WO2023195453A1 - 血中物質濃度測定装置、血中物質濃度測定方法、及びプログラム - Google Patents

血中物質濃度測定装置、血中物質濃度測定方法、及びプログラム Download PDF

Info

Publication number
WO2023195453A1
WO2023195453A1 PCT/JP2023/013841 JP2023013841W WO2023195453A1 WO 2023195453 A1 WO2023195453 A1 WO 2023195453A1 JP 2023013841 W JP2023013841 W JP 2023013841W WO 2023195453 A1 WO2023195453 A1 WO 2023195453A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
photodetector
light
laser beam
living body
Prior art date
Application number
PCT/JP2023/013841
Other languages
English (en)
French (fr)
Inventor
考一 山川
奏 小川
庸子 山川
Original Assignee
ライトタッチテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライトタッチテクノロジー株式会社 filed Critical ライトタッチテクノロジー株式会社
Publication of WO2023195453A1 publication Critical patent/WO2023195453A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present disclosure relates to an apparatus and method for measuring the concentration of a substance contained in blood flowing in a blood vessel of a living body using a non-invasive measurement method.
  • Patent Documents 1 and 2 a simple non-invasive method has been proposed in which the state of blood in the body is optically analyzed without blood sampling.
  • the measurement is performed by bringing the part to be measured into contact with a light irradiation window provided on the outer surface of the measurement device, so the light irradiation window Due to differences in the way the part to be measured is placed on the part, the pressure applied to the part to be measured and the measurement position may change, resulting in changes in the measurement results, making it difficult to obtain stable and sufficient measurement accuracy. The challenge was difficult.
  • the present disclosure has been made in view of the above-mentioned problems, and it is possible to suppress changes in measurement results due to differences in how the part to be measured is placed on the device, and to stably perform highly accurate measurements.
  • the purpose of the present invention is to provide a blood substance concentration measuring device, a blood substance concentration measuring method, and a program.
  • a blood substance concentration measuring device is a blood substance concentration measuring device that measures the concentration of a blood substance contained in the blood of a subject part of a living body. , a base on which the living body can be placed; and from the main surface side of the base, a skin surface of the living body on the side facing the main surface and a skin portion located on the opposite side of the living body.
  • a light irradiation unit that focuses and irradiates a specific region of the subject part with a laser beam; a photodetector that receives signal light whose intensity has been weakened at some wavelengths and detects the intensity; an imaging lens disposed at a position capable of forming an image of the signal light emitted from the laser light condensing region on a photodetector; a measurement control unit that measures the concentration of a substance in blood, and a first angle formed between a normal to the skin surface of the subject and an optical path of the laser beam is from the normal and the laser beam condensing area.
  • the position of the living body with respect to the light irradiation section is between a blood vessel region located inward from the epidermis in the subject part and the laser beam.
  • the position of the photodetector relative to the living body is such that the image of the signal light emitted from the blood vessel region Mp, which overlaps with the laser beam focusing area, is determined by the imaging lens. It is characterized in that it is determined to be transferred and imaged on the light receiving surface of the photodetector.
  • the blood substance concentration measuring device changes in measurement results due to differences in the way the part to be measured is placed on the device can be suppressed, and accuracy can be improved. It is possible to stably perform high-level measurements.
  • FIG. 1 is a schematic diagram illustrating a measurement mode of the blood substance concentration measuring device 1 according to the first embodiment.
  • FIG. 1 is a side view showing the configuration of a blood substance concentration measuring device 1.
  • FIG. 3 is an enlarged view showing a portion of a living body placed on a base in FIG. 2.
  • FIG. 2 is a schematic diagram showing the configuration of a light irradiation section 20 in the blood substance concentration measuring device 1.
  • FIG. FIG. 2 is a diagram for explaining an outline of a light-receiving side optical path in the blood substance concentration measuring device 1.
  • FIG. 2 is a schematic diagram showing an overview of the optical path from a light irradiation unit 20 to a photodetector 30 in the blood substance concentration measuring device 1.
  • FIG. 3 is a schematic diagram for explaining the adjustment operation of the optical path length from the laser beam focusing area FA to the photodetector 30 by the blood substance concentration measuring device 1.
  • FIG. FIG. 2 is a diagram showing a laser beam irradiation position on the surface of a living body when measuring a blood substance concentration using the blood substance concentration measuring device 1.
  • FIG. 2 is a flowchart showing one aspect of blood substance measurement operation by the blood substance concentration measuring device 1.
  • FIG. 7 is a flowchart showing another aspect of the blood substance measuring operation by the blood substance concentration measuring device 1.
  • FIG. 7 is a flowchart showing still another aspect of the blood substance measuring operation by the blood substance concentration measuring device 1.
  • FIG. 3 is a schematic diagram showing a measurement mode of a blood substance concentration measuring device 1A according to a second embodiment.
  • FIG. 1 is a schematic diagram showing an embodiment of a blood substance concentration measuring device 1A.
  • FIG. 14 is a diagram showing the results of a blood substance concentration measurement test using an example of the device 1A and a comparative example using SMBG.
  • FIG. 7 is a schematic diagram showing a state of a blood substance concentration measuring device 1B according to Embodiment 3 during measurement.
  • a blood substance concentration measuring device includes: A blood substance concentration measuring device that measures the concentration of blood substances contained in the blood of a subject part of a living body Ob, a base on which the living body can be placed on the main surface; From the main surface side of the base, laser light is focused on a skin surface of the living body on the side facing the main surface and a specific region in the subject part located in the skin located on the opposite side of the living body.
  • a light irradiation unit that irradiates the On the main surface side of the base, a signal light, which is reflected light based on the laser light and whose intensity is weakened at some wavelengths from the laser light, is received and the intensity thereof is detected.
  • a detector Disposed between the subject part and the photodetector at a position where an image of the signal light emitted from a laser beam focusing area in the subject part can be formed on the photodetector.
  • an imaging lens comprising a measurement control unit that measures the concentration of the blood substance in the laser beam focusing area based on the intensity of the signal light,
  • the first angle between the normal to the skin surface of the subject part and the optical path of the laser beam is the angle between the normal and the optical path of the signal light from the laser beam condensing region to the photodetector.
  • the position of the living body with respect to the light irradiation part is defined such that a blood vessel region Mp located inward from the epidermis of the subject part overlaps with the laser beam condensing region
  • the position of the photodetector relative to the living body is such that an image of the signal light emitted from the blood vessel region Mp overlapping with the laser beam condensing region is transferred by the imaging lens and onto the light receiving surface of the photodetector. It is characterized in that it is defined to form an image.
  • the laser beam is focused and irradiated from the main surface side of the base to a specific region in the subject part located on the side opposite to the skin surface on the side facing the main surface of the living body.
  • the base is configured to be able to adjust the position of the living body with respect to the light irradiation section by varying the height of the main surface in the vertical direction. You can leave it there.
  • the positional relationship of the living body with respect to the light irradiation part is adjusted according to the shape of the individual living body so that the laser light is focused and irradiated to the blood vessel area located inward from the epidermis in the subject part. be able to.
  • the position of the living body relative to the light irradiation part is regulated so that the blood vessel region located inward of the epidermis in the subject part and the laser beam condensing region overlap in the XZ plane.
  • the position of the photodetector relative to the living body in that direction is adjusted. It may be configured such that it is possible.
  • the center of the screen of the photodetector and the position where the laser beam is focused and irradiated onto the subject generally coincide in a direction perpendicular to the optical path of the photodetector.
  • the positions of the photodetectors can be adjusted so that they overlap or partially overlap.
  • the base is configured to move the optical path of the laser beam within a plane defined by the optical path of the laser beam and the optical path from the subject part to the photodetector.
  • the first angle and the second angle may be adjustable simultaneously by changing the angles of the main surfaces.
  • the position of the photodetector relative to the living body in that direction is changed. It is configured to be adjustable, The position of the photodetector is such that the image of the signal light emitted from the blood vessel region is transferred by the imaging lens and focused on the light-receiving surface of the photodetector. The configuration may be such that the adjustment is made based on the concentration of .
  • the position parallel to the optical path of the photodetector is adjusted so that an image at a depth corresponding to the blood vessel region in the subject is transferred to the screen of the photodetector as an image of equivalent size. be able to.
  • the photodetector receives the signal light with sufficiently high intensity relative to the background light. It is possible to realize a high S/N ratio and enable highly accurate measurement.
  • the light irradiation unit emits a first laser beam for measuring a target that is absorbed by a first blood substance that is a measurement target substance, and a reference substance. It is configured to be able to selectively irradiate with a second laser beam for reference measurement that is absorbed by a second blood substance,
  • the absorption rate at which the second laser beam is absorbed by the second blood substance in the reference measurement is the absorption rate at which the first laser beam is absorbed by the first blood substance in the target measurement. It is also possible to have a configuration where the absorption rate is higher than the absorption rate.
  • the first laser beam is focused and irradiated from the light irradiation section at the position of the detector where the signal light from the blood vessel is detected, and the signal light from the laser focusing area is received by the detector.
  • the concentration of the first blood substance can be constantly and stably measured with high accuracy, regardless of individual differences in the position of blood vessels in the depth direction from the skin surface of the subject. Therefore, highly accurate measurements can be stably performed regardless of individual differences in the measurement target.
  • the reference substance may have a higher concentration stability in blood than the measurement target substance.
  • the measurement accuracy of the measurement target can be improved by performing the reference measurement on the reference material and then performing the target measurement.
  • the measurement control unit determines whether the specific region is included in a blood vessel region in the subject part based on the irradiation with the second laser light. measuring the concentration of the second blood substance in the state;
  • the method may be configured to be able to measure the concentration of the first blood substance in the specific region as the concentration of the first blood substance in the measurement target area based on irradiation with the first laser beam. good.
  • the concentration of the first blood substance can be measured in a state where the laser condensing region is included in the blood vessel region in the subject.
  • a condenser lens is located between the light irradiation section and the subject section in the optical path of the laser beam and focuses the laser beam on the irradiation area. It is also possible to have a configuration including the following.
  • the signal light is transmitted to the imaging lens in a section from the object mounting part to the photodetector in the optical path from the subject part to the photodetector. Propagates in space except for the section passing through, In the section from the light irradiation section to the object mounting section in the optical path from the light irradiation section to the subject section, the laser beam propagates in space except for the section where it passes through the condenser lens. Good too.
  • any of the above embodiments further includes an imaging means for capturing an image including the living body
  • the measurement control unit detects an image portion corresponding to the living body from the acquired image and calculates a positional deviation amount of the image portion from a reference position where it should originally be
  • the base may be configured to be able to change a height in a direction perpendicular to the main surface so as to compensate for the amount of positional deviation.
  • the position of the living body relative to the light irradiation unit can be easily adjusted to match the shape of the individual living body.
  • any of the above embodiments further includes an imaging means for capturing an image including the living body
  • the measurement control unit detects an image portion corresponding to the living body from the acquired image and calculates an angular deviation amount from a reference angle at which the image portion should originally be
  • the base may be configured to be able to change the angle of the main surface with respect to the optical path of the laser beam so as to compensate for the amount of angular deviation.
  • the angle of incidence and the installation angle with respect to the subject part Mp0 can be adjusted simultaneously and easily in accordance with the shape of the individual living body.
  • the light irradiation section and the photodetector are further held, and the laser beam and the signal beam are directed to the skin surface of the living body within the laser beam incident plane by rotation.
  • the structure may include a light irradiation angle adjustment mechanism that changes the angle of the optical path.
  • the angle of incidence of the laser beam irradiated from the light irradiation unit onto the subject part and the installation angle of the photodetector with respect to the subject part are adjusted simultaneously, and the optical path of the laser beam and the optical path of the signal light are adjusted to a predetermined value.
  • the position and angle of the photodetector and the light irradiation unit can be defined so that they intersect at the position.
  • any of the above embodiments may further include a position adjustment mechanism that changes the position of the light irradiation angle adjustment mechanism within the laser light incident plane.
  • the intersection of the optical path of the laser beam and the optical path of the signal light with respect to the skin surface of the living body can be moved to the position where the subject part of the living body should be located.
  • the subject can more easily measure the blood substance concentration without being concerned about how the part to be measured is placed on the device, the incidence of the laser, or the installation angle of the detector.
  • a blood substance concentration measuring method for measuring the concentration of a blood substance contained in the blood of a subject part of a living body, comprising: The living body is placed on the main surface of the base, and from the main surface side of the base, the skin surface of the living body on the side opposite to the main surface is located on the opposite side of the living body by a light irradiation unit.
  • Target measurement laser light that is absorbed by the blood substance that is the target substance to be measured is focused and irradiated onto a specific area of the subject in the skin,
  • an imaging lens located between the subject part and the photodetector is used to collect the reflected light of the laser beam in the subject part.
  • a first angle between the normal to the skin surface of the subject and the optical path of the laser beam is a second angle between the normal and the optical path of the signal light from the specific region to the photodetector.
  • the position of the living body with respect to the light irradiation part is defined such that a blood vessel region Mp located inward from the epidermis of the subject part and the laser beam condensing region overlap
  • the position of the photodetector relative to the living body is such that an image of the signal light emitted from the blood vessel region Mp overlapping with the laser beam condensing region is transferred by the imaging lens and onto the light receiving surface of the photodetector. It is also possible to have a configuration in which it is specified to form an image.
  • the height of the base in a direction perpendicular to the main surface is varied to adjust the position of the living body with respect to the light irradiation part. It is also possible to have a configuration in which
  • the position of the photodetector prior to the measurement, is changed in a direction intersecting the optical path of the signal light, so that the position of the photodetector in that direction is changed. It may also be configured to adjust the position relative to the living body.
  • the angle of the main surface is determined in a plane defined by the optical path of the laser beam and the optical path from the subject part to the photodetector.
  • the first angle and the second angle are simultaneously adjusted based on the concentration of the substance in the blood by performing a reference measurement of measuring the concentration of the substance in the blood in the specific region with different angles. It may also be a configuration.
  • the concentration of the blood substance is measured by changing the position of the photodetector along the optical path of the signal light, prior to the measurement of the object. adjusting the position of the photodetector relative to the living body in the direction by performing a reference measurement; In this adjustment, the position of the photodetector is such that the image of the signal light emitted from the blood vessel region Mp is transferred by the imaging lens and formed on the light receiving surface of the photodetector. , it may be configured to be adjusted based on the concentration of the substance in the blood.
  • the laser beam is a first laser beam
  • the blood substance is a first blood substance
  • the concentration of the blood substance is the first blood substance.
  • concentration In the reference measurement, A second laser beam for reference measurement that is absorbed by a second blood substance that is a reference substance is irradiated from the light irradiation unit to the irradiation region, using the imaging lens to image the signal light of the second laser light reflected from the specific area on the photodetector; The signal light of the second laser beam is received by the photodetector, and the concentration of the second blood substance based on the signal light is determined as the concentration of the second blood substance in the measurement target area.
  • the absorption rate at which the second laser beam is absorbed by the second blood substance is greater than the absorption rate at which the first laser beam is absorbed by the first blood substance in the target measurement. It may also be a configuration.
  • the program according to the embodiment of the present disclosure is A program that causes a computer to perform blood substance concentration measurement processing for measuring the concentration of blood substances contained in the blood of a living body subject, the program comprising:
  • the blood substance concentration measurement process includes: The living body is placed on the main surface of the base, and from the main surface side of the base, the skin surface of the living body on the side opposite to the main surface is located on the opposite side of the living body by a light irradiation unit.
  • Target measurement laser light that is absorbed by the blood substance that is the target substance to be measured is focused and irradiated onto a specific area of the subject in the skin, On the main surface side of the base, an imaging lens located between the subject part and the photodetector is used to collect the reflected light of the laser beam in the subject part.
  • a first angle between the normal to the skin surface of the subject and the optical path of the laser beam is a second angle between the normal and the optical path of the signal light from the specific region to the photodetector.
  • the position of the living body with respect to the light irradiation part is defined such that a blood vessel region located inward from the epidermis of the subject part and the laser beam condensing region overlap
  • the position of the photodetector with respect to the living body is such that an image of the signal light emitted from the blood vessel region that overlaps with the laser beam condensing region is transferred by the imaging lens and focused on the light receiving surface of the photodetector. It is characterized in that it is specified to be an image.
  • a blood substance concentration measuring device 1 will be explained using the drawings.
  • the positive direction in the height direction is sometimes referred to as the "up” direction
  • the negative direction is sometimes referred to as the "down” direction
  • the surface facing the positive direction in the height direction is referred to as the "front” surface
  • the negative direction is referred to as the "lower” direction.
  • the side facing the direction is sometimes referred to as the "back” side.
  • the scale of the members in each drawing is not necessarily the same as the actual one.
  • “perpendicular” or “parallel” may have an angular difference from 90° or 0°, respectively, within a range where the function is generally not impaired.
  • the symbol " ⁇ " used to indicate a numerical range includes the numerical values at both ends thereof.
  • the materials, numerical values, etc. described in this embodiment are merely exemplified as preferable ones, and the present invention is not limited thereto.
  • Blood substance concentration measuring device 1 irradiates a blood vessel region of a living body with laser light of a specific wavelength from a light source, and detects the intensity of signal light emitted from the blood vessel region.
  • This is a medical device that non-invasively measures the blood substance concentration of a living body in a blood vessel region.
  • Laser light uses light of a specific wavelength that can be absorbed by the substance to be measured.
  • the blood vessel area emits a signal light whose intensity is weakened in some wavelengths with respect to the irradiated laser light due to absorption by the substance.
  • Blood substance concentration is measured by measuring the intensity of signal light with a photodetector.
  • FIG. 1 is a schematic diagram showing an aspect of the apparatus 1 during measurement.
  • a subject inserts a biological object (for example, a finger) into an opening 1a provided on the front surface of the device 1, and inserts the biological object onto the main surface 10a of a base 10 inside the device 1.
  • the light irradiation unit 20 arranged on the main surface 10a side of the base 10 illuminates the skin surface of the living body Ob on the side facing the main surface 10a and the subject part in the skin located on the opposite side of the living body Ob.
  • FIG. 2 is a schematic diagram showing the configuration of the device 1.
  • the apparatus 1 includes a base 10, a light irradiation section 20, a photodetector 30, a condensing lens 50, an imaging lens 40, a measurement control section 60, a photodetection unit 70, and an aperture 80.
  • the base 10 is a plate-like member on which the living body Ob is placed on the principal surface 10a, which is the surface facing upward, during measurement.
  • a guide member that stabilizes the position of the subject part Mp0 of the living body Ob during measurement and regulates the blood vessel region Mp included in the subject part Mp0 of the living body Ob to a predetermined position and angle suitable for irradiation with the laser beam L1. It is.
  • FIG. 3 is an enlarged view showing the part of the living body placed on the base in FIG. 2.
  • a finger which is a living body Ob
  • the palm surface of the finger in contact with the main surface 10a
  • measurements are performed with the back side of the finger as the subject part Mp0. That is, the subject part Mp0 exists in the skin located on the side opposite to the skin surface of the living body Ob (A1 in FIGS. 2 and 3) when viewed from the skin surface on the side facing the main surface 10a of the living body Ob. do.
  • the measurement position is marked on the main surface 10a of the base 10, and by aligning the living object Ob with the markings and bringing the palm surface of the finger of the living object into contact with the main surface 10a, the finger of the living object Ob can be measured.
  • the subject part Mp0 located in the skin on the back surface of the patient can be held at a predetermined distance from the main surface 10a of the base 10.
  • the marking is such that when the angle of the main surface 10a is regulated to a predetermined angle, the object part Mp0 of the living body Ob aligned with the marking is at a predetermined position with respect to the light irradiation unit 20 and the photodetector 30.
  • the position on the main surface 10a is defined as follows.
  • the base 10 is arranged so that the laser light L1 irradiated from the light irradiation section 20 enters from the main surface 10a side. Further, the relative angle of the main surface 10a to the light irradiation section 20 is regulated so that the incident angle A of the laser beam L1 to the subject part Mp0 of the living body Ob becomes a predetermined angle ⁇ A.
  • the incident angle A refers to the part of the subject on which the laser beam L1 is focused from the light irradiation unit 20, with reference to the normal to the skin surface of the living body Ob placed on the main surface 10a of the base 10. It refers to the angle ⁇ A of the optical path Op1 of the laser beam L1 that reaches the region Mp0 (hereinafter sometimes referred to as "laser beam condensing area FA").
  • the relative angle of the main surface 10a to the photodetector 30 of the base 10 is regulated so that the installation angle B of the photodetector 30 with respect to the subject part Mp0 of the living body Ob becomes a predetermined angle ⁇ B.
  • the installation angle B refers to the distance between the photodetector from the laser beam condensing area FA in the subject part Mp0, based on the normal to the skin surface of the living body Ob placed on the main surface 10a of the base 10. 30 indicates the angle of the optical path Op2 of the signal light L2 to the signal light L2. At this time, the angle ⁇ A is different from the installation angle B.
  • the device 1 in the device 1, the light irradiation section 20 is positioned relative to the main surface 10a of the base 10, and at the same time, the photodetector 30 is positioned relative to the main surface 10a of the base 10 and the light irradiation section 20 by the movable mechanism described below.
  • the position is regulated via 71. Therefore, the device 1 can be configured such that the installation angle B is a predetermined angle ⁇ B when the incident angle A is a predetermined angle ⁇ A.
  • the base 10 having such a configuration, simply by bringing the palm surface of the finger of the living body Ob into contact with the main surface 10a, the incident angle A of the laser beam L1 with respect to the subject part Mp0 and the light detection with respect to the subject part Mp0 can be determined.
  • the installation angle B of the device 30 and the position at which the laser beam L1 is irradiated onto the subject part Mp0 can be generally regulated to around appropriate values necessary for measurement.
  • the base 10 has a plane defined by the optical path of the laser beam L1 irradiated from the light irradiation section 20 and the optical path of the signal light L2 from the subject section to the photodetector 30 (hereinafter referred to as a "laser beam incidence plane").
  • '' includes a rotating stage mechanism 11 that changes the angle ⁇ C of the main surface 10a with respect to the optical paths of the laser beam L1 and the signal beam L2.
  • the rotation stage mechanism 11 includes an angle changing mechanism with a built-in motor, and the motor is driven by a control signal issued from the measurement control unit 60 to operate the angle changing mechanism to change the angle ⁇ C of the main surface 10a. Information on the angle ⁇ C is output to the measurement control section 60.
  • the configuration may be such that the positional relationship between the main surface 10a, the center of rotation of the rotation stage mechanism 11, and the optical path of the laser beam L1 is defined so as to be substantially parallel to the normal direction to the skin surface on the back surface.
  • the base 10 is configured to include a height adjustment mechanism 12 so that the height ht in the direction perpendicular to the main surface 10a can be varied.
  • a height adjustment mechanism 12 for example, a lead screw or a known linear motion mechanism such as a linear motor can be used.
  • the height adjustment mechanism 12 is driven by a control signal issued from the measurement control section 60, operates the linear motion mechanism to change the height ht of the base 10, and transmits information on the height ht to the measurement control section 60. Output.
  • This height adjustment mechanism 12 allows the light irradiation section 20 of the subject part Mp0 in the living body Ob to be focused and irradiated with the laser light on the blood vessel region Mp located inward from the epidermis in the subject part Mp0.
  • the positional relationship can be adjusted according to the shape or size of each living body Ob. Thereby, the position of the living body Ob with respect to the light irradiation unit 20 is regulated so that the blood vessel region Mp located inward from the epidermis in the subject part Mp0 and the laser light focusing region FA overlap in the XZ plane.
  • the distance from the main surface 10a to the subject part Mp0 (present in the skin on the back of the finger of the living object Ob) due to the thickness of the finger of the living object Ob. can absorb changes in distance. This makes it possible to absorb variations in the thickness of the fingers of the living body Ob, which vary depending on the subject.
  • the height adjustment mechanism 12 can adjust the height ht in a direction to compensate for the excess or deficiency of the thickness of the finger.
  • the position where the laser beam L1 is irradiated onto the part Mp0, the incident angle A of the laser beam L1 with respect to the subject part Mp0, and the installation angle B of the photodetector 30 with respect to the subject part Mp0 are regulated to around the appropriate values necessary for measurement. can do.
  • the light irradiation unit 20 is a light source that irradiates the living body with a laser beam L1 of a specific wavelength toward the subject part Mp0 of the living body Ob.
  • the light irradiation unit 20 emits a laser beam for target measurement (hereinafter referred to as “first blood substance”) that oscillates at a wavelength that is absorbed by a first blood substance (hereinafter sometimes referred to as “first blood substance”) that is a measurement target substance. , sometimes referred to as "first laser light”).
  • the light irradiation unit 20 modulates the wavelength of the laser light and absorbs it into a second blood substance (hereinafter sometimes referred to as "second blood substance") that is a reference substance.
  • second blood substance a second blood substance
  • the laser beam for reference measurement (hereinafter sometimes referred to as “second laser beam”) that oscillates at the wavelength of the reference measurement can be selectively irradiated with the laser beam for target measurement. In this way, the types of blood substances that can be detected are varied.
  • FIG. 4 is a schematic diagram showing the configuration of the light irradiation section 20 in the blood substance concentration measuring device 1.
  • the light irradiation unit 20 includes a light source 21 that oscillates pump light L0 having a shorter wavelength than the pulsed mid-infrared light, and a light source 21 that converts it to a longer wavelength, amplifies it, and emits it as laser light L1.
  • It has an optical parametric oscillator 22 (OPO: Optical Parametric Oscillator).
  • OPO Optical Parametric Oscillator
  • the idler light is output as laser light L1 to a subsequent stage and used for measuring the blood sugar level.
  • This optical parametric oscillator 22 may use a configuration described in a known document, for example, Japanese Patent Application Publication No. 2010-281891.
  • glucose can be used as the first blood substance that is the substance to be measured.
  • the irradiated laser light is light with a wavelength selected from mid-infrared light, and as a wavelength oscillated by optical parametric oscillation, absorption by glucose is greater than conventionally used near-infrared light.
  • Mid-infrared light may be used as the wavelength, and the predetermined wavelength may be selected from the range of 2.5 ⁇ m or more and 12 ⁇ m or less. More preferably, the predetermined wavelength is selected from the range of 6.0 ⁇ m or more and 12 ⁇ m or less.
  • the selected wavelength is 9.26 ⁇ m.
  • it may be 9.26 ⁇ 0.05 ⁇ m (9.21 ⁇ m or more and 9.31 ⁇ m or less).
  • the wavelength is -0.05 ⁇ m or more based on 7.05 ⁇ m, 7.42 ⁇ m, 8.31 ⁇ m, 8.7 ⁇ m, 9.0 ⁇ m, 9.57 ⁇ m, 9.77 ⁇ m, 10.04 ⁇ m, or 10.92 ⁇ m.
  • a range of +0.05 ⁇ m or less may be selected.
  • the glucose concentration in the subject's blood can be measured as a blood sugar level.
  • This mid-infrared light has a lower transmittance into the body than near-infrared light, which is conventionally used to measure blood sugar levels, so it is necessary to identify the location of blood vessels inside the skin and irradiate it with mid-infrared light. By doing so, it becomes possible to observe only the blood vessel portion, which has the effect of being less susceptible to the effects of other biological components present deep within the body. Further, by using mid-infrared light, there is less adverse effect on measurement due to overlapping of overtones and combination sounds of the reference vibration, and glucose can be measured more accurately than near-infrared light.
  • the reference substance (second blood substance) that is the target of the reference measurement has a higher laser light absorption rate than the measurement target substance, so the measurement sensitivity is high, the blood concentration is highly stable, and the measurement result is A blood substance with a small variation is selected.
  • the absorption rate at which the laser beam in reference measurement is absorbed by the reference substance (second blood substance) is the absorption rate at which the laser beam for target measurement in target measurement is absorbed by the measurement target substance (first blood substance). It is preferable that the absorption rate is larger than the absorption rate. And/or it is preferable that the reference substance (second blood substance) has higher concentration stability in blood than the measurement target substance (first blood substance).
  • the measurement accuracy of the measurement target can be improved.
  • hemoglobin can be selected as the reference substance (second blood substance), for example.
  • second blood substance By detecting hemoglobin in a blood vessel, the position of a capillary in a living body can be detected, and when measuring a substance to be measured (first blood substance), The optimal position of the measurement target portion Mp can be specified.
  • the laser light to be irradiated for measurement is light with a wavelength selected from mid-infrared light, and has a wavelength of 5.0 ⁇ m or more and 12 ⁇ m or less. A predetermined wavelength selected from a range.
  • the wavelength may be 8.00 ⁇ 0.1 ⁇ m (7.9 ⁇ m or more and 8.1 ⁇ m or less).
  • the wavelength is in the range of 5.26 ⁇ m or more and 6.76 ⁇ m or less, -0.1 ⁇ m or more +0.1 ⁇ m or less based on 7.17 ⁇ m, or -0.1 ⁇ m or more +0.1 ⁇ m or less based on 7.58 ⁇ m.
  • a range of 7.58 ⁇ m or more and 8.33 ⁇ m or less, or a range of ⁇ 0.1 ⁇ m or more +0.1 ⁇ m or less based on 8.55 ⁇ m may be selected.
  • the light source 21 may include a Q-switched Nd:YAG laser (oscillation wavelength: 1.064 ⁇ m) or a Q-switched Yb:YAG laser (oscillation wavelength: 1.030 ⁇ m).
  • the pump light L0 having a shorter wavelength than the mid-infrared light can be oscillated in a pulsed manner.
  • the pump light L0 may have a pulse width of approximately 8 ns and a frequency of 10 Hz or more, for example.
  • the Q-switched Nd:YAG laser and Yb:YAG laser operate as a passive Q-switch that passively performs a switching operation using a supersaturated absorber, the light source 21 can be simplified and miniaturized.
  • the optical parametric oscillator 22 is an optical resonator that includes an input side semi-transparent mirror 221, an output side semi-transparent mirror 222, and a nonlinear optical crystal 223, and the input side semi-transparent mirror 221 and the output side semi-transparent mirror 222 are opposed to each other.
  • a nonlinear optical crystal 223 is disposed inside.
  • the light L01 transmitted through the entrance side semi-transparent mirror 221 enters the nonlinear optical crystal 223, where it is converted into light with a wavelength determined by the nonlinear optical crystal 223. Parametric amplification is performed.
  • the amplified light passes through the exit-side semi-transparent mirror 222 and is output as laser light L1.
  • the nonlinear optical crystal 223 AgGaS suitable for wavelength conversion is used under phase matching conditions.
  • the wavelength of the emitted laser beam L1 can be adjusted.
  • GaSe, ZnGeP 2 , CdSiP 2 , LiInS 2 , LiGaSe 2 , LiInSe 2 , LiGaTe 2 or the like may be used for the nonlinear optical crystal.
  • the laser light L1 emitted from the optical parametric oscillator 22 has a repetition frequency corresponding to the pump light L0, for example, a pulse width of about 8 ns, and the short pulse width makes it possible to achieve high intensity with a peak output of 10 W to 1 kW.
  • the light irradiation unit 20 uses the light source 21 and the optical parametric oscillator 22, so it can emit light with a high intensity of about 10 3 to 10 5 times compared to a conventional light source such as a quantum cascade laser.
  • Laser light L1 can be obtained.
  • the oscillation wavelength of the optical parametric oscillator 22 of the light irradiation unit 20 is changed in a different manner, and the phase matching condition of the nonlinear crystal 223 in the optical parametric oscillator 22 is changed.
  • the device can be realized by changing the optical parametric oscillator 22 in which the phase matching conditions of the nonlinear crystal 223 are different.
  • the light irradiation unit 20 is electrically connected to a measurement control unit 60, which will be described later, and outputs the laser beam L1 based on a control signal from the measurement control unit 60.
  • Condensing lens 50 As shown in FIG. 2, in the optical path Op1 of the laser beam L1 from the light irradiation unit 20 to the subject part Mp0 of the living body Ob, there is a condenser for focusing the irradiation light on a specific region in the subject part Mp0.
  • a lens 50 (sometimes referred to as a "second lens” in this specification) is arranged.
  • the laser beam L1 is configured to propagate in a space such as a gas, for example, except for the section where it passes through the condenser lens 50. ing.
  • the condenser lens 50 is connected to the light irradiation part 20 located on the main surface 10a side of the base 10.
  • the laser beam L1 emitted from the main surface 10a of the living body is optically designed to be focused and irradiated onto a specific region in the subject part Mp0 located on the opposite side of the skin surface facing the main surface 10a of the living body. ing.
  • the region on which the laser beam L1 is focused is set to a depth corresponding to a blood vessel region Mp located inward of the epidermis in the subject part Mp0, for example, a biological part such as the dermis located inward of the epidermis.
  • the optical design is such that In this specification, as described above, the area within the subject part Mp0 where the laser beam L1 is focused is referred to as the laser beam focusing area FA.
  • the incident angle A of the laser beam L1 to the subject part Mp0 is based on the normal to the part of the skin surface of the living body Ob placed on the main surface 10a of the base 10 where the laser beam L1 is incident. It is determined by the angle of the optical path Op1 of the laser beam L1 from the section 20 to the laser beam condensing area FA.
  • the incident angle ⁇ A may be, for example, greater than or equal to 45 degrees, or may be greater than or equal to 60 degrees and less than or equal to 70 degrees.
  • a beam splitter made up of a semi-transparent mirror is arranged between the light irradiation unit 20 and the condensing lens 50 to split a part of the laser beam L1 as a reference signal and use it for monitoring light detection.
  • a change in the intensity of the laser beam L1 may be detected using a detector (not shown) and used for normalization processing of the detection signal in the photodetector 30.
  • the output of the photodetector 30 can be compensated based on variations in the intensity of the laser light L1.
  • the laser beam L1 that has passed through the condensing lens 50 enters the living body Ob on the main surface 10a of the base 10, passes through the epithelial stromal tissue of the living body, is scattered or diffusely reflected, and returns to the base as signal light L2. 10 and is emitted toward a photodetector 30.
  • a diaphragm 80 is disposed in a section between the light irradiation unit 20 and the condenser lens 50 on the optical path Op1 of the laser beam L1 from the light irradiation unit 20 to the subject part Mp0 of the living body Ob.
  • the diaphragm 80 is made of a plate-like member having a light-shielding property, and has an opening 80a (aperture) in the center.
  • the center of the aperture 80a coincides with the optical axis of the laser beam L1. Further, the beam diameter of the laser light L1 may be narrowed down to about 1/3 by the aperture 80a, for example.
  • the condensing lens 50 has the following formula: It may be arranged at a position that is internally divided into a IN :b IN .
  • FIG. 5 is a diagram for explaining the outline of the light-receiving side optical path in the apparatus 1, and is a schematic diagram depicting the subject part Mp0 of the living body Ob and the screen 30a of the photodetector 30 in a cross-sectional view.
  • the optical path Op2 of the signal light L2 from the laser beam focusing area FA in the object part Mp0 of the living body Ob to the photodetector 30 includes a laser beam focusing area in the object part Mp0 of the living body Ob.
  • An imaging lens 40 (herein referred to as a "first lens") is used to image the signal light L2 emitted from the laser beam condensing area FA onto the photodetector 30 after being diffusely reflected in the light area FA. ) are arranged.
  • the signal light L2 is configured to propagate in space except for the section where it passes through the condenser lens 50. .
  • the imaging lens 40 transfers an image Im1 of the signal light L2 emitted by diffuse reflection from a region where the blood vessel region Mp in the subject part Mp0 and the laser beam focusing region FA overlap.
  • the optical design is such that an image Im2 is formed on the screen 30a of the photodetector 30.
  • the distance Op21 between the center of the imaging lens 40 and the laser beam focusing area FA of the living body Ob and the distance Op22 between the screen 30a of the photodetector 30 and the center of the imaging lens 40 are set to equivalent lengths. It is said that
  • the image Im1 at a depth corresponding to the blood vessel region Mp in the subject part Mp0 irradiated with mid-infrared light is transferred onto the screen 30a of the photodetector 30 as an image Im2 of equivalent size. A positional relationship is realized.
  • the vascular region Mp is located, for example, in a part of the living body located inward from the epidermis, such as the dermis (hereinafter sometimes referred to as "inside the living part").
  • the depth corresponding to the blood vessel region Mp may be, for example, 0.5 mm or more and 3.5 mm or less, and may be, for example, 1.5 mm.
  • both the distance Op21 and the distance Op22 may be set to 2f.
  • the lengths of the distance Op21 and the distance Op22 are not limited to the above-described lengths, and are such that the image Im1 of the base 10 irradiated with mid-infrared light fits within the screen 30a of the photodetector 30 in just the right amount. It is also possible to set magnifications for the distances Op21 and Op22, and to set the imaging lens 40 to achieve the magnifications.
  • the angle of incidence of the signal light L2 on the imaging lens 40 is determined by the optical axis of the signal light L2 passing through the center of the imaging lens 40 with reference to the normal to the part of the skin surface of the subject Mp0 from which the signal light L2 is emitted. Determined by the angle of The angle of the optical axis passing through the center of the imaging lens 40 is equal to the above-mentioned installation angle B of the photodetector 30 with respect to the skin surface of the living body Ob, and in this embodiment, it is more preferably 0 degrees or more and 40 degrees or less, for example. may be greater than or equal to 20 degrees and less than or equal to 30 degrees.
  • the blood substance concentration measuring device 1 irradiates the photodetector 30 with the signal light L2 from the subject part Mp0 to the photodetector 30 while the light irradiation section 20 is irradiating the second laser beam for reference measurement.
  • a configuration is adopted in which the distance of the photodetector 30 from the imaging lens 40 is varied by moving along the optical path Op2. Furthermore, the photodetector 30 is moved in a direction that intersects at a predetermined angle, such as in a substantially perpendicular direction, with the optical path Op2 of the signal light L2 from the laser beam focusing area FA in the subject part Mp0 to the photodetector 30.
  • the positional relationship between the laser beam condensing area FA and the photodetector 30 in the direction perpendicular to the optical path Op2 can be adjusted.
  • the photodetector 30 may be moved in a direction along the optical path Op1 of the laser beam L1.
  • the photodetector 30 is a near-infrared and mid-infrared sensor that receives the signal light L2 emitted from the laser light focusing area FA based on the irradiated laser light L1 and detects the intensity of the signal light L2.
  • the photodetector 30 outputs an electrical signal according to the intensity of the received signal light L2.
  • the photodetector 30 may be, for example, an infrared sensor composed of a single element, which outputs the intensity of the signal light L2 as a one-dimensional voltage value.
  • the light irradiation unit 20 increases the intensity of the irradiated laser light L1, and the imaging lens 40 emits the signal light L2 emitted from the laser light focusing area FA onto the screen 30a of the photodetector 30.
  • the photodetector 30 can receive signal light with sufficiently high intensity relative to background light, achieving a high S/N ratio and enabling highly accurate measurement.
  • the laser beam L1 and the signal beam L2 are monochromatic and have high intensity, the only processing necessary for the photodetector 30 is to detect the light intensity, and the wavelength There is no need to perform sweep-based spectrum analysis or multivariate analysis. Therefore, the accuracy required for detection is relaxed, and it is also possible to use an electronic cooling method, etc., which is easy to use.
  • the photodetector 30 may be, for example, an HgCdTe infrared photodetector cooled with liquid nitrogen. At this time, by cooling to about 77 K with liquid nitrogen, the light intensity of the signal light L2 can be detected with a higher S/N ratio.
  • the photodetector 30 is electrically connected to a measurement control section 60 to be described later, and based on a control signal from the measurement control section 60, the intensity of the received signal light is transmitted to the measurement control section 60 using a one-dimensional voltage value. Output.
  • the movable mechanism 71 includes a first linear transport mechanism 711 that can reversibly move the photodetector 30 along the optical path Op2 of the signal light L2 from the subject part Mp0 to the photodetector 30; and a second linear transport mechanism 712 that is reversibly movable in a direction perpendicular to the optical path Op2.
  • the image Im1 at a depth corresponding to the blood vessel region Mp in the subject part Mp0 is transferred to the screen 30a of the photodetector 30 as an image Im2 of an equivalent size.
  • the position parallel to the optical path Op2 of the signal light L2 reaching the photodetector 30 can be adjusted.
  • the first linear transport mechanism 711 may be configured to reversibly move the imaging lens 40 along the optical path Op2 together with the photodetector 30.
  • the function of the second linear conveyance mechanism 712 allows the center of the screen 30a of the photodetector 30 and the position where the laser beam L1 is focused and irradiated onto the subject part Mp0 (laser beam focusing area FA) to be adjusted.
  • the position of the photodetector 30 can be adjusted so that the optical path Op2 of the signal light L2 reaching the photodetector 30 generally coincides with or overlaps with the optical path Op2 of the signal light L2 reaching the photodetector 30.
  • a general-purpose linear transport mechanism such as a linear motor, lead screw, ball screw, rack and pinion, etc. can be used for the first linear transport mechanism 711 and the second linear transport mechanism 712.
  • a reflection mechanism equipped with a MEMS (Micro Electro Mechanical Systems) actuator using a piezoelectric element is inserted into the laser optical path to change the laser optical path and perform correct detection. You may also switch to the position of the container.
  • the movable mechanism 71 is electrically connected to a measurement control section 60, which will be described later, and transports the photodetector 30 to a predetermined position based on a control signal supplied from the measurement control section 60.
  • the first linear transport mechanism 711 is driven by a control signal issued from the measurement control unit 60, operates the linear movement mechanism to change the position in the direction parallel to the optical path Op2 to the photodetector 30, and The position information in this direction is output to the measurement control section 60.
  • the second linear transport mechanism 712 is driven by a control signal issued from the measurement control unit 60 to operate the linear movement mechanism to change the position in the direction perpendicular to the optical path Op2 to the photodetector 30. , and outputs position information in that direction to the measurement control section 60.
  • the second linear conveyance mechanism 712 moves the optical path Op2 to the photodetector 30. It may also be configured to perform an operation to change the position in the vertical direction. Thereby, the irradiation position of the laser beam L1 can be varied and adjusted in a direction parallel to the center line of the finger on the skin surface of the back surface of the finger. Details will be described later.
  • the measurement control unit 60 is electrically connected to the light irradiation unit 20, the photodetector 30, and the movable mechanism 71, and drives the light source 21 of the light irradiation unit 20 to oscillate the pulsed pump light L0, and also performs photodetection.
  • This circuit detects the light intensity of the signal light L2 based on the output signal from the device 30 and calculates the blood substance concentration in the blood vessel region Mp in the subject part Mp0.
  • the measurement control unit 60 inputs the output of the monitoring photodetector, and as described above, even if the intensity of the laser beam L1 emitted from the light irradiation unit 20 fluctuates, the measurement control unit 60 inputs the output of the monitoring photodetector.
  • the blood substance concentration may be calculated by compensating for the influence of the intensity fluctuation of the laser beam L1.
  • the measurement control unit 60 is electrically connected to the rotation stage mechanism 11 and height adjustment mechanism 12 of the base 10, and functions as a control circuit that drives these. That is, the measurement control unit 60 outputs a control signal to the base 10 to drive the rotation stage mechanism 11 of the base 10 to adjust the angle of incidence A with respect to the object part Mp0 and to adjust the height of the base 10.
  • the adjustment mechanism 12 By driving the adjustment mechanism 12 and changing the height ht in the direction perpendicular to the principal surface 10a, it is possible to adjust the position at which the laser beam L1 is irradiated onto the subject portion Mp0.
  • the measurement control unit 60 is electrically connected to the movable mechanism 71 and functions as a control circuit that drives the first linear transport mechanism 711 and the second linear transport mechanism 712. That is, the measurement control unit 60 outputs a control signal to the movable mechanism 71 to drive the first linear transport mechanism 711 to transport the photodetector 30 to a predetermined position along the optical path Op2 of the signal light L2. At the same time, the second linear transport mechanism 712 is driven to transport the signal light L2 to a predetermined position in the direction perpendicular to the optical path Op2. Further, the first linear transport mechanism 711 may be configured to reversibly move the imaging lens 40 along the optical path Op2 together with the photodetector 30.
  • the measurement control unit 60 may include, for example, a control unit (not shown) incorporating a CPU (Central Processing Unit) and a data storage unit (not shown).
  • a control unit (not shown) incorporating a CPU (Central Processing Unit) and a data storage unit (not shown).
  • the data storage unit includes a volatile memory such as a DRAM (Dynamic Random Access Memory), and a non-volatile memory such as a hard disk.
  • the output signal acquired by the photodetector 30 is transmitted and stored in the data storage section. Further, information on the angle ⁇ C outputted from the rotation stage mechanism 11, information on the height ht outputted from the height adjustment mechanism 12, and light detection in a method parallel to the optical path Op2 outputted from the first linear conveyance mechanism 711.
  • the position information of the detector 30 and the position information of the photodetector 30 in the vertical direction and the optical path Op2 output from the second linear transport mechanism 712 are transmitted and stored. Further, the blood substance concentration calculated by the control unit may be stored. Further, the data storage section stores programs necessary for executing the functions of the device 1, and also functions as a temporary storage area for temporarily storing calculation results of the control section.
  • the CPU realizes the functions of the device 1 by reading and executing programs from the data storage section.
  • the measurement control unit 60 performs the operations described above, such as transporting the photodetector 30, irradiating the laser beam L1 from the light irradiation unit 20, and calculating the blood substance concentration based on the signal from the photodetector 30. Based on a predetermined program, blood substance concentration measurement processing, which will be described later, is performed.
  • the laser beam L1 is irradiated onto the subject part Mp0 of the living body Ob from the main surface 10a side of the base 10 on which the living body Ob is placed, and the laser beam L1 is emitted from the main surface 10a side.
  • highly accurate measurement can be stably performed.
  • the position of the light irradiation section 20 is regulated relative to the main surface 10a of the base 10, and at the same time, the photodetector 30 is movable relative to the main surface 10a of the base 10 and the light irradiation section 20.
  • the position is regulated via a mechanism 71. Therefore, the device 1 can be configured such that the installation angle B is a predetermined angle ⁇ B when the incident angle A is a predetermined angle ⁇ A.
  • the rotation stage mechanism 11 that changes the angle ⁇ C of the main surface 10a of the base 10, even if the shape of the skin surface of the living body Ob differs depending on the subject, the incident angle A and the installation angle with respect to the subject part Mp0 can be adjusted. B can be simultaneously adjusted to match the shape or size of each living body Ob.
  • the height adjustment mechanism 12 that can adjust the height ht of the main surface 10a of the base 10
  • the height ht of the main surface 10a of the base 10 can be adjusted from the main surface 10a due to the thickness of the finger of the living object Ob to the inside of the skin on the back of the finger of the living object Ob. It is possible to absorb variations in the distance to the object part Mp0 located at , and to absorb variations in the thickness of the fingers of the living body Ob that vary depending on the subject.
  • the position where the laser beam L1 is irradiated to the subject part Mp0 of the living body Ob, the incident angle A of the laser beam L1 with respect to the subject part Mp0, and the subject part Mp0 of the living body Ob are determined.
  • the installation angle B of the photodetector 30 with respect to the sample portion Mp0 can be regulated to around an appropriate value required for measurement.
  • FIG. 6 is a schematic diagram showing an overview of the optical path from the light irradiation unit 20 to the photodetector 30 in the device 1.
  • the laser beam L1 focused and irradiated from the light irradiation unit 20 is focused on a specific area (laser beam focusing area FA) in the internal part of the living body in the subject part Mp0.
  • the light enters the living body Ob at an incident angle A (angle ⁇ A) along the optical path Op1 toward In addition to the image (Im1) of the signal light L2 emitted from the in-vivo part below the skin surface (laser beam focusing area FA) whose intensity is weakened, surface reflection from the skin surface occurs.
  • an image (Im1) of the signal light L2 emitted mainly from the laser beam focusing area FA in the inside of the living body is formed on the screen 30a of the photodetector 30 by the imaging lens 40.
  • the focal length of the imaging lens 40 is f
  • the optical distance OP21 between the laser beam focusing area FA (blood vessel area Mp) and the imaging lens 40 is a
  • the screen 30a of the photodetector 30 at a position where the optical distance OP22 is b, the image (Im1) of the signal light L2 emitted from the laser beam focusing area FA is clearly focused on the screen 30a. , the signal intensity detected by the photodetector 30 has a relatively high value.
  • the light surface-reflected from the skin surface enters the imaging lens 40, but since the angle of incidence on the imaging lens 40 is different from that of the signal light L2 from the laser beam focusing area FA, Even if the light is guided outside the range of the screen 30a of the photodetector 30, or even if it is guided within the range of the screen 30a of the photodetector 30, it will not be imaged (blurred), so the amount of light will decrease, The signal strength detected by photodetector 30 decreases.
  • the position b' satisfies +1/b'. Therefore, on the screen 30a placed at position b, the image from the epidermis is blurred and unclear, and as a result, the signal intensity detected by the photodetector 30 is relatively reduced.
  • the image (Im1) of the signal light L2 emitted from the laser beam condensing area FA in the blood vessel area Mp below the skin surface (inside the living body) that is to be measured is the imaging lens 40.
  • the image is transferred to the screen 30a of the photodetector 30 and reflected in the optical measurement by the photodetector 30, so it correlates with the blood glucose level measurement result by SMBG (SMBG: Self Monitoring of Blood Glucose). It is possible to obtain measurement results with high accuracy and reproducibility.
  • SMBG Self Monitoring of Blood Glucose
  • a lens is installed to simply collect diffused light (scattered light) and a photodetector 30 is placed near its focal point, the signal light from the blood vessel region Mp (inside the living body) will actually be scattered light. This makes it difficult to distinguish it from the scattered light from the skin surface.
  • components such as the imaging lens 40 and the photodetector 30 at a position where image transfer is possible, and image-transferring the signal light L2 from the blood vessel region Mp (inside the living body), It is possible to relatively reduce the amount of scattered light in the skin portion and improve the signal-to-noise ratio of L2 of the signal light.
  • the device 1 can reduce false signal (noise) components due to signal light scattered on the skin surface and improve the S/N ratio in optical measurement.
  • FIG. 7 is a schematic diagram for explaining the adjustment operation of the optical path length from the laser beam focusing area FA to the photodetector 30 by the apparatus 1.
  • the apparatus 1 detects light by the first linear conveyance mechanism 711 of the movable mechanism 71 while the light irradiation section 20 irradiates the reference measurement laser beam (second laser beam) L1.
  • the device 30 is moved along the optical path Op2 of the signal light L2 from the subject part Mp0 to the photodetector 30, and the distance of the photodetector 30 from the imaging lens 40 is adjusted by varying it.
  • the images (Im11, Im12, Im13) of the signal light L2 formed on the screen 30a of the photodetector 30 are extracted from the image source region (IA1, IA2, IA3) in the subject part Mp0. Achieve different functions.
  • the image source region (IA1, IA2, IA3) is a focus region in the subject portion Mp0 where the focus Fp of the imaging lens 40 is focused.
  • an image Im11 of the signal light L2 emitted from the image source region IA1 located in the blood vessel region Mp in the subject part Mp0 is displayed on the screen 30a. It is possible to form an image (Im21). Since the image source region IA1 is located in a region where the laser beam condensing region FA and the blood vessel region Mp overlap, by arranging the photodetector 30 at the position shown in FIG. An image Im11 of the signal light L2 emitted from Mp can be formed on the screen 30a.
  • the image Im12 of the signal light L2 emitted from the image source region IA2 located in the dermis part of the subject part Mp0 is originally formed (Im22) in front of the screen 30a, the image Im12 is formed in front of the screen 30a.
  • the image (Im22) is blurred and unclear, and the detected signal intensity is relatively reduced.
  • the image Im13 of the signal light L2 emitted from the image source region IA3 located in the epidermal region of the subject part Mp0 is originally formed deeper than the screen 30a (Im23), , the image (Im23) is not clear on the screen 30a, and the detected signal intensity is relatively reduced.
  • the signal light from the blood vessel is detected based on the signal light of the laser light for object measurement (first laser light).
  • the image source region that should be the measurement target region of the blood substance concentration is determined to be the same as the blood vessel region Mp and the laser beam focusing region FA in the living body. It is possible to detect a state in which the imaging lens 40 is located in an overlapping region, that is, a state in which the imaging lens 40 is focused on the region.
  • the device 1 receives the signal light L2 emitted from the laser light focusing area FA while being irradiated with the reference measurement laser light (second laser light) L1, and detects the measurement target substance (first laser light).
  • the concentration of a reference substance (second blood substance) that has a higher absorption rate of laser light and/or a higher stability of blood concentration than the second blood substance
  • FIG. 8 is a diagram showing the laser light irradiation position on the living body surface when measuring the blood substance concentration using the device 1.
  • Measurement position 1 with the center line pointing toward the fingertip, the cutting line offset by ⁇ toward the fingertip from the base of the nail, and the measurement position offset by 3 mm above and below the page on the center line using the index finger with a biological object.
  • the measurement positions 4 and 5 which are offset by 3 mm to the left and right of the paper on the cutting line, there is a blood vessel region Mp where the laser light is absorbed more by hemoglobin and the hemoglobin concentration is high at the measurement positions 4 and 5.
  • Existing is a diagram showing the laser light irradiation position on the living body surface when measuring the blood substance concentration using the device 1.
  • a laser beam (first laser beam) for object measurement is irradiated from the light irradiation section 20, and the photodetector 30
  • the concentration of the substance to be measured can be measured in a state where the measurement position in the planar direction is included in the blood vessel region Mp in the subject part Mp0.
  • the apparatus 1 adopts a configuration in which the markings on the main surface 10a of the base 10 are set in advance at predetermined positions to define the laser beam condensing area FA on the living body surface during measurement. Therefore, by changing the position of the marking of the measurement position on the main surface 10a in advance, it is possible to adjust the laser beam convergence area FA on the living body surface at the time of measurement.
  • the position of the marking on the main surface 10a of the base 10 may be set in advance so that the measurement positions 4 and 5 are irradiated with laser light during measurement. Thereby, it becomes possible to always stably perform highly accurate measurements using the blood vessel region Mp as the measurement target.
  • the height adjustment mechanism 12 changes the height ht in the direction perpendicular to the main surface 10a
  • the second linear conveyance mechanism 712 changes the optical path Op2 of the signal light L2 to the photodetector 30.
  • the second linear conveyance mechanism is arranged such that the laser beam condensing area FA and the center of the screen 30a of the photodetector 30 approximately coincide or overlap in a direction perpendicular to the optical path Op2 to the photodetector 30. 712, it is moved in a direction perpendicular to the optical path Op2 to the photodetector 30 and closer to the light irradiation section 20.
  • the second linear conveyance mechanism 712 moves the photodetector 30 so that the laser beam focusing area FA and the center of the screen 30a of the photodetector 30 approximately coincide or overlap in a direction perpendicular to the optical path Op2 of the signal light L2. is moved in a direction perpendicular to the optical path Op2 and away from the light irradiation section 20.
  • the height ht of the principal surface 10a and the position in the direction perpendicular to the optical path Op2 may be stored in advance in a data storage unit or the like as a pair of combination information. Based on the information, the measurement control unit 60 simultaneously performs an operation of varying the height ht using the height adjustment mechanism 12 and an operation of changing the position of the photodetector 30 using the second linear transport mechanism 712. Accordingly, the laser beam focusing areas FA in the direction of the center line of the fingers may be made different.
  • FIG. 9 is a flowchart showing one aspect of the blood substance measurement operation by the apparatus 1.
  • steps S11 and S12 measure the concentration of a reference substance (second blood substance) in a specific area (laser beam focusing area FA) irradiated with focused laser beam L1, and This is a step of performing a reference measurement to determine whether or not the light condensing area FA is included in the blood vessel area Mp in the subject part Mp0.
  • a reference substance second blood substance
  • FA laser beam focusing area FA
  • Steps S21 and S22 perform target measurement to measure the concentration of the target substance (first blood substance) in a state where the laser beam condensing area FA is included in the blood vessel area Mp in the subject part Mp0. It is a step.
  • step S1 it is first determined whether a reference measurement is to be performed (step S1). This determination may be made based on operation input from the operator or identification information such as the subject's ID. For example, when repeatedly measuring the same subject every day, the results of the reference measurement that have already been obtained can be used, and the reference measurement can be omitted. As a result of the determination in step S1, if the reference measurement is to be performed (step S1: Yes), the process proceeds to step S11, and if it is not to be performed (step S1: No), the process proceeds to step S21.
  • steps S11 and S12 reference measurements are performed.
  • the measurement control unit 60 focuses and irradiates a reference measurement laser beam (second laser beam) from the light irradiation unit 20 onto a specific region in the subject Mp0 based on a control signal (step S11).
  • the concentration of the reference substance (second blood substance) in the laser beam focusing area FA is measured by the photodetector 30 (step S12), and whether or not the measured concentration of the reference substance is equal to or higher than the reference value. is determined (step S13).
  • step S13 if the reference value is not greater than or equal to the reference value (step S13: No), the process is terminated, and if the reference value or greater is greater than or equal to the reference value (step S13: Yes), the laser beam focusing area FA is the blood vessel in the subject part Mp0. Since it is determined that the substance is included in the region Mp, the concentration of the measurement target substance (first blood substance) is measured in steps S21 and S22.
  • a laser beam for object measurement (first laser beam) is irradiated from the light irradiation unit 20 to a specific region in the subject Mp0 (step S21), and the laser beam is focused by the photodetector 30.
  • the concentration of the substance to be measured in the area FA is measured (target measurement), the measurement results are output (step S22), and the process ends.
  • FIG. 10 is a flowchart showing another aspect of the blood substance measuring operation by the blood substance concentration measuring device 1.
  • steps S10 to S16 measure the concentration of a reference substance (second blood substance) in a specific region irradiated with focused laser light L1 as a reference measurement, and This is a step of adjusting the position of the photodetector along the optical path Op2, based on the concentration of the reference substance in , so that the laser beam focusing area FA is included in the blood vessel area Mp in the subject part Mp0.
  • a reference substance second blood substance
  • Steps S21 and S22 perform target measurement to measure the concentration of the target substance (first blood substance) in a state where the laser beam condensing area FA is included in the blood vessel area Mp in the subject part Mp0. It is a step.
  • the same processes as in FIG. 9 are indicated with the same numbers as in FIG. 9.
  • step S1 if reference measurement is to be performed (step S1: Yes), reference measurement is performed in steps S10 to S16.
  • the measurement control unit 60 drives the first linear transport mechanism 711 of the movable mechanism 71 to move the photodetector 30 to the starting position (step S10) based on the control signal, and moves the photodetector 30 from the light irradiation unit 20 to the subject part.
  • a laser beam for reference measurement (second laser beam) is focused and irradiated onto a specific area in Mp0 (step S11), and the reference material (second laser beam) in the laser beam focusing area FA is detected by the photodetector 30. blood substance) is measured (reference measurement, step S12).
  • the measurement control unit 60 detects the light intensity of the signal light L2 based on the output signal from the photodetector 30, calculates and stores the concentration of the reference substance in the laser beam focusing area FA. At the same time, position information of the photodetector 30 in the optical path Op2 direction in the first linear transport mechanism 711 is stored.
  • step S14 it is determined whether the photodetector 30 is at the end point position (step S14), and if it is not at the end point position (step S14: No), the position of the photodetector 30 is gradually moved (step S14). S15), return to step S11, and if the end point position is reached (step S14: Yes), it is assumed that the concentration measurement of the reference substance in the laser beam focusing area FA has been completed at all the photodetector 30 positions, and step Proceed to S16. In this state, the measurement control unit 60 stores the position information of the photodetector 30 at all the positions of the photodetector 30 and the concentration of the reference substance in the laser beam focusing area FA.
  • step S16 the measurement control unit 60 selects the optimum position where the concentration of the reference substance is the highest based on the measurement results of the concentration of the reference substance in the laser beam focusing area FA at the positions of all the photodetectors 30. Then, a control signal is issued to the movable mechanism 71 to drive the first linear transport mechanism 711 and move the photodetector 30 to the optimum position. At the optimal position, it is estimated that the laser beam focusing area FA is included in the blood vessel area Mp in the subject part Mp0. Note that even when the reference measurement is not performed in the determination in step S1 (step S1: No), the photodetector 30 is moved to, for example, a predetermined optimal position in step S16.
  • FIG. 11 is a flowchart showing still another aspect of the blood substance measuring operation by the blood substance concentration measuring device 1.
  • steps S10A to S16A are performed as a reference measurement by focusing and irradiating the laser beam L1 in the subject part Mp0 at different positions in the plane direction to measure the reference substance (in the second blood) in a specific region. measure the concentration of the reference substance), and adjust the irradiation position in the plane direction so that the irradiation position is included in the blood vessel region Mp in the plane direction in the subject part Mp0 based on the concentration of the reference substance at different irradiation positions.
  • This step is to In this example, as position adjustment in the plane direction regarding the irradiation position of the laser beam L1, a configuration will be described in which the irradiation position of the laser beam L1 is varied in the direction of the center line of the finger.
  • Steps S21 and S22 are steps of target measurement in which the concentration of the target substance (first blood substance) is measured in a state where the irradiation position is included in the blood vessel region Mp in the plane direction of the subject part Mp0. It is.
  • step S1 if reference measurement is to be performed (step S1: Yes), reference measurement is performed in steps S10A to S16A.
  • the measurement control unit 60 moves the position in the plane direction where the laser beam L1 is irradiated, here the position in the direction of the center line of the finger, to the starting position (step S10A), based on the control signal, and A laser beam for reference measurement (second laser beam) is focused and irradiated onto a specific region in the sample portion Mp0 (step S11), and the photodetector 30 detects the reference material ( The concentration of the second blood substance) is measured (step S12).
  • the height adjustment mechanism 12 changes the height ht in the direction perpendicular to the main surface 10a, and the second linear transport mechanism 712 changes the position in the direction perpendicular to the optical path Op2.
  • the irradiation position of the laser beam L1 is varied in the direction of the center line of the fingers.
  • the measurement control unit 60 detects the light intensity of the signal light L2 based on the output signal from the photodetector 30 at the starting point position, calculates and stores the concentration of the reference substance in the laser beam focusing area FA. At the same time, information on the height ht of the principal surface 10a in the height adjustment mechanism 12 and position information of the photodetector 30 in the direction perpendicular to the optical path Op2 in the second linear transport mechanism 712 are stored.
  • step S14 it is determined whether the irradiation position is at the end point position (step S14), and if it is not at the end point position (step S14: No), the irradiation position is changed (step S15A) and the process returns to step S11. , if it is at the end point position (step S14: Yes), it is assumed that the concentration measurement of the reference substance in the laser beam focusing area FA has been completed at all irradiation positions, and the process proceeds to step S16A.
  • the measurement control unit 60 includes position information of the photodetector 30 at all irradiation positions of the laser beam L1 in the direction of the center line of the finger, information on the height ht of the main surface 10a, and information on the laser beam condensing area.
  • the concentration of the FA reference substance is stored.
  • step S16A the measurement control unit 60 determines, based on the measurement results of the blood substance concentration of the reference substance (second) in the laser beam focusing area FA at all irradiation positions, that a result with the highest concentration of the reference substance is obtained. Select the optimal irradiation position.
  • the measurement control unit 60 issues a control signal to drive the height adjustment mechanism 12 to change the height ht of the main surface 10a of the base 10 to a height corresponding to the optimal irradiation position, and the movable mechanism 71
  • the irradiation position of the laser beam L1 is changed to the optimum position by issuing a control signal to drive the second linear transport mechanism 712 and moving the photodetector 30 to a position corresponding to the optimum irradiation position.
  • the optimal position it is estimated that the irradiation position is included in the blood vessel region Mp in the plane direction of the subject part Mp0. Note that even when the reference measurement is not performed in the determination in step S1 (step S1: No), the irradiation position of the laser beam L1 is moved to, for example, a predetermined optimal position in step S16A.
  • steps S21 and S22 the concentration of the substance to be measured (first blood substance) is measured.
  • a laser beam for object measurement (first laser beam) is focused and irradiated from the light irradiation unit 20 to a specific region in the subject part Mp0 (step S21), and the photodetector 30
  • the concentration of the object to be measured in the laser beam condensing area FA is measured, the result is output (object measurement, step S22), and the process ends.
  • the blood substance concentration measuring device 1 is a blood substance concentration measuring device 1 that measures the concentration of blood substances contained in the blood of the subject part Mp0 of the living body Ob.
  • a light irradiation unit 20 that focuses and irradiates laser light L1 on a specific region of the subject part Mp0 in the skin to be examined, and a light emitting unit 20 that focuses and irradiates a specific region of the subject part Mp0 in the skin, and a light emitting unit 20 that emits reflected light based on the laser light L1 on the main surface 10a side of the base 10.
  • the imaging lens 40 is arranged at a position where it can form an image of the signal light emitted from the laser light focusing area FA in the subject part Mp0 onto the photodetector 30.
  • the first angle between the normal line to the skin surface of the subject part Mp0 and the optical path Op1 of the laser beam L1 is the same as the normal line.
  • the position of the subject part Mp0 in the living body Ob with respect to the light irradiation part 20 is within the epidermis of the subject part Mp0.
  • the position of the photodetector 30 with respect to the subject part Mp0 in the living body Ob is defined so that the blood vessel region Mp located on the side overlaps with the laser light focusing region FA. It is characterized in that the image of the emitted signal light is transferred by the imaging lens 40 and is determined to be imaged on the light receiving surface of the photodetector.
  • blood substance concentration measuring devices have a configuration in which measurement is performed by bringing the part to be measured into contact with a light irradiation window provided on the outer surface of the measuring device. Due to the difference in direction, the pressure applied to the part to be measured, the measurement position, etc. may change, resulting in changes in the measurement results, making it difficult to obtain stable and sufficient measurement accuracy.
  • the apparatus 1 with the above-described configuration, from the main surface 10a side of the base 10, the skin surface on the side facing the main surface 10a of the living body and the subject part in the skin located on the opposite side of the living body Ob.
  • a specific region in Mp0 is focused and irradiated with laser light L1, and on the main surface 10a side of base 10, reflected light based on laser light L1, that is, the intensity of light of a part of the wavelength from laser light L1
  • the blood substance concentration is measured by receiving a weakened signal light, it suppresses changes in measurement results due to differences in how the part to be measured is placed on the device, and provides stable and highly accurate measurements. be able to.
  • the base 10 may be configured to be able to adjust the position of the living body Ob with respect to the light irradiation unit 20 by varying the height of the main surface 10a in the vertical direction.
  • the positional relationship of the living body Ob with respect to the light irradiation unit 20 is adjusted according to the shape of the individual living body Ob so that the laser beam is focused and irradiated to the blood vessel region Mp located inward from the epidermis in the subject part Mp0. can be adjusted to suit.
  • the position of the living body Ob with respect to the light irradiation unit 20 is regulated so that the blood vessel region Mp located inward from the epidermis in the subject part Mp0 and the laser light focusing region FA overlap in the XZ plane.
  • the position of the photodetector 30 with respect to the living body Ob in that direction can be adjusted.
  • a predetermined angle such as perpendicularly
  • the position of the photodetector 30 with respect to the living body Ob in that direction can be adjusted. may be configured.
  • the center of the screen 30a of the photodetector 30 and the position where the laser beam L1 is focused and irradiated onto the subject part Mp0 are aligned with the optical path Op2 of the photodetector 30.
  • the positions of the photodetectors 30 can be adjusted so that they generally coincide or overlap in a vertical manner.
  • the base 10 has different angles of the main surface 10a with respect to the optical path of the laser beam L1 within a plane defined by the optical path Op1 of the laser beam L1 and the optical path Op2 from the subject part to the photodetector 30.
  • the first angle and the second angle may be configured to be adjustable simultaneously.
  • the incident angle A and the installation angle B with respect to the subject part Mp0 can be adjusted simultaneously according to the shape of the individual living body Ob.
  • the position of the photodetector 30 with respect to the living body Ob in this direction can be adjusted.
  • the position of 30 is adjusted based on the concentration of the substance in the blood so that the image of the signal light emitted from the blood vessel region Mp is transferred by the imaging lens 40 and formed on the light receiving surface of the photodetector. It may be configured so that
  • the optical path of the photodetector 30 is adjusted so that the image Im1 at a depth corresponding to the blood vessel region Mp in the subject part Mp0 is transferred to the screen 30a of the photodetector 30 as an image Im2 of an equivalent size.
  • the position parallel to Op2 can be adjusted.
  • the photodetector 30 can be positioned at a sufficiently high level relative to the background light. It is possible to receive high-intensity signal light, achieve a high S/N ratio, and enable highly accurate measurement.
  • the base 10 includes the rotation stage mechanism 11 and the height adjustment mechanism 12, and the base 10 is configured to adjust the blood vessel region Mp included in the subject part Mp0 of the living body Ob suitable for irradiation with the laser beam L1.
  • the angle and height of the base 10 are adjusted so as to be regulated to a prescribed position and angle.
  • FIG. 12 is a schematic diagram showing an aspect of the blood substance concentration measuring device 1A according to the second embodiment during measurement.
  • a blood substance concentration measuring device 1A (hereinafter sometimes referred to as "apparatus 1A") according to the second embodiment includes a base 10, a light irradiation section 20, a photodetector 30, and an imaging lens 40. , the measurement control unit 60A, the movable mechanism 71, the rotation stage mechanism 11, the position adjustment mechanism 12A, the imaging means 91A disposed in the normal direction of the main surface 10a of the base 10, and the main A configuration including an imaging means 92A arranged in a direction parallel to the surface 10a is adopted.
  • the base 10 has a position adjustment mechanism 12A that can vary the height ht in the direction perpendicular to the main surface 10a and change the position (X1A, Y1A) in the plane direction (X1-Y1 direction) parallel to the main surface 10a. It is equipped with
  • the base 10 has a different angle ⁇ C (see FIG. 3) of the main surface 10a with respect to the optical path Op1 of the laser beam L1 and the optical path Op2 of the signal beam L2 in the laser beam incident plane.
  • the rotary stage mechanism 11 is mechanically connected to the rotary stage mechanism 11.
  • the rotation stage mechanism 11 includes, for example, a motor, and constitutes an angle changing mechanism that can reversibly rotate around a rotation axis CL parallel to the Y1 axis.
  • the rotation axis CL may be configured to intersect with the spatial position where the subject part Mp0 exists.
  • the rotation stage mechanism 11 is driven by a motor driven by a control signal issued from the measurement control unit 60A, and rotates by operating the angle changing mechanism to rotate the base 10 connected to the rotation stage mechanism 11 around the rotation axis CL. Rotate.
  • the incident angle A (see FIG. 3) of the laser beam L1 irradiated from the light irradiation unit 20 on the subject part Mp0, and the installation angle B of the photodetector 30 with respect to the subject part Mp0 (see FIG. ) can be adjusted at the same time.
  • the incident angle A and the installation angle B can be simultaneously set to predetermined angles ⁇ A and ⁇ B (see FIG. 3), respectively.
  • the configurations of the light irradiation unit 20, photodetector 30, imaging lens 40, and movable mechanism 71 in the device 1A are the same as those in the device 1.
  • the laser beam L1 irradiated from the light irradiation section 20 is irradiated onto the subject part Mp0 of the living body Ob, and the signal light L2 reflected by the subject part Mp0 is received by the photodetector 30.
  • the photodetector 30 is connected to a movable mechanism 71, and is configured to be able to change the position of the photodetector 30 with respect to the base 10. That is, by operating the movable mechanism 71 based on a control signal from the measurement control unit 60A, the photodetector 30 is controlled to transmit the signal light L2 from the laser beam focusing area FA in the subject part Mp0 to the photodetector 30. It is configured to be reversibly movable in a direction parallel to the optical path Op2. Similarly, it is configured to be reversibly movable also in a direction perpendicular to the optical path Op2 of the signal light L2. Further, the movable mechanism 71 may be configured to move the imaging lens 40 together with the photodetector 30.
  • the imaging means 91A and the imaging means 92A are imaging means using, for example, a CCD (Charge Coupled Device) image sensor, etc., to take an image of the living body Ob.
  • the imaging means 91A is disposed facing the main surface 10a in the normal direction of the main surface 10a of the base 10, and captures an image of the living body Ob placed on the main surface 10a in plan view.
  • the imaging means 92 is disposed on the side of the main surface 10a of the base 10, facing the direction of the base 10, and captures an image of the living body Ob placed on the main surface 10a viewed from the side. Take an image.
  • the image data captured by the imaging means 91A and the imaging means 92A is output to the measurement control section 60A.
  • the measurement control unit 60A detects an image portion corresponding to the living body Ob from the received image, calculates the amount of positional deviation between the image portion and the reference position where it should be, and sends a control signal to compensate for this to the position adjustment mechanism. Output to 12A.
  • the position adjustment mechanism 12A adjusts the height in the direction perpendicular to the main surface 10a based on the control signal, for example, when a height deviation in the height direction is detected based on the image from the imaging means 92A.
  • the height ht is changed to compensate for the height deviation of the living body Ob.
  • the position adjustment mechanism 12A adjusts the position adjustment mechanism 12A in the plane direction (X1-Y1 direction) of the main surface 10a based on the control signal, for example, when a positional shift in the plane direction is detected based on the image from the imaging means 91A.
  • the position (X1A, Y1A) of the base 10 is changed to compensate for the positional shift of the living body Ob in the plane direction.
  • the amount of angular deviation from the reference angle that should be originally calculated is outputted to the position adjustment mechanism 12A to compensate for this, and the base 10 connected by the rotation stage mechanism 11 is moved around the rotation axis CL.
  • the deviation of the angle ⁇ C may be compensated for by rotating the circumference.
  • the imaging means 91A and 92A use an image detected and captured using a wavelength different from that of the laser light L1, for example. , detect the positions of the laser beam focusing area FA and the object part Mp0, and drive the rotation stage mechanism 11 and the position adjustment mechanism 12A based on the detection results to adjust the positions of the object part Mp0 and the laser beam focusing area.
  • a configuration may also be adopted in which position control is performed so that the FA generally coincides with the FA.
  • the subject part Mp0 and the laser beam condensing area FA can be roughly aligned with high accuracy.
  • FIG. 13 is a schematic diagram showing an embodiment of the apparatus 1A.
  • a laser light source with a wavelength selected from the range of 2.5 ⁇ m or more and 12 ⁇ m or less was used in the light irradiation unit 20, and the incident angle A was 65 degrees.
  • Near-infrared and mid-infrared sensors were used as the photodetector 30, and the installation angle B was 25 degrees.
  • the focus depth of the detector was selected from 0.5 mm to 3.5 mm inside the skin of the living body, and in this example, it was 1.5 mm.
  • the base 10 is made of a rectangular parallelepiped-shaped member.
  • the base 10 on the main surface 10a on which the living body Ob, which is the subject, is placed, there is a plate for regulating the position (X1A, Y1A) of the living body Ob in the plane direction (X1-Y1 direction) parallel to the main surface 10a.
  • a guide member 122 is arranged. The guide member 122 is configured to ensure positional accuracy of the living body Ob in a plane direction parallel to the main surface 10a by confirming the position from the normal direction of the main surface 10a and installing it.
  • a support member 121 is disposed on the side surface of the base 10, and is configured to be able to reversibly slide the base 10 in a direction perpendicular to the main surface 10a, and has a height ht in the direction perpendicular to the main surface 10a of the living body Ob. Equipped with different functions.
  • the guide member 122 and the holding member 121 realize the function of the position adjustment mechanism 12A.
  • the embodiment of the apparatus 1A includes a rotor 111 and a stator member 112 that constitute the rotation stage mechanism 11.
  • a rotor 112 is mechanically connected to the side surface of the holding member 121 disposed on the side surface of the base 10, further to the side thereof.
  • the rotor 111 is rotatably held by the stator member 112 via a rotation axis CL parallel to the Y1 axis, and the rotor 111 is configured to be reversibly rotatable around the rotation axis CL.
  • the rotation axis CL is arranged at a position intersecting with the subject part Mp0 of the living body Ob placed on the main surface 10a of the base 10.
  • a lead screw 711 is inserted into the stator member 112 and stands up from the base member 712 in a direction parallel to the optical path Op2 from the laser beam focusing area FA in the subject part Mp0 to the photodetector 30. As the lead screw 711 rotates, the stator member 112 and the base 10 connected thereto are configured to be reversibly linearly movable in a direction parallel to the optical path Op2.
  • the stator member 112 includes a linear movement mechanism (not shown) that can reversibly slide relative to the base member 712 in a direction perpendicular to the optical path Op2.
  • the base 10 connected to the stator member 112 is configured to be reversibly movable in a direction perpendicular to the optical path Op2 by the linear motion mechanism.
  • the function of the movable mechanism 71 is realized by the stator member 112, the lead screw 711, and the base member 712.
  • an imaging means 92A is provided in a direction parallel to the main surface 10a of the base 10.
  • the imaging means 92A may be arranged on the axis of rotation CL that intersects with a spatial position corresponding to the subject part Mp0 of the living body Ob placed on the main surface 10a of the base 10. .
  • the height ht of the base 10 in the direction perpendicular to the main surface 10a is changed to compensate for the height deviation of the living body Ob. It was configured to do this.
  • the imaging means 91A for capturing an image of the living body Ob in a plane direction (X1-Y1 direction) parallel to the main surface 10a is omitted, and the position in the plane direction (X1A, Y1A) is regulated. This function is realized by the guide member 121.
  • Comparative example As a comparative example, the results of measuring blood sugar levels by SMBG using a commercially available blood sugar level measuring device were used.
  • Test method Using the back side of the index finger of an adult male test subject as a test subject, blood sugar measurements were performed at approximately constant time intervals from 12:00 to 21:30 using an example using device 1A and a comparative example using SMBG. In the measurement using the apparatus 1A, the living body Ob was placed on the main surface of the base, and the measurement was performed at the same time in the example and the comparative example.
  • FIG. 14 is a diagram showing the results of a blood substance concentration measurement test using an example of the device 1A and a comparative example using SMBG. As shown in Figure 14, the measured values of the example were within ⁇ 5% on average compared to the measured values of the comparative example at the same time, and are in good agreement with the comparative example, which is a commercially available product that shows the current level. It can be seen that As a result, it was confirmed that the device 1A can suppress changes in measurement results due to differences in how the part to be measured is placed on the device, and can stably perform highly accurate measurements.
  • the blood substance concentration measuring device 1A has the configuration according to the first embodiment, and further includes the imaging means 91A and the imaging means 92A that take images including the living body Ob.
  • the measurement control unit 60A detects an image part corresponding to the living body Ob from the acquired image, calculates the amount of positional deviation of the image part from the reference position where it should be, and the base 10 detects the positional deviation amount from the reference position where the image part should originally be.
  • the height of the main surface 10a in the vertical direction may be changed to compensate for the amount.
  • the imaging means 91A and the imaging means 92A direct the light irradiation section 20 of the living body Ob so that the laser light is focused and irradiated onto the blood vessel region Mp located inward from the epidermis in the subject part Mp0.
  • the positional relationship can be easily adjusted according to the shape of each living body Ob.
  • the measurement control unit 60A calculates the amount of angular deviation from the reference angle at which the image portion corresponding to the living body Ob should originally be from the acquired image, and the base 10
  • the angle of the main surface 10a with respect to the optical path Op1 of the laser beam L1 can be changed in a plane determined by the optical path Op2 from the optical path Op2 to the photodetector 30, so as to compensate for the angular shift amount calculated based on the acquired image. It may also be a configuration.
  • the incident angle A and the installation angle B with respect to the subject part Mp0 can be adjusted simultaneously and easily in accordance with the shape of the individual living body Ob.
  • the subject can more easily measure the blood substance concentration without being concerned about how the part to be measured is placed on the device, the incidence of the laser, or the installation angle of the detector. be able to.
  • a blood substance concentration measuring device 1B according to Embodiment 3 will be explained using the drawings.
  • the measurement is performed with the palm surface of the finger, which is the living body Ob, in contact with the base 10, and the back side of the finger is used as the subject part Mp0.
  • a configuration may also be adopted in which the measurement is performed using another site as the subject part.
  • FIG. 13 is a schematic diagram showing an aspect of the blood substance concentration measuring device 1B according to the third embodiment during measurement.
  • the blood substance concentration measuring device 1B (hereinafter sometimes referred to as "device 1B") has a configuration in which measurement is performed by irradiating a laser beam onto the forehead instead of the finger as a living body Ob, and the living body Ob is mounted.
  • the apparatus 1B detects the positions of the object part Mp0 and the laser beam focusing area FA using the imaging means 91A and 92A, and detects the positions of the object part Mp0 and the laser beam focusing area FA based on the detection results. Measurement is performed by positionally controlling the focusing position of the laser beam so that the laser beam focusing area FA generally coincides with the laser beam focusing area FA.With such a configuration, the blood substance concentration can be measured more easily.
  • the apparatus 1B according to the third embodiment may be configured to perform measurement using an exposed part of the skin other than the forehead as the subject part Mp0 to be measured, as another part of the body.
  • the laser beam L1 irradiated from the light irradiation unit 20 is irradiated onto the subject part Mp0 of the living body Ob, and the signal light L2 reflected by the subject part Mp0 is received by the photodetector 30.
  • Ru The configurations of the light irradiation section 20, photodetector 30, imaging lens 40, and movable mechanism 71 in the device 1B are the same as the configurations of the device 1 in the first and second embodiments.
  • the device 1B includes a light irradiation angle adjustment mechanism 93B, which is a structural member that holds the light irradiation unit 20 and the photodetector 30 via a movable mechanism 71, between the light irradiation unit 20 and the photodetector 30. .
  • This light irradiation angle adjustment mechanism 93B has a function of defining the position and angle of the photodetector 30 and the light irradiation unit 20 so that the optical path Op1 of the laser beam L1 and the optical path Op2 of the signal light L2 intersect at a predetermined position. .
  • the light irradiation angle adjustment mechanism 93B includes an angle change mechanism that includes a motor and is reversibly rotatable around a rotation axis CL that is parallel to the Y1 axis.
  • the rotation axis CL may be configured to intersect with the spatial position where the subject part Mp0 exists in the three-dimensional space.
  • the laser beam irradiation angle adjustment mechanism 93B a motor is driven by a control signal issued from the measurement control section 60B to operate the angle change mechanism. Then, the light irradiation section 20 and the photodetector 30 held by the laser beam irradiation angle adjustment mechanism 93B are rotated around the rotation axis CL. Thereby, the incident angle A of the laser beam L1 irradiated from the light irradiation unit 20 onto the subject part Mp0 and the installation angle B of the photodetector 30 with respect to the subject part Mp0 can be adjusted simultaneously. As a result, according to the laser beam irradiation angle adjustment mechanism 93B, the incident angle A and the installation angle B can be simultaneously set to predetermined angles ⁇ A and ⁇ B, respectively.
  • the light irradiation angle adjustment mechanism 93B is connected with a position adjustment mechanism 94B that changes the position of the light irradiation angle adjustment mechanism 93B within the laser light incident plane.
  • the position adjustment mechanism 94B operates the position adjustment mechanism 94B in response to a control signal from the measurement control unit 60B and moves the light irradiation angle adjustment mechanism 93B within the laser beam incidence plane, thereby adjusting the laser beam L1 to the skin surface of the living body Ob.
  • the intersection of the optical path Op1 of the signal light L2 and the optical path Op2 of the signal light L2 can be moved to the position where the object part Mp0 of the living body Ob should be.
  • a movable mechanism 71 is interposed between the photodetector 30 and the light irradiation angle adjustment mechanism 93B, and is configured to be able to change the position of the photodetector 30 with respect to the light irradiation angle adjustment mechanism 93B. ing. That is, by operating the movable mechanism 71 based on the control signal from the measurement control unit 60B, the photodetector 30 is moved in a direction parallel to the optical path Op2 of the signal light L2 from the subject part Mp0 to the photodetector 30, and It can be moved reversibly in the vertical direction.
  • the movable mechanism 71 may be, for example, a linear motion mechanism using a lead screw or the like, or a MEMS actuator using a piezoelectric element. Further, the movable mechanism 71 may be configured to move the imaging lens 40 together with the photodetector 30.
  • the apparatus 1B includes an imaging means 91A disposed in the normal direction to the skin surface near the subject part Mp0 of the living body Ob, and an imaging means 92A disposed in a direction parallel to the skin surface.
  • the imaging means 91A and the imaging means 92A are imaging means that take images of the living body Ob.
  • the imaging means 91A is disposed so as to face the subject part Mp0 in the normal direction of the skin surface of the living body Ob, captures an image of the skin surface of the living body Ob in plan view, and transmits the image data to the measurement control unit 60B.
  • the imaging means 92A is disposed on the side of the skin surface of the living body Ob, facing the direction of the subject part Mp0, and captures an image of the living body Ob viewed from the side, and transmits the image data to the measurement control unit 60B. Output to.
  • the measurement control unit 60B detects an image part corresponding to the living body Ob from the received image, calculates the positional deviation of the image part from the reference position where it should originally be, and adjusts the position by using a control signal to compensate for this positional deviation. Output to mechanism 94B.
  • the position adjustment mechanism 94B adjusts the position in the direction perpendicular to the skin surface of the living body Ob based on the control signal.
  • the height ht of the living body Ob is changed to compensate for the height deviation of the living body Ob.
  • the position adjustment mechanism 94B operates in a direction parallel to the skin surface of the living body Ob (X1-Y1
  • the positions X1A and Y1A of the light irradiation angle adjustment mechanism 93B in the direction) are changed to compensate for the positional deviation of the light irradiation section 20 and the photodetector 30 in the plane direction.
  • the imaging means 91A and 92A detect the position of the laser beam condensing area FA and the object part Mp0, and the detection result is Based on this, the position adjustment mechanism 94B and/or the irradiation angle adjustment mechanism 93B may be driven to control the position so that the subject part Mp0 and the laser beam focusing area FA generally coincide with each other.
  • the subject can more easily measure the blood substance concentration without being concerned about how the part to be measured is placed on the device, the incidence of the laser, or the installation angle of the detector.
  • the blood substance concentration measuring device 1B has the configuration according to the second embodiment, and further includes the structure in which the light irradiation section 20 and the photodetector 30 are held and rotated. Accordingly, a configuration may be provided in which a light irradiation angle adjustment mechanism 93B that changes the angle of the optical path Op2 of the laser beam L1 and the signal beam L2 with respect to the skin surface of the living body Ob in the laser beam incident plane is provided.
  • the angle of incidence A of the laser beam L1 irradiated from the light irradiation unit 20 on the subject part Mp0 and the installation angle B of the photodetector 30 with respect to the subject part Mp0 are simultaneously adjusted, and the angle of incidence of the laser beam L1 on the subject part Mp0 is adjusted simultaneously.
  • the positions and angles of the photodetector 30 and the light irradiation section 20 can be defined so that the optical path Op1 and the optical path Op2 of the signal light L2 intersect at a predetermined position.
  • a configuration may be adopted in which a position adjustment mechanism 94B that changes the position of the light irradiation angle adjustment mechanism 93B in the laser light incident plane is further provided.
  • a position adjustment mechanism 94B that changes the position of the light irradiation angle adjustment mechanism 93B in the laser light incident plane is further provided.
  • the subject can more easily measure the blood substance concentration without being concerned about how the part to be measured is placed on the device, the incidence of the laser, or the installation angle of the detector. be able to.
  • glucose is used as an example of the measurement target substance (first blood substance) to be detected by the blood substance concentration measuring device.
  • the blood components that can be detected by the blood substance concentration measuring device according to the present disclosure are not limited to the above, and the wavelength of the laser beam L1 emitted by the light irradiation unit 20 may be changed depending on the type of blood component. By making the difference, the device can be widely used for other detection targets.
  • the wavelength of the laser beam L1 emitted by the light irradiation unit 20 may be 8.23 ⁇ 0.05 ⁇ m (8.18 ⁇ m or more and 8.28 ⁇ m or less), and the blood component may be lactic acid.
  • the wavelength may range from 5.77 ⁇ m, 6.87 ⁇ m, 7.27 ⁇ m, 8.87 ⁇ m, or 9.55 ⁇ m to ⁇ 0.05 ⁇ m or more and +0.05 ⁇ m or less.
  • the inventors' experiments have confirmed that the lactic acid concentration measured by the photodetector when the wavelength of the light emitted by the light irradiation unit 20 is 8.23 ⁇ m is generally correlated with the lactic acid concentration measured by self-blood sampling. ing.
  • the embodiments have been described using hemoglobin as an example of the reference substance (second blood substance) to be detected in the reference measurement.
  • the reference substance according to the present disclosure is not limited to the above, and by changing the wavelength of the laser beam L1 emitted by the light irradiation unit 20 according to the type of blood component used as the reference substance, other substances can be used. It can also be used for reference substances.
  • the wavelength of the emitted laser light L1 can be switched and adjusted by adjusting the type and matching conditions of the nonlinear optical crystal 223 in the optical parametric oscillator 22.
  • the light irradiation unit 20 by making it possible to selectively use a plurality of optical parametric oscillators 22 and adopting a device configuration that can selectively irradiate laser beams L1 of a plurality of wavelengths, it is possible to detect a plurality of types of blood components. It may also be a device that can measure.
  • the light emitted from the light source 21 is switched and input to a plurality of optical parametric oscillators that emit light of different wavelengths, and the light of different wavelengths is selectively emitted from each optical parametric oscillator, and reference measurements and measurements are performed using each wavelength. It is also possible to adopt a mode in which the main measurement for the object can be performed selectively.
  • a configuration may be adopted in which a plurality of light irradiation units 20 that emit light of different wavelengths are used, and light from the two light irradiation units 20 is selectively emitted as laser light L1 using an optical coupler, a mirror, etc. .
  • the condenser lens 50, the base 10, the imaging lens 40 an optical system consisting of a photodetector 30 capable of detecting mid-infrared light can be shared.
  • the first laser beam for object measurement and the second laser beam for reference measurement have different wavelengths.
  • any configuration is sufficient as long as the first laser beam for target measurement is absorbed by the measurement target material and the second laser beam for reference measurement is absorbed by the reference material. It may be configured such that the irradiation conditions other than the wavelength are different from those of the laser beam.
  • the first laser beam and the second laser beam may have different intensities of light emitted from the irradiation section.
  • the measurement target substance and the reference substance are composed of different blood substances.
  • the reference measurement may be performed using the same substance as the measurement target substance.
  • the blood substance concentration measuring device is exemplified by an optical system including an imaging lens 40 between the subject Mp0 and the photodetector 30.
  • the blood substance concentration measuring device according to the present disclosure only needs to have a configuration in which the signal light L2 reflected from the blood vessel region Mp of the living body Ob is imaged on the photodetector 30, and a separate optical system is used as the light receiving side optical system.
  • the aspect may be changed as appropriate. For example, a configuration using a plurality of lenses or a configuration in which a mirror is placed in the middle of the optical path may be used.
  • the order in which the above method is executed is merely an example for specifically explaining the present invention, and an order other than the above may be used. Further, some of the above methods may be executed simultaneously (in parallel) with other methods.
  • a blood substance concentration measuring device, a blood substance concentration measuring method, and a program according to one aspect of the present disclosure can be used to routinely measure blood substance states such as blood sugar levels and blood lipid levels in the prevention and treatment of lifestyle-related diseases. It can be widely used as a medical device for measuring.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

生体OBの基台10の主面10aと相対する側の皮膚表面と生体の反対側に位置する皮膚中にある被検体部Mp0の特定の領域にレーザー光を集光する光照射部20と、基台の主面側において、レーザー光から一部の波長の光の強度が弱められた信号光を受光して強度を検出する光検出器30と、レーザー光集光領域FAから発せられた信号光の像を光検出器上に結像可能な位置に配されたレンズ40と、信号光の強度に基づき血中物質の濃度を測定する測定制御部60を備え、被検体部の皮膚表面の法線とレーザー光L1の光路のなす角度Aは、法線とレーザー光集光領域から光検出器への信号光L2の光路のなす角度Bと相違し、レーザー光集光領域と重なる血管領域Mpから発せられる信号光の像がレンズによって光検出器の受光面上に結像する。

Description

血中物質濃度測定装置、血中物質濃度測定方法、及びプログラム
 本開示は、生体の血管内を流れる血液に含まれる物質の濃度を非侵襲式の測定方法により測定する装置及び方法に関する。
 生活習慣病の予防・治療において、日常的に血糖値、血中脂質値等の血中物質状態を調べることは重要である。なかでも、生活習慣病の一つである糖尿病の患者に対して、合併症を防止するために、血液中に含まれるグルコースの濃度を測定して日常的に血糖値を管理することが要求されており、患者から採血を行い血液中の化学分析を行う侵襲法が従来から行われている。
 これに対し、近年、採血を伴わず体内の血液中の状態を光学的に分析する簡便な非侵襲法が提案されている(例えば、特許文献1、2)。
国際公開第2016/117520号 特開2009-168670号公報
 ところが、特許文献1、2に記載の血中物質濃度測定装置では、測定装置の外表面の設けられた光照射窓に被測定部位を当接させて計測を行う構成であるため、光照射窓への被測定部位の載せ方の違いによって、被測定部位に付勢される圧力や測定の位置等が変化して測定結果が変化することがあり、安定して十分な測定精度を得ることが難しいという課題があった。
 本開示は、上記課題に鑑みてなされたものであり、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができる血中物質濃度測定装置、血中物質濃度測定方法、及びプログラムを提供することを目的とする。
 上記目的を達成するため、本開示の一態様に係る血中物質濃度測定装置は、生体の被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定装置であって、主面上に前記生体を載置可能な基台と、前記基台の前記主面側から、前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部中の特定の領域にレーザー光を集光させて照射する光照射部と、前記基台の前記主面側において、前記レーザー光に基づく反射光であって、前記レーザー光から一部の波長の光の強度が弱められた信号光を受光して、その強度を検出する光検出器と、前記被検体部と前記光検出器との間であって、前記被検体部中のレーザー光集光領域から発せられた前記信号光の像を光検出器上に結像可能な位置に配された結像レンズと、前記信号光の強度に基づき前記レーザー光集光領域における前記血中物質の濃度を測定する測定制御部を備え、前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記レーザー光集光領域から前記光検出器への前記信号光の光路とのなす第2の角度と相違し、前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域と前記レーザー光集光領域とが重なるように規定され、前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域Mpから発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定されることを特徴とする。
 本開示の一態様に係る血中物質濃度測定装置、血中物質濃度測定方法、及びプログラムによれば、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができる。
実施の形態1に係る血中物質濃度測定装置1の計測時の態様を示す模式図である。 血中物質濃度測定装置1の構成を示す側面図である。 図2における基台に載設された生体の部分を示す拡大図である。 血中物質濃度測定装置1における光照射部20の構成を示す模式図である。 血中物質濃度測定装置1における受光側光路の概要を説明するための図である。 血中物質濃度測定装置1における光照射部20から光検出器30までの光路の概要を示す模式図である。 血中物質濃度測定装置1による、レーザー光集光領域FAから光検出器30までの光路長の調整動作を説明するための模式図である。 血中物質濃度測定装置1による血中物質濃度の測定における、生体表面におけるレーザー光照射位置を示す図である。 血中物質濃度測定装置1による血中物質測定動作の一態様を示すフローチャートである。 血中物質濃度測定装置1による血中物質測定動作の別の態様を示すフローチャートである。 血中物質濃度測定装置1による血中物質測定動作のさらに別の態様を示すフローチャートである。 実施の形態2に係る血中物質濃度測定装置1Aの計測時の態様を示す模式図である。 血中物質濃度測定装置1Aの実施例の態様を示す模式図である。 図14は、装置1Aの実施例とSMBGによる比較例を用いた血中物質濃度測定試験の結果を示す図である 実施の形態3に係る血中物質濃度測定装置1Bの計測時の態様を示す模式図である。
 ≪本発明を実施するための形態の概要≫
 本開示の実施の形態に係る血中物質濃度測定装置は、
 生体Obの被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定装置であって、
 主面上に前記生体を載置可能な基台と、
 前記基台の前記主面側から、前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部中の特定の領域にレーザー光を集光させて照射する光照射部と、
 前記基台の前記主面側において、前記レーザー光に基づく反射光であって、前記レーザー光から一部の波長の光の強度が弱められた信号光を受光して、その強度を検出する光検出器と、
 前記被検体部と前記光検出器との間であって、前記被検体部中のレーザー光集光領域から発せられた前記信号光の像を光検出器上に結像可能な位置に配された結像レンズと、
 前記信号光の強度に基づき前記レーザー光集光領域における前記血中物質の濃度を測定する測定制御部を備え、
 前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記レーザー光集光領域から前記光検出器への前記信号光の光路とのなす第2の角度と相違し、
 前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域Mpと前記レーザー光集光領域とが重なるように規定され、
 前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域Mpから発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定されることを特徴とする。
 係る構成により、基台の主面側から、生体の主面と相対する側の皮膚表面と反対側に位置する被検体部中の特定の領域にレーザー光を集光させて照射し、基台の主面側において、レーザー光に基づく反射光、すなわち、レーザー光から一部の波長の光の強度が弱められた信号光を受光して測定することにより、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができる。
 また、別の態様では、上記何れかの態様において、前記基台は、前記主面の垂直な方向の高さを異ならせることにより、前記生体の前記光照射部に対する位置を調整可能に構成されていてもよい。
 係る構成により、被検体部における表皮より内方に位置する血管領域にレーザー光が集光して照射されるように、生体の光照射部に対する位置関係を個別の生体の形状に合せて調整することができる。これにより、被検体部における表皮より内方に位置する血管領域とレーザー光集光領域とがXZ平面内において重なるように、生体の光照射部に対する位置が規制される。
 また、別の態様では、上記何れかの態様において、前記光検出器の位置を、前記信号光の光路と交わる方向に異ならせることにより、当該方向における前記光検出器の前記生体に対する位置を調整可能に構成されていてもよい。
 係る構成により、光検出器のスクリーンの中心と、被検体部にレーザー光が集光して照射される位置(レーザー光集光領域)とが光検出器の光路と垂直な方法において概ね一致するように、あるいは一部が重なるように、光検出器の位置を調整することができる。
 また、別の態様では、上記何れかの態様において、前記基台は、前記レーザー光の光路と前記被検体部から前記光検出器までの光路とによって定まる平面内において、前記レーザー光の光路に対する前記主面の角度を異ならせることにより、前記第1の角度及び前記第2の角度を同時に調整可能に構成されていてもよい。
 係る構成により、被検体部に対する入射角と設置角を個別の生体の形状に合せて同時に調整することができる。
 また、別の態様では、上記何れかの態様において、前記光検出器の位置を、前記信号光の光路に沿った方向に異ならせることにより、当該方向における前記光検出器の前記生体に対する位置を調整可能に構成されており、
 前記光検出器の位置は、前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像する状態になるよう、前記血中物質の濃度に基づいて調整される構成としてもよい。
 係る構成により、光検出器のスクリーンに、被検体部中の血管領域に相当する深度の像が等価な大きさの像として転送されるように、光検出器の光路と平行な位置を調整することができる。
 その結果、結像レンズによりレーザー光集光領域から発せられた信号光を光検出器のスクリーン上に結像させることにより、光検出器は、背景光に対し十分に高い強度の信号光を受光することができ、高いS/N比を実現し、高精度の測定が可能とすることができる。
 また、別の態様では、上記何れかの態様において、前記光照射部は、計測対象物質である第1の血中物質に吸収される対象測定用の第1のレーザー光と、リファレンス物質である第2の血中物質に吸収されるリファレンス測定用の第2のレーザー光とを選択的に照射可能に構成されており、
 前記リファレンス測定における、前記第2のレーザー光が前記第2の血中物質に吸収される吸収率は、前記対象測定において、前記第1のレーザー光が前記第1の血中物質に吸収される吸収率よりも大きい構成としてもよい。
 係る構成により、血管からの信号光が検出された検出器の位置で、光照射部から第1のレーザー光を集光させて照射して、検出器によりレーザー集光領域からの信号光を受光することにより、被験者の皮膚表面からの深さ方向の血管位置の個体差によらず、第1の血中物質の濃度を常に確度の高い計測を安定して行うことができる。そのため、計測対象の個体差にかかわらず、精度の高い計測を安定して行うことができる。
 また、別の態様では、上記何れかの態様において、前記リファレンス物質は、前記計測対象物質よりも血中における濃度の安定性が高い構成としてもよい。
 係る構成により、リファレンス物質についてリファレンス測定を行った後に、対象測定を行うことで、計測対象の測定精度を向上できる。
 また、別の態様では、上記何れかの態様において、前記測定制御部は、前記第2のレーザー光の照射に基づいて、前記特定の領域が前記被検体部中の血管領域に含まれている状態における、前記第2の血中物質の濃度を測定し、
 前記第1のレーザー光の照射に基づいて、前記特定の領域における前記第1の血中物質の濃度を、前記計測対象部分における前記第1の血中物質の濃度として測定可能に構成されてもよい。
 係る構成により、レーザー集光領域が被検体部中の血管領域に含まれている状態において第1の血中物質の濃度を測定することができる。
 また、別の態様では、上記何れかの態様において、前記レーザー光の光路における、前記光照射部と前記被検体部との間に位置し前記レーザー光を前記照射領域に集光させる集光レンズを備えた構成としてもよい。
 係る構成により、測定ごとの血中物質濃度の測定結果のばらつきを減少できる。
 また、別の態様では、上記何れかの態様において、前記被検体部から前記光検出器までの光路における前記対象載置部から前記光検出器までの区間において、前記信号光は前記結像レンズを通過する区間を除いて空間中を伝播し、
 前記光照射部から前記被検体部までの光路における前記光照射部から前記対象載置部までの区間において、前記レーザー光は前記集光レンズを通過する区間を除いて空間中を伝播する構成としてもよい。
 係る構成により、導波路を用いた特許文献1に記載の従来の装置と比較して、皮膚表面で散乱された反射光による偽信号(ノイズ)成分を減少することができ光計測におけるS/N比を向上できる。
 また、別の態様では、上記何れかの態様において、さらに、前記生体を含む画像を撮像する撮像手段を備え、
 前記測定制御部は、取得された画像から前記生体に相当する画像部分を検出して当該画像部分が本来あるべき基準位置との位置ずれ量を算出し、
 前記基台は、前記位置ずれ量を補償するように、前記主面の垂直な方向の高さを変更可能である構成としてもよい。
 係る構成により、生体の光照射部に対する位置を個別の生体の形状に合せて簡便に調整することができる。
 また、別の態様では、上記何れかの態様において、さらに、前記生体を含む画像を撮像する撮像手段を備え、
 測定制御部は、取得された画像から前記生体に相当する画像部分を検出して当該画像部分が本来あるべき基準角度との角度ずれ量を算出し、
 前記基台は、前記角度ずれ量を補償するように、前記レーザー光の光路に対する前記主面の角度を変更可能である構成としてもよい。
 係る構成により、被検体部Mp0に対する入射角と設置角を個別の生体の形状に合せて同時にかつ簡便に調整することができる。
 また、別の態様では、上記何れかの態様において、さらに、前記光照射部と前記光検出器を保持するとともに、回転によりレーザー光入射面内において、前記生体の皮膚表面に対するレーザー光及び信号光の光路の角度を異ならせる光照射角度調整機構を備えた構成としてもよい。
 係る構成により、光照射部から照射されたレーザー光の被検体部への入射角及び被検体部に対する光検出器の設置角を同時に調整して、レーザー光の光路と信号光の光路が所定の位置で交わるように、光検出器と光照射部の位置及び角度を規定することができる。
 また、別の態様では、上記何れかの態様において、さらに、光照射角度調整機構のレーザー光入射面内における位置を異ならせる位置調節機構をさらに備えたとしてもよい
 係る構成により、生体の皮膚表面に対するレーザー光の光路と信号光の光路の交点を生体の被検体部とすべき位置に移動させることができる。これより、被験者は、被測定部位の装置への載せ方や、レーザーの入射や検出器の設置角度にとらわれることなく、より簡便に血中物質濃度の測定を行うことができる。
 また、本開示の実施の形態に係る血中物質濃度測定方法は、生体の被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定方法であって、
 生体を基台の主面上に載置して、前記基台の前記主面側から、光照射部により前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部の特定の領域に、計測対象物質である血中物質に吸収される対象測定用のレーザー光を集光させて照射し、
 前記基台の前記主面側において、前記被検体部と光検出器との間に位置する結像レンズを用いて、前記レーザー光の反射光であって、前記被検体部中のレーザー光集光領域から発せられた、前記レーザー光から一部の波長の光の強度が弱められた信号光の像を光検出器上に結像させ、
 前記光検出器により前記信号光を受光して、その強度に基づき前記特定の領域における前記血中物質の濃度として測定し、
 前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記特定の領域から前記光検出器への前記信号光の光路のなす第2の角度と相違し、
 前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域Mpと前記レーザー光集光領域とが重なるように規定されており、
 前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域Mpから発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定されている構成としてもよい。
 係る構成により、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができる血中物質濃度測定方法を提供できる。
 また、別の態様では、上記何れかの態様において、前記測定に先立って、前記基台の前記主面と垂直な方向の高さを異ならせて、前記生体の前記光照射部に対する位置を調整する構成としてもよい。
 また、別の態様では、上記何れかの態様において、前記測定に先立って、前記光検出器の位置を、前記信号光の光路と交わる方向に異ならせて、当該方向における前記光検出器の前記生体に対する位置を調整する構成としてもよい。
 また、別の態様では、上記何れかの態様において、前記対象測定に先立って、前記レーザー光の光路と前記被検体部から前記光検出器までの光路とによって定まる平面内において前記主面の角度を異ならせて、前記特定の領域における前記血中物質の濃度を測定するリファレンス測定を行うことにより、前記第1の角度及び前記第2の角度を前記血中物質の濃度に基づいて同時に調整する構成としてもよい。
 また、別の態様では、上記何れかの態様において、前記対象測定に先立って、前記光検出器の位置を、前記信号光の光路に沿って異ならせて、前記血中物質の濃度を測定するリファレンス測定を行うことにより、当該方向における前記光検出器の前記生体に対する位置を調整し、
 当該調整では、前記光検出器の位置は、前記血管領域Mpから発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像する状態になるよう、前記血中物質の濃度に基づいて調整される構成としてもよい。
 また、別の態様では、上記何れかの態様において、前記レーザー光を第1のレーザー光、前記血中物質を第1の血中物質、前記血中物質の濃度を第1の血中物質の濃度としたとき、
 前記リファレンス測定では、
 前記光照射部から前記照射領域に、リファレンス物質である第2の血中物質に吸収されるリファレンス測定用の第2のレーザー光が照射され、
 前記結像レンズを用いて、前記特定の領域から反射された前記第2のレーザー光の信号光を前記光検出器上に結像され、
 前記光検出器により前記第2のレーザー光の信号光を受光して、当該信号光に基づく前記第2の血中物質の濃度が、前記計測対象部分における前記第2の血中物質の濃度として測定され、
 前記第2のレーザー光が前記第2の血中物質に吸収される吸収率は、前記対象測定において、前記第1のレーザー光が前記第1の血中物質に吸収される吸収率よりも大きい構成としてもよい。
 また、本開示の実施の形態に係るプログラムは、
 コンピュータに生体の被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定処理を行わせるプログラムであって、
 前記血中物質濃度測定処理は、
 生体を基台の主面上に載置して、前記基台の前記主面側から、光照射部により前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部の特定の領域に、計測対象物質である血中物質に吸収される対象測定用のレーザー光を集光させて照射し、
 前記基台の前記主面側において、前記被検体部と光検出器との間に位置する結像レンズを用いて、前記レーザー光の反射光であって、前記被検体部中のレーザー光集光領域から発せられた、前記レーザー光から一部の波長の光の強度が弱められた信号光の像を光検出器上に結像させ、
 前記光検出器により前記信号光を受光して、その強度に基づき前記特定の領域における前記血中物質の濃度として測定し、
 前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記特定の領域から前記光検出器への前記信号光の光路のなす第2の角度と相違し、
 前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域と前記レーザー光集光領域とが重なるように規定されており、
 前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定されていることを特徴とする。
 係る構成により、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができるプログラムを提供できる。
 ≪実施の形態1≫
 本実施の形態に係る血中物質濃度測定装置1について、図面を用いて説明する。ここで、本明細書では、高さ方向の正方向を「上」方向、負方向を「下」方向とする場合があり、高さ方向の正方向に向いた面を「表」面、負方向に向いた面を「裏」面とする場合がある。また、各図面における部材の縮尺は必ずしも実際のものと同じであるとは限らない。また、「垂直」又は「平行」は、概ね機能が損なわれない範囲において、それぞれ90°又は0°からの角度差を有していてもよい。また、本明細書において、数値範囲を示す際に用いる符号「~」は、その両端の数値を含む。また、本実施形態で記載している、材料、数値等は好ましいものを例示しているだけであり、それに限定されることはない。
 <全体構成>
 血中物質濃度測定装置1(以下、「装置1」と記す場合がある)は、光源から特定の波長のレーザー光を生体の血管領域に照射し、血管領域から発せられる信号光の強度を検出することにより、血管領域における生体の血中物質濃度を非侵襲に測定する医療機器である。レーザー光は、計測対象となる物質に吸収され得る特定の波長の光を用いる。血中物質濃度が高い場合には、物質による吸収に伴い、血管領域からは照射されたレーザー光に対し一部の波長の光の強度が弱められた信号光が発せられるため、装置1は、光検出器により信号光の強度を測定することにより、血中物質濃度を計測するものである。
 図1は、装置1の計測時の態様を示す模式図である。装置1は、被験者が装置1の前面に設けられた開口1aに、被検体である生体Ob(例えば、手指)を挿入して、装置1の内部の基台10の主面10aに生体Obを置くと、基台10の主面10a側に配された光照射部20から、生体Obの主面10aと相対する側の皮膚表面と生体Obの反対側に位置する皮膚中にある被検体部Mp0にレーザー光L1が照射されて、被検体部Mp0で反射された信号光L2を、基台10の主面10a側に配された光検出器30によって受光して計測を行う構成の血中物質濃度装置である。
 図2は、装置1の構成を示す模式図である。図2に示すように、装置1は、基台10、光照射部20、光検出器30、集光レンズ50、結像レンズ40、測定制御部60、光検出ユニット70、絞り80を有する。
 以下、装置1の各部構成について説明する。
 <各部構成>
 (基台10)
 基台10は、計測時に、上方に向いた表面である主面10a上に生体Obが載設される板状部材である。計測中の生体Obの被検体部Mp0の位置を安定させるとともに、生体Obの被検体部Mp0に含まれる血管領域Mpを、レーザー光L1の照射に適した所定の位置及び角度に規制するガイド部材である。
 図3は、図2における基台に載設された生体の部分を示す拡大図である。
 本実施の形態では、生体Obである手指が主面10aに手指の掌面を当接させた状態で載設され、手指の背面側を被検体部Mp0として計測を行う。すなわち、被検体部Mp0は、生体Obの主面10aと相対する側の皮膚表面から見て、当該皮膚表面と生体Obの反対側(図2、3におけるA1)に位置する皮膚の中に存在する。
 基台10の主面10aには、計測位置のマーキングがされており、生体Obをマーキングに合せた状態で、生体Obの手指の掌面を主面10aに接触させることにより、生体Obの手指の背面の皮膚中にある被検体部Mp0を基台10の主面10aから所定の距離に離間した状態で保持することができる。また、マーキングは、主面10aの角度を所定の角度に規制した状態において、マーキングに位置合せされた生体Obの被検体部Mp0が光照射部20及び光検出器30に対し所定の位置となるように、主面10a上の位置が規定されている。
 また、基台10は、光照射部20から照射されたレーザー光L1が主面10a側から入光するように配されている。また、生体Obの被検体部Mp0へのレーザー光L1の入射角Aが所定の角度θAとなるように、主面10aの光照射部20に対する相対的な角度が規制されている。
 ここで、入射角Aとは、基台10の主面10aに載置された生体Obの皮膚表面に対する法線を基準とする、光照射部20からレーザー光L1が集光される被検体部Mp0の領域(以後、「レーザー光集光領域FA」と記す場合がある)に至るレーザー光L1の光路Op1の角度θAを指す。
 同時に、基台10は、生体Obの被検体部Mp0に対する光検出器30の設置角Bが所定の角度θBとなるように、主面10aの光検出器30に対する相対的な角度が規制されている。
 ここで、設置角Bとは、基台10の主面10aに載置された生体Obの皮膚表面に対する法線を基準とする、被検体部Mp0中のレーザー光集光領域FAから光検出器30への信号光L2の光路Op2の角度を指す。このとき、角度θAは、設置角Bと相違する。
 すなわち、装置1では、基台10の主面10aに対し光照射部20が位置規制され、同時に、基台10の主面10a及び光照射部20に対し光検出器30が、後述する可動機構71を介して位置規制されている。そのため、装置1は、入射角Aが所定の角度θAとなる状態において設置角Bが所定の角度θBとなるよう構成することができる。
 係る構成からなる基台10を用いることによって、生体Obの手指の掌面を主面10aに接触させるだけで、被検体部Mp0に対するレーザー光L1の入射角Aと、被検体部Mp0に対する光検出器30の設置角Bと、被検体部Mp0にレーザー光L1が照射される位置とを、測定に必要な適正値付近に概ね規制することができる。
 さらに、基台10は、光照射部20から照射されたレーザー光L1の光路と、被検体部から前記光検出器30までの信号光L2の光路とによって定まる平面(以後、「レーザー光入射面」と記す場合がある)内において、レーザー光L1及び信号光L2の光路に対する主面10aの角度θCを異ならせる、回転ステージ機構11を備えて構成されている。
 回転ステージ機構11は、モータが内装された角度変更機構を備え、測定制御部60から発せられる制御信号によってモータが駆動され、角度変更機構を動作させて主面10aの角度θCを変更するとともに、角度θCの情報を測定制御部60に出力する。
 この回転ステージ機構11により、生体Obの皮膚表面の形状が被験者によって異なる場合でも、被検体部Mp0に対する入射角Aと設置角Bを個別の生体Obの形状又は大きさに合せて同時に調整することができる。
 このとき、生体Obが主面10a上のマーキングに位置合せされた状態において、回転による角度θCの変化に伴って、手指の背面の皮膚中にある被検体部Mp0の移動する方向が、手指の背面の皮膚表面に対する法線方向と概ね平行になるように、主面10a、回転ステージ機構11の回動中心、及びレーザー光L1の光路の位置関係が規定されている構成としてもよい。
 これにより、角度θCを変化させて被検体部Mp0に対する入射角A及び設置角Bを調整したときに、生体Obにレーザー光L1が照射される位置が変化することを抑制することができる。
 また、基台10は、主面10aと垂直な方向における高さhtを異ならせることができるように、高さ調整機構12を備えて構成されている。高さ調整機構12には、例えば、リードスクリュー、あるいは、リニアモータ等の周知の直線運動機構を用いることができる。高さ調整機構12は、測定制御部60から発せられる制御信号によって駆動され、直線運動機構を動作させて基台10の高さhtを変更するとともに、高さhtの情報を測定制御部60に出力する。
 この高さ調整機構12により、被検体部Mp0における表皮より内方に位置する血管領域Mpにレーザー光が集光して照射されるように、生体Obにおける被検体部Mp0の光照射部20に対する位置関係を個別の生体Obの形状又は大きさに合せて調整することができる。これにより、被検体部Mp0における表皮より内方に位置する血管領域Mpとレーザー光集光領域FAとが、XZ平面内において重なるように、生体Obの光照射部20に対する位置が規制される。
 また、高さ調整機構12により高さhtを調整することにより、生体Obの手指の厚みに起因する、主面10aから被検体部Mp0(生体Obの手指の背面の皮膚中に存在する)までの距離の変動を吸収することができる。これより、被験者によって相違する生体Obの手指の厚みのばらつきを吸収することができる。
 その結果、被験者の生体Obの手指の厚みが厚い(又は薄い)場合でも、高さ調整機構12により手指の厚みの過不足を補う方向に高さhtを調整することで、生体Obの被検体部Mp0にレーザー光L1が照射される位置、被検体部Mp0に対するレーザー光L1の入射角A、及び被検体部Mp0に対する光検出器30の設置角Bを、測定に必要な適正値付近に規制することができる。
 (光照射部20)
 光照射部20は、生体Obの被検体部Mp0に向けて特定の波長のレーザー光L1を生体に照射する光源である。光照射部20は、計測対象物質である第1の血中物質(以後、「第1の血中物質」と記す場合がある)に吸収される波長に発振する対象測定用のレーザー光(以後、「第1のレーザー光」と記す場合がある)を照射可能に構成されている。
 さらに、装置1では、光照射部20は、レーザー光の波長を変調して、リファレンス物質である第2の血中物質(以後、「第2の血中物質」と記す場合がある)に吸収される波長に発振するリファレンス測定用のレーザー光(以後、「第2のレーザー光」と記す場合がある)を、対象測定用のレーザー光と選択的に照射可能に構成されている。これにより、検出可能な血中物質の種類を異ならせる態様を採る。
 図4は、血中物質濃度測定装置1における光照射部20の構成を示す模式図である。図4に示すように、光照射部20は、パルス状の中赤外光よりも短波長のポンプ光L0を発振する光源21と、長波長に変換するとともに増幅してレーザー光L1として出射する光パラメトリック発振器22(OPO:Optical Parametric Oscillator)を有する。光パラメトリック発振器22では、内装する非線形光学結晶にポンプ光L0が入光されることにより、異なる2つの波長の光が発振され、短波長のシグナル光、長波長のアイドラー光が生成される。
 光照射部20では、このうち、アイドラー光をレーザー光L1として後段に出力し血糖値の測定に用いる。この光パラメトリック発振器22は、公知の文献、例えば、特開2010-281891号公報に記載の構成を用いてもよい。
 本実施の形態では、一例として、測定対象物質となる第1の血中物質として、例えば、グルコースを用いることができる。その場合、照射されるレーザー光は中赤外光から選択される波長の光であり、光パラメトリック発振によって発振される波長として、従来用いられていた近赤外光に比べてグルコースによる吸収が大きい波長として中赤外光を用い、2.5μm以上12μm以下の範囲から選択される所定の波長としてもよい。より好ましくは、6.0μm以上12μm以下の範囲から選択される所定の波長である。
 具体的には、本実施の形態では、選択される波長を9.26μmとしている。例えば、9.26±0.05μm(9.21μm以上9.31μm以下)としてもよい。あるいは、波長は、7.05μm、7.42μm、8.31μm、8.7μm、9.0μm、9.57μm、9.77μm、10.04μm、又は10.92μmを基準に、-0.05μm以上+0.05μm以下の範囲を選択してもよい。
 これより、被検体の血液中のグルコース濃度を血糖値として測定することができる。この場合、皮膚の内部の血管中のグルコース濃度を測定することが必要となり、体内の奥深くまで侵入しにくい中赤外光を皮膚内部の血管(毛細血管)に直接照射している。
 この中赤外光は従来、血糖値の測定に用いられていた近赤外光に比べて体内への透過率が低いために、皮膚内部の血管位置を特定して中赤外光を照射することによって、血管部分のみを観測することが可能になり、深部に存在する他の生体成分の影響を受けにくいという効果が得られる。また、中赤外光を用いることにより基準振動の倍音や結合音の重なりによる測定への悪影響が少なく、近赤外光よりもグルコースを正確に測定できるという効果も得られる。
 一方、リファレンス測定の対象となるリファレンス物質(第2の血中物質)は、計測対象物質よりもレーザー光の吸収率が高く、ゆえに測定の感度が高く、血中濃度の安定性が高く測定結果のばらつきが小さい血中物質が選択される。
 すなわち、リファレンス測定におけるレーザー光がリファレンス物質(第2の血中物質)に吸収される吸収率は、対象測定における対象測定用のレーザー光が計測対象物質(第1の血中物質)に吸収される吸収率よりも大きいことが好ましい。および/または、リファレンス物質(第2の血中物質)は、計測対象物質(第1の血中物質)よりも血中における濃度の安定性が高いことが好ましい。
 係る構成のリファレンス物質についてリファレンス測定を行った後に対象測定を行うことで、計測対象の測定精度を向上できる。
 本実施の形態では、リファレンス物質(第2の血中物質)として、一例として、ヘモグロビンを選択することができる。血管中のヘモグロビンを検出することにより、生体中における毛細血管の位置を検出することができ、計測対象物質(第1の血中物質)を測定する際の、生体Obにおける被検体部Mp0中の最適な計測対象部分Mpの位置を特定することができる。
 第1の血中物質又は第2の血中物質をヘモグロビンとするとき、測定のために照射すべきレーザー光は中赤外光から選択される波長の光であり、5.0μm以上12μm以下の範囲から選択される所定の波長である。
 具体的には、例えば、波長は、8.00±0.1μm(7.9μm以上8.1μm以下)としてもよい。あるいは、波長は、5.26μm以上6.76μm以下の範囲、7.17μmを基準に-0.1μm以上+0.1μm以下の範囲、7.58μmを基準に-0.1μm以上+0.1μm以下の範囲、7.58μm以上8.33μm以下の範囲、又は8.55μmを基準に-0.1μm以上+0.1μm以下の範囲を選択してもよい。
 光源21には、QスイッチNd:YAGレーザー(発振波長1.064μm)やQスイッチYb:YAGレーザー(発振波長1.030μm)を備えていてもよい。これより、中赤外光よりも短波長のポンプ光L0をパルス状に発振することができる。ポンプ光L0は、例えば、パルス幅約8ns、周波数10Hz以上としてもよい。
 また、QスイッチNd:YAGレーザー、Yb:YAGレーザーによれば、過飽和吸収体を用いて受動的にスイッチング動作を行う受動Qスイッチとして動作するため、光源21を簡易かつ小型化できる。
 光パラメトリック発振器22は、図4に示すように入射側半透鏡221、出射側半透鏡222、非線形光学結晶223を備え、入射側半透鏡221と出射側半透鏡222とを対向させた光共振器の中に、非線形光学結晶223が配されている。入射側半透鏡221を透過した光L01は、非線形光学結晶223に入射し、非線形光学結晶223で定まる波長の光に変換され、かつ入射側半透鏡221と出射側半透鏡222との間で光パラメトリック増幅がされる。増幅された光は出射側半透鏡222を透過してレーザー光L1として出力される。
 非線形光学結晶223では、波長変換に適したAgGaSが位相整合の条件で使用される。非線形光学結晶223の種類や整合条件を調整することによって、発振されるレーザー光L1の波長を調整できる。非線形光学結晶には、GaSe、ZnGeP2、CdSiP2、LiInS2、LiGaSe2、LiInSe2、LiGaTe2等を用いてもよい。光パラメトリック発振器22から発せられるレーザー光L1は、ポンプ光L0に対応した繰り返し周波数、例えば約8nsのパルス幅となり、短いパルス幅により尖頭出力が10W~1kWと高強度を実現できる。
 このように、光照射部20では、光源21と光パラメトリック発振器22を用いたことにより、例えば、量子カスケード型レーザー等、従来の光源と比較して、103~105倍程度の高強度のレーザー光L1を得ることができる。
 光照射部20が発する光の波長を変更するためには、光照射部20の光パラメトリック発振器22の発振波長を異なる態様に変更して、光パラメトリック発振器22における非線形結晶223の位相整合条件を変更する、あるいは、非線形結晶223の位相整合条件が異なる光パラメトリック発振器22を変更することにより装置を実現することができる。
 係る構成により、体内への透過率が低い中赤外光による血糖測定が可能となる。
 光照射部20は、後述する測定制御部60と電気的に接続されており、測定制御部60からの制御信号に基づきレーザー光L1を出力する。
 (集光レンズ50)
 光照射部20から、生体Obの被検体部Mp0に至るレーザー光L1の光路Op1には、図2に示すように、照射光を被検体部Mp0中の特定領域に集光させるための集光レンズ50(本明細書において「第2のレンズ」と記す場合がある)が配されている。光路Op1上における、光照射部20から生体Obの表面に至る区間において、レーザー光L1は集光レンズ50を通過する区間を除いて、例えば、気体中などの空間中を伝播するように構成されている。
 装置1では、生体Obの手指の掌面を主面10a上の所定の位置に合せて載設した状態において、集光レンズ50は、基台10の主面10a側に位置する光照射部20から出射されたレーザー光L1が、生体の主面10aと相対する側の皮膚表面と反対側に位置する被検体部Mp0中の特定の領域に、集光させて照射されるように光学設計されている。
 さらに、レーザー光L1が集光される領域が、被検体部Mp0における表皮より内方に位置する血管領域Mp、例えば、真皮などの表皮より内方に位置する生体部分に相当する深度に設定されるよう光学設計がされている。本明細書では、上述のとおり、レーザー光L1が集光される被検体部Mp0内の領域を、レーザー光集光領域FAとする。
 被検体部Mp0へのレーザー光L1の入射角Aは、基台10の主面10aに載置された生体Obの皮膚表面におけるレーザー光L1が入射する部分に対する法線を基準とする、光照射部20からレーザー光集光領域FAに至るレーザー光L1の光路Op1の角度により定まる。
 入射角θAは、本実施の形態では、例えば、45度以上としてもよく、さらに、60度以上70度以下としてもよい。
 このとき、光照射部20と集光レンズ50との間には半透鏡で構成されたビームスプリッタ(不図示)を配してレーザー光L1の一部を基準信号として分岐し、モニタ用光検出器(不図示)を用いてレーザー光L1の強度変化を検出し、光検出器30における検出信号の正規化処理に利用してもよい。レーザー光L1の強度の変動に基づき、光検出器30の出力を補償することができる。
 集光レンズ50を通過したレーザー光L1は、基台10の主面10a上の生体Obに入射し、生体の上皮間質組織を通過して散乱あるいは拡散反射され信号光L2として、再び基台10を通過し光検出器30に向けて放射される。
 (絞り80)
 光照射部20から生体Obの被検体部Mp0に至るレーザー光L1の光路Op1における、光照射部20と集光レンズ50との間の区間に、絞り80が配されている。絞り80は、遮光性を有する板状部材から構成されており、中心部に開口80a(アパーチャー)が開設されている。
 開口80aの中心はレーザー光L1の光軸と一致する。また、開口80aによりレーザー光L1のビーム径は、例えば、1/3程度に絞られる構成としてもよい。
 また、集光レンズ50は、光照射部20と絞り80との間の距離を、集光レンズ50の焦点距離をfIN、1/fIN=1/aIN+1/bINとしたとき、aIN:bINに内分する位置に配される構成としてもよい。
 このように、光路Op1における、光照射部20と集光レンズ50との間に絞り80を設けることにより、生体Obに照射されるレーザー光L1の照射位置のばらつきを低減することができる。
 (結像レンズ40)
 図5は、装置1における受光側光路の概要を説明するための図であって、生体Obの被検体部Mp0及び光検出器30のスクリーン30aを断面視した状態で描いた模式図である。図2及び図5に示すように、生体Obの被検体部Mp0中のレーザー光集光領域FAから光検出器30に至る信号光L2の光路Op2には、被検体部Mp0中のレーザー光集光領域FAにおいて拡散反射がなされ、レーザー光集光領域FAから発せられた信号光L2を光検出器30上に結像させるための結像レンズ40(本明細書において「第1のレンズ」と記す場合がある)が配されている。
 光路Op2における、被検体部Mp0を含む生体Obの表面から光検出器30に至る区間において、信号光L2は集光レンズ50を通過する区間を除いて空間中を伝播するように構成されている。
 結像レンズ40は、被検体部Mp0中の血管領域Mpとレーザー光集光領域FAとが重なった領域から拡散反射によって発せられる信号光L2の像Im1が、結像レンズ40によって像転送されて、光検出器30のスクリーン30a上に結像Im2されるよう光学設計がされている。
 本実施の形態では、結像レンズ40の中心と生体Obのレーザー光集光領域FAの距離Op21と、光検出器30のスクリーン30aと結像レンズ40の中心との距離Op22を等価な長さとしている。
 これにより、中赤外光が照射された被検体部Mp0中の血管領域Mpに相当する深度の像Im1が、光検出器30のスクリーン30a上に等価な大きさの像Im2として転送されるような位置関係が実現される。
 ここで、血管領域Mpは、例えば、真皮などの表皮より内方に位置する生体の部分(以下「生体内方部分」と記す場合がある)に位置する。血管領域Mpに相当する深度は、本実施の形態では、例えば、0.5mm以上3.5mm度以下としてもよく、例えば、1.5mmとしてもよい。このとき、結像レンズ40の焦点Fpに対し焦点距離をfとしたとき、距離Op21、距離Op22は、共に2fとしてもよい。
 しかしながら、距離Op21、距離Op22の長さは上記に限定されるものではなく、中赤外光が照射された基台10の像Im1が、光検出器30のスクリーン30a内に過不足なく収まるように、距離Op21、距離Op22の倍率を設定し、その倍率を達成するような結像レンズ40を設定してもよい。
 結像レンズ40への信号光L2の入射角は、被検体部Mp0の皮膚表面における信号光L2が出射する部分に対する法線を基準とする結像レンズ40の中心を通る信号光L2の光軸の角度により定まる。結像レンズ40の中心を通る光軸の角度は、上述の生体Obの皮膚表面に対する光検出器30の設置角Bと等しく、本実施の形態では、例えば、0度以上40度以下、より好ましくは、20度以上30度以下としてもよい。
 (光検出ユニット70)
 血中物質濃度測定装置1は、光照射部20からリファレンス測定用の第2のレーザー光を照射した状態で、光検出器30を、被検体部Mp0から光検出器30に至る信号光L2の光路Op2に沿って移動させて、光検出器30の結像レンズ40からの距離を異ならせる構成を採る。また、光検出器30を被検体部Mp0中のレーザー光集光領域FAから光検出器30に至る信号光L2の光路Op2と、例えば、略垂直な方向など所定の角度で交わる方向に移動させて、レーザー光集光領域FAと光検出器30との光路Op2と垂直な方向における位置関係を調整可能に構成されている。このとき、光検出器30をレーザー光L1の光路Op1に沿った方向に移動さる構成としてもよい。
 [光検出器30]
 光検出器30は、照射されたレーザー光L1に基づいてレーザー光集光領域FAから発せられる信号光L2を受光して、信号光L2の強度を検出する近赤外線及び中赤外線センサである。光検出器30は、受光した信号光L2の強度に応じた電気信号を出力する。光検出器30には、信号光L2の強度を1次元の電圧値により出力する、例えば、単素子からなる赤外線センサを用いてもよい。
 装置1では、光照射部20により、照射されたレーザー光L1の強度を高めるとともに、結像レンズ40によりレーザー光集光領域FAから発せられた信号光L2を光検出器30のスクリーン30a上に結像させることにより、光検出器30は、背景光に対し十分に高い強度の信号光を受光することができ、高いS/N比を実現し、高精度の測定が可能となる。
 このように、レーザー光L1及び信号光L2は単色かつ高強度であるため、光検出器30に必要な処理は光強度の検出のみとなり、量子カスケードレーザを用いた光音響光学法のように波長掃引に基づくスペクトルの分析や多変量解析等を行う必要がない。そのため、検出に求められる精度が緩和され、簡便に使用できる電子冷却方式等を用いることもできる。
 なお、光検出器30には、例えば液体窒素で冷却したHgCdTe赤外線光検出器を用いてもよい。この際、液体窒素で77K程度まで冷却することによって、より高いS/N比で信号光L2の光強度を検出することができる。
 光検出器30は、後述する測定制御部60と電気的に接続されており、測定制御部60からの制御信号に基づき、受光した信号光の強度を1次元の電圧値により測定制御部60に出力する。
 [可動機構71]
 可動機構71は、光検出器30を、被検体部Mp0から光検出器30に至る信号光L2の光路Op2に沿って可逆的に移動可能な第1の直線搬送機構711と、光検出器30を、光路Op2と垂直な方向に可逆的に移動可能な第2の直線搬送機構712とから構成される。
 第1の直線搬送機構711の機能により、光検出器30のスクリーン30aに、被検体部Mp0中の血管領域Mpに相当する深度の像Im1が等価な大きさの像Im2として転送されるように、光検出器30に至る信号光L2の光路Op2と平行な位置を調整することができる。また、第1の直線搬送機構711は、光検出器30と共に、結像レンズ40を光路Op2に沿って可逆的に移動させる構成としてもよい。
 また、第2の直線搬送機構712の機能により、光検出器30のスクリーン30aの中心と、被検体部Mp0にレーザー光L1が集光して照射される位置(レーザー光集光領域FA)とが光検出器30に至る信号光L2の光路Op2と垂直な方法において概ね一致するように、あるいは重なるように、光検出器30の位置を調整することができる。
 第1の直線搬送機構711、及び第2の直線搬送機構712には、リニアモータ、リードスクリュー、ボールねじ、ラックアンドピニオン等の汎用の直線搬送機構を用いることができる。あるいは、直線搬送機構711、712を用いず、圧電素子用いたMEMS(Micro Electro Mechanical Systems)アクチュエータを備えた反射機構(ミラー)などをレーザー光路中に挿入してレーザー光路を変更して、正しい検出器の位置に切り替えてもよい。可動機構71は、後述する測定制御部60と電気的に接続されており、測定制御部60から供給される制御信号に基づき光検出器30を所定の位置に搬送する。
 例えば、第1の直線搬送機構711は、測定制御部60から発せられる制御信号によって駆動され、直線運動機構を動作させて光検出器30への光路Op2と平行な方向の位置を変更するとともに、当該方向の位置情報を測定制御部60に出力する。同様に、第2の直線搬送機構712は、測定制御部60から発せられる制御信号によって駆動され、直線運動機構を動作させて光検出器30への光路Op2に垂直な方向の位置を変更するとともに、当該方向の位置情報を測定制御部60に出力する。
 また、装置1では、高さ調整機構12により主面10aと垂直な方向における高さhtを異ならせる動作と連動して、第2の直線搬送機構712により光検出器30への光路Op2に対し垂直な方向の位置を変更する動作を行う構成としてもよい。これにより、手指の背面の皮膚表面における手指の中心線と平行な方向にレーザー光L1の照射位置を異ならせて調整することができる。詳細については後述する。
 (測定制御部60)
 測定制御部60は、光照射部20、光検出器30及び可動機構71と電気的に接続され、光照射部20の光源21を駆動してパルス状のポンプ光L0を発振させるとともに、光検出器30からの出力信号に基づき信号光L2の光強度を検出して、被検体部Mp0中の血管領域Mpにおける血中物質濃度を算出する回路である。
 あるいは、このとき、測定制御部60は、モニタ用光検出器の出力を入力し、上述のとおり、仮に光照射部20から出射されるレーザー光L1の強度が変動した場合でも、モニタ用光検出器の出力を用いて光検出器30の出力を正規化することにより、レーザー光L1の強度変動の影響を補償して血中物質濃度を算出してもよい。
 また、測定制御部60は、基台10の回転ステージ機構11及び高さ調整機構12と電気的に接続され、これらを駆動する制御回路として機能する。すなわち、測定制御部60は、制御信号を基台10に出力して、基台10の回転ステージ機構11を駆動し、被検体部Mp0に対する入射角Aを調整するとともに、基台10の高さ調整機構12を駆動して、主面10aと垂直な方向における高さhtを変化させて、被検体部Mp0に対しレーザー光L1が照射される位置を調整することができる。
 さらに、測定制御部60は、可動機構71と電気的に接続され、第1の直線搬送機構711及び第2の直線搬送機構712を駆動する制御回路として機能する。すなわち、測定制御部60は、制御信号を可動機構71に出力して、第1の直線搬送機構711を駆動して光検出器30を信号光L2の光路Op2に沿って所定の位置に搬送するとともに、第2の直線搬送機構712を駆動して信号光L2の光路Op2と垂直な方向における所定の位置に搬送する。また、第1の直線搬送機構711は、光検出器30と共に、結像レンズ40を光路Op2に沿って可逆的に移動させる構成としてもよい。
 測定制御部60は、例えば、CPU(Central Processing Unit)を内装する制御部(不図示)とデータ記憶部(不図示)を含んで構成されていてもよい。
 データ記憶部は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリ、及び、例えばハードディスクなどの不揮発性メモリを含んで構成される。データ記憶部には、光検出器30によって取得された出力信号が送信されて記憶される。また、回転ステージ機構11から出力される角度θCの情報、高さ調整機構12から出力される高さhtの情報、第1の直線搬送機構711から出力される光路Op2と平行な方法の光検出器30の位置情報、及び第2の直線搬送機構712から出力される光路Op2と垂直方法の光検出器30の位置情報が送信されて記憶される。また、制御部により算出された血中物質濃度が記憶されてもよい。また、データ記憶部は、装置1の機能を実行させるために必要なプログラムなどを記憶している他、制御部の計算結果を一時的に格納する一時記憶領域としての機能を有する。
 CPUは、データ記憶部からプログラムを読み出して実行することにより、装置1の機能を実現する。
 これにより、測定制御部60は、上記した、光検出器30の搬送、光照射部20からのレーザー光L1の照射、光検出器30からの信号に基づき血中物質濃度の算出といった動作を、既定のプログラムに基づいて、後述する血中物質濃度測定処理を実施する。
 <血中物質濃度測定装置1による効果について>
 (主面10a側からのレーザー照射にて精度の高い計測を安定して行う構成の実現)
 装置1では、上記した構成により、生体Obが載置された基台10の主面10a側から、生体Obの被検体部Mp0にレーザー光L1を照射し、主面10a側において、レーザー光L1に基づく反射光を受光して血中物質濃度を測定する構成において、精度の高い計測を安定して行うことができる。
 具体的には、装置1では、基台10の主面10aに対し光照射部20が位置規制され、同時に、基台10の主面10a及び光照射部20に対し光検出器30が、可動機構71を介して位置規制されている。そのため、装置1は、入射角Aが所定の角度θAとなる状態において設置角Bが所定の角度θBとなるよう構成することができる。
 また、基台10の主面10aの角度θCを変化させる回転ステージ機構11を備えたことにより、生体Obの皮膚表面の形状が被験者によって異なる場合でも、被検体部Mp0に対する入射角Aと設置角Bを個別の生体Obの形状又は大きさに合せて同時に調整することができる。
 また、基台10の主面10aの高さhtを調整可能な高さ調整機構12を備えたことにより、生体Obの手指の厚みに起因する主面10aから生体Obの手指の背面の皮膚中にある被検体部Mp0までの距離の変動を吸収して、被験者によって相違する生体Obの手指の厚みのばらつきを吸収することができる。
 その結果、被験者に適合して高さhtが調整された状態において、生体Obの被検体部Mp0にレーザー光L1が照射される位置、被検体部Mp0に対するレーザー光L1の入射角A、及び被検体部Mp0に対する光検出器30の設置角Bを、測定に必要な適正値付近に規制することができる。
 これにより、光照射窓に被測定部位を当接させて計測を行う構成で生じていた被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができる。
 (S/N比の向上について)
 装置1の光学系による計測時のS/N比の向上について説明する。
 図6は、装置1における光照射部20から光検出器30までの光路の概要を示す模式図である。
 図6に示すように、装置1では、光照射部20から集光して照射されたレーザー光L1は、被検体部Mp0中の生体内方部分における特定の領域(レーザー光集光領域FA)に向かう光路Op1に沿って生体Obに入射角A(角度θA)で入光し、生体内方部分に位置する血管領域Mpにおいて血中物質によって吸収され、レーザー光L1から一部の波長の光の強度が弱められた皮膚表面下方の生体内方部分(レーザー光集光領域FA)から発せられる信号光L2の像(Im1)に加えて、皮膚表面からの表面反射が発生する。
 このうち、装置1では、結像レンズ40によって、主に生体内方部分におけるレーザー光集光領域FAから発せられる信号光L2の像(Im1)が、光検出器30のスクリーン30aに結像されるように構成される。例えば、結像レンズ40の焦点距離をfとし、レーザー光集光領域FA(血管領域Mp)と結像レンズ40との間の光学距離OP21をa、光検出器30のスクリーン30aと結像レンズ40との間の光学距離OP22をbとしたとき、1/f=1/a+1/bとなる関係を満たすように、レーザー光集光領域FA、結像レンズ40、及び光検出器30の位置関係が設定される。
 そのため、光検出器30のスクリーン30aを光学距離OP22がbの位置に配することにより、レーザー光集光領域FAから発せられる信号光L2の像(Im1)は、スクリーン30aに明瞭に結像し、光検出器30によって検出される信号強度は相対的に高い値となる。
 これに対し、皮膚表面から表面反射された光は結像レンズ40に入光されるが、結像レンズ40への入射角がレーザー光集光領域FAからの信号光L2とは異なるために、光検出器30のスクリーン30aの範囲以外に導光されるか、あるいは、光検出器30のスクリーン30aの範囲内に導光されたとしても結像しない(ボケる)ことから光量が低下し、光検出器30によって検出される信号強度が低下する。
 すなわち、表皮は血管領域Mpよりわずかに結像レンズ40側であるため、表皮と結像レンズ40との間の光学距離OP21をa’とすると、像転送位置は1/f=1/a’+1/b’を満たす位置b’になる。そのため、b位置に置かれたスクリーン30aでは、表皮からの像がボケて明瞭でなく、その結果、光検出器30によって検出される信号強度は相対的に低下する。
 その結果、ノイズとして検出される皮膚表面からの表面反射の光計測への影響度は小さなものとなる。
 したがって、装置1では、主に計測対象となるべき皮膚表面下方の血管領域Mp(生体内方部分)におけるレーザー光集光領域FAから発せられる信号光L2の像(Im1)が、結像レンズ40によって像転送されて、光検出器30のスクリーン30aに結像されて光検出器30による光計測に反映されることから、SMBG(SMBG:Self Monitoring of Blood Glucose)による血糖値の測定結果と相関性が高く、再現性が高い計測結果が得られる。
 仮に、単なる拡散光(散乱光)の集光のためにレンズを設置し、その焦点付近に光検出器30を配した場合、血管領域Mp(生体内方部分)からの信号光は実質散乱光と同等で、皮膚表面部分からの散乱光との区別が難しくなる。これに対し、像転送可能な、位置に結像レンズ40や光検出器30等の構成物を設置して、血管領域Mp(生体内方部分)からの信号光L2を像転送させることで、表皮部分の散乱光の光量を相対的に低下させ、信号光のL2のSN比を向上させることができる。
 このように、装置1では、皮膚表面で散乱された信号光による偽信号(ノイズ)成分を減少することができ光計測におけるS/N比を向上できる。
 (被検体部Mp0中の血管領域の検出について)
 装置1の光学系による被検体部Mp0中の血管領域Mpの検出に基づく測定精度の向上について説明する。
 図7は、装置1による、レーザー光集光領域FAから光検出器30までの光路長の調整動作を説明するための模式図である。
 図7に示すように、装置1は、光照射部20からリファレンス測定用のレーザー光(第2のレーザー光)L1を照射した状態で、可動機構71の第1の直線搬送機構711によって光検出器30を、被検体部Mp0から光検出器30に至る信号光L2の光路Op2に沿って移動させて、光検出器30の結像レンズ40からの距離を異ならせて調整する構成を採る。
 係る構成により、光検出器30のスクリーン30a上に結像される信号光L2の像(Im11、Im12、Im13)が、被検体部Mp0中から取り出される発像元領域(IA1、IA2、IA3)を異ならせる機能を実現する。
 ここで、発像元領域(IA1、IA2、IA3)とは、結像レンズ40の焦点Fpが合った被検体部Mp0中のフォーカス領域である。
 例えば、光検出器30を図7に示す位置に配することで、スクリーン30a上に、被検体部Mp0中の血管領域Mpに位置する発像元領域IA1から発せられる信号光L2の像Im11を結像(Im21)させることができる。発像元領域IA1は、レーザー光集光領域FAと血管領域Mpとが重なる領域に位置するため、光検出器30を図7に示す位置に配することで、被検体部Mp0中の血管領域Mpから発せられる信号光L2の像Im11をスクリーン30a上に結像させることができる。
 このとき、被検体部Mp0中の真皮部分に位置する発像元領域IA2から発せられる信号光L2の像Im12は、本来、スクリーン30aの手前に結像(Im22)するものであるため、スクリーン30a上では結像(Im22)はボケて明瞭でなく、検出される信号強度は相対的に低下する。
 また、被検体部Mp0中の表皮部分に位置する発像元領域IA3から発せられる信号光L2の像Im13は、同様に、本来、スクリーン30aよりも奥に結像(Im23)するものであるため、スクリーン30a上では結像(Im23)は明瞭でなく、検出される信号強度は相対的に低下する。
 この機能により、光検出器30を信号光L2の光路Op2に沿って漸動させながら、対象測定用のレーザー光(第1のレーザー光)の信号光に基づき血管からの信号光が検出して、その強度が高まる光検出器30の位置を検出することで、血中物質の濃度の測定対象領域となるべき発像元領域が、生体中において血管領域Mpとレーザー光集光領域FAとが重なった領域に位置する状態、すなわち、結像レンズ40が当該領域にフォーカスされた状態を検出することができる。
 すなわち、装置1は、リファレンス測定用のレーザー光(第2のレーザー光)L1を照射した状態で、レーザー光集光領域FAから発せられた信号光L2を受光して、計測対象物質(第1の血中物質)よりもレーザー光の吸収率が高い、および/または、血中濃度の安定性が高い特性を有するリファレンス物質(第2の血中物質)の濃度を測定することにより、レーザー光集光領域FAと血管領域Mpとが重なった領域から発せられる信号光L2に基づく像Im11が光検出器30に結像している状態を検出することができる。
 以上により、光検出器30を漸動させながら、対象測定用のレーザー光(第1のレーザー光)の信号光に基づき血管からの信号光を検出することができる。
 (生体Obの皮膚表面における適切な測定位置について)
 装置1の光学系による生体Obの皮膚表面における測定位置による測定ばらつきの低減について説明する。
 図8は、装置1による血中物質濃度の測定の際の、生体表面におけるレーザー光照射位置を示す図である。生体Obをして人差し指を用い、指先に向けた中心線、爪の根本からδだけ指元方向にずれた切断線及との測定位置1、中心線上で紙面上下に3mmずつオフセットされた測定位置2、3、切断線上で紙面左右に3mmずつオフセットされた測定位置4、5のうち、測定位置4、5において、レーザー光のヘモグロビンによる吸収が多く、ヘモグロビン濃度が高い値を呈する血管領域Mpが存在している。
 また、血管領域Mpを示す信号光が検出される平面方向の測定位置4、5において、光照射部20から対象測定用のレーザー光(第1のレーザー光)を照射して、光検出器30によりその測定位置における信号光を受光することにより、平面方向の測定位置が被検体部Mp0中の血管領域Mpに含まれている状態において計測対象物質の濃度を測定できる。
 その結果、被験者や測定ごとの平面方向の血管の位置の個体差によらず、常に確度の高い計測を安定して行うことが可能となる。
 装置1では、上述のとおり、基台10の主面10a上のマーキングを予め所定の位置に設定することにより、測定時の生体表面におけるレーザー光集光領域FAを規定する構成を採る。そのため、主面10a上における計測位置のマーキングの位置を予め異ならせることによって、測定時の生体表面におけるレーザー光集光領域FAを調整することができる。装置1では、例えば、測定時に測定位置4、5にレーザー光が照射されるように、基台10の主面10a上のマーキングの位置が予め設定してもよい。これにより、血管領域Mpを測定対象として常に確度の高い計測を安定して行うことが可能となる。
 また、装置1では、高さ調整機構12により主面10aと垂直な方向における高さhtを異ならせる動作と、第2の直線搬送機構712により光検出器30に至る信号光L2の光路Op2に対し垂直な方向の位置を変更する動作を組み合わせることにより、手指の背面の皮膚表面における手指の中心線と平行な方向(以下、「手指の中心線方向」と記す場合がある)にレーザー光L1の照射位置を異ならせる構成を採ってもよい。
 具体的には、例えば、生体Obとして手指の掌面を主面10a上のマーキングに合せた状態で、主面10aの高さhtを増加するとレーザー光集光領域FAは手指の先端方向に移動する。そのため、レーザー光集光領域FAと光検出器30のスクリーン30aの中心とが光検出器30への光路Op2と垂直な方法において概ね一致するように、あるいは重なるように、第2の直線搬送機構712により光検出器30への光路Op2と垂直であって光照射部20に近付ける方向に移動させる。
 また、例えば、反対に、同様の状態で、主面10aの高さhtを減少するとレーザー光集光領域FAは手指の根元方向に移動する。そのため、レーザー光集光領域FAと光検出器30のスクリーン30aの中心とが信号光L2の光路Op2と垂直な方法において概ね一致あるいは重なるように、第2の直線搬送機構712により光検出器30を光路Op2と垂直であって光照射部20から遠ざける方向に移動させる。
 また、測定制御部60において、主面10aの高さhtと光路Op2に垂直な方向の位置とは、一対の組み合わせ情報としてデータ記憶部等に予め記憶されていてもよい。測定制御部60は、当該情報に基づいて、高さ調整機構12により高さhtを異ならせる動作と、第2の直線搬送機構712により光検出器30の位置を変更する動作を並行して行うことにより、手指の中心線方向におけるレーザー光集光領域FAを異ならせてもよい。 
 <血中物質濃度測定装置1の動作>
 次に、図9、10、11を用いて、装置1の動作の概要を説明する。
 (レーザー光集光領域FAが被検体部Mp0中の血管領域Mpに属しているか否かを判定する動作)
 図9は、装置1による血中物質測定動作の一態様を示すフローチャートである。
 図9において、ステップS11~ステップS12は、レーザー光L1を集光させて照射した特定の領域(レーザー光集光領域FA)のリファレンス物質(第2の血中物質)の濃度を計測し、レーザー光集光領域FAが被検体部Mp0中の血管領域Mpに含まれているか否かを判定するリファレンス測定を行うステップである。
 ステップS21~ステップS22は、レーザー光集光領域FAが被検体部Mp0中の血管領域Mpに含まれている状態において、計測対象物質(第1の血中物質)の濃度を計測する対象測定のステップである。
 図9において、最初にリファレンス測定を実施するか否かを判定する(ステップS1)。この判定は、操作者からの操作入力や、被験者のIDなどの識別情報により行ってもよい。例えば、同じ被験者を日々繰り返し測定する場合などは、既に取得したリファレンス測定の結果を利用することができ、リファレンス測定を省略することができる。ステップS1の判定の結果、リファレンス測定を実施する場合(ステップS1:Yes)にはステップS11に進み、実施しない場合(ステップS1:No)には、ステップS21に進む。
 次に、ステップS11~ステップS12において、リファレンス測定を行う。先ず、測定制御部60は制御信号に基づき、光照射部20から被検体Mp0中の特定の領域にリファレンス測定用のレーザー光(第2のレーザー光)を集光させて照射して(ステップS11)、光検出器30によりレーザー光集光領域FAのリファレンス物質(第2の血中物質)の濃度測定を行い(ステップS12)、測定されたリファレンス物質の濃度が基準値以上であるか否かを判定する(ステップS13)。
 ステップS13において、基準値以上でない場合(ステップS13:No)には処理を終了し、基準値以上ある場合(ステップS13:Yes)には、レーザー光集光領域FAが被検体部Mp0中の血管領域Mpに含まれていると判定されるため、ステップS21~ステップS22において、計測対象物質(第1の血中物質)の濃度を計測する。
 具体的には、光照射部20から被検体Mp0中の特定の領域に対象測定用のレーザー光(第1のレーザー光)を照射して(ステップS21)、光検出器30によりレーザー光集光領域FAにおける計測対象物質の濃度測定(対象測定)を行い測定結果を出力して(ステップS22)、処理を終了する。
(光検出器の位置を光路に沿って調整する動作)
 図10は、血中物質濃度測定装置1による血中物質測定動作の別の態様を示すフローチャートである。
 図10において、ステップS10~ステップS16は、リファレンス測定としてレーザー光L1を集光させて照射した特定の領域のリファレンス物質(第2の血中物質)の濃度を計測し、レーザー光集光領域FAにおけるリファレンス物質の濃度に基づき、レーザー光集光領域FAが被検体部Mp0中の血管領域Mpに含まれる状態になるように、光検出器の位置を光路Op2に沿って調整するステップである。
 ステップS21~ステップS22は、レーザー光集光領域FAが被検体部Mp0中の血管領域Mpに含まれている状態において、計測対象物質(第1の血中物質)の濃度を計測する対象測定のステップである。図9と同じ処理には図9と同一の番号を付して表示する。
 図10において、ステップS1の判定の結果、リファレンス測定を実施する場合(ステップS1:Yes)には、ステップS10~ステップS16において、リファレンス測定を行う。先ず、測定制御部60は制御信号に基づき、可動機構71の第1の直線搬送機構711を駆動して光検出器30を始点位置に移動し(ステップS10)、光照射部20から被検体部Mp0中の特定の領域にリファレンス測定用のレーザー光(第2のレーザー光)を集光させて照射して(ステップS11)、光検出器30によりレーザー光集光領域FAのリファレンス物質(第2の血中物質)の濃度測定を行う(リファレンス測定、ステップS12)。このとき、測定制御部60は、光検出器30からの出力信号に基づき信号光L2の光強度を検出して、レーザー光集光領域FAのリファレンス物質の濃度を算出して記憶する。同時に、第1の直線搬送機構711における光路Op2方向の光検出器30の位置情報を記憶する。
 次に、光検出器30は終点位置にあるか否かを判定し(ステップS14)、終点位置にない場合には(ステップS14:No)、光検出器30の位置を漸動させて(ステップS15)、ステップS11に戻り、終点位置にある場合には(ステップS14:Yes)、すべての光検出器30の位置においてレーザー光集光領域FAにおけるリファレンス物質の濃度測定が完了したものとして、ステップS16に進む。この状態では、測定制御部60には、すべての光検出器30の位置における光検出器30の位置情報と、レーザー光集光領域FAのリファレンス物質の濃度が記憶されている。
 ステップS16では、測定制御部60は、すべての光検出器30の位置におけるレーザー光集光領域FAのリファレンス物質の濃度測定結果に基づきリファレンス物質の濃度が最も高い結果が得られた最適位置を選択し、可動機構71に制御信号を発して第1の直線搬送機構711を駆動して光検出器30を最適位置に移動する。最適位置ではレーザー光集光領域FAが被検体部Mp0中の血管領域Mpに含まれていると推定される。なお、ステップS1の判定において、リファレンス測定を実施しない場合(ステップS1:No)にも、ステップS16において、光検出器30を、例えば既定の最適位置に移動する。
 次に、ステップS21~ステップS22において、計測対象物質(第1の血中物質)の濃度を計測する。具体的には、光照射部20から被検体部Mp0中の特定の領域に対象測定用のレーザー光(第1のレーザー光)を集光させて照射して(ステップS21)、光検出器30によりレーザー光集光領域FAの計測対象の濃度測定を行い、結果を出力して(対象測定、ステップS22)、処理を終了する。
(レーザー光L1の平面方向における照射位置を調整する動作)
 図11は、血中物質濃度測定装置1による血中物質測定動作のさらに別の態様を示すフローチャートである。
 図11において、ステップS10A~ステップS16Aは、リファレンス測定として被検体部Mp0中のレーザー光L1を集光させて照射する平面方向の位置を異ならせて特定の領域のリファレンス物質(第2の血中物質)の濃度を計測し、異なる照射位置におけるリファレンス物質の濃度に基づき、照射位置が被検体部Mp0中の平面方向における血管領域Mpに含まれる状態になるように、平面方向の照射位置を調整するステップである。本例では、レーザー光L1の照射位置に関する平面方向の位置調整として、手指の中心線方向に、レーザー光L1の照射位置を異ならせる構成について説明する。
 ステップS21~ステップS22は、照射位置が被検体部Mp0中の平面方向における血管領域Mpに含まれている状態において、計測対象物質(第1の血中物質)の濃度を計測する対象測定のステップである。
 図9、10と同じ処理には同一の番号を付して表示する。
 図11において、ステップS1の判定の結果、リファレンス測定を実施する場合(ステップS1:Yes)には、ステップS10A~ステップS16Aにおいて、リファレンス測定を行う。先ず、測定制御部60は制御信号に基づき、レーザー光L1を照射する平面方向の位置、ここでは、手指の中心線方向の位置を始点位置に移動し(ステップS10A)、光照射部20から被検体部Mp0中の特定の領域にリファレンス測定用のレーザー光(第2のレーザー光)を集光させて照射して(ステップS11)、光検出器30によりレーザー光集光領域FAのリファレンス物質(第2の血中物質)の濃度測定を行う(ステップS12)。ここで、装置1では、高さ調整機構12により主面10aと垂直な方向における高さhtを異ならせる動作と、第2の直線搬送機構712により光路Op2に対し垂直な方向の位置を変更する動作を組み合わせて行うことにより、手指の中心線方向にレーザー光L1の照射位置を異ならせる。
 先ず、測定制御部60は、始点位置における光検出器30からの出力信号に基づき信号光L2の光強度を検出して、レーザー光集光領域FAのリファレンス物質の濃度を算出して記憶する。同時に、高さ調整機構12における主面10aの高さhtの情報と、第2の直線搬送機構712における光路Op2と垂直方法の光検出器30の位置情報を記憶する。
 次に、照射位置が終点位置にあるか否かを判定し(ステップS14)、終点位置にない場合には(ステップS14:No)、照射位置を変更して(ステップS15A)、ステップS11に戻り、終点位置にある場合には(ステップS14:Yes)、すべての照射位置においてレーザー光集光領域FAにおけるリファレンス物質の濃度測定が完了したものとして、ステップS16Aに進む。この状態では、測定制御部60には、手指の中心線方向におけるすべてのレーザー光L1の照射位置における光検出器30の位置情報、主面10aの高さhtの情報、及びレーザー光集光領域FAのリファレンス物質の濃度が記憶されている。
 ステップS16Aでは、測定制御部60は、すべての照射位置におけるレーザー光集光領域FAのリファレンス物質(第2)の血中物質の濃度測定結果に基づき、リファレンス物質の濃度が最も高い結果が得られた最適照射位置を選択する。そして、測定制御部60は、制御信号を発して高さ調整機構12を駆動して基台10の主面10aの高さhtを最適照射位置に対応する高さに変更するとともに、可動機構71に制御信号を発して第2の直線搬送機構712を駆動して光検出器30を最適照射位置に対応する位置に移動させることにより、レーザー光L1の照射位置を最適位置に変更する。最適位置では照射位置が被検体部Mp0の平面方向の血管領域Mpに含まれていると推定される。なお、ステップS1の判定において、リファレンス測定を実施しない場合(ステップS1:No)にも、ステップS16Aにおいて、レーザー光L1の照射位置を、例えば既定の最適位置に移動する。
 次に、ステップS21~ステップS22において、計測対象物質(第1の血中物質)の濃度を計測する。具体的には、光照射部20から被検体部Mp0中の特定の領域に対象計測用のレーザー光(第1のレーザー光)を集光させて照射して(ステップS21)、光検出器30によりレーザー光集光領域FAの計測対象の濃度測定を行い、結果を出力して(対象計測、ステップS22)、処理を終了する。
 <まとめ>
 以上、説明したように、実施の形態1に係る血中物質濃度測定装置1は、生体Obの被検体部Mp0の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定装置1であって、主面10a上に生体を載置可能な基台10と、基台10の主面10a側から、生体の主面10aと相対する側の皮膚表面と生体Obの反対側に位置する皮膚中にある被検体部Mp0中の特定の領域にレーザー光L1を集光させて照射する光照射部20と、基台10の主面10a側において、レーザー光L1に基づく反射光であって、レーザー光L1から一部の波長の光の強度が弱められた信号光を受光して、その強度を検出する光検出器30と、被検体部Mp0と光検出器30との間であって、被検体部Mp0中のレーザー光集光領域FAから発せられた信号光の像を光検出器30上に結像可能な位置に配された結像レンズ40と、信号光の強度に基づきレーザー光集光領域FAにおける血中物質の濃度を測定する測定制御部を備え、被検体部Mp0の皮膚表面に対する法線とレーザー光L1の光路Op1とのなす第1の角度は、法線とレーザー光集光領域FAから光検出器30への光路Op2とのなす第2の角度と相違し、生体Obにおける被検体部Mp0の光照射部20に対する位置は、被検体部Mp0における表皮より内方に位置する血管領域Mpとレーザー光集光領域FAとが重なるように規定され、光検出器30の生体Obにおける被検体部Mp0に対する位置は、レーザー光集光領域FAと重なる血管領域Mpから発せられる信号光の像が、結像レンズ40によって転送されて光検出器の受光面上に結像するように規定されることを特徴とする。
 血中物質濃度測定装置では、従来は、測定装置の外表面の設けられた光照射窓に被測定部位を当接させて計測を行う構成であるため、光照射窓への被測定部位の載せ方の違いによって、被測定部位に付勢される圧力や測定の位置等が変化して測定結果が変化することがあり、安定して十分な測定精度を得ることが難しいという課題があった。
 これに対し、装置1では上記した構成により、基台10の主面10a側から、生体の主面10aと相対する側の皮膚表面と生体Obの反対側に位置する皮膚中にある被検体部Mp0中の特定の領域にレーザー光L1を集光させて照射し、基台10の主面10a側において、レーザー光L1に基づく反射光、すなわち、レーザー光L1から一部の波長の光の強度が弱められた信号光を受光して血中物質濃度を測定するため、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができる。
 また、基台10は、主面10aの垂直な方向の高さを異ならせることにより、生体Obの光照射部20に対する位置を調整可能に構成されていてもよい。
 係る構成により、被検体部Mp0における表皮より内方に位置する血管領域Mpにレーザー光が集光して照射されるように、生体Obの光照射部20に対する位置関係を個別の生体Obの形状に合せて調整することができる。これにより、被検体部Mp0における表皮より内方に位置する血管領域Mpとレーザー光集光領域FAとが、XZ平面内において重なるように、生体Obの光照射部20に対する位置が規制される。
 また、光検出器30の位置を、信号光L2の光路Op2と、例えば、垂直など所定の角度で交わる方向に異ならせることにより、当該方向における光検出器30の生体Obに対する位置を調整可能に構成されていてもよい。
 係る構成により、光検出器30のスクリーン30aの中心と、被検体部Mp0にレーザー光L1が集光して照射される位置(レーザー光集光領域FA)とが光検出器30の光路Op2と垂直な方法において概ね一致するように、あるいは重なるように、光検出器30の位置を調整することができる。
 また、基台10は、レーザー光L1の光路Op1と被検体部から光検出器30までの光路Op2とによって定まる平面内において、レーザー光L1の光路に対する主面10aの角度を異ならせることにより、第1の角度及び第2の角度を同時に調整可能に構成されていてもよい。
 係る構成により、被検体部Mp0に対する入射角Aと設置角Bを個別の生体Obの形状に合せて同時に調整することができる。
 また、光検出器30の位置を、信号光L2の光路Op2に沿った方向に異ならせることにより、当該方向における光検出器30の生体Obに対する位置を調整可能に構成されており、光検出器30の位置は、血管領域Mpから発せられる信号光の像が、結像レンズ40によって転送されて光検出器の受光面上に結像する状態になるよう、血中物質の濃度に基づいて調整されるよう構成されていてもよい。
 係る構成により、光検出器30のスクリーン30aに、被検体部Mp0中の血管領域Mpに相当する深度の像Im1が等価な大きさの像Im2として転送されるように、光検出器30の光路Op2と平行な位置を調整することができる。
 その結果、結像レンズ40によりレーザー光集光領域FAから発せられた信号光L2を光検出器30のスクリーン30a上に結像させることにより、光検出器30は、背景光に対し十分に高い強度の信号光を受光することができ、高いS/N比を実現し、高精度の測定が可能となる。
 ≪実施の形態2≫
 実施の形態2に係る血中物質濃度測定装置1Aについて、図面を用いて説明する。
 (構 成)
 上記実施の形態1では、基台10は、回転ステージ機構11と高さ調整機構12を備えてなり、生体Obの被検体部Mp0に含まれる血管領域Mpを、レーザー光L1の照射に適した規定の位置及び角度に規制されるように、基台10の角度と高さが調整される構成とした。
 図12は、実施の形態2に係る血中物質濃度測定装置1Aの計測時の態様を示す模式図である。
 実施の形態2に係る血中物質濃度測定装置1A(以後、「装置1A」と記す場合がある。)では、基台10と、光照射部20と、光検出器30と、結像レンズ40と、測定制御部60Aと、可動機構71と、回転ステージ機構11と、位置調節機構12Aと、基台10の主面10aの法線方向に配された撮像手段91Aと、基台10の主面10aと平行な方向に配された撮像手段92Aを備えた構成を採る。
 基台10は、主面10aと垂直な方向の高さhtを異ならせるとともに、主面10aと平行な面方向(X1-Y1方向)の位置(X1A,Y1A)を変更可能な位置調節機構12Aを備えている。
 また、基台10は、装置1と同様に、レーザー光入射面内において、レーザー光L1の光路Op1及び信号光L2の光路Op2に対する主面10aの角度θC(図3を参照のこと)を異ならせる、回転ステージ機構11と機械的に連結されている。回転ステージ機構11には、例えば、モータが内装され、Y1軸と平行な回転軸CLの回りを可逆的に回転可能な角度変更機構を構成している。回転軸CLは被検体部Mp0が存在する空間上の位置と交わる構成としてもよい。
 回転ステージ機構11は、測定制御部60Aから発せられる制御信号によってモータが駆動され、角度変更機構を動作させて回転し、回転ステージ機構11に連結された基台10を、回転軸CLの回りを回転させる。これにより、光照射部20から照射されたレーザー光L1の被検体部Mp0への入射角A(図3を参照のこと)、及び被検体部Mp0に対する光検出器30の設置角B(図3を参照のこと)を同時に調整することができる。その結果、回転ステージ機構11によれば、入射角Aと設置角Bとを、それぞれ所定の角度θA、θB(図3を参照のこと)に同時に設定することができる。
 装置1Aにおける光照射部20と、光検出器30と、結像レンズ40、及び可動機構71の構成は、装置1におけるそれぞれ構成と同じである。光照射部20から照射されたレーザー光L1が生体Obの被検体部Mp0に照射され、被検体部Mp0で反射された信号光L2が光検出器30によって受光される。
 また、装置1Aにおいても、装置1と同様、光検出器30は可動機構71が接続されており、光検出器30の基台10に対する位置を変化可能に構成されている。すなわち、測定制御部60Aからの制御信号に基づいて可動機構71を動作させることにより、光検出器30を被検体部Mp0中のレーザー光集光領域FAから光検出器30に至る信号光L2の光路Op2と平行な方向に可逆的に移動可能な構成となっている。同様に信号光L2の光路Op2と垂直な方向にも可逆的に移動可能な構成となっている。また、可動機構71は、光検出器30と共に、結像レンズ40を移動させる構成としてもよい。
 撮像手段91A及び撮像手段92Aは、生体Obの画像を撮像する、例えば、CCD(Charge Coupled Device)イメージセンサ等を用いた撮像手段である。撮像手段91Aは、基台10の主面10aの法線方向に主面10aの方向を向いて配されており、主面10a上に載設された生体Obを平面視した画像を撮像する。また、撮像手段92は、基台10の主面10aの側方に基台10の方向を向いて配されており、主面10a上に載設された生体Obを側方から視した画像を撮像する。そして、撮像手段91A及び撮像手段92Aによって撮像された画像データは測定制御部60Aに出力される。
 測定制御部60Aは受信した画像から生体Obに相当する画像部分を検出し、当該画像部分が本来あるべき基準位置との位置ずれ量を算出し、これを補償するための制御信号を位置調節機構12Aに出力する。
 具体的には、位置調節機構12Aは、例えば、撮像手段92Aからの画像に基づき高さ方向における高さずれが検出された場合には、制御信号に基づき、主面10aと垂直な方向における高さhtを変化させて生体Obの高さずれを補償する。同様に、位置調節機構12Aは、例えば、撮像手段91Aからの画像に基づき平面方向における位置ずれが検出された場合には、制御信号に基づき、主面10aの面方向(X1-Y1方向)における基台10の位置(X1A,Y1A)を変化させて生体Obの平面方向における位置ずれを補償する。
 あるいは、本来あるべき基準角度との角度ずれ量を算出し、これを補償するための制御信号を位置調節機構12Aに出力し、回転ステージ機構11により連結された基台10を、回転軸CLの回りを回転させて角度θCのずれを補償してもよい。
 さらに、光照射部20から生体Obの被検体部Mp0に対しレーザー光L1を照射した状態において、撮像手段91A、92Aにより、例えば、レーザー光L1と異なる波長により検出され撮像された画像を用いて、レーザー光集光領域FAと被検体部Mp0の位置をそれぞれ検出し、検出結果に基づいて、回転ステージ機構11及び位置調節機構12Aとを駆動して、被検体部Mp0とレーザー光集光領域FAとが概ね一致するように位置制御を行う構成としてもよい。
 撮像手段91A、92Aを用いて位置検出することにより、精度よく被検体部Mp0とレーザー光集光領域FAとを概ね一致させることができる。
 <評価試験>
 以下、装置1Aの実施例と比較例を用いて評価試験により性能評価を行った。以下、その結果について説明する。
 (実施例)
 装置1Aの実施例として、使用可能なプロトタイプを作成し評価を行った。図13は、装置1Aの実施例の態様を示す模式図である。
 装置1Aの実施例では、光照射部20には、2.5μm以上12μm以下の範囲から選択される波長のレーザー光源を用い、入射角Aは65度とした。光検出器30には、近赤外線及び中赤外線センサを用い、設置角Bは25度とした。結像レンズ40には、f=25mmとし、被検体部Mp0のレーザー光集光領域FA及び光検出器30の受光面30aから、それぞれ約50mmの位置に設置して、光検出器30をレーザー光集光領域FAの像転送(フォーカス)位置に設置した。ここで、検出器のフォーカス深さは生体Ob皮膚内方0.5mm~3.5mmから選択される深さとし、本実施例では1.5mmとした。
 また、図13に示すように、装置1Aの実施例では、基台10は、直方体形状の部材からなる。基台10において、被検体である生体Obが載設される主面10aには、生体Obを主面10aと平行な面方向(X1-Y1方向)の位置(X1A,Y1A)を規制するためのガイド部材122が配した。ガイド部材122は、主面10aの法線方向から位置を確認して設置することにより、主面10aと平行な面方向における生体Obの位置精度を確保する構成とした。
 基台10の側面には、支持部材121が配され、基台10を主面10aと垂直な方向に可逆的にスライド可能に構成され、生体Obの主面10aと垂直な方向の高さht異ならせる機能を備える。装置1Aの実施例では、ガイド部材122と保持部材121によって位置調節機構12Aの機能が実現される。
 次に、装置1Aの実施例は、回転ステージ機構11を構成するロータ111とステータ部材112を備える。具体的には、図13に示すように、基台10の側面に配された保持部材121に対し、そのさらに側方にはロータ112が保持部材121の側面に機械的に連結されている。ロータ111はY1軸と平行な回転軸CLを介してステータ部材112に回転可能に保持されおり、ロータ111は回転軸CLの回りを可逆的に回転可能に構成されている。回転軸CLは基台10の主面10aに載設された生体Obの被検体部Mp0と交わる位置に配されている。
 また、ステータ部材112には、被検体部Mp0中のレーザー光集光領域FAから光検出器30に至る光路Op2と平行な方向にベース部材712から立設するリードスクリュー711が挿入されている。リードスクリュー711が回転することにより、ステータ部材112及びこれと連結された基台10が光路Op2と平行な方向に可逆的に直線移動可能に構成されている。
 また、ステータ部材112は、光路Op2と垂直な方向にベース部材712に対し可逆的にスライド可能な直線運動機構(不図示)を備えている。直線運動機構により、ステータ部材112と連結された基台10が光路Op2と垂直な方向に可逆的に移動可能に構成されている。以上のとおり、装置1Aの実施例では、ステータ部材112、リードスクリュー711とベース部材712により可動機構71の機能が実現される。
 次に、装置1Aの実施例では、基台10の主面10aと平行な方向に撮像手段92Aを備えている。図13に示すように、撮像手段92Aは、基台10の主面10aに載設される生体Obの被検体部Mp0に相当する空間位置と交わる回転軸CLの軸上に配してもよい。撮像手段92Aからの画像に基づき高さ方向における高さずれが検出された場合には、主面10aと垂直な方向における基台10の高さhtを変化させて生体Obの高さずれを補償する構成とした。
 なお、本実施例では、生体Obを主面10aと平行な面方向(X1-Y1方向)の画像を撮像する撮像手段91Aを省略し、当該面方向の位置(X1A,Y1A)を規制するための機能をガイド部材121により実現する構成とした。
 (比較例)
 比較例として、市販の血糖値測定装置を用いてSMBGによる血糖値の測定結果を用いた。
 (試験方法)
 ある成人男性の被験者の人指し指の背面を被検体として装置1Aによる実施例とSMBGによる比較例により12時00分から21時30まで略一定の時間間隔で血糖計測を行った。装置1Aによる測定では、生体Obを基台の主面に載設して測定を行い、実施例と比較例とは同時に測定を行った。
 (試験結果)
 図14は、装置1Aの実施例とSMBGによる比較例を用いた血中物質濃度測定試験の結果を示す図である。図14に示すように、実施例の測定値は同時刻における比較例の測定値に対し、平均で±5%以内に収まっており、現在の水準を示す市販品である比較例と良く一致していることが見て取れる。これにより、装置1Aによれば、被測定部位の装置への載せ方の違いによって測定結果が変化することを抑制し、精度の高い計測を安定して行うことができることが確認された。
 <まとめ>
 以上、説明したように、実施の形態2に係る血中物質濃度測定装置1Aは、第1の実施の形態に係る構成において、さらに、生体Obを含む画像を撮像する撮像手段91A及び撮像手段92Aを備え、測定制御部60Aは、取得された画像から生体Obに相当する画像部分を検出し、当該画像部分が本来あるべき基準位置との位置ずれ量を算出し、基台10は、位置ずれ量を補償するように、主面10aの垂直な方向の高さを変更可能な構成としてもよい。
 係る構成により、撮像手段91A及び撮像手段92Aにより、被検体部Mp0における表皮より内方に位置する血管領域Mpにレーザー光が集光して照射されるように、生体Obの光照射部20に対する位置関係を個別の生体Obの形状に合せて簡便に調整することができる。
 また、測定制御部60Aは、取得された画像から生体Obに相当する画像部分が本来あるべき基準角度との角度ずれ量を算出し、基台10は、レーザー光L1の光路Op1と被検体部から光検出器30までの光路Op2とによって定まる平面内において、取得された画像に基づき算出された角度ずれ量を補償するように、レーザー光L1の光路Op1に対する主面10aの角度を変更可能な構成としてもよい。
 係る構成により、被検体部Mp0に対する入射角Aと設置角Bを個別の生体Obの形状に合せて同時にかつ簡便に調整することができる。その結果、被験者は、被測定部位の装置への載せ方や、レーザーの入射や検出器の設置角度にとらわれることなく、より簡便に血中物質濃度の測定を行うことができる。
ことができる。
 ≪実施の形態3≫
 実施の形態3に係る血中物質濃度測定装置1Bについて、図面を用いて説明する。上記例では、生体Obである手指の掌面を基台10に当接させた状態で、手指の背面側を被検体部Mp0として計測を行う構成としたが、生体Obとして手指に替えて身体における別の部位を被検体部として計測を行う構成としてもよい。
 図13は、実施の形態3に係る血中物質濃度測定装置1Bの計測時の態様を示す模式図である。血中物質濃度測定装置1B(以後、「装置1B」と記す場合がある。」では、生体Obとして手指に替えて額にレーザー光を照射して計測を行う構成であって、生体Obが載設される基台10を備えていない。装置1Bでは、撮像手段91A、92Aを用いて被検体部Mp0とレーザー光集光領域FAの位置検出し、検出結果に基づいて、被検体部Mp0とレーザー光集光領域FAとが概ね一致するようにレーザー光の集光位置を位置制御することにより、計測を行う。係る構成により、より簡便に血中物質濃度の測定を行うことができる。
 なお、実施の形態3に係る装置1Bでは、身体における別の部位として、額以外でも、肌の露出している部分を測定対象の被検体部Mp0として計測を行う構成としてもよい。
 装置1Bでは、装置1同様、光照射部20から照射されたレーザー光L1が生体Obの被検体部Mp0に照射され、被検体部Mp0で反射された信号光L2が光検出器30によって受光される。装置1Bにおける、光照射部20と、光検出器30と、結像レンズ40、及び可動機構71のそれぞれの構成は、実施の形態1、2における装置1の構成と同じである。
 (光照射角度調整機構93B)
 装置1Bでは、光照射部20と、光検出器30との間に、光照射部20と、可動機構71を介して光検出器30を保持する構造部材である光照射角度調整機構93Bを備える。この光照射角度調整機構93Bは、レーザー光L1の光路Op1と信号光L2の光路Op2が所定の位置で交わるように、光検出器30と光照射部20の位置及び角度を規定する機能を有する。
 光照射角度調整機構93Bは、モータが内装され、Y1軸と平行な回転軸CLの回りを可逆的に回転可能な角度変更機構を備えている。回転軸CLは3次元空間内において被検体部Mp0が存在する空間位置と交わる構成としてもよい。光照射角度調整機構93Bの回転により、レーザー光入射面内において、生体Obの皮膚表面に対するレーザー光L1の光路Op1及び信号光L2の光路Op2の角度を異ならせることができる。
 具体的には、レーザー光照射角度調整機構93Bは、測定制御部60Bから発せられる制御信号によってモータが駆動されて角度変更機構を動作させる。そして、レーザー光照射角度調整機構93Bに保持された光照射部20と光検出器30を回転軸CLの回りを回転させる。これにより、光照射部20から照射されたレーザー光L1の被検体部Mp0への入射角A、及び被検体部Mp0に対する光検出器30の設置角Bを同時に調整することができる。その結果、レーザー光照射角度調整機構93Bによれば、入射角Aと設置角Bとを、それぞれ所定の角度θA、θBに同時に設定することができる。
 (位置調節機構94B)
 光照射角度調整機構93Bには、光照射角度調整機構93Bのレーザー光入射面内における位置を異ならせる位置調節機構94Bが連設されている。位置調節機構94Bは、測定制御部60Bからの制御信号により位置調節機構94Bを動作させて光照射角度調整機構93Bをレーザー光入射面内において移動させることにより、生体Obの皮膚表面に対するレーザー光L1の光路Op1及び信号光L2の光路Op2の交点を生体Obの被検体部Mp0とすべき位置に移動させることができる。
 また、装置1と同様、光検出器30と光照射角度調整機構93Bとの間に可動機構71が介在しており、光検出器30の光照射角度調整機構93Bに対する位置を変化可能に構成されている。すなわち、測定制御部60Bからの制御信号に基づいて可動機構71を動作させることにより、光検出器30を被検体部Mp0から光検出器30に至る信号光L2の光路Op2と平行な方向、及び垂直な方向に可逆的に移動させることができる。可動機構71には、例えば、リードスクリュー等を用いた直線運動機構、あるいは、圧電素子用いたMEMSアクチュエータを用いてもよい。また、可動機構71は、光検出器30と共に、結像レンズ40を移動させる構成としてもよい。
 (撮像手段91A、92A)
 装置1Bでは、生体Obの被検体部Mp0近傍の皮膚表面に対する法線方向に配された撮像手段91Aと、皮膚表面と平行な方向に配された撮像手段92Aを備える。
 撮像手段91A及び撮像手段92Aは、生体Obの画像を撮像する撮像手段である。撮像手段91Aは、生体Obの皮膚表面の法線方向に被検体部Mp0の方向を向いて配されており、生体Obの皮膚表面を平面視した画像を撮像し、画像データを測定制御部60Bに出力する。また、撮像手段92Aは、生体Obの皮膚表面の側方に被検体部Mp0の方向を向いて配されており、生体Obを側方から視した画像を撮像して画像データを測定制御部60Bに出力する。
 測定制御部60Bは受信した画像から生体Obに相当する画像部分を検出し、当該画像部分が本来あるべき基準位置との位置ずれを算出し、この位置ずれを補償するための制御信号を位置調節機構94Bに出力する。
 具体的には、位置調節機構94Bは、例えば、撮像手段92Aからの画像に基づき高さ方向における高さずれが検出された場合には、制御信号に基づき、生体Obの皮膚表面と垂直な方向における高さhtを変化させて生体Obの高さずれを補償する。同様に、位置調節機構94Bは、例えば、撮像手段91Aからの画像に基づき平面方向の位置ずれが検出された場合には、制御信号に基づき、生体Obの皮膚表面と平行な方向(X1-Y1方向)における光照射角度調整機構93Bの位置X1A、Y1Aを変化させて、光照射部20及び光検出器30の平面方向の位置ずれを補償する。
 さらに、光照射部20から生体Obの被検体部Mp0にレーザー光L1を照射した状態において、撮像手段91A、92Aにより、レーザー光集光領域FAと被検体部Mp0の位置を検出し、検出結果に基づいて、位置調節機構94B及び/又は照射角度調整機構93Bを駆動して、被検体部Mp0とレーザー光集光領域FAとが概ね一致するように位置制御を行う構成としてもよい。
 係る構成により、被験者は、被測定部位の装置への載せ方や、レーザーの入射や検出器の設置角度にとらわれることなく、より簡便に血中物質濃度の測定を行うことができる。
 <まとめ>
 以上、説明したように、実施の形態3に係る血中物質濃度測定装置1Bは、第2の実施の形態に係る構成において、さらに、光照射部20と光検出器30を保持するとともに、回転によりレーザー光入射面内において、生体Obの皮膚表面に対するレーザー光L1及び信号光L2の光路Op2の角度を異ならせる光照射角度調整機構93Bを備えた構成としてもよい。
 係る構成により、光照射部20から照射されたレーザー光L1の被検体部Mp0への入射角A、及び被検体部Mp0に対する光検出器30の設置角Bを同時に調整して、レーザー光L1の光路Op1と信号光L2の光路Op2が所定の位置で交わるように、光検出器30と光照射部20の位置及び角度を規定することができる。
 また、光照射角度調整機構93Bのレーザー光入射面内における位置を異ならせる位置調節機構94Bをさらに備えた構成としてもよい。係る構成により、生体Obの皮膚表面に対するレーザー光L1の光路Op1と信号光L2の光路Op2の交点を生体Obの被検体部Mp0とすべき位置に移動させることができる。
 係る構成により、被験者は、被測定部位の装置への載せ方や、レーザーの入射や検出器の設置角度にとらわれることなく、より簡便に血中物質濃度の測定を行うことができる。
ことができる。
 ≪変形例≫
 以上、本開示の具体的な構成について、実施形態を例に説明したが、本開示は、その本質的な特徴的構成要素を除き、以上の実施の形態に何ら限定を受けるものではない。例えば、実施の形態に対して各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 (1)上記実施の形態では、血中物質濃度測定装置の検出対象となる計測対象物質(第1の血中物質)として、グルコースを例に、実施の形態を示した。しかしながら、本開示に係る血中物質濃度測定装置の検出可能な血中成分は、上記に限定されるものではなく、血中成分の種類に応じて光照射部20が発するレーザー光L1の波長を異ならせることにより、他の検出対象に対しても広く装置を活用することができる。
 例えば、光照射部20が発するレーザー光L1の波長は8.23±0.05μm(8.18μm以上8.28μm以下)としてもよく、血中成分は乳酸である構成としてもよい。あるいは、波長は、5.77μm、6.87μm、7.27μm、8.87μm、又は9.55μmから、-0.05μm以上+0.05μm以下の範囲としてもよい。光照射部20が発する光の波長を8.23μmとしたときの光検出器による乳酸濃度の測定値は、自己採血による乳酸値の測定結果と概ね相関することが発明者らの実験により確認されている。
 (2)上記実施の形態では、リファレンス測定の検出対象となるリファレンス物質(第2の血中物質)として、ヘモグロビンを例に、実施の形態を示した。しかしながら、本開示に係るリファレンス物質は、上記に限定されるものではなく、リファレンス物質に用いる血中成分の種類に応じて光照射部20が発するレーザー光L1の波長を異ならせることにより、他のリファレンス物質に対しても活用することができる。
 (3)上記実施の形態では、光パラメトリック発振器22における、非線形光学結晶223の種類や整合条件を調整することによって、発振されるレーザー光L1の波長を切り替えて調整できる構成としている。
 しかしながら、光照射部20において、複数の光パラメトリック発振器22を選択的に利用可能として、複数の波長のレーザー光L1を選択的に照射可能な装置構成を採ることにより、複数の種類の血中成分を計測可能な装置としてもよい。異なる波長の光を発する複数の光パラメトリック発振器に対し光源21からの出射光を切り替えて入光させ、それぞれ光パラメトリック発振器から異なる波長の光を選択的に出射させ、それぞれの波長によりリファレンス測定と計測対象に対する本測定とを選択的に行える態様としてもよい。
 あるいは、異なる波長の光を発する複数の光照射部20を用い、光結合器、ミラー等を用いて2台の光照射部20からの光をレーザー光L1として選択的に出射させる構成としてもよい。このとき、光の波長によって光路の幅や厚み等が異なる光学系を採用する構成とは異なり、例えば、複数の血中成分に対する光学系において、集光レンズ50、基台10、結像レンズ40、中赤外光を検出可能な光検出器30からなる光学系を共用することができる。
 (4)上記実施の形態では、光照射部20では、対象測定用の第1のレーザー光とリファレンス測定用の第2のレーザー光は、波長が異なる構成とした。しかしながら、対象測定用の第1のレーザー光が計測対象物質に吸収され、リファレンス測定用の第2のレーザー光がリファレンス物質に吸収される構成であればよく、第1のレーザー光と第2のレーザー光とは波長以外の照射条件を異ならせた構成としてもよい。例えば、第1のレーザー光と第2のレーザー光とで、照射部から出射される光の強度を異ならせた態様としてもよい。
 (5)上記実施の形態では、計測対象物質とリファレンス物質とは異なる血中物質からなる構成とした。しかしながら、計測対象物質と同じ物質を用いてリファレンス測定を行う態様としてもよい。
 (6)上記実施の形態では、血中物質濃度測定装置は、被検体Mp0と光検出器30との間に結像レンズ40を備えた光学系を例に、実施の形態を示した。しかしながら、本開示に係る血中物質濃度測定装置は、生体Obの血管領域Mpから反射された信号光L2を光検出器30上において結像させる構成であればよく、受光側光学系として別の態様に適宜、変更してもよい。例えば、複数のレンズを用いた構成や光路の途中にミラーを配した構成としてもよい。
 (7)実施の形態におけるステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 また、各実施の形態、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。
 ≪補足≫
 以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていないものについては、より好ましい形態を構成する任意の構成要素として説明される。
 また、上記の方法が実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記方法の一部が、他の方法と同時(並列)に実行されてもよい。
 また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
 本開示の一態様に係る血中物質濃度測定装置、血中物質濃度測定方法、及びプログラムは、生活習慣病の予防・治療において、日常的に血糖値、血中脂質値等の血中物質状態を測定する医療機器として広く利用することができる。
 1、1A、1B 血中物質濃度測定装置
 10 基台
  11 回転ステージ機構
  12 高さ調整機構
  12A 位置調整機構
 20 光照射部
  21 光源
  22 光パラメトリック発振器
   221 入射側半透鏡
   222 出射側半透鏡
   223 非線形光学結晶
 30 光検出器
  30a スクリーン(受光面)
 40 結像レンズ(第1のレンズ)
 50 集光レンズ(第2のレンズ)
 60、60A、60B 測定制御部
 70 光検出ユニット
  71  可動機構
  711 第1の直線搬送機構
  712 第2の直線搬送機構
 80 絞り
  80a 開口
 91A 撮像手段
 92A 撮像手段
 93B 光照射角度調整機構
 94B 位置調節機構

Claims (23)

  1.  生体の被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定装置であって、
     主面上に前記生体を載置可能な基台と、
     前記基台の前記主面側から、前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部中の特定の領域にレーザー光を集光させて照射する光照射部と、
     前記基台の前記主面側において、前記レーザー光に基づく反射光であって、前記レーザー光から一部の波長の光の強度が弱められた信号光を受光して、その強度を検出する光検出器と、
     前記被検体部と前記光検出器との間であって、前記被検体部中のレーザー光集光領域から発せられた前記信号光の像を光検出器上に結像可能な位置に配された結像レンズと、
     前記信号光の強度に基づき前記レーザー光集光領域における前記血中物質の濃度を測定する測定制御部を備え、
     前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記レーザー光集光領域から前記光検出器への前記信号光の光路とのなす第2の角度と相違し、
     前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域と前記レーザー光集光領域とが重なるように規定され、
     前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定される
     血中物質濃度測定装置。
  2.  前記基台は、前記主面の垂直な方向の高さを異ならせることにより、前記生体の前記光照射部に対する位置を調整可能に構成されている
     請求項1に記載の血中物質濃度測定装置。
  3.  前記光検出器の位置を、前記信号光の光路と交わる方向に異ならせることにより、当該方向における前記光検出器の前記生体に対する位置を調整可能に構成されている
     請求項1に記載の血中物質濃度測定装置。
  4.  前記基台は、前記レーザー光の光路と前記被検体部から前記光検出器までの光路とによって定まる平面内において、前記レーザー光の光路に対する前記主面の角度を異ならせることにより、前記第1の角度及び前記第2の角度を同時に調整可能に構成されている
     請求項1に記載の血中物質濃度測定装置。
  5.  前記光検出器の位置を、前記信号光の光路に沿った方向に異ならせることにより、当該方向における前記光検出器の前記生体に対する位置を調整可能に構成されており、
     前記光検出器の位置は、前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像する状態になるよう、前記血中物質の濃度に基づいて調整される
     請求項1に記載の血中物質濃度測定装置。
  6.  前記光照射部は、計測対象物質である第1の血中物質に吸収される対象測定用の第1のレーザー光と、リファレンス物質である第2の血中物質に吸収されるリファレンス測定用の第2のレーザー光とを選択的に照射可能に構成されており、
     前記リファレンス測定における、前記第2のレーザー光が前記第2の血中物質に吸収される吸収率は、前記対象測定において、前記第1のレーザー光が前記第1の血中物質に吸収される吸収率よりも大きい
     請求項1~5の何れか1項に記載の血中物質濃度測定装置。
  7.  前記リファレンス物質は、前記計測対象物質よりも血中における濃度の安定性が高い
     請求項6に記載の血中物質濃度測定装置。
  8.  前記測定制御部は、前記第2のレーザー光の照射に基づいて、前記特定の領域が前記被検体部中の血管領域に含まれている状態における、前記第2の血中物質の濃度を測定し、
     前記第1のレーザー光の照射に基づいて、前記特定の領域における前記第1の血中物質の濃度を、前記計測対象部分における前記第1の血中物質の濃度として測定可能に構成されている
     請求項6に記載の血中物質濃度測定装置。
  9.  前記レーザー光の光路における、前記光照射部と前記被検体部との間に位置し前記レーザー光を前記照射領域に集光させる集光レンズを備えた
     請求項1に記載の血中物質濃度測定装置。
  10.  前記被検体部から前記光検出器までの光路における前記対象載置部から前記光検出器までの区間において、前記信号光は前記結像レンズを通過する区間を除いて空間中を伝播し、
     前記光照射部から前記被検体部までの光路における前記光照射部から前記対象載置部までの区間において、前記レーザー光は前記集光レンズを通過する区間を除いて空間中を伝播する
     請求項9に記載の血中物質濃度測定装置。
  11.  さらに、前記生体を含む画像を撮像する撮像手段を備え、
     前記測定制御部は、取得された画像から前記生体に相当する画像部分を検出して当該画像部分が本来あるべき基準位置との位置ずれ量を算出し、
     前記基台は、前記位置ずれ量を補償するように、前記主面の垂直な方向の高さを変更可能である
     請求項1~5、又は9の何れか1項に記載の血中物質濃度測定装置。
  12.  さらに、前記生体を含む画像を撮像する撮像手段を備え、
     測定制御部は、取得された画像から前記生体に相当する画像部分を検出して当該画像部分が本来あるべき基準角度との角度ずれ量を算出し、
     前記基台は、前記角度ずれ量を補償するように、前記レーザー光の光路に対する前記主面の角度を変更可能である
     請求項1~5、又は9の何れか1項に記載の血中物質濃度測定装置。
  13.  さらに、前記光照射部と前記光検出器を保持するとともに、回転によりレーザー光入射面内において、前記生体の皮膚表面に対するレーザー光及び信号光の光路の角度を異ならせる光照射角度調整機構を備えた
     請求項1に記載の血中物質濃度測定装置。
  14.  さらに、前記光照射角度調整機構のレーザー光入射面内における位置を異ならせる位置調節機構をさらに備えた
     請求項13に記載の血中物質濃度測定装置。
  15.  生体の被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定方法であって、
     生体を基台の主面上に載置して、前記基台の前記主面側から、光照射部により前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部の特定の領域に、計測対象物質である血中物質に吸収される対象測定用のレーザー光を集光させて照射し、
     前記基台の前記主面側において、前記被検体部と光検出器との間に位置する結像レンズを用いて、前記レーザー光の反射光であって、前記被検体部中のレーザー光集光領域から発せられた、前記レーザー光から一部の波長の光の強度が弱められた信号光の像を光検出器上に結像させ、
     前記光検出器により前記信号光を受光して、その強度に基づき前記特定の領域における前記血中物質の濃度として測定し、
     前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記特定の領域から前記光検出器への前記信号光の光路のなす第2の角度と相違し、
     前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域と前記レーザー光集光領域とが重なるように規定されており、
     前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定されている
     血中物質濃度測定方法。
  16.  前記測定に先立って、前記基台の前記主面と垂直な方向の高さを異ならせて、前記生体の前記光照射部に対する位置を調整する
     請求項15に記載の血中物質濃度測定方法。
  17.  前記測定に先立って、前記光検出器の位置を、前記信号光の光路と交わる方向に異ならせて、当該方向における前記光検出器の前記生体に対する位置を調整する
     請求項15に記載の血中物質濃度測定方法。
  18.  前記対象測定に先立って、前記レーザー光の光路と前記被検体部から前記光検出器までの光路とによって定まる平面内において前記主面の角度を異ならせて、前記特定の領域における前記血中物質の濃度を測定するリファレンス測定を行うことにより、前記第1の角度及び前記第2の角度を前記血中物質の濃度に基づいて同時に調整する
     請求項15に記載の血中物質濃度測定方法。
  19.  前記対象測定に先立って、前記光検出器の位置を、前記信号光の光路に沿って異ならせて、前記血中物質の濃度を測定するリファレンス測定を行うことにより、当該方向における前記光検出器の前記生体に対する位置を調整し、
     当該調整では、前記光検出器の位置は、前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像する状態になるよう、前記血中物質の濃度に基づいて調整される
     請求項15に記載の血中物質濃度測定方法。
  20.  前記レーザー光を第1のレーザー光、前記血中物質を第1の血中物質、前記血中物質の濃度を第1の血中物質の濃度としたとき、
     前記リファレンス測定では、
     前記光照射部から前記照射領域に、リファレンス物質である第2の血中物質に吸収されるリファレンス測定用の第2のレーザー光が照射され、
     前記結像レンズを用いて、前記特定の領域から反射された前記第2のレーザー光の信号光を前記光検出器上に結像され、
     前記光検出器により前記第2のレーザー光の信号光を受光して、当該信号光に基づく前記第2の血中物質の濃度が、前記計測対象部分における前記第2の血中物質の濃度として測定され、
     前記第2のレーザー光が前記第2の血中物質に吸収される吸収率は、前記対象測定において、前記第1のレーザー光が前記第1の血中物質に吸収される吸収率よりも大きい
     請求項15~19の何れか1項に記載の血中物質濃度測定方法。
  21.  前記リファレンス物質は、前記計測対象物質よりも血中における濃度の安定性が高い
     請求項16に記載の血中物質濃度測定方法。
  22.  前記第2のレーザー光の照射に基づいて、前記特定の領域が前記被検体部中の血管領域に含まれている状態における、前記第2の血中物質の濃度を測定し、
     前記第1のレーザー光の照射に基づいて、前記特定の領域における前記第1の血中物質の濃度を、前記計測対象部分における前記第1の血中物質の濃度として測定する
     請求項20に記載の血中物質濃度測定方法。
  23.  コンピュータに生体の被検体部の血液中に含まれる血中物質の濃度を測定する血中物質濃度測定処理を行わせるプログラムであって、
     前記血中物質濃度測定処理は、
     生体を基台の主面上に載置して、前記基台の前記主面側から、光照射部により前記生体の前記主面と相対する側の皮膚表面と前記生体の反対側に位置する皮膚中にある被検体部の特定の領域に、計測対象物質である血中物質に吸収される対象測定用のレーザー光を集光させて照射し、
     前記基台の前記主面側において、前記被検体部と光検出器との間に位置する結像レンズを用いて、前記レーザー光の反射光であって、前記被検体部中のレーザー光集光領域から発せられた、前記レーザー光から一部の波長の光の強度が弱められた信号光の像を光検出器上に結像させ、
     前記光検出器により前記信号光を受光して、その強度に基づき前記特定の領域における前記血中物質の濃度として測定し、
     前記被検体部の皮膚表面に対する法線と前記レーザー光の光路とのなす第1の角度は、前記法線と前記特定の領域から前記光検出器への前記信号光の光路のなす第2の角度と相違し、
     前記生体の前記光照射部に対する位置は、前記被検体部における表皮より内方に位置する血管領域と前記レーザー光集光領域とが重なるように規定されており、
     前記光検出器の前記生体に対する位置は、前記レーザー光集光領域と重なる前記血管領域から発せられる前記信号光の像が、前記結像レンズによって転送されて前記光検出器の受光面上に結像するように規定されている
     プログラム。
PCT/JP2023/013841 2022-04-06 2023-04-03 血中物質濃度測定装置、血中物質濃度測定方法、及びプログラム WO2023195453A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-063273 2022-04-06
JP2022063273 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023195453A1 true WO2023195453A1 (ja) 2023-10-12

Family

ID=88242962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013841 WO2023195453A1 (ja) 2022-04-06 2023-04-03 血中物質濃度測定装置、血中物質濃度測定方法、及びプログラム

Country Status (1)

Country Link
WO (1) WO2023195453A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309707A (ja) * 2007-06-15 2008-12-25 Kagawa Univ 分光計測装置及び分光計測方法
JP2009168670A (ja) 2008-01-17 2009-07-30 Sanyo Electric Co Ltd 光学測定ユニット
JP2010281891A (ja) 2009-06-02 2010-12-16 Japan Atomic Energy Agency レーザー装置及びレーザー増幅方法
WO2016117520A1 (ja) 2015-01-21 2016-07-28 国立研究開発法人日本原子力研究開発機構 血中物質濃度測定装置及び血中物質濃度測定方法
JP2017509373A (ja) * 2011-01-28 2017-04-06 バー‐イラン、ユニバーシティーBar−Ilan University 個体の生物学的または生化学的パラメータを非侵襲的に監視する方法及びシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309707A (ja) * 2007-06-15 2008-12-25 Kagawa Univ 分光計測装置及び分光計測方法
JP2009168670A (ja) 2008-01-17 2009-07-30 Sanyo Electric Co Ltd 光学測定ユニット
JP2010281891A (ja) 2009-06-02 2010-12-16 Japan Atomic Energy Agency レーザー装置及びレーザー増幅方法
JP2017509373A (ja) * 2011-01-28 2017-04-06 バー‐イラン、ユニバーシティーBar−Ilan University 個体の生物学的または生化学的パラメータを非侵襲的に監視する方法及びシステム
WO2016117520A1 (ja) 2015-01-21 2016-07-28 国立研究開発法人日本原子力研究開発機構 血中物質濃度測定装置及び血中物質濃度測定方法

Similar Documents

Publication Publication Date Title
JP6472406B2 (ja) 光学計測モジュール、光学計測デバイス及びその方法
CN107427266B (zh) 血中物质浓度测定装置以及血中物质浓度测定方法
US10433775B2 (en) Apparatus for non-invasive in vivo measurement by raman spectroscopy
US20060135861A1 (en) Apparatus and method for blood analysis
JP4973751B2 (ja) 生体成分測定装置
WO2023195453A1 (ja) 血中物質濃度測定装置、血中物質濃度測定方法、及びプログラム
EP2749217B1 (en) Apparatus for non-invasive glucose monitoring
WO2022071442A1 (ja) 血中物質濃度測定装置及び血中物質濃度測定方法
US7453564B2 (en) Method of determining a property of a fluid and spectroscopic system
EP3052010A1 (en) Probe, system, and method for non-invasive measurement of blood analytes
WO2024057553A1 (ja) 血中物質濃度測定装置、血中物質濃度測定方法及びプログラム
TWI522086B (zh) 非侵入式葡萄糖監測裝置
US9662004B2 (en) Apparatus for non-invasive glucose monitoring
US9724022B2 (en) Apparatus for non-invasive glucose monitoring
JP2023031627A (ja) 血中物質濃度測定装置、血中物質濃度測定方法及びプログラム
EP2749218A1 (en) Apparatus for non-invasive glucose monitoring
TWI495864B (zh) 非侵入式血糖監測裝置與方法以及生化分子的分析方法
JP2005028005A (ja) グルコース濃度測定装置
JP2023526846A (ja) 分析物を含む物質への励起放射の結合が改良された分析物測定のための装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023784739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023784739

Country of ref document: EP

Effective date: 20240417

ENP Entry into the national phase

Ref document number: 2024514273

Country of ref document: JP

Kind code of ref document: A