WO2023197275A1 - 资源确定、资源配置方法和装置、通信装置及存储介质 - Google Patents

资源确定、资源配置方法和装置、通信装置及存储介质 Download PDF

Info

Publication number
WO2023197275A1
WO2023197275A1 PCT/CN2022/086932 CN2022086932W WO2023197275A1 WO 2023197275 A1 WO2023197275 A1 WO 2023197275A1 CN 2022086932 W CN2022086932 W CN 2022086932W WO 2023197275 A1 WO2023197275 A1 WO 2023197275A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
resource
downlink
domain resources
subband
Prior art date
Application number
PCT/CN2022/086932
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001205.4A priority Critical patent/CN117242865A/zh
Priority to PCT/CN2022/086932 priority patent/WO2023197275A1/zh
Publication of WO2023197275A1 publication Critical patent/WO2023197275A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technology, and specifically, to a resource determination method, a resource configuration method, a resource determination device, a resource configuration device, a communication device and a computer-readable storage medium.
  • the base station can configure the uplink (UL) subband for uplink data transmission in the downlink (DL) time slot for the terminal, and can Schedule the terminal's uplink data transmission within the time domain corresponding to the UL subband.
  • the terminal can also receive downlink data, thus enabling duplex communication.
  • the UL subband Since there is a UL subband in the DL slot, the UL subband will isolate the downlink frequency domain resources corresponding to the DL slot, causing some problems.
  • embodiments of the present disclosure propose resource determination methods, resource configuration methods, resource determination devices, resource configuration devices, communication devices and computer-readable storage media to solve technical problems in related technologies.
  • a resource determination method is proposed, which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot.
  • the method includes: The frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot are determined as the first downlink frequency domain resources; the first downlink frequency domain resources are regarded as continuous virtual frequency domain resources, Frequency domain resources corresponding to the physical downlink shared channel are determined in the virtual frequency domain resources according to the downlink control information.
  • a resource determination method is proposed, which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot.
  • the method includes: For resource allocation types other than resource allocation type 0, the frequency domain resources corresponding to the physical downlink shared channel are determined in the frequency domain resources corresponding to the downlink time slot.
  • a resource determination method is proposed, which is suitable for a terminal configured with a first subband used for uplink transmission in a downlink time slot, wherein the uplink subband
  • the frequency domain starting position is the same as the frequency domain starting position of the downlink frequency domain resource corresponding to the downlink time slot, or the frequency domain end position of the uplink subband is the same as the frequency domain end position of the downlink frequency domain resource corresponding to the downlink time slot.
  • the end position of the domain is the same; the method includes: determining the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the second downlink frequency domain resource; according to the downlink control information, The frequency domain resources corresponding to the physical downlink shared channel are determined in the second downlink frequency domain resources.
  • a resource determination method is proposed, which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot.
  • the method includes: When the frequency domain resources corresponding to the shared channel overlap with the uplink subband, rate matching is performed on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband.
  • a resource configuration method is proposed, which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot.
  • the method includes: determining the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the first downlink frequency domain resource; treating the first downlink frequency domain resource as continuous Virtual frequency domain resources, in which frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal.
  • a resource configuration method is proposed, which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot.
  • the method includes: configuring frequency domain resources corresponding to the physical downlink shared channel for the terminal in the frequency domain resources corresponding to the downlink time slot according to resource allocation type 0.
  • a resource configuration method is proposed, which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot, wherein:
  • the frequency domain starting position of the uplink subband is the same as the frequency domain starting position of the downlink frequency domain resource corresponding to the downlink time slot, or the frequency domain end position of the uplink subband is the same as the frequency domain end position of the downlink time slot corresponding to the downlink time slot.
  • the frequency domain end positions of the frequency domain resources are the same; the method includes: determining the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the second downlink frequency domain resource; Among the second downlink frequency domain resources, frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal.
  • a resource configuration method is proposed, which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot.
  • the method includes: performing rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband.
  • a resource determination device which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot, and the device includes: a processing module, Configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the first downlink frequency domain resource; and regard the first downlink frequency domain resource as Continuous virtual frequency domain resources, the frequency domain resources corresponding to the physical downlink shared channel are determined in the virtual frequency domain resources according to the downlink control information.
  • a resource determination device which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot, and the device includes: a processing module, It is configured such that it is not expected to determine the frequency domain resources corresponding to the physical downlink shared channel in the frequency domain resources corresponding to the downlink time slot according to the resource allocation type other than resource allocation type 0.
  • a resource determination apparatus is proposed, which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot, wherein the uplink subband
  • the starting position of the frequency domain is the same as the starting position of the frequency domain of the downlink frequency domain resource corresponding to the downlink time slot, or the end position of the frequency domain of the uplink subband is the same as the starting position of the frequency domain of the downlink frequency domain resource corresponding to the downlink time slot.
  • the device includes: a processing module configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the second downlink frequency domain resources; and determining the frequency domain resource corresponding to the physical downlink shared channel in the second downlink frequency domain resource according to the downlink control information.
  • a resource determination device which is suitable for a terminal configured with a first subband for uplink transmission in a downlink time slot.
  • the device includes: a processing module , is configured to perform rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband.
  • a resource configuration device which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot
  • the The apparatus includes: a processing module configured to determine frequency domain resources other than the first uplink subband in frequency domain resources corresponding to the downlink time slot as first downlink frequency domain resources; and determine the first downlink frequency domain resource.
  • the downlink frequency domain resources are regarded as continuous virtual frequency domain resources, and frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal in the virtual frequency domain resources.
  • a resource configuration device which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot
  • the The apparatus includes: a processing module configured to configure frequency domain resources corresponding to the physical downlink shared channel for the terminal in the frequency domain resources corresponding to the downlink time slot according to resource allocation type 0.
  • a resource configuration device which is suitable for network equipment, and the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot, wherein,
  • the frequency domain start position of the uplink subband is the same as the frequency domain start position of the downlink frequency domain resource corresponding to the downlink time slot, or the frequency domain end position of the uplink subband is the same as the frequency domain end position of the downlink time slot.
  • the frequency domain end positions of the downlink frequency domain resources are the same; the device includes: a processing module configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the second Downlink frequency domain resources; and configuring frequency domain resources corresponding to the physical downlink shared channel for the terminal in the second downlink frequency domain resource.
  • a resource configuration device which is suitable for network equipment.
  • the network equipment configures the first subband for uplink transmission for the terminal in the downlink time slot, and the Devices include:
  • the processing module is configured to perform rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband.
  • a communication device including: a processor; a memory for storing a computer program; wherein when the computer program is executed by the processor, any of the above resource determination methods is implemented .
  • a communication device including: a processor; a memory for storing a computer program; wherein when the computer program is executed by the processor, any of the above resource configuration methods is implemented .
  • a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in any of the above resource determination methods are implemented.
  • a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in any of the above resource configuration methods are implemented.
  • the terminal can regard the first downlink frequency domain resource except UL subband in the frequency domain resources corresponding to the DL slot as a continuous virtual frequency domain resource, and then determine the PDSCH in the virtual frequency domain resource according to the DCI Corresponding frequency domain resources. According to this, even if the first downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is not continuous, it can be regarded as a continuous virtual frequency domain resource. Therefore, regardless of whether RA Type 1 is used to schedule PDSCH, Whether RA type 0 is used to schedule PDSCH, the frequency domain resources occupied by PDSCH are indicated on continuous virtual frequency domain resources.
  • RA Type 1 is used to schedule PDSCH, there will be no problem, and there is no need to be limited to using only RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • the terminal does not expect to determine the frequency domain resources corresponding to the PDSCH in the frequency domain resources corresponding to the DL slot based on resource allocation types other than RA type 0 (such as RA type 1), that is, only determine the frequency domain resources corresponding to the DL slot based on RA type 0.
  • the frequency domain resources corresponding to the PDSCH are determined in the domain resources, and the frequency domain resources corresponding to the PDSCH are not determined according to the frequency domain resources corresponding to the DL slot based on RA type 1, thereby avoiding the problems existing in using RA Type 1 to schedule PDSCH.
  • the frequency domain start position of the UL subband is the same as the frequency domain start position of the downlink frequency domain resource corresponding to the DL slot, or the frequency domain end position of the UL subband is the same as the frequency domain end position of the downlink frequency domain resource corresponding to the DL slot.
  • the end position is the same, then the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is not cut off by the UL subband, so the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot Resources are continuous.
  • the terminal can directly determine the frequency domain resource corresponding to PDSCH in the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot based on DCI, so that whether RA Type 1 is used to schedule PDSCH, or RA type 0 is used Scheduling PDSCH indicates the frequency domain resources occupied by PDSCH on continuous downlink frequency domain resources. Therefore, even if RA Type 1 is used to schedule PDSCH, there will be no problem, and there is no need to be limited to using only RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • the terminal can perform rate matching on the frequency domain resources corresponding to the PDSCH according to the UL subband.
  • rate matching the PDSCH will not be detected or received on the RE corresponding to the UL subband, thereby overcoming the problem of discontinuous frequency domain resources using RA Type 1.
  • FIGS. 1A to 1C are schematic diagrams of several uplink subbands according to embodiments of the present disclosure.
  • Figure 2 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure.
  • Figure 3A is a schematic diagram of a virtual frequency domain resource according to an embodiment of the present disclosure.
  • FIG. 3B is a schematic diagram of frequency domain resources corresponding to a physical downlink shared channel according to an embodiment of the present disclosure.
  • Figure 4 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure.
  • Figure 5 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure.
  • Figure 6 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure.
  • Figure 7 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure.
  • Figure 8 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure.
  • Figure 9 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure.
  • Figure 10 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure.
  • Figure 11 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure.
  • Figure 12 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure.
  • Figure 13 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure.
  • Figure 14 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure.
  • Figure 15 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure.
  • Figure 16 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure.
  • Figure 17 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure.
  • Figure 18 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure.
  • Figure 19 is a schematic block diagram of a device for resource determination according to an embodiment of the present disclosure.
  • Figure 20 is a schematic block diagram of a device for resource configuration according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first downlink frequency domain resource may also be called the second downlink frequency domain resource.
  • second downlink frequency domain resource may also be called the first downlink frequency domain resource.
  • Line frequency domain resources may be interpreted as "when” or “when” or “in response to determining.”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • Embodiments of the present disclosure propose several resource determination methods.
  • the resource determination method shown in this embodiment can be applied to terminals, which include but are not limited to mobile phones, tablet computers, wearable devices, sensors, Internet of Things devices (such as NB-IoT (Narrow Band Internet of Things, Narrow Band Internet of Things) Things), MTC (Machine Type Communication, machine type communication), eMTC (EnhanceMachine Type Communication, enhanced machine type communication)) and other communication devices.
  • the terminal can communicate with network equipment, which includes but is not limited to network equipment in 4G, 5G, 6G and other communication systems, such as base stations, core networks, etc.
  • duplex communication can be performed between the terminal and the network device, for example, full-duplex communication or half-duplex communication can be performed.
  • Duplex mode enhancement is an important part of 3GPP Rel-18 research. Its main idea is to transmit and receive data simultaneously within a time slot. Such a duplex mode may be called an enhanced full-duplex mode, for example, Cross Division Duplex, or xDD, and the terminal may be called an xDD terminal.
  • xDD Cross Division Duplex
  • xDD terminal the terminal may be called an xDD terminal.
  • the embodiments of the present disclosure can be applied not only to xDD terminals, but also to legacy terminals.
  • the network device can configure a downlink time slot DL slot for the terminal.
  • the frequency domain resource corresponding to the DL slot can include a frequency band or one or more bandwidth parts (BandWidth Part, BWP) in a frequency band.
  • BWP BandWidth Part
  • the network device can also select a part of the time slots from the configured downlink time slots, and configure the first subband for uplink transmission for the terminal in the selected time slot. For example, it can be called the uplink subband UL subband.
  • the terminal can select Perform uplink transmission in the UL subband, so that the terminal can not only perform uplink transmission on the UL subband within the frequency domain resources corresponding to the DL slot, but also perform downlink reception on frequency domain resources other than the UL subband, achieving enhanced full-duplex communication.
  • FIGS. 1A to 1C are schematic diagrams of several uplink subbands according to embodiments of the present disclosure.
  • the frequency domain resources corresponding to the UL subband do not overlap with the frequency domain resources used for downlink reception;
  • the frequency domain resources corresponding to the UL subband completely overlap with the frequency domain resources used for downlink reception;
  • the frequency domain resources corresponding to the UL subband partially overlap with the frequency domain resources used for downlink reception.
  • RA type 0 resource allocation type 0
  • RA type 1 resource allocation type 1
  • RA type 0 Indicates the frequency domain resources occupied by PDSCH through bitmap bitmap. Can indicate non-contiguous frequency domain resources;
  • RA Type 1 Indicates the starting position and length of the frequency domain resources occupied by PDSCH through joint coding. It is necessary to indicate continuous virtual resource blocks VRB (Virtual Resource Blocks). There are two mapping methods from virtual resource blocks to physical resource blocks PRB (Physical Resource Blocks), interleaving mapping and non-interleaving mapping. When the interleaving mapping method is adopted, the mapping relationship from VRB to PRB is determined by the sub-block interleaver.
  • RA type 0 indicates the frequency domain resources occupied by PDSCH through bitmap
  • RA Type 1 indicates the frequency domain resources occupied by PDSCH through joint coding. In the case of indicating the same content, the bit ratio required by RA type 0 is higher than that of RA Type 1 requires relatively more bits.
  • the terminal When the terminal is configured with UL subband in the DL slot, the downlink frequency domain resources in the DL slot will be blocked by the UL subband. In this case, there will be problems if RA Type 1 is used to schedule PDSCH (because RA Type 1 requires Indicates continuous VRB), and if only RA type 0 is used to schedule PDSCH, it will cause the scheduling information to occupy relatively more bits, increasing the overhead.
  • Figure 2 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure. As shown in Figure 2, the terminal is configured with the first subband used for uplink transmission in the downlink time slot, and the method includes:
  • step S201 determine the frequency domain resources other than the first uplink subband among the frequency domain resources corresponding to the downlink time slot as the first downlink frequency domain resource;
  • the first downlink frequency domain resource is regarded as a continuous virtual frequency domain resource, and the frequency domain resource corresponding to the physical downlink shared channel is determined in the virtual frequency domain resource according to the downlink control information.
  • the terminal can determine the frequency domain resources corresponding to the DL slot, such as activating the downlink bandwidth part active DL BWP, and then determine the frequency domain resources other than the UL subband in the frequency domain resources corresponding to the DL slot as the first downlink bandwidth.
  • Line frequency domain resources such as resource blocks RB except UL subband in active BWP.
  • the terminal can regard the determined first downlink frequency domain resource as a continuous virtual frequency domain resource, and then determine the frequency domain resource corresponding to the PDSCH in the virtual frequency domain resource according to the downlink control information DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the terminal can regard the first downlink frequency domain resource other than UL subband in the frequency domain resource corresponding to the DL slot as a continuous virtual frequency domain resource, and then determine the PDSCH corresponding to the virtual frequency domain resource according to the DCI. frequency domain resources. According to this, even if the first downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is not continuous, it can be regarded as a continuous virtual frequency domain resource. Therefore, regardless of whether RA Type 1 is used to schedule PDSCH, Whether RA type 0 is used to schedule PDSCH, the frequency domain resources occupied by PDSCH are indicated on continuous virtual frequency domain resources.
  • RA Type 1 is used to schedule PDSCH, there will be no problem, and there is no need to be limited to using only RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • determining the frequency domain resource corresponding to the physical downlink shared channel in the virtual frequency domain resource according to the downlink control information includes:
  • the frequency domain resource indicated by the frequency domain resource allocation field in the downlink control information in the virtual frequency domain resource is determined according to resource allocation type 0 or resource allocation type 1.
  • the terminal when the terminal regards the first downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot as a continuous virtual frequency domain resource, it can either use resource allocation type 0 (RA type 0 ) Determine the frequency domain resource allocation indicated by the FDRA (Frequency Domain Resource Assignment) domain in the virtual frequency domain resource in DCI. You can also determine the virtual frequency domain resource in the FDRA domain in DCI according to the resource allocation type 1 (RA type 1). Frequency domain resources indicated in .
  • RA type 0 resource allocation type 0
  • FDRA Frequency Domain Resource Assignment
  • the terminal determines the frequency domain resources indicated by the FDRA domain in the DCI in the virtual frequency domain resources, and may parse the corresponding bits of the FDRA domain in the DCI to determine the frequency domain resources indicated by the corresponding bits of the FDRA domain in the DCI.
  • the base station can use different encoding methods for the FDRA domain in DCI. Therefore, for different resource allocation types, the terminal can use the decoding method corresponding to the resource allocation type. Analyze the corresponding bits of the FDRA domain in the DCI to accurately determine the frequency domain resources indicated by the corresponding bits of the FDRA domain in the DCI in the virtual frequency domain resources.
  • the network device can either configure frequency domain resources corresponding to PDSCH for the terminal in the virtual frequency domain resources according to RA type 0, or configure frequency domain resources corresponding to PDSCH for the terminal in the virtual frequency domain resources according to RA type 1.
  • the terminal can configure the frequency domain resources corresponding to PDSCH for the terminal in the virtual frequency domain resources according to RA type 1.
  • the instruction of the device can be determined, for example, based on the Radio Resource Control (RRC) signaling sent by the network device, or can be determined by other methods, which is not limited by this disclosure.
  • RRC Radio Resource Control
  • Figure 3A is a schematic diagram of a virtual frequency domain resource according to an embodiment of the present disclosure.
  • FIG. 3B is a schematic diagram of frequency domain resources corresponding to a physical downlink shared channel according to an embodiment of the present disclosure.
  • the frequency domain resource corresponding to DL slot is active DL BWP.
  • the RBs corresponding to active DL BWP are RB#0 to RB#99, a total of 100 RBs.
  • the terminal is configured with a UL subband, and the UL subband corresponds to 40 RBs.
  • the corresponding RBs are RB#10 to RB#49.
  • downlink frequency domain resources other than the uplink subband can be determined in the frequency domain resources corresponding to the downlink time slot, that is, RBs other than RB#10 to RB#49 among RB#0 to RB#99, They are RB#0 to RB#9 and RB#50 to RB#99. These two downlink frequency domain resources are discontinuous because they are separated by UL subband.
  • this embodiment can regard the downlink frequency domain resources as continuous virtual frequency domain resources.
  • RB #9 and RB #50 can be regarded as two consecutive RBs, so that RB
  • the two downlink frequency domain resources from #0 to RB#9 and RB#50 to RB#99 are regarded as a continuous virtual frequency domain resource.
  • the identifiers of the VRBs included in the virtual frequency domain resources may be continuous, for example, VRB #0 to VRB#59.
  • the frequency domain resources indicated by the FDRA domain in the DCI in the virtual frequency domain resources can be determined based on RA type 0, and the frequency domain resources indicated by the FDRA domain in the DCI in the virtual frequency domain resources can be determined based on RA type 1. domain resources.
  • the network equipment allocates PDSCH frequency domain resources as RA type 1, and the frequency domain resource range indicated by the start and length indicator value SLIV (Start Length Indicator Value) in the FDRA domain is VRB# 0 to VRB#19, then the frequency domain resources indicated by the FDRA domain can be determined in the virtual frequency domain resources, that is, the first 20 RBs in the virtual frequency domain resources are RB#0 to RB#9 and RB#50 to RB#59.
  • SLIV Start Length Indicator Value
  • the mapping method from VRB to PRB can be non-interleaved mapping or interleaved mapping.
  • the mapping relationship from VRB to PRB can be determined through the sub-block interleaver.
  • the sub-block interleaver can be used to perform virtual mapping on the VRB to PRB. Interleave VRB to PRB in frequency domain resources.
  • Figure 4 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure. As shown in Figure 4, the terminal is configured with the first subband used for uplink transmission in the downlink time slot, and the method includes:
  • step S401 it is not expected to determine the frequency domain resources corresponding to the physical downlink shared channel in the frequency domain resources corresponding to the downlink time slot according to a resource allocation type other than resource allocation type 0.
  • the terminal when the terminal is configured with the first subband used for uplink transmission in the downlink time slot, when determining the frequency domain resource corresponding to the PDSCH in the frequency domain resource corresponding to the DL slot, it is not necessary to It is not expected that the frequency domain resources corresponding to the PDSCH will be determined in the frequency domain resources corresponding to the DL slot according to the resource allocation type other than RA type 0.
  • the terminal After the terminal receives the DCI sent by the network device, the terminal can only determine the frequency domain resource corresponding to the PDSCH indicated by the DCI in the frequency domain resource corresponding to the DL slot based on RA type 0, and will not determine the frequency domain resource corresponding to the PDSCH indicated by the DCI in the DL slot based on RA type 1.
  • the frequency domain resource corresponding to the PDSCH indicated in the frequency domain resource corresponding to the slot when the terminal is configured with the first subband used for uplink transmission in the downlink time slot, when determining the frequency domain resource corresponding to the PDSCH in the frequency domain resource
  • the terminal does not expect to determine the frequency domain resources corresponding to the PDSCH in the frequency domain resources corresponding to the DL slot based on resource allocation types other than RA type 0 (such as RA type 1), that is, only determine the frequency domain resources corresponding to the DL slot based on RA type 0.
  • the frequency domain resources corresponding to the PDSCH are determined in the frequency domain resources, and the frequency domain resources corresponding to the PDSCH are not determined according to the frequency domain resources corresponding to the DL slot based on RA type 1, thereby avoiding the problems of using RA Type 1 to schedule PDSCH.
  • predefined rules can be used to stipulate that when the frequency domain resources corresponding to the DL slot are discontinuous due to configuring the UL subband in the DL slot, the terminal determines the frequency domain resources corresponding to the DL slot based on RA type 0. Frequency domain resources corresponding to PDSCH.
  • the network device does not need to indicate to the terminal whether to configure the frequency domain resources corresponding to PDSCH for the terminal according to RA type 0 or configure the frequency domain resources corresponding to PDSCH for the terminal according to RA type 1.
  • the terminal determines the UL subband and causes DL slot
  • the frequency domain resources corresponding to the PDSCH are determined from the frequency domain resources corresponding to the DL slot based on RA type 0, which is beneficial to saving the overhead of network equipment instructions.
  • Figure 5 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure.
  • the terminal is configured with the first subband used for uplink transmission in the downlink time slot, wherein the frequency domain starting position of the uplink subband corresponds to the downlink time slot.
  • the frequency domain starting position of the downlink frequency domain resources is the same, or the frequency domain ending position of the uplink subband is the same as the frequency domain ending position of the downlink frequency domain resource corresponding to the downlink time slot;
  • the method includes:
  • step S501 determine the frequency domain resources other than the first uplink subband among the frequency domain resources corresponding to the downlink time slot as second downlink frequency domain resources;
  • step S502 frequency domain resources corresponding to the physical downlink shared channel are determined in the second downlink frequency domain resources according to the downlink control information.
  • the terminal can determine the frequency domain resources corresponding to the DL slot, such as activating the downlink bandwidth part active DL BWP, and then determine the frequency domain resources other than the UL subband in the frequency domain resources corresponding to the DL slot as the second downlink Frequency domain resources, such as resource blocks RB except UL subband in active BWP.
  • the frequency domain starting position of the UL subband is the same as the frequency domain starting position of the downlink frequency domain resource corresponding to the DL slot, or the frequency domain end position of the UL subband is the frequency domain end position of the downlink frequency domain resource corresponding to the DL slot.
  • the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is not cut off by the UL subband, so the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is continuously.
  • the terminal can directly determine the frequency domain resource corresponding to PDSCH in the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot based on DCI, so that whether RA Type 1 is used to schedule PDSCH, or RA type 0 is used Scheduling PDSCH indicates the frequency domain resources occupied by PDSCH on continuous downlink frequency domain resources. Therefore, even if RA Type 1 is used to schedule PDSCH, there will be no problem, and there is no need to be limited to using only RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • determining the frequency domain resource corresponding to the physical downlink shared channel in the second downlink frequency domain resource according to the downlink control information includes:
  • the frequency domain resource indicated by the frequency domain resource allocation field in the downlink control information in the second downlink frequency domain resource is determined according to resource allocation type 0 or resource allocation type 1.
  • the frequency domain starting position of the uplink subband is the same as the frequency domain starting position of the downlink frequency domain resource corresponding to the downlink time slot, or the frequency domain end position of the uplink subband is the same as the frequency domain end position of the downlink time slot.
  • the terminal can determine the frequency domain resource allocation in the DCI according to the resource allocation type 0 (RA type 0).
  • the FDRA domain The frequency domain resources indicated in the second downlink frequency domain resources other than the DL slot can also be determined according to the resource allocation type 1 (RA type 1).
  • the second downlink frequency domain resource other than the UL subband in the frequency domain resources corresponding to the DL slot in the FDRA domain in the DCI The frequency domain resource indicated in Frequency Domain Resource.
  • the base station can use different encoding methods for the FDRA domain in DCI. Therefore, for different resource allocation types, the terminal can use decoding corresponding to the resource allocation type.
  • the method analyzes the corresponding bits of the FDRA domain in the DCI in order to accurately determine the frequency domain resources indicated by the corresponding bits of the FDRA domain in the DCI in the second downlink frequency domain resource except the UL subband in the frequency domain resource corresponding to the DL slot.
  • Figure 6 is a schematic flow chart of a resource determination method according to an embodiment of the present disclosure. As shown in Figure 6, the terminal is configured with the first subband used for uplink transmission in the downlink time slot, and the method includes:
  • step S601 when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband, rate matching RM (Rate Matching).
  • the terminal when the terminal is configured with the first subband used for uplink transmission in the downlink time slot, it can be determined (for example, based on the DCI sent by the network device) that the frequency domain resource corresponding to the PDSCH is the same as the UL Whether the subbands overlap. If they overlap, the terminal can rate match the frequency domain resources corresponding to the PDSCH according to the UL subband. For example, it only detects and receives the PDSCH on REs where there is no UL subband. This method can ensure the integrity of the PDSCH to the greatest extent. .
  • the terminal can rate match the frequency domain resources corresponding to the PDSCH according to the UL subband, and the PDSCH will not be detected or received on the RE corresponding to the UL subband through rate matching, thereby overcoming the problem of using RA Type 1 on discontinuous frequency domain resources. Problems caused by scheduling PDSCH. Therefore, the terminal can either use RA Type 1 to schedule PDSCH or RA type 0 to schedule PDSCH. Even if RA Type 1 is used to schedule PDSCH, there will be no problem. Therefore, the terminal does not need to be limited to only using RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • the method further includes: determining, according to resource allocation type 0 or resource allocation type 1, that the frequency domain resource allocation domain in the downlink control information corresponds to the physical downlink shared channel in the frequency domain resource corresponding to the downlink time slot. frequency domain resources.
  • the terminal when the terminal performs rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband, it will not detect or receive PDSCH on the RE corresponding to the UL subband, thereby overcoming the problem of using RA Type 1. Problems caused by scheduling PDSCH on discontinuous frequency domain resources. Therefore, the terminal can determine the frequency domain resource allocation in the DCI according to the resource allocation type 0 (RA type 0). In the FDRA domain, in the frequency domain resources corresponding to the DL slot, except for the UL subband The frequency domain resources indicated in the downlink frequency domain resources can also be determined according to the resource allocation type 1 (RA type 1). The FDRA domain in the DCI in the frequency domain resources corresponding to the DL slot in the downlink frequency domain resources other than UL subband can also be determined. Indicated frequency domain resources.
  • the base station can use different encoding methods for the FDRA domain in DCI. Therefore, for different resource allocation types, the terminal can use decoding corresponding to the resource allocation type.
  • the method analyzes the corresponding bits of the FDRA domain in the DCI in order to accurately determine the frequency domain resources indicated by the corresponding bits of the FDRA domain in the DCI.
  • Embodiments of the present disclosure propose several resource configuration methods.
  • the resource configuration method shown in this embodiment can be applied to network equipment, which can communicate with terminals.
  • the network equipment includes but is not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the terminals Including but not limited to mobile phones, tablets, wearable devices, sensors, Internet of Things devices (such as NB-IoT, MTC, eMTC) and other communication devices.
  • duplex communication can be performed between the terminal and the network device, for example, full-duplex communication or half-duplex communication can be performed.
  • Duplex mode enhancement is an important part of 3GPP Rel-18 research. Its main idea is to transmit and receive data simultaneously within a time slot. Such a duplex mode may be called an enhanced full-duplex mode, for example, Cross Division Duplex, or xDD, and the terminal may be called an xDD terminal.
  • xDD Cross Division Duplex
  • xDD terminal the terminal may be called an xDD terminal.
  • the embodiments of the present disclosure can be applied not only to xDD terminals, but also to legacy terminals.
  • the network device can configure the downlink time slot DL slot for the terminal.
  • the frequency domain resource corresponding to the DL slot can include a frequency band or one or more bandwidth parts BWP in a frequency band.
  • the network device can also select a part of the time slots from the configured downlink time slots, and configure the first subband for uplink transmission for the terminal in the selected time slot. For example, it can be called the uplink subband UL subband.
  • the terminal can select Perform uplink transmission in the UL subband, so that the terminal can not only perform uplink transmission on the UL subband within the frequency domain resources corresponding to the DL slot, but also perform downlink reception on frequency domain resources other than the UL subband, achieving enhanced full-duplex communication.
  • RA type 0 resource allocation type 0
  • RA type 1 resource allocation type 1
  • RA type 0 Indicates the frequency domain resources occupied by PDSCH through bitmap bitmap. Can indicate non-contiguous frequency domain resources;
  • RA Type 1 Indicates the starting position and length of the frequency domain resources occupied by PDSCH through joint coding. It is necessary to indicate continuous virtual resource blocks VRB. There are two mapping methods from virtual resource blocks to physical resource blocks PRB, interleaving mapping and non-interleaving mapping. When the interleaving mapping method is adopted, the mapping relationship from VRB to PRB is determined by the sub-block interleaver.
  • RA type 0 indicates the frequency domain resources occupied by PDSCH through bitmap
  • RA Type 1 indicates the frequency domain resources occupied by PDSCH through joint coding. In the case of indicating the same content, the bit ratio required by RA type 0 is higher than that of RA Type 1 requires relatively more bits.
  • the terminal When the terminal is configured with UL subband in the DL slot, the downlink frequency domain resources in the DL slot will be blocked by the UL subband. In this case, there will be problems if RA Type 1 is used to schedule PDSCH (because RA Type 1 requires Indicates continuous VRB), and if only RA type 0 is used to schedule PDSCH, it will cause the scheduling information to occupy relatively more bits, increasing the overhead.
  • Figure 7 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure. As shown in Figure 7, the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot.
  • the resource configuration method may include the following steps:
  • step S701 determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the first downlink frequency domain resources;
  • the first downlink frequency domain resource is regarded as a continuous virtual frequency domain resource, and the frequency domain resource corresponding to the physical downlink shared channel is configured for the terminal in the virtual frequency domain resource.
  • the network device can determine the frequency domain resources corresponding to the DL slot, such as activating the downlink bandwidth part active DL BWP, and then determine the frequency domain resources other than the UL subband in the frequency domain resources corresponding to the DL slot as the first Downlink frequency domain resources, such as resource blocks RB except UL subband in active BWP.
  • the network device may regard the determined first downlink frequency domain resource as a continuous virtual frequency domain resource, and configure the frequency domain resource corresponding to the PDSCH for the terminal in the virtual frequency domain resource.
  • the network device can regard the first downlink frequency domain resource other than UL subband in the frequency domain resource corresponding to the DL slot as a continuous virtual frequency domain resource, and then use DCI to provide the terminal with the virtual frequency domain resource in the virtual frequency domain resource.
  • Configure frequency domain resources corresponding to PDSCH According to this, even if the first downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is not continuous, it can be regarded as a continuous virtual frequency domain resource. Therefore, regardless of whether RA Type 1 is used to schedule PDSCH, Whether RA type 0 is used to schedule PDSCH, the frequency domain resources used by PDSCH pairs are configured for the terminal on continuous virtual frequency domain resources.
  • RA Type 1 is used to schedule PDSCH, there will be no problem, and there is no need to be limited to using only RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • configuring frequency domain resources corresponding to the physical downlink shared channel for the terminal in the virtual frequency domain resources includes:
  • Frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal in the virtual frequency domain resources according to resource allocation type 0 or resource allocation type 1.
  • the network device when the network device regards the first downlink frequency domain resource other than UL subband in the frequency domain resource corresponding to the DL slot as a continuous virtual frequency domain resource, the network device can either use resource allocation type 0 (RA type0 ) configure the frequency domain resources corresponding to the virtual frequency domain resource PDSCH for the terminal, or configure the frequency domain resource corresponding to the virtual frequency domain resource PDSCH for the terminal according to the resource allocation type 1 (RA type 1).
  • RA type0 resource allocation type 1
  • the base station may encode the FDRA domain in DCI differently.
  • the terminal can use the decoding method corresponding to the resource allocation type to parse the FDRA domain corresponding bits in DCI in order to accurately determine the frequency domain indicated by the FDRA domain corresponding bits in DCI in the virtual frequency domain resource. resource.
  • Figure 8 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure. As shown in Figure 8, the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot.
  • the method includes:
  • step S801 frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal in the frequency domain resources corresponding to the downlink time slot according to resource allocation type 0.
  • the network device may configure the frequency domain resource corresponding to the PDSCH for the terminal in the frequency domain resource corresponding to the DL slot. Only configure the frequency domain resources corresponding to PDSCH for the terminal in the frequency domain resources corresponding to the DL slot according to RA type 0, and do not use other resource allocation types to configure the frequency domain resources corresponding to the PDSCH for the terminal in the frequency domain resources corresponding to the DL slot.
  • the terminal may not expect (is not expect) to determine the frequency domain resources corresponding to the PDSCH in the frequency domain resources corresponding to the DL slot according to the resource allocation type other than RA type 0.
  • the terminal can only determine the frequency domain resource corresponding to the PDSCH indicated by the DCI in the frequency domain resource corresponding to the DL slot based on RA type 0, and will not determine the frequency domain resource corresponding to the PDSCH indicated by the DCI in the DL slot based on RA type 1.
  • the frequency domain resource corresponding to the PDSCH indicated in the frequency domain resource corresponding to the slot is not expect (is not expect) to determine the frequency domain resources corresponding to the PDSCH in the frequency domain resources corresponding to the DL slot according to the resource allocation type other than RA type 0.
  • the terminal can only determine the frequency domain resources corresponding to the DL slot based on RA type 0 to determine the frequency domain resources corresponding to the PDSCH, but not determine the frequency domain resources corresponding to the DL slot based on RA type 1. Determine the frequency domain resources corresponding to the PDSCH.
  • the network device can only configure the frequency domain resources corresponding to the PDSCH for the terminal in the frequency domain resources corresponding to the DL slot based on RA type 0, but not configure the terminal in the frequency domain resources corresponding to the DL slot based on RA type 1. Configure the frequency domain resources corresponding to PDSCH to avoid the problems of using RA Type 1 to schedule PDSCH.
  • Figure 9 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure.
  • the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot, where the frequency domain starting position of the uplink subband is the same as the downlink corresponding to the downlink time slot.
  • the frequency domain starting position of the frequency domain resources is the same, or the frequency domain ending position of the uplink subband is the same as the frequency domain ending position of the downlink frequency domain resource corresponding to the downlink time slot;
  • the methods include:
  • step S901 determine the frequency domain resources other than the first uplink subband among the frequency domain resources corresponding to the downlink time slot as second downlink frequency domain resources;
  • step S902 frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal in the second downlink frequency domain resources.
  • the network device can determine the frequency domain resources corresponding to the DL slot, such as activating the downlink bandwidth part active DL BWP, and then determine the frequency domain resources other than the UL subband in the frequency domain resources corresponding to the DL slot as the second Downlink frequency domain resources, such as resource blocks RB except UL subband in active BWP.
  • the frequency domain starting position of the UL subband is the same as the frequency domain starting position of the downlink frequency domain resource corresponding to the DL slot, or the frequency domain end position of the UL subband is the frequency domain end position of the downlink frequency domain resource corresponding to the DL slot.
  • the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is not cut off by the UL subband, so the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot is continuously.
  • the network equipment can directly configure the frequency domain resources corresponding to PDSCH for the terminal in the second downlink frequency domain resource except UL subband in the frequency domain resources corresponding to the DL slot through DCI, so that whether RA Type 1 is used to schedule PDSCH, or PDSCH is scheduled using RA type 0 schedules PDSCH, which indicates the frequency domain resources occupied by PDSCH on continuous downlink frequency domain resources. Therefore, even if RA Type 1 is used to schedule PDSCH, there will be no problem, and there is no need to be limited to using only RA type 0 to schedule PDSCH, which is beneficial to saving overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • configuring a frequency domain resource corresponding to a physical downlink shared channel for the terminal in the second downlink frequency domain resource includes:
  • Frequency domain resources corresponding to the physical downlink shared channel are configured for the terminal in the second downlink frequency domain resource according to resource allocation type 0 or resource allocation type 1.
  • the frequency domain starting position of the uplink subband is the same as the frequency domain starting position of the downlink frequency domain resource corresponding to the downlink time slot, or the frequency domain end position of the uplink subband is the same as the frequency domain end position of the downlink time slot.
  • the network device can use the second downlink frequency domain resource except UL subband in the frequency domain resource corresponding to the DL slot according to the resource allocation type 0 (RA type0).
  • RA type 1 resource allocation type 1
  • the base station can use different encoding methods for the FDRA domain in DCI.
  • the terminal can adopt the same resource allocation type.
  • the corresponding decoding method analyzes the corresponding bits of the FDRA domain in DCI to accurately determine the frequency domain resources indicated by the corresponding bits of the FDRA domain in DCI.
  • Figure 10 is a schematic flow chart of a resource configuration method according to an embodiment of the present disclosure. As shown in Figure 10, the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot.
  • the method includes:
  • step S1001 when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband, rate matching is performed on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband.
  • the network device when configuring the terminal to perform uplink transmission on the first uplink subband in the downlink time slot, can determine whether the frequency domain resources corresponding to the PDSCH overlap with the UL subband. If they overlap, the network device can determine according to UL subband performs rate matching on the frequency domain resources corresponding to PDSCH. For example, it only detects and sends PDSCH on REs where UL subband does not exist. This method can ensure the integrity of PDSCH to the greatest extent.
  • the network device Since the network device can rate match the frequency domain resources corresponding to the PDSCH according to the UL subband, the network device will not send PDSCH on the RE corresponding to the UL subband (the terminal will not detect or receive PDSCH on the RE corresponding to the UL subband). , thereby overcoming the problems caused by using RA Type 1 to schedule PDSCH on discontinuous frequency domain resources. Therefore, network equipment can either use RA Type 1 to schedule PDSCH or RA type 0 to schedule PDSCH. Even if RA Type 1 is used to schedule PDSCH, there will be no problem. Therefore, there is no need to be limited to only using RA type 0 to schedule PDSCH, which is beneficial to savings. overhead. Furthermore, this implementation can also improve the resource utilization efficiency when using RA type 0, thereby improving system performance.
  • the method further includes: configuring frequency domain resources corresponding to the physical downlink shared channel for the terminal in the downlink frequency domain resources according to resource allocation type 0 or resource allocation type 1.
  • the network device when the network device performs rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband, it will not send or receive PDSCH on the RE corresponding to the UL subband (nor will the terminal Detect or receive PDSCH on the RE corresponding to the UL subband), thereby overcoming the problem caused by using RA Type 1 to schedule PDSCH on discontinuous frequency domain resources. Therefore, the network equipment can configure the terminal according to the resource allocation type 0 (RA type 0). The frequency domain resources corresponding to PDSCH can also be configured for the terminal according to the resource allocation type 1 (RA type 1).
  • the base station can use different encoding methods for the FDRA domain in DCI. Therefore, for different resource allocation types, the terminal can use decoding corresponding to the resource allocation type.
  • the method analyzes the corresponding bits of the FDRA domain in the DCI in order to accurately determine the frequency domain resources indicated by the corresponding bits of the FDRA domain in the DCI.
  • the present disclosure also provides embodiments of a resource determination apparatus and a resource configuration apparatus.
  • Embodiments of the present disclosure propose several resource determination devices.
  • the resource determination device shown in this embodiment can be applied to terminals, which include but are not limited to mobile phones, tablets, wearable devices, sensors, Internet of Things devices (such as NB-IoT, MTC, eMTC) and other communication devices.
  • the terminal can communicate with network equipment, which includes but is not limited to network equipment in 4G, 5G, 6G and other communication systems, such as base stations, core networks, etc.
  • duplex communication can be performed between the terminal and the network device, for example, full-duplex communication or half-duplex communication can be performed.
  • Duplex mode enhancement is an important part of 3GPP Rel-18 research. Its main idea is to transmit and receive data simultaneously within a time slot. Such a duplex mode may be called an enhanced full-duplex mode, for example, Cross Division Duplex, or xDD, and the terminal may be called an xDD terminal.
  • xDD Cross Division Duplex
  • xDD terminal the terminal may be called an xDD terminal.
  • the embodiments of the present disclosure can be applied not only to xDD terminals, but also to legacy terminals.
  • the network device can configure the downlink time slot DL slot for the terminal.
  • the frequency domain resource corresponding to the DL slot can include a frequency band or one or more bandwidth parts BWP in a frequency band.
  • the network device can also select a part of the time slots from the configured downlink time slots, and configure the first subband for uplink transmission for the terminal in the selected time slot. For example, it can be called the uplink subband UL subband.
  • the terminal can select Perform uplink transmission in the UL subband, so that the terminal can not only perform uplink transmission on the UL subband within the frequency domain resources corresponding to the DL slot, but also perform downlink reception on frequency domain resources other than the UL subband, achieving enhanced full-duplex communication.
  • Figure 11 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure. As shown in Figure 11, the terminal is configured with the first subband used for uplink transmission in the downlink time slot, and the device includes:
  • the processing module 1101 is configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the first downlink frequency domain resources;
  • the first downlink frequency domain resource as a continuous virtual frequency domain resource, and determining the frequency domain resource corresponding to the physical downlink shared channel in the virtual frequency domain resource according to the downlink control information.
  • the processing module is configured to determine the frequency domain resource indicated by the frequency domain resource allocation field in the virtual frequency domain resource in the downlink control information according to resource allocation type 0 or resource allocation type 1.
  • Figure 12 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure. As shown in Figure 12, the terminal is configured with the first subband used for uplink transmission in the downlink time slot, and the device includes:
  • the processing module 1201 is configured not to expect to determine the frequency domain resources corresponding to the physical downlink shared channel in the frequency domain resources corresponding to the downlink time slot based on resource allocation types other than resource allocation type 0.
  • Figure 13 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure.
  • the terminal is configured with the first subband used for uplink transmission in the downlink time slot, wherein the frequency domain starting position of the uplink subband is consistent with the downlink time slot.
  • the frequency domain starting position of the corresponding downlink frequency domain resources is the same, or the frequency domain ending position of the uplink subband is the same as the frequency domain ending position of the downlink frequency domain resource corresponding to the downlink time slot;
  • the device includes:
  • the processing module 1301 is configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the second downlink frequency domain resource;
  • the processing module is configured to determine the frequency domain indicated by the frequency domain resource allocation domain in the downlink control information in the second downlink frequency domain resource according to resource allocation type 0 or resource allocation type 1. resource.
  • Figure 14 is a schematic block diagram of a resource determination device according to an embodiment of the present disclosure. As shown in Figure 14, the terminal is configured with the first subband used for uplink transmission in the downlink time slot, and the device includes:
  • the processing module 1401 is configured to perform rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband.
  • Embodiments of the present disclosure propose several resource configuration devices.
  • the resource configuration device shown in this embodiment can be applied to network equipment.
  • the network equipment can communicate with a terminal.
  • the network equipment includes but is not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the terminal Including but not limited to mobile phones, tablets, wearable devices, sensors, Internet of Things devices (such as NB-IoT, MTC, eMTC) and other communication devices.
  • duplex communication can be performed between the terminal and the network device, for example, full-duplex communication or half-duplex communication can be performed.
  • Duplex mode enhancement is an important part of 3GPP Rel-18 research. Its main idea is to transmit and receive data simultaneously within a time slot. Such a duplex mode may be called an enhanced full-duplex mode, for example, Cross Division Duplex, or xDD, and the terminal may be called an xDD terminal.
  • xDD Cross Division Duplex
  • xDD terminal the terminal may be called an xDD terminal.
  • the embodiments of the present disclosure can be applied not only to xDD terminals, but also to legacy terminals.
  • the network device can configure the downlink time slot DL slot for the terminal.
  • the frequency domain resource corresponding to the DL slot can include a frequency band or one or more bandwidth parts BWP in a frequency band.
  • the network device can also select a part of the time slots from the configured downlink time slots, and configure the first subband for uplink transmission for the terminal in the selected time slot. For example, it can be called the uplink subband UL subband.
  • the terminal can select Perform uplink transmission in the UL subband, so that the terminal can not only perform uplink transmission on the UL subband within the frequency domain resources corresponding to the DL slot, but also perform downlink reception on frequency domain resources other than the UL subband, achieving enhanced full-duplex communication.
  • Figure 15 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure. As shown in Figure 15, the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot.
  • the resource configuration device may include:
  • the processing module 1501 is configured to perform rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband.
  • the processing module is further configured to determine, according to resource allocation type 0 or resource allocation type 1, that the frequency domain resource allocation field in the downlink control information is in the frequency domain resource corresponding to the downlink time slot. Frequency domain resources corresponding to the physical downlink shared channel.
  • Figure 16 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure. As shown in Figure 16, the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot.
  • the device includes:
  • the processing module 1601 is configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the first downlink frequency domain resources;
  • the first downlink frequency domain resource is regarded as a continuous virtual frequency domain resource, and the frequency domain resource corresponding to the physical downlink shared channel is configured for the terminal in the virtual frequency domain resource.
  • the processing module is configured to configure frequency domain resources corresponding to the physical downlink shared channel for the terminal in the virtual frequency domain resources according to resource allocation type 0 or resource allocation type 1.
  • Figure 17 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure. As shown in Figure 17, the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot.
  • the device includes:
  • the processing module 1701 is configured to configure frequency domain resources corresponding to the physical downlink shared channel for the terminal in the frequency domain resources corresponding to the downlink time slot according to resource allocation type 0.
  • Figure 18 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure.
  • the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot, where the frequency domain starting position of the uplink subband is the same as the downlink time slot.
  • the frequency domain starting position of the corresponding downlink frequency domain resources is the same, or the frequency domain ending position of the uplink subband is the same as the frequency domain ending position of the downlink frequency domain resource corresponding to the downlink time slot;
  • the device includes:
  • the processing module 1801 is configured to determine the frequency domain resources other than the first uplink subband in the frequency domain resources corresponding to the downlink time slot as the second downlink frequency domain resource;
  • the processing module is configured to configure frequency domain resources corresponding to the physical downlink shared channel for the terminal in the second downlink frequency domain resource according to resource allocation type 0 or resource allocation type 1. .
  • Figure 19 is a schematic block diagram of a resource configuration device according to an embodiment of the present disclosure.
  • the network device configures the first uplink subband for uplink transmission for the terminal in the downlink time slot, and the device includes:
  • the processing module 1901 is configured to perform rate matching on the frequency domain resources corresponding to the physical downlink shared channel according to the uplink subband when the frequency domain resources corresponding to the physical downlink shared channel overlap with the uplink subband.
  • the processing module is further configured to configure frequency domain resources corresponding to the physical downlink shared channel for the terminal in the downlink frequency domain resources according to resource allocation type 0 or resource allocation type 1.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the modules described as separate components may or may not be physically separated.
  • the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • An embodiment of the present disclosure also provides a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the resource determination method described in any of the above embodiments is implemented .
  • An embodiment of the present disclosure also provides a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the resource configuration method described in any of the above embodiments is implemented .
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the resource determination method described in any of the above embodiments are implemented.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the resource configuration method described in any of the above embodiments are implemented.
  • FIG 19 is a schematic block diagram of a device 1900 for resource configuration according to an embodiment of the present disclosure.
  • Apparatus 1900 may be provided as a base station.
  • apparatus 1900 includes a processing component 1922, which may further include one or more processors, a wireless transmit/receive component 1924, an antenna component 1926, and a signal processing portion specific to the wireless interface.
  • processors in the processing component 1922 may be configured to implement the resource configuration method described in any of the above embodiments.
  • Figure 20 is a schematic block diagram of an apparatus 2000 for resource determination according to an embodiment of the present disclosure.
  • the device 2000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • device 2000 may include one or more of the following components: processing component 2002, memory 2004, power supply component 2006, multimedia component 2008, audio component 2010, input/output (I/O) interface 2012, sensor component 2014, and Communication Components 2016.
  • Processing component 2002 generally controls the overall operations of device 2000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2002 may include one or more processors 2020 to execute instructions to complete all or part of the steps of the resource determination method described above.
  • processing component 2002 may include one or more modules that facilitate interaction between processing component 2002 and other components.
  • processing component 2002 may include a multimedia module to facilitate interaction between multimedia component 2008 and processing component 2002.
  • Memory 2004 is configured to store various types of data to support operations at device 2000. Examples of such data include instructions for any application or method operating on device 2000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2004 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 2006 provides power to various components of device 2000.
  • Power supply components 2006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2000.
  • Multimedia component 2008 includes a screen that provides an output interface between the device 2000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 2008 includes a front-facing camera and/or a rear-facing camera. When the device 2000 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 2010 is configured to output and/or input audio signals.
  • audio component 2010 includes a microphone (MIC) configured to receive external audio signals when device 2000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 2004 or sent via communications component 2016 .
  • audio component 2010 also includes a speaker for outputting audio signals.
  • the I/O interface 2012 provides an interface between the processing component 2002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 2014 includes one or more sensors that provide various aspects of status assessment for device 2000 .
  • the sensor component 2014 can detect the open/closed state of the device 2000, the relative positioning of components, such as the display and keypad of the device 2000, and the sensor component 2014 can also detect the position change of the device 2000 or a component of the device 2000. , the presence or absence of user contact with device 2000 , device 2000 orientation or acceleration/deceleration and temperature changes of device 2000 .
  • Sensor assembly 2014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2016 is configured to facilitate wired or wireless communication between apparatus 2000 and other devices.
  • the device 2000 can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 2016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 2016 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above resource determination method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above resource determination method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2004 including instructions, which can be executed by the processor 2020 of the device 2000 to complete the above resource determination method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及资源确定、资源配置方法和装置、通信装置及存储介质,其中,资源确定方法包括:将下行时隙对应的频域资源中第一上行子带以外的频域资源确定为第一下行频域资源(S101);将第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在虚拟频域资源中确定物理下行共享信道对应的频域资源(S102)。根据本公开,即使DL slot对应的频域资源中除UL subband以外的第一下行频域资源并不是连续的,也可以被视为连续的虚拟频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的虚拟频域资源上指示PDSCH占用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。

Description

资源确定、资源配置方法和装置、通信装置及存储介质 技术领域
本公开涉及通信技术领域,具体而言,涉及资源确定方法、资源配置方法、资源确定装置、资源配置装置、通信装置和计算机可读存储介质。
背景技术
对于终端和基站的通信过程,为了使得终端支持双工通信,基站可以为终端在下行(Downlink,DL)时隙slot中配置用于上行数据传输的上行(Uplink,UL)子带subband,并且可以在UL subband对应的时域范围内调度终端的上行数据传输。而在UL subband所在的DL slot中,终端也可以进行下行数据接收,从而可以实现双工通信。
由于在DL slot中存在UL subband,UL subband会将DL slot对应的下行频域资源隔断,从而导致一些问题。
发明内容
有鉴于此,本公开的实施例提出了资源确定方法、资源配置方法、资源确定装置、资源配置装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种资源确定方法,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;将所述第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源。
根据本公开实施例的第二方面,提出一种资源确定方法,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:不期待根据资源分配类型0以外的资源分配类型在所述下行时隙对应的频域资源中确定物理下行共享信道对应的频域资源。
根据本公开实施例的第三方面,提出一种资源确定方法,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,其中,所述上行子带的频域起始 位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;所述方法包括:将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源。
根据本公开实施例的第四方面,提出一种资源确定方法,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
根据本公开实施例的第五方面,提出一种资源配置方法,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,所述方法包括:将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;将所述第一下行频域资源视为连续的虚拟频域资源,在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源。
根据本公开实施例的第六方面,提出一种资源配置方法,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,所述方法包括:根据资源分配类型0在所述下行时隙对应的频域资源中为所述终端配置物理下行共享信道对应的频域资源。
根据本公开实施例的第七方面,提出一种资源配置方法,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;所述方法包括:将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源。
根据本公开实施例的第八方面,提出一种资源配置方法,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,所述方法包括:在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
根据本公开实施例的第九方面,提出一种资源确定装置,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;以及将所述第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源。
根据本公开实施例的第十方面,提出一种资源确定装置,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:处理模块,被配置为不期待根据资源分配类型0以外的资源分配类型在所述下行时隙对应的频域资源中确定物理下行共享信道对应的频域资源。
根据本公开实施例的第十一方面,提出一种资源确定装置,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;所述装置包括:处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;以及根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源。
根据本公开实施例的第十二方面,提出一种资源确定装置,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:处理模块,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
根据本公开实施例的第十三方面,提出一种资源配置装置,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,所述装置包括:处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;以及将所述第一下行频域资源视为连续的虚拟频域资源,在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源。
根据本公开实施例的第十四方面,提出一种资源配置装置,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,所述装置包括:处理模块,被配置为根据资源分配类型0在所述下行时隙对应的频域资源中为所述终端配置物理下行共享信道对应的频域资源。
根据本公开实施例的第十五方面,提出一种资源配置装置,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;所述装置包括:处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;以及在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源。
根据本公开实施例的第十六方面,提出一种资源配置装置,适用于网络设备,所述网络设备在下行时隙内为所述终端配置了用于上行传输的第一子带,所述装置包括:
处理模块,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
根据本公开实施例的第十七方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一资源确定方法。
根据本公开实施例的第十八方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一资源配置方法。
根据本公开实施例的第十九方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一资源确定方法中的步骤。
根据本公开实施例的第二十方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实上述任一资源配置方法中的步骤。
根据本公开的实施例,终端可以将DL slot对应的频域资源中除UL subband以外的第一下行频域资源视为连续的虚拟频域资源,进而根据DCI在虚拟频域资源中确定PDSCH对应的频域资源。据此,即使DL slot对应的频域资源中除UL subband以外的第一下行频域资源并不是连续的,也可以被视为连续的虚拟频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的虚拟频域资源上指示PDSCH占用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。 进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
或者,终端不期待根据RA type 0以外的资源分配类型(例如RA type 1)确定DL slot对应的频域资源中确定PDSCH对应的频域资源,也即仅根据RA type 0确定DL slot对应的频域资源中确定PDSCH对应的频域资源,而不会根据RA type 1确定DL slot对应的频域资源中确定PDSCH对应的频域资源,从而避免采用RA Type 1调度PDSCH所存在的问题。
或者,由于UL subband的频域起始位置与DL slot对应的下行频域资源的频域起始位置相同,或者所述UL subband的频域结束位置与DL slot对应的下行频域资源的频域结束位置相同,那么DL slot对应的频域资源中除UL subband以外的第二下行频域资源就没有被UL subband隔断,所以DL slot对应的频域资源中除UL subband以外的第二下行频域资源就是连续的。
因此,终端可以直接根据DCI在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中确定PDSCH对应的频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的下行频域资源上指示PDSCH占用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
或者,终端可以根据UL subband对PDSCH对应的频域资源进行速率匹配,而通过速率匹配并不会在UL subband对应的RE上检测或接收PDSCH,从而克服采用RA Type 1在不连续的频域资源上调度PDSCH产生的问题。因此终端既可以采用RA Type 1调度PDSCH,也可以采用RA type 0调度PDSCH,即使采用RA Type 1调度PDSCH也不会存在问题,从而可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A至图1C是根据本公开的实施例示出的几种上行子带的示意图。
图2是根据本公开的实施例示出的一种资源确定方法的示意流程图。
图3A是根据本公开的实施例示出的一种虚拟频域资源的示意图。
图3B是根据本公开的实施例示出的一种物理下行共享信道对应的频域资源的示意图。
图4是根据本公开的实施例示出的一种资源确定方法的示意流程图。
图5是根据本公开的实施例示出的一种资源确定方法的示意流程图。
图6是根据本公开的实施例示出的一种资源确定方法的示意流程图。
图7是根据本公开的实施例示出的一种资源配置方法的示意流程图。
图8是根据本公开的实施例示出的一种资源配置方法的示意流程图。
图9是根据本公开的实施例示出的一种资源配置方法的示意流程图。
图10是根据本公开的实施例示出的一种资源配置方法的示意流程图。
图11是根据本公开的实施例示出的一种资源确定装置的示意框图。
图12是根据本公开的实施例示出的一种资源确定装置的示意框图。
图13是根据本公开的实施例示出的一种资源确定装置的示意框图。
图14是根据本公开的实施例示出的一种资源确定装置的示意框图。
图15是根据本公开的实施例示出的一种资源配置装置的示意框图。
图16是根据本公开的实施例示出的一种资源配置装置的示意框图。
图17是根据本公开的实施例示出的一种资源配置装置的示意框图。
图18是根据本公开的实施例示出的一种资源配置装置的示意框图。
图19是根据本公开的实施例示出的一种用于资源确定的装置的示意框图。
图20是根据本公开的实施例示出的一种用于资源配置的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一下行频域资源也可以被称为第二下行频域资源,类似地,第二下行频域资源也可以被称为第一下行频域资源。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
本公开的实施例提出几种资源确定方法。本实施例所示的资源确定方法可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备(例如NB-IoT(窄带宽物联网,Narrow Band Internet of Things)、MTC(Machine Type Communication,机器类型通信)、eMTC(EnhanceMachine Type Communication,增强的机器类型通信))等通信装置。所述终端可以与网络设备通信,所述网络设备包括但不限于4G、5G、6G等通信系统中的网络设备,例如基站、核心网等。
在一个实施例中,终端与网络设备之间可以进行双工通信,例如可以进行全双工通信,也可以进行半双工通信。
双工模式增强是3GPP Rel-18研究的重要内容,其主要思想是在一个时隙内同时进行数据的收发。这样的双工模式可以被称为增强全双工模式,例如,Cross Division Duplex,或者xDD,所述终端可以称作xDD终端。当然,本公开的实施例不仅可以适用于xDD终端,还可以适用于传统(legacy)终端。
网络设备可以为终端配置下行时隙DL slot,DL slot对应的频域资源可以包括一个频段或者一个频段中的一个或多个带宽部分(BandWidth Part,BWP)。网络设 备还可以从所配置的下行时隙中选择一部分时隙,在所选择的时隙内为终端配置用于上行传输的第一子带,例如可以称作上行子带UL subband,终端可以选择在UL subband中进行上行传输,从而使得终端在DL slot对应的频域资源内,既可以在UL subband进行上行传输,又可以在UL subband以外的频域资源上进行下行接收,实现增强全双工通信。
图1A至图1C是根据本公开的实施例示出的几种上行子带的示意图。
以DL slot对应的频域资源包括一个BWP为例。
在一个实施例中,如图1A所示,在DL slot中,UL subband对应的频域资源与用于下行接收的频域资源不重叠;
在一个实施例中,如图1B所示,在DL slot中,UL subband对应的频域资源与用于下行接收的频域资源完全重叠;
在一个实施例中,如图1C所示,在DL slot中,UL subband对应的频域资源与用于下行接收的频域资源部分重叠。
以下实施例主要在图1A所示UL subband的情况下进行示例性说明。
目前对于物理下行共享信道PDSCH(Physical Downlink Shared CHannel)频域资源的分配方式主要包括两种,一种是根据资源分配类型0(RA type 0),另一种资源分配类型1(RA type 1),其中RA表示资源分配Resource Allocation。
RA type 0:通过位图bitmap指示PDSCH占用的频域资源。可以指示非连续的频域资源;
RA Type 1:通过联合编码的方式指示PDSCH占用的频域资源的起始位置和长度。需要指示连续的虚拟资源块VRB(Virtual Resource Blocks),虚拟资源块到物理资源块PRB(Physical Resource Blocks)具有两种映射方式,交织(interleaving)映射和非交织(non-interleaving)映射。采用交织映射方式时,VRB到PRB的映射关系通过子块交织器确定。
由于RA type 0是通过bitmap指示PDSCH占用的频域资源,RA Type 1是通过联合编码的方式指示PDSCH占用的频域资源,在指示相同内容的情况下,RA type 0所需的比特比RA Type 1所需的比特相对较多。
而当终端在DL slot中被配置了UL subband时,DL slot中的下行频域资源会被 UL subband隔断,在这种情况下如果采用RA Type 1调度PDSCH将会存在问题(因为RA Type 1需要指示连续的VRB),而如果只采用RA type 0调度PDSCH,则会导致调度信息占用的比特相对较多,增加了开销。
图2是根据本公开的实施例示出的一种资源确定方法的示意流程图。如图2所示,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:
在步骤S201中,将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;
在步骤S202中,将所述第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源。
在一个实施例中,终端可以确定DL slot对应的频域资源,例如激活下行带宽部分active DL BWP,进而将DL slot对应的频域资源中所述UL subband以外的频域资源确定为第一下行频域资源,例如active BWP中除UL subband以外的资源块RB。
进而终端可以将确定的第一下行频域资源视为连续的虚拟频域资源,然后根据下行控制信息DCI(Downlink Control Information)在虚拟频域资源中确定PDSCH对应的频域资源。
在本实施例中,终端可以将DL slot对应的频域资源中除UL subband以外的第一下行频域资源视为连续的虚拟频域资源,进而根据DCI在虚拟频域资源中确定PDSCH对应的频域资源。据此,即使DL slot对应的频域资源中除UL subband以外的第一下行频域资源并不是连续的,也可以被视为连续的虚拟频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的虚拟频域资源上指示PDSCH占用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
可选地,所述根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源包括:
根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述虚拟频域资源中所指示的频域资源。
在一个实施例中,终端在将DL slot对应的频域资源中除UL subband以外的第一下行频域资源视为连续的虚拟频域资源时,既可以根据资源分配类型0(RA type 0) 确定DCI中频域资源分配FDRA(Frequency Domain Resource Assignment)域在虚拟频域资源中所指示的频域资源,也可以根据资源分配类型1(RA type 1)确定DCI中FDRA域在虚拟频域资源中所指示的频域资源。
其中,终端确定DCI中FDRA域在虚拟频域资源中所指示的频域资源,可以对DCI中FDRA域对应比特进行解析,以确定DCI中FDRA域对应比特所指示的频域资源。而基于不同的资源分配类型,例如RA type 0和RA type 1,基站对于DCI中FDRA域的编码方式可以是不同的,因此针对不同的资源分配类型,终端可以采用与资源分配类型对应的解码方式解析DCI中FDRA域对应比特,以便准确确定DCI中FDRA域对应比特在虚拟频域资源中所指示的频域资源。
相对应地,网络设备既可以根据RA type 0在虚拟频域资源中为终端配置PDSCH对应的频域资源,也可以根据RA type 1在虚拟频域资源中为终端配置PDSCH对应的频域资源。
而关于网络设备是根据RA type 0在虚拟频域资源中为终端配置PDSCH对应的频域资源,还是根据RA type 1在虚拟频域资源中为终端配置PDSCH对应的频域资源,终端可以根据网络设备的指示确定,例如可以根据网络设备发送的无线资源控制RRC(Radio Resource Control)信令确定,也可以通过其他方式确定,对此,本公开不作限制。
图3A是根据本公开的实施例示出的一种虚拟频域资源的示意图。图3B是根据本公开的实施例示出的一种物理下行共享信道对应的频域资源的示意图。
DL slot对应的频域资源为active DL BWP,例如active DL BWP对应的RB为RB#0至RB#99,共100个RB。
在DL slot内,终端被配置了UL subband,UL subband对应40个RB,例如对应的RB为RB#10至RB#49。
如图3A所示,可以在下行时隙对应的频域资源中确定上行子带以外的下行频域资源,也即RB#0至RB#99中除RB#10至RB#49以外的RB,为RB#0至RB#9和RB#50至RB#99,这两段下行频域资源由于被UL subband隔断而导致不连续。
对于这种情况下,本实施例可以将下行频域资源视为连续的虚拟频域资源,例如图3A所示,可以将RB#9和RB#50视为连续的两个RB,从而将RB#0至RB#9和RB#50至RB#99这两段下行频域资源视为一段连续的虚拟频域资源,其中,虚拟频域 资源包括的VRB的标识可以是连续的,例如为VRB#0至VRB#59。
在这种情况下,既可以根据RA type 0确定DCI中FDRA域在虚拟频域资源中所指示的频域资源,可以根据RA type 1确定DCI中FDRA域在虚拟频域资源中所指示的频域资源。
如图3B所示,例如网络设备对于PDSCH频域资源的分配方式为RA type 1,FDRA域中的起始和长度指示器值SLIV(Start Length Indicator Value)所指示的频域资源范围为VRB#0至VRB#19,那么可以在虚拟频域资源中确定FDRA域所指示的频域资源,也即虚拟频域资源中的前20个RB,为RB#0至RB#9以及RB#50至RB#59。
其中,VRB到PRB的映射方式可以为非交织映射,也可以为交织映射,交织映射的情况下可以通过子块交织器确定VRB到PRB的映射关系,具体地,可以通过子块交织器在虚拟频域资源中对VRB到PRB进行交织。
图4是根据本公开的实施例示出的一种资源确定方法的示意流程图。如图4所示,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:
在步骤S401中,不期待根据资源分配类型0以外的资源分配类型在所述下行时隙对应的频域资源中确定物理下行共享信道对应的频域资源。
在一个实施例中,所述终端被配置了在下行时隙内用于上行传输的第一子带的情况下,在DL slot对应的频域资源中确定PDSCH对应的频域资源时,可以不期待(is not expect)根据RA type 0以外的资源分配类型在DL slot对应的频域资源中确定PDSCH对应的频域资源。终端在接收到网络设备发送的DCI后,终端可以仅根据RA type 0确定DCI在DL slot对应的频域资源中所指示的PDSCH对应的频域资源,而不会根据RA type 1确定DCI在DL slot对应的频域资源中所指示的PDSCH对应的频域资源。
由于在使用RA Type 1调度PDSCH时,需要指示连续的VRB,因此当终端在DL slot中被配置了UL subband时而导致DL slot中的频域资源被UL subband隔断,采用RA Type 1调度PDSCH将会存在问题。
根据本实施例,终端不期待根据RA type 0以外的资源分配类型(例如RA type1)确定DL slot对应的频域资源中确定PDSCH对应的频域资源,也即仅根据RA type0确定DL slot对应的频域资源中确定PDSCH对应的频域资源,而不会根据RA type 1确定DL slot对应的频域资源中确定PDSCH对应的频域资源,从而避免采用RA Type 1调度PDSCH所存在的问题。
在一个实施例中,可以通过预定义规则规定,当由于在DL slot中配置UL subband而导致DL slot对应的频域资源不连续时,终端根据RA type 0确定DL slot对应的频域资源中确定PDSCH对应的频域资源。
据此,网络设备可以不必向终端指示,是根据RA type 0为终端配置PDSCH对应的频域资源,还是根据RA type 1为终端配置PDSCH对应的频域资源,终端在确定UL subband而导致DL slot对应的频域资源不连续时,就根据RA type 0确定DL slot对应的频域资源中确定PDSCH对应的频域资源,有利于节约网络设备指示的开销。
图5是根据本公开的实施例示出的一种资源确定方法的示意流程图。在图5所示实施例中,所述终端被配置了在下行时隙内用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
如图5所示,所述方法包括:
在步骤S501中,将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
在步骤S502中,根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源。
在一个实施例中,终端可以确定DL slot对应的频域资源,例如激活下行带宽部分active DL BWP,进而将DL slot对应的频域资源中所述UL subband以外的频域资源确定为第二下行频域资源,例如active BWP中除UL subband以外的资源块RB。
由于UL subband的频域起始位置与DL slot对应的下行频域资源的频域起始位置相同,或者所述UL subband的频域结束位置与DL slot对应的下行频域资源的频域结束位置相同,那么DL slot对应的频域资源中除UL subband以外的第二下行频域资源就没有被UL subband隔断,所以DL slot对应的频域资源中除UL subband以外的第二下行频域资源就是连续的。
因此,终端可以直接根据DCI在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中确定PDSCH对应的频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的下行频域资源上指示PDSCH 占用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
可选地,所述根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源包括:
根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述第二下行频域资源中所指示的频域资源。
在一个实施例中,在上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同的情况下,终端既可以根据资源分配类型0(RA type 0)确定DCI中频域资源分配FDRA域在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中所指示的频域资源,也可以根据资源分配类型1(RA type 1)确定DCI中FDRA域在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中所指示的频域资源。
其中,基于不同的资源分配类型,例如RA type 0和RA type 1,基站对于DCI中FDRA域的编码方式可以是不同的,因此针对不同的资源分配类型,终端可以采用与资源分配类型对应的解码方式解析DCI中FDRA域对应比特,以便准确确定DCI中FDRA域对应比特在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中所指示的频域资源。
图6是根据本公开的实施例示出的一种资源确定方法的示意流程图。如图6所示,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:
在步骤S601中,在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配RM(Rate Matching)。
在一个实施例中,所述终端被配置了在下行时隙内用于上行传输的第一子带的情况下,可以确定(例如根据网络设备发送的DCI确定)PDSCH对应的频域资源与UL subband是否重叠,若重叠,终端可以根据UL subband对PDSCH对应的频域资源进行速率匹配,例如仅在不存在UL subband的RE上检测以及接收PDSCH,这种方式可以最大程度上确保PDSCH的完整性。
由于终端可以根据UL subband对PDSCH对应的频域资源进行速率匹配,而通过速率匹配并不会在UL subband对应的RE上检测或接收PDSCH,从而克服采用RA Type 1在不连续的频域资源上调度PDSCH产生的问题。因此终端既可以采用RA Type1调度PDSCH,也可以采用RA type 0调度PDSCH,即使采用RA Type 1调度PDSCH也不会存在问题,从而可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
可选地,所述方法还包括:根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述下行时隙对应的频域资源中所述物理下行共享信道对应的频域资源。
在一个实施例中,终端在根据上行子带对物理下行共享信道对应的频域资源进行速率匹配的情况下,由于并不会在UL subband对应的RE上检测或接收PDSCH,从而克服采用RA Type 1在不连续的频域资源上调度PDSCH产生的问题,因此终端既可以根据资源分配类型0(RA type 0)确定DCI中频域资源分配FDRA域在DL slot对应的频域资源中除UL subband以外的下行频域资源中所指示的频域资源,也可以根据资源分配类型1(RA type 1)确定DCI中FDRA域在DL slot对应的频域资源中除UL subband以外的下行频域资源中所指示的频域资源。
其中,基于不同的资源分配类型,例如RA type 0和RA type 1,基站对于DCI中FDRA域的编码方式可以是不同的,因此针对不同的资源分配类型,终端可以采用与资源分配类型对应的解码方式解析DCI中FDRA域对应比特,以便准确确定DCI中FDRA域对应比特所指示的频域资源。
本公开的实施例提出了几种资源配置方法。本实施例所示的资源配置方法可以适用于网络设备,所述网络设备可以与终端通信,所述网络设备包括但不限于4G基站、5G基站、6G基站等通信系统中的基站,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备(例如NB-IoT、MTC、eMTC)等通信装置。
在一个实施例中,终端与网络设备之间可以进行双工通信,例如可以进行全双工通信,也可以进行半双工通信。
双工模式增强是3GPP Rel-18研究的重要内容,其主要思想是在一个时隙内同时进行数据的收发。这样的双工模式可以被称为增强全双工模式,例如,Cross Division  Duplex,或者xDD,所述终端可以称作xDD终端。当然,本公开的实施例不仅可以适用于xDD终端,还可以适用于传统(legacy)终端。
网络设备可以为终端配置下行时隙DL slot,DL slot对应的频域资源可以包括一个频段或者一个频段中的一个或多个带宽部分BWP。网络设备还可以从所配置的下行时隙中选择一部分时隙,在所选择的时隙内为终端配置用于上行传输的第一子带,例如可以称作上行子带UL subband,终端可以选择在UL subband中进行上行传输,从而使得终端在DL slot对应的频域资源内,既可以在UL subband进行上行传输,又可以在UL subband以外的频域资源上进行下行接收,实现增强全双工通信。
以下实施例主要在上述图1A所示UL subband的情况下进行示例性说明。
目前对于物理下行共享信道PDSCH频域资源的分配方式主要包括两种,一种是根据资源分配类型0(RA type 0),另一种资源分配类型1(RA type 1),其中RA表示资源分配Resource Allocation。
RA type 0:通过位图bitmap指示PDSCH占用的频域资源。可以指示非连续的频域资源;
RA Type 1:通过联合编码的方式指示PDSCH占用的频域资源的起始位置和长度。需要指示连续的虚拟资源块VRB,虚拟资源块到物理资源块PRB具有两种映射方式,交织(interleaving)映射和非交织(non-interleaving)映射。采用交织映射方式时,VRB到PRB的映射关系通过子块交织器确定。
由于RA type 0是通过bitmap指示PDSCH占用的频域资源,RA Type 1是通过联合编码的方式指示PDSCH占用的频域资源,在指示相同内容的情况下,RA type 0所需的比特比RA Type 1所需的比特相对较多。
而当终端在DL slot中被配置了UL subband时,DL slot中的下行频域资源会被UL subband隔断,在这种情况下如果采用RA Type 1调度PDSCH将会存在问题(因为RA Type 1需要指示连续的VRB),而如果只采用RA type 0调度PDSCH,则会导致调度信息占用的比特相对较多,增加了开销。
图7是根据本公开的实施例示出的一种资源配置方法的示意流程图。如图7所示,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述资源配置方法可以包括以下步骤:
在步骤S701中,将所述下行时隙对应的频域资源中所述第一上行子带以外的 频域资源确定为第一下行频域资源;
在步骤S702中,将所述第一下行频域资源视为连续的虚拟频域资源,在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源。
在一个实施例中,网络设备可以确定DL slot对应的频域资源,例如激活下行带宽部分active DL BWP,进而将DL slot对应的频域资源中所述UL subband以外的频域资源确定为第一下行频域资源,例如active BWP中除UL subband以外的资源块RB。
进而网络设备可以将确定的第一下行频域资源视为连续的虚拟频域资源,在虚拟频域资源中为终端配置PDSCH对应的频域资源。
在本实施例中,网络设备可以将DL slot对应的频域资源中除UL subband以外的第一下行频域资源视为连续的虚拟频域资源,进而通过DCI在虚拟频域资源中为终端配置PDSCH对应的频域资源。据此,即使DL slot对应的频域资源中除UL subband以外的第一下行频域资源并不是连续的,也可以被视为连续的虚拟频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的虚拟频域资源上为终端配置PDSCH对用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
可选地,所述在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源包括:
根据资源分配类型0或资源分配类型1在所述虚拟频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
在一个实施例中,网络设备在将DL slot对应的频域资源中除UL subband以外的第一下行频域资源视为连续的虚拟频域资源时,既可以根据资源分配类型0(RA type0)为终端配置虚拟频域资源PDSCH对应的频域资源,也可以根据资源分配类型1(RA type 1)为终端配置虚拟频域资源PDSCH对应的频域资源。
其中,基于不同的资源分配类型,例如RA type 0和RA type 1,基站对于DCI中FDRA域的编码方式可以是不同的。相对应地,针对不同的资源分配类型,终端可以采用与资源分配类型对应的解码方式解析DCI中FDRA域对应比特,以便准确确定DCI中FDRA域对应比特在虚拟频域资源中所指示的频域资源。
图8是根据本公开的实施例示出的一种资源配置方法的示意流程图。如图8所示,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述方法包括:
在步骤S801中,根据资源分配类型0在所述下行时隙对应的频域资源中为所述终端配置物理下行共享信道对应的频域资源。
在一个实施例中,网络设备在配置终端在下行时隙内在第一上行子带上进行上行传输的情况下,在DL slot对应的频域资源中为终端配置PDSCH对应的频域资源时,可以仅根据RA type 0在DL slot对应的频域资源中为终端配置PDSCH对应的频域资源,而不采用其他资源分配类型在DL slot对应的频域资源中为终端配置PDSCH对应的频域资源。
相对应地,终端可以不期待(is not expect)根据RA type 0以外的资源分配类型在DL slot对应的频域资源中确定PDSCH对应的频域资源。终端在接收到网络设备发送的DCI后,终端可以仅根据RA type 0确定DCI在DL slot对应的频域资源中所指示的PDSCH对应的频域资源,而不会根据RA type 1确定DCI在DL slot对应的频域资源中所指示的PDSCH对应的频域资源。
例如在接收到网络设备发送的DCI后,终端可以仅根据RA type 0确定DL slot对应的频域资源中确定PDSCH对应的频域资源,而不会根据RA type 1确定DL slot对应的频域资源中确定PDSCH对应的频域资源。
由于在使用RA Type 1调度PDSCH时,需要指示连续的VRB,因此当为终端在DL slot中配置了UL subband时而导致DL slot中的频域资源被UL subband隔断的情况下,采用RA Type 1调度PDSCH将会存在问题。
根据本实施例,网络设备可以仅根据RA type 0在DL slot对应的频域资源中为终端配置PDSCH对应的频域资源,而不会根据RA type 1在DL slot对应的频域资源中为终端配置PDSCH对应的频域资源,从而避免采用RA Type 1调度PDSCH所存在的问题。
图9是根据本公开的实施例示出的一种资源配置方法的示意流程图。如图9所示,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位 置相同;
所述方法包括:
在步骤S901中,将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
在步骤S902中,在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源。
在一个实施例中,网络设备可以确定DL slot对应的频域资源,例如激活下行带宽部分active DL BWP,进而将DL slot对应的频域资源中所述UL subband以外的频域资源确定为第二下行频域资源,例如active BWP中除UL subband以外的资源块RB。
由于UL subband的频域起始位置与DL slot对应的下行频域资源的频域起始位置相同,或者所述UL subband的频域结束位置与DL slot对应的下行频域资源的频域结束位置相同,那么DL slot对应的频域资源中除UL subband以外的第二下行频域资源就没有被UL subband隔断,所以DL slot对应的频域资源中除UL subband以外的第二下行频域资源就是连续的。
因此,网络设备可以直接通过DCI在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中为终端配置PDSCH对应的频域资源,从而无论采用RA Type 1调度PDSCH,还是采用RA type 0调度PDSCH,都是在连续的下行频域资源上指示PDSCH占用的频域资源。因此,即使采用RA Type 1调度PDSCH也不会存在问题,并且可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
可选地,所述在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源包括:
根据资源分配类型0或资源分配类型1在所述第二下行频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
在一个实施例中,在上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同的情况下,网络设备既可以根据资源分配类型0(RA type0)在DL slot对应的频域资源中除UL subband以外的第二下行频域资源中为终端配置PDSCH对应的频域资源,也可以根据资源分配类型1(RA type 1)在DL slot对应的 频域资源中除UL subband以外的第二下行频域资源中为终端配置PDSCH对应的频域资源。
其中,基于不同的资源分配类型,例如RA type 0和RA type 1,基站对于DCI中FDRA域的编码方式可以是不同的,相对应地,针对不同的资源分配类型,终端可以采用与资源分配类型对应的解码方式解析DCI中FDRA域对应比特,以便准确确定DCI中FDRA域对应比特所指示的频域资源。
图10是根据本公开的实施例示出的一种资源配置方法的示意流程图。如图10所示,所述网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述方法包括:
在步骤S1001中,在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
在一个实施例中,网络设备在配置终端在下行时隙内在第一上行子带上进行上行传输的情况下,可以确定PDSCH对应的频域资源与UL subband是否重叠,若重叠,网络设备可以根据UL subband对PDSCH对应的频域资源进行速率匹配,例如仅在不存在UL subband的RE上检测以及发送PDSCH,这种方式可以最大程度上确保PDSCH的完整性。
由于网络设备可以根据UL subband对PDSCH对应的频域资源进行速率匹配,而那么网络设备不会在UL subband对应的RE上发送PDSCH(终端也不会在UL subband对应的RE上检测或接收PDSCH),从而克服采用RA Type 1在不连续的频域资源上调度PDSCH产生的问题。因此网络设备既可以采用RA Type 1调度PDSCH,也可以采用RA type 0调度PDSCH,即使采用RA Type 1调度PDSCH也不会存在问题,从而可以不必限制于仅采用RA type 0调度PDSCH,有利于节约开销。进一步地,本实施还可以提升采用RA type 0时资源的利用效率,从而提升系统性能。
可选地,所述方法还包括:根据资源分配类型0或资源分配类型1在所述下行频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
在一个实施例中,网络设备在根据上行子带对物理下行共享信道对应的频域资源进行速率匹配的情况下,由于并不会在UL subband对应的RE上发送收PDSCH(终端也不会在UL subband对应的RE上检测或接收PDSCH),从而克服采用RA Type 1在不连续的频域资源上调度PDSCH产生的问题,因此网络设备既可以根据资源分配 类型0(RA type 0)为终端配置PDSCH对应的频域资源,也可以根据资源分配类型1(RA type 1)为终端配置PDSCH对应的频域资源。
其中,基于不同的资源分配类型,例如RA type 0和RA type 1,基站对于DCI中FDRA域的编码方式可以是不同的,因此针对不同的资源分配类型,终端可以采用与资源分配类型对应的解码方式解析DCI中FDRA域对应比特,以便准确确定DCI中FDRA域对应比特所指示的频域资源。
与前述的资源确定方法和资源配置方法的实施例相对应,本公开还提供了资源确定装置和资源配置装置的实施例。
本公开的实施例提出几种资源确定装置。本实施例所示的资源确定装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备(例如NB-IoT、MTC、eMTC)等通信装置。所述终端可以与网络设备通信,所述网络设备包括但不限于4G、5G、6G等通信系统中的网络设备,例如基站、核心网等。
在一个实施例中,终端与网络设备之间可以进行双工通信,例如可以进行全双工通信,也可以进行半双工通信。
双工模式增强是3GPP Rel-18研究的重要内容,其主要思想是在一个时隙内同时进行数据的收发。这样的双工模式可以被称为增强全双工模式,例如,Cross Division Duplex,或者xDD,所述终端可以称作xDD终端。当然,本公开的实施例不仅可以适用于xDD终端,还可以适用于传统(legacy)终端。
网络设备可以为终端配置下行时隙DL slot,DL slot对应的频域资源可以包括一个频段或者一个频段中的一个或多个带宽部分BWP。网络设备还可以从所配置的下行时隙中选择一部分时隙,在所选择的时隙内为终端配置用于上行传输的第一子带,例如可以称作上行子带UL subband,终端可以选择在UL subband中进行上行传输,从而使得终端在DL slot对应的频域资源内,既可以在UL subband进行上行传输,又可以在UL subband以外的频域资源上进行下行接收,实现增强全双工通信。
图11是根据本公开的实施例示出的一种资源确定装置的示意框图。如图11所示,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:
处理模块1101,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;
以及将所述第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在 所述虚拟频域资源中确定物理下行共享信道对应的频域资源。
在一个实施例中,所述处理模块,被配置为根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述虚拟频域资源中所指示的频域资源。
图12是根据本公开的实施例示出的一种资源确定装置的示意框图。如图12所示,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:
处理模块1201,被配置为不期待根据资源分配类型0以外的资源分配类型在所述下行时隙对应的频域资源中确定物理下行共享信道对应的频域资源。
图13是根据本公开的实施例示出的一种资源确定装置的示意框图。在图13所示的实施例中,所述终端被配置了在下行时隙内用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
如图13所示,所述装置包括:
处理模块1301,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
以及根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源。
在一个实施例中,所述处理模块,被配置为根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述第二下行频域资源中所指示的频域资源。
图14是根据本公开的实施例示出的一种资源确定装置的示意框图。如图14所示,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:
处理模块1401,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
本公开的实施例提出了几种资源配置装置。本实施例所示的资源配置装置可以适用于网络设备,所述网络设备可以与终端通信,所述网络设备包括但不限于4G基 站、5G基站、6G基站等通信系统中的基站,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备(例如NB-IoT、MTC、eMTC)等通信装置。
在一个实施例中,终端与网络设备之间可以进行双工通信,例如可以进行全双工通信,也可以进行半双工通信。
双工模式增强是3GPP Rel-18研究的重要内容,其主要思想是在一个时隙内同时进行数据的收发。这样的双工模式可以被称为增强全双工模式,例如,Cross Division Duplex,或者xDD,所述终端可以称作xDD终端。当然,本公开的实施例不仅可以适用于xDD终端,还可以适用于传统(legacy)终端。
网络设备可以为终端配置下行时隙DL slot,DL slot对应的频域资源可以包括一个频段或者一个频段中的一个或多个带宽部分BWP。网络设备还可以从所配置的下行时隙中选择一部分时隙,在所选择的时隙内为终端配置用于上行传输的第一子带,例如可以称作上行子带UL subband,终端可以选择在UL subband中进行上行传输,从而使得终端在DL slot对应的频域资源内,既可以在UL subband进行上行传输,又可以在UL subband以外的频域资源上进行下行接收,实现增强全双工通信。
图15是根据本公开的实施例示出的一种资源配置装置的示意框图。如图15所示,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述资源配置装置可以包括:
处理模块1501,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
在一个实施例中,所述处理模块,还被配置为根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述下行时隙对应的频域资源中所述物理下行共享信道对应的频域资源。
图16是根据本公开的实施例示出的一种资源配置装置的示意框图。如图16所示,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述装置包括:
处理模块1601,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;
以及将所述第一下行频域资源视为连续的虚拟频域资源,在所述虚拟频域资源 中为所述终端配置物理下行共享信道对应的频域资源。
在一个实施例中,所述处理模块,被配置为根据资源分配类型0或资源分配类型1在所述虚拟频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
图17是根据本公开的实施例示出的一种资源配置装置的示意框图。如图17所示,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述装置包括:
处理模块1701,被配置为根据资源分配类型0在所述下行时隙对应的频域资源中为所述终端配置物理下行共享信道对应的频域资源。
图18是根据本公开的实施例示出的一种资源配置装置的示意框图。在图18所示实施例中,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
如图18所示,所述装置包括:
处理模块1801,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
以及在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源。
在一个实施例中,所述处理模块,被配置为根据资源分配类型0或资源分配类型1在所述第二下行频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
图19是根据本公开的实施例示出的一种资源配置装置的示意框图。在图19所示实施例中,网络设备在下行时隙内为终端配置了用于上行传输的第一上行子带,所述装置包括:
处理模块1901,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
在一个实施例中,所述处理模块,还被配置为根据资源分配类型0或资源分配 类型1在所述下行频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源确定方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源配置方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源确定方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源配置方法中的步骤。
如图19所示,图19是根据本公开的实施例示出的一种用于资源配置的装置1900的示意框图。装置1900可以被提供为一基站。参照图19,装置1900包括处理组件1922、无线发射/接收组件1924、天线组件1926、以及无线接口特有的信号处理部分,处理组件1922可进一步包括一个或多个处理器。处理组件1922中的其中一个处理器可以被配置为实现上述任一实施例所述的资源配置方法。
图20是根据本公开的实施例示出的一种用于资源确定的装置2000的示意框图。例如,装置2000可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图20,装置2000可以包括以下一个或多个组件:处理组件2002、存储器 2004、电源组件2006、多媒体组件2008、音频组件2010、输入/输出(I/O)的接口2012、传感器组件2014以及通信组件2016。
处理组件2002通常控制装置2000的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件2002可以包括一个或多个处理器2020来执行指令,以完成上述的资源确定方法的全部或部分步骤。此外,处理组件2002可以包括一个或多个模块,便于处理组件2002和其他组件之间的交互。例如,处理组件2002可以包括多媒体模块,以方便多媒体组件2008和处理组件2002之间的交互。
存储器2004被配置为存储各种类型的数据以支持在装置2000的操作。这些数据的示例包括用于在装置2000上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器2004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM),只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件2006为装置2000的各种组件提供电力。电源组件2006可以包括电源管理系统,一个或多个电源,及其他与为装置2000生成、管理和分配电力相关联的组件。
多媒体组件2008包括在所述装置2000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2008包括一个前置摄像头和/或后置摄像头。当装置2000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2010被配置为输出和/或输入音频信号。例如,音频组件2010包括一个麦克风(MIC),当装置2000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2004或经由通信组件2016发送。在一些实施例中,音频组件2010还包括一个扬声器,用于输出音频信号。
I/O接口2012为处理组件2002和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2014包括一个或多个传感器,用于为装置2000提供各个方面的状态评估。例如,传感器组件2014可以检测到装置2000的打开/关闭状态,组件的相对定位,例如所述组件为装置2000的显示器和小键盘,传感器组件2014还可以检测装置2000或装置2000一个组件的位置改变,用户与装置2000接触的存在或不存在,装置2000方位或加速/减速和装置2000的温度变化。传感器组件2014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2014还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件2016被配置为便于装置2000和其他设备之间有线或无线方式的通信。装置2000可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件2016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述资源确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2004,上述指令可由装置2000的处理器2020执行以完成上述资源确定方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的 公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (26)

  1. 一种资源确定方法,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:
    将所述下行时隙对应的频域资源中所述第一子带以外的频域资源确定为第一下行频域资源;
    将所述第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源包括:
    根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述虚拟频域资源中所指示的频域资源。
  3. 一种资源确定方法,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:
    不期待根据资源分配类型0以外的资源分配类型在所述下行时隙对应的频域资源中确定物理下行共享信道对应的频域资源。
  4. 一种资源确定方法,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
    所述方法包括:
    将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
    根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源。
  5. 根据权利要求4所述的方法,其特征在于,所述根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源包括:
    根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述第二下行频域资源中所指示的频域资源。
  6. 一种资源确定方法,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述方法包括:
    在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上 行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据资源分配类型0或资源分配类型1确定所述下行控制信息中频域资源分配域在所述下行时隙对应的频域资源中所述物理下行共享信道对应的频域资源。
  8. 一种资源配置方法,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,所述方法包括:
    将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;
    将所述第一下行频域资源视为连续的虚拟频域资源,在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源。
  9. 根据权利要求8所述的方法,其特征在于,所述在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源包括:
    根据资源分配类型0或资源分配类型1在所述虚拟频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
  10. 一种资源配置方法,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,所述方法包括:
    根据资源分配类型0在所述下行时隙对应的频域资源中为所述终端配置物理下行共享信道对应的频域资源。
  11. 一种资源配置方法,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
    所述方法包括:
    将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
    在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源。
  12. 根据权利要求11所述的方法,其特征在于,所述在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源包括:
    根据资源分配类型0或资源分配类型1在所述第二下行频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
  13. 一种资源配置方法,其特征在于,适用于网络设备,所述网络设备为终端配 置了在下行时隙内用于上行传输的第一上行子带,所述方法包括:
    在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    根据资源分配类型0或资源分配类型1在所述下行频域资源中为所述终端配置所述物理下行共享信道对应的频域资源。
  15. 一种资源确定装置,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:
    处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;
    以及将所述第一下行频域资源视为连续的虚拟频域资源,根据下行控制信息在所述虚拟频域资源中确定物理下行共享信道对应的频域资源。
  16. 一种资源确定装置,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:
    处理模块,被配置为不期待根据资源分配类型0以外的资源分配类型在所述下行时隙对应的频域资源中确定物理下行共享信道对应的频域资源。
  17. 一种资源确定装置,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
    所述装置包括:
    处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
    以及根据下行控制信息在所述第二下行频域资源中确定物理下行共享信道对应的频域资源。
  18. 一种资源确定装置,其特征在于,适用于终端,所述终端被配置了在下行时隙内用于上行传输的第一子带,所述装置包括:
    处理模块,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
  19. 一种资源配置装置,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,所述装置包括:
    处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第一下行频域资源;
    以及将所述第一下行频域资源视为连续的虚拟频域资源,在所述虚拟频域资源中为所述终端配置物理下行共享信道对应的频域资源。
  20. 一种资源配置装置,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,所述装置包括:
    处理模块,被配置为根据资源分配类型0在所述下行时隙对应的频域资源中为所述终端配置物理下行共享信道对应的频域资源。
  21. 一种资源配置装置,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,其中,所述上行子带的频域起始位置与所述下行时隙对应的下行频域资源的频域起始位置相同,或者所述上行子带的频域结束位置与所述下行时隙对应的下行频域资源的频域结束位置相同;
    所述装置包括:
    处理模块,被配置为将所述下行时隙对应的频域资源中所述第一上行子带以外的频域资源确定为第二下行频域资源;
    以及在所述第二下行频域资源中为所述终端配置物理下行共享信道对应的频域资源。
  22. 一种资源配置装置,其特征在于,适用于网络设备,所述网络设备为终端配置了在下行时隙内用于上行传输的第一上行子带,所述装置包括:
    处理模块,被配置为在物理下行共享信道对应的频域资源与所述上行子带重叠的情况下,根据所述上行子带对所述物理下行共享信道对应的频域资源进行速率匹配。
  23. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的资源确定方法。
  24. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求8至14中任一项所述的资源配置方法。
  25. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的资源确定方法中的步骤。
  26. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求8至14中任一项所述的资源配置方法中的步骤。
PCT/CN2022/086932 2022-04-14 2022-04-14 资源确定、资源配置方法和装置、通信装置及存储介质 WO2023197275A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001205.4A CN117242865A (zh) 2022-04-14 2022-04-14 资源确定、资源配置方法和装置、通信装置及存储介质
PCT/CN2022/086932 WO2023197275A1 (zh) 2022-04-14 2022-04-14 资源确定、资源配置方法和装置、通信装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086932 WO2023197275A1 (zh) 2022-04-14 2022-04-14 资源确定、资源配置方法和装置、通信装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023197275A1 true WO2023197275A1 (zh) 2023-10-19

Family

ID=88328599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086932 WO2023197275A1 (zh) 2022-04-14 2022-04-14 资源确定、资源配置方法和装置、通信装置及存储介质

Country Status (2)

Country Link
CN (1) CN117242865A (zh)
WO (1) WO2023197275A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385080A (zh) * 2018-12-28 2020-07-07 北京三星通信技术研究有限公司 发送上行控制信息的方法及设备
US20210352667A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Frequency domain resource allocation techniques for full duplex communications
WO2021225656A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Vrb-to-prb allocation for disjoint bwp segments
US20210360676A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Joint shared channel frequency allocation in downlink control information
US20210377938A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385080A (zh) * 2018-12-28 2020-07-07 北京三星通信技术研究有限公司 发送上行控制信息的方法及设备
WO2021225656A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Vrb-to-prb allocation for disjoint bwp segments
US20210352667A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Frequency domain resource allocation techniques for full duplex communications
US20210360676A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Joint shared channel frequency allocation in downlink control information
US20210377938A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM: "On NR Full Duplex Perspectives for Release 18", 3GPP DRAFT; RWS-210026, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210628 - 20210702, 7 June 2021 (2021-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052025592 *

Also Published As

Publication number Publication date
CN117242865A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US11540277B2 (en) Supplementary uplink carrier configuration method and device, and scheduling resource allocation method and device
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2023240646A1 (zh) 小区确定、下行控制信息发送方法和装置
WO2018195864A1 (zh) 一种业务复用传输方法、装置及计算机可读存储介质
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
WO2023225924A1 (zh) 下行控制信息尺寸对齐方法和装置、通信装置及存储介质
WO2023206562A1 (zh) 控制信道接收、发送方法和装置、通信装置和存储介质
WO2023019592A1 (zh) 配置信息发送、获取方法和装置、通信装置和存储介质
CN109196936B (zh) 一种资源分配指示方法及装置、基站及终端
EP3787320B1 (en) Information indicating and interpreting methods, base station and user equipment
WO2019127109A1 (zh) 调度方法、基站、终端及存储介质
WO2024066767A1 (zh) 信息域确定方法、小区确定及指示装置
WO2024000986A1 (zh) 调度确定、指示确定、关联关系指示方法和装置
WO2024000543A1 (zh) 下行控制信息识别、配置方法和装置
WO2023197275A1 (zh) 资源确定、资源配置方法和装置、通信装置及存储介质
WO2023130466A1 (zh) 传输控制方法、装置、通信装置和存储介质
EP4319419A1 (en) Coreset 0 configuration method and apparatus, communication device, and storage medium
WO2023115271A1 (zh) 上行传输指示、确定方法和装置、通信装置和存储介质
WO2022236604A1 (zh) 配置信息发送、冗余版本rv值确定方法和装置
WO2023240648A1 (zh) 下行控制信息检测、发送方法和装置
WO2024000551A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2024060075A1 (zh) 物理上行控制信道发送、接收方法和装置
WO2023197268A1 (zh) 资源处理方法及装置、通信设备及存储介质
WO2024031676A1 (zh) 集合确定方法、装置、通信装置及存储介质
WO2023184270A1 (zh) 通信控制方法、装置、通信装置和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001205.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936923

Country of ref document: EP

Kind code of ref document: A1