WO2023195280A1 - Optical cable, electronic device, and optical communication system - Google Patents

Optical cable, electronic device, and optical communication system Download PDF

Info

Publication number
WO2023195280A1
WO2023195280A1 PCT/JP2023/007948 JP2023007948W WO2023195280A1 WO 2023195280 A1 WO2023195280 A1 WO 2023195280A1 JP 2023007948 W JP2023007948 W JP 2023007948W WO 2023195280 A1 WO2023195280 A1 WO 2023195280A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
wavelength
light
mode
Prior art date
Application number
PCT/JP2023/007948
Other languages
French (fr)
Japanese (ja)
Inventor
寛 森田
雄介 尾山
一彰 鳥羽
真也 山本
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023195280A1 publication Critical patent/WO2023195280A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present technology relates to optical cables, electronic equipment, and optical communication systems, and specifically relates to optical cables and the like that can extend the transmission distance while suppressing a decrease in optical power coupling efficiency.
  • the purpose of this technology is to make it possible to extend the possible transmission distance while suppressing a decrease in the coupling efficiency of optical power.
  • the concept of this technology is optical fiber and a connector for spatial coupling connected to the end of the optical fiber;
  • a part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
  • the first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  • the optical cable in the present technology includes an optical fiber and a connector for spatial coupling connected to the end of the optical fiber. Then, the part other than the part on the end side of the optical fiber has the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a higher propagation rate between modes than the second structure.
  • the second structure has a structure in which the delay difference is small, and the second structure has a higher optical power coupling efficiency than the first structure.
  • the first structure may be a structure in which the refractive index shape of the core is a graded index type with a dip.
  • the second structure may be a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
  • an optical fiber propagates only the fundamental mode at a first wavelength, and communication is performed using light having a second wavelength and having at least a first-order mode component in addition to the fundamental mode.
  • the second wavelength may be such that the optical fiber can propagate at least the first order mode along with the fundamental mode.
  • the first wavelength may be a wavelength in the 1310 nm band
  • the second wavelength may be a wavelength in the 850 nm band. In this case, depending on the direction of optical axis deviation, it is possible to increase the coupling efficiency of optical power.
  • an optical element that adjusts the optical path such as a GRIN (gradient index) lens, may be placed at the end of the optical fiber.
  • GRIN gradient index
  • the part other than the part on the end side of the optical fiber has the first structure
  • the part on the end side of the optical fiber has the second structure
  • the first structure has the second structure.
  • the second structure has a smaller propagation delay difference between modes than the first structure
  • the second structure has a higher optical power coupling efficiency than the first structure, making it possible to transmit optical power while suppressing a decrease in optical power coupling efficiency. It is possible to extend the distance.
  • the first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  • the electronic device includes an optical interface structure in which a connector for spatial coupling is connected to the end of an optical fiber. Then, the part other than the part on the end side of the optical fiber has the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a higher propagation rate between modes than the second structure.
  • the second structure has a structure in which the delay difference is small, and the second structure has a higher optical power coupling efficiency than the first structure.
  • the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip
  • the second structure is a structure in which the refractive index shape of the core is a non-dip graded index type or a step index type. This is the structure that is used.
  • an optical fiber propagates only the fundamental mode at a first wavelength, and communication is performed using light having a second wavelength and having at least a first-order mode component in addition to the fundamental mode.
  • the second wavelength may be such that the optical fiber can propagate at least the first order mode along with the fundamental mode.
  • the first wavelength may be a wavelength in the 1310 nm band
  • the second wavelength may be a wavelength in the 850 nm band. In this case, depending on the direction of optical axis deviation, it is possible to increase the coupling efficiency of optical power.
  • an optical element for adjusting the optical path such as a GRIN lens
  • a GRIN lens may be placed at the end of the optical fiber.
  • the connector may be a connector for connecting external equipment via an optical cable.
  • the connector may constitute an input section or an output section for optical signals.
  • the part other than the part on the end side of the optical fiber has the first structure
  • the part on the end side of the optical fiber has the second structure
  • the first structure has the second structure.
  • the second structure has a smaller propagation delay difference between modes than the first structure
  • the second structure has a higher optical power coupling efficiency than the first structure, making it possible to transmit optical power while suppressing a decrease in optical power coupling efficiency. It is possible to extend the distance.
  • optical cable and an optical communication device having a connector for connecting one end of the optical cable;
  • the optical cable has a configuration in which a connector for spatial coupling is connected to an end of an optical fiber;
  • a part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
  • the first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  • Optical communication system It is in.
  • the optical communication system includes an optical cable and an optical communication device having a connector for connecting one end of the optical cable. Then, the part other than the part on the end side of the optical fiber has the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a higher propagation rate between modes than the second structure.
  • the second structure has a structure in which the delay difference is small, and the second structure has a higher optical power coupling efficiency than the first structure.
  • the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip
  • the second structure is a structure in which the refractive index shape of the core is a non-dip graded index type or a step index type. This is the structure that is used.
  • an optical fiber propagates only the fundamental mode at a first wavelength, and communication is performed using light having a second wavelength and having at least a first-order mode component in addition to the fundamental mode.
  • the second wavelength may be such that the optical fiber can propagate at least the first order mode along with the fundamental mode.
  • the first wavelength may be a wavelength in the 1310 nm band
  • the second wavelength may be a wavelength in the 850 nm band. In this case, depending on the direction of optical axis deviation, it is possible to increase the coupling efficiency of optical power.
  • an optical element for adjusting the optical path such as a GRIN lens
  • a GRIN lens may be placed at the end of the optical fiber.
  • the optical communication device may be an optical communication device on the transmitting side.
  • it may further include a receiving-side optical communication device having a connector for connecting the other end of the optical cable.
  • the part other than the part on the end side of the optical fiber has the first structure
  • the part on the end side of the optical fiber has the second structure
  • the first structure has the second structure.
  • the second structure has a smaller propagation delay difference between modes than the first structure
  • the second structure has a higher optical power coupling efficiency than the first structure, making it possible to transmit optical power while suppressing a decrease in optical power coupling efficiency. It is possible to extend the distance.
  • FIG. 1 is a diagram showing an overview of optical communication using spatial coupling.
  • 1 is a diagram showing the basic structure of an optical fiber and the LPml mode of a step type optical fiber. It is a diagram when considering the normalized frequency V in the case of 1310 nm, which is common in single mode.
  • FIG. 2 is a diagram showing an example of optical communication using spatial coupling.
  • FIG. 2 is a diagram showing an example of optical communication using spatial coupling.
  • FIG. 2 is a diagram for explaining that when light with a wavelength of 850 nm is input to a single mode fiber of 1310 nm, a fundamental mode of LP01 and a primary mode of LP11 may exist.
  • FIG. 1 is a diagram showing the basic structure of an optical fiber and the LPml mode of a step type optical fiber. It is a diagram when considering the normalized frequency V in the case of 1310 nm, which is common in single mode.
  • FIG. 2 is a diagram showing an example of optical communication using spatial
  • FIG. 4 is a diagram for considering a case where an optical axis shift occurs under the condition that only the fundamental mode of LP01 exists in the input light. It is a graph showing the simulation results of the amount of loss when the wavelength of input light is 1310 nm and 850 nm.
  • FIG. 6 is a diagram showing that in a state where there is no optical axis shift, only the fundamental mode exists in the input light, but when there is an optical axis shift, a part of the fundamental mode is converted into a first-order mode. It is a graph for explaining that the fundamental mode is converted to the primary mode according to the shift.
  • FIG. 3 is a diagram simulating the intensity distribution of light transmitted within an optical fiber.
  • FIG. 3 is a diagram for explaining the angle at which light travels when it is emitted from a fiber end face.
  • FIG. 2 is a diagram for explaining optical communication using spatial coupling.
  • FIG. 3 is a diagram for explaining an optical axis shift in which the position of an optical fiber is shifted in a direction perpendicular to a lens.
  • 3 is a graph showing simulation results of optical power coupling efficiency.
  • FIG. 3 is a diagram for explaining an optical axis shift in which the position of an optical fiber shifts in a direction perpendicular to a lens.
  • 3 is a graph showing simulation results of optical power coupling efficiency.
  • FIG. 3 is a diagram showing an example in which a GRIN lens as an optical path adjustment section is provided on the incident side of an optical fiber.
  • FIG. 6 is a diagram for explaining the reason why light can be returned toward the center even when the optical axis is shifted.
  • 3 is a graph showing simulation results of optical power coupling efficiency. It is a graph in which a fundamental mode (0-order mode) component and a first-order mode component are described separately.
  • FIG. 3 is a diagram for explaining the occurrence of a propagation delay difference between modes.
  • FIG. 3 is a diagram showing an example of intensity distribution when a fundamental mode (0th mode) and a first mode propagate in an optical fiber.
  • FIG. 3 is a diagram showing an example of the difference in propagation delay between modes when the refractive index shape of the core of an optical fiber is changed.
  • FIG. 3 is a diagram showing an example of a simulation of the intensity distribution of light transmitted within an optical fiber when the refractive index shape of the core of the optical fiber is changed.
  • the refractive index shape of the core of an optical fiber is GI (with dip) type or GI (without dip) type
  • the intensity distribution of light transmitted within the optical fiber expands or narrows periodically in the optical axis direction.
  • FIG. 4 is a diagram for explaining pitches defined when repeating.
  • 3 is a graph illustrating an example of a simulation result of the coupling efficiency of optical power with respect to pitch in each of a GI (with dip) fiber and a GI (without dip) fiber.
  • FIG. 2 is a diagram for explaining an optical axis shift in which the positions of a GRIN lens and an optical fiber on the receiving side are shifted in a direction perpendicular to the optical axis in optical communication using spatial coupling.
  • 2 is a graph showing simulation results of optical power coupling efficiency with respect to optical axis deviation amount in each of a GI (with dip) fiber and a GI (without dip) fiber. It is a figure showing an example of composition of an optical cable.
  • 1 is a diagram showing a configuration example of an optical communication system.
  • FIG. 2 is a cross-sectional view showing a specific example of the configuration of an optical cable.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of a connector of a transmitter and a connector of an optical cable connected thereto.
  • FIG. 2 is a cross-sectional view showing a configuration example of a light emitting section in a transmitter and a connector connected to the light emitting section via an optical fiber.
  • FIG. 1 shows an overview of optical communication using spatial coupling.
  • the light emitted from the transmission-side optical fiber 10T is shaped into collimated light by the lens 11T, which is an optical element, and then emitted.
  • This collimated light is then condensed by a lens 11R on the receiving side and enters the optical fiber 10R.
  • the optical fibers 10T and 10R have a double structure including a core 10a at the center serving as an optical path and a cladding 10b surrounding the core 10a.
  • Figure 2(a) shows the basic structure of an optical fiber.
  • An optical fiber has a structure in which a central portion called a core is covered with a layer called a cladding.
  • the core has a high refractive index n1 and the cladding has a low refractive index n2, and light is confined within the core and propagates.
  • FIG. 2(b) shows the LPml (Linearly Polarized) mode of the stepped optical fiber, and shows the normalized propagation constant b as a function of the normalized frequency V.
  • the horizontal axis is the normalized frequency V, which can be expressed by the following equation (1).
  • d is the core diameter
  • NA is the numerical aperture
  • is the wavelength of light.
  • V ⁇ dNA/ ⁇ ...(1)
  • LP01 is the basic mode (zero-order mode), and thereafter LP11, LP21, . . . become the first-order mode, second-order mode, . . . , respectively.
  • V the normalized frequency in the case of 1310 nm, which is common in single mode, as shown in FIG. 3(a).
  • FIGS. 4 and 5 show examples of factors that degrade the accuracy of optical axis alignment.
  • optical axis misalignment occurs due to uneven amounts of fixing materials 16T and 16R for fixing ferrules 15T and 15R and optical fibers 10T and 10R.
  • optical axis deviation occurs due to insufficient shaping precision of the lenses 11T and 11R.
  • optical axis misalignment occurs due to insufficient precision of the positioning mechanisms (recesses 17T and protrusions 17R) provided on the ferrules 15T and 15R.
  • the protrusion 17R shown in FIGS. 5(a) and 5(b) may be a pin.
  • the optical fiber is capable of propagating only the fundamental mode at a first wavelength, and the optical fiber communicates using light of a second wavelength capable of propagating at least the first mode along with the fundamental mode. configured to do so.
  • FIG. 8 is a graph showing the simulation results of the optical power coupling efficiency in that case.
  • the horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency.
  • 100% of the power propagates into the optical fiber, and the coupling efficiency is 1.
  • the coupling efficiency will be 0.5.
  • the fundamental mode (0-order mode) component and the 1st-order mode component are shown separately, and the sum becomes the total curve. Since the input light has only the fundamental mode, it can be seen that the fundamental mode is converted to the primary mode according to the shift. On the other hand, in the case of 1310 nm, only the fundamental mode can propagate as shown in FIG. 3(a), so the fundamental mode is purely reduced as shown in FIG.
  • the optical fiber is capable of propagating only the fundamental mode at a first wavelength (for example, 1310 nm), and the optical fiber is capable of propagating light at a second wavelength (for example, 850 nm) in which at least the first mode as well as the fundamental mode can be propagated.
  • a first wavelength for example, 1310 nm
  • a second wavelength for example, 850 nm
  • this embodiment is configured to perform communication using light having at least a primary mode component as well as a fundamental mode.
  • FIG. 11 is a diagram simulating the intensity distribution of light transmitted within an optical fiber.
  • FIG. 11A shows an example of transmitting light having only fundamental mode components. In this case, the strength is highest at the center of the optical fiber core, and the strength decreases as it approaches the cladding.
  • FIG. 11(b) shows an example of transmitting light having fundamental mode and first-order mode components. In this case, high-strength locations appear alternately in one direction and the other direction with respect to the center of the core, and in the example shown, in the upward and downward directions.
  • the illustrated state is a state in which the amount of optical axis deviation is zero.
  • the portion where the light intensity is high is the direction in which the light enters the core 10a of the optical fiber 10R, making it easier to couple.
  • the optical axis shift is in the negative (-) direction, the core 10a of the optical fiber 10R moves in the opposite direction to the direction in which the light travels, resulting in a decrease in coupling efficiency.
  • Figure 15 shows the simulation results of the optical power coupling efficiency when the input light (light emitted from the transmitting side) has fundamental mode and first-order mode components, and the ratio is 1:1. It is a graph.
  • the horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency.
  • the fundamental mode (zero-order mode) and the first-order mode are shown separately, and the sum becomes the total curve. If only the fundamental mode was used, the coupling efficiency would drop significantly when shifted in the negative (-) direction, but thanks to the conversion of the fundamental mode to the first mode component, the coupling efficiency would be 0.0 with a shift of -1.5 ⁇ m. It is about 7.
  • FIG. 17 is a graph showing the simulation results of the optical power coupling efficiency when the input light has only the fundamental mode component and when the input light has the fundamental mode and first-order mode components.
  • the horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency.
  • the coupling efficiency at the point where the strength is maximum is standardized as 1.
  • the coupling efficiency is better than when the input light has only the fundamental mode components. This is because, as described above, when the optical axis misalignment is in the positive (+) direction, the location where the light intensity is high is the direction in which the light enters the core 10a of the optical fiber 10R, making it easier to couple.
  • the coupling efficiency will be worse than when the input light has only fundamental mode components. . This is because the core 10a of the optical fiber 10R moves in the opposite direction to the direction in which the light travels, as described above.
  • communication By configuring communication to use light that has at least a first-order mode component in addition to the fundamental mode, it is possible to respond to optical axis deviations by using light consisting of fundamental mode components depending on the direction of the deviation. It is possible to increase the coupling efficiency of optical power compared to the case where communication is performed using In this case, by designing the optical fiber so that the axis misalignment of the optical fiber can only be tolerated in the same direction as the traveling direction of the input light, the input light having the fundamental mode and first-order mode components is better than the input light having only the fundamental mode component. Light is more resistant to axis misalignment.
  • the optical waveguide is configured to include an optical path adjusting section that adjusts the optical path so as to guide the input light to the core of the optical waveguide.
  • FIG. 18 shows an example in which an optical element as an optical path adjustment section, in this case a GRIN lens (gradient index lens) 22R, is provided on the input side of the optical fiber 10R.
  • This GRIN lens 22R is a member having a refractive index distribution.
  • the refractive index of this GRIN lens 22R has a refractive index equivalent to, for example, the core 10a of the optical fiber 10R on the optical axis, and has a gradation structure in which the refractive index decreases as it moves away from the optical axis in the vertical direction.
  • the GRIN lens 22R By providing the GRIN lens 22R on the incident side of the optical fiber 10R in this manner, the light that has entered the GRIN lens 22R travels while being curved in the optical axis direction due to the gradation effect. Furthermore, even if the optical axis is shifted, the light can be returned toward the center. The reason for this is that when the optical path is shifted downward with respect to the optical axis, as shown by the broken line in Figure 19, the light near the optical axis has a small refractive index difference, so the amount of bending is small, and the light that is further away from the optical axis This is because the difference in refractive index is large, so the amount of bending is large, and therefore the light is concentrated near the center of the core 10a. This makes it possible to increase the coupling efficiency of optical power against optical axis deviation in the negative (-) direction.
  • FIG. 20 is a graph showing the simulation results of the optical power coupling efficiency in the case of a double lens (Double Lens) provided with the GRIN lens 22R and in the case of a single lens (Single Lens) not provided with the GRIN lens 22R.
  • the horizontal axis represents the amount of optical axis deviation
  • the vertical axis represents the coupling efficiency.
  • the GRIN lens 22R is provided for optical axis deviation in the negative (-) direction
  • the coupling efficiency is higher than in the case of a single lens.
  • the fundamental mode (0th mode) component and the 1st mode component are shown separately, and the sum is the total. It becomes a curve.
  • the GRIN lens 22R as an optical path adjustment section is provided at the end of the optical fiber 10 on the reception side, it is better to arrange the lens as an optical path adjustment section on both the transmission side and the reception side in terms of optical design. In order to minimize the influence of aberrations, it is necessary to provide a similar lens at the end of the optical fiber 10T on the transmitting side.
  • the optical cable that connects the transmitter, which is an optical communication device on the transmitting side, and the receiver, which is an optical communication device on the receiving side increases the possible transmission distance while suppressing a decrease in the coupling efficiency of optical power. Constructed to allow stretching.
  • Figure 22 shows a conventional 1310 nm fiber (single-mode optical fiber that propagates only the 0-order mode (fundamental mode) at a wavelength of 1310 nm), and shows the 0-order mode component and the 1-order mode component at a wavelength of 850 nm from an 850 nm light source.
  • An example of transmitting light (optical signal) consisting of
  • a propagation delay difference occurs between the zero-order mode and the first-order mode at the output end of the optical fiber.
  • Such a difference in propagation delay between modes is caused by a difference in reflection angles of light components of each mode within the optical fiber. In this case, the reflection angle becomes steeper as the order increases. That is, since the optical path length changes depending on the mode, a propagation delay difference between modes occurs.
  • FIG. 23 shows an example of the intensity distribution when the fundamental mode (0-order mode) and the first-order mode propagate in the optical fiber. As shown in the figure, it can be seen that the intensity distribution of both the fundamental mode and the primary mode penetrates into the cladding.
  • the refractive index of the core and cladding is higher in the core, which means that the propagation speed of light is slower in the core.
  • the higher the order of the mode the steeper the angle of total reflection when propagating within the optical fiber, so the propagation path extends in the direction of propagation, but the intensity distribution of light passing through the cladding side increases, resulting in refraction of the core and cladding
  • FIGS. 24(a) to 24(c) show an example of the difference in propagation delay between modes when the refractive index shape of the core of the optical fiber is changed.
  • This example shows an example in which light with a wavelength of 850 nm having fundamental mode and first-order mode components is input into a 1310 nm single mode fiber.
  • the inter-mode propagation delay difference is "fundamental mode propagation velocity - primary mode propagation velocity.”
  • the refractive index shape of the core of the optical fiber is a step index type (SI type), and the propagation delay difference between modes is 1630 ps/km.
  • Figure 24(b) shows that the refractive index shape of the core of the optical fiber is a non-dip graded index type (GI (no dip) type), and the inter-mode propagation delay difference is 165 ps/km, compared to the SI type. It becomes possible to reduce it to about 1/10.
  • the primary mode that easily passes through the cladding has a long optical path length but has a low refractive index and a high speed
  • the fundamental mode that easily passes through the center has a short optical path length but has a high refractive index and a slow speed.
  • the refractive index shape of the core of the optical fiber is a graded index type with a dip (GI (with dip) type), and the propagation delay difference between modes is 39 ps/km, which can be further reduced. becomes possible.
  • GI with dip
  • the propagation speed of the fundamental mode passing through the center is finely adjusted to match the propagation speed of the primary mode. This is because adjustments are being made.
  • FIGS. 25(d) to (f) show an example of a simulation of the intensity distribution of light transmitted within an optical fiber when the refractive index shape of the core of the optical fiber is changed. This example shows a case where light with a wavelength of 850 nm having only a fundamental mode component is input into a 1310 nm single mode fiber.
  • FIG. 25(e) shows an example in which the refractive index shape of the core of the optical fiber is a GI (no dip) type (see FIG. 25(b)).
  • the light intensity distribution periodically expands and narrows in the optical axis direction.
  • FIG. 25(f) shows an example in which the refractive index shape of the core of the optical fiber is a GI (with dip) type (see FIG. 25(c)).
  • the light intensity distribution also periodically expands and narrows in the optical axis direction, but the degree of expansion and narrowing is slightly larger than in the case of the GI (no dip) type.
  • FIG. 25(d) shows an example in which the refractive index shape of the core of the optical fiber is an SI type (see FIG. 25(a)).
  • the light intensity distribution in this case does not periodically expand or narrow in the optical axis direction, unlike in the GI (without dip) type and the GI (with dip) type.
  • FIGS. 25(d) to (f) are examples in which light with a wavelength of 850 nm having only the fundamental mode component is input into a 1310 nm single mode fiber.
  • a similar example is obtained when light with a wavelength of 850 nm having fundamental mode and primary mode components is input into a 1310 nm single mode fiber, and the refractive index shape of the core of the optical fiber is GI (without dip). ) type or GI (with dip) type, the light intensity distribution periodically repeats expansion and narrowing in the optical axis direction.
  • the intensity distribution of light when light with a wavelength of 1310 nm is input into a single mode fiber of 1310 nm is that the refractive index shape of the core of the optical fiber is GI (without dip) type or GI (with dip) type. ) type, there is almost no periodic expansion or narrowing in the optical axis direction. This is a problem with the way light travels, and is because light spreads more easily at 1310 nm than at 850 nm.
  • a GRIN lens 22T for adjusting the optical path is arranged between the optical fiber 10T and the lens 11T.
  • a GRIN lens 22R for adjusting the optical path is arranged between the lens 11R and the optical fiber 10R.
  • the light emitted from the transmitting side optical fiber 10T is incident on the lens 11T via the GRIN lens 22T, and is shaped into collimated light by this lens 11T and emitted.
  • This collimated light is then condensed by a lens 11R on the receiving side, and is input to an optical fiber 10R via a GRIN lens 22R.
  • FIG. 26(b) shows transmission in the optical fiber when the refractive index shape of the core of the optical fiber is GI (with dip) type (see FIG. 25(c)).
  • GI with dip
  • FIG. 25(c) An example of a simulation of light intensity distribution is shown.
  • the pitch is 0 (P0) when the light is emitted from the optical fiber under the conditions where the intensity distribution is the widest
  • the pitch is 0.25 (P0.25) when the light is emitted from the optical fiber under the conditions where the intensity distribution is the narrowest. It is defined as Although not shown, the same applies to the intensity distribution of light transmitted within an optical fiber when the refractive index shape of the core of the optical fiber is GI (no dip) type (see FIG. 25(b)). is defined as
  • FIG. 27 is a graph showing an example of the simulation results of the coupling efficiency of optical power with respect to pitch in each of the GI (with dip) fiber and the GI (without dip) fiber.
  • the horizontal axis represents pitch, and the vertical axis represents coupling efficiency.
  • the GI (with dip) fiber means an optical fiber whose core has a GI (with dip) type refractive index shape, and the simulation in that case is based on the optical fibers 10T and 10R in FIG. 26(a).
  • the experiment was carried out using a GI (dip-equipped) fiber, under the condition that light with a wavelength of 850 nm having only a fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber.
  • GI (no dip) fiber means an optical fiber whose core has a GI (no dip) type refractive index shape, and the simulation in that case shows that the optical fibers 10T and 10R in FIG. 26(a) are The experiment was carried out under the conditions that light with a wavelength of 850 nm having only a fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber using a GI (no dip) fiber.
  • the GI (with dip) fiber has lower optical power coupling efficiency than the GI (without dip) fiber, and also depends on the pitch, that is, the light is emitted from the optical fiber on the transmitting side. It can be seen that the coupling efficiency varies greatly depending on the shape of the actual intensity distribution.
  • the intensity distribution of the light is determined depending on whether the refractive index shape of the core of the optical fiber is GI (without dip) or GI (with dip).
  • GI without dip
  • GI with dip
  • FIG. 29 is a graph showing the simulation results of the optical power coupling efficiency with respect to the amount of optical axis deviation in each of the GI (with dip) fiber and the GI (without dip) fiber.
  • the horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency.
  • the GI (with dip) fiber means an optical fiber whose core has a refractive index shape of the GI (with dip) type, and the simulation in that case shows that the optical fibers 10T and 10R in FIG.
  • the experiment was carried out under the condition that light with a wavelength of 850 nm having only the fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber.
  • GI (no dip) fiber means an optical fiber whose core has a refractive index shape of GI (no dip) type, and the simulation in that case shows that the optical fibers 10T and 10R in FIG.
  • the experiment was carried out under the condition that light with a wavelength of 850 nm having only the fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber.
  • the GI (with dip) fiber has a lower optical power coupling efficiency than the GI (without dip) fiber, and the optical power coupling efficiency increases as the axis misalignment increases. It can be seen that the rate of decline is also steep.
  • GI (with dip) fiber can make the difference in propagation delay between modes smaller than the GI (without dip) fiber (see FIG. 24), it is possible to extend the possible transmission distance.
  • GI (with dip) fiber has lower optical power coupling efficiency than GI (without dip) fiber (see Figures 27 and 29), highly accurate components are required to ensure quality. This leads to increased costs.
  • FIG. 30 shows an example of the configuration of the optical cable 30 in this embodiment.
  • This optical cable 30 has an optical fiber 31, connectors (plugs) 32 and 33 for spatial coupling, and GRIN lenses 34 and 35.
  • a connector (plug) 32 is connected to one end of the optical fiber 31 via a GRIN lens 34
  • a connector (plug) 33 is connected to the other end of the optical fiber 31 via a GRIN lens 35.
  • only lens portions are shown as the connectors 32 and 33.
  • the optical fiber 31 is a GI (with dip) fiber (indicated by "GI-d” in the figure) except for a part on the end side, and a part on the end side is a GI (without dip) fiber (indicated by "GI-d” in the figure). (Indicated by "GI” in the figure).
  • the connection between the GI (with dip) fiber and the GI (without dip) fiber is performed, for example, by fusion splicing.
  • the optical cable 30 can extend the transmission distance while suppressing a decrease in the coupling efficiency of optical power.
  • FIG. 31 shows a configuration example of the optical communication system 100.
  • This optical communication system 100 includes a transmitter 200, a receiver 300, and an optical cable 400.
  • the transmitter 200 constitutes an optical communication device on the transmitting side.
  • the receiver 300 constitutes an optical communication device on the receiving side.
  • the transmitter 200 is, for example, an AV source such as a personal computer (PC), a game console, a disc player, a set-top box, a digital camera, or a mobile phone.
  • the receiver 300 is, for example, a television receiver, a projector, a PC monitor, or the like. Transmitter 200 and receiver 300 are connected via optical cable 400.
  • the transmitter 200 has a light emitting section 201, a connector 202 as a receptacle, and an optical fiber 203 that propagates the light emitted from the light emitting section 201 to the connector 202.
  • the light emitting unit 201 includes a laser element such as a VCSEL or a light emitting element (light source) such as an LED (light emitting diode).
  • the light emitting unit 201 converts an electrical signal (transmission signal) generated by a transmission circuit (not shown) into an optical signal.
  • Light (optical signal) emitted by the light emitting section 201 is propagated to the connector 202 through the optical fiber 203.
  • the receiver 300 includes a connector 301 as a receptacle, a light receiving section 302, and an optical fiber 303 that propagates the light obtained from the connector 301 to the light receiving section 302.
  • the light receiving section 302 includes a light receiving element such as a photodiode.
  • the light receiving unit 302 converts the optical signal sent from the connector 301 into an electrical signal (received signal) and supplies it to a receiving circuit (not shown).
  • the optical cable 400 has connectors 402 and 403 as plugs at one end and the other end of an optical fiber 401.
  • a connector 402 at one end of the optical fiber 401 is connected to the connector 202 of the transmitter 200, and a connector 403 at the other end of the optical fiber 401 is connected to the connector 301 of the receiver 300.
  • the optical fiber of the present technology is applied to the optical fiber 203 of the transmitter 200, the optical fiber 303 of the receiver 300, and the optical fiber 401 of the optical cable 400, and under double mode conditions, for example, with an 850 nm light source.
  • a combination of 1310 nm fibers is applied for communication.
  • the optical fiber 401 is a GI (with dip) fiber except for a part on the end side, and a part on the end side is a GI (without dip) fiber (see FIG. 30). This makes it possible to extend the possible transmission distance while suppressing a decrease in optical power coupling efficiency.
  • FIG. 32 shows a specific configuration example of the optical cable 400.
  • This optical cable 400 has a configuration in which connectors 402 and 403 serving as plugs are connected to one end and the other end of an optical fiber 401.
  • the optical fiber 401 is a GI (dip) fiber (indicated by "GI-d” in the figure) except for a part on the end side, and a part on the end side is a GI (dip) fiber (indicated by "GI-d” in the figure). dipless) fiber (indicated by "GI” in the figure).
  • the connector 402 includes a connector body 421.
  • the connector body 421 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule configuration with a lens.
  • the connector body 421 By configuring the connector body 421 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the connector main body 421 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized by simply inserting an optical fiber into the ferrule.
  • a concave light entrance portion (light transmission space) 423 is formed on the front side of the connector body 421.
  • a lens (convex lens) 424 is integrally formed on the connector main body 421 so as to be located at the bottom of the light incidence section 423.
  • the connector body 421 is provided with an optical fiber insertion hole 426 extending from the back side to the front in alignment with the lens 424.
  • the optical fiber 401 has a double structure including a core 401a at the center serving as an optical path and a cladding 401b surrounding the core.
  • the optical fiber insertion hole 426 is shaped so that the core 401a of the optical fiber 401 inserted therein and the optical axis of the lens 424 coincide. Further, the optical fiber insertion hole 426 is shaped so that when the optical fiber 401 is inserted, its tip (incidence end) matches the focal position of the lens 424.
  • an adhesive injection hole 422 extending downward from the top surface side is formed in the connector body 421 so as to communicate with the vicinity of the bottom position of the optical fiber insertion hole 426.
  • the adhesive 427 is injected around the optical fiber 401 from the adhesive injection hole 422, thereby fixing the optical fiber 401 to the connector body 421.
  • a GRIN lens 428 is placed on the tip side of the optical fiber 401.
  • the lens 424 has a function of condensing the incident collimated light.
  • the collimated light is incident on the lens 424 and condensed, and this condensed light is incident on the input end of the optical fiber 401 through the GRIN lens 428 at a predetermined NA.
  • the connector 403 includes a connector body 431.
  • the connector body 431 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule configuration with a lens.
  • the connector body 431 By configuring the connector body 431 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the connector main body 431 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized by simply inserting an optical fiber into the ferrule.
  • a concave light emitting portion (light transmission space) 433 is formed on the front side of the connector body 431.
  • a lens (convex lens) 434 is integrally formed on the connector main body 431 so as to be located at the bottom of the light emitting section 433.
  • the connector body 431 is provided with an optical fiber insertion hole 436 extending from the back side to the front, in alignment with the lens 434.
  • the optical fiber insertion hole 436 is shaped so that the core 401a of the optical fiber 401 inserted therein and the optical axis of the lens 434 coincide. Further, the optical fiber insertion hole 436 is shaped so that when the optical fiber 401 is inserted, its tip (incidence end) matches the focal position of the lens 434.
  • an adhesive injection hole 432 extending downward from the top surface side is formed in the connector body 431 so as to communicate with the vicinity of the bottom position of the optical fiber insertion hole 436.
  • the adhesive 437 is injected around the optical fiber 401 from the adhesive injection hole 432, thereby fixing the optical fiber 401 to the connector body 431.
  • a GRIN lens 438 is placed on the tip side of the optical fiber 401.
  • the lens 434 has a function of shaping the light emitted from the optical fiber 401 into collimated light and emitting the collimated light. Thereby, the light emitted from the emitting end of the optical fiber 401 with a predetermined NA enters the lens 434 through the GRIN lens 438, is shaped into collimated light, and is emitted.
  • FIG. 33 shows a configuration example of the connector 202 of the transmitter 200 and the connector 402 of the optical cable 400 connected thereto.
  • This configuration example is one example, and is not limited to this.
  • the connector 202 includes a connector body 221.
  • the connector body 221 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule configuration with a lens.
  • the connector body 221 By configuring the connector body 221 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the connector main body 221 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized by simply inserting an optical fiber into the ferrule.
  • a concave light emitting portion (light transmission space) 223 is formed on the front side of the connector body 221.
  • a lens (convex lens) 224 is integrally formed on the connector main body 221 so as to be located at the bottom of the light emitting section 223.
  • the connector body 221 is provided with an optical fiber insertion hole 226 extending from the back side to the front in alignment with the lens 224.
  • the optical fiber insertion hole 226 is shaped so that the optical axis of the lens 224 and the core 203a of the optical fiber 203 inserted therein coincide with each other. Further, the optical fiber insertion hole 226 is shaped so that when the optical fiber 203 is inserted, its tip (incidence end) matches the focal position of the lens 224.
  • the optical fiber 203 is a GI (dipless) fiber (indicated by "GI" in the figure).
  • an adhesive injection hole 222 extending downward from the top surface side is formed in the connector body 211 so as to communicate with the vicinity of the bottom position of the optical fiber insertion hole 226.
  • the adhesive 227 is injected around the optical fiber 203 from the adhesive injection hole 222, thereby fixing the optical fiber 203 to the connector body 221.
  • a GRIN lens 228 is placed on the tip side of the optical fiber 203.
  • the connector 402 is the same as that described using FIG. 32 above, so its description will be omitted here.
  • the lens 224 has a function of shaping the light emitted from the optical fiber 203 into collimated light and emitting the collimated light.
  • the light emitted from the output end of the optical fiber 203 with a predetermined NA enters the lens 224 through the GRIN lens 228, is formed into collimated light, and is emitted toward the connector 402.
  • the light emitted from the connector 202 enters a lens 424 and is focused. Then, this focused light enters the input end of the optical fiber 401 through the GRIN lens 428 and is sent through the optical fiber 401.
  • the connector 403 of the optical cable 400 and the connector 301 of the receiver 300 connected thereto are configured in the same manner as the configuration example of the connector 202 of the transmitter 200 and the connector 402 of the optical cable 400 described above. .
  • the optical fibers 203, 303, and 401 propagate only the fundamental mode at the first wavelength (for example, 1310 nm), and propagate the fundamental mode at the second wavelength (for example, 850 nm). It is capable of propagating at least the first-order mode along with the second wavelength, and communication is performed using light of a second wavelength. Therefore, at least the first-order mode component generated by the optical axis misalignment propagates together with the fundamental mode component, making it possible to reduce optical power coupling loss due to the optical axis misalignment.
  • the connectors 402 and 301 are provided with optical path adjusting members (GRIN lenses) for guiding input light to the input ends of the optical fibers 401 and 303. Therefore, if there is a positional shift, the input light that does not go to the input ends of the optical fibers 401, 303 is guided to the input ends of the optical fibers 401, 303 by the optical path adjustment of the optical path adjustment member, resulting in a coupling loss of optical power. can be reduced.
  • optical path adjusting members GRIN lenses
  • the optical fiber 401 of the optical cable 400 is a GI (with dip) fiber except for a part on the end side, and a GI (without dip) fiber in a part on the end side. This makes it possible to extend the possible transmission distance while suppressing a decrease in optical power coupling efficiency.
  • optical fibers constituting the optical cable are GI (with dip) fiber except for a part on the end side, and GI (without dip) fiber is used in a part on the end side. Although shown, it is not limited to this.
  • the parts other than the part on the end side of the optical fiber have the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a smaller propagation delay difference between modes than the second structure. It is sufficient that the second structure has a higher optical power coupling efficiency than the first structure.
  • the optical fibers constituting an optical cable are GI (dip) fibers except for a part on the end side, and the part on the end side is an optical fiber whose core refractive index shape is a step index type (SI type). It is also possible to use a fiber (SI fiber).
  • the optical fibers constituting the optical cable are GI (with dip) fibers except for a part on the end side, and GI (without dip) fibers are used in the part on the end side.
  • the optical fiber connected to the connector is a GI (dip equipped) fiber except for the part on the end side connected to the connector. It is also conceivable that a part of the end side is made into a GI (non-dip) fiber to extend the possible transmission distance while suppressing a decrease in optical power coupling efficiency.
  • the transmitter 200 and the receiver 300 have an optical interface structure in which an optical connector for spatial coupling is connected to the end of an optical fiber.
  • FIG. 34 shows a configuration example of the light emitting section 201 in the transmitter 200 and the connector 202 connected to it via the optical fiber 203.
  • This configuration example is one example, and is not limited to this.
  • the light emitting unit 201 and the connector 202 are connected by an optical fiber 203.
  • the optical fiber 203 is a GI (with dip) fiber except for a part on the end side connected to the connector 202, and a part on the end side is a GI (without dip) fiber.
  • the light emitting section 201 includes a ferrule 211.
  • the ferrule 211 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength.
  • the ferrule 211 is provided with an optical fiber insertion hole 216 extending rearward from the front side. After the optical fiber 203 is inserted into the optical fiber insertion hole 216, it is fixed to the ferrule 211 with an adhesive 217.
  • a substrate 212 on which a light emitting element 213 and a light emitting element driving driver 218 are mounted is fixed to the lower surface side of the ferrule 211.
  • a light emitting element 213 is placed on the substrate 212 in alignment with the optical fiber 203.
  • the position of the substrate 212 is adjusted and fixed so that the emission part of the light emitting element 213 coincides with the optical axis of the optical fiber 203.
  • the ferrule 211 is formed with an arrangement hole 214 extending upward from the lower surface side.
  • the bottom part of the arrangement hole 214 is formed into an inclined surface, and a mirror (optical path changing section) 215 is arranged on this inclined surface.
  • a mirror optical path changing section
  • the connector 202 is the same as that described using FIG. 33 above, so its description will be omitted here.
  • the optical fiber 401 in the optical cable 400 connecting the transmitter 200 and the receiver 300 is a GI (dip equipped) fiber except for a part on the end side, and the part on the end side is a GI (dip equipped) fiber.
  • a GI (no dip) fiber when an electronic device has a configuration in which a transmitting section and a receiving section are connected using an optical fiber to perform optical communication, it is necessary to use a GI (no dip) fiber. It is also conceivable to use GI (with dip) fiber for the rest of the fiber, and use GI (without dip) fiber for the part on the end side to extend the possible transmission distance while suppressing a decrease in the coupling efficiency of optical power.
  • the electronic device is equipped with an optical interface structure in which an optical connector for spatial coupling is connected to the end of an optical fiber.
  • the first wavelength has been described as 1310 nm, but since a laser light source or an LED light source may be used as the light source, the first wavelength may be, for example, between 300 nm and 5 ⁇ m. I can think of something.
  • the first wavelength is described as 1310 nm, but it is also possible that this first wavelength is a wavelength in the 1310 nm band that includes 1310 nm. Further, in the above-described embodiment, the first wavelength is described as 1310 nm, but it is also possible that the first wavelength is 1550 nm or a wavelength in the 1550 nm band that includes 1550 nm. Moreover, although the second wavelength has been described as 850 nm, it is also possible that the second wavelength is a wavelength in the 850 nm band that includes 850 nm.
  • optical waveguide is an optical fiber
  • present technology can of course be applied to an optical waveguide other than an optical fiber, such as a silicon optical waveguide.
  • the present technology can also have the following configuration.
  • Optical fiber a connector for spatial coupling connected to the end of the optical fiber; A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure, The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  • the optical cable according to (2) wherein the second structure is a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
  • the optical fiber propagates only the fundamental mode at the first wavelength; Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
  • the first wavelength is a wavelength in a 1310 nm band
  • the second wavelength is a wavelength in an 850 nm band.
  • the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip
  • the optical fiber propagates only the fundamental mode at the first wavelength; Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode, The electronic device according to (8) or (9), wherein the second wavelength is a wavelength at which the optical fiber can propagate at least a first-order mode together with the fundamental mode.
  • the connector is a connector for connecting external equipment via an optical cable, The electronic device according to any one of (8) to (12), wherein the connector constitutes an input section or an output section of an optical signal.
  • Optical cable an optical communication device having a connector for connecting one end of the optical cable; the optical cable has a configuration in which a connector for spatial coupling is connected to an end of an optical fiber; A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure, The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  • Optical communication system . .
  • the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip
  • the optical communication system according to (14), wherein the second structure is a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
  • the optical fiber propagates only the fundamental mode at the first wavelength; Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode, The optical communication system according to (14) or (15), wherein the second wavelength is a wavelength at which the optical fiber can propagate at least the primary mode together with the fundamental mode.
  • an optical element for adjusting an optical path is arranged at an end of the optical fiber.
  • the optical communication device is a transmitting side optical communication device.
  • Connector body 222...Adhesive injection hole 223...Light emission part (light transmission space) 224...Lens (convex lens) 226... Optical fiber insertion hole 227... Adhesive 228... GRIN lens 300... Receiver 301... Connector (receptacle) 302... Light receiving section 303... Optical fiber 400... Optical cable 401... Optical fiber 402,403... Connector (plug) 421...Connector body (ferrule) 422... Adhesive injection hole 423...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

The present invention makes it possible to increase transmittable distance while suppressing a decrease in optical power coupling efficiency. Connectors (32, 33) for spatial coupling are connected to end parts of an optical fiber (31). A portion other than end sides of the optical fiber (31) is configured as a first structure, the end side portions of the optical fiber (31) are configured as second structures, the first structure has a smaller inter-mode propagation delay difference than the second structures, and the second structures have higher coupling efficiency than the first structure. For example, the first structure is configured such that the refractive index of the core has a dipped graded-index shape, and the second structures are configured such that the refractive index of the core has a dipless graded-index shape or a stepped index shape.

Description

光ケーブル、電子機器および光通信システムOptical cables, electronic equipment and optical communication systems
 本技術は、光ケーブル、電子機器および光通信システムに関し、詳しくは、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことが可能な光ケーブル等に関する。 The present technology relates to optical cables, electronic equipment, and optical communication systems, and specifically relates to optical cables and the like that can extend the transmission distance while suppressing a decrease in optical power coupling efficiency.
 従来、空間結合による光通信(例えば、特許文献1参照)が知られている。このような光通信の場合、特に、シングルモードファイバにおいては、位置ずれにより光パワーの大きなロスが発生する。そのため、従来は、位置ずれを抑えるために部品の精度要求が高く、コストアップにつながっている。 Conventionally, optical communication using spatial coupling (see, for example, Patent Document 1) is known. In the case of such optical communication, particularly in single mode fibers, a large loss of optical power occurs due to positional deviation. Therefore, in the past, precision requirements for parts were high in order to suppress misalignment, leading to increased costs.
国際公開第2017/056889号International Publication No. 2017/056889
 本技術の目的は、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことを可能とすることにある。 The purpose of this technology is to make it possible to extend the possible transmission distance while suppressing a decrease in the coupling efficiency of optical power.
 本技術の概念は、
 光ファイバと、
 前記光ファイバの端部に接続された空間結合のためのコネクタを備え、
 前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
 前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
 光ケーブルにある。
The concept of this technology is
optical fiber and
a connector for spatial coupling connected to the end of the optical fiber;
A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure. .
 本技術における光ケーブルは、光ファイバと、この光ファイバの端部に接続された空間結合のためのコネクタを備えるものである。そして、光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造である。 The optical cable in the present technology includes an optical fiber and a connector for spatial coupling connected to the end of the optical fiber. Then, the part other than the part on the end side of the optical fiber has the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a higher propagation rate between modes than the second structure. The second structure has a structure in which the delay difference is small, and the second structure has a higher optical power coupling efficiency than the first structure.
 例えば、第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造である、ようにされてもよい。この場合、例えば、第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である、ようにされてもよい。 For example, the first structure may be a structure in which the refractive index shape of the core is a graded index type with a dip. In this case, for example, the second structure may be a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
 また、例えば、光ファイバは第1の波長では基本モードのみを伝搬し、光ファイバを通じて第2の波長を持つと共に基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、第2の波長は光ファイバが基本モードと共に少なくとも1次モードを伝搬し得る波長である、ようにされてもよい。ここで、例えば、第1の波長は1310nm帯の波長であり、第2の波長は850nm帯の波長である、ようにされてもよい。この場合、光軸ずれに対して、そのずれの方向によっては、光パワーの結合効率を高めることが可能となる。 Further, for example, an optical fiber propagates only the fundamental mode at a first wavelength, and communication is performed using light having a second wavelength and having at least a first-order mode component in addition to the fundamental mode. The second wavelength may be such that the optical fiber can propagate at least the first order mode along with the fundamental mode. Here, for example, the first wavelength may be a wavelength in the 1310 nm band, and the second wavelength may be a wavelength in the 850 nm band. In this case, depending on the direction of optical axis deviation, it is possible to increase the coupling efficiency of optical power.
 この場合、光ファイバの端部に光路を調整する光学素子、例えばGRIN(Gradient index)レンズが配置される、ようにされてもよい。このようにGRINレンズが配置されることで、基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信を行うことで発生する光パワーの結合ロスを低減することが可能となる。 In this case, an optical element that adjusts the optical path, such as a GRIN (gradient index) lens, may be placed at the end of the optical fiber. By arranging the GRIN lens in this manner, it is possible to reduce optical power coupling loss that occurs when communication is performed using light that has at least a primary mode component as well as a fundamental mode.
 このように本技術においては、光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造であり、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことを可能となる。 In this way, in the present technology, the part other than the part on the end side of the optical fiber has the first structure, the part on the end side of the optical fiber has the second structure, and the first structure has the second structure. The second structure has a smaller propagation delay difference between modes than the first structure, and the second structure has a higher optical power coupling efficiency than the first structure, making it possible to transmit optical power while suppressing a decrease in optical power coupling efficiency. It is possible to extend the distance.
 本技術の他の概念は、
 光ファイバの端部に空間結合のためのコネクタが接続された光インタフェース構造を備え、
 前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
 前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
 電子機器にある。
Other concepts of this technology are:
Equipped with an optical interface structure in which a connector for spatial coupling is connected to the end of the optical fiber,
A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure. be.
 本技術における電子機器は、光ファイバの端部に空間結合のためのコネクタが接続された光インタフェース構造を備えるものである。そして、光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造である。 The electronic device according to the present technology includes an optical interface structure in which a connector for spatial coupling is connected to the end of an optical fiber. Then, the part other than the part on the end side of the optical fiber has the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a higher propagation rate between modes than the second structure. The second structure has a structure in which the delay difference is small, and the second structure has a higher optical power coupling efficiency than the first structure.
 例えば、第1の構造は、コアの屈折率形状がディップ有グレーテッドインデックス型とされている構造であり、第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である、ようにされてもよい。 For example, the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip, and the second structure is a structure in which the refractive index shape of the core is a non-dip graded index type or a step index type. This is the structure that is used.
 また、例えば、光ファイバは第1の波長では基本モードのみを伝搬し、光ファイバを通じて第2の波長を持つと共に基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、第2の波長は光ファイバが基本モードと共に少なくとも1次モードを伝搬し得る波長である、ようにされてもよい。ここで、例えば、第1の波長は1310nm帯の波長であり、第2の波長は850nm帯の波長である、ようにされてもよい。この場合、光軸ずれに対して、そのずれの方向によっては、光パワーの結合効率を高めることが可能となる。 Further, for example, an optical fiber propagates only the fundamental mode at a first wavelength, and communication is performed using light having a second wavelength and having at least a first-order mode component in addition to the fundamental mode. The second wavelength may be such that the optical fiber can propagate at least the first order mode along with the fundamental mode. Here, for example, the first wavelength may be a wavelength in the 1310 nm band, and the second wavelength may be a wavelength in the 850 nm band. In this case, depending on the direction of optical axis deviation, it is possible to increase the coupling efficiency of optical power.
 この場合、光ファイバの端部に光路を調整する光学素子、例えばGRINレンズが配置される、ようにされてもよい。このようにGRINレンズが配置されることで、基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信を行うことで発生する光パワーの結合ロスを低減することが可能となる。 In this case, an optical element for adjusting the optical path, such as a GRIN lens, may be placed at the end of the optical fiber. By arranging the GRIN lens in this manner, it is possible to reduce optical power coupling loss that occurs when communication is performed using light that has at least a primary mode component as well as a fundamental mode.
 また、例えば、コネクタは光ケーブルを介して外部機器を接続するためのコネクタである、ようにされてもよい。また、例えば、コネクタは、光信号の入力部または出力部を構成する、ようにされてもよい。 Furthermore, for example, the connector may be a connector for connecting external equipment via an optical cable. Furthermore, for example, the connector may constitute an input section or an output section for optical signals.
 このように本技術においては、光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造であり、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことを可能となる。 In this way, in the present technology, the part other than the part on the end side of the optical fiber has the first structure, the part on the end side of the optical fiber has the second structure, and the first structure has the second structure. The second structure has a smaller propagation delay difference between modes than the first structure, and the second structure has a higher optical power coupling efficiency than the first structure, making it possible to transmit optical power while suppressing a decrease in optical power coupling efficiency. It is possible to extend the distance.
 また、本技術の他の概念は、
 光ケーブルと、
 前記光ケーブルの一端を接続するためのコネクタを有する光通信装置を備え
 前記光ケーブルは光ファイバの端部に空間結合のためのコネクタが接続された構成とされ、
 前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
 前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
 光通信システムにある。
In addition, other concepts of this technology are:
optical cable and
an optical communication device having a connector for connecting one end of the optical cable; the optical cable has a configuration in which a connector for spatial coupling is connected to an end of an optical fiber;
A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure. Optical communication system. It is in.
 本技術における光通信システムは、光ケーブルと、この光ケーブルの一端を接続するためのコネクタを有する光通信装置を備えるものである。そして、光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造である。 The optical communication system according to the present technology includes an optical cable and an optical communication device having a connector for connecting one end of the optical cable. Then, the part other than the part on the end side of the optical fiber has the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a higher propagation rate between modes than the second structure. The second structure has a structure in which the delay difference is small, and the second structure has a higher optical power coupling efficiency than the first structure.
 例えば、第1の構造は、コアの屈折率形状がディップ有グレーテッドインデックス型とされている構造であり、第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である、ようにされてもよい。 For example, the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip, and the second structure is a structure in which the refractive index shape of the core is a non-dip graded index type or a step index type. This is the structure that is used.
 また、例えば、光ファイバは第1の波長では基本モードのみを伝搬し、光ファイバを通じて第2の波長を持つと共に基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、第2の波長は光ファイバが基本モードと共に少なくとも1次モードを伝搬し得る波長である、ようにされてもよい。ここで、例えば、第1の波長は1310nm帯の波長であり、第2の波長は850nm帯の波長である、ようにされてもよい。この場合、光軸ずれに対して、そのずれの方向によっては、光パワーの結合効率を高めることが可能となる。 Further, for example, an optical fiber propagates only the fundamental mode at a first wavelength, and communication is performed using light having a second wavelength and having at least a first-order mode component in addition to the fundamental mode. The second wavelength may be such that the optical fiber can propagate at least the first order mode along with the fundamental mode. Here, for example, the first wavelength may be a wavelength in the 1310 nm band, and the second wavelength may be a wavelength in the 850 nm band. In this case, depending on the direction of optical axis deviation, it is possible to increase the coupling efficiency of optical power.
 この場合、光ファイバの端部に光路を調整する光学素子、例えばGRINレンズが配置される、ようにされてもよい。このようにGRINレンズが配置されることで、基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信を行うことで発生する光パワーの結合ロスを低減することが可能となる。 In this case, an optical element for adjusting the optical path, such as a GRIN lens, may be placed at the end of the optical fiber. By arranging the GRIN lens in this manner, it is possible to reduce optical power coupling loss that occurs when communication is performed using light that has at least a primary mode component as well as a fundamental mode.
 また、例えば、光通信装置は送信側の光通信装置である、ようにされてもよい。この場合、例えば、光ケーブルの他端を接続するためのコネクタを有する受信側の光通信装置をさらに備える、ようにされてもよい。 Furthermore, for example, the optical communication device may be an optical communication device on the transmitting side. In this case, for example, it may further include a receiving-side optical communication device having a connector for connecting the other end of the optical cable.
 このように本技術においては、光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造であり、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことを可能となる。 In this way, in the present technology, the part other than the part on the end side of the optical fiber has the first structure, the part on the end side of the optical fiber has the second structure, and the first structure has the second structure. The second structure has a smaller propagation delay difference between modes than the first structure, and the second structure has a higher optical power coupling efficiency than the first structure, making it possible to transmit optical power while suppressing a decrease in optical power coupling efficiency. It is possible to extend the distance.
空間結合による光通信の概要を示す図である。FIG. 1 is a diagram showing an overview of optical communication using spatial coupling. 光ファイバの基本的な構造と、ステップ型光ファイバのLPmlモードを示す図である。1 is a diagram showing the basic structure of an optical fiber and the LPml mode of a step type optical fiber. シングルモードで一般的な1310nmのケースで規格化周波数Vを考えた場合の図である。It is a diagram when considering the normalized frequency V in the case of 1310 nm, which is common in single mode. 空間結合による光通信の例を示す図である。FIG. 2 is a diagram showing an example of optical communication using spatial coupling. 空間結合による光通信の例を示す図である。FIG. 2 is a diagram showing an example of optical communication using spatial coupling. 1310nmのシングルモードファイバに850nmの波長の光を入力した場合にLP01の基本モードとLP11の1次モードが存在し得ることを説明するための図である。FIG. 2 is a diagram for explaining that when light with a wavelength of 850 nm is input to a single mode fiber of 1310 nm, a fundamental mode of LP01 and a primary mode of LP11 may exist. 入力光にはLP01の基本モードしか存在しない条件で光軸ずれが発生した場合について考えるための図である。FIG. 4 is a diagram for considering a case where an optical axis shift occurs under the condition that only the fundamental mode of LP01 exists in the input light. 入力光の波長が1310nmと850nmにおけるロス量のシミュレーション結果を記載したグラフである。It is a graph showing the simulation results of the amount of loss when the wavelength of input light is 1310 nm and 850 nm. 光軸ずれがない状態では入力光には基本モードしか存在しないが、光軸ずれがある状態では基本モードの一部が1次モードへ変換されることを示す図である。FIG. 6 is a diagram showing that in a state where there is no optical axis shift, only the fundamental mode exists in the input light, but when there is an optical axis shift, a part of the fundamental mode is converted into a first-order mode. ずれに応じて基本モードが1次モードへ変換されることを説明するためのグラフである。It is a graph for explaining that the fundamental mode is converted to the primary mode according to the shift. 光ファイバ内を伝達する光の強度分布をシミュレーションした図である。FIG. 3 is a diagram simulating the intensity distribution of light transmitted within an optical fiber. ファイバ端面から光が出射される場合に進む角度について説明するための図である。FIG. 3 is a diagram for explaining the angle at which light travels when it is emitted from a fiber end face. 空間結合による光通信を説明するための図である。FIG. 2 is a diagram for explaining optical communication using spatial coupling. 光ファイバの位置がレンズ対して垂直方向にずれる光軸ずれについて説明するための図である。FIG. 3 is a diagram for explaining an optical axis shift in which the position of an optical fiber is shifted in a direction perpendicular to a lens. 光パワーの結合効率のシミュレーション結果を記載したグラフである。3 is a graph showing simulation results of optical power coupling efficiency. 光ファイバの位置がレンズに対して垂直方向にずれる光軸ずれについて説明するための図である。FIG. 3 is a diagram for explaining an optical axis shift in which the position of an optical fiber shifts in a direction perpendicular to a lens. 光パワーの結合効率のシミュレーション結果を記載したグラフである。3 is a graph showing simulation results of optical power coupling efficiency. 光ファイバの入射側に光路調整部としてのGRINレンズを設けた例を示す図である。FIG. 3 is a diagram showing an example in which a GRIN lens as an optical path adjustment section is provided on the incident side of an optical fiber. 光軸がずれた場合でも光を中心方向へ戻すことができる理由を説明するための図である。FIG. 6 is a diagram for explaining the reason why light can be returned toward the center even when the optical axis is shifted. 光パワーの結合効率のシミュレーション結果を記載したグラフである。3 is a graph showing simulation results of optical power coupling efficiency. 基本モード(0次モード)成分と1次モード成分を分離して記載したグラフである。It is a graph in which a fundamental mode (0-order mode) component and a first-order mode component are described separately. モード間伝搬遅延差の発生を説明するための図である。FIG. 3 is a diagram for explaining the occurrence of a propagation delay difference between modes. 基本モード(0次モード)と1次モードが光ファイバ内を伝搬する際における強度分布の一例を示す図である。FIG. 3 is a diagram showing an example of intensity distribution when a fundamental mode (0th mode) and a first mode propagate in an optical fiber. 光ファイバのコアの屈折率形状を変えた場合のモード間伝搬遅延差の一例を示す図である。FIG. 3 is a diagram showing an example of the difference in propagation delay between modes when the refractive index shape of the core of an optical fiber is changed. 光ファイバのコアの屈折率形状を変えた場合において、その光ファイバ内を伝達する光の強度分布のシミュレーションの一例を示す図である。FIG. 3 is a diagram showing an example of a simulation of the intensity distribution of light transmitted within an optical fiber when the refractive index shape of the core of the optical fiber is changed. 光ファイバのコアの屈折率形状がGI(dip有)型またはGI(dip無)型であるときに光ファイバ内を伝達する光の強度分布が膨らんだり狭まったりすることを光軸方向に周期的に繰り返す場合において定義されるピッチを説明するための図である。When the refractive index shape of the core of an optical fiber is GI (with dip) type or GI (without dip) type, the intensity distribution of light transmitted within the optical fiber expands or narrows periodically in the optical axis direction. FIG. 4 is a diagram for explaining pitches defined when repeating. GI(dip有)ファイバとGI(dip無)ファイバのそれぞれにおける、ピッチに対する光パワーの結合効率のシミュレーション結果の一例を記載したグラフである。3 is a graph illustrating an example of a simulation result of the coupling efficiency of optical power with respect to pitch in each of a GI (with dip) fiber and a GI (without dip) fiber. 空間結合による光通信において、受信側のGRINレンズおよび光ファイバの位置が光軸に対して垂直方向にずれる光軸ずれを説明するための図である。FIG. 2 is a diagram for explaining an optical axis shift in which the positions of a GRIN lens and an optical fiber on the receiving side are shifted in a direction perpendicular to the optical axis in optical communication using spatial coupling. GI(dip有)ファイバとGI(dip無)ファイバのそれぞれにおける、光軸ずれ量に対する光パワーの結合効率のシミュレーション結果を記載したグラフである。2 is a graph showing simulation results of optical power coupling efficiency with respect to optical axis deviation amount in each of a GI (with dip) fiber and a GI (without dip) fiber. 光ケーブルの構成例を示す図である。It is a figure showing an example of composition of an optical cable. 光通信システムの構成例を示す図である。1 is a diagram showing a configuration example of an optical communication system. 光ケーブルの具体的な構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a specific example of the configuration of an optical cable. 送信機のコネクタとそれに接続される光ケーブルのコネクタの構成例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of a connector of a transmitter and a connector of an optical cable connected thereto. 送信機における発光部とそれに光ファイバを介して接続されるコネクタの構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a light emitting section in a transmitter and a connector connected to the light emitting section via an optical fiber.
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
Hereinafter, modes for carrying out the invention (hereinafter referred to as "embodiments") will be described. Note that the explanation will be given in the following order.
1. Embodiment 2. Variant
 <1.実施の形態>
 [実施の形態に関連する技術の説明]
 まず、実施の形態に関連する技術について説明をする。図1は、空間結合による光通信の概要を示している。この場合、送信側の光ファイバ10Tから出射された光は光学素子であるレンズ11Tでコリメート光に成形されて出射される。そして、このコリメート光が受信側のレンズ11Rで集光されて光ファイバ10Rに入射される。この光通信の場合、特に、シングルモードファイバにおいては、位置ずれにより光パワーの大きなロスが発生する。なお、光ファイバ10T,10Rは、光路となる中心部のコア10aと、その周囲を覆うクラッド10bの二重構造となっている。
<1. Embodiment>
[Description of technology related to embodiment]
First, technology related to the embodiment will be explained. FIG. 1 shows an overview of optical communication using spatial coupling. In this case, the light emitted from the transmission-side optical fiber 10T is shaped into collimated light by the lens 11T, which is an optical element, and then emitted. This collimated light is then condensed by a lens 11R on the receiving side and enters the optical fiber 10R. In the case of this optical communication, particularly in a single mode fiber, a large loss of optical power occurs due to positional deviation. The optical fibers 10T and 10R have a double structure including a core 10a at the center serving as an optical path and a cladding 10b surrounding the core 10a.
 次に、モードの基本的な考え方について説明する。光ファイバ内をシングルモードで伝搬しようとする場合、モードが1つだけ存在するように、光ファイバの屈折率やコア径といったパラメータを決める必要がある。 Next, the basic idea of modes will be explained. When propagating in a single mode in an optical fiber, it is necessary to determine parameters such as the refractive index and core diameter of the optical fiber so that only one mode exists.
 図2(a)は、光ファイバの基本的な構造を示している。光ファイバは、コアと呼ばれる中心部をクラッドと呼ばれる層で覆った構造となっている。この場合、コアの屈折率n1は高く、クラッドの屈折率n2は低くされており、光はコアの中に閉じ込められて伝搬していく。 Figure 2(a) shows the basic structure of an optical fiber. An optical fiber has a structure in which a central portion called a core is covered with a layer called a cladding. In this case, the core has a high refractive index n1 and the cladding has a low refractive index n2, and light is confined within the core and propagates.
 図2(b)は、ステップ型光ファイバのLPml (Linearly Polarized:直線偏光) モードであり、規格化伝搬定数bを規格化周波数Vの関数として示したものである。縦軸は規格化伝搬定数bであり、あるモードが通らない(遮断)状態ではb=0となり、光パワーがコア内に閉じ込められるほど(伝搬できるほど)、bは1に近づく。横軸は規格化周波数Vで、以下の数式(1)で表すことができる。ここで、dはコア径、NAは開口数、λは光の波長である。
 V=πdNA/λ   ・・・(1)
FIG. 2(b) shows the LPml (Linearly Polarized) mode of the stepped optical fiber, and shows the normalized propagation constant b as a function of the normalized frequency V. The vertical axis is the normalized propagation constant b, and in a state where a certain mode does not pass (blocked), b=0, and the more optical power is confined within the core (the more it can propagate), the closer b approaches 1. The horizontal axis is the normalized frequency V, which can be expressed by the following equation (1). Here, d is the core diameter, NA is the numerical aperture, and λ is the wavelength of light.
V=πdNA/λ...(1)
 例えば、V=2.405のときLP11が遮断される状態となるため、モードはLP01のみ存在することになる。従って、V=2.405以下の状態がシングルモードとなる。ここで、LP01は基本モード(0次モード)であり、以降LP11, LP21,・・・が、それぞれ、1次モード、2次モード、・・・となる。 For example, when V=2.405, LP11 is cut off, so only LP01 exists as the mode. Therefore, a state where V=2.405 or less becomes a single mode. Here, LP01 is the basic mode (zero-order mode), and thereafter LP11, LP21, . . . become the first-order mode, second-order mode, . . . , respectively.
 例えば、図3(a)のように、シングルモードで一般的な1310nmのケースで規格化周波数Vを考えてみる。ここで、コア径d、開口数NAをそれぞれ1310nm光ファイバの一般的なパラメータであるd=8μm、NA=0.1とし、光ファイバを伝搬する光の波長を1310nmとすると、数式(1)からV=1.92となる。 For example, consider the normalized frequency V in the case of 1310 nm, which is common in single mode, as shown in FIG. 3(a). Here, if the core diameter d and numerical aperture NA are respectively general parameters of a 1310 nm optical fiber, d = 8 μm and NA = 0.1, and the wavelength of the light propagating through the optical fiber is 1310 nm, the formula (1) Therefore, V=1.92.
 従って、図3(b)に示すように、規格化周波数Vは2.405以下となるため、LP01の基本モードのみ伝搬されることとなり、シングルモードとなる。ここで、コア径を大きくすると伝播できるモードが増えることになる。因みに、例えば、一般的なマルチモードファイバはコア径を50μmといった値にすることで数百のモードを伝搬させている。 Therefore, as shown in FIG. 3(b), since the normalized frequency V is 2.405 or less, only the fundamental mode of LP01 is propagated, resulting in a single mode. Here, increasing the core diameter increases the number of modes that can be propagated. Incidentally, for example, a general multimode fiber propagates several hundred modes by setting the core diameter to a value such as 50 μm.
 図1に示すような空間結合による光通信を考えた場合、シングルモードでは、コア径が小さいため、送信側/受信側の光結合部の位置合わせがシビアになり、正確に光軸を合わせるための精度要求が高くなるという問題がある。 When considering optical communication using spatial coupling as shown in Figure 1, in single mode, since the core diameter is small, the alignment of the optical coupling part on the transmitting side and receiving side becomes severe, and it is difficult to align the optical axis accurately. There is a problem that the accuracy requirement becomes high.
 この問題を解決するために、一般的に、高精度な部品を使用したり、光ファイバへの光入力部を加工することで光をファイバコアへ挿入し易くしたりする。しかし、高精度な部品はコストが高く、また加工を要するものは加工費が高くなるため、シングルモード通信用のコネクタやシステムは一般的にコストが高くなる。 To solve this problem, generally, high-precision parts are used or the light input part to the optical fiber is processed to make it easier to insert light into the fiber core. However, connectors and systems for single-mode communications are generally expensive because high-precision parts are expensive, and items that require machining are expensive to process.
 図4、図5は、光軸合わせの精度劣化要因の一例を示している。例えば、図4(a)に示すように、フェルール15T,15Rと光ファイバ10T,10Rを固定するための固定材16T,16Rの量の不均一により、光軸ずれが発生する。また、例えば、図4(b)に示すように、レンズ11T,11Rの整形精度不足により、光軸ずれが発生する。 FIGS. 4 and 5 show examples of factors that degrade the accuracy of optical axis alignment. For example, as shown in FIG. 4A, optical axis misalignment occurs due to uneven amounts of fixing materials 16T and 16R for fixing ferrules 15T and 15R and optical fibers 10T and 10R. Further, for example, as shown in FIG. 4B, optical axis deviation occurs due to insufficient shaping precision of the lenses 11T and 11R.
 また、図5(a),(b)に示すように、フェルール15T,15Rに設けた位置合わせ用機構(凹部17T、凸部17R)の精度不足により、光軸ずれが発生する。なお、図5(a),(b)に示す凸部17Rは、ピンであることもある。 Furthermore, as shown in FIGS. 5A and 5B, optical axis misalignment occurs due to insufficient precision of the positioning mechanisms (recesses 17T and protrusions 17R) provided on the ferrules 15T and 15R. Note that the protrusion 17R shown in FIGS. 5(a) and 5(b) may be a pin.
 「実施の形態の説明」
 この実施の形態は、光軸合わせの精度を緩和してコスト削減を可能とするものである。この実施の形態では、光ファイバは第1の波長では基本モードのみを伝搬し得るものとされ、この光ファイバが基本モードと共に少なくとも1次モードを伝搬し得る第2の波長の光を用いて通信を行うように構成される。
"Description of embodiment"
This embodiment makes it possible to reduce the cost by relaxing the accuracy of optical axis alignment. In this embodiment, the optical fiber is capable of propagating only the fundamental mode at a first wavelength, and the optical fiber communicates using light of a second wavelength capable of propagating at least the first mode along with the fundamental mode. configured to do so.
 例えば、図3(a)と同じ条件の光ファイバに、1310nmではなく、850nmの波長の光を入力した場合、図6(b)に示すように、規格化周波数V=2.96となる。そのため、図6(a)に示すように、LP01の基本モードと、LP11の1次モードが存在し得ることになる。 For example, when light with a wavelength of 850 nm instead of 1310 nm is input into an optical fiber under the same conditions as in FIG. 3(a), the normalized frequency V=2.96, as shown in FIG. 6(b). Therefore, as shown in FIG. 6(a), there may be a basic mode of LP01 and a primary mode of LP11.
 図7(a)に示すような光学系を組んだ際に、入力光にはLP01の基本モードしか存在しない条件で、受信側の光ファイバの位置が光軸に対して垂直方向にずれた場合(図7(a),(b)の矢印参照)、つまり光軸ずれが発生した場合について考える。 When assembling an optical system as shown in Figure 7(a), if the position of the receiving optical fiber is shifted perpendicularly to the optical axis under the condition that only the fundamental mode of LP01 exists in the input light. (See the arrows in FIGS. 7(a) and 7(b)), that is, consider the case where optical axis deviation occurs.
 図8は、その場合における光パワーの結合効率のシミュレーション結果を記載したグラフである。横軸は光軸ずれ量で、縦軸は結合効率を表している。ずれがない状態では、光ファイバ内へ100%のパワーが伝搬し、結合効率は1となる。そして、例えば、入力光に対して光ファイバ内へ50%しかパワーが伝搬されない場合は、結合効率は0.5となる。 FIG. 8 is a graph showing the simulation results of the optical power coupling efficiency in that case. The horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency. When there is no shift, 100% of the power propagates into the optical fiber, and the coupling efficiency is 1. For example, if only 50% of the power of the input light is propagated into the optical fiber, the coupling efficiency will be 0.5.
 入力光の波長を1310nmと850nmで比較すると、850nmの場合の特性が良いことが分かる。この理由は、1310nmの場合には基本モードのみしか伝搬できないのに対して、850nmの場合、基本モードの他に1次モードも伝搬できるためである(図6(a)参照)。 Comparing the input light wavelengths of 1310 nm and 850 nm, it can be seen that the characteristics are better in the case of 850 nm. The reason for this is that in the case of 1310 nm, only the fundamental mode can propagate, whereas in the case of 850 nm, the primary mode as well as the fundamental mode can propagate (see FIG. 6(a)).
 つまり、光軸ずれがない状態では、図9(a)に示すように、入力光には基本モードしか存在しない。一方、光軸ずれがある状態では、図9(b)に示すように、基本モードの一部がクラッドとコアの屈折率差で生じる位相差を利用して1次モードへ変換される。1310nmの場合はこの1次モードを伝搬できないが、850nmの場合はこの1次モードも伝搬できることから、850nmの場合の特性が良くなる。 In other words, in a state where there is no optical axis deviation, only the fundamental mode exists in the input light, as shown in FIG. 9(a). On the other hand, in a state where there is an optical axis misalignment, as shown in FIG. 9(b), a part of the fundamental mode is converted into a first-order mode using a phase difference caused by the difference in refractive index between the cladding and the core. In the case of 1310 nm, this first-order mode cannot be propagated, but in the case of 850 nm, this first-order mode can also be propagated, so that the characteristics in the case of 850 nm are improved.
 図10のグラフには、基本モード(0次モード)成分と1次モード成分を分離して記載しており、足し合わせたものがトータル(Total)の曲線となる。入力光は基本モードしか存在しないため、ずれに応じて基本モードが1次モードへ変換されていることが分かる。一方、1310nmの場合、図3(a)に示すように基本モードしか伝搬できないため、図8に示すように、基本モードが純粋に減少している。 In the graph of FIG. 10, the fundamental mode (0-order mode) component and the 1st-order mode component are shown separately, and the sum becomes the total curve. Since the input light has only the fundamental mode, it can be seen that the fundamental mode is converted to the primary mode according to the shift. On the other hand, in the case of 1310 nm, only the fundamental mode can propagate as shown in FIG. 3(a), so the fundamental mode is purely reduced as shown in FIG.
 図8において、1310nmと850nmについて、結合効率0.8(約-1dB)で比較すると約1.8倍、結合効率0.9(約―0.5dB)で比較すると約2.35倍も位置ずれに対する精度を緩和することができる。 In Figure 8, when comparing 1310nm and 850nm with a coupling efficiency of 0.8 (approximately -1 dB), the position is approximately 1.8 times larger, and when comparing with a coupling efficiency of 0.9 (approximately -0.5 dB), the position is approximately 2.35 times larger. The accuracy with respect to deviation can be relaxed.
 このように光ファイバを第1の波長(例えば1310nm)では基本モードのみを伝搬し得るものとし、この光ファイバが基本モードと共に少なくとも1次モードを伝搬し得る第2の波長(例えば850nm)の光を用いて通信を行うように構成することで、光パワーの結合効率を高めることが可能となる。 In this way, the optical fiber is capable of propagating only the fundamental mode at a first wavelength (for example, 1310 nm), and the optical fiber is capable of propagating light at a second wavelength (for example, 850 nm) in which at least the first mode as well as the fundamental mode can be propagated. By configuring to perform communication using , it becomes possible to increase the coupling efficiency of optical power.
 また、この実施の形態では、基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信を行うように構成される。 Furthermore, this embodiment is configured to perform communication using light having at least a primary mode component as well as a fundamental mode.
 図11は、光ファイバ内を伝達する光の強度分布をシミュレーションした図である。図11(a)は、基本モードの成分のみを持つ光を伝送する場合の例を示している。この場合、光ファイバのコアの中心が最も強度が高く、クラッドへ近づくほど強度が低くなる。図11(b)は、基本モードおよび1次モードの成分を持つ光を伝送する場合の例を示している。この場合、強度の高い箇所がコアの中心に対して一方向および他方向に、図示の例では上方向および下方向に交互に現れる。 FIG. 11 is a diagram simulating the intensity distribution of light transmitted within an optical fiber. FIG. 11A shows an example of transmitting light having only fundamental mode components. In this case, the strength is highest at the center of the optical fiber core, and the strength decreases as it approaches the cladding. FIG. 11(b) shows an example of transmitting light having fundamental mode and first-order mode components. In this case, high-strength locations appear alternately in one direction and the other direction with respect to the center of the core, and in the example shown, in the upward and downward directions.
 図11(b)の状態にあるとき、図12に示すようにファイバ端面から光が出射される際に、その光は、コアの中心に対して強度の高い方に、ある角度を持って進むものとなる。 In the state shown in Fig. 11(b), when light is emitted from the fiber end face as shown in Fig. 12, the light travels at a certain angle in the direction of higher intensity with respect to the center of the core. Become something.
 図1に示すような空間結合による光通信を考える。図13(a)のように、送信側のコア10aの中心から出た光は受信側のコア10aの中心へと結合する。しかし、図13(b)のように、基本モードおよび1次モードの成分を持つ光を伝送する場合であって、送信側のコア10aの中心から上方向側へ強度分布が偏った光は、受信側のコア10aの中心に対して下方向側へ結合する。 Consider optical communication using spatial coupling as shown in Figure 1. As shown in FIG. 13(a), light emitted from the center of the transmitting-side core 10a is coupled to the center of the receiving-side core 10a. However, as shown in FIG. 13(b), when transmitting light having fundamental mode and first-order mode components, light whose intensity distribution is biased upward from the center of the transmitting core 10a, It is coupled downward with respect to the center of the core 10a on the receiving side.
 図13(b)のような条件で、図14に示すように、受信側の光ファイバ10Rの位置がレンズ11Rに対して垂直方向にずれる光軸ずれが発生した場合について考える。この場合、図示の状態が光軸ずれ量がゼロの状態である。光軸ずれが正(+)方向である場合は、光の強度の高い箇所は光ファイバ10Rのコア10aに入り込む方向のため結合し易くなる。一方、光軸ずれが負(-)方向である場合は、光の進行方向とは逆側に光ファイバ10Rのコア10aが移動することになるため結合効率が下がる。 Let us consider a case where an optical axis shift occurs in which the position of the optical fiber 10R on the receiving side is shifted in a direction perpendicular to the lens 11R, as shown in FIG. 14, under the conditions shown in FIG. 13(b). In this case, the illustrated state is a state in which the amount of optical axis deviation is zero. When the optical axis shift is in the positive (+) direction, the portion where the light intensity is high is the direction in which the light enters the core 10a of the optical fiber 10R, making it easier to couple. On the other hand, when the optical axis shift is in the negative (-) direction, the core 10a of the optical fiber 10R moves in the opposite direction to the direction in which the light travels, resulting in a decrease in coupling efficiency.
 図15は、入力光(送信側から出射される光)が基本モードおよび1次モードの成分を持っており、その割合が1対1である場合における光パワーの結合効率のシミュレーション結果を記載したグラフである。横軸は光軸ずれ量で、縦軸は結合効率を表している。図示の例では、基本モード(0次モード)と1次モードを分離して記載しており、足し合わせたものがトータル(Total)の曲線となる。基本モードのみだと負(-)方向へずれた場合に結合効率が著しく下がっているが、基本モードが1次モード成分へ変換されるおかげで、-1.5μmのずれ量で結合効率0.7程度となっている。 Figure 15 shows the simulation results of the optical power coupling efficiency when the input light (light emitted from the transmitting side) has fundamental mode and first-order mode components, and the ratio is 1:1. It is a graph. The horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency. In the illustrated example, the fundamental mode (zero-order mode) and the first-order mode are shown separately, and the sum becomes the total curve. If only the fundamental mode was used, the coupling efficiency would drop significantly when shifted in the negative (-) direction, but thanks to the conversion of the fundamental mode to the first mode component, the coupling efficiency would be 0.0 with a shift of -1.5 μm. It is about 7.
 ここで、図13に示すような空間結合による光通信において、入力光(送信側から出射される光)に含まれる成分が基本モードのみの場合と、基本モードおよび1次モードが混在する場合について、図16に示すように、受信側の光ファイバ10Rの位置がレンズ11Rに対して垂直方向にずれる光軸ずれが発生した場合について考える。 Here, in optical communication using spatial coupling as shown in Fig. 13, the case where the component included in the input light (light emitted from the transmitting side) is only the fundamental mode, and the case where the fundamental mode and the primary mode are mixed. As shown in FIG. 16, consider the case where an optical axis shift occurs in which the position of the optical fiber 10R on the receiving side is shifted in a direction perpendicular to the lens 11R.
 図17は、入力光が基本モードの成分のみを持つ場合と、入力光が基本モードおよび1次モードの成分を持つ場合における光パワーの結合効率のシミュレーション結果を記載したグラフである。横軸は光軸ずれ量で、縦軸は結合効率を表している。ここでは、基準を揃えるために、強度が最大となる箇所の結合効率を1として規格化している。 FIG. 17 is a graph showing the simulation results of the optical power coupling efficiency when the input light has only the fundamental mode component and when the input light has the fundamental mode and first-order mode components. The horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency. Here, in order to align the standards, the coupling efficiency at the point where the strength is maximum is standardized as 1.
 入力光が基本モードおよび1次モードの成分を持つ場合、光軸ずれが正(+)方向であるときは、入力光が基本モードの成分のみを持つ場合よりも、結合効率はよくなる。これは、上述したように、光軸ずれが正(+)方向である場合は光の強度の高い箇所が光ファイバ10Rのコア10aに入り込む方向のため結合し易くなるからである。 When the input light has fundamental mode and first-order mode components, when the optical axis shift is in the positive (+) direction, the coupling efficiency is better than when the input light has only the fundamental mode components. This is because, as described above, when the optical axis misalignment is in the positive (+) direction, the location where the light intensity is high is the direction in which the light enters the core 10a of the optical fiber 10R, making it easier to couple.
 しかし、入力光が基本モードおよび1次モードの成分を持つ場合、光軸ずれが負(-)方向である場合は、入力光が基本モードの成分のみを持つ場合よりも、結合効率は悪化する。これは、上述したように光の進行方向とは逆側に光ファイバ10Rのコア10aが移動するためである。 However, if the input light has fundamental mode and first-order mode components, and the optical axis misalignment is in the negative (-) direction, the coupling efficiency will be worse than when the input light has only fundamental mode components. . This is because the core 10a of the optical fiber 10R moves in the opposite direction to the direction in which the light travels, as described above.
 このように基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信を行うように構成することで、光軸ずれに対して、そのずれの方向によっては、基本モードの成分からなる光を用いて通信を行う場合に比べて、光パワーの結合効率を高めることが可能となる。この場合、入力光の進行方向と同方向へのみ光ファイバの軸ずれが許容できるように設計することで、基本モードの成分のみを持つ入力光よりも基本モードおよび1次モードの成分を持つ入力光の方が軸ずれに対して強くなる。 By configuring communication to use light that has at least a first-order mode component in addition to the fundamental mode, it is possible to respond to optical axis deviations by using light consisting of fundamental mode components depending on the direction of the deviation. It is possible to increase the coupling efficiency of optical power compared to the case where communication is performed using In this case, by designing the optical fiber so that the axis misalignment of the optical fiber can only be tolerated in the same direction as the traveling direction of the input light, the input light having the fundamental mode and first-order mode components is better than the input light having only the fundamental mode component. Light is more resistant to axis misalignment.
 また、この実施の形態では、基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信を行う場合にあって、負(-)方向の光軸ずれに対して光パワーの結合効率を高めるために、入力光を光導波路のコアに導くように光路を調整する光路調整部を備えるように構成される。 In addition, in this embodiment, when communication is performed using light having at least a first-order mode component as well as a fundamental mode, the coupling efficiency of optical power is increased with respect to optical axis deviation in the negative (-) direction. Therefore, the optical waveguide is configured to include an optical path adjusting section that adjusts the optical path so as to guide the input light to the core of the optical waveguide.
 図18は、光ファイバ10Rの入射側に光路調整部としての光学素子、ここではGRINレンズ(Gradient index lens)22Rを設けた例である。このGRINレンズ22Rは、屈折率分布を持つ部材である。このGRINレンズ22Rの屈折率は、光軸上では例えば光ファイバ10Rのコア10aと同等の屈折率を持ち、光軸から垂直方向に離れるほど屈折率が下がるグラデーション構造となっている。 FIG. 18 shows an example in which an optical element as an optical path adjustment section, in this case a GRIN lens (gradient index lens) 22R, is provided on the input side of the optical fiber 10R. This GRIN lens 22R is a member having a refractive index distribution. The refractive index of this GRIN lens 22R has a refractive index equivalent to, for example, the core 10a of the optical fiber 10R on the optical axis, and has a gradation structure in which the refractive index decreases as it moves away from the optical axis in the vertical direction.
 このように光ファイバ10Rの入射側にGRINレンズ22Rを設けることで、このGRINレンズ22Rに入った光はグラデーション効果により光軸方向へ曲がりながら進む。また、光軸がずれた場合でも光を中心方向へ戻すことができる。その理由は、図19の破線のように光路が光軸に対して下側へずれた場合に、光軸付近の光は屈折率差が少ないため曲がる量は少なく、光軸からより外れた光は屈折率差が大きいため曲がる量が大きく、よって光はコア10aの中心付近に集まるためである。これにより、負(-)方向の光軸ずれに対し光パワーの結合効率を上げることができる。 By providing the GRIN lens 22R on the incident side of the optical fiber 10R in this manner, the light that has entered the GRIN lens 22R travels while being curved in the optical axis direction due to the gradation effect. Furthermore, even if the optical axis is shifted, the light can be returned toward the center. The reason for this is that when the optical path is shifted downward with respect to the optical axis, as shown by the broken line in Figure 19, the light near the optical axis has a small refractive index difference, so the amount of bending is small, and the light that is further away from the optical axis This is because the difference in refractive index is large, so the amount of bending is large, and therefore the light is concentrated near the center of the core 10a. This makes it possible to increase the coupling efficiency of optical power against optical axis deviation in the negative (-) direction.
 図20は、GRINレンズ22Rを設けたダブルレンズ(Double Lens)の場合と、GRINレンズ22Rを設けないシングルレンズ(Single Lens)の場合における光パワーの結合効率のシミュレーション結果を記載したグラフである。横軸は光軸ずれ量で、縦軸は結合効率を表している。例えば、負(-)方向の光軸ずれに対してGRINレンズ22Rを設けた場合はシングルレンズの場合より結合効率が上がっている。なお、図21のグラフには、GRINレンズ22Rを設けた場合において、基本モード(0次モード)成分と1次モード成分を分離して記載しており、足し合わせたものがトータル(Total)の曲線となる。 FIG. 20 is a graph showing the simulation results of the optical power coupling efficiency in the case of a double lens (Double Lens) provided with the GRIN lens 22R and in the case of a single lens (Single Lens) not provided with the GRIN lens 22R. The horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency. For example, when the GRIN lens 22R is provided for optical axis deviation in the negative (-) direction, the coupling efficiency is higher than in the case of a single lens. In addition, in the graph of FIG. 21, when the GRIN lens 22R is provided, the fundamental mode (0th mode) component and the 1st mode component are shown separately, and the sum is the total. It becomes a curve.
 上述したように受信側の光ファイバ10の端部に光路調整部としてのGRINレンズ22Rを設ける場合、光学設計としては送信側および受信側の双方に光路調整部としてのレンズを配置する方が光の収差の影響を最小限にできるため、送信側の光ファイバ10Tの端部にも同様のレンズを設ける必要がある。 As described above, when the GRIN lens 22R as an optical path adjustment section is provided at the end of the optical fiber 10 on the reception side, it is better to arrange the lens as an optical path adjustment section on both the transmission side and the reception side in terms of optical design. In order to minimize the influence of aberrations, it is necessary to provide a similar lens at the end of the optical fiber 10T on the transmitting side.
 以下、光ファイバ端にGRINレンズを設ける例を説明する。詳細説明は省略するが、光ファイバ端にその他の同様の機能を持つレンズを設ける場合でも同様である。 Hereinafter, an example in which a GRIN lens is provided at the end of an optical fiber will be described. Although detailed explanation will be omitted, the same applies to the case where other lenses having similar functions are provided at the end of the optical fiber.
 また、この実施の形態では、送信側の光通信装置である送信機と受信側の光通信装置である受信機を接続する光ケーブルは、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことを可能とするように構成される。 In addition, in this embodiment, the optical cable that connects the transmitter, which is an optical communication device on the transmitting side, and the receiver, which is an optical communication device on the receiving side, increases the possible transmission distance while suppressing a decrease in the coupling efficiency of optical power. Constructed to allow stretching.
 図22は、従来の1310nmファイバ(1310nmの波長では0次モード(基本モード)のみを伝搬するシングルモードの光ファイバ)で、850nm光源からの、850nmの波長の0次モード成分および1次モード成分からなる光(光信号)を伝送する場合の一例を示している。 Figure 22 shows a conventional 1310 nm fiber (single-mode optical fiber that propagates only the 0-order mode (fundamental mode) at a wavelength of 1310 nm), and shows the 0-order mode component and the 1-order mode component at a wavelength of 850 nm from an 850 nm light source. An example of transmitting light (optical signal) consisting of
 この場合、光ファイバの出射端において、0次モードと1次モードとの間に、伝搬遅延差が生じる。このようなモード間伝搬遅延差は、光ファイバ内での各モードの光成分の反射角の差によって生じる。この場合、反射角は、高次になるほど急峻になる。つまり、モードによって、光路長が変わることにより、モード間伝搬遅延差が発生する。 In this case, a propagation delay difference occurs between the zero-order mode and the first-order mode at the output end of the optical fiber. Such a difference in propagation delay between modes is caused by a difference in reflection angles of light components of each mode within the optical fiber. In this case, the reflection angle becomes steeper as the order increases. That is, since the optical path length changes depending on the mode, a propagation delay difference between modes occurs.
 図22に示すように、光ファイバの入射端では0次モードと1次モードを足し合わせたパワーで“1”を表現する場合、光ファイバの出射端でモード間伝搬遅延差が発生すると、“0”から“1”への立ち上がり、または“1”から“0”への立ち下がりの波形に、段差が発生することになる。この現象は、データ伝送においては波形ひずみとなるため、信号品質劣化となる。この信号品質劣化は、光ファイバが長くなるほど、またデータレートが高いほど顕著となる。 As shown in FIG. 22, when "1" is expressed by the power of the sum of the zero-order mode and the first-order mode at the input end of the optical fiber, when a propagation delay difference between modes occurs at the output end of the optical fiber, " A step will occur in the waveform rising from "0" to "1" or falling from "1" to "0". This phenomenon results in waveform distortion in data transmission, resulting in signal quality deterioration. This signal quality deterioration becomes more pronounced as the optical fiber becomes longer and the data rate becomes higher.
 このように信号品質劣化の原因となる波形ひずみが発生した場合に、その波形ひずみを補正して信号品質劣化を抑制することも考えられるが、波形ひずみ補正用回路が送信・受信側に必要となり、コストアップ、消費電力アップへと繋がる。 When waveform distortion that causes signal quality deterioration occurs in this way, it is possible to correct the waveform distortion and suppress the signal quality deterioration, but a waveform distortion correction circuit is required on the transmitting and receiving sides. , leading to increased costs and increased power consumption.
 モード間伝搬遅延差を減らす方法は存在する。光の各モードは、光ファイバ内を伝搬する際に、その強度分布がコア内に収まらずクラッドに滲みでながら進む。図23は、基本モード(0次モード)と1次モードが光ファイバ内を伝搬する際における強度分布の一例を示している。図示のように、基本モード、1次モード共に、その強度分布はクラッドに入り込んでいることが分かる。 There are methods to reduce the propagation delay difference between modes. When each mode of light propagates within an optical fiber, its intensity distribution does not fit within the core and propagates through the cladding. FIG. 23 shows an example of the intensity distribution when the fundamental mode (0-order mode) and the first-order mode propagate in the optical fiber. As shown in the figure, it can be seen that the intensity distribution of both the fundamental mode and the primary mode penetrates into the cladding.
 コアとクラッドの屈折率はコアの方が高く、つまりは光の伝搬速度としてはコアの方が遅い。一般的に、モードが高次となるほど光ファイバ内を伝搬する全反射角が急峻になるため伝搬経路としては伸びる方向だが、クラッド側を通過する光の強度分布が増えるため、コアおよびクラッドの屈折率分布を適切にコントロールすることで、モード毎の伝搬速度を均一にコントロールすることが可能となる。 The refractive index of the core and cladding is higher in the core, which means that the propagation speed of light is slower in the core. In general, the higher the order of the mode, the steeper the angle of total reflection when propagating within the optical fiber, so the propagation path extends in the direction of propagation, but the intensity distribution of light passing through the cladding side increases, resulting in refraction of the core and cladding By appropriately controlling the rate distribution, it becomes possible to uniformly control the propagation speed for each mode.
 図24(a)~(c)は、光ファイバのコアの屈折率形状を変えた場合のモード間伝搬遅延差の一例を示している。この例は、1310nmのシングルモードファイバに、基本モードおよび1次モードの成分を持つ850nmの波長の光を入力した場合の例を示している。ここで、モード間伝搬遅延差とは、“基本モード伝搬速度 - 1次モード伝搬速度”である。 FIGS. 24(a) to 24(c) show an example of the difference in propagation delay between modes when the refractive index shape of the core of the optical fiber is changed. This example shows an example in which light with a wavelength of 850 nm having fundamental mode and first-order mode components is input into a 1310 nm single mode fiber. Here, the inter-mode propagation delay difference is "fundamental mode propagation velocity - primary mode propagation velocity."
 図24(a)は、光ファイバのコアの屈折率形状がステップインデックス型(SI型)であって、モード間伝搬遅延差は1630ps/kmである。図24(b)は、光ファイバのコアの屈折率形状がディップ無グレーテッドインデックス型(GI(dip無)型)であって、モード間伝搬遅延差は165ps/kmであり、SI型に対して約1/10まで低減することが可能となる。 In FIG. 24(a), the refractive index shape of the core of the optical fiber is a step index type (SI type), and the propagation delay difference between modes is 1630 ps/km. Figure 24(b) shows that the refractive index shape of the core of the optical fiber is a non-dip graded index type (GI (no dip) type), and the inter-mode propagation delay difference is 165 ps/km, compared to the SI type. It becomes possible to reduce it to about 1/10.
 これは、GI(dip無)型)の場合、中心に近い位置を通る光は屈折率が高く、つまり速度は遅くなり、クラッドに近づくほど屈折率が低く、つまり速度は速くなり、1次モードの伝搬速度が基本モードの伝搬速度に近づくためである。この場合、クラッドを通りやすい1次モードは光路長が長くなるが屈折率が低く速度が速くなり、中心を通りやすい基本モードは光路長が短いが屈折率が高く速度が遅くなることにより、モード間遅延差が小さくなる。 This is because in the case of the GI (no dip) type, light passing near the center has a high refractive index, which means the speed is slow, and the closer it gets to the cladding, the lower the refractive index, which means the speed becomes faster, and the first-order mode This is because the propagation speed of is close to the propagation speed of the fundamental mode. In this case, the primary mode that easily passes through the cladding has a long optical path length but has a low refractive index and a high speed, while the fundamental mode that easily passes through the center has a short optical path length but has a high refractive index and a slow speed. The delay difference between
 図24(c)は、光ファイバのコアの屈折率形状がディップ有グレーテッドインデックス型(GI(dip有)型)であって、モード間伝搬遅延差は39ps/kmであり、さらに低減することが可能となる。これは、GI(dip有)型の場合、コアの中心部分に屈折率が低下したディップ(dip)を設けることで、中心を通る基本モードの伝搬速度を1次モードの伝搬速度に合うよう微調整をかけているためである。 In FIG. 24(c), the refractive index shape of the core of the optical fiber is a graded index type with a dip (GI (with dip) type), and the propagation delay difference between modes is 39 ps/km, which can be further reduced. becomes possible. In the case of the GI (with dip) type, by providing a dip with a lower refractive index in the center of the core, the propagation speed of the fundamental mode passing through the center is finely adjusted to match the propagation speed of the primary mode. This is because adjustments are being made.
 図25(d)~(f)は、光ファイバのコアの屈折率形状を変えた場合において、その光ファイバ内を伝達する光の強度分布のシミュレーションの一例を示している。この例は、1310nmのシングルモードファイバに基本モードの成分のみを持つ850nmの波長の光を入力した場合を示している。 FIGS. 25(d) to (f) show an example of a simulation of the intensity distribution of light transmitted within an optical fiber when the refractive index shape of the core of the optical fiber is changed. This example shows a case where light with a wavelength of 850 nm having only a fundamental mode component is input into a 1310 nm single mode fiber.
 図25(e)は、光ファイバのコアの屈折率形状がGI(dip無)型(図25(b)参照)である場合における例を示している。この場合における光の強度分布は、膨らんだり狭まったりすることを光軸方向に周期的に繰り返すものとなる。 FIG. 25(e) shows an example in which the refractive index shape of the core of the optical fiber is a GI (no dip) type (see FIG. 25(b)). In this case, the light intensity distribution periodically expands and narrows in the optical axis direction.
 図25(f)は、光ファイバのコアの屈折率形状がGI(dip有)型(図25(c)参照)である場合における例を示している。この場合における光の強度分布も、膨らんだり狭まったりすることを光軸方向に周期的に繰り返すものとなるが、GI(dip無)型である場合より膨らみや狭まりの具合が少し大きくなる。 FIG. 25(f) shows an example in which the refractive index shape of the core of the optical fiber is a GI (with dip) type (see FIG. 25(c)). In this case, the light intensity distribution also periodically expands and narrows in the optical axis direction, but the degree of expansion and narrowing is slightly larger than in the case of the GI (no dip) type.
 図25(d)は、光ファイバのコアの屈折率形状がSI型(図25(a)参照)である場合における例を示している。この場合における光の強度分布は、GI(dip無)型やGI(dip有)型とは異なり、光軸方向に周期的に膨らんだり狭まったりすることはない。 FIG. 25(d) shows an example in which the refractive index shape of the core of the optical fiber is an SI type (see FIG. 25(a)). The light intensity distribution in this case does not periodically expand or narrow in the optical axis direction, unlike in the GI (without dip) type and the GI (with dip) type.
 なお、図25(d)~(f)は、現れる現象の理解し易くするために1310nmのシングルモードファイバに基本モードの成分のみを持つ850nmの波長の光を入力した場合の例としているが、図示は省略するが、1310nmのシングルモードファイバに基本モードおよび1次モードの成分を持つ850nmの波長の光を入力した場合の例も同様となり、光ファイバのコアの屈折率形状がGI(dip無)型やGI(dip有)型である場合における光の強度分布は、膨らんだり狭まったりすることを光軸方向に周期的に繰り返すものとなる。 Note that, in order to make it easier to understand the phenomena that appear, FIGS. 25(d) to (f) are examples in which light with a wavelength of 850 nm having only the fundamental mode component is input into a 1310 nm single mode fiber. Although not shown, a similar example is obtained when light with a wavelength of 850 nm having fundamental mode and primary mode components is input into a 1310 nm single mode fiber, and the refractive index shape of the core of the optical fiber is GI (without dip). ) type or GI (with dip) type, the light intensity distribution periodically repeats expansion and narrowing in the optical axis direction.
 また、図示は省略するが、1310nmのシングルモードファイバに1310nmの波長の光を入力した場合における光の強度分布は、光ファイバのコアの屈折率形状がGI(dip無)型やGI(dip有)型であっても、光軸方向に周期的に膨らんだり狭まったりすることはほとんどない。これは、光の進み方の問題であり、1310nmの方が850nmに比べて光が広がり難いためである。 Although not shown, the intensity distribution of light when light with a wavelength of 1310 nm is input into a single mode fiber of 1310 nm is that the refractive index shape of the core of the optical fiber is GI (without dip) type or GI (with dip) type. ) type, there is almost no periodic expansion or narrowing in the optical axis direction. This is a problem with the way light travels, and is because light spreads more easily at 1310 nm than at 850 nm.
 長距離伝送する際は、モード間伝搬遅延差を小さくすることが必要である。上述したように、光ファイバのコアの屈折率形状がGI(dip有)型である場合に最もモード間伝搬遅延差を小さくできることが分かる。しかし、光ファイバのコアの屈折率形状がGI(dip有)型である場合には、光パワーの結合効率が悪化することが判明した。 When transmitting over long distances, it is necessary to reduce the propagation delay difference between modes. As described above, it can be seen that the difference in propagation delay between modes can be minimized when the refractive index shape of the core of the optical fiber is GI (with dip) type. However, it has been found that when the refractive index shape of the core of the optical fiber is a GI (with dip) type, the coupling efficiency of optical power deteriorates.
 ここで、図26(a)に示すような空間結合による光通信を考える。送信側は、光ファイバ10Tとレンズ11Tの間に光路調整用のGRINレンズ22Tが配置された構成となっている。また、受信側は、レンズ11Rと光ファイバ10Rの間に光路調整用のGRINレンズ22Rが配置された構成となっている。 Here, consider optical communication using spatial coupling as shown in FIG. 26(a). On the transmitting side, a GRIN lens 22T for adjusting the optical path is arranged between the optical fiber 10T and the lens 11T. Further, on the receiving side, a GRIN lens 22R for adjusting the optical path is arranged between the lens 11R and the optical fiber 10R.
 この場合、送信側の光ファイバ10Tから出射された光はGRINレンズ22Tを介してレンズ11Tに入射され、このレンズ11Tでコリメート光に成形されて出射される。そして、このコリメート光が受信側のレンズ11Rで集光され、GRINレンズ22Rを介して光ファイバ10Rに入射される。 In this case, the light emitted from the transmitting side optical fiber 10T is incident on the lens 11T via the GRIN lens 22T, and is shaped into collimated light by this lens 11T and emitted. This collimated light is then condensed by a lens 11R on the receiving side, and is input to an optical fiber 10R via a GRIN lens 22R.
 図26(b)は、図25(f)と同様に、光ファイバのコアの屈折率形状がGI(dip有)型(図25(c)参照)である場合におけるその光ファイバ内を伝達する光の強度分布のシミュレーションの一例を示している。ここで、強度分布が一番膨らむ条件で光ファイバから出射された場合をピッチ0(P0)、強度分布が一番狭まる条件で光ファイバから出射された場合をピッチ0.25(P0.25)と定義する。なお、図示は省略するが、光ファイバのコアの屈折率形状がGI(dip無)型(図25(b)参照)である場合におけるその光ファイバ内を伝達する光の強度分布に関しても、同様に定義される。 Similar to FIG. 25(f), FIG. 26(b) shows transmission in the optical fiber when the refractive index shape of the core of the optical fiber is GI (with dip) type (see FIG. 25(c)). An example of a simulation of light intensity distribution is shown. Here, the pitch is 0 (P0) when the light is emitted from the optical fiber under the conditions where the intensity distribution is the widest, and the pitch is 0.25 (P0.25) when the light is emitted from the optical fiber under the conditions where the intensity distribution is the narrowest. It is defined as Although not shown, the same applies to the intensity distribution of light transmitted within an optical fiber when the refractive index shape of the core of the optical fiber is GI (no dip) type (see FIG. 25(b)). is defined as
 図27は、GI(dip有)ファイバとGI(dip無)ファイバのそれぞれにおける、ピッチに対する光パワーの結合効率のシミュレーション結果の一例を記載したグラフである。横軸はピッチで、縦軸は結合効率を表している。 FIG. 27 is a graph showing an example of the simulation results of the coupling efficiency of optical power with respect to pitch in each of the GI (with dip) fiber and the GI (without dip) fiber. The horizontal axis represents pitch, and the vertical axis represents coupling efficiency.
 ここで、GI(dip有)ファイバは、コアの屈折率形状がGI(dip有)型とされている光ファイバを意味し、その場合のシミュレーションは、図26(a)における光ファイバ10T,10RはGI(dip有)ファイバとされ、1310nmのシングルモードファイバに基本モードの成分のみを持つ850nmの波長の光を送信側から受信側に伝搬させる条件で行われたものである。 Here, the GI (with dip) fiber means an optical fiber whose core has a GI (with dip) type refractive index shape, and the simulation in that case is based on the optical fibers 10T and 10R in FIG. 26(a). The experiment was carried out using a GI (dip-equipped) fiber, under the condition that light with a wavelength of 850 nm having only a fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber.
 また、GI(dip無)ファイバは、コアの屈折率形状がGI(dip無)型とされている光ファイバを意味し、その場合のシミュレーションは、図26(a)における光ファイバ10T,10RはGI(dip無)ファイバとされ、1310nmのシングルモードファイバに基本モードの成分のみを持つ850nmの波長の光を送信側から受信側に伝搬させる条件で行われたものである。 In addition, GI (no dip) fiber means an optical fiber whose core has a GI (no dip) type refractive index shape, and the simulation in that case shows that the optical fibers 10T and 10R in FIG. 26(a) are The experiment was carried out under the conditions that light with a wavelength of 850 nm having only a fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber using a GI (no dip) fiber.
 図27のグラフから、GI(dip有)ファイバは、GI(dip無)ファイバと比較して、光パワーの結合効率が悪く、かつピッチによっても、つまり送信側において光が光ファイバから出射される際の強度分布の形状によっても結合効率が大きく変わる、ことが分かる。 From the graph in Figure 27, it can be seen that the GI (with dip) fiber has lower optical power coupling efficiency than the GI (without dip) fiber, and also depends on the pitch, that is, the light is emitted from the optical fiber on the transmitting side. It can be seen that the coupling efficiency varies greatly depending on the shape of the actual intensity distribution.
 なお、上述したように、1310nmのシングルモードファイバに1310nmの波長の光を入力した場合における光の強度分布は、光ファイバのコアの屈折率形状がGI(dip無)型やGI(dip有)型であっても、光軸方向に周期的に膨らんだり狭まったりすることはほとんどなく、従ってこのようなピッチによる光パワーの結合効率の悪化は存在しない。つまり、このピッチによる光パワーの結合効率の悪化の問題は、例えば、1310nmのシングルモードファイバで850nmの光を伝搬させる、いわゆるダブルモード特有のものであると考えられる。 As mentioned above, when light with a wavelength of 1310 nm is input into a 1310 nm single mode fiber, the intensity distribution of the light is determined depending on whether the refractive index shape of the core of the optical fiber is GI (without dip) or GI (with dip). Even in the case of a mold, there is almost no periodic expansion or narrowing in the optical axis direction, and therefore there is no deterioration in the coupling efficiency of optical power due to such a pitch. In other words, the problem of deterioration of optical power coupling efficiency due to this pitch is considered to be unique to the so-called double mode in which, for example, 850 nm light is propagated in a 1310 nm single mode fiber.
 また、図28に示すように、図26に示すと同様の空間結合による光通信において、受信側のGRINレンズ22Rおよび光ファイバ10Rの位置が光軸に対して垂直方向(正方向あるいは負方向)にずれた場合(図28の矢印参照)、つまり光軸ずれが発生した場合について考える。 Furthermore, as shown in FIG. 28, in optical communication using spatial coupling similar to that shown in FIG. Let us consider the case where the optical axis shifts (see the arrow in FIG. 28), that is, the optical axis shifts.
 図29は、GI(dip有)ファイバとGI(dip無)ファイバのそれぞれにおける、光軸ずれ量に対する光パワーの結合効率のシミュレーション結果を記載したグラフである。横軸は光軸ずれ量で、縦軸は結合効率を表している。 FIG. 29 is a graph showing the simulation results of the optical power coupling efficiency with respect to the amount of optical axis deviation in each of the GI (with dip) fiber and the GI (without dip) fiber. The horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency.
 ここで、GI(dip有)ファイバは、コアの屈折率形状がGI(dip有)型とされている光ファイバを意味し、その場合のシミュレーションは、図28における光ファイバ10T,10RはGI(dip有)ファイバとされ、1310nmのシングルモードファイバに基本モードの成分のみを持つ850nmの波長の光を送信側から受信側に伝搬させる条件で行われたものである。 Here, the GI (with dip) fiber means an optical fiber whose core has a refractive index shape of the GI (with dip) type, and the simulation in that case shows that the optical fibers 10T and 10R in FIG. The experiment was carried out under the condition that light with a wavelength of 850 nm having only the fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber.
 また、GI(dip無)ファイバは、コアの屈折率形状がGI(dip無)型とされている光ファイバを意味し、その場合のシミュレーションは、図28における光ファイバ10T,10RはGI(dip無)ファイバとされ、1310nmのシングルモードファイバに基本モードの成分のみを持つ850nmの波長の光を送信側から受信側に伝搬させる条件で行われたものである。 Further, GI (no dip) fiber means an optical fiber whose core has a refractive index shape of GI (no dip) type, and the simulation in that case shows that the optical fibers 10T and 10R in FIG. The experiment was carried out under the condition that light with a wavelength of 850 nm having only the fundamental mode component was propagated from the transmitting side to the receiving side in a 1310 nm single mode fiber.
 図29のグラフから、GI(dip有)ファイバは、GI(dip無)ファイバと比較して、光パワーの結合効率が悪く、しかも軸ずれ量が大きくなっていく場合の光パワーの結合効率の低下の仕方も急峻となる、ことが分かる。 From the graph in Figure 29, it can be seen that the GI (with dip) fiber has a lower optical power coupling efficiency than the GI (without dip) fiber, and the optical power coupling efficiency increases as the axis misalignment increases. It can be seen that the rate of decline is also steep.
 このように、GI(dip有)ファイバの方が、GI(dip無)ファイバより、モード間伝搬遅延差を小さくできることから(図24参照)、伝送可能距離を伸ばすことを可能となる。しかし、GI(dip有)ファイバは、GI(dip無)ファイバより、光パワーの結合効率が悪くなることから(図27、図29参照)、品質担保のために精度の高い部品が必要となり、コストアップへとつながる。 In this way, since the GI (with dip) fiber can make the difference in propagation delay between modes smaller than the GI (without dip) fiber (see FIG. 24), it is possible to extend the possible transmission distance. However, since GI (with dip) fiber has lower optical power coupling efficiency than GI (without dip) fiber (see Figures 27 and 29), highly accurate components are required to ensure quality. This leads to increased costs.
 図30は、この実施の形態における光ケーブル30の構成例を示している。この光ケーブル30は、光ファイバ31と、空間結合のためのコネクタ(プラグ)32,33と、GRINレンズ34,35を有している。光ファイバ31の一端には、GRINレンズ34を介してコネクタ(プラグ)32が接続され、その光ファイバ31の他端には、GRINレンズ35を介してコネクタ(プラグ)33が接続されている。なお、図示の例においては、コネクタ32,33として、レンズ部分のみを示している。 FIG. 30 shows an example of the configuration of the optical cable 30 in this embodiment. This optical cable 30 has an optical fiber 31, connectors (plugs) 32 and 33 for spatial coupling, and GRIN lenses 34 and 35. A connector (plug) 32 is connected to one end of the optical fiber 31 via a GRIN lens 34, and a connector (plug) 33 is connected to the other end of the optical fiber 31 via a GRIN lens 35. In the illustrated example, only lens portions are shown as the connectors 32 and 33.
 光ファイバ31は、端部側の一部以外はGI(dip有)ファイバ(図では「GI-d」で示されている)とされ、端部側の一部はGI(dip無)ファイバ(図では「GI」で示されている)とされる。GI(dip有)ファイバとGI(dip無)ファイバのファイバ同士の接続は、例えば融着により行われる。 The optical fiber 31 is a GI (with dip) fiber (indicated by "GI-d" in the figure) except for a part on the end side, and a part on the end side is a GI (without dip) fiber (indicated by "GI-d" in the figure). (Indicated by "GI" in the figure). The connection between the GI (with dip) fiber and the GI (without dip) fiber is performed, for example, by fusion splicing.
 このように光ファイバ31が構成されることで、光ケーブル30は、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことが可能となる。 By configuring the optical fiber 31 in this way, the optical cable 30 can extend the transmission distance while suppressing a decrease in the coupling efficiency of optical power.
 [光通信システム]
 図31は、光通信システム100の構成例を示している。この光通信システム100は、送信機200と、受信機300と、光ケーブル400を有している。送信機200は、送信側の光通信装置を構成している。受信機300は、受信側の光通信装置を構成している。
[Optical communication system]
FIG. 31 shows a configuration example of the optical communication system 100. This optical communication system 100 includes a transmitter 200, a receiver 300, and an optical cable 400. The transmitter 200 constitutes an optical communication device on the transmitting side. The receiver 300 constitutes an optical communication device on the receiving side.
 送信機200は、例えば、パーソナルコンピュータ(PC)、ゲーム機、ディスクプレーヤ、セットトップボックス、デジタルカメラ、携帯電話などのAVソースである。受信機300は、例えば、テレビ受信機、プロジェクタ、PCモニタ等である。送信機200と受信機300は、光ケーブル400を介して接続されている。 The transmitter 200 is, for example, an AV source such as a personal computer (PC), a game console, a disc player, a set-top box, a digital camera, or a mobile phone. The receiver 300 is, for example, a television receiver, a projector, a PC monitor, or the like. Transmitter 200 and receiver 300 are connected via optical cable 400.
 送信機200は、発光部201と、レセプタクルとしてのコネクタ202と、発光部201で発光される光をコネクタ202に伝搬する光ファイバ203を有している。発光部201は、VCSEL等のレーザー素子、またはLED(light emitting diode)等の発光素子(光源)を備えている。発光部201は、図示しない送信回路で発生される電気信号(送信信号)を光信号に変換する。発光部201で発光された光(光信号)は、光ファイバ203を通じてコネクタ202に伝搬される。 The transmitter 200 has a light emitting section 201, a connector 202 as a receptacle, and an optical fiber 203 that propagates the light emitted from the light emitting section 201 to the connector 202. The light emitting unit 201 includes a laser element such as a VCSEL or a light emitting element (light source) such as an LED (light emitting diode). The light emitting unit 201 converts an electrical signal (transmission signal) generated by a transmission circuit (not shown) into an optical signal. Light (optical signal) emitted by the light emitting section 201 is propagated to the connector 202 through the optical fiber 203.
 また、受信機300は、レセプタクルとしてのコネクタ301と、受光部302と、コネクタ301で得られた光を受光部302に伝搬する光ファイバ303を有している。受光部302は、フォトダイオード等の受光素子を備えている。受光部302は、コネクタ301から送られてくる光信号を電気信号(受信信号)に変換し、図示しない受信回路に供給する。 Further, the receiver 300 includes a connector 301 as a receptacle, a light receiving section 302, and an optical fiber 303 that propagates the light obtained from the connector 301 to the light receiving section 302. The light receiving section 302 includes a light receiving element such as a photodiode. The light receiving unit 302 converts the optical signal sent from the connector 301 into an electrical signal (received signal) and supplies it to a receiving circuit (not shown).
 光ケーブル400は、光ファイバ401の一端および他端に、プラグとしてのコネクタ402,403を有する構成とされている。光ファイバ401の一端のコネクタ402は送信機200のコネクタ202に接続され、この光ファイバ401の他端のコネクタ403は受信機300のコネクタ301に接続されている。 The optical cable 400 has connectors 402 and 403 as plugs at one end and the other end of an optical fiber 401. A connector 402 at one end of the optical fiber 401 is connected to the connector 202 of the transmitter 200, and a connector 403 at the other end of the optical fiber 401 is connected to the connector 301 of the receiver 300.
 この光通信システム100において、送信機200の光ファイバ203、受信機300の光ファイバ303および光ケーブル400の光ファイバ401に、本技術の光ファイバが適用され、ダブルモードの条件下、例えば850nm光源と1310nmファイバの組み合わせが適用されて、通信が行われる。 In this optical communication system 100, the optical fiber of the present technology is applied to the optical fiber 203 of the transmitter 200, the optical fiber 303 of the receiver 300, and the optical fiber 401 of the optical cable 400, and under double mode conditions, for example, with an 850 nm light source. A combination of 1310 nm fibers is applied for communication.
 ここで、光ファイバ401は、端部側の一部以外はGI(dip有)ファイバとされ、端部側の一部はGI(dip無)ファイバとされる(図30参照)。これにより、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことが可能とされる。 Here, the optical fiber 401 is a GI (with dip) fiber except for a part on the end side, and a part on the end side is a GI (without dip) fiber (see FIG. 30). This makes it possible to extend the possible transmission distance while suppressing a decrease in optical power coupling efficiency.
 図32は、光ケーブル400の具体的な構成例を示している。この光ケーブル400は、光ファイバ401の一端および他端に、プラグとしてのコネクタ402,403が接続されて構成となっている。上述したように、光ファイバ401は、端部側の一部以外はGI(dip有)ファイバ(図では「GI-d」で示されている)とされ、端部側の一部はGI(dip無)ファイバ(図では「GI」で示されている)とされている。 FIG. 32 shows a specific configuration example of the optical cable 400. This optical cable 400 has a configuration in which connectors 402 and 403 serving as plugs are connected to one end and the other end of an optical fiber 401. As mentioned above, the optical fiber 401 is a GI (dip) fiber (indicated by "GI-d" in the figure) except for a part on the end side, and a part on the end side is a GI (dip) fiber (indicated by "GI-d" in the figure). dipless) fiber (indicated by "GI" in the figure).
 コネクタ402は、コネクタ本体421を備えている。コネクタ本体421は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。 The connector 402 includes a connector body 421. The connector body 421 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule configuration with a lens.
 このようにコネクタ本体421がレンズ付きフェルールの構成とされることで、光ファイバとレンズとの光軸合わせを容易に行うことができる。また、このようにコネクタ本体421がレンズ付きフェルールの構成とされることで、多チャネルの場合でも、光ファイバをフェルールに挿入するだけで、多チャネル通信を容易に実現できる。 By configuring the connector body 421 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the connector main body 421 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized by simply inserting an optical fiber into the ferrule.
 コネクタ本体421には、その前面側に、凹状の光入射部(光伝達空間)423が形成されている。そして、このコネクタ本体421には、この光入射部423の底部分に位置するようにレンズ(凸レンズ)424が一体的に形成されている。 A concave light entrance portion (light transmission space) 423 is formed on the front side of the connector body 421. A lens (convex lens) 424 is integrally formed on the connector main body 421 so as to be located at the bottom of the light incidence section 423.
 また、コネクタ本体421には、背面側から前方に延びる光ファイバ挿入孔426が、レンズ424に合わせて、設けられている。光ファイバ401は、光路となる中心部のコア401aと、その周囲を覆うクラッド401bの二重構造となっている。 In addition, the connector body 421 is provided with an optical fiber insertion hole 426 extending from the back side to the front in alignment with the lens 424. The optical fiber 401 has a double structure including a core 401a at the center serving as an optical path and a cladding 401b surrounding the core.
 光ファイバ挿入孔426は、そこに挿入される光ファイバ401のコア401aとレンズ424の光軸が一致するように、成形されている。また、光ファイバ挿入孔426は、光ファイバ401を挿入した際に、その先端(入射端)がレンズ424の焦点位置と合致するように、成形されている。 The optical fiber insertion hole 426 is shaped so that the core 401a of the optical fiber 401 inserted therein and the optical axis of the lens 424 coincide. Further, the optical fiber insertion hole 426 is shaped so that when the optical fiber 401 is inserted, its tip (incidence end) matches the focal position of the lens 424.
 また、コネクタ本体421には、上面側から下方に延びる接着剤注入孔422が、光ファイバ挿入孔426の底位置付近に連通するように、形成されている。光ファイバ401が光ファイバ挿入孔426に挿入された後、接着剤注入孔422から接着剤427が光ファイバ401の周囲に注入されることで、光ファイバ401はコネクタ本体421に固定される。この場合、光ファイバ401の先端側には、GRINレンズ428が配置される。 Furthermore, an adhesive injection hole 422 extending downward from the top surface side is formed in the connector body 421 so as to communicate with the vicinity of the bottom position of the optical fiber insertion hole 426. After the optical fiber 401 is inserted into the optical fiber insertion hole 426, the adhesive 427 is injected around the optical fiber 401 from the adhesive injection hole 422, thereby fixing the optical fiber 401 to the connector body 421. In this case, a GRIN lens 428 is placed on the tip side of the optical fiber 401.
 コネクタ402において、レンズ424は、入射されるコリメート光を集光する機能を持つ。この場合、コリメート光がレンズ424に入射されて集光され、この集光された光は、GRINレンズ428を通じて光ファイバ401の入射端に所定のNAで入射される。 In the connector 402, the lens 424 has a function of condensing the incident collimated light. In this case, the collimated light is incident on the lens 424 and condensed, and this condensed light is incident on the input end of the optical fiber 401 through the GRIN lens 428 at a predetermined NA.
 コネクタ403は、コネクタ本体431を備えている。コネクタ本体431は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。 The connector 403 includes a connector body 431. The connector body 431 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule configuration with a lens.
 このようにコネクタ本体431がレンズ付きフェルールの構成とされることで、光ファイバとレンズとの光軸合わせを容易に行うことができる。また、このようにコネクタ本体431がレンズ付きフェルールの構成とされることで、多チャネルの場合でも、光ファイバをフェルールに挿入するだけで、多チャネル通信を容易に実現できる。 By configuring the connector body 431 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the connector main body 431 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized by simply inserting an optical fiber into the ferrule.
 コネクタ本体431には、その前面側に、凹状の光出射部(光伝達空間)433が形成されている。そして、このコネクタ本体431には、この光出射部433の底部分に位置するように、レンズ(凸レンズ)434が一体的に形成されている。 A concave light emitting portion (light transmission space) 433 is formed on the front side of the connector body 431. A lens (convex lens) 434 is integrally formed on the connector main body 431 so as to be located at the bottom of the light emitting section 433.
 また、コネクタ本体431には、背面側から前方に延びる光ファイバ挿入孔436が、レンズ434に合わせて、設けられている。 Further, the connector body 431 is provided with an optical fiber insertion hole 436 extending from the back side to the front, in alignment with the lens 434.
 光ファイバ挿入孔436は、そこに挿入される光ファイバ401のコア401aとレンズ434の光軸が一致するように、成形されている。また、光ファイバ挿入孔436は、光ファイバ401を挿入した際に、その先端(入射端)がレンズ434の焦点位置と合致するように、成形されている。 The optical fiber insertion hole 436 is shaped so that the core 401a of the optical fiber 401 inserted therein and the optical axis of the lens 434 coincide. Further, the optical fiber insertion hole 436 is shaped so that when the optical fiber 401 is inserted, its tip (incidence end) matches the focal position of the lens 434.
 また、コネクタ本体431には、上面側から下方に延びる接着剤注入孔432が、光ファイバ挿入孔436の底位置付近に連通するように、形成されている。光ファイバ401が光ファイバ挿入孔436に挿入された後、接着剤注入孔432から接着剤437が光ファイバ401の周囲に注入されることで、光ファイバ401はコネクタ本体431に固定される。この場合、光ファイバ401の先端側には、GRINレンズ438が配置される。 Furthermore, an adhesive injection hole 432 extending downward from the top surface side is formed in the connector body 431 so as to communicate with the vicinity of the bottom position of the optical fiber insertion hole 436. After the optical fiber 401 is inserted into the optical fiber insertion hole 436, the adhesive 437 is injected around the optical fiber 401 from the adhesive injection hole 432, thereby fixing the optical fiber 401 to the connector body 431. In this case, a GRIN lens 438 is placed on the tip side of the optical fiber 401.
 コネクタ403において、レンズ434は、光ファイバ401から出射された光をコリメート光に成形して出射する機能を持つ。これにより、光ファイバ401の出射端から所定のNAで出射された光は、GRINレンズ438を通じてレンズ434に入射されてコリメート光に成形されて出射される。 In the connector 403, the lens 434 has a function of shaping the light emitted from the optical fiber 401 into collimated light and emitting the collimated light. Thereby, the light emitted from the emitting end of the optical fiber 401 with a predetermined NA enters the lens 434 through the GRIN lens 438, is shaped into collimated light, and is emitted.
 図33は、送信機200のコネクタ202とそれに接続される光ケーブル400のコネクタ402の構成例を示している。この構成例は一例であって、これに限定されるものではない。 FIG. 33 shows a configuration example of the connector 202 of the transmitter 200 and the connector 402 of the optical cable 400 connected thereto. This configuration example is one example, and is not limited to this.
 コネクタ202は、コネクタ本体221を備えている。コネクタ本体221は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。 The connector 202 includes a connector body 221. The connector body 221 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule configuration with a lens.
 このようにコネクタ本体221がレンズ付きフェルールの構成とされることで、光ファイバとレンズとの光軸合わせを容易に行うことができる。また、このようにコネクタ本体221がレンズ付きフェルールの構成とされることで、多チャネルの場合でも、光ファイバをフェルールに挿入するだけで、多チャネル通信を容易に実現できる。 By configuring the connector body 221 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the connector main body 221 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized by simply inserting an optical fiber into the ferrule.
 コネクタ本体221には、その前面側に、凹状の光出射部(光伝達空間)223が形成されている。そして、このコネクタ本体221には、この光出射部223の底部分に位置するように、レンズ(凸レンズ)224が一体的に形成されている。 A concave light emitting portion (light transmission space) 223 is formed on the front side of the connector body 221. A lens (convex lens) 224 is integrally formed on the connector main body 221 so as to be located at the bottom of the light emitting section 223.
 また、コネクタ本体221には、背面側から前方に延びる光ファイバ挿入孔226が、レンズ224に合わせて設けられている。光ファイバ挿入孔226は、そこに挿入される光ファイバ203のコア203aとレンズ224の光軸が一致するように、成形されている。また、光ファイバ挿入孔226は、光ファイバ203を挿入した際に、その先端(入射端)がレンズ224の焦点位置と合致するように、成形されている。なお、光ファイバ203は、GI(dip無)ファイバ(図では「GI」で示されている)とされる。 Furthermore, the connector body 221 is provided with an optical fiber insertion hole 226 extending from the back side to the front in alignment with the lens 224. The optical fiber insertion hole 226 is shaped so that the optical axis of the lens 224 and the core 203a of the optical fiber 203 inserted therein coincide with each other. Further, the optical fiber insertion hole 226 is shaped so that when the optical fiber 203 is inserted, its tip (incidence end) matches the focal position of the lens 224. Note that the optical fiber 203 is a GI (dipless) fiber (indicated by "GI" in the figure).
 また、コネクタ本体211には、上面側から下方に延びる接着剤注入孔222が、光ファイバ挿入孔226の底位置付近に連通するように、形成されている。光ファイバ203が光ファイバ挿入孔226に挿入された後、接着剤注入孔222から接着剤227が光ファイバ203の周囲に注入されることで、光ファイバ203はコネクタ本体221に固定される。この場合、光ファイバ203の先端側には、GRINレンズ228が配置される。 Furthermore, an adhesive injection hole 222 extending downward from the top surface side is formed in the connector body 211 so as to communicate with the vicinity of the bottom position of the optical fiber insertion hole 226. After the optical fiber 203 is inserted into the optical fiber insertion hole 226, the adhesive 227 is injected around the optical fiber 203 from the adhesive injection hole 222, thereby fixing the optical fiber 203 to the connector body 221. In this case, a GRIN lens 228 is placed on the tip side of the optical fiber 203.
 コネクタ402に関しては、上述の図32を用いて説明したと同様であるので、ここではその説明を省略する。 The connector 402 is the same as that described using FIG. 32 above, so its description will be omitted here.
 コネクタ202において、レンズ224は、光ファイバ203から出射された光をコリメート光に成形して出射する機能を持つ。これにより、光ファイバ203の出射端から所定のNAで出射された光は、GRINレンズ228を通じてレンズ224に入射されてコリメート光に成形され、コネクタ402に向かって出射される。 In the connector 202, the lens 224 has a function of shaping the light emitted from the optical fiber 203 into collimated light and emitting the collimated light. As a result, the light emitted from the output end of the optical fiber 203 with a predetermined NA enters the lens 224 through the GRIN lens 228, is formed into collimated light, and is emitted toward the connector 402.
 また、コネクタ402において、コネクタ202から出射された光は、レンズ424に入射されて集光される。そして、この集光された光は、GRINレンズ428を通じて光ファイバ401の入射端に入射され、光ファイバ401を通じて送られていく。 Furthermore, in the connector 402, the light emitted from the connector 202 enters a lens 424 and is focused. Then, this focused light enters the input end of the optical fiber 401 through the GRIN lens 428 and is sent through the optical fiber 401.
 なお、詳細説明は省略するが、光ケーブル400のコネクタ403とそれに接続される受信機300のコネクタ301は、上述した送信機200のコネクタ202と光ケーブル400のコネクタ402の構成例と同様に構成される。 Although detailed explanation is omitted, the connector 403 of the optical cable 400 and the connector 301 of the receiver 300 connected thereto are configured in the same manner as the configuration example of the connector 202 of the transmitter 200 and the connector 402 of the optical cable 400 described above. .
 上述したように、図31に示す光通信システム100において、光ファイバ203,303,401は第1の波長(例えば1310nm)では基本モードのみを伝搬し、第2の波長(例えば850nm)では基本モードと共に少なくとも1次モードを伝搬し得るものであって、第2の波長の光を用いて通信が行われる。そのため、光軸ずれによって発生する少なくとも1次モードの成分が基本モードの成分と共に伝搬していくため、光軸ずれによる光パワーの結合ロスを低減することが可能となる。 As described above, in the optical communication system 100 shown in FIG. 31, the optical fibers 203, 303, and 401 propagate only the fundamental mode at the first wavelength (for example, 1310 nm), and propagate the fundamental mode at the second wavelength (for example, 850 nm). It is capable of propagating at least the first-order mode along with the second wavelength, and communication is performed using light of a second wavelength. Therefore, at least the first-order mode component generated by the optical axis misalignment propagates together with the fundamental mode component, making it possible to reduce optical power coupling loss due to the optical axis misalignment.
 また、図31に示す光通信システム100において、コネクタ402、301には、入力光を光ファイバ401、303の入射端に導くための光路調整部材(GRINレンズ)が設けられる。そのため、位置ずれがあった場合に、光ファイバ401,303の入射端に向かわない入力光が光路調整部材の光路調整により光ファイバ401,303の入射端に導かれることから、光パワーの結合ロスを低減できる。 Furthermore, in the optical communication system 100 shown in FIG. 31, the connectors 402 and 301 are provided with optical path adjusting members (GRIN lenses) for guiding input light to the input ends of the optical fibers 401 and 303. Therefore, if there is a positional shift, the input light that does not go to the input ends of the optical fibers 401, 303 is guided to the input ends of the optical fibers 401, 303 by the optical path adjustment of the optical path adjustment member, resulting in a coupling loss of optical power. can be reduced.
 また、図31に示す光通信システム100において、光ケーブル400の光ファイバ401は、端部側の一部以外はGI(dip有)ファイバとされ、端部側の一部はGI(dip無)ファイバとされており、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすことができる。 In addition, in the optical communication system 100 shown in FIG. 31, the optical fiber 401 of the optical cable 400 is a GI (with dip) fiber except for a part on the end side, and a GI (without dip) fiber in a part on the end side. This makes it possible to extend the possible transmission distance while suppressing a decrease in optical power coupling efficiency.
 <2.変形例>
 なお、上述実施の形態においては、光ファイバの端部にGRINレンズが配置された例を示したが、GRINレンズが配置されない構成も考えられる。また、GRINレンズが配置される代わりに、同様の機能を有するその他の光学素子が配置される構成も考えられる。
<2. Modified example>
In addition, in the above-mentioned embodiment, an example was shown in which the GRIN lens was arranged at the end of the optical fiber, but a configuration in which the GRIN lens is not arranged is also conceivable. Furthermore, instead of the GRIN lens being arranged, another optical element having a similar function may be arranged.
 また、上述実施の形態においては、光ケーブルを構成する光ファイバを、端部側の一部以外はGI(dip有)ファイバとし、端部側の一部はGI(dip無)ファイバとする例を示したが、これに限定されるものではない。 In addition, in the above-described embodiment, an example in which the optical fibers constituting the optical cable are GI (with dip) fiber except for a part on the end side, and GI (without dip) fiber is used in a part on the end side. Although shown, it is not limited to this.
 光ファイバの端部側の一部以外は第1の構造とされ、光ファイバの端部側の一部は第2の構造とされ、第1の構造は第2の構造よりモード間伝搬遅延差が小さくなる構造であり、第2の構造は第1の構造より光パワーの結合効率が高くなる構造であればよい。例えば、光ケーブルを構成する光ファイバは、端部側の一部以外はGI(dip有)ファイバとされ、端部側の一部はコアの屈折率形状がステップインデックス型(SI型)である光ファイバ(SIファイバ)とされることも考えられる。 The parts other than the part on the end side of the optical fiber have the first structure, and the part on the end side of the optical fiber has the second structure, and the first structure has a smaller propagation delay difference between modes than the second structure. It is sufficient that the second structure has a higher optical power coupling efficiency than the first structure. For example, the optical fibers constituting an optical cable are GI (dip) fibers except for a part on the end side, and the part on the end side is an optical fiber whose core refractive index shape is a step index type (SI type). It is also possible to use a fiber (SI fiber).
 また、上述実施の形態においては、光ケーブルの構成する光ファイバを、端部側の一部以外はGI(dip有)ファイバとし、端部側の一部はGI(dip無)ファイバとする例を示したが、例えば電子機器としての送信機200や受信機300において、コネクタに接続される光ファイバについて、そのコネクタに接続される端部側の一部以外はGI(dip有)ファイバとし、その端部側の一部はGI(dip無)ファイバとして、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすということも考えられる。この場合、送信機200や受信機300は、光ファイバの端部に空間結合のための光コネクタが接続された光インタフェース構造を備えたものとなっている。 In addition, in the above-described embodiment, an example is described in which the optical fibers constituting the optical cable are GI (with dip) fibers except for a part on the end side, and GI (without dip) fibers are used in the part on the end side. However, for example, in a transmitter 200 or a receiver 300 as an electronic device, the optical fiber connected to the connector is a GI (dip equipped) fiber except for the part on the end side connected to the connector. It is also conceivable that a part of the end side is made into a GI (non-dip) fiber to extend the possible transmission distance while suppressing a decrease in optical power coupling efficiency. In this case, the transmitter 200 and the receiver 300 have an optical interface structure in which an optical connector for spatial coupling is connected to the end of an optical fiber.
 図34は、送信機200における発光部201とそれに光ファイバ203を介して接続されるコネクタ202の構成例を示している。この構成例は一例であって、これに限定されるものではない。 FIG. 34 shows a configuration example of the light emitting section 201 in the transmitter 200 and the connector 202 connected to it via the optical fiber 203. This configuration example is one example, and is not limited to this.
 発光部201とコネクタ202は、光ファイバ203で接続されている。この光ファイバ203は、コネクタ202に接続される端部側の一部以外はGI(dip有)ファイバとされ、その端部側の一部はGI(dip無)ファイバとされる。 The light emitting unit 201 and the connector 202 are connected by an optical fiber 203. The optical fiber 203 is a GI (with dip) fiber except for a part on the end side connected to the connector 202, and a part on the end side is a GI (without dip) fiber.
 発光部201は、フェルール211を備えている。フェルール211は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなっている。 The light emitting section 201 includes a ferrule 211. The ferrule 211 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength.
 フェルール211には、前面側から後方に延びる光ファイバ挿入孔216が設けられている。光ファイバ203は、光ファイバ挿入孔216に挿入された後、接着剤217により、フェルール211に固定される。 The ferrule 211 is provided with an optical fiber insertion hole 216 extending rearward from the front side. After the optical fiber 203 is inserted into the optical fiber insertion hole 216, it is fixed to the ferrule 211 with an adhesive 217.
 また、フェルール211の下面側に、発光素子213および発光素子駆動ドライバ218が載置された基板212が固定される。この場合、基板212には、発光素子213が光ファイバ203に合わせて載置されている。ここで、基板212は、発光素子213の出射部が光ファイバ203の光軸に一致するように、位置が調整されて固定される。 Further, a substrate 212 on which a light emitting element 213 and a light emitting element driving driver 218 are mounted is fixed to the lower surface side of the ferrule 211. In this case, a light emitting element 213 is placed on the substrate 212 in alignment with the optical fiber 203. Here, the position of the substrate 212 is adjusted and fixed so that the emission part of the light emitting element 213 coincides with the optical axis of the optical fiber 203.
 また、フェルール211には、下面側から上方に延びる配置用孔214が形成されている。そして、発光素子213からの光の光路を光ファイバ203の方向に変更するために、配置用孔214の底部分は傾斜面とされ、この傾斜面にミラー(光路変更部)215が配置されている。なお、ミラー215に関しては、別個に生成されたものを傾斜面に固定するだけでなく、傾斜面に蒸着等で形成することも考えられる。 Further, the ferrule 211 is formed with an arrangement hole 214 extending upward from the lower surface side. In order to change the optical path of the light from the light emitting element 213 toward the optical fiber 203, the bottom part of the arrangement hole 214 is formed into an inclined surface, and a mirror (optical path changing section) 215 is arranged on this inclined surface. There is. Regarding the mirror 215, it is conceivable to not only fix a separately generated mirror to the inclined surface, but also to form it on the inclined surface by vapor deposition or the like.
 コネクタ202に関しては、上述の図33を用いて説明したと同様であるので、ここではその説明を省略する。 The connector 202 is the same as that described using FIG. 33 above, so its description will be omitted here.
 また、上述実施の形態においては、送信機200と受信機300を接続する光ケーブル400における光ファイバ401を、端部側の一部以外はGI(dip有)ファイバとし、端部側の一部はGI(dip無)ファイバとする例を示したが、電子機器内に送信部と受信部を光ファイバで接続して光通信を行う構成を備える場合に、この光ファイバに関して、端部側の一部以外はGI(dip有)ファイバとし、端部側の一部はGI(dip無)ファイバとして、光パワーの結合効率の低下を抑制しつつ伝送可能距離を伸ばすということも考えられる。この場合、電子機器は、光ファイバの端部に空間結合のための光コネクタが接続された光インタフェース構造を備えたものとなっている。 Further, in the above embodiment, the optical fiber 401 in the optical cable 400 connecting the transmitter 200 and the receiver 300 is a GI (dip equipped) fiber except for a part on the end side, and the part on the end side is a GI (dip equipped) fiber. Although we have shown an example of using a GI (no dip) fiber, when an electronic device has a configuration in which a transmitting section and a receiving section are connected using an optical fiber to perform optical communication, it is necessary to use a GI (no dip) fiber. It is also conceivable to use GI (with dip) fiber for the rest of the fiber, and use GI (without dip) fiber for the part on the end side to extend the possible transmission distance while suppressing a decrease in the coupling efficiency of optical power. In this case, the electronic device is equipped with an optical interface structure in which an optical connector for spatial coupling is connected to the end of an optical fiber.
 また、上述の実施の形態においては、第1の波長が1310nmとして説明したが、光源としてレーザー光源やLED光源の使用が考えられることから、第1の波長としては、例えば300nmから5μmの間にあることが考えられる。 Further, in the above-described embodiment, the first wavelength has been described as 1310 nm, but since a laser light source or an LED light source may be used as the light source, the first wavelength may be, for example, between 300 nm and 5 μm. I can think of something.
 また、上述の実施の形態においては、第1の波長が1310nmとして説明したが、この第1の波長が、1310nmを含む1310nm帯の波長であることも考えられる。また、上述の実施の形態においては、第1の波長が1310nmとして説明したが、この第1の波長が、1550nm、あるいは、1550nmを含む1550nm帯の波長であることも考えられる。また、第2の波長が850nmとして説明したが、この第2の波長が、850nmを含む850nm帯の波長であることも考えられる。 Further, in the above-described embodiment, the first wavelength is described as 1310 nm, but it is also possible that this first wavelength is a wavelength in the 1310 nm band that includes 1310 nm. Further, in the above-described embodiment, the first wavelength is described as 1310 nm, but it is also possible that the first wavelength is 1550 nm or a wavelength in the 1550 nm band that includes 1550 nm. Moreover, although the second wavelength has been described as 850 nm, it is also possible that the second wavelength is a wavelength in the 850 nm band that includes 850 nm.
 また、上述実施の形態においては、光導波路が光ファイバである例で説明したが、本技術は光ファイバ以外の光導波路、例えばシリコン光導波路等である場合にも、適用できることは勿論である。 Furthermore, in the above-described embodiments, an example in which the optical waveguide is an optical fiber has been described, but the present technology can of course be applied to an optical waveguide other than an optical fiber, such as a silicon optical waveguide.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally fall within the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。 Furthermore, the effects described in this specification are merely explanatory or illustrative, and are not limiting. In other words, the technology according to the present disclosure may have other effects that are obvious to those skilled in the art from the description of this specification, in addition to or in place of the above effects.
 なお、本技術は、以下のような構成もとることができる。
 (1)光ファイバと、
 前記光ファイバの端部に接続された空間結合のためのコネクタを備え、
 前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
 前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
 光ケーブル。
 (2)前記第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造である
 前記(1)に記載の光ケーブル。
 (3)前記第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である
 前記(2)に記載の光ケーブル。
 (4)前記光ファイバは第1の波長では基本モードのみを伝搬し、
 前記光ファイバを通じて第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、
 前記第2の波長は前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
 前記(1)から(3)のいずれかに記載の光ケーブル。
 (5)前記第1の波長は1310nm帯の波長であり、前記第2の波長は850nm帯の波長である
 前記(4)に記載の光ケーブル。
 (6)前記光ファイバの端部に光路を調整する光学素子が配置される
 前記(4)または(5)に記載の光ケーブル。
 (7)前記光学素子はGRINレンズである
 前記(6)に記載の光ケーブル。
 (8)光ファイバの端部に空間結合のためのコネクタが接続された光インタフェース構造を備え、
 前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
 前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
 電子機器。
 (9)前記第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造であり、
 前記第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である
 前記(8)に記載の電子機器。
 (10)前記光ファイバは第1の波長では基本モードのみを伝搬し、
 前記光ファイバを通じて第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、
 前記第2の波長は前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
 前記(8)または(9)に記載の電子機器。
 (11)前記第1の波長は1310nm帯の波長であり、前記第2の波長は850nm帯の波長である
 前記(10)に記載の電子機器。
 (12)前記光ファイバの端部に光路を調整する光学素子が配置される
 前記(10)または(11)に記載の電子機器。
 (13)前記コネクタは光ケーブルを介して外部機器を接続するためのコネクタであり、
 
 前記コネクタは、光信号の入力部または出力部を構成する
 前記(8)から(12)のいずれかに記載の電子機器。
 (14)光ケーブルと、
 前記光ケーブルの一端を接続するためのコネクタを有する光通信装置を備え
 前記光ケーブルは光ファイバの端部に空間結合のためのコネクタが接続された構成とされ、
 前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
 前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
 光通信システム。
 (15)前記第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造であり、
 前記第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である
 前記(14)に記載の光通信システム。
 (16)前記光ファイバは第1の波長では基本モードのみを伝搬し、
 前記光ファイバを通じて第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、
 前記第2の波長は前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
 前記(14)または(15)に記載の光通信システム。
 (17)前記第1の波長は1310nm帯の波長であり、前記第2の波長は850nm帯の波長である
 前記(16)に記載の光通信システム。
 (18)前記光ファイバの端部に光路を調整する光学素子が配置される
 前記(16)または(17)に記載の光通信システム。
  (19)前記光通信装置は送信側の光通信装置である
 前記(14)から(18)のいずれかに記載の光通信システム。
 (20)前記光ケーブルの他端を接続するためのコネクタを有する受信側の光通信装置をさらに備える
 請求項19に記載の光通信システム。
Note that the present technology can also have the following configuration.
(1) Optical fiber,
a connector for spatial coupling connected to the end of the optical fiber;
A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
(2) The optical cable according to (1), wherein the first structure is a structure in which the refractive index shape of the core is a graded index type with a dip.
(3) The optical cable according to (2), wherein the second structure is a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
(4) the optical fiber propagates only the fundamental mode at the first wavelength;
Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
The optical cable according to any one of (1) to (3), wherein the second wavelength is a wavelength at which the optical fiber can propagate at least a primary mode together with the fundamental mode.
(5) The optical cable according to (4), wherein the first wavelength is a wavelength in a 1310 nm band, and the second wavelength is a wavelength in an 850 nm band.
(6) The optical cable according to (4) or (5), wherein an optical element for adjusting an optical path is arranged at an end of the optical fiber.
(7) The optical cable according to (6) above, wherein the optical element is a GRIN lens.
(8) Equipped with an optical interface structure in which a connector for spatial coupling is connected to the end of the optical fiber,
A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
(9) The first structure is a structure in which the refractive index shape of the core is a graded index type with a dip,
The electronic device according to (8), wherein the second structure is a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
(10) the optical fiber propagates only the fundamental mode at the first wavelength;
Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
The electronic device according to (8) or (9), wherein the second wavelength is a wavelength at which the optical fiber can propagate at least a first-order mode together with the fundamental mode.
(11) The electronic device according to (10), wherein the first wavelength is a wavelength in a 1310 nm band, and the second wavelength is a wavelength in an 850 nm band.
(12) The electronic device according to (10) or (11), wherein an optical element for adjusting an optical path is arranged at an end of the optical fiber.
(13) The connector is a connector for connecting external equipment via an optical cable,

The electronic device according to any one of (8) to (12), wherein the connector constitutes an input section or an output section of an optical signal.
(14) Optical cable,
an optical communication device having a connector for connecting one end of the optical cable; the optical cable has a configuration in which a connector for spatial coupling is connected to an end of an optical fiber;
A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure. Optical communication system. .
(15) The first structure is a structure in which the refractive index shape of the core is a graded index type with a dip,
The optical communication system according to (14), wherein the second structure is a structure in which the refractive index shape of the core is a dip non-graded index type or a step index type.
(16) the optical fiber propagates only the fundamental mode at the first wavelength;
Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
The optical communication system according to (14) or (15), wherein the second wavelength is a wavelength at which the optical fiber can propagate at least the primary mode together with the fundamental mode.
(17) The optical communication system according to (16), wherein the first wavelength is a wavelength in a 1310 nm band, and the second wavelength is a wavelength in an 850 nm band.
(18) The optical communication system according to (16) or (17), wherein an optical element for adjusting an optical path is arranged at an end of the optical fiber.
(19) The optical communication system according to any one of (14) to (18), wherein the optical communication device is a transmitting side optical communication device.
(20) The optical communication system according to claim 19, further comprising a receiving side optical communication device having a connector for connecting the other end of the optical cable.
 10T,10R・・・光ファイバ
 10a・・・コア
 10b・・・クラッド
 11T,11R・・・レンズ
 22R,22T・・・GRINレンズ
 30・・・光ケーブル
 31・・・光ファイバ
 32,33・・・コネクタ(プラグ)
 34,35・・・GRINレンズ
 100・・・光通信システム
 200・・・送信機
 201・・・発光部
 202・・・コネクタ(レセプタクル)
 203・・・光ファイバ
 203a・・・コア
 203b・・・クラッド
 211・・・フェルール
 212・・・基板
 213・・・発光素子
 214・・・配置用孔
 215・・・ミラー(光路変更部)
 216・・・光ファイバ挿入孔
 217・・・接着剤
 218・・・発光素子駆動ドライバ
 221・・・コネクタ本体(フェルール)
 222・・・接着剤注入孔
 223・・・光出射部(光伝達空間)
 224・・・レンズ(凸レンズ)
 226・・・光ファイバ挿入孔
 227・・・接着剤
 228・・・GRINレンズ
 300・・・受信機
 301・・・コネクタ(レセプタクル)
 302・・・受光部
 303・・・光ファイバ
 400・・・光ケーブル
 401・・・光ファイバ
 402,403・・・コネクタ(プラグ)
 421・・・コネクタ本体(フェルール)
 422・・・接着剤注入孔
 423・・・光入射部(光伝達空間)
 424・・・レンズ(凸レンズ)
 426・・・光ファイバ挿入孔
 427・・・接着剤
 428・・・GRINレンズ
 431・・・コネクタ本体(フェルール)
 432・・・接着剤注入孔
 433・・・光出射部(光伝達空間)
 434・・・レンズ(凸レンズ)
 436・・・光ファイバ挿入孔
 437・・・接着剤
 438・・・GRINレンズ
10T, 10R... Optical fiber 10a... Core 10b... Clad 11T, 11R... Lens 22R, 22T... GRIN lens 30... Optical cable 31... Optical fiber 32, 33... connector (plug)
34, 35... GRIN lens 100... Optical communication system 200... Transmitter 201... Light emitting section 202... Connector (receptacle)
203... Optical fiber 203a... Core 203b... Clad 211... Ferrule 212... Substrate 213... Light emitting element 214... Hole for arrangement 215... Mirror (optical path changing part)
216... Optical fiber insertion hole 217... Adhesive 218... Light emitting element drive driver 221... Connector body (ferrule)
222...Adhesive injection hole 223...Light emission part (light transmission space)
224...Lens (convex lens)
226... Optical fiber insertion hole 227... Adhesive 228... GRIN lens 300... Receiver 301... Connector (receptacle)
302... Light receiving section 303... Optical fiber 400... Optical cable 401... Optical fiber 402,403... Connector (plug)
421...Connector body (ferrule)
422... Adhesive injection hole 423... Light incidence part (light transmission space)
424...Lens (convex lens)
426...Optical fiber insertion hole 427...Adhesive 428...GRIN lens 431...Connector body (ferrule)
432...Adhesive injection hole 433...Light emission part (light transmission space)
434...Lens (convex lens)
436...Optical fiber insertion hole 437...Adhesive 438...GRIN lens

Claims (20)

  1.  光ファイバと、
     前記光ファイバの端部に接続された空間結合のためのコネクタを備え、
     前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
     前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
     光ケーブル。
    optical fiber and
    a connector for spatial coupling connected to the end of the optical fiber;
    A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
    The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  2.  前記第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造である
     請求項1に記載の光ケーブル。
    The optical cable according to claim 1, wherein the first structure has a core whose refractive index shape is a dipped graded index type.
  3.  前記第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である
     請求項2に記載の光ケーブル。
    The optical cable according to claim 2, wherein the second structure has a core having a refractive index shape of a dip non-graded index type or a step index type.
  4.  前記光ファイバは第1の波長では基本モードのみを伝搬し、
     前記光ファイバを通じて第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、
     前記第2の波長は前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
     請求項1に記載の光ケーブル。
    the optical fiber propagates only a fundamental mode at a first wavelength;
    Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
    The optical cable according to claim 1, wherein the second wavelength is a wavelength at which the optical fiber can propagate at least a primary mode together with the fundamental mode.
  5.  前記第1の波長は1310nm帯の波長であり、前記第2の波長は850nm帯の波長である
     請求項4に記載の光ケーブル。
    The optical cable according to claim 4, wherein the first wavelength is a wavelength in a 1310 nm band, and the second wavelength is a wavelength in an 850 nm band.
  6.  前記光ファイバの端部に光路を調整する光学素子が配置される
     請求項4に記載の光ケーブル。
    The optical cable according to claim 4, wherein an optical element for adjusting an optical path is arranged at an end of the optical fiber.
  7.  前記光学素子はGRINレンズである
    請求項6に記載の光ケーブル。
    The optical cable according to claim 6, wherein the optical element is a GRIN lens.
  8.  光ファイバの端部に空間結合のためのコネクタが接続された光インタフェース構造を備え、
     前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
     前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
     電子機器。
    Equipped with an optical interface structure in which a connector for spatial coupling is connected to the end of the optical fiber,
    A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
    The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure.
  9.  前記第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造であり、
     前記第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である
     請求項8に記載の電子機器。
    The first structure is a structure in which the refractive index shape of the core is a graded index type with a dip,
    The electronic device according to claim 8, wherein the second structure has a core having a refractive index shape of a dip non-graded index type or a step index type.
  10.  前記光ファイバは第1の波長では基本モードのみを伝搬し、
     前記光ファイバを通じて第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、
     前記第2の波長は前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
     請求項8に記載の電子機器。
    the optical fiber propagates only a fundamental mode at a first wavelength;
    Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
    The electronic device according to claim 8, wherein the second wavelength is a wavelength at which the optical fiber can propagate at least a first-order mode together with the fundamental mode.
  11.  前記第1の波長は1310nm帯の波長であり、前記第2の波長は850nm帯の波長である
     請求項10に記載の電子機器。
    The electronic device according to claim 10, wherein the first wavelength is a wavelength in a 1310 nm band, and the second wavelength is a wavelength in an 850 nm band.
  12.  前記光ファイバの端部に光路を調整する光学素子が配置される
     請求項10に記載の電子機器。
    The electronic device according to claim 10, wherein an optical element for adjusting an optical path is arranged at an end of the optical fiber.
  13.  前記コネクタは光ケーブルを介して外部機器を接続するためのコネクタであり、
     前記コネクタは、光信号の入力部または出力部を構成する
     請求項8に記載の電子機器。
    The connector is a connector for connecting external equipment via an optical cable,
    The electronic device according to claim 8, wherein the connector constitutes an input section or an output section of an optical signal.
  14.  光ケーブルと、
     前記光ケーブルの一端を接続するためのコネクタを有する光通信装置を備え
     前記光ケーブルは光ファイバの端部に空間結合のためのコネクタが接続された構成とされ、
     前記光ファイバの前記端部側の一部以外は第1の構造とされ、前記光ファイバの前記端部側の一部は第2の構造とされ、
     前記第1の構造は前記第2の構造よりモード間伝搬遅延差が小さくなる構造であり、前記第2の構造は前記第1の構造より光パワーの結合効率が高くなる構造である
     光通信システム。
    optical cable and
    an optical communication device having a connector for connecting one end of the optical cable; the optical cable has a configuration in which a connector for spatial coupling is connected to an end of an optical fiber;
    A part of the optical fiber other than a part on the end side has a first structure, and a part of the optical fiber on the end side has a second structure,
    The first structure has a smaller inter-mode propagation delay difference than the second structure, and the second structure has a higher optical power coupling efficiency than the first structure. Optical communication system. .
  15.  前記第1の構造はコアの屈折率形状がディップ有グレーテッドインデックス型とされている構造であり、
     前記第2の構造はコアの屈折率形状がディップ無グレーテッドインデックス型またはステップインデックス型とされている構造である
     請求項14に記載の光通信システム。
    The first structure is a structure in which the refractive index shape of the core is a graded index type with a dip,
    15. The optical communication system according to claim 14, wherein the second structure has a core having a refractive index shape of a dip non-graded index type or a step index type.
  16.  前記光ファイバは第1の波長では基本モードのみを伝搬し、
     前記光ファイバを通じて第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信が行われ、
     前記第2の波長は前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
     請求項14に記載の光通信システム。
    the optical fiber propagates only a fundamental mode at a first wavelength;
    Communication is performed through the optical fiber using light having a second wavelength and having at least a first-order mode component together with the fundamental mode,
    The optical communication system according to claim 14, wherein the second wavelength is a wavelength at which the optical fiber can propagate at least a primary mode together with the fundamental mode.
  17.  前記第1の波長は1310nm帯の波長であり、前記第2の波長は850nm帯の波長である
     請求項16に記載の光通信システム。
    The optical communication system according to claim 16, wherein the first wavelength is a wavelength in a 1310 nm band, and the second wavelength is a wavelength in an 850 nm band.
  18.  前記光ファイバの端部に光路を調整する光学素子が配置される
     請求項16に記載の光通信システム。
    The optical communication system according to claim 16, wherein an optical element for adjusting an optical path is arranged at an end of the optical fiber.
  19.  前記光通信装置は送信側の光通信装置である
     請求項14に記載の光通信システム。
    The optical communication system according to claim 14, wherein the optical communication device is a transmitting side optical communication device.
  20.  前記光ケーブルの他端を接続するためのコネクタを有する受信側の光通信装置をさらに備える
     請求項19に記載の光通信システム。
    The optical communication system according to claim 19, further comprising a receiving side optical communication device having a connector for connecting the other end of the optical cable.
PCT/JP2023/007948 2022-04-07 2023-03-03 Optical cable, electronic device, and optical communication system WO2023195280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022063783 2022-04-07
JP2022-063783 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023195280A1 true WO2023195280A1 (en) 2023-10-12

Family

ID=88242874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007948 WO2023195280A1 (en) 2022-04-07 2023-03-03 Optical cable, electronic device, and optical communication system

Country Status (1)

Country Link
WO (1) WO2023195280A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072737A (en) * 2003-08-21 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical transmitting system
WO2005078970A1 (en) * 2004-02-17 2005-08-25 Nippon Telegraph And Telephone Corporation Optical transmission system
US20050265653A1 (en) * 2004-05-25 2005-12-01 Avanex Corporation Apparatus, system and method for an adiabatic coupler for multi-mode fiber-optic transmission systems
JP2007165906A (en) * 2005-12-16 2007-06-28 Furukawa Electric North America Inc Rare-earth-doped, large mode area, multimode, hybrid optical fiver and device using the same
WO2015125555A1 (en) * 2014-02-20 2015-08-27 株式会社フジクラ Optical fiber and method for manufacturing optical fiber
JP2017535810A (en) * 2014-10-23 2017-11-30 コラクティブ・ハイ−テック・インコーポレイテッドCoractive High−Tech Inc. Fiber optic assembly with beam shaping component
WO2020184094A1 (en) * 2019-03-08 2020-09-17 ソニー株式会社 Optical communication device, optical communication method, and optical communication system
JP2022502716A (en) * 2018-10-03 2022-01-11 ルメニシティ・リミテッド Optical Waveguide Adapter Assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072737A (en) * 2003-08-21 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical transmitting system
WO2005078970A1 (en) * 2004-02-17 2005-08-25 Nippon Telegraph And Telephone Corporation Optical transmission system
US20050265653A1 (en) * 2004-05-25 2005-12-01 Avanex Corporation Apparatus, system and method for an adiabatic coupler for multi-mode fiber-optic transmission systems
JP2007165906A (en) * 2005-12-16 2007-06-28 Furukawa Electric North America Inc Rare-earth-doped, large mode area, multimode, hybrid optical fiver and device using the same
WO2015125555A1 (en) * 2014-02-20 2015-08-27 株式会社フジクラ Optical fiber and method for manufacturing optical fiber
JP2017535810A (en) * 2014-10-23 2017-11-30 コラクティブ・ハイ−テック・インコーポレイテッドCoractive High−Tech Inc. Fiber optic assembly with beam shaping component
JP2022502716A (en) * 2018-10-03 2022-01-11 ルメニシティ・リミテッド Optical Waveguide Adapter Assembly
WO2020184094A1 (en) * 2019-03-08 2020-09-17 ソニー株式会社 Optical communication device, optical communication method, and optical communication system

Similar Documents

Publication Publication Date Title
WO2020184094A1 (en) Optical communication device, optical communication method, and optical communication system
JP4586546B2 (en) Multimode wavelength division multiplexing optical transceiver
EP3640692B9 (en) Optical connector module
JP7396304B2 (en) Optical communication equipment, optical communication method, and optical communication system
WO2021095702A1 (en) Optical module, adjusting device, and adjusting method
WO2020153237A1 (en) Optical communication device, optical communication method, and optical communication system
WO2023100607A1 (en) Interface structure, optical connector, transmitter, receiver, optical cable, and optical communication system
JP7428140B2 (en) Optical connectors, optical cables and electronic equipment
WO2023195280A1 (en) Optical cable, electronic device, and optical communication system
WO2022158192A1 (en) Optical waveguide, optical communication device, optical communication method, and optical communication system
WO2020039636A1 (en) Optical connector unit and optical connection structure
JP7459519B2 (en) Optical communication device, optical communication method, and optical communication system
JP7409119B2 (en) Optical transmitter, wavelength width adjustment device, and wavelength width adjustment method
CN114616500A (en) Multi-core optical fiber and fan-out assembly
WO2023042448A1 (en) Optical communication system, optical communication method, receiver, optical waveguide, and transmitter
JP7459528B2 (en) Optical receiver, wavelength width adjustment device, and wavelength width adjustment method
CN110646895B (en) Optical receptacle and optical transceiver
JP2007193049A (en) Optical waveguide and optical module
WO2023176798A1 (en) Multicore optical fiber, optical combiner, and fiber properties measurement method
WO2023013136A1 (en) Measurement system, measuring instrument, and cable
JP2019174610A (en) Optical connector, method for manufacturing optical connector, and opto-electric hybrid device comprising optical connector
WO2021145246A1 (en) Optical communication device, optical communication method, optical communication system, light transmission device, light reception device, wavelength interval adjustment device, and wavelength interval adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784573

Country of ref document: EP

Kind code of ref document: A1