WO2023195513A1 - Elastic wave device and method for manufacturing same - Google Patents

Elastic wave device and method for manufacturing same Download PDF

Info

Publication number
WO2023195513A1
WO2023195513A1 PCT/JP2023/014191 JP2023014191W WO2023195513A1 WO 2023195513 A1 WO2023195513 A1 WO 2023195513A1 JP 2023014191 W JP2023014191 W JP 2023014191W WO 2023195513 A1 WO2023195513 A1 WO 2023195513A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
wave device
elastic wave
piezoelectric layer
Prior art date
Application number
PCT/JP2023/014191
Other languages
French (fr)
Japanese (ja)
Inventor
峰文 大内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023195513A1 publication Critical patent/WO2023195513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device and a method for manufacturing the same.
  • acoustic wave devices including a piezoelectric layer made of lithium niobate or lithium tantalate are known.
  • Patent Document 1 discloses a support in which a cavity is formed, a piezoelectric substrate provided on the support so as to overlap with the cavity, and a piezoelectric substrate provided on the piezoelectric substrate so as to overlap with the cavity.
  • An acoustic wave device is provided with an IDT (Interdigital Transducer) electrode provided, and a plate wave is excited by the IDT electrode, wherein an edge of the cavity portion is provided with a plate wave excited by the IDT electrode.
  • An elastic wave device is disclosed that does not include a straight portion extending parallel to the propagation direction of the wave.
  • Patent Document 2 discloses a configuration in which a plurality of acoustic wave elements are mounted on a mounting board by a flip chip bonding (FCB) method.
  • FCB flip chip bonding
  • an acoustic wave element is mounted on a substrate via bumps.
  • an impact is applied under the bump by ultrasonic waves, a load, etc., and as a result, cracks are likely to occur in the piezoelectric layer under the bump. In that case, there was a risk that the cracks would reach the piezoelectric layer of the resonator section where functional electrodes such as IDT electrodes were provided.
  • An object of the present invention is to provide an acoustic wave device that can suppress cracks that occur in the piezoelectric layer of a resonator section when an acoustic wave element is mounted on a substrate. Furthermore, an object of the present invention is to provide a method for manufacturing the above-mentioned elastic wave device.
  • An acoustic wave device of the present invention includes an acoustic wave element, a solder bump electrically connected to the acoustic wave element, and a terminal electrode provided between the acoustic wave element and the solder bump.
  • the acoustic wave element includes a support member, a piezoelectric layer provided on one main surface of the support member, and a functional electrode provided on at least one main surface of the piezoelectric layer.
  • the terminal electrode is provided on the one main surface of the support member.
  • a sacrificial layer is formed on a first main surface of a piezoelectric layer, and a support member having a recessed portion on a surface in contact with the sacrificial layer is formed so as to cover the sacrificial layer.
  • an acoustic wave device that can suppress cracks that occur in the piezoelectric layer of the resonator section when an acoustic wave element is mounted on a substrate. Furthermore, according to the present invention, it is possible to provide a method for manufacturing the above elastic wave device.
  • FIG. 1 is a cross-sectional view schematically showing an example of the elastic wave device of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the layout of the elastic wave elements constituting the elastic wave device of the present invention.
  • 3A is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing an example of the process of forming a sacrificial layer on a piezoelectric substrate.
  • FIG. 5 is a cross-sectional view schematically showing an example of the process of forming a dielectric layer.
  • FIG. 1 is a cross-sectional view schematically showing an example of the elastic wave device of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the layout of the elastic wave elements constituting the elastic wave device of the present invention.
  • 3A is a cross-sectional view taken along line AA
  • FIG. 6 is a cross-sectional view schematically showing an example of the process of bonding the support substrate to the dielectric layer.
  • FIG. 7 is a cross-sectional view schematically showing an example of the process of thinning the piezoelectric substrate.
  • FIG. 8 is a cross-sectional view schematically showing an example of the process of forming functional electrodes and wiring electrodes.
  • FIG. 9 is a cross-sectional view schematically showing an example of the process of forming a through hole.
  • FIG. 10 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer.
  • FIG. 11 is a cross-sectional view schematically showing an example of a step of forming a sacrificial layer on a piezoelectric substrate at a position different from that in FIG. 4.
  • FIG. 12 is a cross-sectional view schematically showing an example of the process of forming the support member.
  • FIG. 13 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer.
  • FIG. 14 is a cross-sectional view schematically showing an example of a process of removing a part of the piezoelectric layer.
  • FIGS. 15A, 15B, and 15C are cross-sectional views schematically showing an example of the process of forming a terminal electrode.
  • FIG. 15A, 15B, and 15C are cross-sectional views schematically showing an example of the process of forming a terminal electrode.
  • FIG. 16 is a cross-sectional view schematically showing an example of the process of forming electrodes such as wiring electrodes.
  • FIG. 17 is a cross-sectional view schematically showing an example of the process of forming solder bumps.
  • FIG. 18 is a schematic perspective view showing the appearance of an example of an elastic wave device that utilizes bulk waves in thickness shear mode.
  • FIG. 19 is a plan view showing the electrode structure on the piezoelectric layer of the acoustic wave device shown in FIG. 18.
  • FIG. 20 is a cross-sectional view of a portion taken along line AA in FIG. 18.
  • FIG. 21 is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of an acoustic wave device.
  • FIG. 21 is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of an acoustic wave device.
  • FIG. 22 is a schematic front sectional view for explaining a thickness shear mode bulk wave propagating through a piezoelectric layer of an elastic wave device.
  • FIG. 23 is a diagram showing the amplitude direction of the bulk wave in the thickness shear mode.
  • FIG. 24 is a diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18.
  • FIG. 25 is a diagram showing the relationship between d/2p and the fractional band as a resonator of an acoustic wave device, where p is the distance between the centers of adjacent electrodes and d is the thickness of the piezoelectric layer.
  • FIG. 26 is a plan view of another example of an elastic wave device that utilizes bulk waves in thickness shear mode.
  • FIG. 26 is a plan view of another example of an elastic wave device that utilizes bulk waves in thickness shear mode.
  • FIG. 27 is a reference diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18.
  • FIG. 28 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. It is.
  • FIG. 29 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band.
  • FIG. 30 is a diagram showing a map of fractional bands with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought as close to 0 as possible.
  • FIG. 31 is a partially cutaway perspective view for explaining an example of an elastic wave device that uses Lamb waves.
  • FIG. 32 is a cross-sectional view schematically showing an example of an elastic wave device that uses bulk waves.
  • the acoustic wave device of the present invention includes a piezoelectric layer made of lithium niobate or lithium tantalate, a first electrode and a first electrode facing each other in a direction crossing the thickness direction of the piezoelectric layer. 2 electrodes.
  • a bulk wave in a thickness shear mode such as a primary thickness shear mode is used.
  • the first electrode and the second electrode are adjacent electrodes, and when the thickness of the piezoelectric layer is d and the distance between the centers of the first electrode and the second electrode is p, d/ p is set to be 0.5 or less.
  • the Q value can be increased even when miniaturization is promoted.
  • Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave described above can be obtained.
  • the acoustic wave device of the present invention includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode that face each other in the thickness direction of the piezoelectric layer with the piezoelectric layer in between.
  • bulk waves are utilized.
  • FIG. 1 is a cross-sectional view schematically showing an example of the elastic wave device of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the layout of the elastic wave elements constituting the elastic wave device of the present invention.
  • 3A is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 2.
  • the elastic wave device 10 shown in FIG. 13 The elastic wave device 10 shown in FIG. 13.
  • the acoustic wave element 11 includes a support member 20, a piezoelectric layer 21, and a functional electrode 22.
  • the support member 20 includes, for example, a support substrate 23 and a dielectric layer (also referred to as an intermediate layer, an insulating layer, or a bonding layer) 24 provided between the support substrate 23 and the piezoelectric layer 21.
  • a dielectric layer also referred to as an intermediate layer, an insulating layer, or a bonding layer
  • the support member 20 may have the dielectric layer 24 on one main surface on which the piezoelectric layer 21 is provided.
  • the support substrate 23 is made of silicon (Si), for example.
  • Dielectric layer 24 is made of silicon oxide (SiO x ), such as silicon dioxide (SiO 2 ), for example.
  • the support member 20 has a cavity 25 on one main surface (lower main surface in FIG. 1, upper main surface in FIG. 3A).
  • the cavity 25 may or may not penetrate the support member 20 in the thickness direction (vertical direction in FIGS. 1 and 3A).
  • the cavity 25 may be provided so as to penetrate the dielectric layer 24 in the thickness direction; A cavity 25 may be provided.
  • the piezoelectric layer 21 is provided on one main surface of the support member 20 (the lower main surface in FIG. 1, the upper main surface in FIG. 3A).
  • the piezoelectric layer 21 is provided on one main surface of the support member 20 so as to cover the cavity 25.
  • the piezoelectric layer 21 is made of, for example, lithium niobate (LiNbO x ) or lithium tantalate (LiTaO x ). In that case, the piezoelectric layer 21 may be composed of LiNbO 3 or LiTaO 3 .
  • the functional electrode 22 is provided on at least one main surface of the piezoelectric layer 21.
  • the functional electrode 22 is provided on one main surface of the piezoelectric layer 21 (the lower main surface in FIG. 1, the upper main surface in FIG. 3A).
  • the functional electrode 22 is provided so that at least a portion thereof overlaps with the cavity 25 when viewed from the thickness direction of the piezoelectric layer 21 (vertical direction in FIGS. 1 and 3A). It is preferable. When viewed from the thickness direction of the piezoelectric layer 21, the functional electrode 22 may be provided so that the entirety thereof overlaps with the cavity 25, or a part of the functional electrode 22 may be provided so as to overlap with the cavity 25. .
  • the functional electrode 22 is, for example, an IDT electrode provided on one main surface of the piezoelectric layer 21.
  • the functional electrode 22 is electrically connected to the terminal electrode 13.
  • a wiring electrode 14 for connecting the functional electrode 22 and the terminal electrode 13 is provided on one main surface of the support member 20.
  • the wiring electrode 14 may be a single layer, or may be a laminate in which two or more metal layers are stacked.
  • a plurality of joints having a cross-sectional structure shown in FIG. 3B are provided on the outer periphery of the elastic wave device 10.
  • the terminal electrode 13 is provided on one main surface (the lower main surface in FIG. 1, the upper main surface in FIG. 3B) of the support member 20. Terminal electrode 13 is joined to solder bump 12 . It is preferable that the terminal electrode 13 is a plated electrode formed by a plating process.
  • a terminal electrode is provided on one main surface of a piezoelectric layer, and a bump electrode is joined to the terminal electrode.
  • the terminal electrode 13 is provided on one main surface of the support member 20, and the solder bump 12 is bonded to the terminal electrode 13 as a bump electrode.
  • the solder bump 12 is bonded to the terminal electrode 13 as a bump electrode.
  • the piezoelectric layer 21 is not provided on the portion of the support member 20 where the solder bumps 12 are located. That is, it is preferable that the terminal electrode 13 be provided directly on one main surface of the support member 20.
  • the support member 20 has a recess 26 on one main surface, and the terminal electrode 13 is provided in the recess 26.
  • the terminal electrode 13 is a plating electrode
  • the plating seed layer 15 is provided in the recess 26 and that the terminal electrode 13 is provided on the plating seed layer 15.
  • the metal constituting the terminal electrode 13 is not particularly limited, and examples thereof include Ni, Pd, and the like. Similarly, even when the terminal electrode 13 is a plating electrode, examples of the metal constituting the terminal electrode 13 include metals commonly used in plating, such as Ni and Pd.
  • the plating seed layer 15 is composed of two layers, for example, a Ti film and a Cu film thereon.
  • the acoustic wave device 10 preferably further includes a wiring board 30.
  • the wiring board 30 is configured by a printed wiring board, for example.
  • the printed wiring board is formed from a glass cloth/epoxy resin copper-clad laminate.
  • the wiring board 30 is electrically connected to the acoustic wave element 11 via the terminal electrodes 13 and solder bumps 12. Specifically, external terminals 31 provided on the upper surface of wiring board 30 are bonded to solder bumps 12 . As described above, the acoustic wave element 11 is mounted on the wiring board 30.
  • a hollow space is formed by the terminal electrode 13 of the acoustic wave element 11, the solder bump 12, and the wiring board 30 facing the functional electrode 22 on the piezoelectric layer 21.
  • CSP chip size package
  • a plurality of via conductors 32 are provided inside the wiring board 30.
  • the acoustic wave element 11 on the wiring board 30 is sealed with a sealing body 33.
  • the material constituting the sealing body 33 is preferably a resin, and more preferably a material in which an inorganic filler such as a metal is mixed into a resin material such as an epoxy resin, a silicone resin, a fluororesin, or an acrylic resin.
  • the elastic wave device of the present invention is manufactured, for example, by the following method.
  • the elastic wave device of the present invention may be manufactured in the state of individual pieces, or may be manufactured by producing an aggregate and then separating it into individual pieces.
  • FIG. 4 is a cross-sectional view schematically showing an example of the process of forming a sacrificial layer on a piezoelectric substrate.
  • a sacrificial layer 50 is formed on the piezoelectric substrate 41.
  • the piezoelectric substrate 41 for example, a substrate made of LiNbO 3 or LiTaO 3 is used.
  • the material for the sacrificial layer 50 an appropriate material that can be removed by etching, which will be described later, is used.
  • an appropriate material that can be removed by etching which will be described later, is used.
  • ZnO or the like is used.
  • the sacrificial layer 50 can be formed, for example, by the following method. First, a ZnO film is formed by sputtering. Thereafter, resist coating, exposure and development are performed in this order. Next, a pattern of the sacrificial layer 50 is formed by performing wet etching. Note that the sacrificial layer 50 may be formed by other methods.
  • FIG. 5 is a cross-sectional view schematically showing an example of the process of forming a dielectric layer.
  • the surface of the dielectric layer 24 is planarized.
  • the dielectric layer 24 for example, a SiO 2 film or the like is formed.
  • the dielectric layer 24 can be formed by, for example, a sputtering method. Planarization of the dielectric layer 24 can be performed, for example, by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • FIG. 6 is a cross-sectional view schematically showing an example of the process of bonding the support substrate to the dielectric layer.
  • the support substrate 23 is bonded to the dielectric layer 24. Thereby, the support member 20 is formed.
  • FIG. 7 is a cross-sectional view schematically showing an example of the process of thinning the piezoelectric substrate.
  • the piezoelectric substrate 41 is thinned. As a result, the piezoelectric layer 21 is formed.
  • the piezoelectric substrate 41 can be thinned by, for example, a smart cut method, polishing, or the like.
  • FIG. 8 is a cross-sectional view schematically showing an example of the process of forming functional electrodes and wiring electrodes.
  • the functional electrode 22 and the wiring electrode 14 are formed on one main surface of the piezoelectric layer 21.
  • the functional electrode 22 and the wiring electrode 14 can be formed by, for example, a lift-off method.
  • FIG. 9 is a cross-sectional view schematically showing an example of the process of forming a through hole.
  • through holes 51 are formed in the piezoelectric layer 21.
  • the through hole 51 is formed to reach the sacrificial layer 50.
  • the through hole 51 can be formed by, for example, a dry etching method.
  • the through hole 51 is used as an etching hole.
  • FIG. 10 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer.
  • the sacrificial layer 50 is removed using the through hole 51.
  • a cavity 25 is formed in the support member 20.
  • the part (acoustic wave element 11) shown in FIG. 3A is manufactured.
  • FIG. 11 is a cross-sectional view schematically showing an example of the process of forming a sacrificial layer on a piezoelectric substrate at a position different from that in FIG. 4.
  • a sacrificial layer 50 is formed on the piezoelectric substrate 41 at a position different from that in FIG.
  • the sacrificial layer 50 is formed in a portion located below the solder bump 12, which will be described later.
  • FIG. 12 is a cross-sectional view schematically showing an example of the process of forming the support member.
  • the support member 20 provided with the piezoelectric layer 21 and the sacrificial layer 50 is formed by the same method as in FIGS. 5 to 7.
  • the laminate 52 is produced.
  • a sacrificial layer 50 is formed on the first main surface 21a of the piezoelectric layer 21, and a support member 20 having a recess 26 on a surface in contact with the sacrificial layer 50 is formed so as to cover the sacrificial layer 50. There is.
  • FIG. 13 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer.
  • a cavity 53 is formed in the portion where the sacrificial layer 50 is provided.
  • the step of forming the cavity 53 is a step of penetrating the piezoelectric layer 21 from the second main surface 21b (see FIG. 12) side to the sacrificial layer 50, as in FIGS. 9 and 10. It is preferable to include the steps of forming a hole and removing the sacrificial layer 50 by etching using the through hole.
  • FIG. 14 is a cross-sectional view schematically showing an example of the process of removing a part of the piezoelectric layer.
  • the region above the cavity 53 in the piezoelectric layer 21 is removed.
  • FIGS. 15A, 15B, and 15C are cross-sectional views schematically showing an example of the process of forming a terminal electrode.
  • the terminal electrode 13 is formed by plating on the portion where the sacrificial layer 50 and the piezoelectric layer 21 have been removed.
  • the step of forming the terminal electrode 13 preferably includes a step of forming a plating seed layer 15 and a step of forming the terminal electrode 13 on the plating seed layer 15 by plating.
  • the plating seed layer 15 is formed by, for example, a sputtering method.
  • the terminal electrode 13 is formed, for example, by electrolytic plating or the like.
  • the step of forming the terminal electrode 13 further includes a step of forming a resist 54, and a step of peeling off the resist 54 after forming the terminal electrode 13.
  • FIG. 16 is a cross-sectional view schematically showing an example of the process of forming electrodes such as wiring electrodes.
  • the step of forming electrodes such as the wiring electrode 14 described in FIG. 8 is performed after forming the terminal electrode 13.
  • the step of forming electrodes such as wiring electrode 14 is preferably performed after forming terminal electrode 13 and before forming solder bumps 12, which will be described later.
  • FIG. 17 is a cross-sectional view schematically showing an example of the process of forming solder bumps.
  • solder bumps 12 are formed on terminal electrodes 13.
  • the acoustic wave element 11 to which the solder bumps 12 are bonded may be mounted on the wiring board 30 by flip-chip bonding, and then the acoustic wave element 11 may be sealed with the sealing body 33.
  • the elastic wave device 10 shown in FIG. 1 is manufactured.
  • the elastic wave device in the following example corresponds to an acoustic wave element in the present invention
  • the intermediate layer corresponds to a dielectric layer in the present invention.
  • FIG. 18 is a schematic perspective view showing the appearance of an example of an elastic wave device that utilizes bulk waves in thickness shear mode.
  • FIG. 19 is a plan view showing the electrode structure on the piezoelectric layer of the acoustic wave device shown in FIG. 18.
  • FIG. 20 is a cross-sectional view of a portion taken along line AA in FIG. 18.
  • the acoustic wave device 1 has a piezoelectric layer 2 made of, for example, LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 or LiTaO 3 is, for example, a Z cut, but may also be a rotational Y cut or an X cut.
  • the propagation directions of Y propagation and X propagation are ⁇ 30°.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but in order to effectively excite the thickness shear mode, it is preferably 50 nm or more and 1000 nm or less.
  • the piezoelectric layer 2 has a first main surface 2a and a second main surface 2b that face each other.
  • Electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2, on the first main surface 2a of the piezoelectric layer 2, an electrode 3 and an electrode 4 are provided.
  • electrode 3 is an example of a "first electrode”
  • electrode 4 is an example of a "second electrode”.
  • the plurality of electrodes 3 are the plurality of first electrode fingers connected to the first busbar electrode 5.
  • the plurality of electrodes 4 are a plurality of second electrode fingers connected to the second busbar electrode 6.
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interposed with each other. Electrode 3 and electrode 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to this length direction.
  • Electrodes 3 and 4 constitute an IDT (Interdigital Transducer) electrode.
  • the length direction of the electrodes 3 and 4 and the direction perpendicular to the length direction of the electrodes 3 and 4 are both directions that intersect the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2. Further, the length direction of the electrodes 3 and 4 may be replaced with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 18 and 19. That is, in FIGS.
  • the electrodes 3 and 4 may be extended in the direction in which the first busbar electrode 5 and the second busbar electrode 6 are extended. In that case, the first busbar electrode 5 and the second busbar electrode 6 will extend in the direction in which the electrodes 3 and 4 extend in FIGS. 18 and 19.
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the expression “electrode 3 and electrode 4 are adjacent” does not mean that electrode 3 and electrode 4 are arranged so as to be in direct contact with each other, but when electrode 3 and electrode 4 are arranged with a gap between them.
  • the center-to-center distance between the electrodes 3 and 4, that is, the pitch, is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. Note that the center-to-center distance between the electrodes 3 and 4 refers to the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3, and the width dimension of the electrode 4 in the direction orthogonal to the length direction of the electrode 4.
  • the distance between the center of refers to the average value of the distance between the centers of adjacent electrodes 3 and 4 among 1.5 or more pairs of electrodes 3 and 4.
  • the width of the electrodes 3 and 4, that is, the dimension in the opposing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2.
  • “orthogonal” is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is 90° ⁇ 10°) But that's fine.
  • a support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer (also called a bonding layer) 7 interposed therebetween.
  • the intermediate layer 7 and the support substrate 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. Thereby, a cavity 9 is formed.
  • the cavity 9 is provided so as not to hinder the vibration of the excitation region C (see FIG. 19) of the piezoelectric layer 2. Therefore, the support substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position that does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
  • the intermediate layer 7 is made of silicon oxide, for example. However, other than silicon oxide, an appropriate insulating material such as silicon oxynitride or alumina can be used.
  • the support substrate 8 is made of Si. The plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, Si has a high resistivity of 4 k ⁇ or more. However, the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Examples of materials for the support substrate 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and starch.
  • Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
  • the plurality of electrodes 3, electrodes 4, first busbar electrode 5, and second busbar electrode 6 are made of an appropriate metal or alloy such as Al or AlCu alloy.
  • the electrode 3, the electrode 4, the first busbar electrode 5, and the second busbar electrode 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first busbar electrode 5 and the second busbar electrode 6.
  • d/p is 0. It is considered to be 5 or less. Therefore, the bulk wave in the thickness shear mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the distance p between the centers of the adjacent electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
  • the elastic wave device 1 of this embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave in the thickness shear mode is used. The difference between the Lamb wave used in a conventional elastic wave device and the thickness-shear mode bulk wave will be explained with reference to FIGS. 21 and 22.
  • FIG. 21 is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of an acoustic wave device.
  • the elastic wave device described in Patent Document 1 Japanese Patent Publication No. 2012-257019
  • waves propagate in the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b are opposite to each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. It is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are lined up.
  • the Lamb wave the wave propagates in the X direction as shown.
  • the piezoelectric film 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers is reduced, the Q value decreases.
  • FIG. 22 is a schematic front cross-sectional view for explaining a thickness-shear mode bulk wave propagating through a piezoelectric layer of an elastic wave device.
  • the waves connect the first main surface 2a and the second main surface 2b of the piezoelectric layer 2. It propagates almost in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 23 is a diagram showing the amplitude direction of the bulk wave in the thickness shear mode. As shown in FIG. 23, the amplitude direction of the bulk wave in the thickness shear mode is opposite between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C.
  • FIG. 23 schematically shows a bulk wave when a voltage is applied between electrode 3 and electrode 4 such that electrode 4 has a higher potential than electrode 3.
  • the first region 451 is a region of the excitation region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a.
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second principal surface 2b.
  • the elastic wave device 1 As mentioned above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrode 3 and the electrode 4 are arranged, but since the wave is not propagated in the X direction, the elastic wave device 1 is made up of the electrodes 3 and 4. There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • the electrode 3 may be connected to the ground potential
  • the electrode 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
  • FIG. 24 is a diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18. Note that the design parameters of the elastic wave device 1 that obtained this resonance characteristic are as follows.
  • Intermediate layer 7 silicon oxide film with a thickness of 1 ⁇ m.
  • Support substrate 8 Si substrate.
  • the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the distances between the electrode pairs made up of the electrodes 3 and 4 were all equal in multiple pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is preferably 0.5 or less, More preferably it is 0.24 or less. This will be explained with reference to FIG. 25.
  • FIG. 25 is a diagram showing the relationship between d/2p and the fractional band as a resonator of an acoustic wave device, where p is the distance between the centers of adjacent electrodes and d is the thickness of the piezoelectric layer.
  • the at least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrodes 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 may be set to p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
  • FIG. 26 is a plan view of another example of an elastic wave device that utilizes bulk waves in thickness-shear mode.
  • a pair of electrodes including an electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2.
  • K in FIG. 26 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, bulk waves in the thickness shear mode can be excited effectively.
  • the metallization ratio MR of the adjacent electrodes 3 and 4 satisfies MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be explained with reference to FIGS. 27 and 28.
  • FIG. 27 is a reference diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18.
  • a spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 19.
  • the area surrounded by the dashed line C becomes the excitation region.
  • This excitation region is the region where the electrode 3 overlaps the electrode 4 when the electrode 3 and the electrode 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, that is, in a direction in which they face each other. and a region between electrodes 3 and 4 where electrodes 3 and 4 overlap.
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region becomes the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallized portion to the area of the excitation region.
  • MR may be the ratio of the metallized portion included in all the excitation regions to the total area of the excitation regions.
  • FIG. 28 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. It is. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer and the dimensions of the electrode. Further, although FIG. 28 shows the results when a Z-cut piezoelectric layer made of LiNbO 3 is used, the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristic shown in FIG. 27, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, etc., the spurious can be reduced.
  • FIG. 29 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band.
  • various elastic wave devices having different d/2p and MR were constructed and the fractional bands were measured.
  • the hatched area on the right side of the broken line D in FIG. 29 is the area where the fractional band is 17% or less.
  • FIG. 30 is a diagram showing a map of fractional bands with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought as close to 0 as possible.
  • the hatched areas in FIG. 30 are areas where a fractional band of at least 5% can be obtained, and the range of the area can be approximated by the following equations (1), (2), and (3). ).
  • ...Formula (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°)
  • ...Formula (2) (0° ⁇ 10°, [180°-30° (1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) ...Formula (3) Therefore, the Euler angle range of formula (1), formula (2), or formula (3) above is preferable because the fractional band can be made sufficiently wide.
  • FIG. 31 is a partially cutaway perspective view for explaining an example of an elastic wave device that utilizes Lamb waves.
  • the elastic wave device 81 has a support substrate 82.
  • the support substrate 82 is provided with an open recess on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 .
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction.
  • the outer peripheral edge of the cavity 9 is shown by a broken line.
  • the IDT electrode 84 includes a first busbar electrode 84a, a second busbar electrode 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers.
  • the plurality of electrodes 84c are connected to the first busbar electrode 84a.
  • the plurality of electrodes 84d are connected to the second busbar electrode 84b.
  • the plurality of electrodes 84c and the plurality of electrodes 84d are interposed with each other.
  • the elastic wave device 81 by applying an alternating current electric field to the IDT electrode 84 on the cavity 9, a Lamb wave as a plate wave is excited. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristic due to the Lamb wave described above can be obtained.
  • the elastic wave device of the present invention may utilize plate waves such as Lamb waves.
  • the elastic wave device of the present invention may utilize bulk waves. That is, the elastic wave device of the present invention can also be applied to a bulk acoustic wave (BAW) element.
  • the functional electrodes are an upper electrode and a lower electrode.
  • FIG. 32 is a cross-sectional view schematically showing an example of an elastic wave device that uses bulk waves.
  • the elastic wave device 90 includes a support substrate 91.
  • a cavity 93 is provided so as to penetrate the support substrate 91.
  • a piezoelectric layer 92 is laminated on a support substrate 91 .
  • An upper electrode 94 is provided on the first main surface 92a of the piezoelectric layer 92, and a lower electrode 95 is provided on the second main surface 92b of the piezoelectric layer 92.
  • an intermediate layer may be provided between the support substrate 91 and the piezoelectric layer 92.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An elastic wave device 10 comprises an elastic wave element 11, a solder bump 12 electrically connected to the elastic wave element 11, and a terminal electrode 13 provided between the elastic wave element 11 and the solder bump 12. The elastic wave element 11 comprises a support member 20, a piezoelectric layer 21 provided on one main surface of the support member 20, and functional electrodes 22 provided on at least one main surface of the piezoelectric layer 21. The terminal electrode 13 is provided on one main surface of the support member 20.

Description

弾性波装置及びその製造方法Acoustic wave device and its manufacturing method
 本発明は、弾性波装置及びその製造方法に関する。 The present invention relates to an elastic wave device and a method for manufacturing the same.
 従来、ニオブ酸リチウム又はタンタル酸リチウムからなる圧電層を備える弾性波装置が知られている。 Conventionally, acoustic wave devices including a piezoelectric layer made of lithium niobate or lithium tantalate are known.
 特許文献1には、空洞部が形成された支持体と、上記支持体の上に上記空洞部と重なるように設けられている圧電基板と、上記圧電基板の上に上記空洞部と重なるように設けられているIDT(Interdigital Transducer)電極と、を備え、上記IDT電極により板波が励振される弾性波装置であって、上記空洞部の端縁部は、上記IDT電極により励振される板波の伝搬方向と平行に延びる直線部を含まない、弾性波装置が開示されている。 Patent Document 1 discloses a support in which a cavity is formed, a piezoelectric substrate provided on the support so as to overlap with the cavity, and a piezoelectric substrate provided on the piezoelectric substrate so as to overlap with the cavity. An acoustic wave device is provided with an IDT (Interdigital Transducer) electrode provided, and a plate wave is excited by the IDT electrode, wherein an edge of the cavity portion is provided with a plate wave excited by the IDT electrode. An elastic wave device is disclosed that does not include a straight portion extending parallel to the propagation direction of the wave.
 特許文献2には、複数の弾性波素子が、フリップチップボンディング(FCB)工法により実装基板上に実装された構成が開示されている。 Patent Document 2 discloses a configuration in which a plurality of acoustic wave elements are mounted on a mounting board by a flip chip bonding (FCB) method.
特開2012-257019号公報Japanese Patent Application Publication No. 2012-257019 国際公開第2013/146374号International Publication No. 2013/146374
 特許文献2に記載されているような弾性波装置では、バンプを介して弾性波素子が基板に実装されている。しかしながら、フリップチップボンディングにより弾性波素子を基板に実装する際には、超音波又は荷重等によってバンプ下に衝撃がかかり、これにより、バンプ下の圧電層にクラックが発生しやすくなる。その場合、IDT電極等の機能電極が設けられている共振子部の圧電層にまで該クラックが至るおそれがあった。 In an acoustic wave device such as that described in Patent Document 2, an acoustic wave element is mounted on a substrate via bumps. However, when an acoustic wave element is mounted on a substrate by flip-chip bonding, an impact is applied under the bump by ultrasonic waves, a load, etc., and as a result, cracks are likely to occur in the piezoelectric layer under the bump. In that case, there was a risk that the cracks would reach the piezoelectric layer of the resonator section where functional electrodes such as IDT electrodes were provided.
 本発明は、弾性波素子が基板に実装される際において共振子部の圧電層に発生するクラックを抑制することが可能な弾性波装置を提供することを目的とする。さらに、本発明は、上記弾性波装置の製造方法を提供することを目的とする。 An object of the present invention is to provide an acoustic wave device that can suppress cracks that occur in the piezoelectric layer of a resonator section when an acoustic wave element is mounted on a substrate. Furthermore, an object of the present invention is to provide a method for manufacturing the above-mentioned elastic wave device.
 本発明の弾性波装置は、弾性波素子と、上記弾性波素子と電気的に接続されているはんだバンプと、上記弾性波素子と上記はんだバンプとの間に設けられた端子電極と、を備える。上記弾性波素子は、支持部材と、上記支持部材の一方主面に設けられた圧電層と、上記圧電層の少なくとも一方の主面に設けられた機能電極と、を備える。上記端子電極は、上記支持部材の上記一方主面上に設けられている。 An acoustic wave device of the present invention includes an acoustic wave element, a solder bump electrically connected to the acoustic wave element, and a terminal electrode provided between the acoustic wave element and the solder bump. . The acoustic wave element includes a support member, a piezoelectric layer provided on one main surface of the support member, and a functional electrode provided on at least one main surface of the piezoelectric layer. The terminal electrode is provided on the one main surface of the support member.
 本発明の弾性波装置の製造方法は、圧電層の第1の主面に犠牲層が形成され、かつ、上記犠牲層を覆うように上記犠牲層と接する面に凹部を有する支持部材が形成されている積層体を用意する工程と、上記犠牲層を除去することにより、上記犠牲層が設けられている部分に空洞を形成する工程と、上記圧電層における、上記空洞の上方の領域を除去する工程と、上記犠牲層と上記圧電層とを除去した部分に端子電極をめっき処理により形成する工程と、上記端子電極上にはんだバンプを形成する工程と、を備える。 In the method for manufacturing an acoustic wave device of the present invention, a sacrificial layer is formed on a first main surface of a piezoelectric layer, and a support member having a recessed portion on a surface in contact with the sacrificial layer is formed so as to cover the sacrificial layer. a step of forming a cavity in a portion where the sacrificial layer is provided by removing the sacrificial layer; and a step of removing a region above the cavity in the piezoelectric layer. A step of forming a terminal electrode by plating on a portion where the sacrificial layer and the piezoelectric layer have been removed, and a step of forming a solder bump on the terminal electrode.
 本発明によれば、弾性波素子が基板に実装される際において共振子部の圧電層に発生するクラックを抑制することが可能な弾性波装置を提供することができる。さらに、本発明によれば、上記弾性波装置の製造方法を提供することができる。 According to the present invention, it is possible to provide an acoustic wave device that can suppress cracks that occur in the piezoelectric layer of the resonator section when an acoustic wave element is mounted on a substrate. Furthermore, according to the present invention, it is possible to provide a method for manufacturing the above elastic wave device.
図1は、本発明の弾性波装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the elastic wave device of the present invention. 図2は、本発明の弾性波装置を構成する弾性波素子のレイアウトの一例を模式的に示す平面図である。FIG. 2 is a plan view schematically showing an example of the layout of the elastic wave elements constituting the elastic wave device of the present invention. 図3Aは、図2中のA-A線に沿った断面図である。図3Bは、図2中のB-B線に沿った断面図である。3A is a cross-sectional view taken along line AA in FIG. 2. FIG. FIG. 3B is a cross-sectional view taken along line BB in FIG. 2. 図4は、圧電基板上に犠牲層を形成する工程の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of the process of forming a sacrificial layer on a piezoelectric substrate. 図5は、誘電層を形成する工程の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of the process of forming a dielectric layer. 図6は、誘電層に支持基板を接合する工程の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an example of the process of bonding the support substrate to the dielectric layer. 図7は、圧電基板を薄化する工程の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an example of the process of thinning the piezoelectric substrate. 図8は、機能電極及び配線電極を形成する工程の一例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an example of the process of forming functional electrodes and wiring electrodes. 図9は、貫通孔を形成する工程の一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an example of the process of forming a through hole. 図10は、犠牲層を除去する工程の一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer. 図11は、図4とは異なる位置において、圧電基板上に犠牲層を形成する工程の一例を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing an example of a step of forming a sacrificial layer on a piezoelectric substrate at a position different from that in FIG. 4. 図12は、支持部材を形成する工程の一例を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of the process of forming the support member. 図13は、犠牲層を除去する工程の一例を模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer. 図14は、圧電層の一部を除去する工程の一例を模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing an example of a process of removing a part of the piezoelectric layer. 図15A、図15B及び図15Cは、端子電極を形成する工程の一例を模式的に示す断面図である。FIGS. 15A, 15B, and 15C are cross-sectional views schematically showing an example of the process of forming a terminal electrode. 図16は、配線電極等の電極を形成する工程の一例を模式的に示す断面図である。FIG. 16 is a cross-sectional view schematically showing an example of the process of forming electrodes such as wiring electrodes. 図17は、はんだバンプを形成する工程の一例を模式的に示す断面図である。FIG. 17 is a cross-sectional view schematically showing an example of the process of forming solder bumps. 図18は、厚み滑りモードのバルク波を利用する弾性波装置の一例の外観を示す略図的斜視図である。FIG. 18 is a schematic perspective view showing the appearance of an example of an elastic wave device that utilizes bulk waves in thickness shear mode. 図19は、図18に示す弾性波装置の圧電層上の電極構造を示す平面図である。FIG. 19 is a plan view showing the electrode structure on the piezoelectric layer of the acoustic wave device shown in FIG. 18. 図20は、図18中のA-A線に沿う部分の断面図である。FIG. 20 is a cross-sectional view of a portion taken along line AA in FIG. 18. 図21は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。FIG. 21 is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of an acoustic wave device. 図22は、弾性波装置の圧電層を伝播する厚み滑りモードのバルク波を説明するための模式的正面断面図である。FIG. 22 is a schematic front sectional view for explaining a thickness shear mode bulk wave propagating through a piezoelectric layer of an elastic wave device. 図23は、厚み滑りモードのバルク波の振幅方向を示す図である。FIG. 23 is a diagram showing the amplitude direction of the bulk wave in the thickness shear mode. 図24は、図18に示す弾性波装置の共振特性の一例を示す図である。FIG. 24 is a diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18. 図25は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。FIG. 25 is a diagram showing the relationship between d/2p and the fractional band as a resonator of an acoustic wave device, where p is the distance between the centers of adjacent electrodes and d is the thickness of the piezoelectric layer. 図26は、厚み滑りモードのバルク波を利用する弾性波装置の別の一例の平面図である。FIG. 26 is a plan view of another example of an elastic wave device that utilizes bulk waves in thickness shear mode. 図27は、図18に示す弾性波装置の共振特性の一例を示す参考図である。FIG. 27 is a reference diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18. 図28は、本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。FIG. 28 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. It is. 図29は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。FIG. 29 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band. 図30は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。FIG. 30 is a diagram showing a map of fractional bands with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is brought as close to 0 as possible. 図31は、ラム波を利用する弾性波装置の一例を説明するための部分切り欠き斜視図である。FIG. 31 is a partially cutaway perspective view for explaining an example of an elastic wave device that uses Lamb waves. 図32は、バルク波を利用する弾性波装置の一例を模式的に示す断面図である。FIG. 32 is a cross-sectional view schematically showing an example of an elastic wave device that uses bulk waves.
 以下、本発明の弾性波装置について説明する。 Hereinafter, the elastic wave device of the present invention will be explained.
 本発明の弾性波装置は、第1、第2及び第3の態様において、ニオブ酸リチウム又はタンタル酸リチウムからなる圧電層と、圧電層の厚み方向に交差する方向において対向する第1電極及び第2電極とを備える。 In the first, second and third aspects, the acoustic wave device of the present invention includes a piezoelectric layer made of lithium niobate or lithium tantalate, a first electrode and a first electrode facing each other in a direction crossing the thickness direction of the piezoelectric layer. 2 electrodes.
 第1の態様では、厚み滑り1次モード等の厚み滑りモードのバルク波が利用されている。また、第2の態様では、第1電極及び前記第2電極は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。それによって、第1及び第2の態様では、小型化を進めた場合であっても、Q値を高めることができる。 In the first aspect, a bulk wave in a thickness shear mode such as a primary thickness shear mode is used. Further, in the second aspect, the first electrode and the second electrode are adjacent electrodes, and when the thickness of the piezoelectric layer is d and the distance between the centers of the first electrode and the second electrode is p, d/ p is set to be 0.5 or less. Thereby, in the first and second aspects, the Q value can be increased even when miniaturization is promoted.
 また、第3の態様では、板波としてのラム波が利用される。そして、上記ラム波による共振特性を得ることができる。 Furthermore, in the third aspect, Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave described above can be obtained.
 本発明の弾性波装置は、第4の態様において、ニオブ酸リチウム又はタンタル酸リチウムからなる圧電層と、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極とを備える。第4の態様では、バルク波が利用される。 In a fourth aspect, the acoustic wave device of the present invention includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode that face each other in the thickness direction of the piezoelectric layer with the piezoelectric layer in between. In a fourth aspect, bulk waves are utilized.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 以下に示す図面は模式的なものであり、その寸法、縦横比の縮尺等は実際の製品とは異なる場合がある。 The drawings shown below are schematic, and their dimensions, aspect ratios, etc. may differ from the actual product.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換又は組み合わせが可能である。また、各実施形態を特に区別しない場合、単に「本発明の弾性波装置」という。 Note that each embodiment described in this specification is an illustrative example, and parts of the configurations can be partially replaced or combined between different embodiments. In addition, unless there is a particular distinction between the embodiments, they will simply be referred to as "the elastic wave device of the present invention."
 図1は、本発明の弾性波装置の一例を模式的に示す断面図である。図2は、本発明の弾性波装置を構成する弾性波素子のレイアウトの一例を模式的に示す平面図である。図3Aは、図2中のA-A線に沿った断面図である。図3Bは、図2中のB-B線に沿った断面図である。 FIG. 1 is a cross-sectional view schematically showing an example of the elastic wave device of the present invention. FIG. 2 is a plan view schematically showing an example of the layout of the elastic wave elements constituting the elastic wave device of the present invention. 3A is a cross-sectional view taken along line AA in FIG. 2. FIG. FIG. 3B is a cross-sectional view taken along line BB in FIG. 2.
 図1に示す弾性波装置10は、弾性波素子11と、弾性波素子11と電気的に接続されているはんだバンプ12と、弾性波素子11とはんだバンプ12との間に設けられた端子電極13と、を備える。 The elastic wave device 10 shown in FIG. 13.
 図1及び図3Aに示すように、弾性波素子11は、支持部材20と、圧電層21と、機能電極22と、を備える。 As shown in FIGS. 1 and 3A, the acoustic wave element 11 includes a support member 20, a piezoelectric layer 21, and a functional electrode 22.
 支持部材20は、例えば、支持基板23と、支持基板23と圧電層21との間に設けられた誘電層(中間層、絶縁層、接合層ともいう)24と、を含む。このように、支持部材20は、圧電層21が設けられた一方主面に誘電層24を有してもよい。 The support member 20 includes, for example, a support substrate 23 and a dielectric layer (also referred to as an intermediate layer, an insulating layer, or a bonding layer) 24 provided between the support substrate 23 and the piezoelectric layer 21. In this way, the support member 20 may have the dielectric layer 24 on one main surface on which the piezoelectric layer 21 is provided.
 支持基板23は、例えば、シリコン(Si)からなる。 The support substrate 23 is made of silicon (Si), for example.
 誘電層24は、例えば、二酸化ケイ素(SiO)等の酸化ケイ素(SiO)からなる。 Dielectric layer 24 is made of silicon oxide (SiO x ), such as silicon dioxide (SiO 2 ), for example.
 支持部材20は、一方主面(図1では下側の主面、図3Aでは上側の主面)に空洞部25を有することが好ましい。 It is preferable that the support member 20 has a cavity 25 on one main surface (lower main surface in FIG. 1, upper main surface in FIG. 3A).
 空洞部25は、支持部材20を厚み方向(図1及び図3Aにおける上下方向)に貫通してもよく、貫通しなくてもよい。支持部材20が支持基板23及び誘電層24を含む場合、例えば、誘電層24を厚み方向に貫通するように空洞部25が設けられていてもよく、誘電層24を厚み方向に貫通しないように空洞部25が設けられていてもよい。 The cavity 25 may or may not penetrate the support member 20 in the thickness direction (vertical direction in FIGS. 1 and 3A). When the support member 20 includes the support substrate 23 and the dielectric layer 24, for example, the cavity 25 may be provided so as to penetrate the dielectric layer 24 in the thickness direction; A cavity 25 may be provided.
 圧電層21は、支持部材20の一方主面(図1では下側の主面、図3Aでは上側の主面)に設けられている。支持部材20が空洞部25を有する場合、圧電層21は、空洞部25を覆うように支持部材20の一方主面に設けられている。 The piezoelectric layer 21 is provided on one main surface of the support member 20 (the lower main surface in FIG. 1, the upper main surface in FIG. 3A). When the support member 20 has the cavity 25, the piezoelectric layer 21 is provided on one main surface of the support member 20 so as to cover the cavity 25.
 圧電層21は、例えば、ニオブ酸リチウム(LiNbO)又はタンタル酸リチウム(LiTaO)からなる。その場合、圧電層21は、LiNbO又はLiTaOから構成されてもよい。 The piezoelectric layer 21 is made of, for example, lithium niobate (LiNbO x ) or lithium tantalate (LiTaO x ). In that case, the piezoelectric layer 21 may be composed of LiNbO 3 or LiTaO 3 .
 機能電極22は、圧電層21の少なくとも一方の主面に設けられている。図1及び図3Aに示す例では、圧電層21の一方の主面(図1では下側の主面、図3Aでは上側の主面)に機能電極22が設けられている。 The functional electrode 22 is provided on at least one main surface of the piezoelectric layer 21. In the example shown in FIGS. 1 and 3A, the functional electrode 22 is provided on one main surface of the piezoelectric layer 21 (the lower main surface in FIG. 1, the upper main surface in FIG. 3A).
 図1及び図3Aに示すように、機能電極22は、圧電層21の厚み方向(図1及び図3Aにおける上下方向)から見て、少なくとも一部が空洞部25と重なるように設けられていることが好ましい。圧電層21の厚み方向から見て、機能電極22の全部が空洞部25と重なるように設けられていてもよく、機能電極22の一部が空洞部25と重なるように設けられていてもよい。 As shown in FIGS. 1 and 3A, the functional electrode 22 is provided so that at least a portion thereof overlaps with the cavity 25 when viewed from the thickness direction of the piezoelectric layer 21 (vertical direction in FIGS. 1 and 3A). It is preferable. When viewed from the thickness direction of the piezoelectric layer 21, the functional electrode 22 may be provided so that the entirety thereof overlaps with the cavity 25, or a part of the functional electrode 22 may be provided so as to overlap with the cavity 25. .
 機能電極22は、例えば、圧電層21の一方の主面に設けられたIDT電極である。 The functional electrode 22 is, for example, an IDT electrode provided on one main surface of the piezoelectric layer 21.
 機能電極22は、端子電極13と電気的に接続されている。図2及び図3Aに示すように、支持部材20の一方主面上には、機能電極22と端子電極13とを接続するための配線電極14が設けられている。配線電極14は、単層であってもよく、2種以上の金属層が積層された積層体であってもよい。 The functional electrode 22 is electrically connected to the terminal electrode 13. As shown in FIGS. 2 and 3A, a wiring electrode 14 for connecting the functional electrode 22 and the terminal electrode 13 is provided on one main surface of the support member 20. The wiring electrode 14 may be a single layer, or may be a laminate in which two or more metal layers are stacked.
 図2に示すように、弾性波装置10の外周には、図3Bに示す断面構造を有する接合部が複数設けられている。 As shown in FIG. 2, a plurality of joints having a cross-sectional structure shown in FIG. 3B are provided on the outer periphery of the elastic wave device 10.
 図1及び図3Bに示すように、端子電極13は、支持部材20の一方主面(図1では下側の主面、図3Bでは上側の主面)上に設けられている。端子電極13は、はんだバンプ12に接合されている。端子電極13は、めっき処理により形成されためっき電極であることが好ましい。 As shown in FIGS. 1 and 3B, the terminal electrode 13 is provided on one main surface (the lower main surface in FIG. 1, the upper main surface in FIG. 3B) of the support member 20. Terminal electrode 13 is joined to solder bump 12 . It is preferable that the terminal electrode 13 is a plated electrode formed by a plating process.
 従来の弾性波装置では、圧電層の一方主面上に端子電極が設けられるとともに、バンプ電極が端子電極に接合されている。 In a conventional acoustic wave device, a terminal electrode is provided on one main surface of a piezoelectric layer, and a bump electrode is joined to the terminal electrode.
 これに対して、弾性波装置10では、図3Bに示すように、端子電極13が支持部材20の一方主面上に設けられるとともに、バンプ電極としてはんだバンプ12が端子電極13に接合されている。上述のとおり、フリップチップボンディングによって弾性波素子を基板に実装する際には超音波又は荷重等によってバンプ下に衝撃がかかりやすい。しかし、弾性波装置10では、はんだバンプ12の下に端子電極13が配置されているため、バンプ電極の下に圧電層が配置されている従来の構造に比べて、端子電極13に衝撃がかかっても割れることがない。これにより、超音波又は荷重による衝撃の影響がなくなるため、図3Aに示す共振子部(例えば、空洞部25上で機能電極22が設けられている部分)の圧電層21に発生するクラックを抑制することができる。 On the other hand, in the elastic wave device 10, as shown in FIG. 3B, the terminal electrode 13 is provided on one main surface of the support member 20, and the solder bump 12 is bonded to the terminal electrode 13 as a bump electrode. . As described above, when an acoustic wave element is mounted on a substrate by flip-chip bonding, an impact is likely to be applied to the bottom of the bump due to ultrasonic waves, a load, or the like. However, in the acoustic wave device 10, since the terminal electrode 13 is placed under the solder bump 12, an impact is applied to the terminal electrode 13 compared to a conventional structure in which a piezoelectric layer is placed under the bump electrode. It won't break even if you use it. This eliminates the impact of ultrasonic waves or loads, thereby suppressing cracks that occur in the piezoelectric layer 21 of the resonator section (for example, the section where the functional electrode 22 is provided on the cavity section 25) shown in FIG. 3A. can do.
 図1及び図3Bに示すように、支持部材20上のはんだバンプ12が位置する部分には圧電層21が設けられていないことが好ましい。すなわち、支持部材20の一方主面上に直接端子電極13が設けられていることが好ましい。 As shown in FIGS. 1 and 3B, it is preferable that the piezoelectric layer 21 is not provided on the portion of the support member 20 where the solder bumps 12 are located. That is, it is preferable that the terminal electrode 13 be provided directly on one main surface of the support member 20.
 支持部材20は、一方主面に凹部26を有し、端子電極13は、凹部26に設けられていることが好ましい。 It is preferable that the support member 20 has a recess 26 on one main surface, and the terminal electrode 13 is provided in the recess 26.
 端子電極13がめっき電極である場合には、凹部26にめっきシード層15が設けられ、めっきシード層15上に端子電極13が設けられていることが好ましい。 When the terminal electrode 13 is a plating electrode, it is preferable that the plating seed layer 15 is provided in the recess 26 and that the terminal electrode 13 is provided on the plating seed layer 15.
 端子電極13を構成する金属は特に限定されず、例えば、Ni、Pd等が挙げられる。端子電極13がめっき電極である場合においても同様に、端子電極13を構成する金属としては、例えば、Ni、Pd等、めっき処理に通常用いられる金属等が挙げられる。 The metal constituting the terminal electrode 13 is not particularly limited, and examples thereof include Ni, Pd, and the like. Similarly, even when the terminal electrode 13 is a plating electrode, examples of the metal constituting the terminal electrode 13 include metals commonly used in plating, such as Ni and Pd.
 めっきシード層15は、例えば、Ti膜とその上のCu膜との2層で構成される。 The plating seed layer 15 is composed of two layers, for example, a Ti film and a Cu film thereon.
 図1に示すように、弾性波装置10は、配線基板30を更に備えることが好ましい。 As shown in FIG. 1, the acoustic wave device 10 preferably further includes a wiring board 30.
 配線基板30は、一例として、プリント配線基板により構成される。プリント配線基板は、ガラス布・エポキシ樹脂銅張積層板から形成される。 The wiring board 30 is configured by a printed wiring board, for example. The printed wiring board is formed from a glass cloth/epoxy resin copper-clad laminate.
 配線基板30は、端子電極13及びはんだバンプ12を介して弾性波素子11と電気的に接続されている。具体的には、配線基板30の上面に設けられた外部端子31がはんだバンプ12に接合されている。以上により、弾性波素子11が配線基板30に実装されている。 The wiring board 30 is electrically connected to the acoustic wave element 11 via the terminal electrodes 13 and solder bumps 12. Specifically, external terminals 31 provided on the upper surface of wiring board 30 are bonded to solder bumps 12 . As described above, the acoustic wave element 11 is mounted on the wiring board 30.
 図1に示すように、本実施形態においては、弾性波素子11の端子電極13、はんだバンプ12及び配線基板30により、圧電層21上の機能電極22に面して中空空間が形成されている。これにより、いわゆるチップサイズパッケージ(CSP)構造が実現されている。 As shown in FIG. 1, in this embodiment, a hollow space is formed by the terminal electrode 13 of the acoustic wave element 11, the solder bump 12, and the wiring board 30 facing the functional electrode 22 on the piezoelectric layer 21. . As a result, a so-called chip size package (CSP) structure is realized.
 配線基板30の内部には、複数のビア導体32が設けられていることが好ましい。 Preferably, a plurality of via conductors 32 are provided inside the wiring board 30.
 配線基板30上の弾性波素子11は、封止体33によって封止されていることが好ましい。封止体33を構成する材料は、好ましくは樹脂であり、より好ましくは、エポキシ樹脂、シリコーン樹脂、フッ素樹脂又はアクリル樹脂等の樹脂材料に金属等の無機フィラーを混入させた材料等である。 It is preferable that the acoustic wave element 11 on the wiring board 30 is sealed with a sealing body 33. The material constituting the sealing body 33 is preferably a resin, and more preferably a material in which an inorganic filler such as a metal is mixed into a resin material such as an epoxy resin, a silicone resin, a fluororesin, or an acrylic resin.
 本発明の弾性波装置は、例えば、以下の方法により製造される。なお、本発明の弾性波装置は、個片の状態で製造されてもよく、集合体を作製した後に個々の個片に分離することで製造されてもよい。 The elastic wave device of the present invention is manufactured, for example, by the following method. In addition, the elastic wave device of the present invention may be manufactured in the state of individual pieces, or may be manufactured by producing an aggregate and then separating it into individual pieces.
 まず、図3Aに示す部分を作製する方法の一例について説明する。 First, an example of a method for manufacturing the portion shown in FIG. 3A will be described.
 図4は、圧電基板上に犠牲層を形成する工程の一例を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing an example of the process of forming a sacrificial layer on a piezoelectric substrate.
 図4に示すように、圧電基板41上に犠牲層50を形成する。 As shown in FIG. 4, a sacrificial layer 50 is formed on the piezoelectric substrate 41.
 圧電基板41としては、例えば、LiNbO又はLiTaO等からなる基板が用いられる。 As the piezoelectric substrate 41, for example, a substrate made of LiNbO 3 or LiTaO 3 is used.
 犠牲層50の材料としては、後述するエッチングにより除去され得る適宜の材料が用いられる。例えば、ZnO等が用いられる。 As the material for the sacrificial layer 50, an appropriate material that can be removed by etching, which will be described later, is used. For example, ZnO or the like is used.
 犠牲層50は、例えば、以下の方法により形成することができる。まず、スパッタリング法によりZnO膜を形成する。その後、レジスト塗布、露光及び現像をこの順に行う。次に、ウェットエッチングを行うことにより、犠牲層50のパターンを形成する。なお、犠牲層50は、他の方法により形成されてもよい。 The sacrificial layer 50 can be formed, for example, by the following method. First, a ZnO film is formed by sputtering. Thereafter, resist coating, exposure and development are performed in this order. Next, a pattern of the sacrificial layer 50 is formed by performing wet etching. Note that the sacrificial layer 50 may be formed by other methods.
 図5は、誘電層を形成する工程の一例を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing an example of the process of forming a dielectric layer.
 図5に示すように、犠牲層50を覆うように誘電層24を形成した後、誘電層24の表面を平坦化する。 As shown in FIG. 5, after forming the dielectric layer 24 to cover the sacrificial layer 50, the surface of the dielectric layer 24 is planarized.
 誘電層24として、例えば、SiO膜等が形成される。誘電層24は、例えば、スパッタリング法等により形成することができる。誘電層24の平坦化は、例えば、化学的機械研磨(CMP)等により行うことができる。 As the dielectric layer 24, for example, a SiO 2 film or the like is formed. The dielectric layer 24 can be formed by, for example, a sputtering method. Planarization of the dielectric layer 24 can be performed, for example, by chemical mechanical polishing (CMP).
 図6は、誘電層に支持基板を接合する工程の一例を模式的に示す断面図である。 FIG. 6 is a cross-sectional view schematically showing an example of the process of bonding the support substrate to the dielectric layer.
 図6に示すように、誘電層24に支持基板23を接合する。これにより、支持部材20が形成される。 As shown in FIG. 6, the support substrate 23 is bonded to the dielectric layer 24. Thereby, the support member 20 is formed.
 図7は、圧電基板を薄化する工程の一例を模式的に示す断面図である。 FIG. 7 is a cross-sectional view schematically showing an example of the process of thinning the piezoelectric substrate.
 図7に示すように、圧電基板41を薄化する。これにより、圧電層21が形成される。圧電基板41の薄化は、例えば、スマートカット法、研磨等により行うことができる。 As shown in FIG. 7, the piezoelectric substrate 41 is thinned. As a result, the piezoelectric layer 21 is formed. The piezoelectric substrate 41 can be thinned by, for example, a smart cut method, polishing, or the like.
 図8は、機能電極及び配線電極を形成する工程の一例を模式的に示す断面図である。 FIG. 8 is a cross-sectional view schematically showing an example of the process of forming functional electrodes and wiring electrodes.
 図8に示すように、圧電層21の一方主面上に、機能電極22及び配線電極14を形成する。機能電極22及び配線電極14は、例えば、リフトオフ法等により形成することができる。 As shown in FIG. 8, the functional electrode 22 and the wiring electrode 14 are formed on one main surface of the piezoelectric layer 21. The functional electrode 22 and the wiring electrode 14 can be formed by, for example, a lift-off method.
 図9は、貫通孔を形成する工程の一例を模式的に示す断面図である。 FIG. 9 is a cross-sectional view schematically showing an example of the process of forming a through hole.
 図9に示すように、圧電層21に貫通孔51を形成する。貫通孔51は、犠牲層50に至るように形成される。貫通孔51は、例えば、ドライエッチング法等により形成することができる。貫通孔51は、エッチングホールとして利用される。 As shown in FIG. 9, through holes 51 are formed in the piezoelectric layer 21. The through hole 51 is formed to reach the sacrificial layer 50. The through hole 51 can be formed by, for example, a dry etching method. The through hole 51 is used as an etching hole.
 図10は、犠牲層を除去する工程の一例を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer.
 図10に示すように、貫通孔51を利用して、犠牲層50を除去する。犠牲層50の材料がZnOである場合、例えば、酢酸、リン酸及び水の混合溶液(酢酸:リン酸:水=1:1:10)を用いたウェットエッチングにより犠牲層50を除去することができる。 As shown in FIG. 10, the sacrificial layer 50 is removed using the through hole 51. When the material of the sacrificial layer 50 is ZnO, the sacrificial layer 50 can be removed, for example, by wet etching using a mixed solution of acetic acid, phosphoric acid, and water (acetic acid: phosphoric acid: water = 1:1:10). can.
 犠牲層50が除去されることで、支持部材20に空洞部25が形成される。 By removing the sacrificial layer 50, a cavity 25 is formed in the support member 20.
 以上により、図3Aに示す部分(弾性波素子11)が作製される。 Through the above steps, the part (acoustic wave element 11) shown in FIG. 3A is manufactured.
 次に、図3Bに示す部分を作製する方法の一例について説明する。 Next, an example of a method for manufacturing the portion shown in FIG. 3B will be described.
 図11は、図4とは異なる位置において、圧電基板上に犠牲層を形成する工程の一例を模式的に示す断面図である。 FIG. 11 is a cross-sectional view schematically showing an example of the process of forming a sacrificial layer on a piezoelectric substrate at a position different from that in FIG. 4.
 図11に示すように、図4とは異なる位置において、圧電基板41上に犠牲層50を形成する。犠牲層50は、後述するはんだバンプ12下に位置する部分に形成される。 As shown in FIG. 11, a sacrificial layer 50 is formed on the piezoelectric substrate 41 at a position different from that in FIG. The sacrificial layer 50 is formed in a portion located below the solder bump 12, which will be described later.
 図12は、支持部材を形成する工程の一例を模式的に示す断面図である。 FIG. 12 is a cross-sectional view schematically showing an example of the process of forming the support member.
 図5~図7と同様の方法により、図12に示すように、圧電層21及び犠牲層50が設けられた支持部材20を形成する。 As shown in FIG. 12, the support member 20 provided with the piezoelectric layer 21 and the sacrificial layer 50 is formed by the same method as in FIGS. 5 to 7.
 以上により、積層体52が作製される。積層体52では、圧電層21の第1の主面21aに犠牲層50が形成され、かつ、犠牲層50を覆うように犠牲層50と接する面に凹部26を有する支持部材20が形成されている。 Through the above steps, the laminate 52 is produced. In the laminate 52, a sacrificial layer 50 is formed on the first main surface 21a of the piezoelectric layer 21, and a support member 20 having a recess 26 on a surface in contact with the sacrificial layer 50 is formed so as to cover the sacrificial layer 50. There is.
 図13は、犠牲層を除去する工程の一例を模式的に示す断面図である。 FIG. 13 is a cross-sectional view schematically showing an example of the process of removing the sacrificial layer.
 図13に示すように、犠牲層50を除去することにより、犠牲層50が設けられている部分に空洞53を形成する。 As shown in FIG. 13, by removing the sacrificial layer 50, a cavity 53 is formed in the portion where the sacrificial layer 50 is provided.
 図13には示されていないが、空洞53を形成する工程は、図9及び図10と同様に、圧電層21の第2の主面21b(図12参照)側から犠牲層50に至る貫通孔を形成する工程と、該貫通孔を利用して、エッチングにより犠牲層50を除去する工程と、を備えることが好ましい。 Although not shown in FIG. 13, the step of forming the cavity 53 is a step of penetrating the piezoelectric layer 21 from the second main surface 21b (see FIG. 12) side to the sacrificial layer 50, as in FIGS. 9 and 10. It is preferable to include the steps of forming a hole and removing the sacrificial layer 50 by etching using the through hole.
 図14は、圧電層の一部を除去する工程の一例を模式的に示す断面図である。 FIG. 14 is a cross-sectional view schematically showing an example of the process of removing a part of the piezoelectric layer.
 図14に示すように、圧電層21における、空洞53の上方の領域を除去する。例えば、犠牲層50上の圧電層21を流体等で除去することが好ましい。 As shown in FIG. 14, the region above the cavity 53 in the piezoelectric layer 21 is removed. For example, it is preferable to remove the piezoelectric layer 21 on the sacrificial layer 50 using a fluid or the like.
 図15A、図15B及び図15Cは、端子電極を形成する工程の一例を模式的に示す断面図である。 FIGS. 15A, 15B, and 15C are cross-sectional views schematically showing an example of the process of forming a terminal electrode.
 図15A、図15B及び図15Cに示すように、犠牲層50と圧電層21とを除去した部分に端子電極13をめっき処理により形成する。 As shown in FIGS. 15A, 15B, and 15C, the terminal electrode 13 is formed by plating on the portion where the sacrificial layer 50 and the piezoelectric layer 21 have been removed.
 端子電極13を形成する工程は、めっきシード層15を形成する工程と、めっきシード層15上に端子電極13をめっき処理により形成する工程と、を備えることが好ましい。めっきシード層15は、例えば、スパッタリング法等により形成される。端子電極13は、例えば、電解めっき法等により形成される。 The step of forming the terminal electrode 13 preferably includes a step of forming a plating seed layer 15 and a step of forming the terminal electrode 13 on the plating seed layer 15 by plating. The plating seed layer 15 is formed by, for example, a sputtering method. The terminal electrode 13 is formed, for example, by electrolytic plating or the like.
 端子電極13を形成する工程は、レジスト54を形成する工程と、端子電極13を形成した後、レジスト54を剥離する工程と、を更に備えることがより好ましい。 More preferably, the step of forming the terminal electrode 13 further includes a step of forming a resist 54, and a step of peeling off the resist 54 after forming the terminal electrode 13.
 図16は、配線電極等の電極を形成する工程の一例を模式的に示す断面図である。 FIG. 16 is a cross-sectional view schematically showing an example of the process of forming electrodes such as wiring electrodes.
 図8で説明した配線電極14等の電極を形成する工程は、端子電極13を形成した後に行われることが好ましい。具体的には、配線電極14等の電極を形成する工程は、端子電極13を形成した後、後述するはんだバンプ12を形成する前に行われることが好ましい。 It is preferable that the step of forming electrodes such as the wiring electrode 14 described in FIG. 8 is performed after forming the terminal electrode 13. Specifically, the step of forming electrodes such as wiring electrode 14 is preferably performed after forming terminal electrode 13 and before forming solder bumps 12, which will be described later.
 図17は、はんだバンプを形成する工程の一例を模式的に示す断面図である。 FIG. 17 is a cross-sectional view schematically showing an example of the process of forming solder bumps.
 図17に示すように、端子電極13上にはんだバンプ12を形成する。 As shown in FIG. 17, solder bumps 12 are formed on terminal electrodes 13.
 以上により、図3Bに示す部分が作製される。 Through the above steps, the part shown in FIG. 3B is manufactured.
 必要に応じて、はんだバンプ12が接合された弾性波素子11を、フリップチップボンディングで配線基板30に実装し、その後、封止体33によって弾性波素子11を封止してもよい。以上により、図1に示す弾性波装置10が製造される。 If necessary, the acoustic wave element 11 to which the solder bumps 12 are bonded may be mounted on the wiring board 30 by flip-chip bonding, and then the acoustic wave element 11 may be sealed with the sealing body 33. Through the above steps, the elastic wave device 10 shown in FIG. 1 is manufactured.
 以下において、厚み滑りモード及び板波を利用する弾性波装置の詳細を説明する。なお、以下においては、機能電極がIDT電極である場合の例を用いて説明する。以下の例における弾性波装置は本発明における弾性波素子に相当し、中間層は本発明における誘電層に相当する。 Below, details of an elastic wave device that utilizes a thickness-shear mode and plate waves will be explained. Note that the following description uses an example in which the functional electrode is an IDT electrode. The elastic wave device in the following example corresponds to an acoustic wave element in the present invention, and the intermediate layer corresponds to a dielectric layer in the present invention.
 図18は、厚み滑りモードのバルク波を利用する弾性波装置の一例の外観を示す略図的斜視図である。図19は、図18に示す弾性波装置の圧電層上の電極構造を示す平面図である。図20は、図18中のA-A線に沿う部分の断面図である。 FIG. 18 is a schematic perspective view showing the appearance of an example of an elastic wave device that utilizes bulk waves in thickness shear mode. FIG. 19 is a plan view showing the electrode structure on the piezoelectric layer of the acoustic wave device shown in FIG. 18. FIG. 20 is a cross-sectional view of a portion taken along line AA in FIG. 18.
 弾性波装置1は、例えば、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbO又はLiTaOのカット角は、例えばZカットであるが、回転Yカット又はXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、50nm以上、1000nm以下であることが好ましい。圧電層2は、対向し合う第1の主面2a及び第2の主面2bを有する。圧電層2の第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図18及び図19では、複数の電極3が、第1のバスバー電極5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー電極6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。これら複数の電極3、電極4、第1のバスバー電極5及び第2のバスバー電極6によりIDT(Interdigital Transducer)電極が構成されている。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。また、電極3,4の長さ方向が図18及び図19に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図18及び図19において、第1のバスバー電極5及び第2のバスバー電極6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー電極5及び第2のバスバー電極6は、図18及び図19において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極又はグランド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対又は2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。さらに、電極3,4の少なくとも一方が複数本ある場合(電極3,4を一対の電極組とした場合に、1.5対以上の電極組がある場合)、電極3,4の中心間距離は、1.5対以上の電極3,4のうち隣り合う電極3,4それぞれの中心間距離の平均値を指す。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。 The acoustic wave device 1 has a piezoelectric layer 2 made of, for example, LiNbO 3 . The piezoelectric layer 2 may be made of LiTaO 3 . The cut angle of LiNbO 3 or LiTaO 3 is, for example, a Z cut, but may also be a rotational Y cut or an X cut. Preferably, the propagation directions of Y propagation and X propagation are ±30°. The thickness of the piezoelectric layer 2 is not particularly limited, but in order to effectively excite the thickness shear mode, it is preferably 50 nm or more and 1000 nm or less. The piezoelectric layer 2 has a first main surface 2a and a second main surface 2b that face each other. On the first main surface 2a of the piezoelectric layer 2, an electrode 3 and an electrode 4 are provided. Here, electrode 3 is an example of a "first electrode", and electrode 4 is an example of a "second electrode". In FIGS. 18 and 19, the plurality of electrodes 3 are the plurality of first electrode fingers connected to the first busbar electrode 5. In FIGS. The plurality of electrodes 4 are a plurality of second electrode fingers connected to the second busbar electrode 6. The plurality of electrodes 3 and the plurality of electrodes 4 are interposed with each other. Electrode 3 and electrode 4 have a rectangular shape and have a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to this length direction. These plurality of electrodes 3, electrodes 4, first busbar electrodes 5, and second busbar electrodes 6 constitute an IDT (Interdigital Transducer) electrode. The length direction of the electrodes 3 and 4 and the direction perpendicular to the length direction of the electrodes 3 and 4 are both directions that intersect the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2. Further, the length direction of the electrodes 3 and 4 may be replaced with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 18 and 19. That is, in FIGS. 18 and 19, the electrodes 3 and 4 may be extended in the direction in which the first busbar electrode 5 and the second busbar electrode 6 are extended. In that case, the first busbar electrode 5 and the second busbar electrode 6 will extend in the direction in which the electrodes 3 and 4 extend in FIGS. 18 and 19. A plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4. There is. Here, the expression "electrode 3 and electrode 4 are adjacent" does not mean that electrode 3 and electrode 4 are arranged so as to be in direct contact with each other, but when electrode 3 and electrode 4 are arranged with a gap between them. refers to Further, when the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4. This logarithm does not need to be an integer pair, but may be 1.5 pairs, 2.5 pairs, or the like. The center-to-center distance between the electrodes 3 and 4, that is, the pitch, is preferably in the range of 1 μm or more and 10 μm or less. Note that the center-to-center distance between the electrodes 3 and 4 refers to the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3, and the width dimension of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance between the center of Furthermore, if there is a plurality of at least one of the electrodes 3 and 4 (when the electrodes 3 and 4 are a pair of electrode sets, and there are 1.5 or more pairs of electrode sets), the distance between the centers of the electrodes 3 and 4 refers to the average value of the distance between the centers of adjacent electrodes 3 and 4 among 1.5 or more pairs of electrodes 3 and 4. Further, the width of the electrodes 3 and 4, that is, the dimension in the opposing direction of the electrodes 3 and 4, is preferably in the range of 150 nm or more and 1000 nm or less.
 本実施形態において、Zカットの圧電層を用いる場合、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。 In this embodiment, when using a Z-cut piezoelectric layer, the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2. This is not the case when a piezoelectric material having a different cut angle is used as the piezoelectric layer 2. Here, "orthogonal" is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is 90°±10°) But that's fine.
 圧電層2の第2の主面2b側には、中間層(接合層とも呼ばれる)7を介して支持基板8が積層されている。中間層7及び支持基板8は、枠状の形状を有し、図20に示すように、開口部7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域C(図19参照)の振動を妨げないために設けられている。従って、上記支持基板8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに中間層7を介して積層されている。なお、中間層7は設けられずともよい。従って、支持基板8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 A support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer (also called a bonding layer) 7 interposed therebetween. The intermediate layer 7 and the support substrate 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. Thereby, a cavity 9 is formed. The cavity 9 is provided so as not to hinder the vibration of the excitation region C (see FIG. 19) of the piezoelectric layer 2. Therefore, the support substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position that does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
 中間層7は、例えば、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持基板8は、Siからなる。Siの圧電層2側の面における面方位は(100)又は(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持基板8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持基板8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 The intermediate layer 7 is made of silicon oxide, for example. However, other than silicon oxide, an appropriate insulating material such as silicon oxynitride or alumina can be used. The support substrate 8 is made of Si. The plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, Si has a high resistivity of 4 kΩ or more. However, the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material. Examples of materials for the support substrate 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and starch. Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
 上記複数の電極3、電極4、第1のバスバー電極5及び第2のバスバー電極6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3、電極4、第1のバスバー電極5及び第2のバスバー電極6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrodes 3, electrodes 4, first busbar electrode 5, and second busbar electrode 6 are made of an appropriate metal or alloy such as Al or AlCu alloy. In this embodiment, the electrode 3, the electrode 4, the first busbar electrode 5, and the second busbar electrode 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー電極5と第2のバスバー電極6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。なお、本実施形態のように電極3,4の少なくとも一方が複数本ある場合、すなわち、電極3,4を1対の電極組とした場合に電極3,4が1.5対以上ある場合、隣り合う電極3,4の中心間距離pは、各隣り合う電極3,4の中心間距離の平均距離となる。 During driving, an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first busbar electrode 5 and the second busbar electrode 6. Thereby, it is possible to obtain resonance characteristics using the thickness shear mode bulk wave excited in the piezoelectric layer 2. Further, in the acoustic wave device 1, when the thickness of the piezoelectric layer 2 is d, and the distance between the centers of any adjacent electrodes 3, 4 among the plurality of pairs of electrodes 3, 4 is p, d/p is 0. It is considered to be 5 or less. Therefore, the bulk wave in the thickness shear mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained. Note that when there is a plurality of at least one of the electrodes 3 and 4 as in this embodiment, that is, when there are 1.5 or more pairs of electrodes 3 and 4 when the electrodes 3 and 4 are one pair of electrodes, The distance p between the centers of the adjacent electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑りモードのバルク波を利用していることによる。従来の弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図21及び図22を参照して説明する。 Since the elastic wave device 1 of this embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave in the thickness shear mode is used. The difference between the Lamb wave used in a conventional elastic wave device and the thickness-shear mode bulk wave will be explained with reference to FIGS. 21 and 22.
 図21は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。図21に示すように、特許文献1(日本公開特許公報 特開2012-257019号公報)に記載のような弾性波装置では、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図21に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。 FIG. 21 is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of an acoustic wave device. As shown in FIG. 21, in the elastic wave device described in Patent Document 1 (Japanese Patent Publication No. 2012-257019), waves propagate in the piezoelectric film 201 as indicated by arrows. Here, in the piezoelectric film 201, the first main surface 201a and the second main surface 201b are opposite to each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. It is. The X direction is the direction in which the electrode fingers of the IDT electrodes are lined up. As shown in FIG. 21, in the Lamb wave, the wave propagates in the X direction as shown. Since it is a plate wave, the piezoelectric film 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers is reduced, the Q value decreases.
 これに対して、図22は、弾性波装置の圧電層を伝播する厚み滑りモードのバルク波を説明するための模式的正面断面図である。図22に示すように、本実施形態の弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 In contrast, FIG. 22 is a schematic front cross-sectional view for explaining a thickness-shear mode bulk wave propagating through a piezoelectric layer of an elastic wave device. As shown in FIG. 22, in the elastic wave device 1 of this embodiment, since the vibration displacement is in the thickness-slip direction, the waves connect the first main surface 2a and the second main surface 2b of the piezoelectric layer 2. It propagates almost in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 図23は、厚み滑りモードのバルク波の振幅方向を示す図である。厚み滑りモードのバルク波の振幅方向は、図23に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図23では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 FIG. 23 is a diagram showing the amplitude direction of the bulk wave in the thickness shear mode. As shown in FIG. 23, the amplitude direction of the bulk wave in the thickness shear mode is opposite between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C. FIG. 23 schematically shows a bulk wave when a voltage is applied between electrode 3 and electrode 4 such that electrode 4 has a higher potential than electrode 3. In FIG. The first region 451 is a region of the excitation region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a. The second region 452 is a region of the excitation region C between the virtual plane VP1 and the second principal surface 2b.
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 As mentioned above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrode 3 and the electrode 4 are arranged, but since the wave is not propagated in the X direction, the elastic wave device 1 is made up of the electrodes 3 and 4. There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグランド電位に接続される電極である。もっとも、電極3がグランド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグランド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode 3 is an electrode connected to a hot potential, and the electrode 4 is an electrode connected to a ground potential. However, the electrode 3 may be connected to the ground potential, and the electrode 4 may be connected to the hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
 図24は、図18に示す弾性波装置の共振特性の一例を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。 FIG. 24 is a diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18. Note that the design parameters of the elastic wave device 1 that obtained this resonance characteristic are as follows.
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 中間層7:1μmの厚みの酸化ケイ素膜。
 支持基板8:Si基板。
Piezoelectric layer 2: LiNbO 3 with Euler angles (0°, 0°, 90°), thickness = 400 nm.
When viewed in a direction perpendicular to the length direction of electrodes 3 and 4, the area where electrodes 3 and 4 overlap, that is, the length of excitation area C = 40 μm, the logarithm of electrodes consisting of electrodes 3 and 4 = 21 pairs, center distance between electrodes = 3 μm, width of electrodes 3 and 4 = 500 nm, d/p = 0.133.
Intermediate layer 7: silicon oxide film with a thickness of 1 μm.
Support substrate 8: Si substrate.
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。 Note that the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
 弾性波装置1では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。 In the elastic wave device 1, the distances between the electrode pairs made up of the electrodes 3 and 4 were all equal in multiple pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
 図24から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 24, good resonance characteristics with a fractional band of 12.5% are obtained despite not having a reflector.
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、好ましくはd/pは0.5以下、より好ましくは0.24以下である。これを、図25を参照して説明する。 By the way, if the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrodes 3 and 4 is p, then in this embodiment, as described above, d/p is preferably 0.5 or less, More preferably it is 0.24 or less. This will be explained with reference to FIG. 25.
 図24に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図25は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。 A plurality of elastic wave devices were obtained in the same way as the elastic wave devices that obtained the resonance characteristics shown in FIG. 24, except that d/2p was changed. FIG. 25 is a diagram showing the relationship between d/2p and the fractional band as a resonator of an acoustic wave device, where p is the distance between the centers of adjacent electrodes and d is the thickness of the piezoelectric layer.
 図25から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As is clear from FIG. 25, when d/2p exceeds 0.25, that is, when d/p>0.5, the fractional band is less than 5% even if d/p is adjusted. On the other hand, if d/2p≦0.25, that is, d/p≦0.5, the fractional bandwidth can be increased to 5% or more by changing d/p within that range. In other words, a resonator having a high coupling coefficient can be constructed. Further, when d/2p is 0.12 or less, that is, when d/p is 0.24 or less, the fractional band can be increased to 7% or more. In addition, by adjusting d/p within this range, it is possible to obtain a resonator with an even wider specific band, and it is possible to realize a resonator with an even higher coupling coefficient. Therefore, it can be seen that by setting d/p to 0.5 or less, it is possible to construct a resonator that utilizes the bulk wave of the thickness shear mode and has a high coupling coefficient.
 なお、前述したように、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3,4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3,4の中心間距離の平均距離をpとすればよい。 Note that, as described above, the at least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrodes 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 may be set to p.
 また、圧電層の厚みdについては、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。 Further, regarding the thickness d of the piezoelectric layer, if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
 図26は、厚み滑りモードのバルク波を利用する弾性波装置の別の一例の平面図である。 FIG. 26 is a plan view of another example of an elastic wave device that utilizes bulk waves in thickness-shear mode.
 弾性波装置61では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図26中のKが交差幅となる。前述したように、本実施形態の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。 In the elastic wave device 61, a pair of electrodes including an electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2. Note that K in FIG. 26 is the intersection width. As described above, in the elastic wave device of this embodiment, the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, bulk waves in the thickness shear mode can be excited effectively.
 本実施形態の弾性波装置では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域に対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図27及び図28を参照して説明する。 In the elastic wave device of this embodiment, preferably, in the plurality of electrodes 3 and 4, for an excitation region that is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 are facing each other, It is desirable that the metallization ratio MR of the adjacent electrodes 3 and 4 satisfies MR≦1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be explained with reference to FIGS. 27 and 28.
 図27は、図18に示す弾性波装置の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。 FIG. 27 is a reference diagram showing an example of the resonance characteristics of the elastic wave device shown in FIG. 18. A spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Further, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図19を参照して説明する。図19の電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線Cで囲まれた部分が励振領域となる。この励振領域とは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域の面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域の面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 19. In the electrode structure of FIG. 19, when focusing on a pair of electrodes 3 and 4, it is assumed that only this pair of electrodes 3 and 4 are provided. In this case, the area surrounded by the dashed line C becomes the excitation region. This excitation region is the region where the electrode 3 overlaps the electrode 4 when the electrode 3 and the electrode 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, that is, in a direction in which they face each other. and a region between electrodes 3 and 4 where electrodes 3 and 4 overlap. Then, the area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region becomes the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallized portion to the area of the excitation region.
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。 Note that when multiple pairs of electrodes are provided, MR may be the ratio of the metallized portion included in all the excitation regions to the total area of the excitation regions.
 図28は、本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図28は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。 FIG. 28 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. It is. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer and the dimensions of the electrode. Further, although FIG. 28 shows the results when a Z-cut piezoelectric layer made of LiNbO 3 is used, the same tendency is obtained when piezoelectric layers with other cut angles are used.
 図28中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図28から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図27に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by the ellipse J in FIG. 28, the spurious is as large as 1.0. As is clear from FIG. 28, when the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristic shown in FIG. 27, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, etc., the spurious can be reduced.
 図29は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。 FIG. 29 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band. Among the above elastic wave devices, various elastic wave devices having different d/2p and MR were constructed and the fractional bands were measured.
 図29の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図29中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 The hatched area on the right side of the broken line D in FIG. 29 is the area where the fractional band is 17% or less. The boundary between the hatched area and the unhatched area is expressed as MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≦1.75 (d/p)+0.075. In that case, it is easy to set the fractional band to 17% or less. More preferably, it is the region to the right of MR=3.5(d/2p)+0.05 indicated by the dashed line D1 in FIG. That is, if MR≦1.75(d/p)+0.05, the fractional band can be reliably set to 17% or less.
 図30は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。 FIG. 30 is a diagram showing a map of fractional bands with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is brought as close to 0 as possible.
 図30のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができるため好ましい。
The hatched areas in FIG. 30 are areas where a fractional band of at least 5% can be obtained, and the range of the area can be approximated by the following equations (1), (2), and (3). ).
(0°±10°, 0° to 20°, arbitrary ψ) ...Formula (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
(0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
Therefore, the Euler angle range of formula (1), formula (2), or formula (3) above is preferable because the fractional band can be made sufficiently wide.
 図31は、ラム波を利用する弾性波装置の一例を説明するための部分切り欠き斜視図である。 FIG. 31 is a partially cutaway perspective view for explaining an example of an elastic wave device that utilizes Lamb waves.
 弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図31において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1のバスバー電極84aと、第2のバスバー電極84bと、複数本の第1の電極指としての電極84cと、複数本の第2の電極指としての電極84dとを有する。複数本の電極84cは、第1のバスバー電極84aに接続されている。複数本の電極84dは、第2のバスバー電極84bに接続されている。複数本の電極84cと、複数本の電極84dとは間挿し合っている。 The elastic wave device 81 has a support substrate 82. The support substrate 82 is provided with an open recess on the upper surface. A piezoelectric layer 83 is laminated on the support substrate 82 . Thereby, a cavity 9 is formed. An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 . Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 31, the outer peripheral edge of the cavity 9 is shown by a broken line. Here, the IDT electrode 84 includes a first busbar electrode 84a, a second busbar electrode 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers. and has. The plurality of electrodes 84c are connected to the first busbar electrode 84a. The plurality of electrodes 84d are connected to the second busbar electrode 84b. The plurality of electrodes 84c and the plurality of electrodes 84d are interposed with each other.
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。 In the elastic wave device 81, by applying an alternating current electric field to the IDT electrode 84 on the cavity 9, a Lamb wave as a plate wave is excited. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristic due to the Lamb wave described above can be obtained.
 このように、本発明の弾性波装置は、ラム波等の板波を利用するものであってもよい。 In this way, the elastic wave device of the present invention may utilize plate waves such as Lamb waves.
 また、本発明の弾性波装置は、バルク波を利用するものであってもよい。すなわち、本発明の弾性波装置は、バルク弾性波(BAW)素子にも適用できる。この場合、機能電極は、上部電極及び下部電極である。 Furthermore, the elastic wave device of the present invention may utilize bulk waves. That is, the elastic wave device of the present invention can also be applied to a bulk acoustic wave (BAW) element. In this case, the functional electrodes are an upper electrode and a lower electrode.
 図32は、バルク波を利用する弾性波装置の一例を模式的に示す断面図である。 FIG. 32 is a cross-sectional view schematically showing an example of an elastic wave device that uses bulk waves.
 弾性波装置90は、支持基板91を備える。支持基板91を貫通するように空洞部93が設けられている。支持基板91上に圧電層92が積層されている。圧電層92の第1の主面92aには上部電極94が設けられ、圧電層92の第2の主面92bには下部電極95が設けられている。図示されていないが、支持基板91と圧電層92との間には、中間層が設けられていてもよい。 The elastic wave device 90 includes a support substrate 91. A cavity 93 is provided so as to penetrate the support substrate 91. A piezoelectric layer 92 is laminated on a support substrate 91 . An upper electrode 94 is provided on the first main surface 92a of the piezoelectric layer 92, and a lower electrode 95 is provided on the second main surface 92b of the piezoelectric layer 92. Although not shown, an intermediate layer may be provided between the support substrate 91 and the piezoelectric layer 92.
 1 弾性波装置
 2 圧電層
 2a 圧電層の第1の主面
 2b 圧電層の第2の主面
 3 第1電極
 4 第2電極
 5 第1のバスバー電極
 6 第2のバスバー電極
 7 中間層
 7a 開口部
 8 支持基板
 8a 開口部
 9 空洞部
 10 弾性波装置
 11 弾性波素子
 12 はんだバンプ
 13 端子電極
 14 配線電極
 15 めっきシード層
 20 支持部材
 21 圧電層
 21a 圧電層の第1の主面
 21b 圧電層の第2の主面
 22 機能電極
 23 支持基板
 24 誘電層
 25 空洞部
 26 凹部
 30 配線基板
 31 外部端子
 32 ビア導体
 33 封止体
 41 圧電基板
 50 犠牲層
 51 貫通孔
 52 積層体
 53 空洞
 54 レジスト
 61 弾性波装置
 81 弾性波装置
 82 支持基板
 83 圧電層
 84 IDT電極
 84a 第1のバスバー電極
 84b 第2のバスバー電極
 84c 第1電極(第1電極指)
 84d 第2電極(第2電極指)
 85、86 反射器
 90 弾性波装置
 91 支持基板
 92 圧電層
 92a 圧電層の第1の主面
 92b 圧電層の第2の主面
 93 空洞部
 94 上部電極
 95 下部電極
 201 圧電膜
 201a 圧電膜の第1の主面
 201b 圧電膜の第2の主面
 451 第1領域
 452 第2領域
 C 励振領域
 VP1 仮想平面
1 Acoustic wave device 2 Piezoelectric layer 2a First main surface of piezoelectric layer 2b Second main surface of piezoelectric layer 3 First electrode 4 Second electrode 5 First busbar electrode 6 Second busbar electrode 7 Intermediate layer 7a Opening Part 8 Support substrate 8a Opening 9 Cavity 10 Acoustic wave device 11 Acoustic wave element 12 Solder bump 13 Terminal electrode 14 Wiring electrode 15 Plating seed layer 20 Support member 21 Piezoelectric layer 21a First main surface of piezoelectric layer 21b Piezoelectric layer Second main surface 22 Functional electrode 23 Support substrate 24 Dielectric layer 25 Cavity 26 Recess 30 Wiring board 31 External terminal 32 Via conductor 33 Sealing body 41 Piezoelectric substrate 50 Sacrificial layer 51 Through hole 52 Laminated body 53 Cavity 54 Resist 61 Elasticity Wave device 81 Acoustic wave device 82 Support substrate 83 Piezoelectric layer 84 IDT electrode 84a First busbar electrode 84b Second busbar electrode 84c First electrode (first electrode finger)
84d Second electrode (second electrode finger)
85, 86 reflector 90 acoustic wave device 91 support substrate 92 piezoelectric layer 92a first main surface of piezoelectric layer 92b second main surface of piezoelectric layer 93 cavity 94 upper electrode 95 lower electrode 201 piezoelectric film 201a first main surface of piezoelectric film 1 principal surface 201b second principal surface of piezoelectric film 451 first region 452 second region C excitation region VP1 virtual plane

Claims (19)

  1.  弾性波素子と、
     前記弾性波素子と電気的に接続されているはんだバンプと、
    前記弾性波素子と前記はんだバンプとの間に設けられた端子電極と、
    を備え、
     前記弾性波素子は、
      支持部材と、
      前記支持部材の一方主面に設けられた圧電層と、
      前記圧電層の少なくとも一方の主面に設けられた機能電極と、
    を備え、
     前記端子電極は、前記支持部材の前記一方主面上に設けられている、
     弾性波装置。
    an elastic wave element,
    a solder bump electrically connected to the acoustic wave element;
    a terminal electrode provided between the acoustic wave element and the solder bump;
    Equipped with
    The elastic wave element is
    a support member;
    a piezoelectric layer provided on one main surface of the support member;
    a functional electrode provided on at least one main surface of the piezoelectric layer;
    Equipped with
    The terminal electrode is provided on the one main surface of the support member,
    Elastic wave device.
  2.  前記支持部材上の前記はんだバンプが位置する部分には圧電層が設けられていない、
     請求項1に記載の弾性波装置。
    A piezoelectric layer is not provided on a portion of the support member where the solder bump is located;
    The elastic wave device according to claim 1.
  3.  前記支持部材は、前記一方主面に凹部を有し、
     前記端子電極は、前記凹部に設けられている、
     請求項1又は2に記載の弾性波装置。
    The support member has a recess on the one main surface,
    The terminal electrode is provided in the recess,
    The elastic wave device according to claim 1 or 2.
  4.  前記端子電極及び前記はんだバンプを介して前記弾性波素子と電気的に接続されている配線基板を更に備え、
     前記弾性波素子は前記配線基板に実装されている、
     請求項1~3のいずれか1項に記載の弾性波装置。
    further comprising a wiring board electrically connected to the acoustic wave element via the terminal electrode and the solder bump,
    the acoustic wave element is mounted on the wiring board;
    The elastic wave device according to any one of claims 1 to 3.
  5.  前記支持部材は、前記一方主面に空洞部を有し、
     前記圧電層は、前記空洞部を覆うように前記支持部材の前記一方主面に設けられ、
     前記機能電極は、前記圧電層の厚み方向から見て、少なくとも一部が前記空洞部と重なるように設けられている、
     請求項1~4のいずれか1項に記載の弾性波装置。
    The support member has a cavity on the one main surface,
    The piezoelectric layer is provided on the one main surface of the support member so as to cover the cavity,
    The functional electrode is provided so that at least a portion thereof overlaps with the cavity when viewed from the thickness direction of the piezoelectric layer.
    The elastic wave device according to any one of claims 1 to 4.
  6.  前記支持部材が、支持基板と、前記支持基板上に設けられた中間層とを含む、請求項1~5のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 5, wherein the support member includes a support substrate and an intermediate layer provided on the support substrate.
  7.  前記圧電層が、ニオブ酸リチウム又はタンタル酸リチウムからなる、
     請求項1~6のいずれか1項に記載の弾性波装置。
    The piezoelectric layer is made of lithium niobate or lithium tantalate,
    The elastic wave device according to any one of claims 1 to 6.
  8.  前記機能電極は、1以上の第1電極と、前記1以上の第1電極が接続された第1のバスバー電極と、1以上の第2電極と、前記1以上の第2電極が接続された第2のバスバー電極と、を有する、
     請求項1~7のいずれか1項に記載の弾性波装置。
    The functional electrode includes one or more first electrodes, a first busbar electrode to which the one or more first electrodes are connected, one or more second electrodes, and the one or more second electrodes to which the functional electrode is connected. a second busbar electrode;
    The elastic wave device according to any one of claims 1 to 7.
  9.  前記圧電層の厚みは、前記1以上の第1電極と前記1以上の第2電極のうち、隣り合う第1電極と第2電極との間の中心間距離をpとした場合に2p以下である、
     請求項8に記載の弾性波装置。
    The thickness of the piezoelectric layer is 2p or less, where p is the center-to-center distance between adjacent first electrodes and second electrodes among the one or more first electrodes and the one or more second electrodes. be,
    The elastic wave device according to claim 8.
  10.  厚み滑りモードのバルク波を利用可能に構成されている、
     請求項8に記載の弾性波装置。
    It is configured to be able to utilize bulk waves in thickness-slip mode.
    The elastic wave device according to claim 8.
  11.  前記圧電層の厚みをd、前記1以上の第1電極と前記1以上の第2電極のうち、隣り合う第1電極と第2電極との間の中心間距離をpとした場合、d/p≦0.5である、
     請求項8に記載の弾性波装置。
    If the thickness of the piezoelectric layer is d, and the center-to-center distance between adjacent first and second electrodes among the one or more first electrodes and the one or more second electrodes is p, then d/ p≦0.5,
    The elastic wave device according to claim 8.
  12.  d/p≦0.24である、
     請求項11に記載の弾性波装置。
    d/p≦0.24,
    The elastic wave device according to claim 11.
  13.  前記1以上の第1電極と前記1以上の第2電極のうち、隣り合う第1電極と第2電極とが対向している方向に視たときに重なっている励振領域の面積に対する、前記隣り合う第1電極と第2電極との面積の割合であるメタライゼーション比をMR、前記圧電層の厚みをd、前記隣り合う第1電極と第2電極との中心間距離をpとした場合、MR≦1.75(d/p)+0.075である、
     請求項8、9、11又は12に記載の弾性波装置。
    Of the one or more first electrodes and the one or more second electrodes, the area of the excitation region that overlaps when viewed in the direction in which adjacent first electrodes and second electrodes face each other, When the metallization ratio, which is the area ratio of the first electrode and the second electrode that match, is MR, the thickness of the piezoelectric layer is d, and the distance between the centers of the adjacent first and second electrodes is p, MR≦1.75(d/p)+0.075,
    The elastic wave device according to claim 8, 9, 11 or 12.
  14.  MR≦1.75(d/p)+0.05である、
     請求項13に記載の弾性波装置。
    MR≦1.75(d/p)+0.05,
    The elastic wave device according to claim 13.
  15.  前記ニオブ酸リチウム又はタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)又は式(3)の範囲にある、
     請求項8に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180
    °,任意のψ)  …式(3)
    The Euler angles (φ, θ, ψ) of the lithium niobate or lithium tantalate are in the range of the following formula (1), formula (2) or formula (3),
    The elastic wave device according to claim 8.
    (0°±10°, 0° to 20°, arbitrary ψ) ...Formula (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
    (0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180
    °, arbitrary ψ) ...Equation (3)
  16.  板波を利用可能に構成されている、請求項1~8のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 8, which is configured to be able to utilize plate waves.
  17.  前記圧電層が、前記一方主面と対向し合う他方主面を有し、
     前記機能電極が、前記圧電層の前記一方主面に設けられている上部電極と、前記他方主面に設けられている下部電極を有し、
     前記上部電極及び前記下部電極が対向し合っている、請求項1~7のいずれか1項に記載の弾性波装置。
    The piezoelectric layer has a second main surface facing the one main surface,
    The functional electrode has an upper electrode provided on the one main surface of the piezoelectric layer and a lower electrode provided on the other main surface,
    The acoustic wave device according to claim 1, wherein the upper electrode and the lower electrode face each other.
  18.  圧電層の第1の主面に犠牲層が形成され、かつ、前記犠牲層を覆うように前記犠牲層と接する面に凹部を有する支持部材が形成されている積層体を用意する工程と、
     前記犠牲層を除去することにより、前記犠牲層が設けられている部分に空洞を形成する工程と、
     前記圧電層における、前記空洞の上方の領域を除去する工程と、
     前記犠牲層と前記圧電層とを除去した部分に端子電極をめっき処理により形成する工程と、
     前記端子電極上にはんだバンプを形成する工程と、
    を備える、弾性波装置の製造方法。
    preparing a laminate in which a sacrificial layer is formed on a first main surface of a piezoelectric layer, and a support member having a recessed portion on a surface in contact with the sacrificial layer so as to cover the sacrificial layer;
    forming a cavity in a portion where the sacrificial layer is provided by removing the sacrificial layer;
    removing a region of the piezoelectric layer above the cavity;
    forming a terminal electrode by plating on a portion where the sacrificial layer and the piezoelectric layer have been removed;
    forming a solder bump on the terminal electrode;
    A method for manufacturing an elastic wave device, comprising:
  19.  前記空洞を形成する工程は、
      前記圧電層に、前記圧電層の第2の主面側から前記犠牲層に至る貫通孔を形成する工程と、
      前記貫通孔を利用して、エッチングにより前記犠牲層を除去する工程と、
    を備える、請求項18に記載の弾性波装置の製造方法。
    The step of forming the cavity includes:
    forming a through hole in the piezoelectric layer from the second main surface side of the piezoelectric layer to the sacrificial layer;
    removing the sacrificial layer by etching using the through hole;
    The method for manufacturing an elastic wave device according to claim 18, comprising:
PCT/JP2023/014191 2022-04-08 2023-04-06 Elastic wave device and method for manufacturing same WO2023195513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263328995P 2022-04-08 2022-04-08
US63/328,995 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195513A1 true WO2023195513A1 (en) 2023-10-12

Family

ID=88243053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014191 WO2023195513A1 (en) 2022-04-08 2023-04-06 Elastic wave device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023195513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005106A (en) * 2010-05-17 2012-01-05 Murata Mfg Co Ltd Manufacturing method of piezoelectric composite substrate and piezoelectric device
WO2015098679A1 (en) * 2013-12-27 2015-07-02 株式会社村田製作所 Elastic wave device and method for manufacturing same
JP2017073654A (en) * 2015-10-07 2017-04-13 株式会社村田製作所 Acoustic wave device and laminate structure of acoustic wave device
JP2019021998A (en) * 2017-07-12 2019-02-07 太陽誘電株式会社 Electronic component
WO2021060521A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005106A (en) * 2010-05-17 2012-01-05 Murata Mfg Co Ltd Manufacturing method of piezoelectric composite substrate and piezoelectric device
WO2015098679A1 (en) * 2013-12-27 2015-07-02 株式会社村田製作所 Elastic wave device and method for manufacturing same
JP2017073654A (en) * 2015-10-07 2017-04-13 株式会社村田製作所 Acoustic wave device and laminate structure of acoustic wave device
JP2019021998A (en) * 2017-07-12 2019-02-07 太陽誘電株式会社 Electronic component
WO2021060521A1 (en) * 2019-09-27 2021-04-01 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
WO2022085581A1 (en) Acoustic wave device
WO2023085362A1 (en) Elastic wave device
WO2023223906A1 (en) Elastic wave element
WO2023195513A1 (en) Elastic wave device and method for manufacturing same
WO2023199837A1 (en) Elastic wave device
WO2023190700A1 (en) Elastic wave device
WO2024029609A1 (en) Elastic wave device
WO2023190697A1 (en) Elastic wave device
WO2022210683A1 (en) Elastic wave device and method for manufacturing same
WO2022080433A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2023058727A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2023085368A1 (en) Elastic wave device
WO2023204250A1 (en) Elastic wave device
WO2023085364A1 (en) Elastic wave device
WO2023195409A1 (en) Elastic wave device and production method for elastic wave device
US20230275564A1 (en) Acoustic wave device
WO2023224072A1 (en) Elastic wave device
US20240048114A1 (en) Acoustic wave device and manufacturing method for acoustic wave device
WO2022211097A1 (en) Elastic wave device and method for manufacturing elastic wave device
WO2023204245A1 (en) Elastic wave device and method for producing same
WO2023058728A1 (en) Elastic wave device and method for manufacturing elastic wave device
US20240014800A1 (en) Acoustic wave device
WO2023090460A1 (en) Method for manufacturing acoustic wave device
WO2022255304A1 (en) Piezoelectric bulk wave device and method for manufacturing same
US20240014795A1 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784797

Country of ref document: EP

Kind code of ref document: A1