1、GA2、GA3、GA4)、多条数据线DA(例如,DA1、DA2、DA3)、栅极驱动电路110以及源极驱动电路120。栅极驱动电路110分别与栅线GA1、GA2、GA3、GA4耦接,源极驱动电路120分别与数据线DA1、DA2、DA3耦接。其中,时序控制器200可以通过电平转换(Level Shift)电路向栅极驱动电路110输入控制信号,从而驱动栅线GA1、GA2、GA3、GA4。时序控制器200向源极驱动电路120输入信号,以使源极驱动电路120向数据线输入数据电压,从而对子像素SPX充电,使子像素SPX输入相应的数据电压,实现图像显示功能。示例性地,源极驱动电路120可以设置为2个,其中一个源极驱动电路120连接一半数量的数据线,另一个源极驱动电路120连接另一半数量的数据线。当然,源极驱动电路120也可以设置3个、4个、或更多个,其可以根据实际应用的需求进行设计确定,在此不作限定。
示例性地,参见图2a所示,每个子像素SPX中包括晶体管01和像素电极02。其中,一行子像素SPX对应一条栅线,一列子像素SPX对应一条数据线。晶体管01的栅极与对应的栅线电连接,晶体管01的源极与对应的数据线电连接,晶体管01的漏极与像素电极02电连接,需要说明的是,本公开像素阵列结构还可以是双栅结构,即相邻两行像素之间设置两条栅极线,此排布方式可以减少一半的数据线,即包含相邻两列像素之间有的数据线,有的相邻两列像素之间不包括数据线,具体像素排布结构和数据线,扫描线的排布方式不限定。
示例性地,参见图2b所示,每个像素单元包括多个子像素SPX。例如,像素单元可以包括红色子像素,绿色子像素以及蓝色子像素,这样可以通过红绿蓝进行混色,以实现彩色显示。例如,红色子像素R11、绿色子像素G11、蓝色子像素B11可以作为一个像素单元,红色子像素R12、绿色子像素G12、蓝色子像素B12可以作为一个像素单元,其余同理,可以依次类推,在此不作赘述。
或者,像素单元也可以包括红色子像素,绿色子像素、蓝色子像素以及白色子像素,这样可以通过红绿蓝白进行混色,以实现彩色显示。当然,在实际应用中,像素单元中的子像素的发光颜色可以根据实际应用环境来设计确定,在此不作限定。
需要说明的是,本公开实施例中的显示面板可以为液晶显示面板。为了防止液晶极化,液晶显示面板多采用极性反转的驱动方式,即需要将输入到子像素的数据信号的电压的正负极性进行切换。极性反转的驱动方式包括帧反转、行反转、列反转和点反转。比如,针对相邻两帧图像,一帧图像中输入至像素电极的数据信号的电压极性为正(即进行正帧驱动),另一帧图像中输入到相同的像素电极的数据信号的电压极性为负(即进行负帧驱动);或者,针对相邻两行子像素,输入至一行子像素的像素电极的数据信号的电压极性为正,输入另一行子像素的像素电极的数据信号的电压极性为负。
灰阶,一般是将最暗与最亮之间的亮度变化区分为若干份,以便于进行屏幕亮度管控。例如,以显示的图像由红、绿、蓝三种颜色组成,其中每一个颜色都可以显现出不同的亮度级别,并且不同亮度层次的红、绿、蓝组合起来,可以形成不同的色彩。例如,液晶显示面板的灰阶位数为6bit,则红、绿、蓝这三种颜色分别具有64(即2 6)个灰阶,这64个灰阶值分别为0~63。液晶显示面板的灰阶位数为8bit,则红、绿、蓝这三种颜色分别具有256(即2 8)个灰阶,这256个灰阶值分别为0~255。液晶显示面板的灰阶位数为10bit,则红、绿、蓝这三种颜色分别具有1024(即2 10)个灰阶,这1024个灰阶值分别为0~1023。液晶显示面板的灰阶位数为12bit,则红、绿、蓝这三种颜色分别具有4096(即2 12)个灰阶,这4096个灰阶值分别为0~4093。
示例性地,以一个子像素SPX为例,在该子像素SPX的像素电极中输入的数据电压Vda1大于公共电极电压Vcom时,可以使该子像素SPX处的液晶分子为正极性,则该子像素SPX中的数据电压Vda1对应的极性为正极性。在子像素SPX的像素电极中输入的数据电压Vda2小于公共电极电压Vcom时,可以使该子像素SPX处的液晶分子为负极性,则该子像素SPX中的数据 电压Vda2对应的极性为负极性。例如,公共电极电压可以为8.3V,若在该子像素SPX的像素电极中输入了8.8V~16V的数据电压,可以使该子像素SPX处的液晶分子为正极性,则8.8V~16V的数据电压为对应正极性的数据电压。若在该子像素SPX的像素电极中输入了0.6V~7.8V的数据电压,可以使该子像素SPX处的液晶分子为负极性,则0.6V~7.8V的数据电压为对应负极性的数据电压。示例性地,以8bit的0~255灰阶为例,若在子像素SPX的像素电极中输入16V的数据电压时,该子像素SPX可以采用正极性的数据电压实现最大灰阶值(即255灰阶值)的亮度。若在子像素SPX的像素电极中输入0.6V的数据电压时,该子像素SPX可以采用负极性的数据电压实现最大灰阶值(即255灰阶值)的亮度。需要说明的是,0灰阶值的数据电压与公共电极电压之间可能具有电压差,例如,公共电极电压为8.3V,对应0灰阶值的正极性的数据电压可以为8.8V,对应0灰阶值的负极性的数据电压可以为7.8V。当然,0灰阶值的数据电压与公共电极电压也可以相同。在实际应用中,可以根据实际应用的需要进行确定,在此不作限定。
结合图3至图5所示,以图3所示的黑白棋盘格图像和8bit的0~255灰阶值为例,黑格灰阶值为0,其对应正极性的数据电压为V9,其对应负极性的数据电压为V10。白格灰阶值为255,其对应正极性的数据电压为V1,其对应负极性的数据电压为V18。显示面板的整个显示区域可以分为7*5个格子,显示面板显示黑白棋盘格图像10分钟以上后,切换到如图5所示的灰阶值为127的灰阶图像时,在棋盘格由黑到白的交界处,白格中的首行可见一条较亮的线残像。
上述不良产生的原因为:以列翻转为例,结合图4a所示,以白格中的一个子像素为例,在相邻的两个显示帧中,该子像素的数据电压可以在正极性的数据电压V9和负极性的数据电压V10之间变化。以黑格中的一个子像素为例,在相邻的两个显示帧中,该子像素的数据电压可以在正极性的数据电压V1和负极性的数据电压V18之间变化。在由黑白棋盘格图像切换到较低灰阶画面(例如127灰阶值的画面)时,以黑格中同一行的两个子像素为例, 结合图4b所示,在第n个显示帧F_n中,黑格中同一行的两个子像素中的一个子像素输入负极性的数据电压V10,以显示黑格的图像。在第n+1个显示帧F_n+1中,该子像素输入正极性的数据电压V2,以显示127灰阶值的图像,数据电压经历V10→V2的充电过程。结合图4c所示,在第n个显示帧F_n中,黑格中同一行的两个子像素中的另一个子像素输入正极性的数据电压V9,以显示黑格的图像。在第n+1个显示帧F_n+1中,该子像素输入负极性的数据电压V3,以显示127灰阶值的图像,数据电压经历V9→V3的放电过程。
以白格中的一个子像素为例,结合图4d所示,在第n个显示帧F_n中,该子像素输入负极性的数据电压V18,以显示白格的图像。在第n+1个显示帧F_n+1中,该子像素输入正极性的数据电压V2,以显示127灰阶值的图像,数据电压经历V18→V2的充电过程。以白格中的另一个子像素为例,结合图4e所示,在第n个显示帧F_n中,该子像素输入正极性的数据电压V1,以显示白格的图像。在第n+1个显示帧F_n+1中,该子像素输入负极性的数据电压V3,以显示127灰阶值的图像,数据电压经历V1→V3的充电过程。
结合图6所示,数据电压的充电过程的充电时间为Tr1,数据电压的放电过程的放电时间为Tf1。由图6可以看到,Tr1大于Tf1,这样使得Tr1与Tf1之间具有较大的差异。尤其是在大尺寸面板充电不足的情况下,由于Tr1与Tf1之间的差异,导致正负极性子像素的液晶电荷积累差异产生,正负极性下子像素的充电率不同形成直流电压偏置,偏置电压使液晶透过率较其他位置更大,形成亮线残像。尤其是,在由黑白棋盘格图像切换到较低灰阶画面(例如127灰阶值的画面)时,棋盘格由黑到白的交界处,白格中的首行可见一条较亮的线残像。本公开实施例提供了显示面板的驱动方法,通过获取第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值,可以根据同一列中第m行的原始灰阶值和第m-1行子像素的目标灰阶值,确定第m行中各子像素的目标灰阶值。这样可以根据第m行中各子像素的目标灰阶值,对显示面板中的数据线输入数据电压,以使第m行各子像素充入相应的数据电压,从而改善线残像的问题。
如图7所示,本公开实施例提供的显示面板的驱动方法,可以包括如下步骤:
S100、获取第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值。
示例性地,显示面板采用列翻转方式进行显示。例如,一列子像素对应的数据电压为负极性,另一列子像素对应的数据电压为正极性,并且正极性列子像素和负极性列子像素交替排列。
示例性地,获取第m行中各子像素的原始灰阶值,可以包括:接收第m行中各子像素的原始显示数据,该原始显示数据包括每一个子像素一一对应的携带有相应灰阶值的数据电压的数字电压形式,并且,该数据电压对应的灰阶值即为原始灰阶值。这样可以根据第m行中各子像素的原始显示数据,确定出第m行中各子像素的原始灰阶值。
示例性地,针对第m-1行中一个子像素来说,充入该子像素的数据电压对应的目标灰阶值和该子像素对应的原始灰阶值不同。并且,在第m-1行中各子像素充入的数据电压对应的目标灰阶值确定出来后,可以同时进行存储,以便在确定第m行中各子像素充入的数据电压对应的目标灰阶值时进行获取。
示例性地,m为大于1的整数。例如,m可以为2、3、4、5等数值,其可以根据实际应用的需求进行确定,在此不作限定。
示例性地,结合图2a所示,针对第1列中的红色子像素R11和R21,可以获取红色子像素R11对应的目标灰阶值Lmr11和红色子像素R21对应的原始灰阶值Lyr21。针对第2列中的绿色子像素G11和G21,可以获取绿色子像素G11对应的目标灰阶值Lmg11和绿色子像素G21对应的原始灰阶值Lyg21。针对第3列中的蓝色子像素B11和B21,可以获取蓝色子像素B11对应的目标灰阶值Lmb11和蓝色子像素B21对应的原始灰阶值Lyg21。其余同理,可以依次类推,在此不作赘述。
S200、在同一列中第m行的原始灰阶值大于第m-1行子像素的目标灰阶值时,根据同一列中第m行的原始灰阶值和第m-1行子像素的目标灰阶值, 确定第m行中各子像素的目标灰阶值。
示例性地,步骤S200、根据同一列中第m行的原始灰阶值和第m-1行子像素的目标灰阶值,确定第m行中各子像素的目标灰阶值,可以包括:针对第n(n为大于0的整数,例如,n可以为1、2、3、4等数值,在此不作限定。)列,确定第m行子像素对应的原始灰阶值与第m-1行子像素对应的目标灰阶值之间的灰阶差值。在第n列对应的灰阶差值的绝对值大于设定阈值时,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值。在第n列对应的灰阶差值的绝对值不大于设定阈值时,将第n列中第m行子像素的原始灰阶值,确定为第n列中第m行子像素对应的目标灰阶值。示例性地,设定阈值可以大于1且小于或等于最大灰阶值。例如,在8bit时,设定阈值可以大于1且小于或等于255。在10bit时,设定阈值可以大于1且小于或等于1023。在12bit时,设定阈值可以大于1且小于或等于4095。在实际应用中,设定阈值可以为1、2、3、5、8、10或最大灰阶值等数值,在此不作限定。
在本公开实施例中,可以在时序控制器的画质功能处理模块210中存储一个目标查找表。其中,目标查找表可以包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的目标查找灰阶值。示例性地,目标查找表具有对应的灰阶位数,即目标查找表中的第一灰阶值、第二灰阶值以及目标查找灰阶值具有对应的灰阶位数。
例如,目标查找表对应的灰阶位数为10bit,则第一灰阶值、第二灰阶值以及目标查找灰阶值对应的灰阶位数可以为10bit,例如,目标查找表中的第一灰阶值可以为10bit中的0~1024灰阶值中的所有灰阶值,第二灰阶值可以为10bit中的0~1024灰阶值中的所有灰阶值。或者,目标查找表中的第一灰阶值可以为10bit中的0~1024灰阶值中的部分灰阶值,第二灰阶值可以为10bit中的0~1024灰阶值中的部分灰阶值。需要说明的是,第一灰阶值可以对应第m-1行中各子像素的目标灰阶值,第二灰阶值可以对应第m行中各子像素的 原始灰阶值。
示例性地,结合图2a,以第1列中的红色子像素R11和R21为例,可以确定红色子像素R11对应的目标灰阶值Lmr11和红色子像素R21对应的原始灰阶值Lyr21之间的灰阶差值Lyr21-Lmr11。在灰阶差值Lyr21-Lmr11大于设定阈值时,说明出现残像的情况较大,因此可以根据红色子像素R11对应的目标灰阶值Lmr11和红色子像素R21对应的原始灰阶值Lyr21以及预先存储的目标查找表中的对应目标灰阶值Lmr11和原始灰阶值Lyr21的目标查找灰阶值,将红色子像素R21的原始灰阶值Lyr21降低后,确定为红色子像素R21对应的目标灰阶值。在灰阶差值Lyr21-Lmr11不大于设定阈值时,说明出现残像的情况较小,因此可以将红色子像素R21的原始灰阶值Lyr21,确定为红色子像素R21对应的目标灰阶值。
以及,结合图2a,以第2列中的绿色子像素G11和G21为例,可以确定绿色子像素G11对应的目标灰阶值Lmg11和绿色子像素G21对应的原始灰阶值Lyg21之间的灰阶差值Lyg21-Lmg11。在灰阶差值Lyg21-Lmg11大于设定阈值时,说明出现残像的情况较大,因此可以根据绿色子像素G11对应的目标灰阶值Lmg11和绿色子像素G21对应的原始灰阶值Lyg21以及预先存储的目标查找表中的对应目标灰阶值Lmg11和原始灰阶值Lyg21的目标查找灰阶值,将绿色子像素G21对应的原始灰阶值Lyg21降低后,确定为绿色子像素G21对应的目标灰阶值。在灰阶差值Lyg21-Lmg11不大于设定阈值时,说明出现残像的情况较小,因此可以将绿色子像素G21对应的原始灰阶值Lyg21,确定为绿色子像素G21对应的目标灰阶值。
以及,结合图2a,以第3列中的蓝色子像素B11和B21,可以确定蓝色子像素B11对应的目标灰阶值Lmb11和蓝色子像素B21对应的原始灰阶值Lyb21之间的灰阶差值Lyb21-Lmb11。在灰阶差值Lyb21-Lmb11大于设定阈值时,说明出现残像的情况较大,因此可以根据蓝色子像素B11对应的目标灰阶值Lmb11和蓝色子像素B21对应的原始灰阶值Lyb21以及预先存储的目标查找表中的对应目标灰阶值Lmb11和原始灰阶值Lyb21的目标查找灰阶值, 将蓝色子像素B21对应的原始灰阶值Lyb21降低后,确定为蓝色子像素B21对应的目标灰阶值。在灰阶差值Lyb21-Lmb11不大于设定阈值时,说明出现残像的情况较小,因此可以将蓝色子像素B21对应的原始灰阶值Lyb21,确定为蓝色子像素B21对应的目标灰阶值。
其余子像素同理,在此不作赘述。
在本公开实施例中,结合图8所示,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值,可以包括:
首先,从目标查找表中,确定第n列中第m行子像素的原始灰阶值和第m-1行子像素的目标灰阶值对应的目标查找灰阶值。示例性地,显示面板对应的灰阶位数和目标查找表对应的灰阶位数可以是不相同。例如,显示面板对应的灰阶位数为8bit,存储的目标查找表的灰阶位数为10bit,可以先将8bit的0灰阶值转换为10bit的0灰阶值,将8bit的255灰阶值转换为10bit的1023灰阶值,将8bit的1~254灰阶值分别乘以4后转换为10bit的灰阶值。即显示面板对应的灰阶位数中最小灰阶值与目标查找表的灰阶位数中的最小灰阶值对应,显示面板对应的灰阶位数中最大灰阶值与目标查找表的灰阶位数中的最大灰阶值对应,显示面板对应的灰阶位数中的其余灰阶值可以乘以2 k后转换为目标查找表的灰阶位数中的灰阶值。之后结合图10,再从目标查找表中找到对应的目标查找灰阶值。
如图10所示,图10示意出了10bit中部分第一灰阶值和部分第二灰阶值,以及这些第一灰阶值和第二灰阶值对应的目标差值灰阶值。图10中的第一行中的数值代表第一灰阶值,第一列中的数值代表第二灰阶值,其余数值代表目标差值灰阶值。需要说明的是,图10中示意的灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。需要说明的是,第一灰阶值可以对应第m-1行中各子像素的目标灰阶值,第二灰阶值可以对应第m行中各子像素的原始灰阶值。
例如,在显示面板对应的灰阶位数和目标查找表对应的灰阶位数均为10bit时,结合图10,可以直接从目标查找表中找到对应的目标查找灰阶值。或者,在显示面板对应的灰阶位数和目标查找表对应的灰阶位数不相同时,可以先将第n列中第m行子像素的原始灰阶值和第m-1行子像素的目标灰阶值转换为目标查找表对应的灰阶位数相应的灰阶值后,再从目标查找表中找到对应的目标查找灰阶值。例如,在显示面板对应的灰阶位数为8bit,目标查找表对应的灰阶位数为10bit时,可以先将8bit的0灰阶值转换为10bit的0灰阶值,将8bit的255灰阶值转换为10bit的1023灰阶值,将8bit的1~254灰阶值分别乘以4后转换为10bit的灰阶值。之后结合图10,再从目标查找表中找到对应的目标查找灰阶值。
示例性地,结合图2a与图10,在显示面板对应的灰阶位数为8bit,目标查找表对应的灰阶位数为10bit时,以第1列中的红色子像素R11和R21为例,若红色子像素R11对应的目标灰阶值Lmr11为8bit的0灰阶值,其转换为10bit的0灰阶值,红色子像素R21对应的原始灰阶值为8bit的255灰阶值,其转换为10bit的1023灰阶值,可以从图10中找到0灰阶值和1023灰阶值对应于450,则目标查找灰阶值为450。以第1列中的绿色子像素G11和G21为例,若绿色子像素G11对应的目标灰阶值Lmg11为8bit的0灰阶值,其转换为10bit的0灰阶值,绿色子像素G21对应的原始灰阶值Lyg21为8bit的255灰阶值,其转换为10bit的1023灰阶值,可以从图10中找到0灰阶值和1023灰阶值对应于450,则目标查找灰阶值为450。其余子像素同理,可以依次类推,在此不作赘述。
之后,根据确定出的目标查找灰阶值、第一设定值以及第二设定值,确定第n列中第m行子像素对应的目标灰阶转换值。示例性地,可以采用公式Z11=(Y11-A11)/A12,根据确定出的目标查找灰阶值、第一设定值以及第二设定值,确定第n列中第m行子像素对应的第一灰阶转换值。其中,Z11代表第一灰阶转换值,Y11代表目标查找灰阶值,A11代表第一设定值,A12代表第二设定值,且A12=2 k:其中,k代表目标查找表对应的灰阶位数和显 示面板对应的灰阶位数之间的差值;Y11<A11。根据取整规则对第一灰阶转换值进行取整,确定出目标灰阶转换值。例如,若目标查找表对应的灰阶位数为10bit,显示面板对应的灰阶位数为8bit,则A12=4,则Z11=(Y11-A11)/4。以第1列中的红色子像素R21的目标查找灰阶值为450,A11可以设置为512为例,红色子像素R21对应的Z11=(450-512)/4=-15.5。以第1列中的绿色子像素G21的目标查找灰阶值为450,A11可以设置为512为例,绿色子像素G21对应的Z11=(450-512)/4=-15.5。
需要说明的是,在Z11为整数时,可以直接将Z11作为目标灰阶转换值。在Z11为小数时,可以按照四舍五入取整,以将该取整出来的整数作为目标灰阶转换值。例如,-15.5可以按照四舍五入后作为目标灰阶转换值,则目标灰阶转换值为-16。或者,在Z11为小数时,也可以直接舍去小数点后面的数值,直接将整数部分作为目标灰阶转换值。例如,-15.5可以按照直接将整数部分作为目标灰阶转换值,则目标灰阶转换值为-15。下面以在Z11为小数时,直接舍去小数点后面的数值后的整数部分作为目标灰阶转换值为例进行说明。
在本公开实施例中,第一设定值可以是预先存储起来的数值,或者也可以是从查找表中得到的数值。示例性地,可以在时序控制器的画质功能处理模块210中存储过驱动查找表。其中,过驱动查找表可以包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的过驱动查找灰阶值。需要说明的是,过驱动查找表中的第一灰阶值和第二灰阶值与目标查找表中的第一灰阶值和第二灰阶值相同。即目标查找表与过驱动查找表对应的灰阶位数相同。例如,目标查找表对应的灰阶位数为10bit,则过驱动查找表对应的灰阶位数也为10bit,过驱动查找灰阶值对应的灰阶位数为10bit。例如,过驱动查找表中的第一灰阶值可以为10bit中的0~1024灰阶值中的所有灰阶值,第二灰阶值可以为10bit中的0~1024灰阶值中的所有灰阶值。或者,过驱动查找表中的第一灰阶值可以为10bit中的0~1024灰阶值中的部分灰阶值,第二灰阶值可以为10bit中的0~1024灰阶值中的部分灰阶值。需要说明的是,过驱动查找表中,不同第一灰阶值、不同 第二灰阶对应的过驱动查找灰阶值可以相同,也可以不同,在此不作赘述。
示例性地,如图11所示,图11示意出了10bit中部分第一灰阶值和部分第二灰阶值,以及这些第一灰阶值和第二灰阶值对应的过驱动查找灰阶值。图11中的第一行中的数值代表第一灰阶值,第一列中的数值代表第二灰阶值,其余数值代表过驱动查找灰阶值。需要说明的是,图11中示意的灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。需要说明的是,第一灰阶值可以对应第m-1行中各子像素的目标灰阶值,第二灰阶值可以对应第m行中各子像素的原始灰阶值。
在本公开实施例中,可以从预先存储的过驱动查找表中,确定第n列中第m行子像素的原始灰阶值和第m-1行子像素的目标灰阶值对应的过驱动查找灰阶值,并将确定出的过驱动查找灰阶值确定为第一设定值。例如,结合图2a图10以及图11,在显示面板对应的灰阶位数为8bit,目标查找表对应的灰阶位数为10bit时,以第1列中的红色子像素R11和R21为例,若红色子像素R11对应的目标灰阶值Lmr11为8bit的0灰阶值,其转换为10bit的0灰阶值,红色子像素R21对应的原始灰阶值为8bit的255灰阶值,其转换为10bit的1023灰阶值,可以从图11中找到0灰阶值和1023灰阶值对应于512,则过驱动查找灰阶值为512。以第1列中的绿色子像素G11和G21为例,若绿色子像素G11对应的目标灰阶值Lmg11为8bit的0灰阶值,其转换为10bit的0灰阶值,绿色子像素G21对应的原始灰阶值Lyg21为8bit的255灰阶值,其转换为10bit的1023灰阶值,可以从图11中找到0灰阶值和1023灰阶值对应于512,则过驱动查找灰阶值为512。其余子像素同理,可以依次类推,在此不作赘述。
之后,将第n列中第m行子像素的原始灰阶值降低目标灰阶转换值的绝对值后,确定为第n列中第m行子像素的目标灰阶值。示例性地,以第1列中的红色子像素R21为例,将红色子像素R21对应的原始灰阶值为8bit的255灰阶值降低|-15|,后变化为240灰阶值,即红色子像素R21的目标灰阶值为240灰阶值。以第2列中的绿色子像素G21为例,将绿色子像素G21对应的 原始灰阶值为8bit的255灰阶值降低|-15|,后变化为240灰阶值,即绿色子像素G21的目标灰阶值为240灰阶值。
下面结合图2a、图10以及图11,以红色子像素R11输入的数据电压对应的目标灰阶值为0灰阶值,红色子像素R21~R51对应的原始灰阶值为255灰阶值为例,进行说明。
红色子像素R11对应的目标灰阶值为0灰阶值,红色子像素R21对应的原始灰阶值为255灰阶值,则红色子像素R11对应的目标灰阶值与红色子像素R21对应的原始灰阶值之间的灰阶差值为255,大于设定阈值(例如设定阈值为3),8bit的0灰阶值变为10bit的0灰阶值,8bit的255灰阶值变为10bit的1023灰阶值,可以从图10中找到目标查找灰阶值为450,则红色子像素R21对应的Z11=(450-512)/4=-15.5,将红色子像素R21对应的原始灰阶值为8bit的255灰阶值降低|-15|,后变化为240灰阶值,即红色子像素R21的目标灰阶值为240灰阶值。这样可以将240灰阶值对应的数据电压输入到数据线上,从而使红色子像素R21输入相应的数据电压。
红色子像素R21对应的目标灰阶值为240灰阶值,红色子像素R31对应的原始灰阶值为255灰阶值,则红色子像素R21对应的目标灰阶值与红色子像素R31对应的原始灰阶值之间的灰阶差值为15,大于设定阈值(例如设定阈值为3),8bit的240灰阶值变为10bit的960灰阶值,8bit的255灰阶值变为10bit的1023灰阶值,可以从图10中找到目标查找灰阶值为508,则红色子像素R21对应的Z11=(508-512)/4=-1,将红色子像素R21对应的原始灰阶值为8bit的255灰阶值降低|-1|,后变化为254灰阶值,即红色子像素R21的目标灰阶值为254灰阶值。这样可以将254灰阶值对应的数据电压输入到数据线上,从而使红色子像素R31输入相应的数据电压。
红色子像素R31对应的目标灰阶值为254灰阶值,红色子像素R41对应的原始灰阶值为255灰阶值,则红色子像素R31对应的目标灰阶值与红色子像素R41对应的原始灰阶值之间的灰阶差值为1,不大于设定阈值(例如设定阈值为3),可以将红色子像素R41对应的原始灰阶值:255灰阶值,直接 作为其目标灰阶值。这样可以将255灰阶值对应的数据电压输入到数据线上,从而使红色子像素R41输入相应的数据电压。
红色子像素R41对应的目标灰阶值为255灰阶值,红色子像素R51对应的原始灰阶值为255灰阶值,则红色子像素R41对应的目标灰阶值与红色子像素R51对应的原始灰阶值之间的灰阶差值为0,不大于设定阈值(例如设定阈值为3),可以将红色子像素R51对应的原始灰阶值:255灰阶值,直接作为其目标灰阶值。这样可以将255灰阶值对应的数据电压输入到数据线上,从而使红色子像素R51输入相应的数据电压。
其余子像素同理,可以依次类推,在此不作赘述。
S300、根据第m行中各子像素的目标灰阶值,对显示面板中的数据线输入数据电压,以使第m行各子像素充入相应的数据电压。
示例性地,针对第2行中的红色子像素R21,可以根据上述确定出的红色子像素R21对应的目标灰阶值,对数据线输入对应的目标灰阶值的数据电压,以使红色子像素R21输入对应的目标灰阶值的数据电压。针对第2行中的绿色子像素G21,可以根据上述确定出的绿色子像素G21对应的目标灰阶值,对数据线输入对应的目标灰阶值的数据电压,以使绿色子像素G21输入对应的目标灰阶值的数据电压。以及针对第2行中的蓝色子像素B21,可以根据上述确定出的蓝色子像素B21对应的目标灰阶值,对数据线输入对应的目标灰阶值的数据电压,以使蓝色子像素B21输入对应的目标灰阶值的数据电压。其余子像素同理,在此不作赘述。
在本公开实施例中,在第n列对应的灰阶差值的绝对值大于设定阈值时,说明出现残像的可能性较大,这时可以将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值,从而将降低后的灰阶值对应的数据电压输入到第n列中第m行子像素中,可以改善线残像的问题。以红色子像素R21在显示帧F_n输入对应正极性的数据电压,在显示帧F_n+1输入对应负极性的数据电压为例,结合图6,V1’代表显示帧F_n中红色子像素R21充入的将原始灰阶值降低后的灰阶值对应的数据电压,V1代表现有技术 中显示帧F_n中红色子像素R21充入的原始灰阶值对应的数据电压,V18’代表显示帧F_n+1中红色子像素R21充入的将原始灰阶值降低后的灰阶值对应的数据电压,V18代表现有技术中显示帧F_n+1中红色子像素R21充入的原始灰阶值对应的数据电压。结合图6可知,Tr2小于Tr1,且Tf2小于Tf1。这样使得Tr2-Tf2的绝对值小于Tr1-Tf1的绝对值,从而使得Tr2与Tf2之间的差异减小,从而减少红色子像素R21在显示帧F_n和F_n+1之间的充电率的差异,降低直流偏置电压大小,从而改善线残像。
在本公开实施例中,时序控制器可以确定第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值;根据同一列中,第m行的原始灰阶值和第m-1行子像素的目标灰阶值,确定第m行中各子像素的目标灰阶值;并将确定出的目标灰阶值提供给源极驱动电路。并且,源极驱动电路可以根据第m行中各子像素的目标灰阶值,对显示面板中的数据线输入数据电压,以使第m行各子像素充入相应的数据电压。
在本公开实施例中,时序控制器可以针对第n列,确定第m行子像素对应的原始灰阶值与第m-1行子像素对应的目标灰阶值之间的灰阶差值。在第n列对应的灰阶差值的绝对值大于设定阈值时,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值。在第n列对应的灰阶差值的绝对值不大于设定阈值时,将第n列中第m行子像素的原始灰阶值,确定为第n列中第m行子像素对应的目标灰阶值。
本公开实施例提供了另一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,在本公开实施例中,在第n列对应的灰阶差值的绝对值不大于设定阈值时,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值, 确定第n列中第m行子像素对应的补偿电压。并且,根据第m行中各子像素的目标灰阶值,对显示面板中的数据线输入数据电压,包括:在根据第n列中第m行子像素的目标灰阶值,对第n列中第m行子像素连接的数据线输入数据电压的同时,对第n列中第m行子像素连接的数据线加载第n列中第m行子像素对应的补偿电压。示例性地,时序控制器可以在第n列对应的灰阶差值的绝对值不大于设定阈值时,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定第n列中第m行子像素对应的补偿电压。并将补偿电压输出给源极驱动电路,源极驱动电路在根据第n列中第m行子像素的目标灰阶值,对第n列中第m行子像素连接的数据线输入数据电压的同时,对第n列中第m行子像素连接的数据线加载第n列中第m行子像素对应的补偿电压。这样可以使输入到子像素中的数据电压与公共电极电压之间的差值大于原始灰阶值对应的数据电压与公共电极电压之间的差值,从而使该子像素可以采用过驱动的方式提高充电率,从而进一步降低充电率的差异,进一步改善线残像。
在本公开实施例中,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定第n列中第m行子像素对应的补偿电压,可以包括:首先,从过驱动查找表中,确定第n列中第m行子像素的原始灰阶值和第m-1行子像素的目标灰阶值对应的过驱动查找灰阶值。
例如,结合图2a与图11,在显示面板对应的灰阶位数为8bit,目标查找表对应的灰阶位数为10bit时,以第1列中的红色子像素R11和R21为例,若红色子像素R11对应的目标灰阶值Lmr11为8bit的0灰阶值,其转换为10bit的0灰阶值,红色子像素R21对应的原始灰阶值为8bit的255灰阶值,其转换为10bit的1023灰阶值,可以从图11中找到0灰阶值和1023灰阶值对应于512,则过驱动查找灰阶值为512。以第1列中的绿色子像素G11和G21为例,若绿色子像素G11对应的目标灰阶值Lmg11为8bit的0灰阶值,其转换为10bit的0灰阶值,绿色子像素G21对应的原始灰阶值Lyg21为8bit的 255灰阶值,其转换为10bit的1023灰阶值,可以从图11中找到0灰阶值和1023灰阶值对应于512,则过驱动查找灰阶值为512。其余子像素同理,可以依次类推,在此不作赘述。
之后,根据确定出的过驱动查找灰阶值、第三设定值以及第四设定值,确定第n列中第m行子像素对应的目标过驱动灰阶转换值。示例性地,根据确定出的过驱动查找灰阶值、第三设定值以及第四设定值,确定第n列中第m行子像素对应的目标过驱动灰阶转换值,可以包括:采用公式Z21=(Y21-A22)/A21,根据确定出的过驱动查找灰阶值、第三设定值以及第四设定值,确定第n列中第m行子像素对应的第二灰阶转换值。以及,根据取整规则对第二灰阶转换值进行取整,确定出目标过驱动灰阶转换值。其中,Z21代表第二灰阶转换值,Y21代表过驱动查找灰阶值,A22代表第四设定值,A21代表第三设定值,且A21=2 k:其中,k代表过驱动查找表对应的灰阶位数和显示面板对应的灰阶位数之间的差值。在本公开实施例中,第四设定值可以是预先存储起来的数值,或者也可以是从查找表中得到的数值,在此不作限定。
例如,若目标查找表对应的灰阶位数为10bit,显示面板对应的灰阶位数为8bit,则A22=4,则Z21=(Y21-A22)/4。以第1列中的红色子像素R21的过驱动查找灰阶值为512,第四设定值为504为例,红色子像素R21对应的Z21=(512-504)/4=2。以第1列中的绿色子像素G21的过驱动查找灰阶值为512,第四设定值为508为例,绿色子像素G21对应的Z21=(512-504)/4=2。需要说明的是,在Z21为整数时,可以直接将Z21作为目标过驱动灰阶转换值。在Z21为小数时,可以按照四舍五入取整,以将该取整出来的整数作为目标过驱动灰阶转换值。或者,在Z21为小数时,也可以直接舍去小数点后面的数值,直接将整数部分作为目标过驱动灰阶转换值。
之后,将第n列中第m行子像素的目标过驱动灰阶转换值的绝对值对应的数据电压,确定为第n列中第m行子像素对应的补偿电压。示例性地,以第1列中的红色子像素R21为例,若目标过驱动灰阶转换值的绝对值|2|为8bit的2灰阶值,可以将2灰阶值对应的数据电压作为红色子像素R21对应的补 偿电压。以第2列中的绿色子像素G21为例,若目标过驱动灰阶转换值的绝对值|2|为8bit的2灰阶值,可以将2灰阶值对应的数据电压作为绿色子像素G21对应的补偿电压。
示例性地,在本公开实施例中,如图8所示,时序控制器不仅具有画质功能处理模块210,还包括:原始灰阶处理模块220和过驱动处理模块230。其中,画质功能处理模块210被配置为在第n列对应的灰阶差值的绝对值大于设定阈值时,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值。并且,原始灰阶处理模块220被配置为在第n列对应的灰阶差值的绝对值不大于设定阈值时,将第n列中第m行子像素的原始灰阶值,确定为第n列中第m行子像素对应的目标灰阶值。以及,过驱动处理模块230被配置为存储有过驱动查找表,并在第n列对应的灰阶差值的绝对值不大于设定阈值时,根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定第n列中第m行子像素对应的补偿电压。需要说明的是,时序控制器的具体实施过程可以与上述驱动方法中的实施过程基本相同,在此不作赘述。
本公开实施例提供了又一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,可以在时序控制器的画质功能处理模块210中存储两个目标查找表。示例性地,如图9所示,画质功能处理模块210包括:第一确定模块211、第二确定模块212以及数据缓存器213。其中,第一确定模块211被配置为存储两个目标查找表中的一个,并根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值,并将确定出的目标灰阶值提供给源极驱动电 路。其中,n为大于0的整数。
并且,第二确定模块212被配置为存储两个目标查找表中的另一个,并根据第n列中第m行子像素的原始灰阶值、第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将第m行子像素的原始灰阶值降低后,确定为第n列中第m行子像素的目标灰阶值,并将确定出的目标灰阶值提供给数据缓存器213。
并且,数据缓存器213被配置为存储第二确定模块212输出的目标灰阶值。
在本公开实施例中,第一确定模块211还被配置为从数据缓存器213获取第m-1行中各子像素充入的数据电压对应的目标灰阶值。第二确定模块212还被配置为从数据缓存器213获取第m-1行中各子像素充入的数据电压对应的目标灰阶值。
在具体实施时,在本公开实施例中,显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种显示面板的驱动方法,包括:
    获取第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值;其中,m为大于1的整数;所述显示面板采用列翻转方式;
    在同一列中第m行子像素的原始灰阶值大于所述第m-1行子像素充入的数据电压对应的目标灰阶值时,根据同一列中所述第m行的原始灰阶值和所述第m-1行子像素的目标灰阶值,确定所述第m行中各子像素的目标灰阶值;
    根据所述第m行中各子像素的目标灰阶值,对所述显示面板中的数据线输入数据电压,以使所述第m行各所述子像素充入相应的数据电压。
  2. 如权利要求1所述的显示面板的驱动方法,其中,所述根据同一列中所述第m行的原始灰阶值和所述第m-1行子像素的目标灰阶值,确定所述第m行中各子像素的目标灰阶值,包括:
    针对第n列,确定所述第m行子像素对应的原始灰阶值与所述第m-1行子像素对应的目标灰阶值之间的灰阶差值;其中,n为大于0的整数;
    在所述第n列对应的灰阶差值的绝对值大于设定阈值时,根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值;其中,所述目标查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的目标查找灰阶值。
  3. 如权利要求2所述的显示面板的驱动方法,其中,所述设定阈值大于1且小于或等于最大灰阶值。
  4. 如权利要求2所述的显示面板的驱动方法,其中,所述根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始 灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值,包括:
    从所述目标查找表中,确定所述第n列中所述第m行子像素的原始灰阶值和所述第m-1行子像素的目标灰阶值对应的目标查找灰阶值;
    根据确定出的所述目标查找灰阶值、第一设定值以及第二设定值,确定所述第n列中所述第m行子像素对应的目标灰阶转换值;
    将所述第n列中所述第m行子像素的原始灰阶值降低所述目标灰阶转换值的绝对值后,确定为所述第n列中所述第m行子像素的目标灰阶值。
  5. 如权利要求4所述的显示面板的驱动方法,其中,所述根据确定出的所述目标查找灰阶值、第一设定值以及第二设定值,确定所述第n列中所述第m行子像素对应的目标灰阶转换值,包括:
    采用如下公式,根据确定出的所述目标查找灰阶值、第一设定值以及第二设定值,确定所述第n列中所述第m行子像素对应的第一灰阶转换值;
    Z11=(Y11-A11)/A12;
    其中,Z11代表所述第一灰阶转换值,Y11代表所述目标查找灰阶值,A11代表所述第一设定值,A12代表所述第二设定值,且A12=2 k:其中,k代表所述目标查找表对应的灰阶位数和所述显示面板对应的灰阶位数之间的差值;Y11≤A11;
    根据取整规则对所述第一灰阶转换值进行取整,确定出所述目标灰阶转换值。
  6. 如权利要求5所述的显示面板的驱动方法,其中,从预先存储的过驱动查找表中,确定所述第n列中所述第m行子像素的原始灰阶值和所述第m-1行子像素的目标灰阶值对应的过驱动查找灰阶值,并将确定出的所述过驱动查找灰阶值确定为所述第一设定值;其中,所述过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的过驱动查找灰阶值。
  7. 如权利要求2-6任一项所述的显示面板的驱动方法,其中,在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,将所述第n列中所述第m 行子像素的原始灰阶值,确定为所述第n列中所述第m行子像素对应的目标灰阶值。
  8. 如权利要求7所述的显示面板的驱动方法,其中,在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定所述第n列中所述第m行子像素对应的补偿电压;
    所述根据所述第m行中各子像素的目标灰阶值,对所述显示面板中的数据线输入数据电压,包括:
    在根据所述第n列中所述第m行子像素的目标灰阶值,对所述第n列中所述第m行子像素连接的数据线输入数据电压的同时,对所述第n列中所述第m行子像素连接的数据线加载所述第n列中所述第m行子像素对应的补偿电压。
  9. 如权利要求8所述的显示面板的驱动方法,其中,所述根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定所述第n列中所述第m行子像素对应的补偿电压,包括:
    从所述过驱动查找表中,确定所述第n列中所述第m行子像素的原始灰阶值和所述第m-1行子像素的目标灰阶值对应的过驱动查找灰阶值;
    根据确定出的所述过驱动查找灰阶值、第三设定值以及第四设定值,确定所述第n列中所述第m行子像素对应的目标过驱动灰阶转换值;
    将所述第n列中所述第m行子像素的目标过驱动灰阶转换值的绝对值对应的数据电压,确定为所述第n列中所述第m行子像素对应的补偿电压。
  10. 如权利要求9所述的显示面板的驱动方法,其中,所述据确定出的所述过驱动查找灰阶值、第三设定值以及第四设定值,确定所述第n列中所述第m行子像素对应的目标过驱动灰阶转换值,包括:
    采用如下公式,根据确定出的所述过驱动查找灰阶值、第三设定值以及 第四设定值,确定所述第n列中所述第m行子像素对应的第二灰阶转换值;
    Z21=(Y21-A22)/A21;
    其中,Z21代表所述第二灰阶转换值,Y21代表所述过驱动查找灰阶值,A22代表所述第四设定值,A21代表所述第三设定值,且A21=2 k:其中,k代表所述过驱动查找表对应的灰阶位数和所述显示面板对应的灰阶位数之间的差值;
    根据取整规则对所述第二灰阶转换值进行取整,确定出所述目标过驱动灰阶转换值。
  11. 如权利要求1-10任一项所述的显示面板的驱动方法,其中,所述获取第m行中各子像素的原始灰阶值,包括:
    接收第m行中各子像素的原始显示数据;
    根据所述第m行中各子像素的所述原始显示数据,确定所述第m行中各子像素的原始灰阶值。
  12. 一种显示装置,包括:
    显示面板,包括源极驱动电路;
    时序控制器,被配置为:确定第m行中各子像素的原始灰阶值以及第m-1行中各子像素充入的数据电压对应的目标灰阶值;在同一列中第m行子像素的原始灰阶值大于所述第m-1行子像素充入的数据电压对应的目标灰阶值时,根据同一列中,所述第m行的原始灰阶值和所述第m-1行子像素的目标灰阶值,确定所述第m行中各子像素的目标灰阶值;并将确定出的所述目标灰阶值提供给所述源极驱动电路;其中,m为大于1的整数;所述显示面板采用列翻转方式;
    所述源极驱动电路被配置为:根据所述第m行中各子像素的目标灰阶值,对所述显示面板中的数据线输入数据电压,以使所述第m行各所述子像素充入相应的数据电压。
  13. 如权利要求12所述的显示装置,其中,所述时序控制器包括画质功能处理模块;所述画质功能处理模块存储有目标查找表和过驱动查找表;
    其中,所述目标查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的目标查找灰阶值;
    所述过驱动查找表包括:多个不同的第一灰阶值、多个不同的第二灰阶值、以及与任一第一灰阶值和任一第二灰阶值对应的过驱动查找灰阶值。
  14. 如权利要求13所述的显示装置,其中,所述目标查找表为两个;
    所述画质功能处理模块包括:第一确定模块、第二确定模块以及数据缓存器;
    所述第一确定模块被配置为存储所述两个目标查找表中的一个,并根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值,并将确定出的所述目标灰阶值提供给所述源极驱动电路;其中,n为大于0的整数;
    所述第二确定模块被配置为存储所述两个目标查找表中的另一个,并根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的目标查找表中的目标查找灰阶值,将所述第m行子像素的原始灰阶值降低后,确定为所述第n列中所述第m行子像素的目标灰阶值,并将确定出的所述目标灰阶值提供给所述数据缓存器;
    所述数据缓存器被配置为存储所述第二确定模块输出的所述目标灰阶值。
  15. 如权利要求14所述的显示装置,其中,所述第一确定模块还被配置为从所述数据缓存器获取第m-1行中各子像素充入的数据电压对应的目标灰阶值;
    所述第二确定模块还被配置为从所述数据缓存器获取第m-1行中各子像素充入的数据电压对应的目标灰阶值。
  16. 如权利要求15所述的显示装置,其中,所述时序控制器还包括:原始灰阶处理模块;
    所述原始灰阶处理模块被配置为在所述第n列对应的灰阶差值的绝对值 不大于设定阈值时,将所述第n列中所述第m行子像素的原始灰阶值,确定为所述第n列中所述第m行子像素对应的目标灰阶值。
  17. 如权利要求16所述的显示装置,其中,所述时序控制器还包括:过驱动处理模块;其中,所述过驱动处理模块被配置为存储有过驱动查找表,并在所述第n列对应的灰阶差值的绝对值不大于设定阈值时,根据所述第n列中所述第m行子像素的原始灰阶值、所述第m-1行子像素的目标灰阶值以及预先存储的过驱动查找表中的过驱动查找灰阶值,确定所述第n列中所述第m行子像素对应的补偿电压;
    所述源极驱动电路被配置为在根据所述第n列中所述第m行子像素的目标灰阶值,对所述第n列中所述第m行子像素连接的数据线输入数据电压的同时,对所述第n列中所述第m行子像素连接的数据线加载所述第n列中所述第m行子像素对应的补偿电压。
PCT/CN2023/070192 2022-02-17 2023-01-03 显示面板的驱动方法及显示装置 WO2023155628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210145069.8A CN116665586A (zh) 2022-02-17 2022-02-17 显示面板的驱动方法及显示装置
CN202210145069.8 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155628A1 true WO2023155628A1 (zh) 2023-08-24

Family

ID=87577480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070192 WO2023155628A1 (zh) 2022-02-17 2023-01-03 显示面板的驱动方法及显示装置

Country Status (2)

Country Link
CN (1) CN116665586A (zh)
WO (1) WO2023155628A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249620A1 (en) * 2011-03-28 2012-10-04 Choi Jae-Suk Method of driving display panel and display apparatus for performing the same
CN108831394A (zh) * 2018-06-29 2018-11-16 北京小米移动软件有限公司 界面显示方法和装置
US20190139490A1 (en) * 2017-11-08 2019-05-09 Samsung Display Co., Ltd. Display device and method for generating compensating data of the same
CN112397036A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 时序控制器、液晶显示装置及显示驱动方法
CN112669784A (zh) * 2021-01-07 2021-04-16 三星半导体(中国)研究开发有限公司 液晶显示装置以及驱动该液晶显示装置的方法
CN112951172A (zh) * 2021-02-04 2021-06-11 重庆先进光电显示技术研究院 一种液晶显示装置以及充电控制方法
CN113192456A (zh) * 2021-04-30 2021-07-30 北海惠科光电技术有限公司 一种显示面板的串扰消除方法、装置及显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249620A1 (en) * 2011-03-28 2012-10-04 Choi Jae-Suk Method of driving display panel and display apparatus for performing the same
US20190139490A1 (en) * 2017-11-08 2019-05-09 Samsung Display Co., Ltd. Display device and method for generating compensating data of the same
CN108831394A (zh) * 2018-06-29 2018-11-16 北京小米移动软件有限公司 界面显示方法和装置
CN112397036A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 时序控制器、液晶显示装置及显示驱动方法
CN112669784A (zh) * 2021-01-07 2021-04-16 三星半导体(中国)研究开发有限公司 液晶显示装置以及驱动该液晶显示装置的方法
CN112951172A (zh) * 2021-02-04 2021-06-11 重庆先进光电显示技术研究院 一种液晶显示装置以及充电控制方法
CN113192456A (zh) * 2021-04-30 2021-07-30 北海惠科光电技术有限公司 一种显示面板的串扰消除方法、装置及显示设备

Also Published As

Publication number Publication date
CN116665586A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
KR101329438B1 (ko) 액정표시장치
US8269706B2 (en) Operating unit of liquid crystal display panel and method for operating the same
US9799281B2 (en) Liquid crystal panel and driving method for the same
KR102279278B1 (ko) 표시 장치 및 이의 구동 방법
KR102194775B1 (ko) 영상 처리부, 이를 포함하는 표시 장치 및 이를 이용한 표시 패널 구동 방법
US20200058261A1 (en) Display apparatus and a method of driving the same
CN109949760B (zh) 一种像素矩阵驱动方法及显示装置
CN109949764B (zh) 一种像素矩阵驱动方法及显示装置
US7911431B2 (en) Liquid crystal display device and method of driving the same
US20210005152A1 (en) Driving method and driving device of display panel, and display device
US20180286304A1 (en) Display apparatus and method of driving the same
CN113270076A (zh) 显示面板的驱动方法和显示装置
WO2023103520A1 (zh) 显示面板的驱动方法及显示装置
CN109949761B (zh) 一种像素矩阵驱动方法及显示装置
CN109949763B (zh) 一种像素矩阵驱动方法及显示装置
WO2023155628A1 (zh) 显示面板的驱动方法及显示装置
KR101264697B1 (ko) 액정표시장치의 구동장치 및 구동방법
KR20070078551A (ko) 액정 표시 장치 및 그 구동 방법
WO2023050127A1 (zh) 显示面板的驱动方法、显示驱动电路及显示装置
US20190019464A1 (en) Image display method and liquid crystal display device
CN109637492B (zh) 显示面板的驱动方法、装置及显示设备
US11551628B2 (en) Driving method for display panel, driving device of display panel, and display apparatus
KR101351922B1 (ko) 액정 표시장치 및 그 구동 방법
WO2023077258A1 (zh) 显示面板的驱动方法及显示装置
US20130100172A1 (en) Liquid crystal display device and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755632

Country of ref document: EP

Kind code of ref document: A1