WO2023197290A1 - 驱动装置及包含该驱动装置的声学输出装置 - Google Patents

驱动装置及包含该驱动装置的声学输出装置 Download PDF

Info

Publication number
WO2023197290A1
WO2023197290A1 PCT/CN2022/087025 CN2022087025W WO2023197290A1 WO 2023197290 A1 WO2023197290 A1 WO 2023197290A1 CN 2022087025 W CN2022087025 W CN 2022087025W WO 2023197290 A1 WO2023197290 A1 WO 2023197290A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving device
layer
driving unit
output end
distance
Prior art date
Application number
PCT/CN2022/087025
Other languages
English (en)
French (fr)
Inventor
周文兵
王庆依
张磊
齐心
廖风云
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2022/087025 priority Critical patent/WO2023197290A1/zh
Priority to CN202280007884.6A priority patent/CN117242793A/zh
Priority to US18/352,218 priority patent/US20230363281A1/en
Publication of WO2023197290A1 publication Critical patent/WO2023197290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2043Cantilevers, i.e. having one fixed end connected at their free ends, e.g. parallelogram type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • This specification relates to the field of acoustic technology, and in particular to a driving device.
  • Piezoelectric speakers utilize the inverse piezoelectric effect of piezoelectric materials to generate vibrations and radiate sound waves outward. Compared with transmission electric speakers, they have the advantages of high electromechanical energy conversion efficiency, low energy consumption, small size, and high integration. With today's trend of device miniaturization and integration, piezoelectric speakers have extremely broad prospects and future.
  • the driving part of piezoelectric speakers, especially miniature piezoelectric speakers has a problem of insufficient driving capability (for example, output displacement), causing the piezoelectric speakers to operate within the audible range of the human ear (for example, 20Hz-20kHz). The output sound pressure level is lower, resulting in lower sensitivity in the audible range.
  • Embodiments of this specification may provide a driving device, including one or more driving units.
  • Each driving unit has a beam-like structure.
  • the beam-like structure includes a vibration output end and a fixed end, and is directed from the fixed end to the The vibration output end extends, and each drive unit includes: a piezoelectric layer for causing the drive unit to output vibration from the vibration output end in response to an electrical signal; and an enhancement layer, wherein the enhancement layer is included in the One or more reinforcement components are arranged in the extension direction of the beam-like structure, at least one of the one or more reinforcement components is arranged close to the vibration output end and in the extension direction, its size does not exceed the Half the distance from the vibration output end to the fixed end.
  • the one or more reinforcing components include a first reinforcing component disposed near the vibration output end and a second reinforcing component disposed near the vibration output end. The position of the fixed end.
  • the ratio of the size of the first reinforcing component along the extension direction to the distance from the vibration output end to the fixed end is in the range of 0.05-0.3, or the second reinforcing component is along the The ratio of the size in the extension direction to the distance from the vibration output end to the fixed end is in the range of 0.05-0.25.
  • the one or more reinforcement components include a plurality of reinforcement components spaced apart in the extension direction, and the separation distance between two adjacent reinforcement components in the extension direction is in the range of 20-200 ⁇ m. Inside.
  • the plurality of reinforcing components are arranged in such a manner that the size first decreases and then increases along the extending direction.
  • the size of the reinforcing component along the extension direction is in the range of 50-400 ⁇ m and is arranged within a first distance from the vibration output end; and the reinforcement component is arranged at a distance from the vibration output end.
  • the size of the reinforcing component in the range of the first distance to the second distance along the extending direction is in the range of 20-200 ⁇ m.
  • the first distance is equal to 1/5 of the distance from the vibration output end to the fixed end
  • the second distance is equal to 2/5 of the distance from the vibration output end to the fixed end
  • the reinforcing component arranged within the range of the second distance to the third distance from the vibration output end has a size along the extension direction in the range of 20-100 ⁇ m; and the reinforcement component is arranged within the range of the second distance to the third distance.
  • the size of the reinforcing component along the extending direction whose distance from the vibration output end is greater than the third distance is in the range of 50-400 ⁇ m.
  • the third distance is equal to 14/15 of the distance from the vibration output end to the fixed end.
  • At least one of the one or more reinforcement components includes a plurality of sub-reinforcement components spaced apart perpendicular to the extension direction.
  • each driving unit further includes a substrate layer located between the piezoelectric layer and the reinforcement layer.
  • the ratio of the total thickness of the reinforcement layer and the substrate layer to the thickness of the piezoelectric layer is in the range of 3-20.
  • the ratio of the thickness of the reinforcement layer to the thickness of the substrate layer is in the range of 0.5-2.5.
  • the substrate layer covers the gap between the one or more drive units.
  • a gap width between two adjacent driving units among the plurality of driving units is less than 25 ⁇ m.
  • the beam-like structure of the one or more drive units has a helical structure bent in a clockwise or counterclockwise direction.
  • the driving device further includes: a vibration transmission unit, the vibration transmission end of each driving unit in the one or more driving units is connected to the vibration transmission unit, so that the vibration of the driving device is transmitted from the vibration transmission unit.
  • the vibration transmission unit output.
  • the vibration transmission unit is connected to each driving unit through an elastic connection.
  • Embodiments of this specification may also provide an acoustic output device, which includes the driving device as described above.
  • Figure 1 is a structural block diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 2 is a schematic cross-sectional view of an exemplary drive unit shown in some embodiments of the present specification along a direction perpendicular to the extension of its beam-like structure;
  • Figure 3 is a schematic cross-sectional view along a direction perpendicular to the extension of the beam-like structure of an exemplary driving unit shown in some embodiments of this specification when it is deformed by bending vibration;
  • Figure 4 is a frequency response curve of a loudspeaker when a driving unit corresponding to the ratio of the total thickness of the substrate layer and the reinforcement layer to the thickness of the piezoelectric layer is applied to the loudspeaker according to some embodiments of this specification;
  • Figure 5 is a schematic diagram of an exemplary drive device according to some embodiments of the present specification.
  • Figure 6 is a schematic diagram of the A-A cross-section of the driving device in Figure 5;
  • Figure 7 is a schematic diagram of the strain curve of the piezoelectric layer along the extending direction of the beam-like structure of the driving unit according to some embodiments of this specification;
  • FIG. 8 is a schematic diagram of a partial structure of an exemplary driving device shown in some embodiments of this specification.
  • Figure 9 is a B-B cross-sectional schematic diagram of the driving device in Figure 8.
  • Figure 10 is a schematic diagram of a partial structure of an exemplary driving device according to some embodiments of this specification.
  • Figure 11 is a schematic diagram of a partial structure of an exemplary driving device according to some embodiments of this specification.
  • Figure 12 is a schematic diagram of a partial structure of an exemplary driving device shown in some embodiments of this specification.
  • Figure 13 is a C-C cross-sectional schematic diagram of the driving device in Figure 12;
  • Figure 14 is a schematic diagram of a partial structure of an exemplary driving device according to some embodiments of this specification.
  • Figure 15 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 16 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 17 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 18 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 19 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 20 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • Figure 21 is another structural schematic diagram of an exemplary driving device according to some embodiments of this specification.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • connection can refer to a fixed connection, a detachable connection, or an integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be two The connection within an element or the interaction between two elements, unless otherwise expressly limited.
  • connection can refer to a fixed connection, a detachable connection, or an integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be two The connection within an element or the interaction between two elements, unless otherwise expressly limited.
  • the driving device may include one or more driving units.
  • Each drive unit has a beam-like structure.
  • the beam-like structure includes a vibration output end and a fixed end, and extends from the fixed end to the vibration output end.
  • Each drive unit may include a piezoelectric layer and a reinforcement layer.
  • the piezoelectric layer can cause the drive unit to output vibration from the vibration output end of the beam-like structure in response to an electrical signal.
  • the reinforcement layer can adjust the damping and stiffness of the drive unit.
  • the reinforcement layer may comprise one or more reinforcement components arranged in the direction of extension of the beam-like structure.
  • At least one of the one or more reinforcing components is arranged close to the vibration output end and in the extension direction (that is, the direction in which the fixed end of the drive unit extends toward the vibration output end), its size does not exceed two times the distance from the vibration output end to the fixed end. one part.
  • the entire piezoelectric layer can be located on the same side of the neutral plane of the beam-like structure (ie, the piezoelectric layer and the reinforcement layer as a whole), To increase the elongation (or compression) deformation caused by the tensile stress (or compressive stress) generated by the piezoelectric layer when the beam-like structure is bent, thereby improving the output capability (for example, output displacement) of the driving unit.
  • the output capability for example, output displacement
  • the reliability of the drive unit can be ensured.
  • the load generated by the reinforcement layer on the piezoelectric layer is smaller, thereby further improving the output capability of the driving unit.
  • FIG. 1 is a structural block diagram of an exemplary driving device according to some embodiments of the present specification.
  • the driving device 100 may include one or more driving units 110 .
  • the shape of the driving unit 110 may be a circle, an ellipse, a triangle, a quadrilateral, a pentagon, a hexagon, etc., or other irregular shapes.
  • one or more driving units 110 may be arranged regularly or irregularly, so that the overall structure of the driving device 100 is circular, elliptical, quadrilateral, pentagonal, hexagonal, octagonal, or other shapes. Polygons etc. For example, as shown in FIG.
  • the driving unit 110 may be an isosceles triangle, and the driving device 100 may be a regular hexagon composed of six driving units 110 .
  • the driving unit 110 may be an irregular polygon, and the driving device 100 may be a regular hexagon composed of a plurality of driving units 110 .
  • the driving unit 110 may be an irregular shape composed of multiple arc-shaped sides, and the driving device 100 may be a regular hexagon composed of a plurality of driving units 110 .
  • the driving unit 110 may have an irregular shape composed of multiple arc-shaped sides, and the driving device 100 may have a circular shape composed of multiple driving units 110 .
  • the driving device 100 will be described using an example in which the driving device has a hexagonal shape.
  • the driving unit 110 may include a beam-like structure.
  • the beam-like structure may include a vibration output end and a fixed end (for example, the vibration output end 113 and the fixed end 111 in Figure 6).
  • the beam-like structure may extend from the fixed end to the vibration output end (or extend from the vibration output end to the fixed end).
  • the driving unit 110 may have a beam-like structure extending from the fixed end to the vibration output end (or extending from the vibration output end to the fixed end).
  • the driving unit 110 may include a piezoelectric layer 120 and a reinforcement layer 130.
  • the piezoelectric layer 120 may cause the driving unit 110 to output vibration from the vibration output terminal in response to the electrical signal. In the extending direction from the fixed end to the vibration output end, the piezoelectric layer 120 may partially or completely cover the beam-like structure. The piezoelectric layer 120 can deform under the action of a driving voltage, thereby generating vibration.
  • the piezoelectric layer 120 may include a piezoelectric material layer and two electrode material layers. The two electrode material layers may be located on opposite sides in the thickness direction of the piezoelectric material layer.
  • the piezoelectric material layer may be made of a material with a piezoelectric effect (eg, piezoelectric ceramics, piezoelectric quartz, piezoelectric crystal, piezoelectric polymer, etc.).
  • the material of the piezoelectric material layer may include, but is not limited to, aluminum nitride (AlN), lead zirconate titanate (PZT), zinc oxide (ZnO), etc.
  • the electrode material layer may be made of a highly conductive material (eg, metal, alloy, conductive polymer material, etc.).
  • the electrode material layer may include metal molybdenum, copper, gold, titanium, aluminum, titanium-gold alloy, etc.
  • the reinforcement layer 130 can change the mechanical properties of the driving unit 110, such as providing damping and stiffness of the driving unit 110.
  • reinforcement layer 130 may be attached to piezoelectric layer 120 (eg, electrode material layer).
  • the piezoelectric layer 120 can drive the reinforcement layer 130 to vibrate.
  • the reinforcement layer 130 may be made of semiconductor materials, polymer materials, etc. Exemplary semiconductor materials may include silicon (Si), silicon oxide (SiO 2 ), silicon nitride (SiNx), silicon carbide (SiC), and the like.
  • Exemplary polymer materials may include polyimide (PI), polyparaxylene (Parylene), polydimethylsiloxane (PDMS), hydrogel, photoresist, silica gel, silica gel Glue, silicone sealant, etc.
  • the reinforcement layer 130 may have a single-layer or multi-layer structure.
  • the reinforcement layer 130 may have a single-layer structure made of a semiconductor material (eg, Si, SiO 2 ) or a polymer material (eg, polyimide).
  • the reinforcement layer 130 may have a multi-layer structure made of various semiconductor materials (eg, Si/SiO 2 double-layer structure, Si/SiNx double-layer structure, etc.).
  • the reinforcement layer 130 may have a multi-layer structure made of multiple polymer materials.
  • the reinforcement layer 130 may have a multi-layer structure made of polymer materials and semiconductor materials.
  • the reinforcement layer 130 may include one or more elements arranged in an extension direction of the beam-like structure (which may also be referred to as an extension direction of the driving unit 110 ) (for example, the XX′ direction as shown in FIG. 6 ). Reinforcement components (eg, reinforcement components 132, 134, 136, etc.). At least one reinforcing component may be arranged close to the vibration output end, and the size of the reinforcing component in the extension direction does not exceed half of the distance from the vibration output end to the fixed end.
  • Reinforcement components eg, reinforcement components 132, 134, 136, etc.
  • the extension direction of the beam-like structure or the driving unit 110 may refer to the direction extending from the fixed end center of the driving unit 110 or the beam-like structure along the center line of the beam-like structure to the center of its vibration output end (or the center of the vibration output end). Along the direction extending from the center line of the beam-like structure to the center of the fixed end).
  • the two electrode material layers of the piezoelectric layer 120 when the two electrode material layers of the piezoelectric layer 120 are on different sides of the neutral plane of the beam-like structure (or the driving unit 110 ), it will result in the beam-like structure being positioned when a voltage is applied to the driving unit 110 The stress and displacement of the piezoelectric material layers on both sides of the neutral plane cancel each other out, thus weakening the output capability of the driving unit 110.
  • the thickness of the piezoelectric layer 120 and/or the reinforcement layer 130 can be adjusted so that the entire piezoelectric layer 120 is located on one side of the neutral plane of the beam-like structure, so that when the driving unit 110 bends, the piezoelectric layer
  • the elongation (or compression) deformation caused by the tensile stress (or compressive stress) of 120 will not be offset, causing the vibration output end to output greater displacement or force.
  • the distance between the geometric midplane position of the piezoelectric layer 110 and the neutral plane position of the beam-like structure can be increased by increasing the thickness of the reinforcement layer 130 , thereby increasing the output performance of the driving unit 110 (i.e., , the output displacement of the output terminal).
  • the neutral surface may refer to the transition surface in the thickness direction of the beam-shaped structure during the bending vibration process of the driving unit 110 having a beam-shaped structure. This transition surface does not produce tension along the extension direction of the beam-shaped structure. Tensile deformation without compression deformation. In other words, the neutral surface may refer to the surface of the beam-like structure or the driving unit 110 on which the normal stress is equal to zero during the bending vibration process. More information about the thickness of the piezoelectric layer 120 and/or the reinforcement layer 130 can be found in FIG. 2 and its description.
  • one or more reinforcing components may include a first reinforcing component and a second reinforcing component.
  • the first reinforcing component may be disposed near the vibration output end, and the second reinforcing component may be disposed near the fixed end.
  • one or more reinforcing components may include a plurality of reinforcing components spaced apart in the extension direction. The plurality of reinforcing components may be arranged in such a manner that the size first decreases and then increases along the extension direction.
  • drive unit 110 may include substrate layer 140 .
  • the substrate layer 140 may be disposed between the piezoelectric layer 120 and the reinforcement layer 130 .
  • the substrate layer 140 may cooperate with the reinforcement layer 130 to adjust the stiffness and damping of the driving unit 110 and the neutral plane position of the driving unit 110 to adjust the output performance of the driving unit 110 .
  • the stiffness of the driving unit 110 can be adjusted by partially covering or fully covering the substrate layer 140 with the reinforcement layer 130, thereby adjusting the structural reliability of the driving unit 110.
  • the material of the substrate layer 140 and the reinforcement layer 130 may be the same or different.
  • the substrate layer 140 may be made of semiconductor materials, polymer materials, etc.
  • the material of the substrate layer 140 and the reinforcement layer 130 may both be Si.
  • the material of the substrate layer 140 may include Si and SiO 2
  • the material of the enhancement layer 130 may include Si and PDMS.
  • substrate layer 140 may have a single-layer or multi-layer structure.
  • the substrate layer 140 may have a single-layer structure made of a semiconductor material (eg, Si, SiO 2 ) or a polymer material (eg, polyimide).
  • the substrate layer 140 may have a multi-layer structure made of multiple semiconductor materials (eg, Si/SiO 2 double-layer structure, Si/SiNx double-layer structure, etc.).
  • the substrate layer 140 may have a multi-layer structure made of multiple polymer materials.
  • the substrate layer 140 may have a multi-layer structure made of polymer materials and semiconductor materials.
  • the driving device 100 may further include a vibration transmission unit 150 .
  • the vibration output end of each of the one or more driving units 110 may be connected to the vibration transmission unit 150 so that the vibration of the driving device 100 can be output through the vibration transmission unit 150 .
  • the vibration output end of each driving unit 110 may be connected to the vibration transmission unit 150 through an elastic connection 160 .
  • the elastic connector 160 can be any elastic component.
  • the material of the elastic connector 160 may include semiconductor materials (eg, silicon, silicon oxide, silicon nitride, silicon carbide, etc.), polyimide, parylene, hydrogel, PDMS, optical fiber, etc. Silicone, silicone, silicone gel, silicone sealant, etc. or any combination thereof.
  • the elastic connector 160 may include a single-layer structure or a multi-layer structure.
  • the elastic connector 160 may have a single-layer structure made of parylene.
  • the elastic connector 160 may have a double-layer structure made of parylene and polyimide.
  • the elastic connector 160 may be located on a side of the driving unit 110 where the reinforcement layer 130 is provided.
  • the elastic connector 160 can be attached to one end outside the reinforcement layer 130 (for example, close to the vibration output end). For another example, when the reinforcing layer 130 is disposed close to the fixed end, the elastic connector 160 can be directly attached to the substrate layer 140 .
  • the height of the elastic connector 160 may be equal to the height of the reinforcement layer 130 (as shown in FIG. 6 ). In some embodiments, the height of the elastic connector 160 may be equal to the thickness of the beam-like structure of the driving unit (ie, the total thickness of the piezoelectric layer 120, reinforcement layer 130, substrate layer 140, etc.).
  • the driving device 100 can be applied to drivers such as speakers, micromotors, micropumps, micromirrors, flow meters, and electric motors.
  • the driving device 100 may be used as a driving part in a speaker (eg, a bone conduction speaker, an air conduction speaker, or a bone-air conduction combined speaker).
  • the vibration output by the driving device 100 or the driving unit 110 may generate sound within the audible frequency range of human ears (for example, 20 Hz-20 kHz).
  • the speakers may include speakers, headphones, glasses, hearing aids, augmented reality (Augmented Reality, AR) devices, virtual reality (VR) devices, etc. or other devices with audio playback functions (such as mobile phones, computers wait).
  • the driving device 100 can provide driving force for the speaker.
  • each driving unit 110 in the driving device 100 can be fixedly connected to the speaker housing through a fixed end, and can be connected to the vibrating part of the speaker through a vibration output end.
  • the vibration transmission unit 150 may be connected to the vibration part (eg, diaphragm assembly) of the speaker, so that the vibration of the driving device 100 can be transmitted to the vibration part of the speaker through the vibration transmission unit 150 for output.
  • the driving device 100 can convert electrical energy into mechanical energy to output force and displacement, and transmit vibration to the vibrating part of the speaker.
  • the vibration part is the load part of the driving device 100, which can receive the mechanical energy (for example, force or displacement, etc.) transmitted by the driving device 100 and generate vibration, thereby causing the speaker to produce sound.
  • the vibrating part can produce the desired sound by pushing the air outward and radiating sound pressure.
  • the driving device 100 can also directly serve as the sound pressure driving part.
  • the driving device 100 can convert electrical energy into mechanical energy to output force and displacement, and directly promote air vibration to generate the required sound pressure (ie, sound).
  • any two adjacent drive units in the drive device 100 can be less than 25 ⁇ m.
  • at least one of the reinforcement layer 130 and the substrate layer 140 can cover the gap between any two adjacent driving units 110 to prevent the sound generated by the vibration of the driving device 100 from leaking from the gap and affecting the output of the speaker. Effect.
  • multiple driving units 110 may include the same reinforcement layer 130 and/or substrate layer 140 , that is, the reinforcement layer 130 and/or substrate layer 140 may cover the gap between any two adjacent driving units 110 , to prevent the sound generated by the vibration of the driving device 100 from leaking from the gap.
  • the output performance of the driving device 100 may be related to the vibration transfer efficiency between the driving device 100 (or the driving unit 110) and its load (eg, the vibrating portion of the speaker).
  • the vibration transfer efficiency between the driving device 100 and its load may be related to the impedance of the driving device 100 (or the driving unit 110) and the impedance of the load. Therefore, the output performance of the driving device 100 (or the driving unit 110) can be improved by adjusting the impedance of the driving device 100 (or the driving unit 110) and/or the impedance of its load.
  • the impedance of the driving device 100 can be matched or substantially matched with the impedance of its load to improve the output performance of the driving device 100 (or the driving unit 110).
  • impedance matching please refer to Figures 5 to 7 and their descriptions in this specification.
  • the above description with respect to FIG. 1 is provided for illustrative purposes only and is not intended to limit the scope of this specification.
  • the driving device 100 may not include the substrate layer 140, and the reinforcement layer 130 may be directly attached to the piezoelectric layer 120.
  • the reinforcement layer 130 may be made of a semiconductor material (eg, one or more of Si, SiO 2 , SiN x , etc.). Such changes and modifications would not depart from the scope of this specification.
  • FIG. 2 is a schematic cross-sectional view of an exemplary driving unit along a direction perpendicular to the extension of its beam-like structure according to some embodiments of the present specification.
  • 3 is a schematic cross-sectional view along a direction perpendicular to the extension of the beam-like structure of an exemplary driving unit shown in some embodiments of the present specification when it is deformed by bending vibration.
  • the driving unit 110 Since the driving unit 110 is subjected to a tensile force on one side along the thickness direction of its beam-like structure (i.e., the ZZ' direction) and a compressive force on the other side during the bending vibration process, therefore, in the cross-section perpendicular to the vibration direction of the driving unit 110 There is a transition surface that is neither subject to tensile force nor compression force, and the normal stress of this transition surface is equal to zero. In this specification, this transition surface may be referred to as the neutral surface of the drive unit 110 . What needs to be known is that the neutral plane position of the beam-like structure is not necessarily in the middle of its thickness direction (ZZ’ direction in Figure 2). The driving unit 110 with a beam-like structure may have its corresponding neutral plane during vibration.
  • the structure on the other side of the neutral plane of the driving unit 110 (for example, the entire reinforcement layer 130 and part of the substrate layer 140)
  • the opposite deformation can occur, thereby driving the beam-like structure to produce bending deformation and outputting displacement along the ZZ' direction.
  • the piezoelectric layer 120 is on different sides of the neutral plane of the beam-like structure (or the driving unit 110 ) (that is, when the neutral plane of the beam-like structure passes through the piezoelectric layer 120 ), it will cause the voltage to be applied to the driving unit 110 At this time, the stress and displacement of the piezoelectric material layer located near the neutral plane of the beam-like structure cancel each other out, thereby weakening the output capability of the driving unit 110 . Therefore, for the driving unit 110 with a beam-like structure, in order to enable the driving unit 110 to produce the maximum displacement output during operation, the neutral plane position of the beam-like structure can be designed and optimized so that the entire piezoelectric layer 120 is located at the driving unit. The same side of the neutral plane of 110.
  • the driving unit 110 may include a three-layer structure, which may be a first layer of reinforcement layer 130 , a second layer of substrate layer 140 , and a third layer of piezoelectric layer 120 .
  • the dashed line CC′ represents the position of the neutral plane of the drive unit 110 .
  • the rectangular cross-sectional area A i of the i-th layer structure can be determined according to formula (1):
  • ti represents the thickness of the i-th layer structure
  • w represents the width of the beam-like structure of the driving unit 110.
  • the neutral plane position of the driving unit 110 can be related to the material thickness of each layer structure and its Young's modulus.
  • the position of the neutral plane of the driving unit 110 can be determined by the distance between the neutral plane of the driving unit and the reinforcement layer. 130 surface distance h is represented. Just as an example, h can be determined according to equation (2):
  • E i represents the Young's modulus of the material of the i-th layer structure
  • h i represents the distance between the geometric middle surface of the i-th layer structure and the surface of the reinforcement layer 130 .
  • the geometric midplane of the i-th layer structure refers to the i-th layer structure along the vibration direction of the beam-like structure. Geometric midplane.
  • the moment of inertia I i of each layer structure of the multi-layer structure of the driving unit 110 can satisfy:
  • the average stress ⁇ (x) at different positions x on the piezoelectric layer 120 along the extension direction of the beam-like structure can satisfy formula (4):
  • M(x) represents the bending moment exerted by the outside world.
  • bending moment application may be achieved by direct application of mechanical bending moment or by electrical conversion.
  • a voltage can be applied to the two electrode material layers of the piezoelectric layer 120, and the piezoelectric layer 120 deforms through the inverse piezoelectric effect to implement bending moment application.
  • the average stress ⁇ (x) at different positions x of the piezoelectric layer 120 along the extending direction of the beam-like structure determines the amount of elongation or compression at different positions of the piezoelectric layer 120 in the driving unit 110 along the extending direction of the beam-like structure.
  • the average stress ⁇ (x) at different positions x of the piezoelectric layer 120 along the extension direction of the beam-like structure is inversely related to the rotational inertia I 3 of the piezoelectric layer 120 in the driving unit 110, and the pressure
  • the magnitude of the average stress ⁇ (x) at different positions x along the extending direction of the beam-like structure of the electrical layer 120 is positively related to the distance between the geometric middle plane of the piezoelectric layer 120 and the neutral plane of the driving unit 110 .
  • the distance between the geometric middle plane of the piezoelectric layer 120 and the neutral plane of the driving unit 110 can be increased so that the piezoelectric layer
  • the stress ⁇ (x) of 120 increases, so that under the same voltage input, the driving unit 110 (or beam-like structure) can output a larger displacement perpendicular to the length and width direction of the driving unit 110 (i.e., the ZZ' direction in Figure 2 displacement), thereby improving the output performance of the driving unit 110 (or the driving device 100).
  • the thickness of the substrate layer 140 and/or the reinforcement layer 130 may be as large as possible. 120 thickness.
  • the substrate layer 140 and the reinforcement layer 130 themselves do not provide a conversion function between electricity and force and are loads compared to the piezoelectric layer 120, when the thickness of the substrate layer 140 and the reinforcement layer 130 is too large, This will cause the load of the piezoelectric layer 120 in the beam-like structure of the driving unit 110 to be too large, resulting in a reduction in the final displacement output of the beam-like structure of the driving unit 110. Therefore, the thickness of the substrate layer 140 and the thickness of the reinforcement layer 130 need to be coordinated. design.
  • the total thickness t p of the reinforcement layer 130 and the substrate layer 140 can be determined according to formula (5):
  • t1 represents the thickness of the reinforcement layer 130
  • t2 represents the thickness of the substrate layer 140.
  • the ratio ⁇ of the total thickness t p of the reinforcement layer 130 and the substrate layer 140 to the thickness t 3 of the piezoelectric layer 120 can be determined according to formula (6):
  • FIG. 4 is a frequency response curve of a speaker when a driving unit corresponding to different ratios of the total thickness of the substrate layer and the reinforcement layer to the thickness of the piezoelectric layer is applied to the speaker according to some embodiments of this specification.
  • curve m, curve n and curve o represent the driving unit when the ratio ⁇ of the total thickness t p of the reinforcement layer 130 and the substrate layer 140 to the thickness t 3 of the piezoelectric layer 120 is equal to 9.5, 14.3 and 21.5 respectively.
  • the frequency response curve of the corresponding speaker It can be seen from FIG.
  • the driving unit 110 that is, the driving device 100
  • the first resonant frequency of the speaker will increase, and the output sound pressure level after the first resonant peak will also increase. Therefore, for the driving unit 110 (that is, the driving device 100) that mainly pursues high sensitivity in the mid-to-high frequency range (for example, 500Hz-10kHz), the total thickness t p of the reinforcement layer 130 and the substrate layer 140 is equal to the thickness t 3 of the piezoelectric layer 120
  • the ratio ⁇ can be set larger.
  • the total thickness t p of the reinforcement layer 130 and the substrate layer 140 is The ratio ⁇ to the thickness t 3 of the piezoelectric layer 120 may range from 2 to 50. In some embodiments, the ratio ⁇ of the total thickness t p of the reinforcement layer 130 and the substrate layer 140 to the thickness t 3 of the piezoelectric layer 120 may range from 3 to 20. In some embodiments, the ratio ⁇ of the total thickness t p of the reinforcement layer 130 and the substrate layer 140 to the thickness t 3 of the piezoelectric layer 120 may range from 4 to 15.
  • the ratio ⁇ of the total thickness t p of the reinforcement layer 130 and the substrate layer 140 to the thickness t 3 of the piezoelectric layer 120 may range from 5 to 10.
  • the driving unit 110 does not include the substrate layer 140 , and the performance of the driving unit 110 can be adjusted by adjusting the thickness ratio of the reinforcement layer 130 to the piezoelectric layer 120 .
  • the ratio of the thickness of the reinforcement layer 130 to the thickness of the piezoelectric layer 120 may range from 2 to 50. More preferably, the ratio of the thickness of the reinforcement layer 130 to the thickness of the piezoelectric layer 120 may range from 3 to 20.
  • FIG. 5 is a schematic diagram of an exemplary drive device according to some embodiments of the present specification.
  • FIG. 6 is a schematic cross-sectional view of the driving device along line A-A in FIG. 5 .
  • 7 is a schematic diagram of a strain curve of the piezoelectric layer along the extending direction of the beam-like structure of the driving unit according to some embodiments of this specification.
  • the driving device 100 may include six driving units 110 having a beam-like structure.
  • the six driving units 110 may form a hexagonal structure.
  • the gap may be covered by substrate layer 140 and/or reinforcement layer.
  • the driving unit 110 may include a piezoelectric layer 120, a reinforcement layer 130, a substrate layer 140, and a vibration transmission unit 150.
  • One end of the driving unit 110 (that is, the fixed end 111 ) can be fixed through the fixing component 170 , and the other end of the driving unit 110 (that is, the vibration output end 113 ) can be connected to the vibration transmission unit 150 .
  • the vibration transmission unit 150 may be connected with the vibrating part of the speaker (eg, diaphragm assembly), thereby transmitting the vibration to the vibrating part of the speaker.
  • the lengths of the reinforcement layer 130 , the substrate layer 140 and the piezoelectric layer 120 of the driving unit 110 along the extending direction of the beam-like structure (or the driving unit 110 ) may be equal.
  • the reinforcement layer 130 can cooperate with the substrate layer 140 to jointly adjust the position of the neutral plane of the driving unit 110 and the stiffness of the driving unit 110 .
  • the thickness of the reinforcement layer 130 and/or the substrate layer 140 can be increased to increase the distance between the neutral plane position of the driving unit 110 and the geometric middle plane position of the piezoelectric layer 120 .
  • the reinforcement layer 130 can be partially or fully covered on the substrate layer 140 to adjust the neutral plane position of the driving unit 110 and adjust the stiffness of the driving unit 110, thereby adjusting the structural reliability of the driving unit 110. sex.
  • a line segment L1 along the extending direction of the driving unit 110 is selected.
  • the driving unit 110 may be symmetrical along L1 (as shown in FIG. 5 ).
  • the center point of the connection position between the driving unit 110 and the elastic connector 160 is R0.
  • the center point of the connection position between the driving unit 110 and the fixed component 170 is R1.
  • the direction from R0 to R1 is the extension direction of the beam-like structure of the driving unit 110. .
  • the corresponding strain values of the piezoelectric layer 120 at different positions on the line segment L1 can be used to represent the strain changes at different positions of the beam-like structure of the driving unit 110 along its extension direction.
  • the abscissa in Figure 7 represents different positions on the line segment L1, and the ordinate represents the strain at the corresponding position on the piezoelectric layer 120.
  • the negative sign "-" of the value on the ordinate axis represents the compressive strain.
  • the piezoelectric layer 120 can be divided into four sections, which are the initial strain zone R0-a, the small strain zone a-b, the strain rate increase zone b-c, and the large strain zone c-R1. It can be seen from FIG. 7 that at different positions along the extension direction of the driving unit 110, the strain generated by the piezoelectric layer 120 is different, that is, the output displacement values contributed to the driving unit 110 are different.
  • the strain in the initial strain zone R0-a is the smallest; the strain in the small strain zone a-b begins to increase, but the change amplitude is small; the strain in the strain rate increase zone b-c continues to increase, and the change amplitude becomes larger; the strain in the large strain zone c-R1
  • the strain is the largest and the change amplitude is large.
  • the closer to the fixed end 111 of the driving unit 110 that is, the closer to R1
  • the greater the strain of the piezoelectric layer 120 and the greater its strain contribution value ( That is, the contribution of this position to the bending deformation of the piezoelectric layer 120 is greater).
  • Reinforcement layers 130 with different mass distributions are arranged at different positions in the extension direction of the beam-like structure to effectively adjust the position of the neutral plane of the drive unit 110 while simultaneously loading the piezoelectric layer 120 and the drive unit.
  • the overall stiffness of the driving unit 110 is adjusted, so that the driving unit 110 outputs a larger displacement, and at the same time, the driving unit 110 and its load (for example, the vibrating part of the speaker) achieve impedance matching or substantially matching, so that the displacement generated by the driving device 100 can be Effective delivery.
  • the reinforcement layer 130 may not completely cover the piezoelectric layer 120 , that is, the length of the reinforcement layer 130 may be shorter than the length of the piezoelectric layer 120 (for example, the size of the reinforcement layer 130 does not exceed the distance ld from the vibration output end 113 to the fixed end 111 Half).
  • the reinforcement layer 130 can be arranged close to the vibration output end 113 of the driving unit 110 (for example, the initial strain zone R0-a) to reduce the impact of the reinforcement layer 130 on the beam. It restrains the beam-like structure when it bends and deforms, reduces the deformation resistance of the beam-like structure, and enhances the deformation ability of the beam-like structure, thereby enhancing the output capability of the beam-like structure and improving the output performance of the driving unit 110.
  • the enhancement layer 130 may include multiple enhancement components.
  • the plurality of reinforcing components may be arranged in such a manner that the size first decreases and then increases along the extension direction.
  • FIGS. 8 and 9 are schematic diagrams of a partial structure of an exemplary driving device shown in some embodiments of this specification.
  • Figure 9 is a B-B cross-sectional schematic diagram of the driving device in Figure 8 .
  • the driving device 100 shown in FIGS. 8 and 9 can be applied to application scenarios with smaller loads.
  • the structure of the driving unit 110 can be designed so that the driving unit The beam-like structure 110 itself (for example, the reinforcement layer 130 and the substrate layer 140) generates a smaller load on the piezoelectric layer 120 to increase the output displacement of the driving device 100 while reducing the output displacement of the driving unit 110 (or the driving device 100). Stiffness, so that the impedance of the driving device 100 matches or substantially matches the impedance of its load, so as to transmit the vibration displacement of the driving device 100 to its load in the most efficient manner.
  • the reinforcement layer 130 may include a first reinforcement component (ie, reinforcement component 132) and a second reinforcement component (ie, reinforcement component 134).
  • the sum of the dimensions of the first reinforcement part 132 and the second reinforcement part 134 along the extension direction may be smaller than the dimension of the piezoelectric layer 120 along the extension direction.
  • the first reinforcing component 132 may be disposed near the vibration output end 113
  • the second reinforcing component 134 may be disposed near the fixed end 111 .
  • the distance between the neutral plane position of the beam-like structure and the geometric middle plane position of the piezoelectric layer 120 can be increased through the first reinforcing component 132 and the second reinforcing component 134, thereby increasing the output displacement of the driving unit 110 and enhancing the The output capability of the driving unit 110; the second reinforcing component 134 can strengthen the support for the area with large strain on the driving unit 110, reduce the possibility of the driving unit 110 being damaged during operation, and enhance the reliability of the driving device 100.
  • the reinforcement layer 130 may only include the first reinforcement component 132 disposed near the vibration output end 113 without the second reinforcement component 134 .
  • the size of the first reinforcing component 132 in the extension direction of the driving unit 110 may not exceed half of the distance ld from the vibration output end 113 to the fixed end 111 . In some embodiments, the size of the first reinforcing component 132 in the extending direction of the driving unit 110 may be adjusted according to the arrangement of the reinforcing components in the reinforcing layer 130 .
  • the size of the first reinforcement component 132 may be arranged slightly larger (for example, exceeding the distance from the vibration output end 113 to the fixed end 111 l d (half of d) to ensure that the distance between the neutral plane position of the beam-like structure and the geometric middle plane position of the piezoelectric layer 120 meets the requirements.
  • the size of the first reinforcement component 132 may be slightly smaller (for example, the distance ld between the vibration output end 113 and the fixed end 111 Between one-fifth and three-fifths) to cooperate with the second reinforcing component 134 to adjust the distance between the neutral plane position of the beam-like structure and the geometric middle plane position of the piezoelectric layer 120 .
  • the reinforcement layer 130 has multiple reinforcement components (as shown in FIG.
  • the size of the first reinforcement component 132 can be smaller (for example, ten times the distance ld from the vibration output end 113 to the fixed end 111 between one-half and one-half) to cooperate with other reinforcing components to adjust the distance between the neutral plane position of the beam-like structure and the geometric mid-plane position of the piezoelectric layer 120 and the stiffness of the beam-like structure.
  • the fixed end 111 of the driving unit 110 can overlap with the fixing component 170 in the ZZ' direction.
  • the portion that overlaps with the fixing component 170 (That is, the fixed end 111) may not participate in the vibration.
  • the size of the driving unit 110 in its extension direction refers to the size of the part of the driving unit 110 that can vibrate freely (for example, the part that does not overlap with the fixed component 170 ), and its numerical value is equal to the size of the driving unit 110 in the extension direction.
  • the length of the centerline For example, in the driving device 100 shown in FIG. 5 , the size of the driving unit 110 in its extension direction is equal to the distance between R0 and R1 . In some embodiments, the size of the driving unit 110 in its extension direction may also be referred to as the equivalent length of the driving unit 110 .
  • the ratio ⁇ between the dimension l po of the second reinforcing component 134 along the extension direction of the driving unit 110 and the dimension ld along the extension direction of the driving unit 110 satisfies:
  • the ratio ⁇ between the dimension l pi of the first reinforcing component 132 along the extension direction of the driving unit 110 and the dimension ld along the extension direction of the driving unit 110 satisfies:
  • may range from 0.05 to 0.25. In some embodiments, the value range of ⁇ may be 0.05-0.3.
  • the thickness of the first reinforcing component 132 and the second reinforcing component 134 in the vibration direction of the vibration output end 113 may be the same to facilitate preparation of the reinforcing layer 130 (or the driving unit 110).
  • the ratio ⁇ of the thickness t 1 of each reinforcement component (or reinforcement layer 130 ) to the thickness t 2 of the substrate layer 140 may satisfy:
  • the ratio ⁇ of the thickness t 1 of each reinforcement component (or reinforcement layer 130 ) to the thickness t 2 of the substrate layer 140 may affect the driving unit 110 (or the stiffness of the driving device 100), thus affecting the output performance (eg, transmission performance) of the driving unit 110.
  • the ratio of the thickness t 1 of the reinforcement layer 130 to the thickness t 2 of the substrate layer 140 The value range of ⁇ can be 0.5-2.5.
  • the ratio ⁇ of the thickness t 1 of the reinforcement layer 130 to the thickness t 2 of the substrate layer 140 may range from 0.8 to 2. In some embodiments, the ratio ⁇ of the thickness t 1 of the reinforcement layer 130 to the thickness t 2 of the substrate layer 140 may range from 1 to 1.5.
  • At least one enhancement component may include a plurality of corresponding sub-enhancement components. Multiple sub-reinforcement components corresponding to each reinforcement component may be spaced apart along a direction perpendicular to the extension direction of the driving unit 110 , that is, multiple sub-reinforcement components corresponding to each reinforcement component may be spaced apart along the width direction of the driving unit 110 .
  • Figure 10 is a schematic diagram of a partial structure of an exemplary driving device according to some embodiments of this specification.
  • Figure 11 is a schematic diagram of a partial structure of an exemplary driving device according to some embodiments of this specification.
  • the second reinforcement component 134 may include a plurality of corresponding sub-reinforcement components spaced apart along the width direction of the driving unit 110 (for example, sub-reinforcement components 134 - 1 , 134 - 2 , 134 -3, 134-4, etc.). As shown in FIG.
  • the first reinforcement component 132 may include a plurality of corresponding sub-reinforcement components (such as sub-reinforcement components 132-1, 132-2, etc.) spaced apart along the width direction of the driving unit 110, and the second reinforcement component ( The reinforcement component 134) also includes a plurality of corresponding sub-reinforcement components (such as sub-reinforcement components 134-1, 134-2, 134-3, 134-4, etc.) spaced apart along the width direction of the driving unit 110.
  • corresponding sub-reinforcement components such as sub-reinforcement components 134-1, 134-2, 134-3, 134-4, etc.
  • Figure 12 is a schematic diagram of a partial structure of an exemplary driving device shown in some embodiments of this specification.
  • Figure 13 is a C-C cross-sectional schematic view of the driving device in Figure 12.
  • the driving device 100 shown in FIG. 12 and FIG. 13 can be applied to application scenarios with a large load.
  • the driving unit 110 can be designed The structure makes the driving unit 110 have greater rigidity, so that the impedance of the driving device 100 matches or substantially matches the impedance of its load, so as to transmit the vibration displacement of the driving device 100 to its load in the most efficient manner.
  • the stiffness of the driving unit 110 can be adjusted by directly increasing the thickness of the substrate layer 140 and the reinforcement layer 130 .
  • increasing the thickness of the substrate layer 140 and the reinforcement layer 120 will cause the piezoelectric layer 120 to The load of also increases, causing the output of the driving unit 110 to decrease.
  • the reinforcement layer 130 may include a plurality of reinforcement components (for example, reinforcement components 132, 134, 136, 138 etc.).
  • the stiffness of the unit 110 is adjusted to achieve impedance matching between the driving unit 110 and its load, thereby comprehensively improving the output performance of the driving unit 110.
  • the reinforcing component 132 may be disposed as a first reinforcing component at a position of the driving unit 110 close to the vibration output end 113
  • the reinforcing component 134 may be disposed as a second reinforcing component at a position of the driving unit 110 close to the fixed end 111
  • Other reinforcing components eg, reinforcing components 136, 138, etc.
  • the thicknesses of the multiple reinforcing components in the vibration direction of the vibration output end 113 may be the same or different.
  • the thickness of the plurality of reinforcing components in the vibration direction of the vibration output end 113 may be the same to facilitate the preparation of the reinforcing layer 130 (or the driving unit 110).
  • the thicknesses of the multiple reinforcing components in the vibration direction of the vibration output end 113 may be different. Specifically, since the reinforcement components close to the vibration output end 113 have less restraint on the bending deformation of the beam-like structure, while the reinforcement components located in the middle region of the beam-like structure have greater constraints on the bending deformation of the beam-like structure, therefore, the reinforcement components close to the vibration output end 113 have greater constraints on the bending deformation of the beam-like structure.
  • the thickness of the reinforcing member at the output end 113 may be greater than the thickness of the reinforcing member located in the middle region of the beam-like structure.
  • the stiffness of the driving unit 110 can be adjusted by adjusting the size of the spacing between each two adjacent reinforcing components in the extending direction of the beam-like structure.
  • the size of the spacing between each two adjacent reinforcing components in the extending direction of the beam-like structure may be the same or different.
  • the spacing dimension w g1 between reinforcing components 134 and 136 may be different from the spacing dimension w g2 between reinforcing components 136 and 138 .
  • the size of the spacing between any two adjacent reinforcing components in the extending direction of the beam-like structure may range from 20 to 200 ⁇ m.
  • the dimensions of the multiple reinforcing components along the extension direction may be the same or different.
  • the dimensions of multiple reinforcing components along the extension direction may be the same.
  • the size of the plurality of reinforcing components along the extending direction of the beam-like structure (for example, the direction from the elastic output end 113 to the fixed end 111) may be gradually reduced or gradually increased.
  • the dimensions of the multiple reinforcing components along the extending direction of the beam-like structure may be randomly arranged.
  • the load of the driving device 100 in order to improve the reliability of the driving unit 110 while reducing the load of the piezoelectric layer 120 and reducing the relatively large intermediate strain on the beam-like structure.
  • Deformation constraints in a large area for example, large strain area c-R1, etc.
  • Multiple reinforcement components can Arrange in such a way that the size first decreases and then increases along the extension direction.
  • larger-sized reinforcing components may be arranged at the vibration output end 113 and/or the fixed end 111 , while smaller-sized reinforcing components may be arranged at the middle part of the beam-like structure.
  • the thickness of the reinforcing component can be adjusted by using a larger-sized reinforcing component in a smaller strain area (for example, the small strain area ab), while reducing Constraints on the deformation of the beam-like structure;
  • the beam can be strengthened by larger-sized reinforcing components in areas with larger strains (for example, large strain zone c-R1)
  • the stiffness of the beam-like structure makes the beam-like structure less likely to break during bending vibration and enhances the reliability of the beam-like structure; by arranging smaller-sized reinforcement components in the middle area of the beam-like structure, the stiffness of the beam-like structure can be increased
  • the size of the reinforcing component along the extension direction which is arranged within a first distance from the vibration output end 113, may be in the range of 50-400 ⁇ m, and is arranged at a first distance from the vibration output end 113 to
  • the size of the reinforcing component along the extension direction within the range of the second distance may be in the range of 20-200 ⁇ m.
  • the size of the reinforcing component along the extension direction, which is arranged within the range of the second distance to the third distance from the vibration output end 113 may be in the range of 20-100 ⁇ m, and is arranged at the third distance from the vibration output end 113.
  • the size of the above reinforcement components along the extension direction may be in the range of 50-400 ⁇ m.
  • the first distance may be less than or equal to 1/5 of the distance ld from the vibration output end 113 to the fixed end 111 (ie, ld /5).
  • the second distance may be less than or equal to 2/5 of the distance ld from the vibration output end 113 to the fixed end 111 (that is, 2ld /5), and the second distance is greater than the first distance.
  • the third distance may be less than or equal to 14/15 of the distance ld from the vibration output end 113 to the fixed end 111 (ie, 14ld / 15), and the third distance is greater than the second distance.
  • At least one enhancement component may be included. Multiple sub-reinforcement components corresponding to each reinforcement component may be spaced apart along a direction perpendicular to the extension direction of the driving unit 110 , that is, multiple sub-reinforcement components corresponding to each reinforcement component may be spaced apart along the width direction of the driving unit 110 .
  • Figure 14 is a schematic diagram of a partial structure of an exemplary driving device according to some embodiments of this specification.
  • some of the reinforcing components may include multiple corresponding sub-reinforcing components, and the rest of the reinforcing components may not include Sub-enhancement widget.
  • the enhancement component 132 may not include sub-enhancement components
  • the enhancement component 134 may include a plurality of corresponding sub-enhancement components 134-1, 134-2, 134-3, 134-4, etc.
  • the enhancement component 136 may also include a plurality of corresponding sub-enhancement components. Reinforcement components 136-1, 136-2, 136-3, 136-4, etc.
  • the driving unit 110 with a beam-like structure produces bending deformation during operation, it can be approximated as the bending deformation form of a cantilever beam structure under uniform load.
  • the vibration of the beam-like structure The output end 113 can output a displacement y in its thickness direction (for example, the ZZ' direction in Figures 2 and 3) that satisfies:
  • q represents the uniform load
  • l d represents the size of the beam-like structure along its extension direction (or the equivalent length of the beam-like structure)
  • E represents the Young's modulus of the beam-like structure
  • I represents the rotation of the beam-like structure. inertia.
  • the output displacement y of the beam-like structure can be increased, thereby improving the output performance of the driving unit 110 (or the driving device 100).
  • the equivalent length ld of the beam-like structure of the driving unit 110 can be increased to increase the output displacement y of the beam-like structure.
  • the driving device 100 may include one or more driving units 110 .
  • the beam-like structure of one or more driving units 110 may adopt a rotationally curved design to increase the equivalent length ld of the driving unit 110 .
  • the beam-like structure of the driving unit 110 may have a spiral structure bent in a clockwise or counterclockwise direction.
  • both sides of the drive unit 110 from the fixed end 111 to the vibration output end 113 are straight lines.
  • the vibration output end 113 can be set further away from the fixed end 111, thereby increasing the equivalent efficiency of the driving unit 110.
  • Length l d The equivalent length ld of the driving unit 110 may be equal to the distance between the geometric center point a1 of its fixed end 111 and the geometric center point b1 of the vibration output end 113 . As shown in FIG. 16 , both sides of the drive unit 110 from the fixed end 111 to the vibration output end 113 are folded lines.
  • the vibration output end 113 can be set further away from the fixed end 111, thereby increasing the stability of the driving unit 110.
  • Effective length l d The equivalent length ld of the driving unit 110 can be equal to the distance between the geometric center point a2 of the fixed end 111 and the geometric center point o1 of the bending point line and the distance between the point o1 and the geometric center point b2 of the vibration output end 113 The sum of the distances between them.
  • both sides of the drive unit 110 from the fixed end 111 to the vibration output end 113 are folded lines.
  • the equivalent length ld of the driving unit 110 may be equal to the distance between the geometric center point a3 of the fixed end 111 and the geometric center point c1 on the line connecting the first bending point, and the distance between the point c1 and the second bending point.
  • the driving unit 110 has an arc edge on the fixed end 111 , a straight line on the vibration output end 113 , and arc lines on both sides from the fixed end 111 to the vibration output end 113 .
  • the vibration output end 113 can be set further away from the fixed end 111, thereby increasing the equivalent efficiency of the driving unit 110.
  • Length l d The equivalent length ld of the driving unit 110 may be equal to the length of the center line (also called the central arc line) between the geometric center point a4 of the fixed end 111 and the geometric center point b4 of the vibration output end 113 .
  • the equivalent length ld of the driving unit 110 may be equal to the length of the center line (also called the central arc line) between the geometric center point a5 of the fixed end 111 and the geometric center point b5 of the vibration output end 113 .
  • the shape of the driving unit shown in Figure 20 is the same as the shape of the driving unit shown in Figure 18. The difference is that the driving device 100 shown in Figure 20 is circular, while the driving device 100 shown in Figure 18 is a regular hexagon. .
  • the equivalent length ld of the driving unit 110 may be equal to the length of the center line between the geometric center point a6 of the fixed end 111 and the geometric center point b6 of the vibration output end 113 .
  • the shape of the driving unit shown in Figure 21 is the same as the shape of the driving unit shown in Figure 19. The difference is that the driving device 100 shown in Figure 21 is circular, while the driving device 100 shown in Figure 19 is a regular hexagon. .
  • the equivalent length ld of the driving unit 110 may be equal to the length of the center line between the geometric center point a7 of the fixed end 111 and the geometric center point b7 of the vibration output end 113 . It should be noted that other structures of the driving device 100 shown in FIGS.
  • aspects of this specification may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of this specification may be represented by a computer product including computer-readable program code located on one or more computer-readable media.
  • Computer storage media may contain a propagated data signal embodying the computer program code, such as at baseband or as part of a carrier wave.
  • the propagated signal may have multiple manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • Computer storage media may be any computer-readable media other than computer-readable storage media that enables communication, propagation, or transfer of a program for use in connection with an instruction execution system, apparatus, or device.
  • Program code located on a computer storage medium may be transmitted via any suitable medium, including radio, electrical cable, fiber optic cable, RF, or similar media, or a combination of any of the foregoing.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Micromachines (AREA)

Abstract

本申请实施例公开了一种驱动装置和包含该驱动装置的声学输出装置。该驱动装置包括一个或多个驱动单元,每个驱动单元具有梁状结构,梁状结构包括振动输出端和固定端,并且从固定端向振动输出端延伸。每个驱动单元包括压电层和增强层。压电层用于响应于电信号而使驱动单元从振动输出端输出振动。增强层包括在梁状结构的延伸方向上布置的一个或多个增强部件,一个或多个增强部件中至少一个增强部件靠近振动输出端布置并且在延伸方向上,其尺寸不超过振动输出端到固定端的距离的二分之一。

Description

驱动装置及包含该驱动装置的声学输出装置 技术领域
本说明书涉及声学技术领域,特别涉及一种驱动装置。
背景技术
压电式的扬声器是利用压电材料的逆压电效应产生振动向外辐射声波,与传动电动式扬声器相比,具有机电换能效率高、能耗低、体积小、集成度高等优势。在当今器件小型化和集成化的趋势下,压电式的扬声器具有极其广阔的前景与未来。但是,压电式的扬声器,尤其是微型压电式扬声器中的驱动部分存在驱动能力(例如,输出位移)不足的问题,导致压电式扬声器在人耳可听域内(例如,20Hz-20kHz)的输出声压级较低,从而导致其在可听域内灵敏度较低。
因此,希望提供一种驱动装置,以在一定体积、功耗的前提下,提升其驱动能力。
发明内容
本说明书实施例可以提供一种驱动装置,包括一个或多个驱动单元,每个驱动单元具有梁状结构,所述梁状结构包括振动输出端和固定端,并且从所述固定端向所述振动输出端延伸,每个驱动单元包括:压电层,用于响应于电信号而使所述驱动单元从所述振动输出端输出振动;以及增强层,其中,所述增强层包括在所述梁状结构的延伸方向上布置的一个或多个增强部件,所述一个或多个增强部件中至少一个增强部件靠近所述振动输出端布置并且在所述延伸方向上,其尺寸不超过所述振动输出端到所述固定端的距离的二分之一。
在一些实施例中,所述一个或多个增强部件包括第一增强部件和第二增强部件,所述第一增强部件布置在靠近所述振动输出端的位置,所述第二增强部件布置在靠近所述固定端的位置。
在一些实施例中,所述第一增强部件沿所述延伸方向的尺寸与所述振动输出端到所述固定端的距离的比值在0.05-0.3范围内,或者所述第二增强部件沿所述延伸方向的尺寸与所述振动输出端到所述固定端的距离的比值在0.05-0.25范围内。
在一些实施例中,所述一个或多个增强部件包括在所述延伸方向上间隔布置的多个增强部件,并且两个相邻增强部件在所述延伸方向上的间隔距离在20-200μm范围内。
在一些实施例中,所述多个增强部件沿所述延伸方向按照尺寸先减小、后增大的方式布置。
在一些实施例中,布置在距所述振动输出端距离为第一距离的范围内的增强部件沿所述延伸方向的尺寸在50-400μm范围内;以及布置在距所述振动输出端距离在所述第一距离至第二距离的范围内的增强部件沿所述延伸方向的尺寸在20-200μm范围内。
在一些实施例中,所述第一距离等于所述振动输出端到所述固定端距离的1/5,所述第二距离等于所述振动输出端到所述固定端距离的2/5。
在一些实施例中,布置在距所述振动输出端距离在所述第二距离至第三距离的范围内的增强部件沿所述延伸方向的尺寸在20-100μm范围内;以及布置在距所述振动输出端距离在所述第三距离以上的增强部件沿所述延伸方向的尺寸在50-400μm范围内。
在一些实施例中,所述第三距离等于所述振动输出端到所述固定端距离的14/15。
在一些实施例中,所述一个或多个增强部件中的至少一个增强部件包括沿垂直于所述延伸方向间隔布置的多个子增强部件。
在一些实施例中,每个驱动单元还包括:衬底层,所述衬底层位于所述压电层与所述增强层之间。
在一些实施例中,所述增强层与所述衬底层的总厚度与所述压电层的厚度的比值在3-20范围内。
在一些实施例中,所述增强层的厚度与所述衬底层的厚度的比值在0.5-2.5范围内。
在一些实施例中,所述衬底层覆盖所述一个或多个驱动单元之间的缝隙。
在一些实施例中,所述多个驱动单元中两个相邻驱动单元之间的缝隙宽度小于25μm。
在一些实施例中,所述一个或多个驱动单元的所述梁状结构具有朝顺时针或逆时针方向弯曲的螺旋结构。
在一些实施例中,驱动装置还包括:振动传递单元,所述一个或多个驱动单元中每个驱动单元的振动传递端与所述振动传递单元连接,从而使所述驱动装置的振动从所述振动传递单元输出。
在一些实施例中,所述振动传递单元通过弹性连接件与每个驱动单元连接。
本说明书实施例还可以提供一种声学输出装置,所述声学输出装置包括如上所述的驱动装置。
本说明书的一部分附加特性可以在下面的描述中进行说明。通过对以下描述和相应附图的研究或者对实施例的生产或操作的了解,本说明书的一部分附加特性对于本领域技术人员是明显的。本说明书的特征可以通过实践或使用以下详细实例中阐述的方法、工具和组合的各个方面来实现和获得。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书的一些实施例所示的示例性驱动装置的结构框图;
图2是根据本说明书的一些实施例所示的示例性驱动单元沿垂直于其梁状结构延伸方向的截面示意图;
图3是根据本说明书一些实施例所示的示例性驱动单元弯曲振动变形时沿垂直于其梁状结构延伸方向的截面示意图;
图4是根据本说明书一些实施例所示的对应于不同衬底层与增强层的总厚度与压电层的厚度的比值的驱动单元应用于扬声器时扬声器的频响曲线;
图5是根据本说明书一些实施例所示的示例性驱动装置的示意图;
图6是图5中的驱动装置的A-A截面示意图;
图7是根据本说明书一些实施例所示的压电层沿驱动单元的梁状结构延伸方向的应变曲线示意图;
图8是根据本说明书一些实施例中所示的示例性驱动装置的部分结构的示意图;
图9是图8中驱动装置的B-B截面示意图;
图10是根据本说明书一些实施例所示的示例性驱动装置的部分结构的示意图;
图11是根据本说明书一些实施例所示的示例性驱动装置的部分结构的示意图;
图12是根据本说明书一些实施例中所示的示例性驱动装置的部分结构的示意图;
图13是图12中驱动装置的C-C截面示意图;
图14是根据本说明书一些实施例所示的示例性驱动装置的部分结构的示意图;
图15是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图;
图16是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图;
图17是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图;
图18是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图;
图19是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图;
图20是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图;
图21是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图。
具体实施例
为了更清楚地说明本说明书的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本说 明书,而并非以任何方式限制本说明书的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“连接”、“固定”等术语应做广义理解。例如,术语“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
本说明书的实施例提供的驱动装置可以包括一个或多个驱动单元。每个驱动单元均具有梁状结构。梁状结构包括振动输出端和固定端,并且从固定端向振动输出端延伸。每个驱动单元可以包括压电层与增强层,压电层能够响应于电信号而使驱动单元从梁状结构的振动输出端输出振动,增强层可以调节驱动单元的阻尼和刚度。增强层可以包括在梁状结构的延伸方向上布置的一个或多个增强部件。一个或多个增强部件中至少一个增强部件靠近振动输出端布置并且在延伸方向(即,驱动单元固定端向振动输出端延伸的方向)上,其尺寸不超过振动输出端到固定端的距离的二分之一。
根据本说明书的一些实施例,通过对增强层与压电层的厚度进行设置可以使得整个压电层位于梁状结构(即,压电层与增强层的整体)的中性面的同一侧,以增大梁状结构弯曲时压电层产生的张应力(或压应力)导致的伸长(或压缩)变形,提升驱动单元的输出能力(例如,输出位移)。此外,通过将一个或多个增强部件中至少一个增强部件布置在靠近振动输出端并且在延伸方向上其尺寸不超过振动输出端到固定端的距离的二分之一,可以在保证驱动单元可靠性的同时,使增强层对压电层产生的负载较小,从而进一步提升驱动单元的输出能力。
下面结合附图对本说明书实施例提供的声学输出装置进行详细说明。
图1是根据本说明书的一些实施例所示的示例性驱动装置的结构框图。如图1所示,驱动装置100可以包括一个或多个驱动单元110。在一些实施例中,驱动单元110的形状可以为圆形、椭圆形、三角形、四边形、五边形、六边形等,也可以为其他不规则形状。在一些实施例中,一个或多个驱动单元110可以规则或不规则排布,从而使驱动装置100整体结构为圆形、椭圆形、四边形、五边形、六边形、八边形以及其他多边形等。例如,如图5所示,驱动单元110可以为等腰三角形,驱动装置100可以为由6个驱动单元110构成的正六边形。又例如,如图17所示,驱动单元110可以为不规则的多边形,驱动装置100可以为由多个驱动单元110构成的正六边形。再例如,如图19所示,驱动单元110可以为由多条弧形边构成的不规则形状,驱动装置100可以为由多个驱动单元110构成的正六边形。又例如,如图21所示,驱动单元110可以为由多条弧形边构成的不规则形状,驱动装置100可以为由多个驱动单元110构成的圆形。在本说明书中,将以驱动装置为六边形作为示例对驱动装置100进行说明。
驱动单元110可以包括梁状结构。梁状结构可以包括振动输出端与固定端(例如,图6中的振动输出端113和固定端111)。梁状结构可以从固定端向振动输出端延伸(或从振动输出端向固定端延伸)。换句话说,驱动单元110可以具有从固定端向振动输出端延伸(或从振动输出端向固定端延伸)的梁状结构。在一些实施例中,驱动单元110可以包括压电层120与增强层130。
压电层120可以响应于电信号而使驱动单元110从振动输出端输出振动。在从固定端到振动输出端的延伸方向上,压电层120可以部分或完全覆盖所述梁状结构。压电层120可以在驱动电压的作用下发生变形,从而产生振动。在一些实施例中,压电层120可以包括压电材料层以及两层电极材料层。两层电极材料层可以分别位于压电材料层厚度方向的相反两侧。在一些实施例中,压电材料层可以由具有压电效应的材料(例如压电陶瓷、压电石英、压电晶体、压电聚合物等)制成。示例性的,压电材料层的材料可以包括但不限于氮化铝(AlN)、锆钛酸铅(PZT)、氧化锌(ZnO)等。在一些实施例中,电极材料层可以由导电性较强的材料(例如,金属、合金、导电高分子材料等)制成。例如,电极材料层可以包括金属钼、铜、金、钛、铝、钛金合金等。
增强层130可以改变驱动单元110的力学性能,例如提供驱动单元110的阻尼以及刚度。在一些实施例中,增强层130可以贴附在压电层120(例如,电极材料层)上。压电层120可以带动增强层130振动。在一些实施例中,增强层130可以由半导体材料、高分子材料等制成。示例性半导体材料可以包括硅(Si)、氧化硅(SiO 2)、氮化硅(SiNx)、碳化硅(SiC)等。示例性高分子材料可以包括聚酰亚胺(Polyimide、PI)、聚对二甲苯(Parylene)、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、水凝胶、光刻胶、硅胶、硅凝胶、硅密封胶等。在一些实施例中,增强层130可以具有单层或多层结构。例如,增强层130可以具有由一种半导体材料(例如,Si、SiO 2)或一种高分子材料(例如,聚酰亚胺)制成的单层结构。又例如,增强层130可以具有由多种半导体材料制成的多层结构(例如,Si/SiO 2双层结构、Si/SiNx双层结构等)。再例如,增强层130可以具有由多种高分子材料制备的多层结构。又例如,增强层130可具有由高分子材料和半导体材料制成的多层结构。
在一些实施例中,增强层130可以包括在梁状结构的延伸方向(也可以称为驱动单元110的延伸方向)(例如,如图6所示的XX’方向)上布置的一个或多个增强部件(例如,增强部件132、134、136等)。至少一个增强部件可以靠近振动输出端布置,并且在延伸方向上该增强部件的尺寸不超过振动输出端到固定端的距离的二分之一。在本说明书中,梁状结构或驱动单元110的延伸方向可以指从驱动单元110或梁状结构的固定端中心沿梁状结构中心线向其振动输出端中心延伸的方向(或振动输出端中心沿梁状结构中心线向固定端中心延伸的方向)。
在一些实施例中,当压电层120的两层电极材料层处于梁状结构(或驱动单元110)的中性面的不同侧时,会导致在对驱动单元110施加电压时位于梁状结构的中性面两侧压电材料层的应力与位移出现相互抵消的情况,进而削弱驱动单元110的输出能力。在这种情况下,可以通过调节压电层120和/或增强层130的厚度使压电层120整体位于梁状结构的中性面的一侧,以使驱动单元110弯曲时,压电层120的张应力(或压应力)产生的伸长(或压缩)变形不会被抵消,从而使振动输出端输出更大的位移或力。在一些实施例中,可以通过增加增强层130的厚度来增加压电层110的几何中间面位置与梁状结构的中性面位置之间的距离,从而增大驱动单元110的输出性能(即,输出端的输出位移)。在本说明书中,中性面可以指具有梁状结构的驱动单元110在弯曲振动过程中,在梁状结构的厚度方向上的过渡面,该过渡面沿梁状结构的延伸方向既不产生拉伸变形又不产生压缩变形。换句话说,中性面可以指梁状结构或驱动单元110在弯曲振动过程中其所受正应力等于零的面。更多关于压电层120和/或增强层130的厚度可以参见图2及其描述。
在一些实施例中,通过调整一个或多个增强部件的布局,可以调节梁状结构(或驱动单元110)的刚度或阻尼,从而调节驱动单元110的输出性能。例如,一个或多个增强部件可以包括第一增强部件和第二增强部件。第一增强部件可以布置在靠近振动输出端的位置,第二增强部件可以布置在靠近固定端的位置。又例如,一个或多个增强部件可以包括在延伸方向上间隔布置的多个增强部件。多个增强部 件可以沿延伸方向按照尺寸先减小、后增大的方式布置。更多关于增强部件的布置方式可以参见图8至图14及其描述,此处不再赘述。
在一些实施例中,驱动单元110可以包括衬底层140。衬底层140可以设置于压电层120与增强层130之间。在一些实施例中,衬底层140可以与增强层130配合,以调节驱动单元110的刚度与阻尼,以及驱动单元110的中性面位置,从而调节驱动单元110的输出性能。例如,通过调节衬底层140的厚度可以使压电层120整体位于梁状结构的中性面的一侧,以使驱动单元110弯曲时,压电层120的张应力(或压应力)产生的伸长(或压缩)变形能够产生更大的振动。又例如,可以通过将增强层130局部覆盖或全覆盖于衬底层140,以调节驱动单元110的刚度,从而调节驱动单元110的结构可靠性。
在一些实施例中,衬底层140的材料与增强层130的材料可以相同,也可以不同。例如,衬底层140可以由半导体材料、高分子材料等制成。衬底层140的材料与增强层130的材料可以均是Si。又例如,衬底层140的材料可以包括Si与SiO 2,增强层130的材料可以包括Si与PDMS。在一些实施例中,衬底层140可以具有单层或多层结构。例如,衬底层140可以具有由一种半导体材料(例如,Si、SiO 2)或一种高分子材料(例如,聚酰亚胺)制成的单层结构。又例如,衬底层140可以具有由多种半导体材料制成的多层结构(例如,Si/SiO 2双层结构、Si/SiNx双层结构等)。再例如,衬底层140可以具有由多种高分子材料制备的多层结构。又例如,衬底层140可具有由高分子材料和半导体材料制成的多层结构。
在一些实施例中,驱动装置100还可以包括振动传递单元150。一个或多个驱动单元110中的每个驱动单元110的振动输出端可以与振动传递单元150连接,从而使驱动装置100的振动能够通过振动传递单元150输出。例如,每个驱动单元110的振动输出端可以通过弹性连接件160与振动传递单元150连接。
弹性连接件160可以是任何具有弹性的部件。在一些实施例中,弹性连接件160的材质可以包括半导体材料(例如,硅、氧化硅、氮化硅、碳化硅等)、聚酰亚胺、聚对二甲苯、水凝胶、PDMS、光刻胶、硅胶、硅凝胶、硅密封胶等或其任意组合。在一些实施例中,弹性连接件160可以包括单层结构或多层结构。例如,弹性连接件160可以具有由聚对二甲苯制成的单层结构。又例如,弹性连接件160可以具有由聚对二甲苯和聚酰亚胺制备的双层结构。在一些实施例中,弹性连接件160可以位于驱动单元110设置有增强层130的一侧。例如,弹性连接件160可以贴附在增强层130外侧的一端(例如,靠近振动输出端)。又例如,当增强层130设置在靠近固定端时,弹性连接件160可以直接贴附在衬底层140上。在一些实施例中,弹性连接件160的高度可以等于增强层130的高度(如图6所示)。在一些实施例中,弹性连接件160的高度可以等于驱动单元梁状结构的厚度(即,压电层120、增强层130、衬底层140等的总厚度)。
在一些实施例中,驱动装置100可以应用于扬声器、微马达、微泵、微镜、流量计、电动机等驱动器中。示例性地,驱动装置100可以作为驱动部分用于扬声器(例如,骨导扬声器、气导扬声器或骨气导结合的扬声器)中。驱动装置100或驱动单元110输出的振动可以产生人耳可听频率范围内(例如,20Hz-20kHz)的声音。在一些实施例中,扬声器可以包括音响、耳机、眼镜、助听器、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备等或具有音频播放功能的其他设备(如手机、电脑等)。
驱动装置100可以为扬声器提供驱动力。在一些实施例中,驱动装置100中每个驱动单元110可以分别通过固定端与扬声器壳体固定连接,并且可以通过振动输出端与扬声器的振动部分连接。例如,可以通过振动传递单元150与扬声器的振动部分(例如,振膜组件)连接,从而使驱动装置100的振动能够通过振动传递单元150传递至扬声器的振动部分而输出。在扬声器工作过程中,驱动装置100可以将电能转换为机械能输出力和位移,并将振动传递至扬声器的振动部分。振动部分为驱动装置100的负载部分,其能够接收驱动装置100传递的机械能(例如,力或位移等)并产生振动,从而使扬声器产生声音。例如,振动部分可以通过推动空气向外辐射声压从而产生所需的声音。
在一些实施例中,驱动装置100也可以直接作为声压驱动部分,驱动装置100可以将电能转换成机械能输出力和位移,并直接推动空气振动,产生所需声压(即声音)。在这种情况下,为了保证驱动装置100中的多个驱动单元110的振动互不干扰的同时,减小驱动单元110振动产生的声音的泄漏,驱动装置100中任意相邻的两个驱动单元110之间的间隙宽度可以小于25μm。在一些实施例中,增强层130和衬底层140中的至少一个可以覆盖任意相邻的两个驱动单元110之间的间隙,以防止驱动装置100振动产生的声音从间隙泄漏,影响扬声器的输出效果。在一些实施例中,多个驱动单元110可以包括同一个增强层130和/或衬底层140,即增强层130和/或衬底层140可以覆盖任意相邻的两个驱动单元110之间的间隙,以防止驱动装置100振动产生的声音从间隙泄漏。
在一些实施例中,驱动装置100(或驱动单元110)的输出性能可以与驱动装置100(或驱动单元110)和其负载(例如,扬声器的振动部分)之间的振动传递效率相关。驱动装置100与其负载之间的振动传递效率可以与驱动装置100(或驱动单元110)的阻抗和负载的阻抗相关。因此,可以通过调节驱动装置100(或驱动单元110)的阻抗和/或其负载的阻抗,来提高驱动装置100(或驱动单元110)的输出性能。例如,可以使驱动装置100(或驱动单元110)的阻抗与其负载的阻抗匹配或基本上匹配,来提高驱动装置100(或驱动单元110)的输出性能。更多关于阻抗匹配的描述可以参见本说明书中图5至图7及其描述。
应当注意的是,以上关于图1的描述仅仅是出于说明的目的而提供的,并不旨在限制本说明书的范围。对于本领域的普通技术人员来说,根据本说明书的指导可以做出多种变化和修改。例如,在一些实施例中,驱动装置100中的一个或多个部件可以被其他能实现类似功能的元件替代。例如,驱动装置100可以不包括衬底层140,增强层130可以直接贴附在压电层120上。此时,增强层130可以由半导体材料(例如,Si,SiO 2、SiN x等中的一种或多种)制成。这些变化和修改不会背离本说明书的范围。
图2是根据本说明书的一些实施例所示的示例性驱动单元沿垂直于其梁状结构延伸方向的截面示意图。图3是根据本说明书一些实施例所示的示例性驱动单元弯曲振动变形时沿垂直于其梁状结构延伸方向的截面示意图。由于驱动单元110在弯曲振动过程中,沿其梁状结构的厚度方向(即ZZ’方向)的一侧受拉伸力,另一侧受挤压力,因此,在垂直于其振动方向的截面上存在一个既不受拉伸力、又不受挤压力的过渡面,该过渡面的正应力等于零。在本说明书中,这个过渡面可以称为驱动单元110的中性面。需要知道的是,梁状结构中性面位置不一定在其厚度方向(如图2中ZZ’方向)的中间位置。具有梁状结构的驱动单元110在振动过程中都可以具有其对应的中性面。
在一些实施例中,如图3所示,当压电层120在电压驱动下发生伸缩变形时,在驱动单元110中性面的另一侧的结构(例如,整个增强层130和部分衬底层140)可以发生相反的变形,从而驱动梁状结构产生弯曲变形,输出沿ZZ’方向的位移。若压电层120处于梁状结构(或驱动单元110)的中性面的不同侧时(即梁状结构的中性面穿过压电层120时),会导致在对驱动单元110施加电压时位于梁状结构的中性面位置附近的压电材料层的应力与位移出现相互抵消的情况,进而削弱驱动单元110的输出能力。因此,对于具有梁状结构的驱动单元110,为了使得驱动单元110能够在工作时产生最大位移输出,可以对梁状结构的中性面位置进行设计优化,从而使整个压电层120位于驱动单元110的中性面的同一侧。
如图2与图3所示,驱动单元110可以包括三层结构,依次可以为第一层的增强层130、第二层的衬底层140以及第三层的压电层120。虚线CC’表示驱动单元110的中性面的位置。第i层结构的矩形横截面面积A i可以根据公式(1)确定:
A i=t iw,                                (1)
其中,t i表示第i层结构的厚度,w表示驱动单元110的梁状结构的宽度。
驱动单元110(或梁状结构)的中性面位置可以与各层结构的材料厚度及其杨氏模量有关,驱动单元110的中性面的位置可以通过驱动单元的中性面距增强层130表面的距离h来表示。仅作为示例,h可以根据公式(2)确定:
Figure PCTCN2022087025-appb-000001
其中,E i表示第i层结构的材料的杨氏模量,h i表示第i层结构的几何中间面距增强层130表面的距离。需要知道的是,在本说明书中,第i层结构(例如,压电层120、增强层130或衬底层140)的几何中间面是指沿梁状结构的振动方向上的第i层结构的几何中间面。
进一步地,驱动单元110的多层结构的各层结构的转动惯量I i可以满足:
Figure PCTCN2022087025-appb-000002
压电层120沿梁状结构延伸方向(即同时垂直于方向ZZ’和YY’的方向)上不同位置x处的平均应力σ(x)可以满足公式(4):
Figure PCTCN2022087025-appb-000003
其中,M(x)表示外界施加的弯矩。在一些实施例中,可以通过直接施加机械弯矩或者通过电力转换实现弯矩施加。示例性的,可以在压电层120的两层电极材料层施加电压,压电层120通过逆压电效应产生形变以实现弯矩施加。
压电层120沿梁状结构延伸方向的不同位置x处的平均应力σ(x)决定了驱动单元110中压电层120沿梁状结构延伸方向不同位置的伸长量或压缩量。平均应力σ(x)越大可使得对应压电层120的伸长或压缩量越大,从而使得压电层120的输出位移越大。
由公式(4)可知,压电层120沿梁状结构延伸方向的不同位置x处的平均应力σ(x)大小与驱动单元110中压电层120的转动惯量I 3成反相关,且压电层120沿梁状结构延伸方向的不同位置x处的平均应力σ(x)大小与压电层120的几何中间面与驱动单元110的中性面之间的距离成正相关。因此,在一些实施例中,可以通过增加压电层120的几何中间面与驱动单元110的中性面之间的距离(即公式(4)中的h 3-h),以使压电层120的应力σ(x)增加,使得相同电压输入的情况下,驱动单元110(或梁状结构)可以输出更大的垂直于驱动单元110长宽方向的位移(即图2中ZZ’方向的位移),进而提升驱动单元110(或驱动装置100)的输出性能。在一些实施例中,为了尽可能增加压电层120的几何中间面与驱动单元110的中性面之间的距离,衬底层140和/或增强层130的厚度可以尽可能地大于压电层120的厚度。
在一些实施例中,由于衬底层140与增强层130本身不提供电与力的转换的作用,相较压电层120而言为负载,因此当衬底层140与增强层130厚度过大时,会使得压电层120在驱动单元110的梁状结构中的负载过大,导致驱动单元110的梁状结构的最终的位移输出减小,因此衬底层140的厚度与增强层130的厚度需要协调设计。
继续参照图2与图3,增强层130与衬底层140的总厚度t p可以根据公式(5)确定:
t p=t 1+t 2,                           (5)
其中,t 1表示增强层130的厚度,t 2表示衬底层140的厚度。
增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α可以根据公式(6)确定:
Figure PCTCN2022087025-appb-000004
图4是根据本说明书一些实施例所示的对应于不同衬底层与增强层的总厚度与压电层的厚度的比值的驱动单元应用于扬声器时扬声器的频响曲线。如图4所示,曲线m、曲线n和曲线o表示增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α分别等于9.5、14.3、21.5时的驱动单元对应的扬声器的频响曲线。从图4中可以看出,当增强层130与衬底层140总厚度t p与压电层120的厚度t 3的比值α较小时(例如,对应曲线m),由于压电层120的几何中间面与驱动单元110的中性面之间的距离较小,因而在相同的压电层120的变形下,驱动单元110的梁状结构在其振动方向(如图2中ZZ’方向)的输出位移减小,从而导致扬声器的输出声压级(Sound Pressure Level,SPL)降低。
当增强层130与衬底层140总厚度t p与压电层120的厚度t 3的比值α逐渐增大时(从曲线m到 曲线o变化),虽然压电层120的几何中间面与驱动单元110的中性面之间的距离增加,但由于衬底层140与增强层130本身不提供电与力的转换的作用,相较压电层120而言为负载,会使得压电层120的负载过大,驱动单元110的整体刚度增加,从而导致驱动单元110的梁状结构最终的输出位移减小,进而导致扬声器的输出声压级降低。此外,由于驱动单元110(即驱动装置100)的刚度增加,会使扬声器的第一谐振频率增加,同时使第一谐振峰后的输出声压级增加。因此,对于主要追求中高频(例如,500Hz-10kHz)范围内高灵敏度的驱动单元110(即驱动装置100),增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α可以设置得较大。
为了提高驱动单元110在中高频范围内的灵敏度,同时避免过厚的增强层130和/或衬底层造成过大的负载,在一些实施例中,增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α取值范围可以为2-50。在一些实施例中,增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α取值范围可以为3-20。在一些实施例中,增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α取值范围可以为4-15。在一些实施例中,增强层130与衬底层140的总厚度t p与压电层120的厚度t 3的比值α取值范围可以为5-10。在一些实施例中,驱动单元110不包括衬底层140,可以通过调节增强层130与压电层120厚度比值来调节驱动单元110的性能。优选地,增强层130的厚度与压电层120的厚度的比值的取值范围可以是2-50。更优选地,增强层130的厚度与压电层120的厚度的比值的取值范围可以是3-20。
图5是根据本说明书一些实施例所示的示例性驱动装置的示意图。图6是图5中的驱动装置的A-A截面示意图。图7是根据本说明书一些实施例所示的压电层沿驱动单元的梁状结构延伸方向的应变曲线示意图。在一些实施例中,如图5所示,驱动装置100可以包括6个具有梁状结构的驱动单元110。6个驱动单元110可以构成六边形结构。任意两个相邻的驱动单元100之间可以有间隙。在一些实施例中,间隙可以被衬底层140和/或增强层覆盖。在一些实施例中,驱动单元110可以包括压电层120、增强层130、衬底层140以及振动传递单元150。驱动单元110的一端(即固定端111)可以通过固定部件170被固定,驱动单元110的另一端(即振动输出端113)可以与振动传递单元150连接。例如,当驱动装置100应用于扬声器时,每个驱动单元110的固定端111可以分别与扬声器的壳体固定连接,每个驱动单元110的振动输出端113可以通过弹性连接件160与振动传递单元150连接。进一步地,振动传递单元150可以与扬声器的振动部分(例如,振膜组件)连接,从而将振动传递至扬声器的振动部分。
在一些实施例中,如图6所示,驱动单元110的增强层130、衬底层140和压电层120沿梁状结构(或驱动单元110)延伸方向(即XX’方向)的长度可以相等。在驱动单元110的延伸方向上,增强层130可以与衬底层140配合共同对驱动单元110的中性面的位置以及驱动单元110的刚度进行调节。例如,可以增大增强层130和/或衬底层140的厚度,使驱动单元110的中性面位置与压电层120的几何中间面位置之间的距离增大。又例如,可以通过将增强层130局部覆盖或全覆盖于衬底层140,从而实现对驱动单元110的中性面位置的调节以及对驱动单元110的刚度的调节,进而调节驱动单元110的结构可靠性。
在一些实施例中,如图5与图6所示,选取一条沿驱动单元110延伸方向的线段L1。在驱动单元110的宽度方向(即同时垂直于方向XX’和ZZ’的方向)上,驱动单元110可以沿L1对称(如图5所示)。驱动单元110与弹性连接件160的连接位置的中心点为R0,驱动单元110与固定部件170的连接位置的中心点为R1,R0至R1的方向即为驱动单元110的梁状结构的延伸方向。在线段L1上不同位置处对应的压电层120的应变值可以用来表征驱动单元110的梁状结构沿其延伸方向不同位置的应变变化。
如图7所示,图7中横坐标表示线段L1上的不同位置,纵坐标表示压电层120上对应位置的应变,其中纵坐标轴上数值的负号“-”代表压应变。在位置从R0至R1的范围内,可以将压电层120分为四段,依次可以为初始应变区R0-a、小应变区a-b、应变速增区b-c、大应变区c-R1。由图7可知, 沿驱动单元110延伸方向不同位置,压电层120所产生的应变不同,即为驱动单元110贡献的输出位移值不同。初始应变区R0-a的应变最小;小应变区a-b的应变开始增大,但变化幅度较小;应变速增区b-c的应变继续增大,且变化幅度变大;大应变区c-R1的应变最大,且变化幅度较大。沿驱动单元110延伸方向(即R0指向R1的方向)上,越靠近驱动单元110的固定端111(即越靠近R1)的位置,压电层120的应变越大,其应变贡献值越大(即,该位置对压电层120的弯曲变形的贡献量越大)。
因此,在一些实施例中,可以根据压电层120沿驱动单元110延伸方向的不同位置在实际工作时贡献的变形量,并结合压电层120沿驱动单元110延伸方向的平均应力分布,在梁状结构的延伸方向的不同位置布置不同质量分布的增强层130(例如,不同的增强部件),在有效调节驱动单元110的中性面的位置的同时对压电层120的负载以及驱动单元110的整体刚度进行调节,从而使得驱动单元110输出较大的位移,同时使驱动单元110与其负载(例如,扬声器的振动部分)实现阻抗匹配或基本上匹配,使得驱动装置100产生的位移可以被有效传递。例如,增强层130可以不完全覆盖压电层120,即,增强层130长度可以短于压电层120长度(如,增强层130尺寸不超过振动输出端113到固定端111的距离l d的二分之一)。例如,对于驱动装置100的负载较小的应用场景,可以将增强层130布置在靠近驱动单元110振动输出端113的位置(例如,初始应变区R0-a),以减小增强层130对梁状结构弯曲变形时的约束,减小梁状结构的变形阻力,增强梁状结构的变形能力,从而增强梁状结构的输出能力,提升驱动单元110的输出性能。需要知道的是,本说明书中所说的“靠近”振动输出端113(或固定端111)表示到振动输出端113(或固定端111)的最短距离不超过振动输出端113到固定端111的距离的20%。进一步地,在相同增强层质量的情况下,由于增强层130变短,相当于压电层120的负载变轻,此时,可以进一步增加的增强层130的厚度,从而增加压电层120的几何中间面与驱动单元110的中性面之间的距离(即公式(4)中的h 3-h),提升驱动单元110的输出性能。又例如,对于驱动装置100的负载较大的应用场景,增强层130可以包括多个增强部件。多个增强部件可以沿延伸方向按照尺寸先减小、后增大的方式布置。更多关于不同质量分布的增强层的描述可以参见本说明书中图8、图9、图12和图13及其相关描述。
图8是根据本说明书一些实施例中所示的示例性驱动装置的部分结构的示意图。图9是图8中驱动装置的B-B截面示意图。在一些实施例中,如图8与图9所示的驱动装置100可以应用于其负载较小的应用场景。对于驱动装置100的负载较小的应用场景(例如,驱动装置100应用于扬声器中时,驱动装置100直接作为声压驱动部分推动空气负载产生声压),可以设计驱动单元110的结构使驱动单元110的梁状结构自身(例如,增强层130和衬底层140)对压电层120产生较小的负载,以增大驱动装置100的输出位移,同时降低驱动单元110(或驱动装置100)的刚度,从而使驱动装置100的阻抗与其负载的阻抗相匹配或基本上匹配,以将驱动装置100的振动位移以最高效的方式传递至其负载。
在一些实施例中,增强层130可以包括第一增强部件(即增强部件132)与第二增强部件(即增强部件134)。第一增强部件132和第二增强部件134沿延伸方向的尺寸之和可以小于压电层120沿延伸方向的尺寸。第一增强部件132可以设置在靠近振动输出端113的位置,第二增强部件134可以设置在靠近固定端111的位置。如此布置,通过第一增强部件132和第二增强部件134可以增加梁状结构的中性面位置与压电层120的几何中间面位置之间的距离,从而提升驱动单元110的输出位移,增强驱动单元110的输出能力;通过第二增强部件134可以强化对驱动单元110上应变较大区域的支撑,降低驱动单元110工作时被损坏的可能性,增强驱动装置100的可靠性。在一些实施例中,增强层130可以只包括布置于振动输出端113附近的第一增强部件132,而不包括第二增强部件134。在一些实施例中,第一增强部件132在驱动单元110的延伸方向上的尺寸可以不超过振动输出端113到固定端111的距离l d的二分之一。在一些实施例中,第一增强部件132在驱动单元110的延伸方向上的尺寸可以根据增强层130中增强部件的布置方式进行调整。例如,当增强层130只包括布置于振动输出端113附近的第一增强部件132时,第一增强部件132的尺寸可以布置得稍大些(例如,超过振动输出端113到固定端111的距离l d的二分之一),以确保梁状结构的中性面位置与压电层120的几何中间面位置之间的距离 满足需求。又例如,当增强层130同时包括第一增强部件132和第二增强部件134时,第一增强部件132的尺寸可以稍小一些(例如,在振动输出端113到固定端111的距离l d的五分之一到五分之三之间),以与第二增强部件134配合调整梁状结构的中性面位置与压电层120的几何中间面位置之间的距离。再例如,当增强层130同时多个增强部件时(如图13所示),第一增强部件132的尺寸可以更小一些(例如,在振动输出端113到固定端111的距离l d的十分之一到二分之一之间),以与其他增强部件配合调整梁状结构的中性面位置与压电层120的几何中间面位置之间的距离以及梁状结构的刚度等。
在一些实施例中,为了更好地将驱动单元110进行固定,驱动单元110的固定端111在ZZ’方向可以与固定部件170重叠,在驱动单元110振动过程中,与固定部件170重叠的部分(即固定端111)可以不参与振动。在本说明书中,驱动单元110在其延伸方向的尺寸是指驱动单元110中可以自由振动的部分(例如,未与固定部件170重叠的部分)的尺寸,其数值等于驱动单元110在延伸方向上的中心线的长度。例如,如图5所示的驱动装置100中驱动单元110在其延伸方向的尺寸等于R0与R1之间的距离。在一些实施例中,驱动单元110在其延伸方向的尺寸也可以称为驱动单元110的等效长度。
如图9所示,第二增强部件134沿驱动单元110延伸方向的尺寸l po与驱动单元110沿其延伸方向的尺寸l d比值β满足:
Figure PCTCN2022087025-appb-000005
第一增强部件132沿驱动单元110延伸方向的尺寸l pi与驱动单元110沿其延伸方向的尺寸l d比值γ满足:
Figure PCTCN2022087025-appb-000006
通过设置β与γ的不同取值,可以在调节增强层130对压电层120的负载的同时,还使得增强层130能够对驱动单元110的中性面的位置及驱动单元110的刚度进行调节,从而使驱动单元110的输出位移满足不同需求。在一些实施例中,β取值范围可以为0.05-0.25。在一些实施例中,γ的取值范围可以为0.05-0.3。
在一些实施例中,第一增强部件132与第二增强部件134在振动输出端113的振动方向上(即方向ZZ’)的厚度可以相同,以便于制备增强层130(或驱动单元110)。请参照图2,在一些实施例中,每个增强部件(或增强层130)的厚度t 1与衬底层140的厚度t 2的比值δ可以满足:
Figure PCTCN2022087025-appb-000007
当衬底层140全部覆盖压电层120时,在相同总厚度的情况下,每个增强部件(或增强层130)的厚度t 1与衬底层140的厚度t 2的比值δ可以影响驱动单元110(或驱动装置100)的刚度,从而影响驱动单元110输出性能(例如,传递性能)。在一些实施例中,为了保证既能实现驱动单元110具有较强的可靠性,同时对于压电层120的负载相对较小,增强层130的厚度t 1与衬底层140的厚度t 2的比值δ的取值范围可以为0.5-2.5。在一些实施例中,增强层130的厚度t 1与衬底层140的厚度t 2的比值δ的取值范围可以为0.8-2。在一些实施例中,增强层130的厚度t 1与衬底层140的厚度t 2的比值δ的取值范围可以为1-1.5。
在一些实施例中,为了在对驱动单元110的中性面位置造成尽可能小的影响的条件下,进一步减轻压电层120的负载,从而进一步提升驱动单元110的输出性能,至少一个增强部件(例如,第一增强部件132或第二增强部件134)可以包括多个对应的子增强部件。每个增强部件对应的多个子增强部件可以沿垂直于驱动单元110的延伸方向的方向上间隔布置,即,每个增强部件对应的多个子增强部件可以沿驱动单元110的宽度方向间隔布置。
图10是根据本说明书一些实施例所示的示例性驱动装置的部分结构的示意图。图11是根据本说明书一些实施例所示的示例性驱动装置的部分结构的示意图。如图10所示,在一些实施例中,第二增强部件134可以包括多个对应的沿驱动单元110的宽度方向间隔布置的子增强部件(例如子增强部件134-1、134-2、134-3、134-4等)。如图11所示,第一增强部件132可以包括多个对应的沿驱动 单元110的宽度方向间隔布置的子增强部件(例如子增强部件132-1、132-2等),第二增强部件(增强部件134)也包括多个对应的沿驱动单元110的宽度方向间隔布置的子增强部件(例如子增强部件134-1、134-2、134-3、134-4等)。
图12是根据本说明书一些实施例中所示的示例性驱动装置的部分结构的示意图。图13是图12中驱动装置的C-C截面示意图。在一些实施例中,如图12与图13所示的驱动装置100可以应用于其负载较大的应用场景。对于驱动装置100的负载较大的应用场景(例如,驱动装置100应用于扬声器中时,扬声器振动部分形成的质量-弹簧-阻尼系统中的质量与弹簧刚度均较大),可以设计驱动单元110的结构使驱动单元110具有较大的刚度,从而使驱动装置100的阻抗与其负载的阻抗相匹配或基本上匹配,以将驱动装置100的振动位移以最高效的方式传递至其负载。
在一些实施例中,可以通过直接增加衬底层140的厚度与增强层130的厚度,从而调节驱动单元110的刚度,但是增加衬底层140的厚度与增强层120的厚度,会使得压电层120的负载也增加,导致驱动单元110的输出减小。为了解决上述问题,在一些实施例中,如图12与图13所示,增强层130可以包括沿驱动单元110的延伸方向间隔布置的多个增强部件(例如,增强部件132、134、136、138等)。通过将多个增强部件沿驱动单元110的延伸方向间隔布置,一方面能够在继续增加增强层130的厚度(例如,各个增强部件的厚度)的情况下,保持负载(即,衬底层140与增强层130的总质量)不变或减小,进而增大驱动单元110的中性面与压电层120的几何中间面之间的距离;另一方面通过间隔布置增强部件的方式还能够对驱动单元110的刚度进行调节,实现驱动单元110与其负载之间的阻抗匹配,从而综合提升驱动单元110的输出性能。
在一些实施例中,增强部件132可以作为第一增强部件布置在驱动单元110靠近振动输出端113的位置,增强部件134可以作为第二增强部件布置在驱动单元110靠近固定端111的位置。其他增强部件(例如,增强部件136、138等)可以沿着驱动单元110的梁状结构的延伸方向间隔布置在第一增强部件与第二增强部件之间。在一些实施例中,多个增强部件在振动输出端113的振动方向上的厚度可以相同或不同。例如,多个增强部件在振动输出端113的振动方向上的厚度可以相同,以便于制备增强层130(或驱动单元110)。又例如,多个增强部件在振动输出端113的振动方向上的厚度可以不同。具体地,由于靠近振动输出端113的增强部件对梁状结构弯曲变形时的约束较小,而位于梁状结构中间区域的增强部件对梁状结构弯曲变形时的约束较大,因此,靠近振动输出端113的增强部件的厚度可以大于位于梁状结构中间区域的增强部件的厚度。在一些实施例中,可以通过调节每两个相邻的增强部件之间的间隔在梁状结构延伸方向上的尺寸大小来调节驱动单元110的刚度。在一些实施例中,每两个相邻的增强部件之间的间隔在梁状结构延伸方向上的尺寸可以相同或不同。例如,增强部件134与增强部件136之间的间隔尺寸w g1与增强部件136与增强部件138之间的间隔尺寸w g2可以不同。在一些实施例中,任意两个相邻的增强部件之间的间隔在梁状结构延伸方向上的尺寸的取值范围可以为20-200μm。
在一些实施例中,多个增强部件沿延伸方向的尺寸可以相同或不同。例如,多个增强部件沿延伸方向的尺寸可以相同。再例如,多个增强部件沿梁状结构延伸方向(例如,从弹性输出端113指向固定端111的方向)的尺寸可以逐渐减小或逐渐增大。又例如,多个增强部件沿梁状结构延伸方向的尺寸可以是随机任意布置的。
在一些实施例中,对于驱动装置100的负载较大的应用场景,为了在提升驱动单元110的可靠性的同时,减小压电层120的负载,且减小对梁状结构的中间应变较大的区域(例如,大应变区c-R1等)的变形约束,从而减小梁状结构的变形阻力,增强驱动单元110的变形能力,进而提升驱动单元110的输出能力,多个增强部件可以沿延伸方向按照尺寸先减小、后增大的方式布置。换句话说,可以在振动输出端113和/或固定端111布置较大尺寸的增强部件,而在梁状结构中间部分布置较小尺寸的增强部件。具体地,通过在靠近振动输出端113的位置布置尺寸较大的增强部件,可以在应变较小区域(例如,小应变区a-b)通过较大尺寸的增强部件来调节增强部件的厚度,同时减少对梁状结构变形时的约束;通过在靠近固定端111的位置布置尺寸较大的增强部件,可以在应变较大区域(例如,大应变 区c-R1)通过较大尺寸的增强部件增强梁状结构的刚度,从而使梁状结构在弯曲振动时不易断裂,增强梁状结构的可靠性;通过在梁状结构中间区域布置较小尺寸的增强部件,可以在增大梁状结构刚度的同时,尽可能地减小增强部件对梁状结构的变形约束,从而减小梁状结构的变形阻力,使梁状结构变形能力更强。在一些实施例中,布置在距振动输出端113距离为第一距离的范围内的增强部件沿延伸方向的尺寸可以在50-400μm范围内,布置在距振动输出端113距离在第一距离至第二距离的范围内的增强部件沿延伸方向的尺寸可以在20-200μm范围内。进一步地,布置在距振动输出端113距离在第二距离至第三距离的范围内的增强部件沿延伸方向的尺寸可以在20-100μm范围内,布置在距振动输出端113距离在第三距离以上的增强部件沿延伸方向的尺寸可以在50-400μm范围内。在一些实施例中,第一距离可以小于或等于振动输出端113到固定端111的距离l d的1/5(即l d/5)。第二距离可以小于或等于振动输出端113到固定端111的距离l d的2/5(即2l d/5),且第二距离大于第一距离。第三距离可以小于或等于振动输出端113到固定端111的距离l d的14/15(即14l d/15),且第三距离大于第二距离。
在一些实施例中,为了在对驱动单元110的中性面位置造成尽可能小的影响的条件下,进一步减轻压电层120的负载,从而进一步提升驱动单元110的输出性能,至少一个增强部件可以包括多个对应的子增强部件。每个增强部件对应的多个子增强部件可以沿垂直于驱动单元110的延伸方向的方向上间隔布置,即,每个增强部件对应的多个子增强部件可以沿驱动单元110的宽度方向间隔布置。
图14是根据本说明书一些实施例所示的示例性驱动装置的部分结构的示意图。如图14所示,在一些实施例中,在沿梁状结构延伸方向间隔布置的多个增强部件中,可以有部分增强部件包括各自对应的多个子增强部件,其余部分的增强部件可以不包括子增强部件。例如,增强部件132可以不包括子增强部件,增强部件134可以包括对应的多个子增强部件134-1、134-2、134-3、134-4等,增强部件136也可以包括对应的多个子增强部件136-1、136-2、136-3、136-4等。
需要知道的是,当具有梁状结构的驱动单元110在工作中产生弯曲变形时,可近似为悬臂梁结构在均布载荷作用下的弯曲变形形式,对于该类变形形式,梁状结构的振动输出端113可以在其厚度方向(例如,图2与图3中ZZ’方向)上输出的位移y满足:
Figure PCTCN2022087025-appb-000008
其中,q表示均布载荷,l d表示梁状结构的沿其延伸方向的尺寸(或梁状结构的等效长度),E表示梁状结构的杨氏模量,I表示梁状结构的转动惯量。
根据公式(10)可知,通过增加梁状结构的等效长度l d,可以使梁状结构的输出位移y增大,从而提升驱动单元110(或驱动装置100)的输出性能。在一些实施例中,在相同的驱动装置100的尺寸下,可以增加驱动单元110梁状结构的等效长度l d,来使梁状结构的输出位移y增大。
图15至图21是根据本说明书一些实施例所示的示例性驱动装置的另一些结构示意图。在一些实施例中,如图15至图21所示,驱动装置100可以包括一个或多个驱动单元110。一个或多个驱动单元110的梁状结构可以采用旋转弯曲式设计,以增大驱动单元110的等效长度l d。示例性的,如图15至图21所示,驱动单元110的梁状结构可以具有朝顺时针或逆时针方向弯曲的螺旋结构。如图15所示的驱动单元110,其从固定端111指向振动输出端113的两侧边均为直线。在保持驱动装置100的尺寸不变的情况下,通过同时将两条侧边向同一个方向倾斜,从而可以将振动输出端113设置得更远离固定端111,以此增加驱动单元110的等效长度l d。该驱动单元110的等效长度l d可以等于其固定端111的几何中心点a1到振动输出端113的几何中心点b1之间的距离。如图16所示的驱动单元110,其从固定端111指向振动输出端113的两侧边均为折线。在保持驱动装置100的尺寸不变的情况下,通过同时将两条侧边向同一个方向弯折,从而可以将振动输出端113设置得更远离固定端111,以此增加驱动单元110的等效长度l d。该驱动单元110的等效长度l d可以等于其固定端111的几何中心点a2到弯折点连线的几何中心点o1之间的距离与点o1到振动输出端113的几何中心点b2之间的距离之和。类似地,如图17所示的驱动单元110,其从固定端111指向振动输出端113的两侧边均为折线。该驱动单元110 的等效长度l d可以等于其固定端111的几何中心点a3到第一弯折点连线的几何中心点c1之间的距离、点c1到第二弯折点连线的几何中心点c2之间的距离、点c2到第三弯折点连线的几何中心点c3之间的距离、以及点c3到振动输出端113的几何中心点b3之间的距离的总和。如图18所示的驱动单元110,其固定端111边缘为弧线,振动输出端113边缘为直线,其从固定端111指向振动输出端113的两侧边均为弧线。在保持驱动装置100的尺寸不变的情况下,通过同时将两条侧边向同一个方向弯曲,从而可以将振动输出端113设置得更远离固定端111,以此增加驱动单元110的等效长度l d。该驱动单元110的等效长度l d可以等于其固定端111的几何中心点a4到振动输出端113的几何中心点b4之间的中心线(也称为中弧线)的长度。类似地,如图19所示的驱动单元110,其固定端111与振动输出端113边缘均为弧线,其从固定端111指向振动输出端113的两侧边也均为弧线。该驱动单元110的等效长度l d可以等于其固定端111的几何中心点a5到振动输出端113的几何中心点b5之间的中心线(也称为中弧线)的长度。如图20所示的驱动单元的形状与图18所示的驱动单元的形状相同,其区别为图20所示的驱动装置100为圆形,而图18所示的驱动装置100为正六边形。该驱动单元110的等效长度l d可以等于其固定端111的几何中心点a6到振动输出端113的几何中心点b6之间的中心线的长度。如图21所示的驱动单元的形状与图19所示的驱动单元的形状相同,其区别为图21所示的驱动装置100为圆形,而图19所示的驱动装置100为正六边形。该驱动单元110的等效长度l d可以等于其固定端111的几何中心点a7到振动输出端113的几何中心点b7之间的中心线的长度。需要说明的是,图15至图17所示的驱动装置100的其他结构(例如增强层130与衬底层140的厚度比、增强层130的结构等)可以参照本说明书其他地方(例如,图2至图14及其相关描述),在此不再赘述。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本说明书的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本说明书的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本说明书的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例 如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (19)

  1. 一种驱动装置,包括一个或多个驱动单元,每个驱动单元具有梁状结构,所述梁状结构包括振动输出端和固定端,并且从所述固定端向所述振动输出端延伸,每个驱动单元包括:
    压电层,用于响应于电信号而使所述驱动单元从所述振动输出端输出振动;以及
    增强层,其中,所述增强层包括在所述梁状结构的延伸方向上布置的一个或多个增强部件,所述一个或多个增强部件中至少一个增强部件靠近所述振动输出端布置并且在所述延伸方向上,其尺寸不超过所述振动输出端到所述固定端的距离的二分之一。
  2. 根据权利要求1所述的驱动装置,其中,所述一个或多个增强部件包括第一增强部件和第二增强部件,所述第一增强部件布置在靠近所述振动输出端的位置,所述第二增强部件布置在靠近所述固定端的位置。
  3. 根据权利要求2所述的驱动装置,其中,所述第一增强部件沿所述延伸方向的尺寸与所述振动输出端到所述固定端的距离的比值在0.05-0.3范围内,或者所述第二增强部件沿所述延伸方向的尺寸与所述振动输出端到所述固定端的距离的比值在0.05-0.25范围内。
  4. 根据权利要求1所述的驱动装置,其中,所述一个或多个增强部件包括在所述延伸方向上间隔布置的多个增强部件,并且两个相邻增强部件在所述延伸方向上的间隔距离在20-200μm范围内。
  5. 根据权利要求4所述的驱动装置,其中,所述多个增强部件沿所述延伸方向按照尺寸先减小、后增大的方式布置。
  6. 根据权利要求5所述的驱动装置,其中,
    布置在距所述振动输出端距离为第一距离的范围内的增强部件沿所述延伸方向的尺寸在50-400μm范围内;以及
    布置在距所述振动输出端距离在所述第一距离至第二距离的范围内的增强部件沿所述延伸方向的尺寸在20-200μm范围内。
  7. 根据权利要求6所述的驱动装置,其中,所述第一距离等于所述振动输出端到所述固定端距离的1/5,所述第二距离等于所述振动输出端到所述固定端距离的2/5。
  8. 根据权利要求6或7所述的驱动装置,其中,
    布置在距所述振动输出端距离在所述第二距离至第三距离的范围内的增强部件沿所述延伸方向的尺寸在20-100μm范围内;以及
    布置在距所述振动输出端距离在所述第三距离以上的增强部件沿所述延伸方向的尺寸在50-400μm范围内。
  9. 根据权利要求8所述的驱动装置,其中,所述第三距离等于所述振动输出端到所述固定端距离的14/15。
  10. 根据权利要求1至9中任一项所述的驱动装置,其中,所述一个或多个增强部件中的至少一个增强部件包括沿垂直于所述延伸方向间隔布置的多个子增强部件。
  11. 根据权利要求1至10中任一项所述的驱动装置,其中,每个驱动单元还包括:
    衬底层,所述衬底层位于所述压电层与所述增强层之间。
  12. 根据权利要求11所述的驱动装置,其中,所述增强层与所述衬底层的总厚度与所述压电层的厚度的比值在3-20范围内。
  13. 根据权利要求12所述的驱动装置,其中,所述增强层的厚度与所述衬底层的厚度的比值在0.5-2.5范围内。
  14. 根据权利要求12或13所述的驱动装置,其中,所述衬底层覆盖所述一个或多个驱动单元之间的缝隙。
  15. 根据权利要求1至14中任一项所述的驱动装置,其中,所述多个驱动单元中两个相邻驱动单元之间的缝隙宽度小于25μm。
  16. 根据权利要求1至15中任一项所述的驱动装置,其中,所述一个或多个驱动单元的所述梁状结构具有朝顺时针或逆时针方向弯曲的螺旋结构。
  17. 根据权利要求1至16中任一项所述的驱动装置,还包括:
    振动传递单元,所述一个或多个驱动单元中每个驱动单元的振动传递端与所述振动传递单元连接,从而使所述驱动装置的振动从所述振动传递单元输出。
  18. 根据权利要求17所述的驱动装置,其中,所述振动传递单元通过弹性连接件与每个驱动单元连接。
  19. 一种声学输出装置,所述声学输出装置包括如权利要求1至18中任一项所述的驱动装置。
PCT/CN2022/087025 2022-04-15 2022-04-15 驱动装置及包含该驱动装置的声学输出装置 WO2023197290A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/087025 WO2023197290A1 (zh) 2022-04-15 2022-04-15 驱动装置及包含该驱动装置的声学输出装置
CN202280007884.6A CN117242793A (zh) 2022-04-15 2022-04-15 驱动装置及包含该驱动装置的声学输出装置
US18/352,218 US20230363281A1 (en) 2022-04-15 2023-07-13 Drive devices and acoustic output devices containing the drive devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087025 WO2023197290A1 (zh) 2022-04-15 2022-04-15 驱动装置及包含该驱动装置的声学输出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,218 Continuation US20230363281A1 (en) 2022-04-15 2023-07-13 Drive devices and acoustic output devices containing the drive devices

Publications (1)

Publication Number Publication Date
WO2023197290A1 true WO2023197290A1 (zh) 2023-10-19

Family

ID=88328619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087025 WO2023197290A1 (zh) 2022-04-15 2022-04-15 驱动装置及包含该驱动装置的声学输出装置

Country Status (3)

Country Link
US (1) US20230363281A1 (zh)
CN (1) CN117242793A (zh)
WO (1) WO2023197290A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104510497A (zh) * 2013-09-30 2015-04-15 精工爱普生株式会社 超声波装置、探测器、电子设备以及超声波图像装置
US20160264399A1 (en) * 2015-03-13 2016-09-15 Taiwan Semiconductor Manufacturing Co., Ltd. Mems transducer and method for manufacturing the same
US20170244022A1 (en) * 2016-02-22 2017-08-24 Seiko Epson Corporation Ultrasonic device, ultrasonic probe, ultrasonic apparatus, and ultrasonic device manufacturing method
CN108419189A (zh) * 2018-01-15 2018-08-17 美律电子(深圳)有限公司 压电传感器
CN110392331A (zh) * 2018-04-20 2019-10-29 意法半导体股份有限公司 压电声学mems换能器及其制造方法
CN112004181A (zh) * 2019-05-27 2020-11-27 意法半导体股份有限公司 具有改进特性的压电微机电声学换能器及对应的制造工艺
CN212086487U (zh) * 2020-05-25 2020-12-04 瑞声声学科技(深圳)有限公司 压电式mems麦克风
WO2021106265A1 (ja) * 2019-11-25 2021-06-03 株式会社村田製作所 圧電デバイス
CN214381392U (zh) * 2020-12-25 2021-10-08 瑞声声学科技(深圳)有限公司 压电式麦克风
CN113620232A (zh) * 2020-05-07 2021-11-09 意法半导体股份有限公司 有改善机械属性的可变形结构的压电致动器及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104510497A (zh) * 2013-09-30 2015-04-15 精工爱普生株式会社 超声波装置、探测器、电子设备以及超声波图像装置
US20160264399A1 (en) * 2015-03-13 2016-09-15 Taiwan Semiconductor Manufacturing Co., Ltd. Mems transducer and method for manufacturing the same
US20170244022A1 (en) * 2016-02-22 2017-08-24 Seiko Epson Corporation Ultrasonic device, ultrasonic probe, ultrasonic apparatus, and ultrasonic device manufacturing method
CN108419189A (zh) * 2018-01-15 2018-08-17 美律电子(深圳)有限公司 压电传感器
CN110392331A (zh) * 2018-04-20 2019-10-29 意法半导体股份有限公司 压电声学mems换能器及其制造方法
CN112004181A (zh) * 2019-05-27 2020-11-27 意法半导体股份有限公司 具有改进特性的压电微机电声学换能器及对应的制造工艺
WO2021106265A1 (ja) * 2019-11-25 2021-06-03 株式会社村田製作所 圧電デバイス
CN113620232A (zh) * 2020-05-07 2021-11-09 意法半导体股份有限公司 有改善机械属性的可变形结构的压电致动器及其制造方法
CN212086487U (zh) * 2020-05-25 2020-12-04 瑞声声学科技(深圳)有限公司 压电式mems麦克风
CN214381392U (zh) * 2020-12-25 2021-10-08 瑞声声学科技(深圳)有限公司 压电式麦克风

Also Published As

Publication number Publication date
CN117242793A (zh) 2023-12-15
US20230363281A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US7684576B2 (en) Resonant element transducer
US20030059069A1 (en) Loudspeaker
US8031889B2 (en) Acoustoeletric transformation chip for ribbon microphone
TW515220B (en) Loudspeakers
WO2023197290A1 (zh) 驱动装置及包含该驱动装置的声学输出装置
JP2008509587A (ja) パネルを作動するアクチュエータを有するパネル音響トランスデューサ並びに音声生成及び/又は記録装置
TW202343432A (zh) 驅動裝置及包含該驅動裝置的聲學輸出裝置
WO2023051372A1 (zh) 扬声器及电子设备
CN102823275B (zh) 发声部件
WO2024020846A1 (zh) 一种声学输出装置
TWI595789B (zh) 電聲轉換器
WO2023193194A1 (zh) 一种声学输出装置
US20230209277A1 (en) Acoustic transducer, acoustic apparatus, and ultrasonic oscillator
WO2023193186A1 (zh) 一种振动装置
WO2023193191A1 (zh) 一种声学输出装置
WO2024099045A1 (zh) 一种扬声器
TW202341753A (zh) 聲學輸出裝置
TW202341755A (zh) 聲學輸出裝置
JP7141689B2 (ja) 骨伝導スピーカ用振動板及び骨伝導スピーカ
WO2023221063A1 (zh) 压电换能器、声学输出设备以及传声设备
TWI815634B (zh) 聲學設備
TW202341751A (zh) 聲學輸出裝置
WO2020136983A1 (ja) 圧電トランスデューサ
TW202341757A (zh) 一種振動裝置
TW202341758A (zh) 一種振動裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280007884.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936938

Country of ref document: EP

Kind code of ref document: A1