WO2023197050A1 - Chip generating electric power from quantum vacuum - Google Patents

Chip generating electric power from quantum vacuum Download PDF

Info

Publication number
WO2023197050A1
WO2023197050A1 PCT/BR2023/050011 BR2023050011W WO2023197050A1 WO 2023197050 A1 WO2023197050 A1 WO 2023197050A1 BR 2023050011 W BR2023050011 W BR 2023050011W WO 2023197050 A1 WO2023197050 A1 WO 2023197050A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
vacuum
energy
electric
virtual
Prior art date
Application number
PCT/BR2023/050011
Other languages
French (fr)
Portuguese (pt)
Inventor
André Luis BONAVENTURA
Original Assignee
Bonaventura Andre Luis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bonaventura Andre Luis filed Critical Bonaventura Andre Luis
Publication of WO2023197050A1 publication Critical patent/WO2023197050A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the quantum vacuum is filled by virtual particles (virtual photons). Therefore, in a vacuum, there is energy. Therefore, the product of this invention (chip) aims to present a technology capable of absorbing vacuum energy (from virtual photons) based on Quantum Electrodynamics (QED).
  • QED Quantum Electrodynamics
  • the present invention patent ELECTRIC POWER GENERATOR CHIP FROM QUANTUM VACUUM, belongs to the field of electrical energy generation articles and electronic devices (chip).
  • the source of electrical energy that the chip will offer comes from quantum fluctuations in the vacuum (proven by the Casimir effect) and the polarization of ferroelectric domains in advanced materials, thus creating an optical path for virtual photons.
  • Electronic devices such as capacitors, sensors, actuators and memory use ferroelectric polarization to optimize their electrical properties, namely: US6151241 A, US6922351 B2 and US5739563A.
  • Patents that use the Casimir effect or ferroelectric properties do not aim to generate electrical energy, unlike what we present here.
  • the other patents which also feature an energy chip, diverge from the current application, as they use the variation of the electric field and Maxwell displacement current to generate an electric current and, subsequently, electrical energy. Furthermore, they use moving parts, which causes heating and dielectric loss. Therefore, the absorption of energy from virtual photons, as will be described below, is unprecedented and inherent to Quantum Electrodynamics.
  • the present invention patent technologically applies the fundamental concepts of Quantum Electrodynamics.
  • electron scattering Moller scattering
  • the point where the interaction between the electron and the virtual photon occurs is called the cross section.
  • the virtual photon transfers its energy and momentum to the electron. For this reason, the electron changes its direction of travel and increases its kinetic energy.
  • Advanced materials such as ferroelectrics
  • ferroelectric domains sets of electric dipoles
  • Polarization changes orientation/direction when an external electric field or potential difference is applied, that is, a voltage source.
  • This application for invention is a union between fundamental science (Quantum Electrodynamics) with technology (development of a chip from a ferroelectric core).
  • the ferroelectric core will have terminals (conductive faces) that we will call: source, control and drain. Therefore, the set of terminals with the ferroelectric core is analogous to a transistor. Therefore, the encapsulation of this transistor or an association of transistors is characterized by a power generation chip, as described in the title of this invention.
  • FIG. 1 Ferroelectric core (1), polarization (2), source terminal (3), isolated electron distribution (4), control terminal (5), drain terminal (6), dissipative element (7), ground terminal (8), switch (9), voltage source (10), virtual photons (13) and electric dipoles (14).
  • FIG. 2 - Shows the same elements as FIG. 1, however the difference is that the switch (9) is closed and, therefore, the voltage source (10) is connected to the control terminal (5); and, consequently, changes the direction of polarization (2), that is, from the source terminal (3) to the control terminal (5), where the other elements are: ferroelectric core (1), distribution of isolated electrons (4) , drain terminal (6), dissipative element (7), ground terminal (8), virtual photons (13) and electric dipoles (14).
  • FIG. 3 - Shows a Feynman diagram that represents the interaction between two electrons, the first electron (1 1 ) contained in the distribution of isolated electrons (4) at the source terminal (3) and the second electron (12) positioned at the drain terminal (6).
  • the interaction between electrons occurs through the virtual photon (13) emitted by the first electron (1 1 ), where the other elements are the same as in previous figures, that is, ferroelectric nucleus (1), control terminal (5), dissipative element (7), ground terminal (8), switch (9) and voltage source (10).
  • the virtual photons emitted by electrons contained in the distribution of isolated electrons (4) at the source terminal (3) have a short lifetime and short range (implications of the Heisenberg Uncertainty Principle of Quantum Physics). Therefore, analyzing a single photon, such as the virtual photon (13), it is concluded that it does not interact directly with the electron (12) at the drain terminal (6), but rather with the 1 2 electron that it is found in the ferroelectric material (1) - see FIG. 1 and FIG. 2. However, we must remember that ferroelectric materials are excellent electrical insulators, that is, the virtual photon (13) is not capable of moving (scattering) the electron with which it interacted.
  • the electron from the ferroelectric nucleus (1) that absorbed the virtual photon (13) re-emits the same virtual photon (13) to the neighboring electron, forming a chain reaction, that is, absorption and emission of the virtual photon (13).
  • This process occurs successively until the virtual photon (13) reaches one of the conducting terminals (drain (6) or control (5)).
  • the polarization orientation (2) is an optical path for the propagation of virtual photons (13).
  • this fact causes the electron (12) to dissipate energy that was absorbed from the virtual photon (13) into thermal energy (consequence of the quantum scattering electrical current in an ohmic resistor).
  • the dissipative element (7) such as: household appliances, motors, electric car batteries (cars, motorcycles, drones%), cell phone batteries, etc.
  • this innovation reveals the technology to absorb vacuum energy (virtual photons) and transform it into electrical energy through quantum scattering electrical current.
  • ferroelectric core (1) is the element responsible for changing the direction of polarization (2) and, consequently, the direction of the cross section (sometimes at the drain terminal (6) and sometimes at the control terminal (5)).
  • any engineering method or device capable of promoting these changes will be capable of generating Moller scattering and giving rise to an electrical current of quantum scattering. Therefore, we generalize the ELECTRIC ENERGY GENERATOR CHIP FROM QUANTUM VACUUM to any engineering method or device capable of periodically varying the polarization (2) and consequently the direction of the shock section (sometimes at the drain terminal (6) sometimes at the control terminal (5)) generating Moller scattering in order to obtain a quantum scattering electrical current.
  • this invention promotes insight and advancement in the frontier of Classical Physics, that is, in the understanding that the Maxwell displacement current (Classical Physics) is the electrical current of quantum scattering (Modern Physics).

Abstract

A chip capable of absorbing vacuum energy (virtual photons (13)) and transforming it in electric power in a dissipative element (7) is produced by the Møller scattering described in quantum electrodynamics and by periodically switching the ferroelectrical polarisation (2).

Description

CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO ELECTRIC POWER GENERATOR CHIP FROM QUANTUM VACUUM
[001] De acordo com o Princípio de Incerteza de Heisenberg, o vácuo quântico está preenchido por partículas virtuais (fótons virtuais). Portanto, no vácuo, há energia. Por isso, o produto dessa invenção (chip) tem por objetivo apresentar uma tecnologia capaz de absorver a energia do vácuo (dos fótons virtuais) tendo como base a Eletrodinâmica Quântica (Quantum Electrodynamics, QED). [001] According to Heisenberg's Uncertainty Principle, the quantum vacuum is filled by virtual particles (virtual photons). Therefore, in a vacuum, there is energy. Therefore, the product of this invention (chip) aims to present a technology capable of absorbing vacuum energy (from virtual photons) based on Quantum Electrodynamics (QED).
[002] A presente patente de invenção, CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO, pertence ao campo dos artigos de geração de energia elétrica e dispositivos eletrônicos (chip). A fonte de energia elétrica que o chip irá oferecer provém das flutuações quânticas do vácuo (comprovadas pelo efeito Casimir) e pela polarização dos domínios ferroelétricos em materiais avançados, criando, assim, um caminho óptico para os fótons virtuais. [002] The present invention patent, ELECTRIC POWER GENERATOR CHIP FROM QUANTUM VACUUM, belongs to the field of electrical energy generation articles and electronic devices (chip). The source of electrical energy that the chip will offer comes from quantum fluctuations in the vacuum (proven by the Casimir effect) and the polarization of ferroelectric domains in advanced materials, thus creating an optical path for virtual photons.
Estado da técnica State of the art
[003] Aplicações tecnológicas usando o efeito Casimir (flutuações do vácuo quântico) foram patenteadas recentemente, a citar: US20170200815A1 , US8627721 B2 e US8317137B2. [003] Technological applications using the Casimir effect (quantum vacuum fluctuations) have recently been patented, namely: US20170200815A1, US8627721 B2 and US8317137B2.
[004] Dispositivos eletrônicos como capacitores, sensores, atuadores e memória usam a polarização ferroelétrica para otimizar suas propriedades elétricas, a citar: US6151241 A, US6922351 B2 e US5739563A. [004] Electronic devices such as capacitors, sensors, actuators and memory use ferroelectric polarization to optimize their electrical properties, namely: US6151241 A, US6922351 B2 and US5739563A.
[005] Outras tecnologias envolvendo a produção de um chip de geração de energia elétrica foram depositadas no INPI pelo proponente deste pedido. Contudo, em tais pedidos, foram abordados os conceitos com base na Física Clássica, isto é, variação do campo elétrico (Eletrodinâmica Clássica), além de conter partes móveis. A citar: BR 10 2022 000365 3, BR 20 2022 001084 1 , BR 10 2021 0251 1 1 5. [005] Other technologies involving the production of an electrical energy generation chip were deposited with INPI by the proponent of this request. However, in such requests, concepts based on Classical Physics were addressed, that is, variation of the electric field (Classical Electrodynamics), in addition to containing moving parts. To be mentioned: BR 10 2022 000365 3, BR 20 2022 001084 1, BR 10 2021 0251 1 1 5.
Pontos deficientes do estado da técnica Deficiencies in the state of the art
[006] As patentes que usam o efeito Casimir ou propriedades ferroelétricas não têm objetivos de gerar energia elétrica, diferente do que apresentamos aqui. Já as outras patentes, que também caracterizam um chip de energia, divergem do atual pedido, pois usam a variação do campo elétrico e corrente de deslocamento de Maxwell para gerar uma corrente elétrica e, posteriormente, energia elétrica. Além disso, elas usam partes móveis, o que ocasiona aquecimento e perda dielétrica. Por isso, a absorção da energia dos fótons virtuais, como será descrito a seguir, é inédita e inerente à Eletrodinâmica Quântica. [006] Patents that use the Casimir effect or ferroelectric properties do not aim to generate electrical energy, unlike what we present here. The other patents, which also feature an energy chip, diverge from the current application, as they use the variation of the electric field and Maxwell displacement current to generate an electric current and, subsequently, electrical energy. Furthermore, they use moving parts, which causes heating and dielectric loss. Therefore, the absorption of energy from virtual photons, as will be described below, is unprecedented and inherent to Quantum Electrodynamics.
Solução da proposta da patente Patent Proposal Solution
[007] Com o objetivo de produzir energia elétrica limpa e sustentável, a presente patente de invenção aplica tecnologicamente os conceitos fundamentais da Eletrodinâmica Quântica. Por exemplo, a interação entre dois elétrons (repulsão elétrica = espalhamento de elétrons = espalhamento Moller) ocorre devido à troca de fótons virtuais entre os elétrons. Por isso os fótons virtuais também são designados de partículas mediadoras da força eletromagnética. O ponto onde ocorre a interação entre o elétron e o fóton virtual é denominado de seção de choque. Na seção de choque, o fóton virtual transfere sua energia e momento para o elétron. Por esse motivo o elétron muda a direção de deslocamento e aumenta a energia cinética. Essas ideias fundamentais nortearão toda a invenção aqui apresentada. [007] With the aim of producing clean and sustainable electrical energy, the present invention patent technologically applies the fundamental concepts of Quantum Electrodynamics. For example, the interaction between two electrons (electrical repulsion = electron scattering = Moller scattering) occurs due to the exchange of virtual photons between the electrons. That is why virtual photons are also called particles that mediate electromagnetic force. The point where the interaction between the electron and the virtual photon occurs is called the cross section. At the cross section, the virtual photon transfers its energy and momentum to the electron. For this reason, the electron changes its direction of travel and increases its kinetic energy. These fundamental ideas will guide the entire invention presented here.
[008] A origem dos fótons virtuais é devido à perturbação intrínseca do elétron com o campo eletromagnético quântico, isto é, vácuo quântico. Devido essa perturbação ser constante e intrínseca, em torno de qualquer elétron sempre haverá uma atmosfera de fótons virtuais. A intensidade da energia desses fótons virtuais é equivalente à energia da massa de repouso do elétron, tal como expressado na equação 1 . Os termos dessa equação são: m0 (massa de repouso), c (velocidade da luz), q (carga elétrica) e A é uma constante (A = 5,68562964E-12 Kg/C) que envolve propriedades quânticas intrínsecas do elétron (Y (constante giroeletromagnética do elétron), ue (momento de spin) e gs (fator g do elétron), por isso (A = gs/Yue). [008] The origin of virtual photons is due to the intrinsic perturbation of the electron with the quantum electromagnetic field, that is, quantum vacuum. Because this disturbance is constant and intrinsic, around any electron there will always be an atmosphere of virtual photons. The energy intensity of these virtual photons is equivalent to the energy of the electron's rest mass, as expressed in equation 1. The terms of this equation are: m0 (rest mass), c (speed of light), q (electric charge) and A is a constant (A = 5.68562964E-12 Kg/C) that involves intrinsic quantum properties of the electron ( Y (electron gyroelectromagnetic constant), u e (spin moment) and g s (electron g factor), therefore (A = g s /Yu e ).
E = mOc2 = Aqc2 (equação 1 ) E = mOc 2 = Aqc 2 (equation 1)
[009] Já os materiais avançados, tais como os ferroelétricos, possuem domínios ferroelétricos (conjuntos de dipolos elétricos) e são polarizáveis. A polarização muda de orientação/direção quando é aplicado um campo elétrico externo ou uma diferença de potencial, isto é, fonte de tensão. [010] Esse pedido de invenção é uma união entre ciência fundamental (Eletrodinâmica Quântica) com tecnologia (elaboração de um chip a partir de um núcleo ferroelétrico). Mostraremos em detalhes que o núcleo ferroelétrico receberá terminais (faces condutoras) que denominaremos de: fonte, controle e dreno. Portanto, o conjunto de terminais com o núcleo ferroelétrico é análogo a um transistor. Sendo assim, o encapsulamento desse transistor ou de uma associação de transistores caracteriza-se por um chip de geração de energia, conforme descrito no título desta invenção. [009] Advanced materials, such as ferroelectrics, have ferroelectric domains (sets of electric dipoles) and are polarizable. Polarization changes orientation/direction when an external electric field or potential difference is applied, that is, a voltage source. [010] This application for invention is a union between fundamental science (Quantum Electrodynamics) with technology (development of a chip from a ferroelectric core). We will show in detail that the ferroelectric core will have terminals (conductive faces) that we will call: source, control and drain. Therefore, the set of terminals with the ferroelectric core is analogous to a transistor. Therefore, the encapsulation of this transistor or an association of transistors is characterized by a power generation chip, as described in the title of this invention.
[01 1] Em vista disso e de forma não limitativa, o conjunto de desenhos representa o seguinte. [01 1] In view of this and in a non-limiting way, the set of drawings represents the following.
Breve descrição das figuras Brief description of the figures
[012] FIG. 1 - Núcleo ferroelétrico (1 ), polarização (2), terminal da fonte (3), distribuição de elétrons isolados (4), terminal de controle (5), terminal do dreno (6), elemento dissipativo (7), terminal terra (8), chave (9), fonte de tensão (10), fótons virtuais (13) e dipolos elétricos (14). [012] FIG. 1 - Ferroelectric core (1), polarization (2), source terminal (3), isolated electron distribution (4), control terminal (5), drain terminal (6), dissipative element (7), ground terminal (8), switch (9), voltage source (10), virtual photons (13) and electric dipoles (14).
[013] FIG. 2 - Mostra os mesmos elementos da FIG. 1 , porém a diferença é que a chave (9) está fechada e, por isso, a fonte de tensão (10) está ligada ao terminal de controle (5); e, consequentemente, muda a direção da polarização (2), isto é, do terminal da fonte (3) para terminal de controle (5), onde os outros elementos são: núcleo ferroelétrico (1 ), distribuição de elétrons isolados (4), terminal do dreno (6), elemento dissipativo (7), terminal terra (8), fótons virtuais (13) e dipolos elétricos (14). [013] FIG. 2 - Shows the same elements as FIG. 1, however the difference is that the switch (9) is closed and, therefore, the voltage source (10) is connected to the control terminal (5); and, consequently, changes the direction of polarization (2), that is, from the source terminal (3) to the control terminal (5), where the other elements are: ferroelectric core (1), distribution of isolated electrons (4) , drain terminal (6), dissipative element (7), ground terminal (8), virtual photons (13) and electric dipoles (14).
[014] FIG. 3 - Mostra um diagrama de Feynman que representa a interação entre dois elétrons, o primeiro elétron (1 1 ) contido na distribuição de elétrons isolados (4) no terminal da fonte (3) e o segundo elétron (12) posicionado no terminal do dreno (6). A interação entre os elétrons ocorre por meio do fóton virtual (13) emitido pelo primeiro elétron (1 1 ), onde os outros elementos são os mesmos das figuras anteriores, isto é, núcleo ferroelétrico (1 ), terminal de controle (5), elemento dissipativo (7), terminal terra (8), chave (9) e fonte de tensão (10). [014] FIG. 3 - Shows a Feynman diagram that represents the interaction between two electrons, the first electron (1 1 ) contained in the distribution of isolated electrons (4) at the source terminal (3) and the second electron (12) positioned at the drain terminal (6). The interaction between electrons occurs through the virtual photon (13) emitted by the first electron (1 1 ), where the other elements are the same as in previous figures, that is, ferroelectric nucleus (1), control terminal (5), dissipative element (7), ground terminal (8), switch (9) and voltage source (10).
Descrição detalhada da invenção Detailed description of the invention
[015] Em conformidade com as figuras apresentadas anteriormente, observamos que a distribuição de elétrons isolados (4) gera um campo elétrico externo que polariza (2) o núcleo ferroelétrico (1 ). Essa polarização (2) é orientada do terminal da fonte (3) para o terminal do dreno (6), conforme FIG. 1. Contudo, quando a chave (9) é fechada, o terminal de controle (5) é conectado à fonte de tensão (10). Esse fato faz com que a polarização (2) mude de direção, indo do terminal da fonte (3) para o terminal de controle (5), conforme apresentado na FIG. 2. Quando a chave (9) é desligada, cessa a tensão elétrica (10) sobre o terminal de controle (5). Por isso, a orientação da polarização (2) volta a ser entre o terminal da fonte (3) e o terminal do dreno (6), conforme FIG. 1 . [015] In accordance with the figures presented previously, we observe that the distribution of isolated electrons (4) generates an external electric field that polarizes (2) the ferroelectric core (1). This polarization (2) is oriented from the source terminal (3) to the drain terminal (6), as shown in FIG. 1. However, when the switch (9) is closed, the control terminal (5) is connected to the voltage source (10). This fact causes the polarization (2) to change direction, going from the source terminal (3) to the control terminal (5), as shown in FIG. 2. When the key (9) is turned off, the electrical voltage (10) on the control terminal (5) ceases. Therefore, the polarization orientation (2) is again between the source terminal (3) and the drain terminal (6), as shown in FIG. 1 .
[016] Em geral, os fótons virtuais emitidos pelos elétrons contidos na distribuição de elétrons isolados (4) do terminal da fonte (3) apresentam pequeno tempo de vida e curto alcance (implicações do Princípio de Incerteza de Heisenberg da Física Quântica). Por isso, analisando um único fóton, como por exemplo o fóton virtual (13), conclui-se que ele não interage diretamente com o elétron (12) do terminal do dreno (6), mas, sim, com o 12 elétron que ele encontra no material ferroelétrico (1 ) - vide FIG. 1 e FIG. 2. Contudo, devemos lembrar que os materiais ferroelétricos são excelentes isolantes elétricos, ou seja, o fóton virtual (13) não é capaz de mover (espalhar) o elétron com o qual ele interagiu. Por isso, por questão de conservação de energia e momento, o elétron do núcleo ferroelétrico (1 ) que absorveu o fóton virtual (13) reemite o mesmo fóton virtual (13) para o elétron vizinho, formando uma reação em cadeia, isto é, absorção e emissão do fóton virtual (13). Esse processo ocorre sucessivamente até o fóton virtual (13) chegar a um dos terminais condutores (dreno (6) ou controle (5)). Por questão didática, simplicidade e de conservação de energia e momento entre o fóton virtual (13) e elétrons do material ferroelétrico (1 ), substituímos todas as interações internas do material ferroelétrico (1 ) por um único fóton virtual (13), tal como ilustrado na FIG. 3. Dessa explanação, concluímos que a orientação da polarização (2) é um caminho óptico para a propagação dos fótons virtuais (13). [016] In general, the virtual photons emitted by electrons contained in the distribution of isolated electrons (4) at the source terminal (3) have a short lifetime and short range (implications of the Heisenberg Uncertainty Principle of Quantum Physics). Therefore, analyzing a single photon, such as the virtual photon (13), it is concluded that it does not interact directly with the electron (12) at the drain terminal (6), but rather with the 1 2 electron that it is found in the ferroelectric material (1) - see FIG. 1 and FIG. 2. However, we must remember that ferroelectric materials are excellent electrical insulators, that is, the virtual photon (13) is not capable of moving (scattering) the electron with which it interacted. Therefore, for reasons of conservation of energy and momentum, the electron from the ferroelectric nucleus (1) that absorbed the virtual photon (13) re-emits the same virtual photon (13) to the neighboring electron, forming a chain reaction, that is, absorption and emission of the virtual photon (13). This process occurs successively until the virtual photon (13) reaches one of the conducting terminals (drain (6) or control (5)). For didactic reasons, simplicity and conservation of energy and momentum between the virtual photon (13) and electrons of the ferroelectric material (1), we replaced all internal interactions of the ferroelectric material (1) with a single virtual photon (13), such as illustrated in FIG. 3. From this explanation, we conclude that the polarization orientation (2) is an optical path for the propagation of virtual photons (13).
[017] Apresentaremos o primeiro resultado fundamental dessa invenção. Analisando a FIG. 3 observamos que o fóton virtual (13) chega ao terminal do dreno (6) e interage com o elétron (12) livre da face condutora que constitui o dreno (6). Essa interação promove o espalhamento Moller. Durante a interação, o fóton virtual (13) transfere para o elétron (12) sua energia cinética e momento. Por isso, o elétron (12) se espalha procurando o menor potencial, que, nesse caso, é o terminal terra (8), criando, assim, uma corrente elétrica de espalhamento quântico. Contudo, antes do elétron (12) chegar ao terminal terra (8), ele passa por um elemento dissipativo (7), tal como resistor ôhmico. Esse fato faz com que o elétron (12) dissipe energia que foi absorvida do fóton virtual (13) em energia térmica (consequência da corrente elétrica de espalhamento quântico em um resistor ôhmico). Vale salientar que o elemento dissipativo (7), tais como: eletrodomésticos, motores, bateria de autor elétricos (carros, motos, drones...), bateria de um celular etc. Em outras palavras, essa inovação revela a tecnologia para absorver energia do vácuo (fótons virtuais) e transformá-la em energia elétrica por meio da corrente elétrica de espalhamento quântico. [017] We will present the first fundamental result of this invention. Analyzing FIG. 3 we observe that the virtual photon (13) arrives at the drain terminal (6) and interacts with the electron (12) free from the conducting face that constitutes the drain (6). This interaction promotes Moller spreading. During the interaction, the virtual photon (13) transfers its kinetic energy and momentum to the electron (12). Therefore, the electron (12) scatters looking for the lowest potential, which, in this case, is the ground terminal (8), thus creating an electrical current of quantum scattering. However, before the electron (12) reaches the ground terminal (8), it passes through a dissipative element (7), such as an ohmic resistor. This fact causes the electron (12) to dissipate energy that was absorbed from the virtual photon (13) into thermal energy (consequence of the quantum scattering electrical current in an ohmic resistor). It is worth noting that the dissipative element (7), such as: household appliances, motors, electric car batteries (cars, motorcycles, drones...), cell phone batteries, etc. In other words, this innovation reveals the technology to absorb vacuum energy (virtual photons) and transform it into electrical energy through quantum scattering electrical current.
[018] Apresentaremos o segundo resultado mais importante dessa invenção, que está relacionado com o chaveamento (mudança cíclica) da polarização (2) devido a intermitência da chave (9) (chaveamento da chave = liga e desliga periodicamente). A polarização (2) intermitente permitirá a absorção discreta e constante da energia do vácuo, caracterizando o chip como uma fonte contínua de energia. Conforme já foi apresentado no parágrafo 16, a polarização (2) é o caminho óptico para a propagação dos fótons virtuais (13). Por isso, ao acionar a chave (9) a direção da polarização (2) muda no interior do núcleo ferroelétrico (1 ). Esse fato revela que não chegarão novos fótons virtuais (13) ao terminal do dreno (6). Isso é importante, pois o buraco (falta de elétron) ocasionado devido ao espalhamento do elétron (descrito anteriormente) será preenchido por um elétron que subirá do terminal terra (8) para o terminal dreno (6), a fim de neutralizá-lo eletricamente. Dessa maneira, quando a polarização (2) retornar à configuração inicial (orientação: terminal fonte (3) para terminal do dreno (6)), o processo de espalhamento Moller se repete no terminal do dreno (6) e, novamente, a energia do vácuo é transformada em energia elétrica! A intensidade da energia elétrica é proporcional à frequência de chaveamento da polarização (2) e da intensidade da distribuição de elétrons isolados (4) no terminal da fonte (3). [018] We will present the second most important result of this invention, which is related to the switching (cyclic change) of polarization (2) due to the intermittency of the key (9) (key switching = periodically turning on and off). Intermittent polarization (2) will allow the discrete and constant absorption of vacuum energy, characterizing the chip as a continuous energy source. As already presented in paragraph 16, polarization (2) is the optical path for the propagation of virtual photons (13). Therefore, when pressing the key (9) the polarization direction (2) changes inside the ferroelectric core (1). This fact reveals that no new virtual photons (13) will reach the drain terminal (6). This is important, as the hole (lack of electron) caused by electron scattering (described previously) will be filled by an electron that will rise from the ground terminal (8) to the drain terminal (6), in order to electrically neutralize it. . In this way, when the polarization (2) returns to the initial configuration (orientation: source terminal (3) to drain terminal (6)), the Moller scattering process is repeated at the drain terminal (6) and, again, the energy vacuum is transformed into electrical energy! The intensity of electrical energy is proportional to the polarization switching frequency (2) and the intensity of the distribution of isolated electrons (4) at the source terminal (3).
[019] Ao longo deste relatório, citamos o núcleo ferroelétrico (1 ) como sendo o elemento responsável por mudar a direção da polarização (2) e, consequentemente, a direção da seção de choque (ora no terminal do dreno (6) ora no terminal controle (5)). [020] Porém vale destacar que qualquer método ou dispositivo de engenharia capaz de promover essas mudanças será capaz de gerar o espalhamento Moller e dar origem a uma corrente elétrica de espalhamento quântico. Por isso, generalizamos o CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO a qualquer método ou dispositivo de engenharia capaz de variar periodicamente a polarização (2) e consequentemente a direção da seção de choque (ora no terminal do dreno (6) ora no terminal de controle (5)) gerando o espalhamento Moller a fim de obter uma corrente elétrica de espalhamento quântico. Além do avanço tecnológico que apresentamos, essa invenção promove o discernimento e o avanço na fronteira da Física Clássica, isto é, no entendimento de que a corrente de deslocamento de Maxwell (Física Clássica) é a corrente elétrica de espalhamento quântico (Física Moderna). [019] Throughout this report, we mention the ferroelectric core (1) as being the element responsible for changing the direction of polarization (2) and, consequently, the direction of the cross section (sometimes at the drain terminal (6) and sometimes at the control terminal (5)). [020] However, it is worth highlighting that any engineering method or device capable of promoting these changes will be capable of generating Moller scattering and giving rise to an electrical current of quantum scattering. Therefore, we generalize the ELECTRIC ENERGY GENERATOR CHIP FROM QUANTUM VACUUM to any engineering method or device capable of periodically varying the polarization (2) and consequently the direction of the shock section (sometimes at the drain terminal (6) sometimes at the control terminal (5)) generating Moller scattering in order to obtain a quantum scattering electrical current. In addition to the technological advancement that we present, this invention promotes insight and advancement in the frontier of Classical Physics, that is, in the understanding that the Maxwell displacement current (Classical Physics) is the electrical current of quantum scattering (Modern Physics).

Claims

REIVINDICAÇÕES
1 - CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO é caracterizado por qualquer método ou dispositivo de engenharia capaz de variar periodicamente a polarização (2) e consequentemente a direção da seção de choque (ora no terminal do dreno (6) ora no terminal de controle (5)) gerando o espalhamento Moller a fim de obter uma corrente elétrica de espalhamento quântico e consequentemente transformar energia do vácuo (fóton virtuais (13)) em energia elétrica. 1 - ELECTRIC ENERGY GENERATOR CHIP FROM QUANTUM VACUUM is characterized by any method or engineering device capable of periodically varying the polarization (2) and consequently the direction of the shock section (sometimes at the drain terminal (6) sometimes at the terminal control system (5)) generating Moller scattering in order to obtain an electrical current of quantum scattering and consequently transform vacuum energy (virtual photons (13)) into electrical energy.
2 - CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO, de acordo com a reivindicação 1 , é caracterizado por ser um transistor encapsulado, individualmente ou em série, em que cada transistor contém um núcleo ferroelétrico (1 ) e três terminais (fonte (3), controle (5) e dreno (6)). 2 - ELECTRIC POWER GENERATOR CHIP FROM QUANTUM VACUUM, according to claim 1, is characterized by being an encapsulated transistor, individually or in series, in which each transistor contains a ferroelectric core (1) and three terminals (source ( 3), control (5) and drain (6)).
3 - CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO, de acordo com as reivindicações 1 e 2, é caracterizado por ser um dispositivo que transforma energia do vácuo (fótons virtuais (13)) em energia elétrica em um elemento dissipativo (7) de energia elétrica (exemplos: eletrodomésticos, motores, veículos elétricos - baterias de carros elétricos, motos elétricas, drones -, bateria de celulares etc). 3 - ELECTRICAL ENERGY GENERATOR CHIP FROM QUANTUM VACUUM, according to claims 1 and 2, is characterized by being a device that transforms vacuum energy (virtual photons (13)) into electrical energy in a dissipative element (7) of electrical energy (examples: household appliances, motors, electric vehicles - electric car batteries, electric motorcycles, drones -, cell phone batteries, etc.).
4 - CHIP GERADOR DE ENERGIA ELÉTRICA A PARTIR DO VÁCUO QUÂNTICO, de acordo com as reivindicações 1 , 2 e 3, é caracterizado por construir um caminho óptico para a propagação dos fótons virtuais (13). 4 - ELECTRIC ENERGY GENERATOR CHIP FROM QUANTUM VACUUM, according to claims 1, 2 and 3, is characterized by building an optical path for the propagation of virtual photons (13).
PCT/BR2023/050011 2022-04-10 2023-01-12 Chip generating electric power from quantum vacuum WO2023197050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102022006896-8A BR102022006896A2 (en) 2022-04-10 2022-04-10 ELECTRIC POWER GENERATOR CHIP FROM QUANTUM VACUUM
BRBR102022006896-8 2022-04-10

Publications (1)

Publication Number Publication Date
WO2023197050A1 true WO2023197050A1 (en) 2023-10-19

Family

ID=88328521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2023/050011 WO2023197050A1 (en) 2022-04-10 2023-01-12 Chip generating electric power from quantum vacuum

Country Status (2)

Country Link
BR (1) BR102022006896A2 (en)
WO (1) WO2023197050A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704622A (en) * 1985-11-27 1987-11-03 American Telephone And Telegraph Company, At&T Bell Laboratories Negative transconductance device
US5590031A (en) * 1994-07-27 1996-12-31 Mead, Jr.; Franklin B. System for converting electromagnetic radiation energy to electrical energy
US7379286B2 (en) * 2004-09-27 2008-05-27 Jovion Corporation Quantum vacuum energy extraction
WO2020229944A1 (en) * 2019-05-10 2020-11-19 Garret Moddel Quantum vacuum fluctuation devices
US11251723B2 (en) * 2019-05-10 2022-02-15 The Regents Of The University Of Colorado, A Body Corporate Systems for driving the generation of products using quantum vacuum fluctuations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704622A (en) * 1985-11-27 1987-11-03 American Telephone And Telegraph Company, At&T Bell Laboratories Negative transconductance device
US5590031A (en) * 1994-07-27 1996-12-31 Mead, Jr.; Franklin B. System for converting electromagnetic radiation energy to electrical energy
US7379286B2 (en) * 2004-09-27 2008-05-27 Jovion Corporation Quantum vacuum energy extraction
WO2020229944A1 (en) * 2019-05-10 2020-11-19 Garret Moddel Quantum vacuum fluctuation devices
US11251723B2 (en) * 2019-05-10 2022-02-15 The Regents Of The University Of Colorado, A Body Corporate Systems for driving the generation of products using quantum vacuum fluctuations

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FARINA CARLOS: "The Casimir effect: some aspects", BRAZILIAN JOURNAL OF PHYSICS, SPRINGER US, NEW YORK, vol. 36, no. 4a, 1 January 2006 (2006-01-01), New York, pages 1137 - 1149, XP093099424, ISSN: 0103-9733, DOI: 10.1590/S0103-97332006000700006 *
GARRET MODDEL, DMITRIYEVA OLGA: "Extraction of Zero-Point Energy from the Vacuum: Assessment of Stochastic Electrodynamics-Based Approach as Compared to Other Methods", ATOMS, MDPI AG, vol. 7, no. 2, 23 May 2019 (2019-05-23), pages 51, XP055728056, ISSN: 2218-2004, DOI: 10.3390/atoms7020051 *
KHAN ASIF ISLAM, KESHAVARZI ALI, DATTA SUMAN: "The future of ferroelectric field-effect transistor technology", NATURE ELECTRONICS, vol. 3, no. 10, pages 588 - 597, XP093028992, DOI: 10.1038/s41928-020-00492-7 *
LÄHTEENMÄKI PASI, PARAOANU G. S., HASSEL JUHA, HAKONEN PERTTI J.: "Dynamical Casimir effect in a Josephson metamaterial", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 110, no. 11, 12 March 2013 (2013-03-12), pages 4234 - 4238, XP093099425, ISSN: 0027-8424, DOI: 10.1073/pnas.1212705110 *
STANGE ALEXANDER, CAMPBELL DAVID K., BISHOP DAVID J.: "Science and technology of the Casimir effect", PHYSICS TODAY., AMERICAN INSTITUTE OF PHYSICS, NEW YORK., US, vol. 74, no. 1, 1 January 2021 (2021-01-01), US , pages 42 - 48, XP093099430, ISSN: 0031-9228, DOI: 10.1063/PT.3.4656 *
YAM P.: "EXPLOITING ZERO-POINT ENERGY.", SCIENTIFIC AMERICAN., SCIENTIFIC AMERICAN INC., NEW YORK, NY., US, vol. 277., no. 06., 1 December 1997 (1997-12-01), US , pages 54 - 57., XP000730447, ISSN: 0036-8733 *

Also Published As

Publication number Publication date
BR102022006896A2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
Gao et al. Triboiontronic transistor of MoS2
Zhu et al. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons
Wang et al. Space charge mechanism of polyethylene and polytetrafluoroethylene by electrode/dielectrics interface study using quantum chemical method
Panzer et al. Exploiting ionic coupling in electronic devices: electrolyte‐gated organic field‐effect transistors
Yu et al. Harvesting energy from low-frequency excitations through alternate contacts between water and two dielectric materials
Renshaw et al. Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. I. Theory
Zeng et al. A Dual‐Functional Triboelectric Nanogenerator Based on the Comprehensive Integration and Synergetic Utilization of Triboelectrification, Electrostatic Induction, and Electrostatic Discharge to Achieve Alternating Current/Direct Current Convertible Outputs
Liu et al. Two-dimensional WSe2/organic acceptor hybrid nonvolatile memory devices based on interface charge trapping
Sun et al. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications
Singh et al. Persistent photocurrent (PPC) in solution-processed organic thin film transistors: mechanisms of gate voltage control
Nugraha et al. Broadening of distribution of trap states in PbS quantum dot field-effect transistors with high-k dielectrics
WO2023197050A1 (en) Chip generating electric power from quantum vacuum
KR20140110261A (en) Energy harvesting device
Wei et al. Triboelectric potential powered high-performance organic transistor array
Zhu et al. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO2 nanogranular films
Qin et al. The effect of temperature cycles on conductivity mechanism using polyimide
JP7281168B2 (en) charge generator
Lee The on‐state in chalcogenide threshold switches
Li et al. Research Progress of Quantum Chemical Calculation for Mechanisms in Charge Transportation and Insulation Failure
Sabarish et al. A review on electro-mechanical properties of solar photovoltaic panels with graphene material
Shukla et al. Investigation of hetero-and homo-charges in pristine and iodine doped polymethylmethacrylate
Cai et al. Simulation on weibull-distribution of PP nanocomposites modulated by carrier transport and molecular displacement
JP3169617B2 (en) Electric conductivity control method
Jauhari et al. Effect of Blocking Layer on the Performance of Dye Sensitized Solar Cells
CN112885904B (en) Floating gate control type near-infrared band bidirectional memory photoelectric memory and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787317

Country of ref document: EP

Kind code of ref document: A1