WO2023195281A1 - 異常診断装置、異常診断方法及び異常診断プログラム - Google Patents

異常診断装置、異常診断方法及び異常診断プログラム Download PDF

Info

Publication number
WO2023195281A1
WO2023195281A1 PCT/JP2023/008102 JP2023008102W WO2023195281A1 WO 2023195281 A1 WO2023195281 A1 WO 2023195281A1 JP 2023008102 W JP2023008102 W JP 2023008102W WO 2023195281 A1 WO2023195281 A1 WO 2023195281A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
noise
waveform data
abnormality diagnosis
feature
Prior art date
Application number
PCT/JP2023/008102
Other languages
English (en)
French (fr)
Inventor
公亮 植村
基亮 玉谷
孝 吉岡
祐一 池田
信秋 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024514189A priority Critical patent/JPWO2023195281A1/ja
Publication of WO2023195281A1 publication Critical patent/WO2023195281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/04Frequency
    • G01H3/08Analysing frequencies present in complex vibrations, e.g. comparing harmonics present
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present disclosure relates to an abnormality diagnosis device, an abnormality diagnosis method, and an abnormality diagnosis program that diagnose abnormalities in electrical equipment.
  • Patent Document 1 describes a spectral pattern obtained by performing Fast Fourier Transform (FFT) processing on waveform data of vibrations generated by electrical equipment, and a spectral pattern for known abnormalities set in advance.
  • FFT Fast Fourier Transform
  • Patent Document 1 determines abnormality using only the spectral pattern. Therefore, with the technology of Patent Document 1, when different types of abnormalities have the same spectral patterns, for example, when the spectral patterns are the same but the occurrence time intervals are different, it becomes difficult to distinguish the type of abnormality. There is a problem. Furthermore, although the technology disclosed in Patent Document 1 is capable of identifying known abnormalities such as changes in the spectrum pattern over time in waveform data, it is not possible to identify unknown abnormalities that are different from normal and that may be felt by the operator. There is a problem in that it is difficult to distinguish between
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an abnormality diagnosis device that can distinguish between known and unknown abnormalities that are different from normal ones.
  • an abnormality diagnosis device includes a microphone that converts the sound of a discrimination target into an analog electrical signal, and a signal converter that converts the analog electrical signal into a digital signal. Equipped with a container.
  • a signal processing device that takes in a digital signal and performs signal processing includes a signal processing section, a data storage section, and a discrimination section.
  • the signal processing unit calculates a feature amount by performing short-time fast Fourier transform on the waveform data of the input signal.
  • the data storage unit stores feature data based on normal known waveform data.
  • the determining unit compares first feature data consisting of a plurality of feature quantities calculated by the signal processing unit with second feature data, which is feature data stored in the data storage unit, and determines the input Determine whether the signal waveform data is good or bad.
  • the feature amount is an amount that represents the degree of variation in spectral intensity fluctuation over time in a specific frequency band that the waveform data has.
  • the abnormality diagnosis device According to the abnormality diagnosis device according to the present disclosure, it is possible to distinguish between known and unknown abnormalities that are different from normal ones.
  • Block diagram showing a configuration example of an abnormality diagnosis device according to Embodiment 1 Diagram for explaining filter bank processing applicable to the signal processing device according to Embodiment 1
  • Flowchart illustrating a method for diagnosing an abnormality of an electrical device using the abnormality diagnosis device according to Embodiment 1 Block diagram showing a configuration example of an abnormality diagnosis device according to Embodiment 2 Block diagram for explaining the estimation processing algorithm used in Embodiment 2
  • Block diagram showing a configuration example of an abnormality diagnosis device according to Embodiment 3 Block diagram showing a configuration example of an abnormality diagnosis device according to Embodiment 4
  • Block diagram showing a configuration example of an abnormality diagnosis device according to Embodiment 6 A diagram for explaining a known noise removal procedure performed using the abnormality diagnosis device according to Embodiment 6
  • FIG. 1 is a block diagram showing a configuration example of an abnormality diagnosis device according to the first embodiment.
  • An abnormality diagnosis device 100 according to the first embodiment includes a microphone 2, a signal converter 3, and a signal processing device 10.
  • the signal processing device 10 also includes a signal processing section 4, a data storage section 5, and a determining section 6.
  • the microphone 2 converts sound including the operation sound of the discrimination target object 1 into an analog electrical signal.
  • the signal converter 3 is an analog to digital (AD) converter, and converts an analog electrical signal output from the microphone 2 into a digital signal.
  • the signal processing device 10 takes in the digital signal output from the signal converter 3 and performs signal processing to be described later. Note that the abnormality diagnosis device 100 may include a plurality of signal processing devices 10.
  • the signal processing unit 4 performs necessary arithmetic processing on the waveform data of the input signal to calculate a feature amount.
  • the feature amount is the amount that represents the degree of variation in the spectral intensity fluctuation over time of a specific frequency band that the waveform data has.In other words, the amount of fluctuation in the spectral intensity of the specific frequency band is This is a quantity that expresses how much variation there is.
  • the data storage unit 5 stores feature amount data based on normal known waveform data.
  • the determining unit 6 compares the feature data consisting of a plurality of feature quantities calculated by the signal processing unit 4 with the feature data based on normal known waveform data stored in the data storage unit 5, and performs signal processing. The quality of the waveform data of the input signal input to the device 10 is determined.
  • first feature quantity data a data group consisting of a plurality of feature quantities calculated by the signal processing unit 4
  • first feature quantity data a data group consisting of a plurality of feature quantities calculated by the signal processing unit 4
  • first feature quantity data features based on normal known waveform data stored in the data storage unit 5
  • second feature data A collection of quantity data or feature data may be referred to as "second feature data.”
  • a general general-purpose microphone can be used as the microphone 2, it is desirable to prevent ambient noise from being included in the operation sound generated from the discrimination target object 1 as much as possible. This can be achieved by using a sound collection microphone with sound collection directivity, a parabolic sound collection microphone that combines a general microphone and a parabolic reflector, or an appropriate combination of these sound collection microphones.
  • a general audio interface can be used as the signal converter 3.
  • it is desirable to use an audio interface with a high sampling frequency because it is possible to set a large range in the frequency direction when performing FFT processing in signal processing described later.
  • the signal processing device 10 has a function equivalent to the signal converter 3, that function may be used.
  • a general computer or a programmable logic controller can be used. PLC is also called a sequencer. Further, an electronic board configured of a signal processing device and a storage medium may be used for the processing of the signal processing apparatus 10. Examples of signal processing devices are microcomputers and FPGAs (Field Programmable Gate Array), and examples of storage media are RAM (Random Access Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM). ) is a non-volatile or volatile semiconductor memory.
  • the signal processing device 10 can perform a series of operations from capturing waveform data to discrimination according to procedural processing. Further, the signal processing device 10 may have a screen capable of instructing and displaying the determination state. In this case, settings necessary for the discrimination process can be made using the screen, and the status of discrimination and its results can be displayed on the screen and notified to the operator.
  • the signal processing unit 4 performs short-time fast Fourier transform (STFT) on the waveform data converted by the signal converter 3 by dividing the waveform data into arbitrary numbers in each of the frequency direction and the time direction. )I do.
  • STFT short-time fast Fourier transform
  • the STFT processing result is represented by a matrix F having i frequencies and j time dimensions as shown in equation (1) below.
  • i is the number of divisions of waveform data in the frequency direction
  • j is the number of divisions of waveform data in the time direction.
  • the signal processing unit 4 generates a feature amount vector expressed by the following equation (2), which uses the standard deviation of the spectral intensity in the time direction in the matrix F as a feature amount, based on the matrix F that is the processing result of STFT. Calculate T.
  • the data storage unit 5 stores feature amount data based on normal known waveform data.
  • the feature amount data stored in the data storage unit 5 is also calculated by STFT.
  • the number of normal known waveform data is expressed as k
  • a collection of feature amounts based on a plurality of normal known waveform data is expressed as T'k .
  • T'1 is a feature vector obtained using waveform data 1, which is the first waveform data
  • T'k is a feature vector obtained using waveform data k, which is the k - th waveform data.
  • data regarding the mean ⁇ and standard deviation ⁇ of the set T ′ k are used as second feature data.
  • the average ⁇ and standard deviation ⁇ can be expressed by the following equations (4) and (5). At this time, it is desirable that the number k of normal known waveform data be at least 100 or more.
  • the mean ⁇ and standard deviation ⁇ shown in equations (4) and (5) above are examples of the second feature data, and statistics other than the mean ⁇ and standard deviation ⁇ are used as the second feature. It may be stored in the data storage unit 5 as quantity data.
  • the determining unit 6 determines whether the waveform data of the input signal is good or bad.
  • a discrimination index value Z i expressed by the following equation (6) is used.
  • the discrimination index value Z i is used to determine the degree of deviation between the first feature amount data and the second feature amount data.
  • the determination unit 6 compares the value of the discrimination index value Z i with a predetermined threshold value for each frequency band, and when at least one or some of the discrimination index values Z i exceeds the threshold value, the determination unit 6 determines the waveform data to be determined. It is determined that the condition is abnormal or deviates from the normal condition.
  • FIG. 2 is a diagram illustrating filter bank processing applicable to the signal processing device according to the first embodiment.
  • the number of divisions of waveform data in the frequency direction is i ' (i ' ⁇ i), and the number of divisions of waveform data in the time direction is j ' (j ' ⁇ j).
  • f 1,j-1 + f 1,j +f 2,j-1 +f 2,j is calculated, and this is set as f ' 1,j '
  • the lower left four elements f i-1,1 , f i-1,2 , f i, 1 and f i,2 perform the calculation f i-1,1 + f i-1,2 + f i,1 + f i,2 and set this as f ' i ' ,1 .
  • FIG. 2 is an example, and arbitrary i ' and j' that satisfy the relationships of i' ⁇ i and j ' ⁇ j can be selected. Furthermore, the waveform data may not be divided at equal intervals. Therefore, the number of divisions i ' does not need to be a divisor of the number of divisions i, and the number of divisions j ' does not need to be a divisor of the number of divisions j. Further, there is no dependence between the number of divisions in the frequency direction and the number of divisions in the time direction, and each can be performed independently.
  • FIG. 3 is a flowchart illustrating a method for diagnosing an abnormality of an electrical device using the abnormality diagnosing device according to the first embodiment.
  • the processing flow in FIG. 3 can be executed using a computer, a PLC, or a processor equipped with a storage unit.
  • these computers, PLCs, or processors will be simply referred to as "computers”.
  • the computer stores second feature data, that is, feature data that represents the degree of variation in spectral intensity fluctuation over time in a specific frequency band of normal known waveform data.
  • the computer also stores programs that implement the functions of the microphone 2, signal converter 3, and signal processing device 10 described above.
  • the computer is configured such that the program can be loaded from the outside and executed.
  • the computer converts the operating sound of the electrical equipment into an analog electrical signal (step S11).
  • the computer converts the analog electrical signal converted in step S11 into a digital signal (step S12).
  • the computer performs STFT on the waveform data converted in step S12 to calculate a feature amount (step S13).
  • the computer compares the discrimination index value Z i based on the first feature amount data consisting of the plurality of feature amounts calculated in step S13 and the second feature amount data stored in the computer with a threshold value (step S14).
  • a threshold value a supplementary explanation will be given regarding the processing in step S14.
  • the feature vector T representing the first feature data is expressed by the above equation (2), and each element of the feature vector T is expressed by the above equation (3).
  • an example of the discrimination index value Z i is expressed by the above equation (6).
  • the computer determines whether there is a discrimination index value Z i that exceeds a threshold value (step S15). If there is no discrimination index value Z i exceeding the threshold (step S15, No), the computer determines that the electrical device is normal (step S16). Furthermore, if there is at least one discrimination index value Z i that exceeds the threshold value (Step S15, Yes), the computer determines that the electrical device is not normal or may be abnormal (Step S17).
  • the computer is preferably equipped with a function of drawing and displaying the discrimination index value Z i and the threshold value in a graph on the display screen. This function allows the operator to be visually and easily notified of the pass/fail determination result.
  • the waveform data to be determined is determined based on the degree of deviation between the feature amount of the waveform data to be determined and the feature amount of normal known waveform data stored in a computer. Since the presence or absence of an abnormality is determined, it is possible to determine whether an unknown abnormality is good or bad.
  • the present invention is not limited to this.
  • the feature amount of the normal known waveform data may be referenced by the computer, and may be held in a storage unit or storage area that is not a component of the computer. That is, the computer only needs to be configured to be able to refer to the feature amount of normal, known waveform data.
  • the abnormality diagnosis device includes a microphone that converts the sound of a discrimination target object into an analog electrical signal, and a signal converter that converts the analog electrical signal into a digital signal.
  • a signal processing device that takes in a digital signal and performs signal processing includes a signal processing section, a data storage section, and a discrimination section.
  • the signal processing unit calculates a feature amount by performing short-time fast Fourier transform on the waveform data of the input signal.
  • the data storage unit stores feature data based on normal known waveform data.
  • the determining unit compares first feature data consisting of a plurality of feature quantities calculated by the signal processing unit with second feature data, which is feature data stored in the data storage unit, and determines the input Determine whether the signal waveform data is good or bad.
  • the feature amount is an amount that represents the degree of variation in spectral intensity fluctuation over time in a specific frequency band that the waveform data has.
  • the waveform to be determined is determined based on the degree of deviation between the feature amount of the waveform data to be determined and the feature amount of normal known waveform data stored in the data storage unit. It is determined whether there is an abnormality in the data. This makes it possible to discriminate known and unknown abnormalities that are different from normal ones, such as temporally varying spectral patterns.
  • the signal processing device performs filter bank processing on the feature amount generated by short-time fast Fourier transform, and generates first feature amount data based on the feature amount that has been subjected to the filter bank processing. You may also do so. In this way, the time width or frequency width when obtaining the first feature amount data can be arbitrarily changed. This makes it possible to improve the accuracy of determining whether the waveform data is good or bad.
  • the abnormality diagnosis method is configured to be able to refer to a feature quantity that represents the degree of variation in spectral intensity fluctuation over time in a specific frequency band that normal known waveform data has.
  • This is a method of diagnosing abnormalities in electrical equipment using a computer.
  • This abnormality diagnosis method includes the following first to fourth steps.
  • the first step is to convert the operating sound of the electrical equipment into an analog electrical signal.
  • the second step is to convert the analog electrical signal into a digital signal.
  • the third step is a step of performing short-time fast Fourier transform on the waveform data transformed in the second step to calculate a feature amount.
  • the fourth step is to compare the first feature amount data consisting of the plurality of feature amounts calculated in the third step with the second feature amount data stored in the computer to determine whether the waveform data is good or bad. It is a step. By having a computer execute these first to fourth steps, it becomes possible to determine known and unknown abnormalities that are different from normal ones, such as temporally varying spectral patterns.
  • the abnormality diagnosis program is configured to be able to refer to a feature quantity that represents the degree of variation in spectral intensity fluctuation over time in a specific frequency band that normal known waveform data has.
  • This is a program that allows a computer to diagnose abnormalities in electrical equipment.
  • This abnormality diagnosis program includes the first to fourth steps shown below.
  • the first step is to convert the operating sound of the electrical equipment into an analog electrical signal.
  • the second step is to convert the analog electrical signal into a digital signal.
  • the third step is a step of performing short-time fast Fourier transform on the waveform data transformed in the second step to calculate a feature amount.
  • the fourth step is to compare the first feature amount data consisting of the plurality of feature amounts calculated in the third step with the second feature amount data stored in the computer to determine whether the waveform data is good or bad. It is a step.
  • Embodiment 2 In the configuration of the abnormality diagnosing device according to the first embodiment shown in FIG. 1, there is a risk that noise from the surroundings may be mixed in and erroneously discriminate between noise and abnormal sound. In the second embodiment, a configuration that improves this is proposed.
  • FIG. 4 is a block diagram showing a configuration example of an abnormality diagnosis device according to the second embodiment.
  • a noise collection microphone 11 for collecting surrounding noise is added to the configuration of the abnormality diagnosis apparatus 100 according to the first embodiment shown in FIG. There is.
  • the other configurations are the same or equivalent to those in FIG. 1, and the same or equivalent components are denoted by the same reference numerals and redundant explanations will be omitted.
  • FIG. 4 illustrates a case where there are three noise collecting microphones 11, the present invention is not limited to this example.
  • the number of noise collecting microphones 11 may be one, or two or four or more.
  • the operation of the abnormality diagnosis device will be explained.
  • waveform data collected using the noise collecting microphone 11 is used to estimate a time period in which ambient noise is mixed.
  • the method of the first embodiment is applied to the waveform data excluding the estimated time interval.
  • FIG. 5 is a block diagram illustrating an algorithm for estimation processing used in the second embodiment.
  • adders 21 and 23 and a filter 22 are shown as control elements that implement the method of the second embodiment.
  • the matrix F shown in equation (1) above and the feature vector T shown in equation (2) above are obtained. do.
  • the feature vector obtained from the microphone 2 is expressed as s(t)
  • the feature vectors obtained from the three noise collecting microphones 11 are expressed as n 1 (t), n 2 (t), n 3 ( t).
  • the filter 22 only needs to be able to reproduce how much the value of each element of the matrix F is attenuated.
  • a constant vector representing the characteristics of the filter 22 is represented by w
  • an estimated value of noise included in the feature vector s(t) observed at the microphone 2 is represented by d ⁇ (t).
  • d ⁇ is an alternative notation meaning that the symbol " ⁇ " is attached above the letter "d”.
  • the estimated noise value d ⁇ (t) can be expressed by the following equation (7).
  • the symbol " ⁇ " is an operator representing multiplication processing for each element of a vector.
  • the constant vector w representing the characteristics of the filter 22 is a vector whose elements are constants obtained by appropriately calculating the attenuation rate of each element. Any method may be used to calculate the attenuation rate of each element.
  • the noise feature quantity is calculated by multiplying the sum of the sound pressure levels of the three noise collecting microphones 11 by a constant. Therefore, the period during which the noise feature amount calculated using the above equation (7) exceeds a predetermined threshold value can be estimated as the period during which noise is mixed. Therefore, if the judgment is performed based on the above-mentioned algorithm excluding the estimated period, that is, the period in which noise is mixed, it is possible to judge whether the waveform data is good or bad while reducing the influence of the mixed noise. becomes.
  • the characteristics of the filter 22 will be considered. First, it is assumed that good characteristics of the filter 22 are equivalent to a small error between the actual noise d(t) observed by the microphone 2 and its estimated value d ⁇ (t). Conceivable. In order to consider this error, an observed signal matrix N expressed by the following equation (8) is defined.
  • the symbol "T" represents transposition.
  • L represents the number of frames in the observed signal matrix N. Note that the number of frames L corresponds to the number of short-time frames in STFT.
  • noise matrix D which represents the actual noise observed by the microphone 2 and is expressed by the following equation (9), is defined.
  • a constant vector w having optimal parameters can be obtained.
  • the information on the noise d(t) collected by the microphone 2 and the feature vectors n 1 (t), n 2 (t), n 3 ( t) information can be used.
  • An example of an alternative approach is to use data recorded in situations where only noise is present and no operational sound to be measured is present.
  • data obtained by recording only noise in an actual noisy environment may be used, or data obtained by playing a signal corresponding to noise through a speaker in a laboratory and recording it may be used.
  • a test signal that has energy in all frequency bands and that varies over time can be used.
  • An example of this test signal is a TSP signal used in the TSP method (Time-Stretched-Pulse method).
  • the abnormality diagnosis device further includes a noise collection microphone for collecting surrounding noise.
  • the signal processing device uses waveform data collected using a noise collecting microphone to estimate the time period in which ambient noise is mixed, and performs short-time fast Fourier transform on the waveform data excluding the estimated time period. and calculate the feature amount. Thereby, it is possible to avoid erroneously determining that noise included in the sound of the discrimination target object is abnormal.
  • a noise collection microphone for collecting surrounding noise is used between the second step and the third step.
  • the method includes an estimation step of estimating the time period in which ambient noise is mixed, using the waveform data collected during the process. Then, in the third step, a short-time fast Fourier transform is performed on the waveform data excluding the time interval estimated in the estimation step to calculate a feature amount. In this way, it is possible to provide a discrimination method that reduces the influence of noise from the surroundings. Thereby, it is possible to avoid erroneously determining that noise included in the sound of the discrimination target object is abnormal.
  • FIG. 6 is a block diagram showing a configuration example of an abnormality diagnosis device according to the third embodiment.
  • a soundproof wall 12 for reducing surrounding noise is added to the configuration of the abnormality diagnosis apparatus 100 according to the first embodiment shown in FIG. .
  • the soundproof wall 12 is arranged so as to cover the periphery of the discrimination target object 1.
  • the other configurations are the same or equivalent to those in FIG. 1, and the same or equivalent components are denoted by the same reference numerals and redundant explanations will be omitted.
  • the soundproof wall 12 As the soundproof wall 12, a general sound absorbing material, a metal plate, or a combination thereof can be used. It is desirable that the thickness of the soundproof wall 12 be changed depending on the level of surrounding noise.
  • the method for determining whether there is an abnormality in waveform data is basically the same as in the first embodiment.
  • the configuration of Embodiment 1 there is a possibility that noise from the surroundings may be mixed in.
  • the configuration of the second embodiment there is a risk that noise and abnormal sound may be erroneously determined in an environment where ambient noise cannot be completely removed or where noise is always mixed in.
  • the noise from the surroundings can be attenuated by the soundproof wall 12.
  • the method of the third embodiment is a simple method, it can provide a discrimination method that reduces the influence of surrounding noise.
  • the abnormality diagnosis device includes a soundproof wall arranged to cover the periphery of the object to be determined. Since the soundproof wall attenuates ambient noise, it is possible to provide a discrimination method that reduces the influence of ambient noise. Thereby, it is possible to avoid erroneously determining that noise included in the sound of the discrimination target object is abnormal.
  • FIG. 7 is a block diagram showing a configuration example of an abnormality diagnosis device according to the fourth embodiment.
  • an abnormality diagnosis apparatus 100C according to the fourth embodiment has a configuration of the abnormality diagnosis apparatus 100 according to the first embodiment shown in FIG.
  • a movable control section 14 for controlling the operation is added.
  • the other configurations are the same or equivalent to those in FIG. 1, and the same or equivalent components are denoted by the same reference numerals and redundant explanations will be omitted.
  • the movable part 13 can be an articulated robot, a linear robot, an air cylinder, a hydraulic cylinder, or the like.
  • a computer, a sequencer, etc. can be used for the movable control section 14.
  • the movable control section 14 may include a position detection sensor, a camera, etc. for determining the operation of the movable section 13.
  • the method for determining whether there is an abnormality in waveform data is basically the same as in the first embodiment.
  • the discrimination target object 1 moves, for example, and the microphone 2 is fixed, the distance between the discrimination target object 1 and the microphone 2 changes. It is difficult to measure sound stably.
  • the case where the object to be determined 1 moves is, for example, the case where the object to be determined 1 is placed on a belt conveyor and is flowing through a production line.
  • the movable part 13 can be operated by the movable control part 14 in accordance with the movement of the discrimination target object 1.
  • the change in the distance between the discrimination target object 1 and the microphone 2 can be made small or zero, so that the sound generated from the discrimination target object 1 can be stably measured.
  • the structure of the discrimination target object 1 is complicated, it is assumed that sufficient sound volume cannot be obtained because the distance between the discrimination target object 1 and the microphone 2 becomes long. Inability to obtain sufficient volume means that waveform data with sufficient amplitude cannot be obtained. If waveform data with sufficient amplitude is not obtained, there is a possibility that the waveform data does not include the sound necessary for discrimination, leading to an error in discrimination.
  • the operator performs discrimination, the operator brings his/her ear close to the operational sound generating section of the object 1 to be determined. It is difficult to get close to the site of occurrence.
  • the movable control section 14 can operate the movable section 13 so that the microphone 2 comes sufficiently close to the operation sound generating section of the discrimination target object 1 .
  • the microphone 2 can be brought close to a position where sufficient amplitude can be obtained for measurement.
  • the abnormality diagnosis device includes a movable section for moving the microphone and a movable control section for controlling the operation of the movable section.
  • Embodiment 5 In the configuration of the abnormality diagnosing device according to the first embodiment shown in FIG. 1, there is a risk that noise from the surroundings may be mixed in and erroneously discriminate between noise and abnormal sound. Furthermore, in the case of the configuration of the second embodiment, there is a risk that noise and abnormal sound may be erroneously determined in an environment where ambient noise cannot be completely removed or where noise is always mixed in. Furthermore, in the method of the second embodiment, if the operational sound generated from the discrimination target object 1 is large, the operational sound is also input to the noise collecting microphone 11, and there is a possibility that the time period in which the noise is mixed cannot be estimated. There is. Therefore, in the fifth embodiment, a method that improves these is proposed. Note that the method according to the fifth embodiment can be implemented using the configuration of the abnormality diagnosis apparatus 100 according to the first embodiment shown in FIG.
  • the signal processing unit 4 performs STFT on the waveform data converted by the signal converter 3 by dividing the waveform data into arbitrary numbers in each of the frequency direction and the time direction. This process is the same as in the first embodiment.
  • the matrix F which is the result of STFT processing, is expressed by the following equation (12).
  • i is the number of divisions of waveform data in the frequency direction
  • j is the number of divisions of waveform data in the time direction.
  • the signal processing unit 4 calculates a matrix R expressed by the following equation (13) for the matrix F that is the STFT processing result.
  • is a matrix containing the elements of the vector of average ⁇ shown in the above equation (4), and is expressed by the following equation (14).
  • the matrix ⁇ is a diagonal matrix, and its diagonal elements are expressed by the following equation (15).
  • the diagonal element e i,i of the matrix ⁇ is expressed as the reciprocal of the average ⁇ i .
  • the matrix R is calculated as information regarding the frequency of noise of known normal products. Furthermore, as shown in equations (13) to (15) above, the matrix R is expressed as the product of the matrix F and the matrix ⁇ having the reciprocal of the average ⁇ , and is an estimated value of unsteady noise. It is calculated as follows. Note that if a sufficient number of averages ⁇ are not obtained, a unit matrix may be used instead of the matrix ⁇ .
  • the signal processing unit 4 calculates the total sum per time for each element of the matrix R representing the estimated value of unsteady noise. If a vector whose elements are the sums per time is represented by R ' , the summation vector R ' can be expressed as in the following equation (16).
  • the signal processing unit 4 calculates the average value of the entire summation vector R ' , and identifies elements of the summation vector R ' that exceed the overall average value. Then, the signal processing unit 4 estimates the interval to which the element exceeding the overall average value belongs as a time interval in which unsteady noise is mixed, that is, a time interval in which noise other than operation sound is mixed. . Then, the methods of Embodiment 1 and Embodiment 2 are applied to the waveform data excluding the estimated time interval. By doing so, it is possible to provide a discrimination method that reduces the influence of noise from the surroundings.
  • the average value of the entire summation vector R ' is used as the reference value for comparison, that is, the threshold value, but the present invention is not limited to this.
  • the threshold value may be obtained by multiplying the average value of the entire summation vector R ' by an arbitrary coefficient.
  • the signal processing device uses the waveform data of the operation sound of the object to be determined to determine the time period in which noise other than the operation sound is mixed.
  • a short-time fast Fourier transform is performed on the estimated waveform data excluding the estimated time interval to calculate the feature amount.
  • the waveform data of the operation sound of the electrical equipment is used.
  • the method includes an estimation step of estimating a time interval in which noise other than sound is mixed.
  • a short-time fast Fourier transform is performed on the waveform data excluding the time interval estimated in the estimation step to calculate a feature amount.
  • Embodiment 6 In the configuration of the abnormality diagnosis device 100 according to the first embodiment shown in FIG. There is a risk that the noise may be mixed in with the noise, leading to erroneous discrimination between noise and abnormal sound. Furthermore, in the case of the configuration of the second embodiment, there is a risk that noise and abnormal sound may be erroneously determined in an environment where ambient noise cannot be completely removed or where noise is always mixed in. Furthermore, in the method of the second embodiment, if the operational sound generated from the discrimination target object 1 is large, the operational sound is also input to the noise collecting microphone 11, and there is a possibility that the time period in which the noise is mixed cannot be estimated. There is. Therefore, in the sixth embodiment, a method that improves these is proposed.
  • FIG. 8 is a block diagram showing a configuration example of an abnormality diagnosis device 100D according to the sixth embodiment.
  • the signal processing device 10D included in the abnormality diagnosis device 100D further includes a preprocessing section 30 in addition to the configuration of the signal processing device 10 shown in FIG.
  • the data storage unit 5 of the signal processing device 10D stores feature amount data based on normal known waveform data and known noise data.
  • the preprocessing unit 30 processes the waveform data converted by the signal converter 3 and the known noise data by performing an STFT process that divides the waveform data and the noise data into arbitrary numbers in the frequency direction and the time direction, respectively. I do. Further, the preprocessing unit 30 performs pattern matching between the matrices that are the processing results of each STFT. A general algorithm can be used for pattern matching.
  • a matrix representing the STFT result of the waveform data converted by the signal converter 3 is denoted by I, and is referred to as a "first signal matrix.”
  • a matrix representing the STFT results of known noise data is denoted by T and is referred to as a "first noise matrix.”
  • R NCC Normalized Cross-Correlation
  • the preprocessing unit 30 determines that the normalized cross-correlation R NCC obtained by pattern matching exceeds a certain approximation threshold Th Near at a certain index (i, j), the preprocessing unit 30 determines that the normalized cross-correlation R NCC obtained by the signal converter 3 In the first signal matrix I, the index at which the value of the normalized cross-correlation R NCC takes the maximum value is set as the start time, and the data from this start time to the size of the first noise matrix T in the time direction are collected for the known noise. It is judged to be a mixed section.
  • FIG. 9 is a diagram illustrating a known noise removal procedure performed using the abnormality diagnosis device 100D according to the sixth embodiment.
  • the preprocessing unit 30 determines whether the waveform data converted by the signal converter 3 includes known noise data.
  • the portion indicated by the thick solid line frame is determined to be a known noise mixing section.
  • the preprocessing unit 30 uses the values of the elements whose values of the first noise matrix T exceed the replacement target threshold Th pow as a noise removal variable P rep by pattern matching.
  • a second noise matrix T' is generated in which some elements of the STFT result of known noise data are replaced.
  • the replacement target threshold Th pow 100
  • the values “150”, “200”, and “450” that exceed this value of 100 are the noise removal variables.
  • the second noise matrix T' is generated by replacing it with the value of P rep .
  • the noise removal variable P rep by pattern matching an average value or an uncalculated value of a portion of the first signal matrix I excluding data in a section where known noise is mixed can be used.
  • FIG. 9 an example is shown in which the average value for each frequency of the portion of the first signal matrix I excluding the data in the section where known noise is mixed is set as the noise removal variable P rep .
  • the preprocessing unit 30 removes the influence of the known noise contamination by replacing the data of the part of the known noise contamination section in the first signal matrix I with the second noise matrix T'.
  • a second signal matrix I' is generated.
  • the second signal matrix I' is used to perform the processing of any one of the first to fifth embodiments described above.
  • the configuration in which the preprocessing unit 30 is added to the front stage of the signal processing unit 4 is applied to the configuration of the abnormality diagnosis device 100 according to the first embodiment shown in FIG. 1, but the configuration shown in FIG. It is also possible to apply to the configuration of Embodiment 2, the configuration of Embodiment 3 shown in FIG. 6, and the configuration of Embodiment 4 shown in FIG.
  • the signal processing device uses the known noise data to calculate the time period in which the known noise data is mixed, based on the results of short-time fast Fourier transform.
  • the apparatus includes a preprocessing section that estimates a section, and a signal processing section that performs a process of calculating a feature quantity from data excluding noise data.
  • the preprocessing unit converts the waveform data converted by the signal converter and the known noise data into waveform data and noise data in the frequency direction and the time direction, respectively.
  • Short-time fast Fourier transform is performed on the divided parts into an arbitrary number, and pattern matching is performed between the matrices that are the processing results of each short-time fast Fourier transform.
  • the signal processing section calculates first feature amount data using data generated based on the pattern matching processing result by the preprocessing section. In this way, it is possible to provide an abnormality diagnosis device in which the influence of noise from the surroundings is reduced.
  • the known noise is detected from the result of the short-time fast Fourier transform.
  • the third step a short time fast Fourier transform is performed on the waveform data obtained by replacing the data of the time interval estimated in the estimation step with other data to calculate the feature amount.
  • Discrimination target 2. Microphone, 3. Signal converter, 4. Signal processing unit, 5. Data storage unit, 6. Discrimination unit, 10, 10D signal processing device, 11. Noise collection microphone, 12. Soundproof wall, 13. Movable part, 14. Movable control. section, 21, 23 adder, 22 filter, 30 preprocessing section, 100, 100A, 100B, 100C, 100D abnormality diagnosis device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

異常診断装置(100)は信号処理装置(10)を備え、信号処理装置(10)は、信号処理部(4)、データ記憶部(5)及び判別部(6)を備える。信号処理部(4)は、入力信号の波形データに対してSTFTを行って特徴量を算出する。データ記憶部(5)には、正常な既知の波形データによる特徴量データが記憶されている。判別部(6)は、信号処理部(4)によって算出された特徴量の複数からなる第1の特徴量データとデータ記憶部(5)に記憶されている特徴量データである第2の特徴量データとを比較して、入力信号の波形データの良否を判別する。特徴量は、波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す量である。

Description

異常診断装置、異常診断方法及び異常診断プログラム
 本開示は、電気機器の異常を診断する異常診断装置、異常診断方法及び異常診断プログラムに関する。
 一般的な電気機器の組立工程においては、組立途中もしくは組立完了後に電気機器の動作試験を実施する。また、動作試験実施時においては、電気機器から発生する振動もしくは動作音に異常がないかの良否を確認する官能試験が実施される。このような官能試験は、作業者の聴覚もしくは触覚によって実施されるので、作業者の感覚に依存するという特徴がある。このため、官能試験では、良否の判断材料としての振動もしくは動作音の情報を定量化するために、マイク、振動センサなどで取得した振動もしくは動作音の情報を波形データへと変換して信号処理するような診断装置が用いられることがある。
 下記特許文献1には、電気機器より発生する振動の波形データに高速フーリエ変換(Fast Fourier Transform:FFT)処理を施すことにより得られたスペクトルパターンと、予め設定された既知の異常時のスペクトルパターンとを比較し、比較結果に基づいて電気機器の異常の有無を診断する技術が開示されている。
特開昭62-93620号公報
 上述の通り、上記特許文献1の技術は、スペクトルパターンのみを用いて異常を判定するものである。従って、特許文献1の技術では、異種の異常についてスペクトルパターンが等しくなるような場合、例えば、スペクトルパターンは等しくても発生時間間隔が異なるような異常については、異常の種類の判別が困難になるという課題がある。また、上記特許文献1の技術は、波形データに対して時間的にスペクトルパターンが変動するような既知の異常の判別は可能であるが、作業者が感じるような通常とは異なる未知の異常に対しての判別が困難であるという課題がある。
 本開示は、上記に鑑みてなされたものであって、通常とは異なる既知及び未知の異常を判別することができる異常診断装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本開示に係る異常診断装置は、判別対象物の音をアナログの電気信号に変換するマイクと、アナログの電気信号をディジタル信号に変換する信号変換器とを備える。ディジタル信号を取り込んで信号処理を行う信号処理装置は、信号処理部と、データ記憶部と、判別部とを備える。信号処理部は、入力信号の波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。データ記憶部には、正常な既知の波形データによる特徴量データが記憶されている。判別部は、信号処理部によって算出された特徴量の複数からなる第1の特徴量データとデータ記憶部に記憶されている特徴量データである第2の特徴量データとを比較して、入力信号の波形データの良否を判別する。特徴量は、波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す量である。
 本開示に係る異常診断装置によれば、通常とは異なる既知及び未知の異常を判別することができるという効果を奏する。
実施の形態1に係る異常診断装置の構成例を示すブロック図 実施の形態1に係る信号処理装置に適用可能なフィルタバンク処理の説明に供する図 実施の形態1に係る異常診断装置を用いて行う電気機器の異常診断方法の説明に供するフローチャート 実施の形態2に係る異常診断装置の構成例を示すブロック図 実施の形態2で用いる推定処理のアルゴリズムの説明に供するブロック図 実施の形態3に係る異常診断装置の構成例を示すブロック図 実施の形態4に係る異常診断装置の構成例を示すブロック図 実施の形態6に係る異常診断装置の構成例を示すブロック図 実施の形態6に係る異常診断装置を用いて行う既知の騒音の除去手順の説明に供する図
 以下に添付図面を参照し、本開示の実施の形態に係る異常診断装置、異常診断方法及び異常診断プログラムについて詳細に説明する。なお、以下に説明する実施の形態は例示であって、以下の実施の形態によって、本開示の範囲が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る異常診断装置の構成例を示すブロック図である。実施の形態1に係る異常診断装置100は、マイク2と、信号変換器3と、信号処理装置10とを備える。また、信号処理装置10は、信号処理部4と、データ記憶部5と、判別部6とを備える。
 マイク2は、判別対象物1の動作音を含む音をアナログの電気信号に変換する。信号変換器3は、アナログディジタル(Analog to Digital:AD)変換器であり、マイク2から出力されるアナログの電気信号をディジタル信号に変換する。信号処理装置10は、信号変換器3から出力されるディジタル信号を取り込んで、後述する信号処理を行う。なお、異常診断装置100において、信号処理装置10は、複数備えられていてもよい。
 信号処理装置10において、信号処理部4は、入力信号の波形データに対して必要な演算処理を行って特徴量を算出する。特徴量は、波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す量、言い替えると、特定の周波数帯域のスペクトル強度の変動量が時間の経過方向に対してどれだけばらついているかを表す量である。
 データ記憶部5には、正常な既知の波形データによる特徴量データが記憶されている。判別部6は、信号処理部4が算出した複数の特徴量からなる特徴量データと、データ記憶部5に記憶されている正常な既知の波形データによる特徴量データとを比較して、信号処理装置10に入力される入力信号の波形データの良否を判別する。
 なお、本稿では、信号処理部4によって算出された特徴量の複数からなるデータ群を「第1の特徴量データ」と呼び、データ記憶部5に記憶されている正常な既知の波形データによる特徴量データ、又は特徴量データの集合体を「第2の特徴量データ」と呼ぶことがある。
 マイク2には、一般的な汎用のマイクを用いることができるが、判別対象物1から発生する動作音に周囲の騒音などが可能な限り含まれないようにすることが望ましい。これには、集音指向性を有する集音マイク、一般的なマイクとパラボラ反射板とを組み合わせたパラボラ型の集音マイク、又はこれらの集音マイクを適宜組み合わせることで実現できる。
 信号変換器3には、一般的なオーディオインタフェースを用いることができる。ここで、サンプリング周波数の大きいオーディオインタフェースを使用すると、後述の信号処理においてFFT処理を行う際に周波数方向のレンジを大きく設定することができるため望ましい。なお、信号処理装置10が信号変換器3に相当する機能を有している場合、その機能を用いてもよい。
 信号処理装置10の処理には、一般的なコンピュータ又はプログラマブルロジックコントローラ(Programmable Logic Controller:PLC)を用いることができる。PLCは、シーケンサとも呼ばれる。また、信号処理装置10の処理には、信号処理デバイスと記憶媒体とで構成される電子基板を用いてもよい。信号処理デバイスの例は、マイコン、FPGA(Field Programmable Gate Array)であり、記憶媒体の例は、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリである。信号処理装置10は、波形データの取り込みから判別までの一連の作業を手続き型処理に従って行うことができる。また、信号処理装置10は、判別の状態を指示及び表示可能な画面を有していてもよい。この場合、画面を用いて判別処理に必要な設定を行い、判別の状況及びその結果を画面に表示して作業者に通知することができる。
 次に、信号処理装置10における判別処理のアルゴリズムについて説明する。信号処理部4は、信号変換器3によって変換された波形データに対して、周波数方向及び時間方向のそれぞれに波形データを任意の数に分割した短時間高速フーリエ変換(Short Time fast Fourier Transform:STFT)を行う。本稿では、STFTの処理結果を以下の(1)式で示されるようなi個の周波数とj個の時間の次元を有する行列Fとで表す。
Figure JPOXMLDOC01-appb-M000005
 上記(1)式において、iは周波数方向の波形データの分割数であり、jは時間方向の波形データの分割数である。
 また、信号処理部4は、STFTの処理結果である行列Fに基づいて、行列Fにおける時間方向のスペクトル強度の標準偏差を特徴量とする、以下の(2)式で表される特徴量ベクトルTを算出する。
Figure JPOXMLDOC01-appb-M000006
 上記(2)式において、特徴量ベクトルTの各要素t…tにおいて、任意の周波数iにおける特徴量tは、以下の(3)式で算出される。
Figure JPOXMLDOC01-appb-M000007
 上記(3)式において、「f」は、「f」という文字の上部に「」の記号が付されていることを意味する代替表記である。また、「f 」は、上記(1)式のi行におけるj個の各要素fi,1…fi,jの平均値である。
 前述したように、データ記憶部5には、正常な既知の波形データによる特徴量データが記憶されている。データ記憶部5に記憶される特徴量データも、STFTによって算出される。ここで、正常な既知の波形データの数をkとし、複数の正常な既知の波形データに基づく特徴量の集合体をT で表す。T は1番目の波形データである波形データ1を用いて求めた特徴量ベクトルであり、T はk番目の波形データである波形データkを用いて求めた特徴量ベクトルである。また、本稿では、集合体T の平均ν及び標準偏差σに関するデータを第2の特徴量データとする。平均ν及び標準偏差σは、以下の(4)、(5)式で表すことができる。このとき、正常な既知の波形データの数kは、少なくとも100以上であることが望ましい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 なお、本稿において、上記(4)、(5)式で示される平均ν及び標準偏差σは第2の特徴量データの例示であり、平均ν及び標準偏差σ以外の統計量を第2の特徴量データとしてデータ記憶部5に記憶してもよい。
 前述したように、判別部6は、入力される入力信号の波形データの良否を判別する。この判別処理においては、以下の(6)式で示される判別指標値Zを用いる。
Figure JPOXMLDOC01-appb-M000010
 判別指標値Zは、第1の特徴量データと第2の特徴量データとの乖離度を判別するために用いられる。判別部6は、判別指標値Zの値を周波数帯ごとに既定の閾値と比較し、少なくとも1つ、もしくは一部の判別指標値Zが閾値を超えているとき、判定対象の波形データは、異常もしくは正常状態から逸脱した状態であると判定する。
 なお、上記のSTFTの処理において、図2に示すフィルタバンク処理を併用してもよい。図2は、実施の形態1に係る信号処理装置に適用可能なフィルタバンク処理の説明に供する図である。
 フィルタバンク処理では、STFTの処理結果である行列Fに対して、周波数方向の波形データの分割数をi(i<i)とし、時間方向の波形データの分割数をj(j<j)とする。具体的に、図2では、i=i/2、j=j/2とする例が示されている。
 図2の左図において、行列Fの左上の4つの要素f1,1、f1,2、f2,1、f2,2に対しては、f1,1+f1,2+f2,1+f2,2の演算、即ち加算演算を行ってこれをf 1,1とする。以下同様に、行列Fの右上の4つの要素f1,j-1、f1,j、f2,j-1、f2,jに対しては、f1,j-1+f1,j+f2,j-1+f2,jの演算を行ってこれをf 1,j とし、行列Fの左下の4つの要素fi-1,1、fi-1,2、fi,1、fi,2に対しては、fi-1,1+fi-1,2+fi,1+fi,2の演算を行ってこれをf ,1とする。また、行列Fの右下の4つの要素fi-1,j-1、fi-1,j、fi,j-1、fi,jに対しては、fi-1,j-1+fi-1,j+fi,j-1+fi,jの演算を行ってこれをf ,j とする。行列Fの他の要素についても、4つの要素ごとに加算演算が行われる。このようにして、図2の右図に示される、再統合された新たな行列Fが生成される。
 なお、図2は一例であり、i<i、j<jの関係を満たす任意のi,jを選択することができる。また、波形データの分割は、等間隔でなくてもよい。従って、分割数iは分割数iの約数である必要はなく、分割数jも分割数jの約数である必要はない。また、周波数方向の分割数と時間方向の分割数との間には従属性がなく、それぞれが独立して行うことができる。
 分割数i,jを適切に設定することで、再統合された行列Fにおいて、判別対象物1の音の特徴を際立たせることができる。従って、フィルタバンク処理によって再統合された行列Fを用いれば、波形データの良否の判別の精度を高めることが可能となる。
 図3は、実施の形態1に係る異常診断装置を用いて行う電気機器の異常診断方法の説明に供するフローチャートである。図3の処理フローは、コンピュータ、PLC又は記憶部を備えたプロセッサを用いて実行することができる。以下、これらのコンピュータ、PLC又はプロセッサを、単に「コンピュータ」と呼ぶ。
 コンピュータには、第2の特徴量データ、即ち正常な既知の波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す特徴量のデータが記憶されている。また、コンピュータには、上述したマイク2、信号変換器3及び信号処理装置10の機能を実現するプログラムが格納されている。或いは、コンピュータは、当該プログラムが外部からロードされて実行できるように構成されている。
 コンピュータは、電気機器の動作音をアナログの電気信号に変換する(ステップS11)。コンピュータは、ステップS11で変換されたアナログの電気信号をディジタル信号に変換する(ステップS12)。コンピュータは、ステップS12で変換された波形データに対してSTFTを行って特徴量を算出する(ステップS13)。
 コンピュータは、ステップS13によって算出された特徴量の複数からなる第1の特徴量データと、コンピュータに記憶されている第2の特徴量データとに基づく判別指標値Zを閾値と比較する(ステップS14)。ステップS14の処理について補足する。前述したように、第1の特徴量データを表す特徴量ベクトルTは上記(2)式で表され、特徴量ベクトルTの各要素は、上記(3)式で表される。また、判別指標値Zの例は、上記(6)式で表される。
 コンピュータは、閾値を超えた判別指標値Zがあるか否かを判別する(ステップS15)。閾値を超えた判別指標値Zがない場合(ステップS15,No)、コンピュータは、電気機器は正常であると判定する(ステップS16)。また、閾値を超えた判別指標値Zが少なくとも1つある場合(ステップS15,Yes)、コンピュータは、電気機器は正常ではない又は異常の可能性があると判定する(ステップS17)。
 図3のフローチャートを用いることにより、判定対象の電気機器が正常品であるか異常品であるかを判定することができる。なお、コンピュータには、表示画面に判別指標値Z及び閾値をグラフに描画して表示する機能が備えられていることが望ましい。この機能により、良否の判別結果を視覚的且つ容易に作業者に通知することができる。
 [発明が解決しようとする課題]の項でも説明したように、従来技術では、スペクトルパターンのみを用いて異常を判定するものであるため、スペクトルパターンは等しくても発生時間間隔が異なるような異常については、異常の種類の判別が困難になるという課題があった。また、従来技術では、作業者が感じるような通常とは異なる未知の異常に対しての判別が困難であるという課題があった。これに対し、実施の形態1に係る異常診断方法では、判別対象の波形データの特徴量とコンピュータに記憶した正常な既知の波形データの特徴量との乖離度に基づいて、判別対象の波形データの異常の有無を判別するので、未知の異常に対しても良否の判別が可能となる。
 なお、上記では、コンピュータには、正常な既知の波形データの特徴量が記憶されているとして説明したが、これに限定されない。正常な既知の波形データの特徴量は、コンピュータが参照可能であればよく、コンピュータの構成部ではない記憶部又は記憶領域に保持されていればよい。即ち、コンピュータは、正常な既知の波形データの特徴量を参照可能に構成されていればよい。
 以上説明したように、実施の形態1に係る異常診断装置は、判別対象物の音をアナログの電気信号に変換するマイクと、アナログの電気信号をディジタル信号に変換する信号変換器とを備える。ディジタル信号を取り込んで信号処理を行う信号処理装置は、信号処理部と、データ記憶部と、判別部とを備える。信号処理部は、入力信号の波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。データ記憶部には、正常な既知の波形データによる特徴量データが記憶されている。判別部は、信号処理部によって算出された特徴量の複数からなる第1の特徴量データとデータ記憶部に記憶されている特徴量データである第2の特徴量データとを比較して、入力信号の波形データの良否を判別する。特徴量は、波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す量である。このように構成された異常診断装置によれば、判別対象の波形データの特徴量とデータ記憶部に記憶されて正常な既知の波形データの特徴量との乖離度に基づいて、判別対象の波形データの異常の有無が判別される。これにより、時間的にスペクトルパターンが変動するような通常とは異なる既知及び未知の異常を判別することが可能となる。
 なお、上記の処理において、信号処理装置は、短時間高速フーリエ変換によって生成した特徴量に対してフィルタバンク処理を行い、フィルタバンク処理を行った特徴量に基づいて第1の特徴量データを生成するようにしてもよい。このようにすれば、第1の特徴量データを求める際の時間幅又は周波数幅を任意に変えることができる。これにより、波形データの良否の判別の精度を高めることが可能となる。
 また、実施の形態1に係る異常診断方法は、正常な既知の波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す特徴量を参照可能に構成されるコンピュータを用いて電気機器の異常を診断する方法である。この異常診断方法には、以下に示す第1~第4ステップが含まれる。第1ステップは、電気機器の動作音をアナログの電気信号に変換するステップである。第2ステップは、アナログの電気信号をディジタル信号に変換するステップである。第3ステップは、第2ステップによって変換された波形データに対して短時間高速フーリエ変換を行って特徴量を算出するステップである。第4ステップは、第3ステップによって算出された特徴量の複数からなる第1の特徴量データとコンピュータに記憶されている第2の特徴量データとを比較して、波形データの良否を判別するステップである。これらの第1~第4のステップをコンピュータに実行させることにより、時間的にスペクトルパターンが変動するような通常とは異なる既知及び未知の異常を判別することが可能となる。
 また、実施の形態1に係る異常診断プログラムは、正常な既知の波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す特徴量を参照可能に構成されるコンピュータに電気機器の異常を診断させるプログラムである。この異常診断プログラムには、以下に示す第1~第4ステップが含まれる。第1ステップは、電気機器の動作音をアナログの電気信号に変換するステップである。第2ステップは、アナログの電気信号をディジタル信号に変換するステップである。第3ステップは、第2ステップによって変換された波形データに対して短時間高速フーリエ変換を行って特徴量を算出するステップである。第4ステップは、第3ステップによって算出された特徴量の複数からなる第1の特徴量データとコンピュータに記憶されている第2の特徴量データとを比較して、波形データの良否を判別するステップである。これらの第1~第4ステップを含むプログラムをコンピュータに実行させることにより、時間的にスペクトルパターンが変動するような通常とは異なる既知及び未知の異常を判別することが可能となる。
実施の形態2.
 図1に示す実施の形態1に係る異常診断装置の構成では、周囲からの騒音が混入して、騒音と異常音とを誤判別するおそれがある。実施の形態2では、これを改善した構成を提案する。
 図4は、実施の形態2に係る異常診断装置の構成例を示すブロック図である。図4において、実施の形態2に係る異常診断装置100Aでは、図1に示す実施の形態1に係る異常診断装置100の構成において、周囲の騒音を収集するための騒音収集マイク11が追加されている。その他の構成については、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。なお、図4では、騒音収集マイク11が3つの場合を例示しているが、この例に限定されない。騒音収集マイク11の数は、1つでもよく、2又は4以上の複数でもよい。
 次に、実施の形態2に係る異常診断装置の動作について説明する。前述したように、実施の形態1の構成では、周囲からの騒音が混入して、騒音と異常音とを誤判別するおそれがある。そこで、実施の形態2では、騒音収集マイク11を用いて収集した波形データを用いて、周囲の騒音が混入している時間区間を推定する。そして、推定した時間区間を除外した波形データに対して実施の形態1の手法を適用する。このようにすることで、周囲からの騒音の影響を低減させた判別手法を提供できる。
 次に、実施の形態2で用いる推定処理のアルゴリズムについて図5を参照して説明する。図5は、実施の形態2で用いる推定処理のアルゴリズムの説明に供するブロック図である。図5では、実施の形態2の手法を実現する制御要素として加算器21,23と、フィルタ22とが示されている。
 まず、マイク2及び騒音収集マイク11によって収集された音声信号の波形データから、上記(1)式に示される行列Fと、上記(2)式に示される特徴量ベクトルTが得られているとする。このとき、時刻tにおいて、マイク2から得られる特徴ベクトルをs(t)で表し、3つの騒音収集マイク11から得られる特徴ベクトルをそれぞれn(t)、n(t)、n(t)で表す。
 図5において、フィルタ22は、行列Fの各要素の値がどの程度減衰するかを再現できればよい。ここで、フィルタ22の特性を表す定数ベクトルをwで表し、マイク2において観測される特徴ベクトルs(t)に含まれる騒音の推定値をd(t)で表す。「d」は、「d」という文字の上部に「」の記号が付されていることを意味する代替表記である。このとき、騒音の推定値d(t)は、以下の(7)式で表すことができる。
Figure JPOXMLDOC01-appb-M000011
 上記(7)式において、記号「」は、ベクトルの要素ごとの乗算処理を表す演算子である。なお、フィルタ22の特性を表す定数ベクトルwは、各要素の減衰率を適切に算出することで得られた定数を要素とするベクトルである。各要素の減衰率の算出には、どのような手法が用いられてもよい。
 上記(7)式によれば、騒音の特徴量は、3つの騒音収集マイク11の音圧レベルを加算したものに定数を乗算することで算出されることを意味する。このため、上記(7)式で算出した騒音の特徴量が予め定めた閾値を超えている期間を、騒音の混入している期間として推定できる。従って、推定された期間、即ち騒音の混入している期間を除いて、前述のアルゴリズムに基づいて判別を行うようにすれば、混入した騒音の影響を低減させた波形データの良否の判別が可能となる。
 更に、フィルタ22の特性について考察する。まず、フィルタ22の特性が良好なものであることは、マイク2によって観測される実際の騒音d(t)と、その推定値d(t)との誤差が小さくなることと等価であると考えられる。この誤差を考えるため、以下の(8)式で表される観測信号行列Nを定義する。
Figure JPOXMLDOC01-appb-M000012
 上記(8)式において、記号「T」は転置を表す。また、Lは、観測信号行列Nにおけるフレーム数を表している。なお、フレーム数Lは、STFTにおける短時間フレーム数に対応している。
 また、マイク2によって観測される実際の騒音を表す、以下の(9)式で表される騒音行列Dを定義する。
Figure JPOXMLDOC01-appb-M000013
 ここで、上記(8)式で示される観測信号行列Nのi番目の列を取り出して縦ベクトルを生成する操作をNと表記し、上記(9)式で示される騒音行列Dのi番目の列を取り出して縦ベクトルを生成する操作をDと表記する。また、定数ベクトルwのi番目の値を取り出す操作をwと表記する。このとき、STFTの処理結果を表す行列Fにおいて、i番目の周波数に着目したときの二乗誤差をeで表すと、この二乗誤差eは、以下の(10)式のように表すことができる。
Figure JPOXMLDOC01-appb-M000014
 上記(10)式を最小化するwを求める。このwは、上記(10)式をwで微分した(de/w)がゼロとなるw、即ちde/w=0を満たすwであり、以下の(11)式で表される。
Figure JPOXMLDOC01-appb-M000015
 上記(11)式の演算を全てのiについて行えば、最適なパラメータを具備する定数ベクトルwを求めることができる。なお、上記で説明した演算処理では、マイク2によって収集される騒音d(t)の情報と、騒音収集マイク11によって収集される特徴ベクトルn(t)、n(t)、n(t)の情報とが必要となるが、代替手法を用いることができる。代替手法の例は、騒音だけが存在し、測定対象の動作音が存在しない状況において録音したデータを使用する手法である。この手法の場合、実際の騒音環境下で騒音だけを録音したデータを使用してもよいし、実験室で騒音に相当する信号をスピーカーで再生して録音したデータを使用してもよい。後者の例としては、全ての周波数帯にエネルギーを持ち、尚且つ時間的に変動する試験用の信号を使用することができる。この試験用の信号としては、TSP法(Time-Stretched-Pulse method)で使用されるTSP信号を例示できる。
 以上説明したように、実施の形態2に係る異常診断装置は、周囲の騒音を収集するための騒音収集マイクを更に備える。信号処理装置は、騒音収集マイクを用いて収集した波形データを用いて、周囲の騒音が混入している時間区間を推定し、推定した時間区間を除外した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。これにより、判別対象物の音に含まれる騒音を異常として誤判断してしまうことを回避することができる。
 また、実施の形態2に係る異常診断方法では、実施の形態1で説明した異常診断方法において、第2ステップと第3ステップとの間に、周囲の騒音を収集するための騒音収集マイクを用いて収集した波形データを用いて、周囲の騒音が混入している時間区間を推定する推定ステップを含むようにする。そして、第3ステップでは、推定ステップで推定された時間区間を除外した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。このようにすれば、周囲からの騒音の影響を低減させた判別手法を提供できる。これにより、判別対象物の音に含まれる騒音を異常として誤判断してしまうことを回避することができる。
実施の形態3.
 図6は、実施の形態3に係る異常診断装置の構成例を示すブロック図である。図6において、実施の形態3に係る異常診断装置100Bでは、図1に示す実施の形態1に係る異常診断装置100の構成において、周囲の騒音を低減するための防音壁12が追加されている。防音壁12は、判別対象物1の周囲を覆うように配置されている。その他の構成については、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
 図6の構成において、防音壁12としては、一般的な吸音材、金属板、又はそれらを組み合わせたものを用いることができる。防音壁12の厚みは、周囲の騒音の大きさに応じて変えることが望ましい。
 実施の形態3において、波形データの異常の有無の判別手法は、基本的に実施の形態1と同様である。但し、実施の形態1の構成の場合、周囲からの騒音が混入するおそれがある。また、実施の形態2の構成の場合、周囲からの騒音が除去しきれない、もしくは常に騒音が混入するような環境の場合に騒音と異常音とを誤判別するおそれがある。これに対し、実施の形態3では、周囲からの騒音を防音壁12で減衰させることができる。実施の形態3の手法は、簡易な手法ではあるものの、周囲からの騒音の影響を低減させた判別手法を提供することができる。
 以上説明したように、実施の形態3に係る異常診断装置は、判別対象物の周囲を覆うように配置される防音壁を備える。防音壁は、周囲からの騒音を減衰させるので、周囲からの騒音の影響を低減させた判別手法を提供できる。これにより、判別対象物の音に含まれる騒音を異常として誤判断してしまうことを回避することができる。
実施の形態4.
 図7は、実施の形態4に係る異常診断装置の構成例を示すブロック図である。図7において、実施の形態4に係る異常診断装置100Cでは、図1に示す実施の形態1に係る異常診断装置100の構成において、マイク2を移動させるための可動部13と、可動部13の動作を制御する可動制御部14とが追加されている。その他の構成については、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
 ここで、可動部13には、多関節ロボット、直動ロボット、エアシリンダ、油圧シリンダ等を用いることができる。また、可動制御部14には、コンピュータ、シーケンサなどを用いることができる。可動制御部14は、可動部13の動作を決定するための位置検出センサ、カメラなどを備えていてもよい。
 実施の形態4において、波形データの異常の有無の判別手法は、基本的に実施の形態1と同様である。但し、実施の形態1において、例えば判別対象物1が移動する場合、マイク2が固定されていると、判別対象物1とマイク2との間の距離が変化するので、判別対象物1から生じる音を安定して測定することが困難である。判別対象物1が移動する場合とは、例えば判別対象物1がベルトコンベアに載せられて生産ラインを流れている場合である。
 これに対し、実施の形態4では、可動制御部14によって判別対象物1の動きに合わせて可動部13を動作させることができる。これにより、判別対象物1とマイク2との間の距離の変化を小さく、もしくはゼロにできるので、判別対象物1から生じる音の測定を安定して行うことができる。
 また、判別対象物1の構造が複雑である場合、判別対象物1とマイク2との間の距離が長くなることで、充分な音量が得られないことが想定される。十分な音量が得られないことは、十分な振幅の波形データが得られないことを意味する。十分な振幅の波形データが得られない場合、判別に必要となる音が波形データに含まれていないおそれがあり、判別の誤りにつながる。作業者による判別の際は、判別対象物1における動作音発生部に、作業者の耳を近づけて確認を行うが、実施の形態1の構成の場合、マイク2を判別対象物1における動作音発生部に近づけることが困難である。これに対し、実施の形態4では、可動制御部14によって判別対象物1における動作音発生部に、マイク2が十分に近づくように可動部13を動作させることができる。これにより、十分な振幅が得られる位置までマイク2を近づけて測定することができる。これにより、十分な振幅の波形データを得ることができ、波形データの良否を精度よく判別することができる。
 以上説明したように、実施の形態4に係る異常診断装置は、マイクを移動させるための可動部と、可動部の動作を制御する可動制御部とを備える。この構成により、判別対象物における動作音発生部にマイクを近づけることができる。これにより、十分な振幅の波形データを得ることができ、波形データの良否を精度よく判別することができる。
実施の形態5.
 図1に示す実施の形態1に係る異常診断装置の構成では、周囲からの騒音が混入して、騒音と異常音とを誤判別するおそれがある。また、実施の形態2の構成の場合、周囲からの騒音が除去しきれない、もしくは常に騒音が混入するような環境の場合に騒音と異常音とを誤判別するおそれがある。また、実施の形態2の手法において、判別対象物1から発生する動作音が大きい場合、騒音収集マイク11にも動作音が入力され、騒音が混入している時間区間を推定することができないおそれがある。そこで、実施の形態5では、これらを改善した手法を提案する。なお、実施の形態5に係る手法は、図1に示す実施の形態1に係る異常診断装置100の構成を用いて実施することができる。
 次に、実施の形態5で用いる推定処理のアルゴリズムについて説明する。まず、信号処理部4は、信号変換器3によって変換された波形データに対して、周波数方向及び時間方向のそれぞれに波形データを任意の数に分割したSTFTを行う。この処理は、実施の形態1と同じである。STFTの処理結果である行列Fを再掲すると、以下の(12)式で表される。
Figure JPOXMLDOC01-appb-M000016
 上記(12)式において、iは周波数方向の波形データの分割数であり、jは時間方向の波形データの分割数である。
 信号処理部4は、STFTの処理結果である行列Fに対して、以下の(13)式で表される行列Rを算出する。
Figure JPOXMLDOC01-appb-M000017
 上記(13)式において、εは、上記(4)式で示される平均νのベクトルの要素を含む行列であり、以下の(14)式で表される。
Figure JPOXMLDOC01-appb-M000018
 上記(14)式に示されるように、行列εは対角行列であり、その対角要素は、以下の(15)式で表される。
Figure JPOXMLDOC01-appb-M000019
 上記(15)式に示されるように、行列εの対角要素ei,iは、平均νの逆数で表される。
 行列Rは、既知の正常品の騒音の周波数に関する情報として算出されるものである。また、行列Rは、上記(13)~(15)式に示されるように、行列Fと平均νの逆数を有する行列εとの積で表されるものであり、非定常な騒音の推定値として算出されるものである。なお、十分な数の平均νが得られていない場合、行列εの代わりに、単位行列が用いられてもよい。
 信号処理部4は、非定常な騒音の推定値を表す行列Rの各要素に対し、時間当たりの総和を求める。時間当たりの総和を要素とするベクトルをRで表すと、総和ベクトルRは、以下の(16)式のように表すことができる。
Figure JPOXMLDOC01-appb-M000020
 信号処理部4は、総和ベクトルR全体の平均値を求め、総和ベクトルRの要素のうちで全体の平均値を超過している要素を識別する。そして、信号処理部4は、全体の平均値を超過している要素が属する区間を非定常な騒音の混入している時間区間、即ち動作音以外の騒音が混入している時間区間として推定する。そして、推定した時間区間を除外した波形データに対して実施の形態1及び実施の形態2の手法を適用する。このようにすることで、周囲からの騒音の影響を低減させた判別手法を提供できる。
 なお、上記では、総和ベクトルR全体の平均値を比較の基準値、即ち閾値としているが、これに限定されない。総和ベクトルR全体の平均値に任意の係数を乗算したものを閾値としてもよい。
 以上説明したように、実施の形態5に係る異常診断装置によれば、信号処理装置は、判別対象物の動作音の波形データを用いて、動作音以外の騒音が混入している時間区間を推定し、推定した時間区間を除外した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。これにより、判別対象物の音に含まれる騒音を異常として誤判断してしまうことを回避することができる。
 また、実施の形態5に係る異常診断方法では、実施の形態1で説明した異常診断方法において、第2ステップと第3ステップとの間に、電気機器の動作音の波形データを用いて、動作音以外の騒音が混入している時間区間を推定する推定ステップを含むようにする。そして、第3ステップでは、推定ステップで推定された時間区間を除外した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。このようにすれば、周囲からの騒音の影響を低減させた判別手法を提供できる。これにより、判別対象物の音に含まれる騒音を異常として誤判断してしまうことを回避することができる。
実施の形態6.
 図1に示す実施の形態1に係る異常診断装置100の構成では、例えば時刻を知らせるチャイムや工場構内を走行するAGV(Automated Guided Vehicle)が発生させているメロディなど、既知の周囲からの騒音が混入して、騒音と異常音とを誤判別するおそれがある。また、実施の形態2の構成の場合、周囲からの騒音が除去しきれない、もしくは常に騒音が混入するような環境の場合に騒音と異常音とを誤判別するおそれがある。また、実施の形態2の手法において、判別対象物1から発生する動作音が大きい場合、騒音収集マイク11にも動作音が入力され、騒音が混入している時間区間を推定することができないおそれがある。そこで、実施の形態6では、これらを改善した手法を提案する。なお、実施の形態6に係る手法は、図1に示す実施の形態1に係る異常診断装置100の構成に対して、図8に示すような、信号処理装置10Dを備えた異常診断装置100Dを用いて実施することができる。図8は、実施の形態6に係る異常診断装置100Dの構成例を示すブロック図である。異常診断装置100Dが備える信号処理装置10Dは、図1に示す信号処理装置10の構成に対して、前処理部30を更に備えている。また、信号処理装置10Dのデータ記憶部5には、正常な既知の波形データによる特徴量データと、既知の騒音データとが記憶されている。
 次に、実施の形態6で用いる推定処理のアルゴリズムについて説明する。まず、前処理部30は、信号変換器3によって変換された波形データと、既知の騒音データとに対して、周波数方向及び時間方向のそれぞれに波形データ及び騒音データを任意の数に分割したSTFTを行う。また、前処理部30は、それぞれのSTFTの処理結果である行列同士でパターンマッチングを行う。パターンマッチングには、一般的なアルゴリズムを用いることができる。
 ここで、信号変換器3によって変換された波形データのSTFT結果を表す行列をIで表し、「第1の信号行列」と呼ぶ。また、既知の騒音データのSTFT結果を表す行列をTで表し、「第1の騒音行列」と呼ぶ。第1の騒音行列Tの時間方向及び周波数方向の大きさをそれぞれM,Nとするとき、パターンマッチングには、以下の(17)式で示されるRNCC(Normalized Cross-Correlation:正規化相互相関)を用いることができる。
Figure JPOXMLDOC01-appb-M000021
 パターンマッチングによって求めた正規化相互相関RNCCが、あるインデックス(i,j)において一定の近似度の閾値ThNearを超過している場合、前処理部30は、信号変換器3によって変換された第1の信号行列Iにおいて、正規化相互相関RNCCの値が最大値をとるインデックスを開始時間として、この開始時間から第1の騒音行列Tの時間方向の大きさまでのデータを既知の騒音の混入区間と判断する。
 次に、図9を用いて既知の騒音の除去手順を説明する。図9は、実施の形態6に係る異常診断装置100Dを用いて行う既知の騒音の除去手順の説明に供する図である。
 前処理部30は、信号変換器3によって変換された波形データに既知の騒音データが含まれているか否かを判定する。図9の例では、太実線の枠で示す部分が既知の騒音の混入区間であると判定されている。
 既知の騒音の混入区間があると判定した場合、前処理部30は、第1の騒音行列Tの値が置換対象閾値Thpowを超過している要素の値をパターンマッチングによる騒音除去変数Prepに置き換えて、既知の騒音データのSTFT結果の一部の要素を置換した第2の騒音行列T’を生成する。図9の例では、置換対象閾値Thpow=100であり、第1の騒音行列Tにおいて、この100の値を超過している“150”、“200”、“450”の値が騒音除去変数Prepの値に置換されて第2の騒音行列T’が生成されている。ここで、パターンマッチングによる騒音除去変数Prepとしては、第1の信号行列Iにおいて、既知の騒音の混入区間のデータを除いた部分の平均値や計算外値を用いることができる。図9では、第1の信号行列Iにおける既知の騒音の混入区間のデータを除いた部分の周波数毎の平均値を騒音除去変数Prepとする例が示されている。
 最後に、前処理部30は、第1の信号行列Iにおける既知の騒音の混入区間の部分のデータを第2の騒音行列T’に置換することで、既知の騒音の混入による影響を除去した第2の信号行列I’を生成する。以降の処理は、この第2の信号行列I’を用いて、上述した実施の形態1~5のうちの何れかの処理を行う。
 なお、実施の形態6では、信号処理部4の前段部に前処理部30を付加する構成を図1に示す実施の形態1に係る異常診断装置100の構成に適用したが、図4に示す実施の形態2の構成、図6に示す実施の形態3の構成、及び図7に示す実施の形態4の構成に適用することも可能である。
 以上説明したように、実施の形態6に係る異常診断装置によれば、信号処理装置は、既知の騒音データを用いて、短時間高速フーリエ変換の結果から既知の騒音データが混入している時間区間を推定する前処理部を備え、信号処理部は、騒音データを除いたデータから特徴量を算出する処理を行う。これにより、判別対象物の音に含まれる既知の騒音を異常として誤判断してしまうことを回避することができる。
 実施の形態6に係る異常診断装置において、前処理部は、信号変換器によって変換された波形データと、既知の騒音データとに対して、周波数方向及び時間方向のそれぞれに波形データ及び騒音データを任意の数に分割した短時間高速フーリエ変換を行うと共に、それぞれの短時間高速フーリエ変換の処理結果である行列同士でパターンマッチングを行う。また、信号処理部は、前処理部によるパターンマッチングの処理結果に基づいて生成されたデータを用いて第1の特徴量データを算出する。このようにすれば、周囲からの騒音の影響を低減させた異常診断装置を提供できる。
 また、実施の形態6に係る異常診断方法では、実施の形態1~5で説明した異常診断方法において、第2ステップと第3ステップとの間に、短時間高速フーリエ変換の結果から既知の騒音データが混入している時間区間を推定する推定ステップを含むようにする。そして、第3ステップでは、推定ステップで推定された時間区間のデータを他のデータに置換した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する。このようにすれば、周囲からの騒音の影響を低減させた判別手法を提供できる。これにより、判別対象物の音に含まれる騒音を異常として誤判断してしまうことを回避することができる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 判別対象物、2 マイク、3 信号変換器、4 信号処理部、5 データ記憶部、6 判別部、10,10D 信号処理装置、11 騒音収集マイク、12 防音壁、13 可動部、14 可動制御部、21,23 加算器、22 フィルタ、30 前処理部、100,100A,100B,100C,100D 異常診断装置。

Claims (16)

  1.  判別対象物の音をアナログの電気信号に変換するマイクと、
     前記アナログの電気信号をディジタル信号に変換する信号変換器と、
     前記ディジタル信号を取り込んで信号処理を行う信号処理装置と、
     を備え、
     前記信号処理装置は、
     入力信号の波形データに対して短時間高速フーリエ変換を行って特徴量を算出する信号処理部と、
     正常な既知の波形データによる特徴量データが記憶されているデータ記憶部と、
     前記信号処理部によって算出された特徴量の複数からなる第1の特徴量データと前記データ記憶部に記憶されている特徴量データである第2の特徴量データとを比較して、前記入力信号の波形データの良否を判別する判別部と、
     を備え、
     前記特徴量は、波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す量である
     ことを特徴とする異常診断装置。
  2.  前記信号処理装置は、前記短時間高速フーリエ変換によって生成した特徴量に対してフィルタバンク処理を行い、前記フィルタバンク処理を行った特徴量に基づいて前記第1の特徴量データを生成する
     ことを特徴とする請求項1に記載の異常診断装置。
  3.  前記信号処理部は、前記信号変換器によって変換された波形データに対して短時間高速フーリエ変換を行い、以下の(1)式で表されるi個の周波数とj個の時間の次元を有する行列Fを算出すると共に、前記行列Fにおける時間方向のスペクトル強度の標準偏差を特徴量とする、以下の(2)式で表される特徴量ベクトルTを前記第1の特徴量データとして算出し、
     前記データ記憶部には、複数の正常な既知の波形データに基づく特徴量の集合体であるT に基づいて算出された、以下の(3)、(4)式で示される平均ν及び標準偏差σに関するデータが前記第2の特徴量データとして記憶され、
     前記判別部は、前記第1の特徴量データと前記第2の特徴量データとの乖離度に基づいて、前記入力信号の波形データの異常の有無を判別する
     ことを特徴とする請求項1又は2に記載の異常診断装置。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
  4.  周囲の騒音を収集するための騒音収集マイクを備え、
     前記信号処理装置は、前記騒音収集マイクを用いて収集した波形データを用いて、周囲の騒音が混入している時間区間を推定し、推定した時間区間を除外した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する
     ことを特徴とする請求項3に記載の異常診断装置。
  5.  前記信号処理装置は、前記判別対象物の動作音の波形データを用いて、動作音以外の騒音が混入している時間区間を推定し、推定した時間区間を除外した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する
     ことを特徴とする請求項3又は4に記載の異常診断装置。
  6.  前記信号処理装置は、既知の騒音データを用いて、短時間高速フーリエ変換の結果から既知の騒音データが混入している時間区間を推定する前処理部を備え、前記信号処理部は、前記騒音データが混入している時間区間のデータを他のデータに置換した波形データに対して短時間高速フーリエ変換を行って特徴量を算出する
     ことを特徴とする請求項3から5の何れか1項に記載の異常診断装置。
  7.  前記前処理部は、前記信号変換器によって変換された波形データと、既知の騒音データとに対して、周波数方向及び時間方向のそれぞれに前記波形データ及び前記騒音データを任意の数に分割した短時間高速フーリエ変換を行うと共に、それぞれの短時間高速フーリエ変換の処理結果である行列同士でパターンマッチングを行い、
     前記信号処理部は、前記前処理部による前記パターンマッチングの処理結果に基づいて生成されたデータを用いて前記第1の特徴量データを算出する
     ことを特徴とする請求項6に記載の異常診断装置。
  8.  前記波形データの短時間高速フーリエ変換の結果を表す行列を第1の信号行列とし、前記既知の騒音データの短時間高速フーリエ変換の結果を表す行列を第1の騒音行列とするとき、
     前記前処理部は、前記波形データに前記既知の騒音データが含まれている場合には既知の騒音の混入区間があると判定し、前記第1の騒音行列の値が第1の閾値を超過している要素の値をパターンマッチングによる騒音除去変数に置換した第2の騒音行列を生成すると共に、前記第1の信号行列における既知の騒音の混入区間の部分のデータを前記第2の騒音行列のデータに置換した第2の信号行列を生成し、
     前記信号処理部は、前記第2の信号行列を用いて前記第1の特徴量データを算出する
     ことを特徴とする請求項7に記載の異常診断装置。
  9.  前記前処理部は、前記第1の信号行列と前記第1の騒音行列とのパターンマッチングに正規化相互相関を用いると共に、前記正規化相互相関が、あるインデックスにおいて第2の閾値を超過している場合、前記第1の信号行列において、前記正規化相互相関の値が最大値をとるインデックスを開始時間として、この開始時間から前記第1の騒音行列の時間方向の大きさまでのデータを既知の騒音の混入区間と判断する
     ことを特徴とする請求項8に記載の異常診断装置。
  10.  前記判別対象物の周囲を覆うように配置される防音壁を備える
     ことを特徴とする請求項3から9の何れか1項に記載の異常診断装置。
  11.  前記マイクを移動させるための可動部と、
     前記可動部の動作を制御する可動制御部と、
     を備えることを特徴とする請求項3から10の何れか1項に記載の異常診断装置。
  12.  正常な既知の波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す特徴量を参照可能に構成されるコンピュータを用いて電気機器の異常を診断する異常診断方法であって、
     前記電気機器の動作音をアナログの電気信号に変換する第1ステップと、
     前記アナログの電気信号をディジタル信号に変換する第2ステップと、
     前記第2ステップによって変換された波形データに対して短時間高速フーリエ変換を行って特徴量を算出する第3ステップと、
     前記第3ステップによって算出された特徴量の複数からなる第1の特徴量データと前記コンピュータに記憶されている第2の特徴量データとを比較して、前記波形データの良否を判別する第4ステップと、
     を含むことを特徴とする異常診断方法。
  13.  前記第2ステップと前記第3ステップとの間には、周囲の騒音を収集するための騒音収集マイクを用いて収集した波形データを用いて、周囲の騒音が混入している時間区間を推定する推定ステップが含まれ、
     前記第3ステップでは、前記推定ステップで推定された時間区間を除外した波形データに対して短時間高速フーリエ変換が行われる
     ことを特徴とする請求項12に記載の異常診断方法。
  14.  前記第2ステップと前記第3ステップとの間には、前記電気機器の動作音の波形データを用いて、動作音以外の騒音が混入している時間区間を推定する推定ステップが含まれ、
     前記第3ステップでは、前記推定ステップで推定された時間区間を除外した波形データに対して短時間高速フーリエ変換が行われる
     ことを特徴とする請求項12に記載の異常診断方法。
  15.  前記第2ステップと前記第3ステップとの間には、短時間高速フーリエ変換の結果から既知の騒音データが混入している時間区間を推定する推定ステップが含まれ、
     前記第3ステップでは、前記推定ステップで推定された時間区間のデータを他のデータに置換した波形データに対して短時間高速フーリエ変換が行われる
     ことを特徴とする請求項12に記載の異常診断方法。
  16.  正常な既知の波形データが有している特定の周波数帯域の時間によるスペクトル強度の変動のばらつきの程度を表す特徴量を参照可能に構成されるコンピュータに電気機器の異常を診断させる異常診断プログラムであって、
     前記電気機器の動作音をアナログの電気信号に変換する第1ステップと、
     前記アナログの電気信号をディジタル信号に変換する第2ステップと、
     前記第2ステップによって変換された波形データに対して短時間高速フーリエ変換を行って特徴量を算出する第3ステップと、
     前記第3ステップによって算出された特徴量の複数からなる第1の特徴量データと前記コンピュータに記憶されている第2の特徴量データとを比較して、前記波形データの良否を判別する第4ステップと、
     を含む処理を前記コンピュータに実行させる
     ことを特徴とする異常診断プログラム。
PCT/JP2023/008102 2022-04-07 2023-03-03 異常診断装置、異常診断方法及び異常診断プログラム WO2023195281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024514189A JPWO2023195281A1 (ja) 2022-04-07 2023-03-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-064158 2022-04-07
JP2022064158 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023195281A1 true WO2023195281A1 (ja) 2023-10-12

Family

ID=88242902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008102 WO2023195281A1 (ja) 2022-04-07 2023-03-03 異常診断装置、異常診断方法及び異常診断プログラム

Country Status (2)

Country Link
JP (1) JPWO2023195281A1 (ja)
WO (1) WO2023195281A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125634A (ja) * 1999-10-25 2001-05-11 Hitachi Ltd ウェーブレット変換によるプラント機器監視装置
JP2017181138A (ja) * 2016-03-29 2017-10-05 一般財団法人電力中央研究所 太陽光発電設備の異常診断方法、異常診断装置、及び異常診断プログラム
JP2020060558A (ja) * 2018-10-11 2020-04-16 パロ アルト リサーチ センター インコーポレイテッド 工場ロボットの状態ベースメンテナンスのための運動非感知性特徴

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125634A (ja) * 1999-10-25 2001-05-11 Hitachi Ltd ウェーブレット変換によるプラント機器監視装置
JP2017181138A (ja) * 2016-03-29 2017-10-05 一般財団法人電力中央研究所 太陽光発電設備の異常診断方法、異常診断装置、及び異常診断プログラム
JP2020060558A (ja) * 2018-10-11 2020-04-16 パロ アルト リサーチ センター インコーポレイテッド 工場ロボットの状態ベースメンテナンスのための運動非感知性特徴

Also Published As

Publication number Publication date
JPWO2023195281A1 (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
US8082124B2 (en) Method and system for diagnosing abnormal plasma discharge
JP5783808B2 (ja) 異常音診断装置
CN110307895B (zh) 异声判定装置以及异声判定方法
US20130148817A1 (en) Abnormality detection apparatus for periodic driving system, processing apparatus including periodic driving system, abnormality detection method for periodic driving system, and computer program
JPH09166483A (ja) 機器監視方法及びその装置
US20120209566A1 (en) Method for Checking Plausability of Digital Measurement Signals
US7085675B2 (en) Subband domain signal validation
JP6792746B2 (ja) 周波数領域のセグメント特徴解析による状態識別法
JP5106329B2 (ja) 設備異常診断方法およびシステム
CN105705928A (zh) 异常声音诊断装置
JP7407382B2 (ja) 音データ処理方法、音データ処理装置及びプログラム
WO2023195281A1 (ja) 異常診断装置、異常診断方法及び異常診断プログラム
CN116736375A (zh) 基于稀疏规范变量分析的微震信号状态判识方法
JP2019185580A (ja) 異常検出装置および方法
JP2018189522A (ja) 設備故障の予兆診断方法
US20210302197A1 (en) Abnormality detection apparatus and abnormality detection method
JP2004340706A (ja) 機器の診断装置
US10368804B2 (en) Device, system and method for detection of fluid accumulation
WO2023053024A1 (en) Method for identifying and characterizing, by using artificial intelligence, noises generated by a vehicle braking system
JP2004205215A (ja) 音源診断装置
JP4127211B2 (ja) 音源判別装置およびその判別方法
US20220335964A1 (en) Model generation method, model generation apparatus, and program
JP4049331B2 (ja) 診断対象物の評価方法および評価装置
JP2005208186A (ja) 原因判断装置
JP2003057210A (ja) 故障診断方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024514189

Country of ref document: JP

Kind code of ref document: A