WO2023195563A1 - Metal catalyst-based alcohol sensor and wearable device comprising same - Google Patents

Metal catalyst-based alcohol sensor and wearable device comprising same Download PDF

Info

Publication number
WO2023195563A1
WO2023195563A1 PCT/KR2022/005148 KR2022005148W WO2023195563A1 WO 2023195563 A1 WO2023195563 A1 WO 2023195563A1 KR 2022005148 W KR2022005148 W KR 2022005148W WO 2023195563 A1 WO2023195563 A1 WO 2023195563A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
metal catalyst
ionic liquid
fluid sample
alcohol sensor
Prior art date
Application number
PCT/KR2022/005148
Other languages
French (fr)
Korean (ko)
Inventor
신재호
정희준
이두현
Original Assignee
주식회사 아이코어바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이코어바이오 filed Critical 주식회사 아이코어바이오
Publication of WO2023195563A1 publication Critical patent/WO2023195563A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/98Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving alcohol, e.g. ethanol in breath

Definitions

  • the present invention relates to an alcohol sensor that measures alcohol content using a metal catalyst and a wearable device including the same.
  • alcohol is not digested and is absorbed into cells or body tissues through plasma. After drinking, 20% of the alcohol consumed is absorbed from the stomach and 80% of the alcohol is absorbed from the intestines.
  • Breathing breath alcohol measuring devices which are widely used to determine drinking, are fuel cell-based, have a short measurement time, and are widely used as there are many portable devices.
  • the fuel cell-based alcohol sensor in (b) of Figure 1 may cause fouling due to humidity (reduced sensitivity), signal drift may occur over time (reduced reliability and accuracy), and low level There is a problem that the possibility of detecting the amount of alcohol consumed is low.
  • the enzyme-based alcohol sensor shown in Figure 1 (c) has problems such as short service life, low stability, and conductivity compared to the fuel cell type.
  • alcohol sensors are not suitable for monitoring drinking status because errors occur due to gargling containing alcohol and continuous measurement is not possible.
  • an alcohol monitoring sensor capable of continuous measurement is needed.
  • the present invention provides a metal catalyst-based alcohol sensor incorporating an alloy metal catalyst and an ionic liquid to be implemented in an alcohol monitoring sensor capable of continuous measurement based on extracorporeal gases generated in the transdermis, and a wearable device including the same. There is a main purpose.
  • an alcohol sensor for achieving the above object includes one or a plurality of electrodes for detecting the alcohol concentration; and a metal catalyst layer for a reaction to acquire electrons through a reaction with an alcohol component contained in the fluid sample to detect the concentration of alcohol contained in the fluid sample, the metal catalyst layer located on one side of the electrode.
  • a metal catalyst layer for a reaction to acquire electrons through a reaction with an alcohol component contained in the fluid sample to detect the concentration of alcohol contained in the fluid sample, the metal catalyst layer located on one side of the electrode. may include.
  • a wearable device for achieving the above object includes one or a plurality of electrodes, and an alcohol component contained in the fluid sample to detect the alcohol concentration contained in the fluid sample.
  • An alcohol sensor comprising a metal catalyst layer for a reaction to acquire electrons through a reaction, and a metal catalyst layer located on one side of the electrode; an alcohol concentration measuring unit electrically connected to the electrode and measuring the alcohol concentration based on changes in electrical characteristics detected from the electrode; a memory for storing the measured alcohol concentration; and a processor that compares the measured alcohol concentration with a predetermined reference value and performs an operation to deliver a message about the alcohol concentration to the outside.
  • the present invention has the effect of implementing a highly sensitive sensor.
  • the present invention has the effect of improving the detection limit of the sensor.
  • the present invention has the effect of extending the service life of the sensor.
  • the present invention has the effect of improving alcohol gas (vapor) collection performance.
  • Figure 1 is an exemplary diagram for explaining a conventional alcohol measurement method.
  • Figure 2 is a diagram schematically showing an alcohol sensor according to a first embodiment of the present invention.
  • Figure 3 is a diagram schematically showing an alcohol sensor according to a second embodiment of the present invention.
  • Figure 4 is a diagram showing the structure of an alcohol sensor according to an embodiment of the present invention.
  • Figure 5 is a diagram for explaining a metal catalyst of an alcohol sensor according to an embodiment of the present invention.
  • Figure 6 is a diagram for explaining the ionic liquid of the alcohol sensor according to an embodiment of the present invention.
  • Figure 7 is a flowchart for explaining the manufacturing process of an alcohol sensor according to an embodiment of the present invention.
  • FIG 8 and 9 are diagrams for explaining an example of manufacturing an alcohol sensor according to an embodiment of the present invention.
  • 10 to 15 are diagrams for explaining the test method and test results of an alcohol sensor according to an embodiment of the present invention.
  • Figure 16 is a block diagram schematically showing a wearable device including an alcohol sensor according to an embodiment of the present invention.
  • Figure 2 is a diagram schematically showing an alcohol sensor according to a first embodiment of the present invention.
  • the alcohol sensor 100 includes a base 110, side structures 120 and 122, electrode portions 130, 132, and 134, and a metal catalyst 140.
  • the alcohol sensor 100 of FIG. 2 is according to one embodiment, and not all blocks shown in FIG. 2 are essential components. In other embodiments, some blocks included in the alcohol sensor 100 may be added, changed, or deleted. It can be.
  • the alcohol sensor 100 refers to a sensor for measuring alcohol in the body.
  • the alcohol sensor 100 When a fluid sample is input, the alcohol sensor 100 according to the first embodiment measures alcohol in the fluid sample using a metal catalyst and an electrode connected to the metal catalyst.
  • Base 110 refers to a structure that supports the lower side of the alcohol sensor 100.
  • the base 110 is made of an insulating material.
  • the side structures 120 and 122 are coupled to the base 110, are formed on both ends of the base 110, and are structures for forming a space into which a fluid sample is introduced.
  • the side structures 120 and 122 may be formed of two different structures, but are not necessarily limited thereto, and may be one structure connected to each other.
  • the electrode units 130, 132, and 134 perform an operation of measuring alcohol using an electrochemical signal depending on the concentration of alcohol reacted with the metal catalyst.
  • the electrode units 130, 132, and 134 include one or at least two electrodes and are disposed on the upper side of the base 110.
  • the electrode units 130, 132, and 134 are shown as a third electrode system consisting of a working electrode (130), a counter electrode (132), and a reference electrode (134), but are limited to this. This does not mean that it can be configured as a second electrode system consisting of a working electrode and a reference electrode.
  • the working electrode refers to an electrode for actually measuring alcohol
  • the counter electrode refers to an electrode that applies a potential and allows current to flow.
  • the reference electrode refers to an electrode that holds the standard for the potential applied to the working electrode.
  • a metal catalyst 140 is stacked on the upper side of the working electrode among the electrode units 130, 132, and 134.
  • the metal catalyst layer includes a metal catalyst 140 for a reaction to acquire electrons through reaction with an alcohol component contained in the fluid sample, and a support that fixes the metal catalyst so that the metal catalyst 140 can come into contact with the fluid sample.
  • the metal catalyst 140 refers to a catalyst that reacts with alcohol in a fluid sample.
  • the metal catalyst 140 is connected to the working electrode and reacts with the alcohol in the fluid sample so that an electrochemical signal according to the alcohol component can be measured at the working electrode.
  • the metal catalyst 140 may be formed of a single metal material.
  • the metal catalyst 140 may include platinum (Pt) or an alloy containing platinum.
  • the metal catalyst 140 may be formed of an alloy material in which at least one material is combined.
  • the metal catalyst 140 may be formed including platinum (Pt) at a ratio within the range of 10 to 100 at% (atomic percent).
  • the metal catalyst 140 is at least one of platinum (Pt), nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh). It can be formed in a form containing an alloy in which (elements) are combined.
  • the metal catalyst 140 is at least one of platinum (Pt), nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh). It can be formed in a form that includes a carbon-supported alloy in which an alloy of materials (elements) is combined and supported on carbon (C).
  • the material combined with platinum (Pt) may be at least one of a metallic material, a non-metallic material, or a synthetic material combining a metallic material and a non-metallic material. there is.
  • the metal catalyst 140 may be formed on the support to increase the surface area with the fluid sample.
  • the support is formed of a carbon-based material.
  • the support may be formed of a carbon-based material such as carbon black, carbon nanotube, graphene, graphene oxide, or graphite.
  • Figure 3 is a diagram schematically showing an alcohol sensor according to a second embodiment of the present invention.
  • the alcohol sensor 100 includes a base 110, side structures 120, 122, electrode parts 130, 132, 134, a metal catalyst 140, and an ionic liquid 150. and a transmission membrane 160.
  • the alcohol sensor 100 of FIG. 3 is according to one embodiment, and not all blocks shown in FIG. 3 are essential components. In other embodiments, some blocks included in the alcohol sensor 100 may be added, changed, or deleted. It can be.
  • the alcohol sensor 100 refers to a sensor for measuring alcohol in the body.
  • the fluid sample when a fluid sample is introduced, the fluid sample and the ionic liquid are mixed, and the alcohol in the mixed liquid reacts with the metal catalyst to produce alcohol through an electrode connected to the metal catalyst.
  • the fluid sample is preferably an extracorporeal gas generated from the transdermis, but is not necessarily limited thereto, and may be a variety of gases discharged from the body, including alcohol components.
  • Extracorporeal gas generated from the transdermis is a gas that vaporizes through the skin of a drunk person's body, and the gas contains alcohol.
  • the alcohol sensor 100 of FIG. 3 includes the same base 110, side structures 120 and 122, electrode units 130, 132 and 134, and metal catalyst 140 as shown in FIG. 2. Accordingly, overlapping descriptions of the components shown in FIG. 2 will be omitted.
  • the permeable membrane 160 serves to filter the fluid sample introduced into the alcohol sensor 100 by selectively transmitting all or part of the gas component of the gaseous fluid sample generated in the transdermis.
  • the transmission membrane 160 is combined with the side structure.
  • the transmission film 160 is formed in parallel and opposite to the base 110 with a portion of its surface in contact with the upper surfaces of the side structures 120 and 122.
  • the transmission membrane 160 is preferably formed to have a thickness between 10 and 100 ⁇ m.
  • the transmission membrane 160 may be formed of polymer or co-polymer.
  • the permeable membrane 160 is made of hydrophilic aliphatic polyether, hydrophobic aliphatic polyether, polyester, polyethylene, polytetrafluoroethylene, It may be formed by including at least one selected from the group consisting of thermoplastic olefin and thermoplastic polyurethane.
  • the ionic liquid 150 collects the fluid sample that has passed through the permeable membrane 160 and exists in a liquid ion state.
  • the ionic liquid 150 is mixed with the fluid sample (gas) that has passed through the permeable membrane 160 and serves to create a sensing environment so that the alcohol contained in the fluid sample (gas) reacts with the metal catalyst 140. .
  • the ionic liquid 150 is filled in the space formed by the structure surrounded by the base 110, the side structures 120 and 122, and the permeable membrane 160.
  • the ionic liquid 150 includes imidazole, pyrrolidinium, pyridinium, piperidinium, ammonium, phosphonium, and sulfur. It may be from at least one series of sulphonium.
  • the imidazole-based ionic liquid 150 is 1-butyl-3-methylimidazolium tetrafluoroborate (1-Butyl-3- methylimidazolium tetrafluoroborate), 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-ethyl-3-methylimidazolium 1-Ethyl-3-methylimidazolium dicyanamide, 1-Butyl-3-methylimidazolium iodide, 1-butyl-3-methylimidazolium hexafluoride It may include 1-Butyl-3-methylimidazolium hexafluorophosphate, 1-decyl-3-methylimidazolium chloride, etc.
  • the pyrrolidinium-based ionic liquid 150 is 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfur). It may include 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide).
  • the pyridinium-based ionic liquid 150 is 1-butyl-4-methylpyridinium tetrafluoroborate (1-Butyl-4 -methylpyridinium tetrafluoroborate).
  • the piperidinium-based ionic liquid 150 is 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfur). It may include ponyl)imide (1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide).
  • the ammonium-based ionic liquid 150 may include tetramethylammonium acetate and tributylmethylammonium chloride. You can.
  • the phosphonium-based ionic liquid 150 may include trihexyltetradecylphosphonium dicyanamide.
  • the sulfonium-based ionic liquid 150 is triethylsulfonium bis(trifluoromethylsulfonyl)imide (Triethylsulfonium bis( It may include trifluoromethylsulfonyl)imide).
  • the structure of the alcohol sensor 100 for accommodating the fluid sample and the ionic liquid was presented, including a side structure, a base at the bottom, and a permeable membrane at the top.
  • the configuration of the side structures and base need not be limited to these structures.
  • the side structure and the base may be formed from a single material or integrally combined.
  • Figure 4 is a diagram showing the structure of an alcohol sensor according to an embodiment of the present invention.
  • the alcohol sensor structure in FIG. 4 is a transdermal alcohol sensor manufactured based on the alcohol sensor 100 according to the second embodiment.
  • the alcohol sensor 100 has a working electrode 130, a counter electrode 132, and a reference electrode 134 based on a third electrode system formed on the base 110.
  • a metal catalyst 140 is stacked on the upper side of the working electrode 130.
  • the side structure 120 and the top cover 162 are formed in a hollow shape at the center of the rectangular structure and are stacked on the base 110.
  • the electrode portions 130, 132, and 134 and the metal catalyst 140 are exposed within the hollow of the side structure 120 and the top cover 162.
  • the space formed by the base 110 and the side structure 120 is filled with the ionic liquid 150, and a transmission membrane ( 160) is formed.
  • Figure 5 is a diagram for explaining a metal catalyst of an alcohol sensor according to an embodiment of the present invention.
  • the metal catalyst 140 controls the electrochemical reaction according to the alcohol concentration contained in the input sample (fluid sample).
  • the metal catalyst 140 may include at least one selected from the group consisting of platinum (Pt) and alloys thereof, or a compound of a base metal and platinum (Pt).
  • the alloy constituting the metal catalyst 140 is PtM, where M is nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh). ) may include at least one selected from ).
  • M nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh).
  • PtM the atomic ratio of M relative to platinum (Pt) is preferably 10 to 100.
  • the metal catalyst 140 has a structural effect as it is formed using an alloy containing platinum (Pt). That is, in the alloy-based metal catalyst 140, the bond distance between platinum (Pt) and platinum (Pt) changes due to a change in the lattice parameter.
  • the alloy-based metal catalyst 140 can improve activity and selectivity and reduce the binding energy of platinum (Pt) and carbon monoxide (CO). Additionally, the alloy-based metal catalyst 140 can destroy the C-C bond of alcohol.
  • the metal catalyst 140 may be formed on a support to increase the surface area with the fluid sample and improve catalyst performance.
  • the support is formed of a carbon-based material.
  • the support may be formed of a carbon-based material such as carbon black, carbon nanotube, graphene, graphene oxide, or graphite.
  • Figure 6 is a diagram for explaining the ionic liquid of the alcohol sensor according to an embodiment of the present invention.
  • Ionic liquids are substances that are composed of cations and anions and exist in a liquid state at room temperature.
  • Figure 7 is a flowchart for explaining the manufacturing process of an alcohol sensor according to an embodiment of the present invention.
  • Step S1110 prepares a permeable membrane for selectively permeating the gas of the fluid sample.
  • Step S1120 prepares a metal catalyst for a reaction that acquires electrons through reaction with the alcohol component contained in the fluid sample.
  • step S1130 the prepared metal catalyst is stacked and combined on the working electrode.
  • step S1140 the electrode is fixed to the base, a hollow is formed in the side structure parallel to the base, and the ionic liquid is injected into the hollow.
  • step S1150 a sensor is manufactured by adsorbing the manufactured transparent membrane to prevent bubbles from being generated.
  • each step is described as being executed sequentially, but it is not necessarily limited to this.
  • the steps shown in FIG. 7 may be applied by modifying and executing one or more steps in parallel, so FIG. 7 is not limited to a time series order.
  • FIG 8 and 9 are diagrams for explaining an example of manufacturing an alcohol sensor according to an embodiment of the present invention.
  • Lubrizol's HP-60D-20 at a concentration of 400 mg/mL of tetrahydrofuran, then pour 300 ⁇ L into a glass ring with a diameter of 10 mm under the conditions of a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
  • Example 1-2 metal catalyst cocktail mixing
  • PtNi platinum nickel
  • Lubrizol's HP-60D-20 After dissolving Lubrizol's HP-60D-20 at a concentration of 400 mg/mL of tetrahydrofuran, add 250 ⁇ L to a glass ring with a diameter of 8 mm under the conditions of a temperature of 20 °C and a relative humidity of 10% or less. Dry overnight.
  • Example 3-2 metal catalyst cocktail mixing
  • platinum-nickel supported on carbon (C) replaced the carbon supported platinum-tin alloy (C/PtSn) supported on carbon (C).
  • C/PtSn carbon supported platinum-tin alloy supported on carbon
  • Example 3-2 metal catalyst cocktail mixing
  • platinum-chromium supported on carbon (C) replaced the carbon supported platinum-tin alloy (C/PtSn) supported on carbon (C).
  • C/PtSn carbon supported platinum-tin alloy
  • C/PtCr 12 mg
  • Lubrizol's HP-60D-20 at a concentration of 400 mg/mL of tetrahydrofuran, then pour 300 ⁇ L into a glass ring with a diameter of 6 mm under the conditions of a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
  • Ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) of Example 5-4 (preparation of alcohol sensor incorporating metal catalyst and ionic liquid) )
  • the same procedure was performed except that 14 ⁇ L of 1-Butyl-4-methylpyridinium tetrafluoroborate was added instead.
  • Lubrizol's SG-80A After dissolving Lubrizol's SG-80A at a concentration of 320 mg/mL of tetrahydrofuran, pour 200 ⁇ L into a glass ring with a diameter of 6 mm and overheat at a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
  • Example 11-2 metal catalyst cocktail mixing
  • platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu).
  • C/PtRu carbon supported platinum-ruthenium alloy
  • C/PtCo cobalt alloy
  • Example 11-2 metal catalyst cocktail mixing
  • platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu).
  • C/PtRu carbon supported platinum-ruthenium alloy
  • Example 11-2 metal catalyst cocktail mixing
  • platinum supported on carbon C was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu).
  • C/PtRu carbon supported platinum-ruthenium alloy
  • Example 11-2 metal catalyst cocktail mixing
  • platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu).
  • C/PtRu carbon supported platinum-ruthenium alloy
  • Example 11-2 metal catalyst cocktail mixing
  • platinum supported on carbon C was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu).
  • C/PtRu carbon supported platinum-ruthenium alloy
  • Example 11-2 metal catalyst cocktail mixing
  • carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C) graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • C/PtRu carbon supported platinum-ruthenium alloy supported on carbon
  • graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • the same procedure was performed except that 20 mg of platinum-nickel alloy (GO/PtNi) was added.
  • Example 11-2 metal catalyst cocktail mixing
  • carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C) graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • C/PtRu carbon supported platinum-ruthenium alloy supported on carbon
  • graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • the same procedure was performed except that 20 mg of platinum-ruthenium alloy (GO/PtNi) was added.
  • Example 11-2 metal catalyst cocktail mixing
  • carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C) graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • C/PtRu carbon supported platinum-ruthenium alloy
  • graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • the same procedure was performed except that 20 mg of platinum-rhodium alloy (GO/PtRh) was added.
  • GO/PtRh platinum-rhodium alloy
  • Example 11-2 metal catalyst cocktail mixing
  • carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C) graphene oxide was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C).
  • C/PtRu carbon supported platinum-ruthenium alloy supported on carbon
  • Lubrizol's HP-60D-30 Dissolve Lubrizol's HP-60D-30 at a concentration of 320 mg/mL of tetrahydrofuran, then pour 200 ⁇ L into a glass ring with a diameter of 6 mm under the conditions of a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
  • 10 to 15 are diagrams for explaining the test method and test results of an alcohol sensor according to an embodiment of the present invention.
  • the fluid sample containing alcohol used in the experiment of the transdermal alcohol sensor uses extracorporeal gas generated from the transdermis.
  • the measurement results of the transdermal alcohol sensor can be compared with the blood alcohol concentration and transdermal measurement results in the following manner.
  • BAC 80 mg/100ml when calculated using the alcohol specific gravity (0.8 g/ml). Therefore, if 80 mg/100ml is converted to ppm, it can be calculated as 800 ppm.
  • Figure 11 (a) shows alcohol sensitivity to changes in current output from the electrode according to alcohol gas concentration over time through a transdermal alcohol sensor.
  • Figure 11 (b) shows an alcohol calibration curve showing the correlation between currents for each alcohol gas concentration.
  • Figure 12 shows experimental results regarding the service life of a transdermal alcohol sensor capable of continuous monitoring. It can be confirmed that the alcohol measurement performance is maintained until about 40 days have passed.
  • Figure 13 shows the evaluation of the humidity effect of the alcohol sensor for transdermal measurement in which a metal catalyst and an ionic liquid are introduced.
  • Figure 13 shows the change in current according to the change in humidity by increasing the humidity from 25% to 100% from the time the alcohol component was measured (about 1000 sec).
  • Figure 14 (a) shows the change in current according to the change in temperature in the transdermal alcohol sensor.
  • Figure 14 (b) shows the change in current according to the measurement temperature during operation of the transdermal alcohol sensor. In the transdermal alcohol sensor, it can be seen that the current value increases as the temperature increases.
  • Figure 15 shows the evaluation of a drunken person's transdermal alcohol sensor incorporating a metal catalyst and ionic liquid.
  • Figure 15(a) shows the results of transdermal alcohol sensitivity of the first drunk
  • Figure 15(b) shows the results of transdermal alcohol sensitivity of the second drunk. It can be seen that alcohol vapor was generated from the skin of the two drunkards 20 and 32 minutes after drinking, respectively.
  • the dots represent the measurement results of the respiratory-type alcohol meter, and it can be seen that they show almost similar trends to the measurement results of the transdermal alcohol sensor of the present invention.
  • Figure 16 is a block diagram schematically showing a wearable device including an alcohol sensor according to an embodiment of the present invention.
  • a wearable device 2100 for continuously monitoring alcohol concentration has one or a plurality of electrodes, and in order to detect the alcohol concentration contained in the fluid sample, electrons are generated through reaction with the alcohol component contained in the fluid sample.
  • An alcohol sensor 2110 that includes a metal catalyst for a reaction to obtain and includes a metal catalyst layer located on one side of the electrode; an alcohol concentration measuring unit electrically connected to the electrode and measuring the alcohol concentration based on changes in electrical characteristics detected from the electrode;
  • a memory 2140 that stores the measured alcohol concentration; and a processor 2130 that compares the measured alcohol concentration with a predetermined reference value and performs an operation to deliver a message about the alcohol concentration to the outside.
  • the alcohol sensor 2110 of the wearable device 2100 further includes an insulating base and a side structure coupled to the base to confine the fluid sample.
  • the one or plurality of electrodes are disposed on the base, and the metal catalyst layer further includes a support for fixing the metal catalyst so that the metal catalyst can contact the fluid sample.

Abstract

Disclosed are a metal catalyst-based alcohol sensor and a wearable device comprising same. An alcohol sensor according to an embodiment of the present invention may comprise: one or a plurality of electrodes for sensing the concentration of alcohol; and a metal catalyst layer, which comprises a metal catalyst for a reaction of acquiring electrons through a reaction with an alcohol component contained in a fluid sample, in order to sense the concentration of alcohol contained in the fluid sample, and is disposed on one side of the electrode.

Description

금속 촉매 기반의 알코올 센서 및 그를 포함하는 웨어러블 장치Metal catalyst-based alcohol sensor and wearable device containing the same
본 발명은 금속 촉매를 이용하여 알코올 성분을 측정하는 알코올 센서 및 그를 포함하는 웨어러블 장치에 관한 것이다. The present invention relates to an alcohol sensor that measures alcohol content using a metal catalyst and a wearable device including the same.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section simply provides background information on embodiments of the present invention and does not constitute prior art.
2018 년 한국의 높은 일인당 연간 알코올 소비량 (8.5 L)으로 인해 알코올성 질환(정신 및 행동장애, 간질환 등)에 대한 전문 치료비용 2,351억을 포함하여 음주관련 사회적 비용이 9조 4천억원에 육박하고 있다. Due to Korea's high per capita annual alcohol consumption (8.5 L) in 2018, drinking-related social costs are approaching KRW 9.4 trillion, including KRW 235.1 billion in professional treatment costs for alcohol-related diseases (mental and behavioral disorders, liver disease, etc.). .
도 1의 (a)를 참고하면, 알코올은 소화가 되지 않고 혈장을 통해 세포나 신체 조직으로 흡수된다. 음주자는 음주 후 위에서 섭취한 알코올의 20 %가 흡수되고, 장에서 알코올의 80 %가 흡수된다. Referring to Figure 1 (a), alcohol is not digested and is absorbed into cells or body tissues through plasma. After drinking, 20% of the alcohol consumed is absorbed from the stomach and 80% of the alcohol is absorbed from the intestines.
체내에 흡수된 알코올의 95 %는 간에서 분해되고, 4 %는 알코올 자체로 호흡 가스, 침, 눈물, 소변 등으로 배출되고, 마지막으로 1 %는 피부를 통해 (경피, transdermal) 직접 배출되며, 경피에서 직접 배출되는 알코올 가스는 배출량이 적고 (수 ppm) 느리게 배출되지만 혈중 알코올 농도 (blood alcohol concentration, BAC)와 상관성이 높다.95% of alcohol absorbed into the body is decomposed in the liver, 4% is excreted as alcohol itself through respiratory gas, saliva, tears, urine, etc., and finally, 1% is excreted directly through the skin (transdermal). Alcohol gas released directly from the transdermis is small (several ppm) and released slowly, but is highly correlated with blood alcohol concentration (BAC).
음주 여부를 판별하기 위해서 널리 사용되는 호흡식 음주 측정 장치는 연료 전지 방식으로 측정시간이 짧고, 휴대형으로 제작된 장비들이 많아 널리 사용되고 있다. Breathing breath alcohol measuring devices, which are widely used to determine drinking, are fuel cell-based, have a short measurement time, and are widely used as there are many portable devices.
도 1의 (b)의 연료전지 기반 알코올 센서는 습도에 의한 오염(fouling) 발생(감응성 감소)하고, 시간에 따른 신호 드리프트(signal drift)가 발생(신뢰도 및 정확도 감소)할 수 있으며, 낮은 수준의 음주량 검출 가능성이 낮다는 문제점이 있다. 도 1의 (c)의 효소 기반 알코올 센서는 연료전지 방식 대비 짧은 사용 수명, 낮은 안정성 및 전도성 등의 문제점 있다.The fuel cell-based alcohol sensor in (b) of Figure 1 may cause fouling due to humidity (reduced sensitivity), signal drift may occur over time (reduced reliability and accuracy), and low level There is a problem that the possibility of detecting the amount of alcohol consumed is low. The enzyme-based alcohol sensor shown in Figure 1 (c) has problems such as short service life, low stability, and conductivity compared to the fuel cell type.
하지만, 이러한 알코올 센서들은 알코올이 포함된 가글에 의한 오류가 발생하고 특히 연속적 측정이 불가능하여 음주 여부 모니터링에는 적합하지 않다. 사용자의 음주 여부 판별 및 의료 및 헬스 케어를 위해 알코올 모니터링 센서가 요구됨에 따라 연속적이 측정이 가능한 알코올 모니터링 센서가 필요하다. However, these alcohol sensors are not suitable for monitoring drinking status because errors occur due to gargling containing alcohol and continuous measurement is not possible. As alcohol monitoring sensors are required to determine whether a user is drinking and for medical and healthcare purposes, an alcohol monitoring sensor capable of continuous measurement is needed.
본 발명은 경피에서 발생하는 체외 가스를 기반으로 연속적인 측정이 가능한 알코올 모니터링 센서에 구현하기 위해 합금 금속 촉매 및 이온성 액체를 도입한 금속 촉매 기반의 알코올 센서 및 그를 포함하는 웨어러블 장치를 제공하는 데 주된 목적이 있다.The present invention provides a metal catalyst-based alcohol sensor incorporating an alloy metal catalyst and an ionic liquid to be implemented in an alcohol monitoring sensor capable of continuous measurement based on extracorporeal gases generated in the transdermis, and a wearable device including the same. There is a main purpose.
본 발명의 일 측면에 의하면, 상기 목적을 달성하기 위한 알코올 센서는, 상기 알코올 농도를 감지하기 위한 하나의 또는 복수개의 전극들; 및 상기 유체 시료의 포함된 알코올 농도를 감지하기 위하여, 상기 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매를 포함하며, 상기 전극의 일측에 위치하는 금속 촉매층;을 포함할 수 있다. According to one aspect of the present invention, an alcohol sensor for achieving the above object includes one or a plurality of electrodes for detecting the alcohol concentration; and a metal catalyst layer for a reaction to acquire electrons through a reaction with an alcohol component contained in the fluid sample to detect the concentration of alcohol contained in the fluid sample, the metal catalyst layer located on one side of the electrode. may include.
또한, 본 발명의 다른 측면에 의하면, 상기 목적을 달성하기 위한 웨어러블 장치는 하나의 또는 복수개의 전극들, 그리고 상기 유체 시료의 포함된 알코올 농도를 감지하기 위하여, 상기 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매를 포함하며, 상기 전극의 일측에 위치하는 금속 촉매층을 포함하는 알코올 센서; 상기 전극과 전기적으로 연결되어, 상기 전극으로부터 감지되는 전기적 특성의 변화를 근거로, 상기 알코올 농도를 측정하는 알코올 농도 측정부; 상기 측정된 알코올 농도를 저장하는 메모리; 및 상기 측정된 알코올 농도를 미리 결정된 기준값과 비교하고, 외부로 알코올 농도에 대한 메시지를 전달하기 위한 연산을 수행하는 프로세서를 포함할 수 있다. In addition, according to another aspect of the present invention, a wearable device for achieving the above object includes one or a plurality of electrodes, and an alcohol component contained in the fluid sample to detect the alcohol concentration contained in the fluid sample. An alcohol sensor comprising a metal catalyst layer for a reaction to acquire electrons through a reaction, and a metal catalyst layer located on one side of the electrode; an alcohol concentration measuring unit electrically connected to the electrode and measuring the alcohol concentration based on changes in electrical characteristics detected from the electrode; a memory for storing the measured alcohol concentration; and a processor that compares the measured alcohol concentration with a predetermined reference value and performs an operation to deliver a message about the alcohol concentration to the outside.
이상에서 설명한 바와 같이, 본 발명은 고감도 센서를 구현할 수 있는 효과가 있다. As described above, the present invention has the effect of implementing a highly sensitive sensor.
또한, 본 발명은 센서의 검출 한계를 향상시킬 수 있는 효과가 있다. Additionally, the present invention has the effect of improving the detection limit of the sensor.
또한, 본 발명은 센서의 사용수명을 길게 향상시킬 수 있는 효과가 있다. Additionally, the present invention has the effect of extending the service life of the sensor.
또한, 본 발명은 알코올 가스(증기) 포집 성능을 향상시킬 수 있는 효과가 있다. Additionally, the present invention has the effect of improving alcohol gas (vapor) collection performance.
도 1은 종래의 알코올 측정 방식을 설명하기 위한 예시도이다.Figure 1 is an exemplary diagram for explaining a conventional alcohol measurement method.
도 2는 본 발명의 제1 실시예에 따른 알코올 센서를 개략적으로 나타낸 도면이다. Figure 2 is a diagram schematically showing an alcohol sensor according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 알코올 센서를 개략적으로 나타낸 도면이다. Figure 3 is a diagram schematically showing an alcohol sensor according to a second embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 알코올 센서의 구조를 나타낸 도면이다.Figure 4 is a diagram showing the structure of an alcohol sensor according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 알코올 센서의 금속 촉매를 설명하기 위한 도면이다. Figure 5 is a diagram for explaining a metal catalyst of an alcohol sensor according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 알코올 센서의 이온성 액체를 설명하기 위한 도면이다. Figure 6 is a diagram for explaining the ionic liquid of the alcohol sensor according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 알코올 센서의 제작 공정을 설명하기 위한 순서도이다. Figure 7 is a flowchart for explaining the manufacturing process of an alcohol sensor according to an embodiment of the present invention.
도 8 및 도 9는 본 발명의 실시예에 따른 알코올 센서의 제조 실시예를 설명하기 위한 도면이다. 8 and 9 are diagrams for explaining an example of manufacturing an alcohol sensor according to an embodiment of the present invention.
도 10 내지 도 15은 본 발명의 실시예에 따른 알코올 센서의 실험 방법 및 실험 결과를 설명하기 위한 도면이다. 10 to 15 are diagrams for explaining the test method and test results of an alcohol sensor according to an embodiment of the present invention.
도 16은 본 발명의 실시예에 따른 알코올 센서를 포함하는 웨어러블 장치를 개략적으로 나타낸 블록 구성도이다. Figure 16 is a block diagram schematically showing a wearable device including an alcohol sensor according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다. 이하에서는 도면들을 참조하여 본 발명에서 제안하는 금속 촉매 기반의 알코올 센서 및 그를 포함하는 웨어러블 장치에 대해 자세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. In describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted. In addition, preferred embodiments of the present invention will be described below, but the technical idea of the present invention is not limited or restricted thereto, and of course, it can be modified and implemented in various ways by those skilled in the art. Hereinafter, a metal catalyst-based alcohol sensor and a wearable device including the same proposed in the present invention will be described in detail with reference to the drawings.
도 2는 본 발명의 제1 실시예에 따른 알코올 센서를 개략적으로 나타낸 도면이다. Figure 2 is a diagram schematically showing an alcohol sensor according to a first embodiment of the present invention.
본 발명의 제1 실시예에 따른 알코올 센서(100)는 베이스(110), 측면 구조체(120, 122), 전극부(130, 132, 134) 및 금속 촉매(140)를 포함한다. 도 2의 알코올 센서(100)는 일 실시예에 따른 것으로서, 도 2에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 알코올 센서(100)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. The alcohol sensor 100 according to the first embodiment of the present invention includes a base 110, side structures 120 and 122, electrode portions 130, 132, and 134, and a metal catalyst 140. The alcohol sensor 100 of FIG. 2 is according to one embodiment, and not all blocks shown in FIG. 2 are essential components. In other embodiments, some blocks included in the alcohol sensor 100 may be added, changed, or deleted. It can be.
알코올 센서(100)는 체내의 알코올을 측정하기 위한 센서를 의미한다. The alcohol sensor 100 refers to a sensor for measuring alcohol in the body.
제1 실시예에 따른 알코올 센서(100)는 유체 시료가 투입되면, 금속 촉매 및 금속 촉매와 연결된 전극을 이용하여 유체 시료 내의 알코올을 측정한다. When a fluid sample is input, the alcohol sensor 100 according to the first embodiment measures alcohol in the fluid sample using a metal catalyst and an electrode connected to the metal catalyst.
베이스(110)는 알코올 센서(100)의 하측면을 지지하는 구조체를 의미한다. 베이스(110)는 절연성 물질로 형성된다. Base 110 refers to a structure that supports the lower side of the alcohol sensor 100. The base 110 is made of an insulating material.
측면 구조체(120, 122)는 베이스(110)와 결합되고, 베이스(110)의 양측단에 형성되며, 유체 시료가 투입되는 공간을 형성하기 위한 구조체를 의미한다. The side structures 120 and 122 are coupled to the base 110, are formed on both ends of the base 110, and are structures for forming a space into which a fluid sample is introduced.
측면 구조체(120, 122)는 서로 다른 두 개의 구조물로 형성될 수 있으나 반드시 이에 한정되는 것은 아니며, 서로 연결된 하나의 구조물일 수 있다. The side structures 120 and 122 may be formed of two different structures, but are not necessarily limited thereto, and may be one structure connected to each other.
전극부(130, 132, 134)는 금속 촉매와 반응한 알코올의 농도에 따른 전기화학적 신호를 이용하여 알코올을 측정하는 동작을 수행한다. The electrode units 130, 132, and 134 perform an operation of measuring alcohol using an electrochemical signal depending on the concentration of alcohol reacted with the metal catalyst.
전극부(130, 132, 134)는 하나 또는 적어도 두 개 이상의 전극을 포함하고, 베이스(110)의 상측면에 배치된다. The electrode units 130, 132, and 134 include one or at least two electrodes and are disposed on the upper side of the base 110.
전극부(130, 132, 134)는 작업 전극(working electrode, 130), 상대 전극(counter electrode, 132) 및 기준 전극(reference electrode, 134)으로 구성되는 제3 전극계인 것으로 도시하고 있으나 반드시 이에 한정되는 것은 아니며, 작업 전극 및 기준 전극으로 구성되는 제2 전극계로 구성될 수 있다. 여기서, 작업 전극은 알코올을 실질적으로 측정하기 위한 전극을 의미하고, 상대 전극은 전위가 걸리고 전류가 흐를 수 있도록 하는 전극을 의미한다. 또한, 기준 전극은 작업 전극에 걸리는 전위의 기준을 잡아주는 전극을 의미한다. The electrode units 130, 132, and 134 are shown as a third electrode system consisting of a working electrode (130), a counter electrode (132), and a reference electrode (134), but are limited to this. This does not mean that it can be configured as a second electrode system consisting of a working electrode and a reference electrode. Here, the working electrode refers to an electrode for actually measuring alcohol, and the counter electrode refers to an electrode that applies a potential and allows current to flow. Additionally, the reference electrode refers to an electrode that holds the standard for the potential applied to the working electrode.
전극부(130, 132, 134) 중 작업 전극의 상측면에는 금속 촉매(140)가 적층되어 형성된다. A metal catalyst 140 is stacked on the upper side of the working electrode among the electrode units 130, 132, and 134.
금속 촉매층은 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매(140) 및 금속 촉매(140)가 유체 시료와 접할 수 있도록 금속 촉매를 고정시키는 지지체를 포함한다. The metal catalyst layer includes a metal catalyst 140 for a reaction to acquire electrons through reaction with an alcohol component contained in the fluid sample, and a support that fixes the metal catalyst so that the metal catalyst 140 can come into contact with the fluid sample.
금속 촉매(140)는 유체 시료 내의 알코올과 반응하는 촉매를 의미한다. The metal catalyst 140 refers to a catalyst that reacts with alcohol in a fluid sample.
금속 촉매(140)는 작업 전극과 연결되며, 작업 전극에서 알코올 성분에 따른 전기화학신호를 측정할 수 있도록 유체 시료 내의 알코올과 반응한다. The metal catalyst 140 is connected to the working electrode and reacts with the alcohol in the fluid sample so that an electrochemical signal according to the alcohol component can be measured at the working electrode.
금속 촉매(140)는 단일 금속 물질로 형성될 수 있다. 금속 촉매(140)는 백금(Pt), 백금을 포함하는 합금을 포함할 수 있다. The metal catalyst 140 may be formed of a single metal material. The metal catalyst 140 may include platinum (Pt) or an alloy containing platinum.
한편, 금속 촉매(140)는 적어도 하나의 물질이 합쳐진 합금 물질로 형성될 수 있다. Meanwhile, the metal catalyst 140 may be formed of an alloy material in which at least one material is combined.
금속 촉매(140)는 10 ~ 100 at%(atomic percent) 비율 범위 내의 비율로 백금(Pt)를 포함하여 형성될 수 있다. The metal catalyst 140 may be formed including platinum (Pt) at a ratio within the range of 10 to 100 at% (atomic percent).
금속 촉매(140)는 백금(Pt)과 니켈(Ni), 루테늄(Ru), 코발트(Co), 팔라듐(Pd), 이리듐(Ir), 크로뮴(Cr), 로듐(Rh) 중 적어도 하나의 물질(원소)가 합쳐진 합금을 포함하는 형태로 형성될 수 있다. The metal catalyst 140 is at least one of platinum (Pt), nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh). It can be formed in a form containing an alloy in which (elements) are combined.
또한, 금속 촉매(140)는 백금(Pt)과 니켈(Ni), 루테늄(Ru), 코발트(Co), 팔라듐(Pd), 이리듐(Ir), 크로뮴(Cr), 로듐(Rh) 중 적어도 하나의 물질(원소)가 합쳐진 합금을 탄소(C)에 담지한 탄소 담지 합금을 포함하는 형태로 형성될 수 있다.In addition, the metal catalyst 140 is at least one of platinum (Pt), nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh). It can be formed in a form that includes a carbon-supported alloy in which an alloy of materials (elements) is combined and supported on carbon (C).
금속 촉매(140)는 백금(Pt)을 포함하는 합금 물질로 형성되는 경우, 백금(Pt)과 합쳐지는 물질은 금속 물질, 비금속 물질, 금속 물질과 비금속 물질이 결합된 합성 물질 중 적어도 하나일 수 있다. When the metal catalyst 140 is formed of an alloy material containing platinum (Pt), the material combined with platinum (Pt) may be at least one of a metallic material, a non-metallic material, or a synthetic material combining a metallic material and a non-metallic material. there is.
금속 촉매(140)는 유체 시료와의 표면적을 높이도록 지지체 위에 형성될 수 있다. 여기서, 지지체는 카본 계열의 물질로 형성된다. 지지체는 카본 블랙(Carbon black), 카본 나노튜브(carbon nanotube), 그래핀(graphene), 산화 그래핀(graphene oxide), 그라파이트(graphite) 등의 카본 계열 물질로 형성될 수 있다. The metal catalyst 140 may be formed on the support to increase the surface area with the fluid sample. Here, the support is formed of a carbon-based material. The support may be formed of a carbon-based material such as carbon black, carbon nanotube, graphene, graphene oxide, or graphite.
도 3은 본 발명의 제2 실시예에 따른 알코올 센서를 개략적으로 나타낸 도면이다. Figure 3 is a diagram schematically showing an alcohol sensor according to a second embodiment of the present invention.
본 발명의 제2 실시예에 따른 알코올 센서(100)는 베이스(110), 측면 구조체(120, 122), 전극부(130, 132, 134), 금속 촉매(140), 이온성 액체(150) 및 투과막(160)을 포함한다. 도 3의 알코올 센서(100)는 일 실시예에 따른 것으로서, 도 3에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 알코올 센서(100)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. The alcohol sensor 100 according to the second embodiment of the present invention includes a base 110, side structures 120, 122, electrode parts 130, 132, 134, a metal catalyst 140, and an ionic liquid 150. and a transmission membrane 160. The alcohol sensor 100 of FIG. 3 is according to one embodiment, and not all blocks shown in FIG. 3 are essential components. In other embodiments, some blocks included in the alcohol sensor 100 may be added, changed, or deleted. It can be.
알코올 센서(100)는 체내의 알코올을 측정하기 위한 센서를 의미한다. The alcohol sensor 100 refers to a sensor for measuring alcohol in the body.
제2 실시예에 따른 알코올 센서(100)는 유체 시료가 투입되면, 유체 시료와 이온성 액체가 혼합되며, 혼합된 혼합 액체 내의 알코올이 금속 촉매와 반응하여, 금속 촉매와 연결된 전극을 통해 알코올을 측정한다. 여기서, 유체 시료는 경피에서 발생하는 체외 가스인 것이 바람직하나 반드시 이에 한정되는 것은 아니며, 신체에서 알코올 성분을 포함하여 배출되는 다양한 가스일 수 있다. In the alcohol sensor 100 according to the second embodiment, when a fluid sample is introduced, the fluid sample and the ionic liquid are mixed, and the alcohol in the mixed liquid reacts with the metal catalyst to produce alcohol through an electrode connected to the metal catalyst. Measure. Here, the fluid sample is preferably an extracorporeal gas generated from the transdermis, but is not necessarily limited thereto, and may be a variety of gases discharged from the body, including alcohol components.
경피에서 발생하는 체외 가스는 음주를 한 주취자의 신체 피부를 통하여 기화되는 가스로써, 가스 내에 알코올 성분이 포함된다. Extracorporeal gas generated from the transdermis is a gas that vaporizes through the skin of a drunk person's body, and the gas contains alcohol.
도 3의 알코올 센서(100)는 도 2에 도시된 베이스(110), 측면 구조체(120, 122), 전극부(130, 132, 134) 및 금속 촉매(140)를 동일하게 포함하고 있다. 이에, 도 2에 기재된 구성요소의 중복되는 설명은 생략하도록 한다. The alcohol sensor 100 of FIG. 3 includes the same base 110, side structures 120 and 122, electrode units 130, 132 and 134, and metal catalyst 140 as shown in FIG. 2. Accordingly, overlapping descriptions of the components shown in FIG. 2 will be omitted.
투과막(160)은 경피에서 발생하는 가스 형태의 유체 시료의 가스 성분 전체 또는 일부를 선택적으로 투과하여 알코올 센서(100) 내로 투입되는 유체 시료를 필터링하는 역할을 수행한다. The permeable membrane 160 serves to filter the fluid sample introduced into the alcohol sensor 100 by selectively transmitting all or part of the gas component of the gaseous fluid sample generated in the transdermis.
투과막(160)은 측면 구조체와 결합된다. 투과막(160)은 측면 구조체(120, 122)의 상측면에 일부면이 접하는 형태로 베이스(110)와 평행하게 대향하여 형성된다. 투과막(160)은 10 ~ 100 μm 사이의 두께로 형성되는 것이 바람직하다. The transmission membrane 160 is combined with the side structure. The transmission film 160 is formed in parallel and opposite to the base 110 with a portion of its surface in contact with the upper surfaces of the side structures 120 and 122. The transmission membrane 160 is preferably formed to have a thickness between 10 and 100 μm.
투과막(160)은 폴리머(polymer) 또는 코폴리머(co-polymer)로 형성될 수 있다. The transmission membrane 160 may be formed of polymer or co-polymer.
예를 들어, 투과막(160)은 친수성 지방족 폴리에테르(Hydrophilic aliphatic polyether), 소수성 지방족 폴리에테르(hydrophobic aliphatic polyether), 폴리에스터(polyester), 폴리에틸렌(polyethylene), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 열가소성 올레핀(thermoplastic olefin) 및 열가소성 폴리우레탄(thermoplastic polyurethane) 으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하여 형성될 수 있다. For example, the permeable membrane 160 is made of hydrophilic aliphatic polyether, hydrophobic aliphatic polyether, polyester, polyethylene, polytetrafluoroethylene, It may be formed by including at least one selected from the group consisting of thermoplastic olefin and thermoplastic polyurethane.
이온성 액체(150)는 투과막(160)을 투과한 유체 시료를 포집하며, 액체 이온 상태로 존재한다. 이온성 액체(150)는 투과막(160)을 통과한 유체 시료(가스)과 혼합되어 유체 시료(가스) 내에 포함된 알코올이 금속 촉매(140)와 반응되도록 센싱 환경을 조성하는 역할을 수행한다. The ionic liquid 150 collects the fluid sample that has passed through the permeable membrane 160 and exists in a liquid ion state. The ionic liquid 150 is mixed with the fluid sample (gas) that has passed through the permeable membrane 160 and serves to create a sensing environment so that the alcohol contained in the fluid sample (gas) reacts with the metal catalyst 140. .
이온성 액체(150)는 베이스(110), 측면 구조체(120, 122) 및 투과막(160)으로 둘러 싸여진 구조에 의해 형성된 공간 내에 채워진다. The ionic liquid 150 is filled in the space formed by the structure surrounded by the base 110, the side structures 120 and 122, and the permeable membrane 160.
본 실시예에 따른 이온성 액체(150)는 이미다졸(Imidazolium), 피롤리디늄(pyrrolidinium), 피리디늄(pyridinium), 피페리디늄(piperidinium), 암모늄(ammonium), 포스포늄(phosphonium) 및 설포늄(sulfonium) 중 적어도 하나의 계열일 수 있다. The ionic liquid 150 according to this embodiment includes imidazole, pyrrolidinium, pyridinium, piperidinium, ammonium, phosphonium, and sulfur. It may be from at least one series of sulphonium.
이온성 액체(150)가 이미다졸(Imidazolium) 계인 경우, 이미다졸(Imidazolium) 계의 이온성 액체(150)는 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-Butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸륨 비스(트리플루오로메틸술포닐)이미드(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-에틸-3-메틸이미다졸륨 디시안아미드(1-Ethyl-3-methylimidazolium dicyanamide), 1-부틸-3-메틸이미다졸륨 요오다이드(1-Butyl-3-methylimidazolium iodide), 1-부틸-3-메틸이미다졸륨 헥사플루오로포스페이트(1-Butyl-3-methylimidazolium hexafluorophosphate), 1-데실-3-메틸이미다졸륨 클로라이드(1-decyl-3-methylimidazolium chloride) 등을 포함할 수 있다. If the ionic liquid 150 is an imidazole-based ionic liquid 150, the imidazole-based ionic liquid 150 is 1-butyl-3-methylimidazolium tetrafluoroborate (1-Butyl-3- methylimidazolium tetrafluoroborate), 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-ethyl-3-methylimidazolium 1-Ethyl-3-methylimidazolium dicyanamide, 1-Butyl-3-methylimidazolium iodide, 1-butyl-3-methylimidazolium hexafluoride It may include 1-Butyl-3-methylimidazolium hexafluorophosphate, 1-decyl-3-methylimidazolium chloride, etc.
한편, 이온성 액체(150)가 피롤리디늄(pyrrolidinium) 계인 경우, 피롤리디늄(pyrrolidinium) 계의 이온성 액체(150)는 1-부틸-1-메틸피롤리디늄 비스(트리플루오로메틸술포닐)이미드(1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide)를 포함할 수 있다. Meanwhile, when the ionic liquid 150 is a pyrrolidinium-based ionic liquid 150, the pyrrolidinium-based ionic liquid 150 is 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfur). It may include 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide).
한편, 이온성 액체(150)가 피리디늄(pyridinium) 계인 경우, 피리디늄(pyridinium) 계의 이온성 액체(150)는 1-부틸-4-메틸피리디늄 테트라플루오로보레이트(1-Butyl-4-methylpyridinium tetrafluoroborate)를 포함할 수 있다. On the other hand, when the ionic liquid 150 is pyridinium-based, the pyridinium-based ionic liquid 150 is 1-butyl-4-methylpyridinium tetrafluoroborate (1-Butyl-4 -methylpyridinium tetrafluoroborate).
한편, 이온성 액체(150)가 피페리디늄(piperidinium) 계인 경우, 피페리디늄(piperidinium) 계의 이온성 액체(150)는 1-부틸-1-메틸피페리디늄 비스(트리플루오로메틸술포닐)이미드(1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide)를 포함할 수 있다. Meanwhile, when the ionic liquid 150 is a piperidinium-based ionic liquid 150, the piperidinium-based ionic liquid 150 is 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfur). It may include ponyl)imide (1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide).
한편, 이온성 액체(150)가 암모늄(ammonium) 계인 경우, 암모늄(ammonium) 계의 이온성 액체(150)는 테트라메틸암모늄 아세테이트(Tetramethylammonium acetate), 트리부틸메틸암모늄 클로라이드(Tributylmethylammonium chloride)를 포함할 수 있다. On the other hand, when the ionic liquid 150 is an ammonium-based ionic liquid 150, the ammonium-based ionic liquid 150 may include tetramethylammonium acetate and tributylmethylammonium chloride. You can.
한편, 이온성 액체(150)가 포스포늄(phosphonium) 계인 경우, 포스포늄(phosphonium) 계의 이온성 액체(150)는 트리헥실테트라데실포스포늄 디시안아미드(trihexyltetradecylphosphonium dicyanamide) 를 포함할 수 있다. Meanwhile, when the ionic liquid 150 is phosphonium-based, the phosphonium-based ionic liquid 150 may include trihexyltetradecylphosphonium dicyanamide.
한편, 이온성 액체(150)가 설포늄(sulfonium) 계인 경우, 설포늄(sulfonium) 계의 이온성 액체(150)는 트리에틸설포늄 비스(트리플루오로메틸술포닐)이미드(Triethylsulfonium bis(trifluoromethylsulfonyl)imide) 를 포함할 수 있다.On the other hand, when the ionic liquid 150 is a sulfonium-based ionic liquid 150, the sulfonium-based ionic liquid 150 is triethylsulfonium bis(trifluoromethylsulfonyl)imide (Triethylsulfonium bis( It may include trifluoromethylsulfonyl)imide).
상술한 실시예에서는, 유체 시료와 이온성 액체를 수용하기 위한 알코올 센서(100)의 구조로서 측면 구조체와, 그 하부의 베이스 및 상부의 투과막 등 제시되었다. 측면 구조체와 베이스의 구성은 이러한 구조에만 한정될 필요는 없다. 예를 들어, 측면 구조체와 베이스는 단일의 물질 또는 일체로 결합되어 형성될 수도 있다. 또한, 이온성 액체나 유체 시료를 수용할 수 있도록, 베이스 내측으로 홈을 형성시키거나, 베이스를 유선형으로 형성시키는 것도 가능하다.In the above-described embodiment, the structure of the alcohol sensor 100 for accommodating the fluid sample and the ionic liquid was presented, including a side structure, a base at the bottom, and a permeable membrane at the top. The configuration of the side structures and base need not be limited to these structures. For example, the side structure and the base may be formed from a single material or integrally combined. Additionally, it is also possible to form a groove inside the base or to form the base in a streamlined shape to accommodate an ionic liquid or fluid sample.
도 4는 본 발명의 실시예에 따른 알코올 센서의 구조를 나타낸 도면이다.Figure 4 is a diagram showing the structure of an alcohol sensor according to an embodiment of the present invention.
도 4의 알코올 센서 구조는 제2 실시예에 따른 알코올 센서(100)를 기반으로 제작된 경피용 알코올 센서이다. The alcohol sensor structure in FIG. 4 is a transdermal alcohol sensor manufactured based on the alcohol sensor 100 according to the second embodiment.
알코올 센서(100)는 베이스(110) 상에 제3 전극계 기반의 작업 전극(130), 상대 전극(132) 및 기준 전극(134)이 형성된다. The alcohol sensor 100 has a working electrode 130, a counter electrode 132, and a reference electrode 134 based on a third electrode system formed on the base 110.
작업 전극(130)의 상측면에는 금속 촉매(140)가 적층되어 형성된다. A metal catalyst 140 is stacked on the upper side of the working electrode 130.
측면 구조체(120) 및 상측 커버(162)는 사각 구조체의 중앙에 중공이 형성된 형태로 형성되며, 베이스(110) 상에 적층된다. The side structure 120 and the top cover 162 are formed in a hollow shape at the center of the rectangular structure and are stacked on the base 110.
측면 구조체(120) 및 상측 커버(162)의 중공 내에는 전극부(130, 132, 134) 및 금속 촉매(140)가 노출된다. The electrode portions 130, 132, and 134 and the metal catalyst 140 are exposed within the hollow of the side structure 120 and the top cover 162.
베이스(110)와 측면 구조체(120)에 의해 형성된 공간에는 이온성 액체(150)가 채워지고, 측면 구조체(120)의 상측면에 일부면이 접하는 형태로 베이스(110)와 평행하게 투과막(160)이 형성된다. The space formed by the base 110 and the side structure 120 is filled with the ionic liquid 150, and a transmission membrane ( 160) is formed.
도 5는 본 발명의 실시예에 따른 알코올 센서의 금속 촉매를 설명하기 위한 도면이다.Figure 5 is a diagram for explaining a metal catalyst of an alcohol sensor according to an embodiment of the present invention.
금속 촉매(140)는 투입된 시료(유체 시료) 내에 포함된 알코올 농도에 따른 전기화학적 반응을 조절한다. The metal catalyst 140 controls the electrochemical reaction according to the alcohol concentration contained in the input sample (fluid sample).
도 5를 참고하면, 금속 촉매(140)는 백금(Pt) 및 이들의 합금으로 이루어진 군으로부터 선택되는 적어도 하나, 또는 비금속과 백금(Pt)의 화합물을 포함할 수 있다. Referring to FIG. 5, the metal catalyst 140 may include at least one selected from the group consisting of platinum (Pt) and alloys thereof, or a compound of a base metal and platinum (Pt).
금속 촉매(140)를 구성하는 합금은 PtM이고, 여기에서 M은 니켈(Ni), 루테늄(Ru), 코발트(Co), 팔라듐(Pd), 이리듐(Ir), 크로뮴(Cr) 및 로듐(Rh)으로부터 선택되는 적어도 하나를 포함할 수 있다. PtM에서, 백금(Pt)에 대한 상대적인 M의 원자 비율(atomic ratio)은 10 ~ 100인 것이 바람직하다. The alloy constituting the metal catalyst 140 is PtM, where M is nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr), and rhodium (Rh). ) may include at least one selected from ). In PtM, the atomic ratio of M relative to platinum (Pt) is preferably 10 to 100.
금속 촉매(140)는 백금(Pt)을 포함하는 합금을 사용하여 형성됨에 따라 구조적 효과(Structural Effect)를 가진다. 즉, 합금 기반의 금속 촉매(140)는 격자 상수(lattice parameter)의 변화로 인해 백금(Pt)- 백금(Pt) 간의 결합 거리가 변화하게 된다. The metal catalyst 140 has a structural effect as it is formed using an alloy containing platinum (Pt). That is, in the alloy-based metal catalyst 140, the bond distance between platinum (Pt) and platinum (Pt) changes due to a change in the lattice parameter.
백금(Pt)을 포함하는 합금을 사용하여 형성됨에 따라 전기적 효과(Electronic Effect)를 가진다. 즉, 합금 기반의 금속 촉매(140)는 활성과 선택성이 향상되고, 백금(Pt)과 일산화탄소(CO)의 결합에너지를 감소시킬 수 있다. 또한, 합금 기반의 금속 촉매(140)는 알코올의 C-C 결합을 파괴시킬 수 있다. As it is formed using an alloy containing platinum (Pt), it has an electrical effect. In other words, the alloy-based metal catalyst 140 can improve activity and selectivity and reduce the binding energy of platinum (Pt) and carbon monoxide (CO). Additionally, the alloy-based metal catalyst 140 can destroy the C-C bond of alcohol.
도 5를 참고하면, 금속 촉매(140)는 유체 시료와의 표면적을 높이고, 촉매의 성능 향상을 위하여 지지체 위에 형성될 수 있다. 여기서, 지지체는 카본 계열의 물질로 형성된다. 지지체는 카본 블랙(Carbon black), 카본 나노튜브(carbon nanotube), 그래핀(graphene), 산화 그래핀(graphene oxide), 그라파이트(graphite) 등의 카본 계열 물질로 형성될 수 있다.Referring to FIG. 5, the metal catalyst 140 may be formed on a support to increase the surface area with the fluid sample and improve catalyst performance. Here, the support is formed of a carbon-based material. The support may be formed of a carbon-based material such as carbon black, carbon nanotube, graphene, graphene oxide, or graphite.
도 6은 본 발명의 실시예에 따른 알코올 센서의 이온성 액체를 설명하기 위한 도면이다.Figure 6 is a diagram for explaining the ionic liquid of the alcohol sensor according to an embodiment of the present invention.
도 6은 다양한 이온성 액체를 나타낸다. 이온성 액체는 양이온과 음이온으로 구성되어 상온에서 액체 상태로 존재하는 물질이다.Figure 6 shows various ionic liquids. Ionic liquids are substances that are composed of cations and anions and exist in a liquid state at room temperature.
도 7은 본 발명의 실시예에 따른 알코올 센서의 제작 공정을 설명하기 위한 순서도이다.Figure 7 is a flowchart for explaining the manufacturing process of an alcohol sensor according to an embodiment of the present invention.
단계 S1110는, 유체 시료의 가스를 선택적으로 투과하기 위한 투과막을 제조한다. Step S1110 prepares a permeable membrane for selectively permeating the gas of the fluid sample.
단계 S1120는, 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매를 제조한다. Step S1120 prepares a metal catalyst for a reaction that acquires electrons through reaction with the alcohol component contained in the fluid sample.
단계 S1130는, 제조된 금속 촉매를 작업 전극 위에 적층하여 결합한다. In step S1130, the prepared metal catalyst is stacked and combined on the working electrode.
단계 S1140는, 베이스에 전극을 고정하고, 베이스와 평행하게 측면 구조체에 중공을 형성한 후 중공 내에 이온성 액체를 투입한다.In step S1140, the electrode is fixed to the base, a hollow is formed in the side structure parallel to the base, and the ionic liquid is injected into the hollow.
단계 S1150는, 제조된 투과막을 기포가 생성되지 않도록 흡착시켜 센서를 제조한다.In step S1150, a sensor is manufactured by adsorbing the manufactured transparent membrane to prevent bubbles from being generated.
도 7에서는 각 단계를 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 7에 기재된 단계를 변경하여 실행하거나 하나 이상의 단계를 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 7은 시계열적인 순서로 한정되는 것은 아니다.In Figure 7, each step is described as being executed sequentially, but it is not necessarily limited to this. In other words, the steps shown in FIG. 7 may be applied by modifying and executing one or more steps in parallel, so FIG. 7 is not limited to a time series order.
도 8 및 도 9는 본 발명의 실시예에 따른 알코올 센서의 제조 실시예를 설명하기 위한 도면이다.8 and 9 are diagrams for explaining an example of manufacturing an alcohol sensor according to an embodiment of the present invention.
이하 실시예를 통해 본 발명에 따른 알코올 센서(100)를 보다 상세히 설명한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는 것으로 해석되는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명하다.The alcohol sensor 100 according to the present invention will be described in more detail through examples below. Since these examples are only for illustrating the present invention, it is obvious to those skilled in the art that the scope of the present invention should not be construed as limited by these examples.
<실시예 1> <Example 1>
1. 가스투과막 (Sensing membrane) 제조1. Gas permeable membrane (Sensing membrane) manufacturing
- Lubrizol社의 HP-60D-20를 테트라하이드로퓨란(Tetrahydrofuran) 400 mg/mL의 농도로 녹인 후 지름이 10 mm 글라스 링(glass ring)에 300 μL을 넣어 온도 20 ℃, 상대습도 10 % 이하 조건에서 오버나이트(overnight)로 건조한다.- Dissolve Lubrizol's HP-60D-20 at a concentration of 400 mg/mL of tetrahydrofuran, then pour 300 μL into a glass ring with a diameter of 10 mm under the conditions of a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
2. 금속촉매 칵테일(cocktail) 혼합2. Metal catalyst cocktail mixing
- 10 mL 바이알(vial)에 금속촉매 백금(Pt)을 8 mg, H2O (3차 증류수) 1000μL, 나피온(Nafion) 5% 50 μL, 아이소프로필 알코올(isopropyl alcohol, IPA) 500 μL 넣고 30 분 동안 초음파 처리(ultrasonication)한다.- In a 10 mL vial, add 8 mg of metal catalyst platinum (Pt), 1000 μL of H 2 O (tertiary distilled water), 50 μL of Nafion 5%, and 500 μL of isopropyl alcohol (IPA). Ultrasonication for 30 minutes.
3. 금속촉매 분주 및 건조3. Metal catalyst dispensing and drying
- 금속촉매 칵테일(cocktail)을 반자동 디스팬서(semi-auto dispenser)로 3~4 psi, 0.03 sec. 조건으로 전극의 작업전극에 6 회 분주한 뒤, 60 ℃, 상대습도 20 % 이하 조건에서 10 분 건조한다.- Dispense the metal catalyst cocktail using a semi-auto dispenser at 3~4 psi, 0.03 sec. After dispensing 6 times on the working electrode of the electrode, dry for 10 minutes at 60°C and relative humidity of 20% or less.
4. 금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조4. Fabrication of alcohol sensor incorporating metal catalyst and ionic liquid
- 두께 1 mm의 방수 양면 테이프에 지름 2 mm의 펀치를 하여 홈을 만든 후 준비된 전극 중 작업 전극이 홈의 정중앙에 위치하도록 붙인 후 이온성 액체 1-부틸-3-메틸이미다졸륨 1-부틸-1-메틸피롤리디늄 비스(트리플루오로메틸술포닐)이미드 (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide)를 15 μL을 채운다. 이후, 준비된 가스투과막을 기포가 생성되지 않도록 흡착시켜 센서를 제조한다.- Make a groove with a diameter of 2 mm on a 1 mm thick waterproof double-sided tape, attach it so that the working electrode of the prepared electrodes is located in the exact center of the groove, and then apply the ionic liquid 1-butyl-3-methylimidazolium 1-butyl. Fill 15 μL of 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Afterwards, the sensor is manufactured by adsorbing the prepared gas permeable membrane to prevent bubbles from being generated.
<실시예 2> <Example 2>
실시예 1의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 백금 (Pt)을 대신하여 백금니켈 (PtNi)을 12 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 1-2 (metal catalyst cocktail mixing), the same procedure was performed except that 12 mg of platinum nickel (PtNi) was added in place of platinum (Pt).
<실시예 3><Example 3>
1. 가스투과막 (Sensing membrane) 제조1. Gas permeable membrane (Sensing membrane) manufacturing
- Lubrizol社의 HP-60D-20를 테트라하이드로퓨란(Tetrahydrofuran) 400 mg/mL의 농도로 녹인 후 지름이 8 mm 글라스 링(glass ring)에 250 μL을 넣어 온도 20 ℃, 상대습도 10 % 이하 조건에서 오버나이트(overnight)로 건조한다- After dissolving Lubrizol's HP-60D-20 at a concentration of 400 mg/mL of tetrahydrofuran, add 250 μL to a glass ring with a diameter of 8 mm under the conditions of a temperature of 20 ℃ and a relative humidity of 10% or less. Dry overnight.
2. 금속촉매 칵테일(cocktail) 혼합2. Metal catalyst cocktail mixing
- 10 mL 바이알(vial)에 탄소(C)에 담지한 탄소 담지 백금-주석 합금(C/PtSn)을 14 mg, H2O (3차 증류수) 800μL, 나피온(Nafion) 5% 50 μL, 아이소프로필 알코올(isopropyl alcohol, IPA) 400 μL 넣고 30 분 동안 초음파 처리(ultrasonication)한다.- 14 mg of platinum-tin alloy (C/PtSn) supported on carbon (C) in a 10 mL vial, 800 μL of H 2 O (tertiary distilled water), 50 μL of Nafion 5%, Add 400 μL of isopropyl alcohol (IPA) and sonicate for 30 minutes.
3. 금속촉매 분주 및 건조3. Metal catalyst dispensing and drying
- 금속촉매 칵테일(cocktail)을 반자동 디스팬서(semi-auto dispenser)로 3~4 psi, 0.03 sec. 조건으로 전극의 작업전극에 6 회 분주한 뒤, 60 ℃, 상대습도 20 % 이하 조건에서 10 분 건조한다.- Dispense the metal catalyst cocktail using a semi-auto dispenser at 3~4 psi, 0.03 sec. After dispensing 6 times on the working electrode of the electrode, dry for 10 minutes at 60°C and relative humidity of 20% or less.
4. 금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조4. Fabrication of alcohol sensor incorporating metal catalyst and ionic liquid
- 두께 1 mm의 방수 양면 테이프에 지름 2 mm의 펀치를 하여 홈을 만든 후 준비된 전극 중 작업 전극이 홈의 정중앙에 위치하도록 붙인 후 이온성 액체 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-Butyl-3-methylimidazolium tetrafluoroborate)를 15 μL을 채운다. 이후, 준비된 가스투과막을 기포가 생성되지 않도록 흡착시켜 센서를 제조한다.- Make a groove with a diameter of 2 mm on a 1 mm thick waterproof double-sided tape, attach it so that the working electrode of the prepared electrodes is located in the exact center of the groove, and then apply the ionic liquid 1-butyl-3-methylimidazolium tetrafluoro. Fill 15 μL of borate (1-Butyl-3-methylimidazolium tetrafluoroborate). Afterwards, the sensor is manufactured by adsorbing the prepared gas permeable membrane to prevent bubbles from being generated.
<실시예 4> <Example 4>
실시예 3의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-주석 합금(C/PtSn)을 대신하여 탄소(C)에 담지된 백금-니켈 합금(C/PtNi)을 12 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 3-2 (metal catalyst cocktail mixing), platinum-nickel supported on carbon (C) replaced the carbon supported platinum-tin alloy (C/PtSn) supported on carbon (C). The same procedure was performed except that 12 mg of alloy (C/PtNi) was added.
<실시예 5> <Example 5>
실시예 3의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-주석 합금(C/PtSn)을 대신하여 탄소(C)에 담지된 백금-크롬 합금 (C/PtCr)을 12 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 3-2 (metal catalyst cocktail mixing), platinum-chromium supported on carbon (C) replaced the carbon supported platinum-tin alloy (C/PtSn) supported on carbon (C). The same procedure was performed except that 12 mg of alloy (C/PtCr) was added.
<실시예 6> <Example 6>
1. 가스투과막 (Sensing membrane) 제조1. Gas permeable membrane (Sensing membrane) manufacturing
- Lubrizol社의 HP-60D-20를 테트라하이드로퓨란(Tetrahydrofuran) 400 mg/mL의 농도로 녹인 후 지름이 6 mm 글라스 링(glass ring)에 300 μL을 넣어 온도 20 ℃, 상대습도 10 % 이하 조건에서 오버나이트(overnight)로 건조한다- Dissolve Lubrizol's HP-60D-20 at a concentration of 400 mg/mL of tetrahydrofuran, then pour 300 μL into a glass ring with a diameter of 6 mm under the conditions of a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
2. 금속촉매 칵테일(cocktail) 혼합2. Metal catalyst cocktail mixing
- 10 mL 바이알(vial)에 탄소(C)에 담지된 백금-니켈 (C/PtNi)을 14 mg, H2O (3차 증류수) 740μL, 나피온(Nafion) 5% 60 μL, 아이소프로필 알코올(isopropyl alcohol, IPA) 400 μL 넣고 30 분 동안 초음파 처리(ultrasonication)한다.- In a 10 mL vial, 14 mg of platinum-nickel (C/PtNi) supported on carbon (C), 740 μL of H 2 O (tertiary distilled water), 60 μL of Nafion 5%, and isopropyl alcohol Add 400 μL of (isopropyl alcohol, IPA) and sonicate for 30 minutes.
3. 금속촉매 분주 및 건조3. Metal catalyst dispensing and drying
- 금속촉매 칵테일(cocktail)을 반자동 디스팬서(semi-auto dispenser)로 3~4 psi, 0.03 sec. 조건으로 전극의 작업전극에 6 회 분주한 뒤, 60 ℃, 상대습도 20 % 이하 조건에서 10 분 건조한다.- Dispense the metal catalyst cocktail using a semi-auto dispenser at 3~4 psi, 0.03 sec. After dispensing 6 times on the working electrode of the electrode, dry for 10 minutes at 60°C and relative humidity of 20% or less.
4. 금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조4. Fabrication of alcohol sensor incorporating metal catalyst and ionic liquid
- 두께 1 mm의 방수 양면 테이프에 지름 2 mm의 펀치를 하여 홈을 만든 후 준비된 전극 중 작업 전극이 홈의 정중앙에 위치하도록 붙인 후 이온성 액체 1-부틸-3-메틸이미다졸륨 비스(트리플루오로메틸술포닐)이미드(1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide)를 10 μL을 채운다. 이후, 준비된 가스투과막을 기포가 생성되지 않도록 흡착시켜 센서를 제조한다.- Make a groove with a diameter of 2 mm on a 1 mm thick waterproof double-sided tape, attach it so that the working electrode among the prepared electrodes is located in the exact center of the groove, and then apply the ionic liquid 1-butyl-3-methylimidazolium bis(tri). Fill 10 μL of 1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide). Afterwards, the sensor is manufactured by adsorbing the prepared gas permeable membrane to prevent bubbles from being generated.
<실시예 7> <Example 7>
실시예 5의 4(금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조)의 이온성 액체 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) 대신하여 1-에틸-메틸이미다졸륨 디시안아민 (1-ethyl-3-methylimidazolium dicyanamide) 13 μL를 채운 것 이외는 동일하게 행했다.Ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) of Example 5-4 (preparation of alcohol sensor incorporating metal catalyst and ionic liquid) ) The same procedure was performed except that 13 μL of 1-ethyl-3-methylimidazolium dicyanamide was added instead.
<실시예 8> <Example 8>
실시예 5의 4(금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조)의 이온성 액체 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) 대신하여 1-뷰틸-4-메틸피리디니움 테트라플루오로보레이트(1-Butyl-4-methylpyridinium tetrafluoroborate) 14 μL를 채운 것 이외는 동일하게 행했다.Ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) of Example 5-4 (preparation of alcohol sensor incorporating metal catalyst and ionic liquid) ) The same procedure was performed except that 14 μL of 1-Butyl-4-methylpyridinium tetrafluoroborate was added instead.
<실시예 9> <Example 9>
실시예 5의 4(금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조)의 이온성 액체 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) 대신하여 트리부틸메틸암모늄 클로라이드 (Tributylmethylammonium chloride) 10 μL를 채운 것 이외는 동일하게 행했다.Ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) of Example 5-4 (preparation of alcohol sensor incorporating metal catalyst and ionic liquid) ) The same procedure was performed except that 10 μL of tributylmethylammonium chloride was added instead.
<실시예 10> <Example 10>
실시예 5의 4(금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조)의 이온성 액체 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) 대신하여 트리헥실테트라데실포스포늄 디시안아미드 (trihexyltetradecylphosphonium dicyanamide) 15 μL를 채운 것 이외는 동일하게 행했다.Ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium bis(trifluoromethylsolfony)imide) of Example 5-4 (preparation of alcohol sensor incorporating metal catalyst and ionic liquid) ) The same procedure was performed except that 15 μL of trihexyltetradecylphosphonium dicyanamide was added instead.
<실시예 11> <Example 11>
1. 가스투과막 (Sensing membrane) 제조1. Gas permeable membrane (Sensing membrane) manufacturing
- Lubrizol社의 SG-80A를 테트라하이드로퓨란(Tetrahydrofuran) 320 mg/mL의 농도로 녹인 후 지름이 6 mm 글라스 링(glass ring)에 200 μL을 넣어 온도 20 ℃, 상대습도 10 % 이하 조건에서 오버나이트(overnight)로 건조한다- After dissolving Lubrizol's SG-80A at a concentration of 320 mg/mL of tetrahydrofuran, pour 200 μL into a glass ring with a diameter of 6 mm and overheat at a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
2. 금속촉매 칵테일(cocktail) 혼합 (Sensing membrane)2. Metal catalyst cocktail mixing (Sensing membrane)
- 10 mL 바이알(vial)에 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 포함하는 금속촉매 15 mg, H2O (3차 증류수) 700μL, 나피온(Nafion) 5% 40 μL, 아이소프로필 알코올(isopropyl alcohol, IPA) 500 μL 넣고 30 분 동안 초음파 처리(ultrasonication)한다.- 15 mg of metal catalyst containing platinum-ruthenium alloy (C/PtRu) supported on carbon (C) in a 10 mL vial, 700 μL of H 2 O (tertiary distilled water), Nafion Add 40 μL of 5% and 500 μL of isopropyl alcohol (IPA) and sonicate for 30 minutes.
3. 금속 촉매 분주 및 건조3. Metal catalyst dispensing and drying
- 금속촉매 칵테일(cocktail)을 반자동 디스팬서(semi-auto dispenser)로 3~4 psi, 0.03 sec. 조건으로 전극의 작업전극에 6 회 분주한 뒤, 60 ℃, 상대습도 20 % 이하 조건에서 5 분 건조한다.- Dispense the metal catalyst cocktail using a semi-auto dispenser at 3~4 psi, 0.03 sec. After dispensing 6 times on the working electrode of the electrode, dry for 5 minutes at 60°C and relative humidity of 20% or less.
4. 금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조4. Fabrication of alcohol sensor incorporating metal catalyst and ionic liquid
- 두께 1 mm의 방수 양면 테이프에 지름 2 mm의 펀치를 하여 홈을 만든 후 준비된 전극 중 작업 전극이 홈의 정중앙에 위치하도록 붙인 후 이온성 액체 1-부틸-1-메틸피롤리디늄 비스(트리플루오로메틸술포닐)이미드(1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide)를 13 μL을 채운다. 이후, 준비된 가스투과막을 기포가 생성되지 않도록 흡착시켜 센서를 제조한다.- Make a groove with a diameter of 2 mm on a 1 mm thick waterproof double-sided tape, attach it so that the working electrode of the prepared electrodes is located in the exact center of the groove, and then apply the ionic liquid 1-butyl-1-methylpyrrolidinium bis(tri). Fill 13 μL of 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Afterwards, the sensor is manufactured by adsorbing the prepared gas permeable membrane to prevent bubbles from being generated.
<실시예 12> <Example 12>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 탄소(C)에 담지된 백금-코발트 합금(C/PtCo)을 13 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu). The same procedure was performed except that cobalt alloy (C/PtCo) was added to 13 mg.
<실시예 13> <Example 13>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 탄소(C)에 담지된 백금-팔라듐 합금(C/PtPd)을 15 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu). The same procedure was performed except that 15 mg of palladium alloy (C/PtPd) was added.
<실시예 14> <Example 14>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 탄소(C)에 담지된 백금-이리듐 합금(C/PtIr)을 10 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu). The same procedure was performed except that 10 mg of iridium alloy (C/PtIr) was added.
<실시예 15> <Example 15>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 탄소(C)에 담지된 백금-니켈 합금(C/PtNi)을 10 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu). The same procedure was performed except that 10 mg of nickel alloy (C/PtNi) was added.
<실시예 16> <Example 16>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 탄소(C)에 담지된 백금-크롬 합금(C/PtNi)을 13 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), platinum supported on carbon (C) was used instead of the carbon supported platinum-ruthenium alloy (C/PtRu). The same procedure was performed except that 13 mg of chromium alloy (C/PtNi) was added.
<실시예 17> <Example 17>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 그래핀 옥사이드(graphene oxide)에 담지된 백금-니켈 합금(GO/PtNi)을 20 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C), graphene oxide was used. The same procedure was performed except that 20 mg of platinum-nickel alloy (GO/PtNi) was added.
<실시예 18> <Example 18>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 그래핀 옥사이드(graphene oxide)에 담지된 백금-루세늄 합금(GO/PtNi)을 20 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C), graphene oxide was used. The same procedure was performed except that 20 mg of platinum-ruthenium alloy (GO/PtNi) was added.
<실시예 19> <Example 19>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 그래핀 옥사이드(graphene oxide)에 담지된 백금-로듐 합금(GO/PtRh)을 20 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C), graphene oxide was used. The same procedure was performed except that 20 mg of platinum-rhodium alloy (GO/PtRh) was added.
<실시예 20> <Example 20>
실시예 11의 2(금속촉매 칵테일 혼합)의 금촉속매 칵테일 혼합에 있어서, 탄소(C)에 담지한 탄소 담지 백금-루세늄 합금(C/PtRu)을 대신하여 그래핀 옥사이드(graphene oxide)에 담지된 백금-루세늄 합금(GO/PtRu)을 20 mg이 되도록 첨가한 이외는 동일하게 행했다.In the gold catalyst cocktail mixing of Example 11-2 (metal catalyst cocktail mixing), instead of the carbon supported platinum-ruthenium alloy (C/PtRu) supported on carbon (C), graphene oxide was used. The same procedure was performed except that 20 mg of platinum-ruthenium alloy (GO/PtRu) was added.
<실시예 21> <Example 21>
1. 가스투과막 (Sensing membrane) 제조1. Gas permeable membrane (Sensing membrane) manufacturing
- Lubrizol社의 HP-60D-30를 테트라하이드로퓨란(Tetrahydrofuran) 320 mg/mL의 농도로 녹인 후 지름이 6 mm 글라스 링(glass ring)에 200 μL을 넣어 온도 20 ℃, 상대습도 10 % 이하 조건에서 오버나이트(overnight)로 건조한다.- Dissolve Lubrizol's HP-60D-30 at a concentration of 320 mg/mL of tetrahydrofuran, then pour 200 μL into a glass ring with a diameter of 6 mm under the conditions of a temperature of 20°C and a relative humidity of 10% or less. Dry overnight.
2. 금속촉매 칵테일(cocktail) 혼합 (Sensing membrane)2. Metal catalyst cocktail mixing (Sensing membrane)
- 10 mL 바이알(vial)에 카본나노튜브(carbon nanotube)에 담지한 탄소 담지 백금-니켈 합금(CNT/PtNi)을 포함하는 금속촉매 20 mg, H2O (3차 증류수) 700μL, 나피온(Nafion) 5% 40 μL, 아이소프로필 알코올(isopropyl alcohol, IPA) 500 μL 넣고 30 분 동안 초음파 처리(ultrasonication)한다.- 20 mg of metal catalyst containing platinum-nickel alloy (CNT/PtNi) supported on carbon supported on carbon nanotubes in a 10 mL vial, 700 μL of H 2 O (tertiary distilled water), Nafion ( Add 40 μL of Nafion 5% and 500 μL of isopropyl alcohol (IPA) and sonicate for 30 minutes.
3. 금속 촉매 분주 및 건조3. Metal catalyst dispensing and drying
- 금속촉매 칵테일(cocktail)을 반자동 디스팬서(semi-auto dispenser)로 3~4 psi, 0.03 sec. 조건으로 전극의 작업전극에 3 회 분주한 뒤, 60 ℃, 상대습도 20 % 이하 조건에서 5 분 건조한다.- Dispense the metal catalyst cocktail using a semi-auto dispenser at 3~4 psi, 0.03 sec. After dispensing 3 times on the working electrode of the electrode, dry for 5 minutes at 60°C and relative humidity of 20% or less.
4. 금속 촉매 및 이온성 액체가 도입된 알코올 센서 제조4. Fabrication of alcohol sensor incorporating metal catalyst and ionic liquid
- 두께 1 mm의 방수 양면 테이프에 지름 2 mm의 펀치를 하여 홈을 만든 후 준비된 전극 중 작업 전극이 홈의 정중앙에 위치하도록 붙인 후 이온성 액체 1-부틸-4-메틸피리디늄 테트라플루오로보레이트(1-Butyl-4-methylpyridinium tetrafluoroborate)를 10 μL을 채운다. 이후, 준비된 가스투과막을 기포가 생성되지 않도록 흡착시켜 센서를 제조한다.- Make a groove with a diameter of 2 mm on a 1 mm thick waterproof double-sided tape, attach it so that the working electrode of the prepared electrodes is located in the exact center of the groove, and then add the ionic liquid 1-butyl-4-methylpyridinium tetrafluoroborate. Fill 10 μL of (1-Butyl-4-methylpyridinium tetrafluoroborate). Afterwards, the sensor is manufactured by adsorbing the prepared gas permeable membrane to prevent bubbles from being generated.
도 10 내지 도 15은 본 발명의 실시예에 따른 알코올 센서의 실험 방법 및 실험 결과를 설명하기 위한 도면이다.10 to 15 are diagrams for explaining the test method and test results of an alcohol sensor according to an embodiment of the present invention.
<실험 방법><Experiment method>
경피용 알코올 센서의 실험에서 사용되는 알코올 성분을 포함하는 유체 시료는 경피에서 발생하는 체외 가스를 이용한다. The fluid sample containing alcohol used in the experiment of the transdermal alcohol sensor uses extracorporeal gas generated from the transdermis.
경피용 알코올 센서의 측정 결과는 아래와 같은 방식으로 혈중 알코올 농도와 경피 측정 결과를 비교할 수 있다. The measurement results of the transdermal alcohol sensor can be compared with the blood alcohol concentration and transdermal measurement results in the following manner.
도 10를 참고하면, 혈중알코올농도 0.1 %는 100 ml 혈액속에 알코올이 0.1 g 함유한 것으로 가정하여, 알코올 비중 (0.8 g/ml)으로 계산하면 0.1 %BAC = 80 mg/100ml로 계산할 수 있다. 이에, 80 mg/100ml을 ppm으로 환산하면 800 ppm으로 계산할 수 있다.Referring to FIG. 10, assuming that 0.1 g of alcohol is contained in 100 ml of blood, a blood alcohol concentration of 0.1% can be calculated as 0.1% BAC = 80 mg/100ml when calculated using the alcohol specific gravity (0.8 g/ml). Therefore, if 80 mg/100ml is converted to ppm, it can be calculated as 800 ppm.
<실험 결과 및 성능 평가> <Experiment results and performance evaluation>
도 11의 (a)는 경피용 알코올 센서를 통해 시간의 흐름에 따라 알코올 가스 농도별로 전극에서 출력되는 전류의 변화에 대한 알코올 감도를 나타낸다. Figure 11 (a) shows alcohol sensitivity to changes in current output from the electrode according to alcohol gas concentration over time through a transdermal alcohol sensor.
도 11의 (b)는 알코올 가스 농도별 전류 간의 상관 관계를 나타낸 알코올 검정 곡선을 나타낸다.Figure 11 (b) shows an alcohol calibration curve showing the correlation between currents for each alcohol gas concentration.
도 12은 연속 모니터링이 가능한 경피용 알코올 센서의 사용 수명에 관한 실험 결과를 나타낸다. 약 40 일이 경과할 때까지 알코올 측정 성능이 유지되는 것을 확인할 수 있다. Figure 12 shows experimental results regarding the service life of a transdermal alcohol sensor capable of continuous monitoring. It can be confirmed that the alcohol measurement performance is maintained until about 40 days have passed.
도 13은 금속촉매 및 이온성 액체가 도입된 경피 측정용 알코올 센서의 습도 영향 평가를 나타낸다. Figure 13 shows the evaluation of the humidity effect of the alcohol sensor for transdermal measurement in which a metal catalyst and an ionic liquid are introduced.
도 13에서는 알코올 성분이 측정된 시간(약 1000 sec)에서부터 습도를 25 %에서 100 %로 증가시켜 습도 변화에 따른 전류 변화를 나타낸다. Figure 13 shows the change in current according to the change in humidity by increasing the humidity from 25% to 100% from the time the alcohol component was measured (about 1000 sec).
도 14의 (a)는 경피용 알코올 센서에서 온도의 변화에 따른 전류의 변화를 나타낸다. 도 14의 (b)는 경피용 알코올 센서의 동작 시 측정 온도에 따른 전류 변화를 나타낸다. 경피용 알코올 센서에서 는 온도가 증가함에 따라 전류값도 증가하는 것을 확인할 수 있다. Figure 14 (a) shows the change in current according to the change in temperature in the transdermal alcohol sensor. Figure 14 (b) shows the change in current according to the measurement temperature during operation of the transdermal alcohol sensor. In the transdermal alcohol sensor, it can be seen that the current value increases as the temperature increases.
도 15은 금속촉매 및 이온성 액체가 도입된 경피 측정용 알코올 센서의 주취자 평가를 나타낸다. Figure 15 shows the evaluation of a drunken person's transdermal alcohol sensor incorporating a metal catalyst and ionic liquid.
도 15의 (a)에서는 제1 주취자의 경피 알코올 감응 결과를 나타내고, 도 15의 (b)에서는 제2 주취자의 경피 알코올 감응 결과를 나타낸다. 두 주취자는 음주 후 각각 20분, 32분 이후부터 경피에서 알코올 증기가 발생한 것을 확인할 수 있다. 도 15의 그래프에서 점은 호흡기 방식의 알코올 측정기의 측정 결과를 나타내며, 본 발명의 경피용 알코올 센서의 측정 결과와 거의 유사한 경향성을 보여주는 것을 확인할 수 있다. Figure 15(a) shows the results of transdermal alcohol sensitivity of the first drunk, and Figure 15(b) shows the results of transdermal alcohol sensitivity of the second drunk. It can be seen that alcohol vapor was generated from the skin of the two drunkards 20 and 32 minutes after drinking, respectively. In the graph of FIG. 15, the dots represent the measurement results of the respiratory-type alcohol meter, and it can be seen that they show almost similar trends to the measurement results of the transdermal alcohol sensor of the present invention.
도 16은 본 발명의 실시예에 따른 알코올 센서를 포함하는 웨어러블 장치를 개략적으로 나타낸 블록 구성도이다. Figure 16 is a block diagram schematically showing a wearable device including an alcohol sensor according to an embodiment of the present invention.
알코올 농도를 연속적으로 모니터링하기 위한 웨어러블 기기(2100)는 하나의 또는 복수개의 전극들, 그리고 상기 유체 시료의 포함된 알코올 농도를 감지하기 위하여, 상기 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매를 포함하며, 상기 전극의 일측에 위치하는 금속 촉매층을 포함하는 알코올 센서(2110); 상기 전극과 전기적으로 연결되어, 상기 전극으로부터 감지되는 전기적 특성의 변화를 근거로, 상기 알코올 농도를 측정하는 알코올 농도 측정부; 상기 측정된 알코올 농도를 저장하는 메모리(2140); 및 상기 측정된 알코올 농도를 미리 결정된 기준값과 비교하고, 외부로 알코올 농도에 대한 메시지를 전달하기 위한 연산을 수행하는 프로세서(2130)를 포함한다. A wearable device 2100 for continuously monitoring alcohol concentration has one or a plurality of electrodes, and in order to detect the alcohol concentration contained in the fluid sample, electrons are generated through reaction with the alcohol component contained in the fluid sample. An alcohol sensor 2110 that includes a metal catalyst for a reaction to obtain and includes a metal catalyst layer located on one side of the electrode; an alcohol concentration measuring unit electrically connected to the electrode and measuring the alcohol concentration based on changes in electrical characteristics detected from the electrode; A memory 2140 that stores the measured alcohol concentration; and a processor 2130 that compares the measured alcohol concentration with a predetermined reference value and performs an operation to deliver a message about the alcohol concentration to the outside.
웨어러블 기기(2100)의 알코올 센서(2110)는 절연성의 베이스와, 상기 베이스와 결합하여, 상기 유체 시료를 가두기 위한 측면 구조체를 더욱 포함한다. 여기서, 상기 하나의 또는 복수개의 전극들은 상기 베이스 위에 배치되고, 상기 금속 촉매층은, 상기 금속 촉매가 상기 유체 시료와 접할 수 있도록 상기 금속 촉매를 고정시키는 지지체를 더욱 포함한다. The alcohol sensor 2110 of the wearable device 2100 further includes an insulating base and a side structure coupled to the base to confine the fluid sample. Here, the one or plurality of electrodes are disposed on the base, and the metal catalyst layer further includes a support for fixing the metal catalyst so that the metal catalyst can contact the fluid sample.
이상의 설명은 본 발명의 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명의 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 실시예들은 본 발명의 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an exemplary explanation of the technical idea of the embodiments of the present invention, and those skilled in the art can make various modifications and modifications without departing from the essential characteristics of the embodiments of the present invention. Transformation will be possible. Accordingly, the embodiments of the present invention are not intended to limit but to explain the technical idea of the embodiment of the present invention, and the scope of the technical idea of the embodiment of the present invention is not limited by these embodiments. The scope of protection of the embodiments of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of the embodiments of the present invention.

Claims (14)

  1. 유체 시료의 알코올 농도를 감지하는 알코올 센서에 있어서,In the alcohol sensor that detects the alcohol concentration of a fluid sample,
    상기 알코올 농도를 감지하기 위한 하나의 또는 복수개의 전극들; 및One or more electrodes for detecting the alcohol concentration; and
    상기 유체 시료의 포함된 알코올 농도를 감지하기 위하여, 상기 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매를 포함하며, 상기 전극의 일측에 위치하는 금속 촉매층;을 포함하는, 알코올 센서.In order to detect the concentration of alcohol contained in the fluid sample, a metal catalyst layer located on one side of the electrode and comprising a metal catalyst for a reaction to obtain electrons through a reaction with an alcohol component contained in the fluid sample; Including, alcohol sensor.
  2. 제1 항에 있어서, According to claim 1,
    상기 알코올 센서는 절연성의 베이스를 더욱 포함하고, The alcohol sensor further includes an insulating base,
    상기 하나의 또는 복수개의 전극들은 상기 베이스 위에 배치되고, The one or more electrodes are disposed on the base,
    상기 알코올 센서는 상기 베이스와 결합하여, 상기 유체 시료를 가두기 위한 측면 구조체를 더욱 포함하는 것을 특징으로 하는, 알코올 센서.The alcohol sensor is coupled to the base and further includes a side structure for confining the fluid sample.
  3. 제1 항에 있어서, According to claim 1,
    상기 금속 촉매층은, 상기 금속 촉매가 상기 유체 시료와 접할 수 있도록 상기 금속 촉매를 고정시키는 지지체를 더욱 포함하는 것을 특징으로 하는, 알코올 센서. The metal catalyst layer further includes a support for fixing the metal catalyst so that the metal catalyst can come into contact with the fluid sample.
  4. 제2 항에 있어서, According to clause 2,
    상기 유체 시료는 알코올 농도를 측정하고자 하는 측정 대상자의 경피에서 발생한 가스이고, The fluid sample is a gas generated from the transdermis of a person whose alcohol concentration is to be measured,
    상기 알코올 센서는,The alcohol sensor is,
    상기 유체 시료를 선택적으로 투과시키며, 상기 측면 구조체와 결합되는 투과막; 및a permeable membrane that selectively transmits the fluid sample and is coupled to the side structure; and
    상기 투과막을 투과한 상기 유체 시료를 포집하며, 액체 이온 상태로 존재하는 이온성 액체를 더 포함하는, 알코올 센서.An alcohol sensor that collects the fluid sample that has passed through the permeable membrane and further includes an ionic liquid that exists in a liquid ionic state.
  5. 제3 항에 있어서, According to clause 3,
    상기 금속 촉매는, 백금(Pt) 및 이들의 합금으로 이루어진 군으로부터 선택되는 하나이거나, 또는 비금속과 백금(Pt)의 화합물인 것을 특징으로 하는, 알코올 센서.The metal catalyst is one selected from the group consisting of platinum (Pt) and alloys thereof, or a compound of a base metal and platinum (Pt).
  6. 제 5항에 있어서, According to clause 5,
    상기 합금은 PtM이고, 여기에서 M은 니켈(Ni), 루테늄(Ru), 코발트(Co), 팔라듐(Pd), 이리듐(Ir), 크로뮴(Cr) 및 로듐(Rh)으로부터 이루어지는 군으로부터 선택되는 적어도 하나를 포함하며,The alloy is PtM, where M is selected from the group consisting of nickel (Ni), ruthenium (Ru), cobalt (Co), palladium (Pd), iridium (Ir), chromium (Cr) and rhodium (Rh). Contains at least one,
    상기 지지체는 카본 블랙(Carbon black), 카본 나노튜브(carbon nanotube), 그래핀(graphene), 산화 그래핀(graphene oxide) 및 그라파이트(graphite) 중 적어도 하나의 카본 계열 물질로부터 선택되는 하나를 포함하는 것을 특징으로 하는, 알코올 센서.The support includes at least one carbon-based material selected from carbon black, carbon nanotube, graphene, graphene oxide, and graphite. An alcohol sensor, characterized in that.
  7. 제6항에 있어서, According to clause 6,
    상기 PtM에서, 백금에 대한 상대적인 M의 원자 비율(atomic ratio)은 10 ~ 100인 것을 특징으로 하는, 알코올 센서.In the PtM, the atomic ratio of M relative to platinum is 10 to 100.
  8. 제1항에 있어서, According to paragraph 1,
    상기 복수개의 전극들은,The plurality of electrodes are,
    작업 전극(working electrode), 상대 전극(counter electrode) 및 기준 전극(reference electrode)을 포함하는 제3 전극계; 또는 a third electrode system including a working electrode, a counter electrode, and a reference electrode; or
    작업 전극 및 기준 전극을 포함하는 제2 전극계이며, 상기 금속 촉매층은 상기 작업 전극의 일면에 형성되는 것을 특징으로 하는, 알코올 센서.An alcohol sensor comprising a second electrode system including a working electrode and a reference electrode, wherein the metal catalyst layer is formed on one surface of the working electrode.
  9. 제4항에 있어서, According to clause 4,
    상기 투과막은, 폴리머(polymer) 또는 코폴리머(co-polymer)를 포함하며, 상기 폴리머 또는 상기 코폴리머는,The permeable membrane includes a polymer or co-polymer, and the polymer or co-polymer is,
    친수성 지방족 폴리에테르(Hydrophilic aliphatic polyether), 소수성 지방족 폴리에테르(hydrophobic aliphatic polyether), 폴리에스터(polyester), 폴리에틸렌(polyethylene), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 열가소성 올레핀(thermoplastic olefin) 및 열가소성 폴리우레탄(thermoplastic polyurethane)으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 알코올 센서.Hydrophilic aliphatic polyether, hydrophobic aliphatic polyether, polyester, polyethylene, polytetrafluoroethylene, thermoplastic olefin and thermoplastic polyurethane. An alcohol sensor comprising at least one selected from the group consisting of (thermoplastic polyurethane).
  10. 제9항에 있어서, According to clause 9,
    상기 투과막은,The permeable membrane is,
    상기 측면 구조체의 상측면에 일부면이 접하는 형태로 상기 베이스와 대향하여 형성되고, 두께는 10 ~ 100 μm 인 것을 특징으로 하는, 알코올 센서.An alcohol sensor, characterized in that it is formed opposite the base in a form in which a part of the surface is in contact with the upper side of the side structure, and has a thickness of 10 to 100 μm.
  11. 제4항에 있어서, According to paragraph 4,
    상기 이온성 액체는 하나의 양이온과 하나의 음이온을 포함하며, The ionic liquid contains one cation and one anion,
    상기 양이온은 이미다졸(Imidazolium), 피롤리디늄(pyrrolidinium), 피리디늄(pyridinium), 피페리디늄(piperidinium), 암모늄(ammonium), 포스포늄(phosphonium) 및 설포늄(sulfonium)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 알코올 센서.The cation is selected from the group consisting of imidazole, pyrrolidinium, pyridinium, piperidinium, ammonium, phosphonium, and sulfonium. An alcohol sensor, comprising at least one of:
  12. 제4항에 있어서, According to clause 4,
    상기 이온성 액체는 양이온 또는 음이온을 포함하고, 상기 양이온은, The ionic liquid contains cations or anions, and the cations are,
    이미다졸(Imidazolium) 계의 이온성 액체로서, 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-Butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸륨 비스(트리플루오로메틸술포닐)이미드(1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-에틸-3-메틸이미다졸륨 디시안아미드(1-Ethyl-3-methylimidazolium dicyanamide), 1-부틸-3-메틸이미다졸륨 요오다이드(1-Butyl-3-methylimidazolium iodide), 1-부틸-3-메틸이미다졸륨 헥사플루오로포스페이트(1-Butyl-3-methylimidazolium hexafluorophosphate) 및 1-데실-3-메틸이미다졸륨 클로라이드(1-decyl-3-methylimidazolium chloride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하거나, Imidazolium-based ionic liquid, 1-Butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis(tri) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-Ethyl-3-methylimidazolium dicyanamide, 1-butyl -3-Butyl-3-methylimidazolium iodide, 1-Butyl-3-methylimidazolium hexafluorophosphate and 1-decyl- Contains at least one selected from the group consisting of 3-methylimidazolium chloride (1-decyl-3-methylimidazolium chloride),
    피롤리디늄(pyrrolidinium) 계의 이온성 액체로서, 1-부틸-1-메틸피롤리디늄 비스(트리플루오로메틸술포닐)이미드(1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide)를 포함하거나, It is a pyrrolidinium-based ionic liquid and contains 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. do or,
    피리디늄(pyridinium) 계의 이온성 액체로서, 1-부틸-4-메틸피리디늄 테트라플루오로보레이트(1-Butyl-4-methylpyridinium tetrafluoroborate)를 포함하거나,A pyridinium-based ionic liquid containing 1-Butyl-4-methylpyridinium tetrafluoroborate, or
    피페리디늄(piperidinium) 계의 이온성 액체로서, 1-부틸-1-메틸피페리디늄 비스(트리플루오로메틸술포닐)이미드(1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide)를 포함하거나,It is a piperidinium-based ionic liquid and contains 1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide. do or,
    암모늄(ammonium) 계의 이온성 액체로서, 테트라메틸암모늄 아세테이트(Tetramethylammonium acetate), 트리부틸메틸암모늄 클로라이드(Tributylmethylammonium chloride) 를 포함하거나,An ammonium-based ionic liquid containing tetramethylammonium acetate or tributylmethylammonium chloride, or
    포스포늄(phosphonium) 계의 이온성 액체로서, 포스포늄(phosphonium) 계의 이온성 액체(150)는 트리헥실테트라데실포스포늄 디시안아미드(trihexyltetradecylphosphonium dicyanamide) 를 포함하거나,As a phosphonium-based ionic liquid, the phosphonium-based ionic liquid 150 includes trihexyltetradecylphosphonium dicyanamide, or
    설포늄(sulfonium) 계의 계의 이온성 액체로서, 트리에틸설포늄 비스(트리플루오로메틸술포닐)이미드(Triethylsulfonium bis(trifluoromethylsulfonyl)imide)를 포함하는 것을 특징으로 하는, 알코올 센서.An alcohol sensor, which is a sulfonium-based ionic liquid, characterized in that it contains triethylsulfonium bis(trifluoromethylsulfonyl)imide.
  13. 알코올 농도를 연속적으로 모니터링하기 위한 웨어러블 기기에 있어서,In a wearable device for continuously monitoring alcohol concentration,
    하나의 또는 복수개의 전극들, 그리고 상기 유체 시료의 포함된 알코올 농도를 감지하기 위하여, 상기 유체 시료에 포함된 알코올 성분과의 반응을 통해 전자를 획득하는 반응을 위한 금속 촉매를 포함하며, 상기 전극의 일측에 위치하는 금속 촉매층을 포함하는 알코올 센서; One or a plurality of electrodes, and a metal catalyst for a reaction to obtain electrons through a reaction with an alcohol component contained in the fluid sample to detect the concentration of alcohol contained in the fluid sample, the electrode An alcohol sensor including a metal catalyst layer located on one side of;
    상기 전극과 전기적으로 연결되어, 상기 전극으로부터 감지되는 전기적 특성의 변화를 근거로, 상기 알코올 농도를 측정하는 알코올 농도 측정부;an alcohol concentration measuring unit electrically connected to the electrode and measuring the alcohol concentration based on changes in electrical characteristics detected from the electrode;
    상기 측정된 알코올 농도를 저장하는 메모리; 및a memory for storing the measured alcohol concentration; and
    상기 측정된 알코올 농도를 미리 결정된 기준값과 비교하고, 외부로 알코올 농도에 대한 메시지를 전달하기 위한 연산을 수행하는 프로세서를 포함하는, 웨어러블 장치.A wearable device comprising a processor that compares the measured alcohol concentration with a predetermined reference value and performs an operation to deliver a message about the alcohol concentration to the outside.
  14. 제14항에 있어서,According to clause 14,
    상기 알코올 센서는 절연성의 베이스와, The alcohol sensor includes an insulating base,
    상기 베이스와 결합하여, 상기 유체 시료를 가두기 위한 측면 구조체를 더욱 포함하며, In combination with the base, it further includes a side structure for confining the fluid sample,
    상기 하나의 또는 복수개의 전극들은 상기 베이스 위에 배치되고, The one or more electrodes are disposed on the base,
    상기 금속 촉매층은, 상기 금속 촉매가 상기 유체 시료와 접할 수 있도록 상기 금속 촉매를 고정시키는 지지체를 더욱 포함하는 것을 특징으로 하는, 웨어러블 장치.The metal catalyst layer further includes a support for fixing the metal catalyst so that the metal catalyst can come into contact with the fluid sample.
PCT/KR2022/005148 2022-04-08 2022-04-08 Metal catalyst-based alcohol sensor and wearable device comprising same WO2023195563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0043900 2022-04-08
KR1020220043900A KR20230144783A (en) 2022-04-08 2022-04-08 Alcohol Sensor Based on Metal Catalyst and Wearable Device Comprising the Same

Publications (1)

Publication Number Publication Date
WO2023195563A1 true WO2023195563A1 (en) 2023-10-12

Family

ID=88242941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005148 WO2023195563A1 (en) 2022-04-08 2022-04-08 Metal catalyst-based alcohol sensor and wearable device comprising same

Country Status (2)

Country Link
KR (1) KR20230144783A (en)
WO (1) WO2023195563A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524911A (en) * 2009-04-24 2012-10-18 ソバー ステアリング センサーズ リミテッド ライアビリティ カンパニー System and method for percutaneously and non-invasively detecting and measuring ethyl alcohol in the blood of a motor vehicle driver in the presence of interfering substances
US20170086714A1 (en) * 2013-01-31 2017-03-30 KHN Solutions, Inc. Wearable system and method for monitoring intoxication
US20190246958A1 (en) * 2018-02-12 2019-08-15 Giner, Inc. Waterless electrochemical transdermal alcohol sensor and wearable transdermal alcohol sensor device
KR102186749B1 (en) * 2020-08-27 2020-12-07 박도현 Transdermal alcohol tester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524911A (en) * 2009-04-24 2012-10-18 ソバー ステアリング センサーズ リミテッド ライアビリティ カンパニー System and method for percutaneously and non-invasively detecting and measuring ethyl alcohol in the blood of a motor vehicle driver in the presence of interfering substances
US20170086714A1 (en) * 2013-01-31 2017-03-30 KHN Solutions, Inc. Wearable system and method for monitoring intoxication
US20190246958A1 (en) * 2018-02-12 2019-08-15 Giner, Inc. Waterless electrochemical transdermal alcohol sensor and wearable transdermal alcohol sensor device
KR102186749B1 (en) * 2020-08-27 2020-12-07 박도현 Transdermal alcohol tester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN, JAE HO ET AL.: "Wearable transdermal alcohol sensors: Use of metal electrocatalysts and ionic liquids", KECS SPRING MEETING, 9 April 2021 (2021-04-09) *

Also Published As

Publication number Publication date
KR20230144783A (en) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2016165398A1 (en) Hydrogen gas sensor for online monitoring of hydrogen gas concentration in oil-immersed transformer and method for using same
US20040026246A1 (en) Gas sensors
DK0603945T3 (en) Semiconductor oxide gas sensor, for the determination of gaseous hydrocarbons
WO2015016555A1 (en) Gas sensor module, refrigerator including same and control method therefor
CN101477076A (en) Sensor apparatus for measuring and detecting acetylene and hydrogen dissolved in a fluid
WO2023195563A1 (en) Metal catalyst-based alcohol sensor and wearable device comprising same
US4302315A (en) Gas sensing unit
WO2011081245A1 (en) Hydrogen sensor, and method for fabricating same
US4427525A (en) Dual gas measuring solid electrolyte electrochemical cell apparatus
JP2008057976A (en) Hydrogen gas detection sensor
US5034107A (en) Method for sensing nitrous oxide
Kuwata et al. A solid-state amperometric oxygen sensor using NAFION membrane operative at room temperature
Gourari et al. Electrode nature effects on stannic oxide type layers prepared by electrostatic spray deposition
JPH0572979B2 (en)
SE8105260L (en) Gas Detector
WO2022119086A1 (en) Patch-type biosensor
JPH03277961A (en) Electrochemical gas sensor
WO2006068142A1 (en) Gas detection sensor and gas detector
WO2016148500A1 (en) Hydrogen detection sensor for detecting hydrogen of wide concentration range
JP2002048747A (en) Carbon monoxide sensor composite element, carbon monoxide concentration meter, and carbon monoxide sensor
CN217212395U (en) Gas sensor
JP2003287514A (en) Microelectrode structure and measuring instrument using the same
JPS613039A (en) Gas sensor
JPH0481649A (en) Electrochemical gas sensor apparatus
JP2004117123A (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936617

Country of ref document: EP

Kind code of ref document: A1