WO2023195265A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2023195265A1
WO2023195265A1 PCT/JP2023/006902 JP2023006902W WO2023195265A1 WO 2023195265 A1 WO2023195265 A1 WO 2023195265A1 JP 2023006902 W JP2023006902 W JP 2023006902W WO 2023195265 A1 WO2023195265 A1 WO 2023195265A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
sensor device
image sensor
substrate
semiconductor
Prior art date
Application number
PCT/JP2023/006902
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 山田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023195265A1 publication Critical patent/WO2023195265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present technology relates to a semiconductor device, and particularly relates to a sensor device including an image sensor.
  • COW Chip on Wafer
  • a COW type sensor device is formed by juxtaposing an image sensor chip on which a photoelectric conversion element array (pixel array) is formed and a logic chip on which a logic circuit is formed, for example, on a silicon substrate.
  • Patent Document 1 listed below discloses a sensor chip that is a back-illuminated CMOS solid-state image sensor that is provided with an imaging pixel section and a signal processing section that is provided with a peripheral circuit section that performs signal processing etc. on an interposer (intermediate substrate).
  • This disclosure discloses a semiconductor image sensor module in which a chip is mounted on a support substrate (see FIG. 42). In the semiconductor image sensor module, the sensor chip and the signal processing chip are electrically connected to a land formed by exposing a part of the wiring surface of the interposer through a protruding electrode (microbump).
  • interposers makes it possible to form fine wiring, but electrical connections using microbumps provided on the interposer require longer wiring lengths, resulting in higher resistance and capacitance. Therefore, there was a problem that the wiring impedance was affected. In particular, with the recent miniaturization and speeding up of semiconductor devices, even a slight increase in resistance or capacitance has a non-negligible effect on wiring impedance. This was a hindrance to increasing communication speeds.
  • microbumps require an area of at least 10 ⁇ m or more in the current semiconductor manufacturing process, making it difficult to increase the integration density of wiring.
  • an underfill resin in order to make electrical connections using microbumps, it was necessary to fill the space between the semiconductor substrate and the chips stacked there with an underfill resin.
  • a blocking structure is formed to prevent the resin being dripped and filled from spreading, resulting in an increase in the chip size of the final product, resulting in a single chip.
  • dam structure a blocking structure
  • the present disclosure aims to suppress the influence of wiring impedance and provide a semiconductor device that can operate at high speed.
  • the present disclosure aims to provide a semiconductor device in which a semiconductor substrate (for example, an interposer substrate) and a plurality of chips arranged thereon can be connected by a new electrical connection structure in place of microbumps. purpose.
  • a semiconductor substrate for example, an interposer substrate
  • a plurality of chips arranged thereon can be connected by a new electrical connection structure in place of microbumps.
  • Another object of the present disclosure is to provide a semiconductor device that makes it possible to reduce the size of the entire packaged chip by suppressing the size of the chip formed on the semiconductor substrate.
  • the present disclosure aims to provide a semiconductor device having a new electrical connection structure that allows BGR of various chip substrates in a semiconductor manufacturing process.
  • Another object of the present disclosure is to provide a semiconductor device having a new electrical connection structure that can increase the wiring density between a semiconductor substrate and a chip placed thereon.
  • the present technology for solving the above problems is configured including the technical features shown below.
  • the present technology includes a semiconductor substrate including a wiring layer and having a first Cu electrode electrically connected to the wiring layer, and photoelectric conversion elements placed on the semiconductor substrate and arranged in an array.
  • the sensor device includes the image sensor chip having a pixel array formed thereon, and a semiconductor integrated circuit chip disposed on the semiconductor substrate in parallel with the image sensor chip.
  • Each of the image sensor chip and the semiconductor integrated circuit chip includes a second electrode bonded to the first Cu electrode on a surface facing the semiconductor substrate. Further, the image sensor chip and the semiconductor integrated circuit chip are configured so that the heights of their upper end surfaces are the same.
  • the present technology can be understood as a method for manufacturing the above-mentioned sensor device.
  • the term "means” does not simply mean physical means, but also includes cases in which the functions of the means are realized by software. Further, the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means.
  • a “system” refers to a logical collection of multiple devices (or functional modules that realize a specific function), and whether each device or functional module is in a single housing or not. There is no particular question.
  • FIG. 1 is a plan view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
  • FIG. 2 is a partial cross-sectional view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
  • FIG. 3 is a partial cross-sectional view showing a first modified example of the schematic structure of the sensor device according to an embodiment of the present technology.
  • FIG. 4 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • FIG. 5 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • FIG. 1 is a plan view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
  • FIG. 2 is a partial cross-sectional view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
  • FIG. 3 is a partial cross-
  • FIG. 6 is a partial cross-sectional view showing a fourth modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • FIG. 7A is a diagram for explaining an example of a method for manufacturing a sensor device according to an embodiment of the present technology.
  • FIG. 7B is a diagram for explaining an example of a method for manufacturing a sensor device according to an embodiment of the present technology.
  • FIG. 1 is a plan view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
  • FIG. 2 is a partial sectional view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
  • the sensor device 1 is an LSI chip in which a plurality of semiconductor chips (hereinafter referred to as "chips") 20 including an image sensor chip 20(1) are juxtaposed and packaged on an interposer substrate 10. It is.
  • the sensor device 1 of the present disclosure may be, for example, a COW type semiconductor device.
  • the interposer substrate 10 is a semiconductor substrate that includes a support substrate mainly made of silicon (Si), for example, and a wiring layer 11 including a wiring pattern formed thereon. As shown in other examples, interposer substrate 10 may be replaced with a logic circuit board that includes an integrated circuit layer.
  • Several electrode pads 30 are formed on the periphery of the interposer substrate 10 . For example, wire bonding is formed on the electrode pad 30.
  • the interposer substrate 10 and the plurality of chips 20 placed thereon are electrically connected by bonding between copper (Cu) electrodes formed on their respective bonding surfaces.
  • the plurality of chips 20 arranged in parallel on the interposer substrate 10 are electrically connected via the wiring layer 11 of the interposer substrate 10.
  • a connection structure in which Cu electrodes are joined together may be referred to as a "Cu--Cu connection structure.”
  • Such a Cu--Cu connection structure can suppress wiring impedance lower than the conventional connection structure using microbumps, and enables faster operation of the sensor device 1.
  • the Cu electrode on the interposer substrate 10 side will be referred to as the first Cu electrode 12, and the Cu electrodes on the multiple chips 20 side will be referred to as the second Cu electrode 23.
  • Each of the plurality of chips 20 is a substrate on which various semiconductor integrated circuits are formed.
  • the plurality of chips 20 includes an image sensor chip 20(1) and an associated semiconductor integrated circuit chip 20(n) (n is a positive number used to distinguish each chip). be done.
  • the semiconductor integrated circuit chip 20(n) includes, for example, a PLL chip that generates a clock, a memory chip that stores data, a signal processing chip that performs arithmetic processing such as distance measurement, and a communication chip that enables connection with the outside. It can be at least one of an interface chip and a light emitting element chip that emits distance measuring light.
  • each of the plurality of chips 20 is configured such that the heights of the upper end surfaces thereof are the same.
  • the heights of the upper end surfaces are the same means that the heights of the substantial semiconductor material surfaces of each chip 20 are the same or the same.
  • the upper end surface is a surface that does not include the color filter 21 or on-chip lens 22 formed on the semiconductor material surface.
  • the image sensor chip 20(1) is a semiconductor substrate that includes a pixel array in which a plurality of light receiving elements (photoelectric conversion elements) forming pixels that receive incident light are arranged in an array.
  • Each of the plurality of light receiving elements is, for example, a SPAD, but is not limited to this.
  • Each SPAD is a semiconductor element that detects incoming light (photons), converts carriers generated thereby into electrical signals using avalanche multiplication, and outputs the electrical signals.
  • the image sensor chip 20(1) may have a light-receiving element that converts visible light (RGB light) into an electrical signal, or converts invisible light (for example, infrared light) into an electrical signal. It may also consist of something that converts into .
  • the image sensor chip 20(1) of the present disclosure includes a sensor substrate 20(1)a on which a pixel array is formed, and a logic substrate on which a logic circuit for controlling the pixel array is formed.
  • 20(1)b is a stacked image sensor chip.
  • the sensor board 20(1)a and the logic board 20(1)b each have wiring layers 24a and 24b, and are stacked by bonding the wiring layers 24a and 24b to each other.
  • the image sensor chip 20(1) may be, for example, a back-illuminated image sensor that receives light on its back surface (top surface).
  • a color filter 21 and an on-chip lens 22 are laminated on the upper surface of the image sensor chip 20(1) (that is, the back surface of the sensor substrate 20(1)a).
  • the logic board 20(1)b includes, for example, a pixel control circuit that controls the operation of each pixel, a front end circuit that realizes quenching and recharging of each pixel, and the like.
  • the logic board 20(1)b may include a signal processing circuit.
  • second Cu electrodes 23 are formed on the lower surfaces of the plurality of chips 20 (that is, the surfaces where each chip 20 faces the upper surface of the interposer substrate 10).
  • the second Cu electrode 23 of the image sensor chip 20(1) is connected to the logic board 20(1)b through a via hole 25 (through electrode) formed through the logic board 20(1)b, for example. It is connected to the wiring layer 24b.
  • the second Cu electrodes 23 of the plurality of chips 20 are joined to the first Cu electrodes 12 formed on the upper surface of the interposer substrate 10 to form a Cu--Cu connection structure. Thereby, the plurality of chips 20 are electrically connected via the wiring layer of the interposer substrate 10.
  • the sensor device 1 has a configuration in which the image sensor chip 20 (1) and the memory chip 20 (2) are placed on the interposer substrate 10 as an interposer substrate, but the configuration is not limited to this, and the following will be described. As described in , various configurations are possible.
  • FIG. 3 is a partial cross-sectional view showing a first modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • a sensor device 1 includes a plurality of chips 20, such as an image sensor chip 20 (1), a memory chip 20 (2), and a signal processing chip 20 (3), mounted on an interposer substrate 10. Illustrated.
  • the plurality of chips 20 and the interposer substrate 10 are also electrically connected by a Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
  • an antireflection film 26 is formed on each surface or a portion of the memory chip 20(2) and the signal processing chip 20(3).
  • the anti-reflection film 26 prevents reflected light from light irradiated onto another chip 20(n) arranged in parallel to the image sensor chip 20(1) from entering the image sensor chip 20(1).
  • the antireflection film 26 is made of the same material as the blue color filter 21, for example.
  • the blue color filter 21 transmits blue wavelength light and absorbs red and green wavelength light. Therefore, although the blue light passes through the blue color filter 21 and reaches the other chip 20(n), it is easily absorbed by the silicon that is the constituent material of the other chip 20(n), which may affect its operation. There is no problem.
  • Such an anti-reflection film 26 is formed, for example, on the other chip 20(n) at the same time as the process of forming the color filter 21 on the image sensor chip 20(1).
  • the formation of the antireflection film 26 is The process for forming the color filter 21 can be used in this manner.
  • the antireflection film 26 may be formed by stacking color filters 21 of each color (that is, RGB) using the process of forming the color filters 21. Thereby, the anti-reflection film 26 absorbs light of a specific color wavelength by the color filter 21 of each color, so that it is possible to prevent light from entering the image sensor chip 20(1).
  • the antireflection film 26 may be formed of a tungsten (W) compound material with low reflectance, for example.
  • W tungsten
  • the tungsten antireflection film 26 can be formed using the optical black pixel formation process.
  • FIG. 4 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • a sensor device 1 includes a plurality of chips 20, such as an image sensor chip 20 (1), a memory chip 20 (2), and a signal processing chip 20 (3), mounted on an interposer substrate 10. Illustrated. Further, in this example, an antireflection film 26 is filled between each chip 20.
  • the antireflection film 26 is made of, for example, a resin composition material. Such an antireflection film 26 is used in a semiconductor manufacturing process, for example, to prevent uneven coating of resist resin in a lithography process, and is not removed.
  • the plurality of chips 20 and the interposer substrate 10 are also electrically connected by a Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
  • FIG. 5 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • a sensor device 1 is illustrated in which an image sensor chip 20(1) and a light emitting element chip 20(4) are placed as a plurality of chips 20 on an interposer substrate 10.
  • the light emitting element chip 20 (4) is, for example, a vertical cavity surface emitting laser (VCSEL) chip that emits light for distance measurement.
  • VCSEL vertical cavity surface emitting laser
  • the LSI chip in which the image sensor chip 20(1) and the light emitting element chip 20(4) are integrated in this way is known as a distance measurement sensor device.
  • the plurality of chips 20 and the interposer substrate 10 are also electrically connected by a Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
  • FIG. 6 is a partial cross-sectional view showing a fourth modification of the schematic structure of the sensor device according to an embodiment of the present technology.
  • the figure shows an example of the sensor device 1 in which the semiconductor substrate is a logic substrate 40 instead of the interposer substrate 10. That is, the sensor device 1 of this example includes a logic board 40 and a plurality of chips 20 mounted on the logic board 40. As described above, the plurality of chips 20 are the image sensor chip 20(1) and other chips 20(n) related thereto.
  • the logic board 40 and the plurality of chips 20 mounted thereon are electrically connected by the above-mentioned Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
  • the image sensor chip 20(1) may be of a laminated type or may be of a single layer type including only the sensor substrate. In the case of the stacked image sensor chip 20(1), a part of the logic circuit of the logic board 20(1)b described above may be formed on the logic board 40. The image sensor chip 20(1) is electrically connected to the logic circuit in the logic board 40, the memory chip 20(2), and the signal processing chip 20(3) via a Cu-Cu connection structure with the logic board 40. be done.
  • FIGS. 7A and 7B are diagrams for explaining an example of a method for manufacturing a sensor device according to an embodiment of the present technology.
  • a wafer W1 on which the sensor substrate 20(1)a is formed and a wafer W2 on which the logic substrate 20(1)b is formed are respectively produced (FIG. 7(a)).
  • a known semiconductor manufacturing process can be used to fabricate the wafers W1 and W2.
  • the wafer W1 and the wafer W2 are bonded together in a predetermined positional relationship so that their wiring layers face each other (FIG. 7(b)).
  • W be a wafer in which the wafer W1 and the wafer W2 are integrated.
  • one surface of the logic board 20(1)b (the surface opposite to the bonded surface) is thinned by a BGR (back grinder), and furthermore, via holes are formed. 25 is formed, and a second Cu electrode 23 is formed.
  • the wafer W is diced after a temporary protective sheet is pasted thereon, thereby obtaining individualized stacked image sensor chips 20(1) (FIG. 7(c)).
  • the other chips are the memory chip 20(2) and the signal processing chip 20(3).
  • the image sensor chip 20(1) that has been separated into pieces is placed on the interposer substrate 10 and combined together with the memory chip 20(2) and the signal processing chip 20(3) (FIG. 7(d) ).
  • the second Cu electrode 23 of each chip 20 is bonded to the first Cu electrode 12 of the interposer substrate 10 by, for example, thermocompression bonding, forming a Cu--Cu connection structure.
  • the spaces formed between the plurality of chips 20 are filled with an antireflection film 26 .
  • the antireflection film 26 prevents nonuniform application of resist resin during, for example, a lithography process.
  • the upper surfaces of the plurality of chips 20 formed on the interposer substrate 10 are polished to have the same height, for example. Thereby, even in subsequent steps, conventional equipment and equipment can be used without using special equipment or equipment.
  • a color filter 21 is formed on the upper surface of the image sensor chip 20(1) placed on the interposer substrate 10, and an on-chip lens 22 is further formed (FIG. 7(e)).
  • the color filter 21 and the on-chip lens 22 can be formed after the bonding process by thermocompression bonding with the top surfaces of the plurality of chips 20 having the same height.
  • the antireflection film 26 filled between the plurality of chips on the interposer substrate 10 is removed, and furthermore, the electrode pads 30 are formed to form the sensor device 1 as a product.
  • the interposer substrate 10 and the plurality of chips 20 arranged thereon have a Cu-Cu connection structure, so that the impedance can be kept lower than before. This makes it possible to adapt to high-speed communication.
  • the electrical connection between the interposer substrate 10 and the plurality of chips 20 is a Cu-Cu connection structure, which enables miniaturization of the Cu electrode and also reduces the wiring density. This makes it possible to increase the density, thereby making it possible to further reduce the chip size.
  • the heights of the upper end surfaces of the plurality of chips 20 placed on the intermediate substrate are the same, so the semiconductor manufacturing process is not complicated and existing equipment can be used. It can be manufactured using
  • steps, acts, or functions may be performed in parallel or in a different order unless the results are inconsistent.
  • the steps, acts, and functions described are provided as examples only, and some of the steps, acts, and functions may be omitted or combined with each other without departing from the spirit of the technology. It is also possible to add other steps, actions, or functions.
  • the present technology may be configured to include the following technical matters.
  • a semiconductor substrate including a wiring layer and having a first Cu electrode electrically connected to the wiring layer; an image sensor chip placed on the semiconductor substrate and formed with a pixel array in which photoelectric conversion elements are arranged in an array; a semiconductor integrated circuit chip juxtaposed to the image sensor chip on the semiconductor substrate; Each of the image sensor chip and the semiconductor integrated circuit chip includes a second electrode bonded to the first Cu electrode on a surface facing the semiconductor substrate. sensor device.
  • the image sensor chip and the semiconductor integrated circuit chip have upper end surfaces that are the same in height; The sensor device according to (1) above.
  • the semiconductor substrate is an interposer substrate; The sensor device according to (1) or (2) above.
  • the semiconductor substrate is a logic substrate on which a logic circuit is formed.
  • the image sensor chip is a stacked image sensor chip in which a sensor substrate including the pixel array and a logic board that controls the pixel array are stacked.
  • the semiconductor integrated circuit chip is at least one of a memory chip, a signal processing chip, and a light emitting element chip.
  • An anti-reflection film is formed on at least a portion of the surface of the semiconductor integrated circuit chip to prevent reflection of irradiated light.
  • the anti-reflection film is a color filter, The sensor device according to any one of (1) to (3) above. (9) The sensor device according to (8), wherein the color filter is a blue filter that transmits at least blue wavelength light.

Abstract

The present invention provides a sensor device comprising: a semiconductor substrate including a wiring layer and provided with a first Cu electrode electrically connected to the wiring layer; an image sensor chip which is placed on the semiconductor substrate and in which a pixel array having photoelectric conversion elements arranged in an array form is formed; and a semiconductor integrated circuit chip placed on the semiconductor substrate in parallel with the image sensor chip. Each of the image sensor chip and the semiconductor integrated circuit chip is provided with a second electrode bonded to the first Cu electrode on a surface opposed to the semiconductor substrate. Further, the image sensor chip and the semiconductor integrated circuit chip are configured such that the heights of upper end surfaces thereof are aligned.

Description

センサデバイスsensor device
 本技術は、半導体デバイスに関し、特に、イメージセンサを備えるセンサデバイスに関する。 The present technology relates to a semiconductor device, and particularly relates to a sensor device including an image sensor.
 複数のICチップを1つのシリコン基板上に設けてパッケージ化したマルチチップ構造の半導体デバイスが知られている。例えば、複数のICチップをシリコンウェハ上に積層して形成した後、ダイシングによりチップ化し、更にそれらをパッケージ化することにより製造された半導体デバイスはCOW(Chip on Wafer)と呼ばれる。COW型のセンサ
デバイスは、光電変換素子アレイ(画素アレイ)が形成されたイメージセンサチップと例えばロジック回路が形成されたロジックチップとがシリコン基板上に並置され形成されている。
2. Description of the Related Art Semiconductor devices having a multi-chip structure in which a plurality of IC chips are provided on one silicon substrate and packaged are known. For example, a semiconductor device manufactured by stacking a plurality of IC chips on a silicon wafer, dicing them into chips, and packaging them is called a COW (Chip on Wafer). A COW type sensor device is formed by juxtaposing an image sensor chip on which a photoelectric conversion element array (pixel array) is formed and a logic chip on which a logic circuit is formed, for example, on a silicon substrate.
 例えば、下記特許文献1は、インターポーザ(中間基板)上に、撮像画素部が設けられた裏面照射型CMOS固体撮像素子であるセンサチップと、信号処理などを行う周辺回路部が設けられた信号処理チップとが支持基板上に実装された半導体イメージセンサ・モジュールを開示している(図42参照)。該半導体イメージセンサ・モジュールでは、センサチップ及び信号処理チップは、突起電極(マイクロバンプ)を介して、インターポーザの配線の表面の一部が露出してなるランドと電気的に接続されている。 For example, Patent Document 1 listed below discloses a sensor chip that is a back-illuminated CMOS solid-state image sensor that is provided with an imaging pixel section and a signal processing section that is provided with a peripheral circuit section that performs signal processing etc. on an interposer (intermediate substrate). This disclosure discloses a semiconductor image sensor module in which a chip is mounted on a support substrate (see FIG. 42). In the semiconductor image sensor module, the sensor chip and the signal processing chip are electrically connected to a land formed by exposing a part of the wiring surface of the interposer through a protruding electrode (microbump).
特開2013-179313号公報Japanese Patent Application Publication No. 2013-179313
 上記のような半導体デバイスにおいて、インターポーザの使用は微細配線の形成を可能にする一方、インターポーザ上に設けられたマイクロバンプによる電気的接続は、配線長が長くなり、その分、抵抗や容量が大きくなって、配線インピーダンスに影響を与えるという問題があった。とりわけ、昨今の半導体デバイスの微細化及び高速化により、抵抗や容量の僅かな増加であっても配線インピーダンスに与える影響は無視できなくなっており、そのようなマイクロバンプによる電気的接続は、チップ間の通信速度の高速化の妨げとなっていた。 In semiconductor devices such as those mentioned above, the use of interposers makes it possible to form fine wiring, but electrical connections using microbumps provided on the interposer require longer wiring lengths, resulting in higher resistance and capacitance. Therefore, there was a problem that the wiring impedance was affected. In particular, with the recent miniaturization and speeding up of semiconductor devices, even a slight increase in resistance or capacitance has a non-negligible effect on wiring impedance. This was a hindrance to increasing communication speeds.
 また、マイクロバンプによる電気的接続では、現状の半導体製造プロセスでは少なくとも10μm以上の面積を必要とするため、配線の集積密度を高めることが難しかった。加えて、マイクロバンプによる電気的接続のためには、半導体基板とそこに積層されるチップとの間の空間を埋めるためのアンダーフィル樹脂の充填が必要であった。このようなアンダーフィル樹脂の充填では、滴下・充填される樹脂の広がりを防ぐための堰き止め構造(いわゆるダム構造)が形成されることから、最終製品としてのチップサイズが大きくなって1枚のウェハから作り出せる製品数が少なくなってしまい、この結果、理収が低下するという問題があった。 Additionally, electrical connections using microbumps require an area of at least 10 μm or more in the current semiconductor manufacturing process, making it difficult to increase the integration density of wiring. In addition, in order to make electrical connections using microbumps, it was necessary to fill the space between the semiconductor substrate and the chips stacked there with an underfill resin. When filling with such underfill resin, a blocking structure (so-called dam structure) is formed to prevent the resin being dripped and filled from spreading, resulting in an increase in the chip size of the final product, resulting in a single chip. There is a problem in that the number of products that can be produced from a wafer is reduced, and as a result, the yield is reduced.
 更に、フリップチップ実装技術の下、インターポーザとチップとをマイクバンプを介して接合する場合、製造プロセス上、該インターポーザに対するバックグラインド(BGR)による薄化処理を行うことが困難であるという問題があった。 Furthermore, when an interposer and a chip are bonded via a microphone bump under flip-chip mounting technology, there is a problem in that it is difficult to thin the interposer by back grinding (BGR) in the manufacturing process. Ta.
 また、イメージセンサチップに用いられるカラーフィルタ及びオンチップレンズの熱的制約条件の観点から、これらが形成されたイメージセンサチップをインターポーザに接合する際には、マイクロバンプを介した接合が行われていた。一方で、インターポーザ上に載置されるイメージセンサチップ及び他のチップの上面の高さが揃っていない場合、製造プロセス上、カラーフィルタ及びオンチップレンズを形成することが困難であるという問題に直面していた。 Additionally, due to the thermal constraints of the color filter and on-chip lens used in the image sensor chip, when bonding the image sensor chip on which these are formed to the interposer, bonding is performed via microbumps. Ta. On the other hand, if the heights of the top surfaces of the image sensor chip and other chips placed on the interposer are not the same, there is a problem that it is difficult to form color filters and on-chip lenses due to the manufacturing process. Was.
 そこで、本開示は、配線インピーダンスの影響を抑制し、高速動作可能な半導体デバイスを提供することを目的とする。 Therefore, the present disclosure aims to suppress the influence of wiring impedance and provide a semiconductor device that can operate at high speed.
 具体的には、本開示は、半導体基板(例えばインターポーザ基板)とその上に配置される複数のチップとをマイクロバンプに代わる新たな電気的接続構造により接続可能にした半導体デバイスを提供することを目的とする。 Specifically, the present disclosure aims to provide a semiconductor device in which a semiconductor substrate (for example, an interposer substrate) and a plurality of chips arranged thereon can be connected by a new electrical connection structure in place of microbumps. purpose.
 また、本開示は、半導体基板上に形成されるチップのサイズを抑制することによりパッケージ化された全体のチップサイズの小型化を可能にする半導体デバイスを提供することを目的とする。 Another object of the present disclosure is to provide a semiconductor device that makes it possible to reduce the size of the entire packaged chip by suppressing the size of the chip formed on the semiconductor substrate.
 また、本開示は、半導体製造プロセスにおいて各種のチップ基板をBGRすることを許容する新たな電気的接続構造を有する半導体デバイスを提供することを目的とする。 Further, the present disclosure aims to provide a semiconductor device having a new electrical connection structure that allows BGR of various chip substrates in a semiconductor manufacturing process.
 また、本開示は、半導体基板とその上に配置されるチップとの間の配線密度を高密度化し得る新たな電気的接続構造を有する半導体デバイスを提供することを目的とする。 Another object of the present disclosure is to provide a semiconductor device having a new electrical connection structure that can increase the wiring density between a semiconductor substrate and a chip placed thereon.
 上記課題を解決するための本技術は、以下に示す技術的特徴を含んで構成される。 The present technology for solving the above problems is configured including the technical features shown below.
 ある観点に従う本技術は、配線層を含み、該配線層に電気的に接続された第1のCu電極を備える半導体基板と、前記半導体基板上に載置され、光電変換素子がアレイ状に配置された画素アレイが形成された前記イメージセンサチップと、前記半導体基板上に前記イメージセンサチップに並置された半導体集積回路チップとを備えるセンサデバイスである。前記イメージセンサチップ及び前記半導体集積回路チップのそれぞれは、前記半導体基板に対向する面に前記第1のCu電極と接合される第2の電極を備える。また、前記イメージセンサチップと前記半導体集積回路チップとは、その上端面の高さが揃うように構成される。 The present technology according to a certain aspect includes a semiconductor substrate including a wiring layer and having a first Cu electrode electrically connected to the wiring layer, and photoelectric conversion elements placed on the semiconductor substrate and arranged in an array. The sensor device includes the image sensor chip having a pixel array formed thereon, and a semiconductor integrated circuit chip disposed on the semiconductor substrate in parallel with the image sensor chip. Each of the image sensor chip and the semiconductor integrated circuit chip includes a second electrode bonded to the first Cu electrode on a surface facing the semiconductor substrate. Further, the image sensor chip and the semiconductor integrated circuit chip are configured so that the heights of their upper end surfaces are the same.
 また、ある観点に従う本技術は、前記のセンサデバイスを製造する方法としても把握され得る。 Furthermore, the present technology according to a certain aspect can be understood as a method for manufacturing the above-mentioned sensor device.
 なお、本明細書等において、手段とは、単に物理的手段を意味するものではなく、その手段が有する機能をソフトウェアによって実現する場合も含む。また、1つの手段が有する機能が2つ以上の物理的手段により実現されても、2つ以上の手段の機能が1つの物理的手段により実現されても良い。また、「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことをいい、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。 Note that in this specification and the like, the term "means" does not simply mean physical means, but also includes cases in which the functions of the means are realized by software. Further, the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means. In addition, a "system" refers to a logical collection of multiple devices (or functional modules that realize a specific function), and whether each device or functional module is in a single housing or not. There is no particular question.
 本技術の他の技術的特徴、目的、及び作用効果又は利点は、添付した図面を参照して説明される以下の実施形態により明らかにされる。本開示に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があっても良い。 Other technical features, objects, and effects or advantages of the present technology will be made clear by the following embodiments described with reference to the attached drawings. The effects described in this disclosure are merely examples and are not limiting, and other effects may also be present.
図1は、本技術の一実施形態に係るセンサデバイスの概略的構造の一例を示す平面図である。FIG. 1 is a plan view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology. 図2は、本技術の一実施形態に係るセンサデバイスの概略的構造の一例を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology. 図3は、本技術の一実施形態に係るセンサデバイスの概略的構造の第1の変形例を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a first modified example of the schematic structure of the sensor device according to an embodiment of the present technology. 図4は、本技術の一実施形態に係るセンサデバイスの概略的構造の第2の変形例を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology. 図5は、本技術の一実施形態に係るセンサデバイスの概略的構造の第2の変形例を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology. 図6は、本技術の一実施形態に係るセンサデバイスの概略的構造の第4の変形例を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing a fourth modification of the schematic structure of the sensor device according to an embodiment of the present technology. 図7Aは、本技術の一実施形態に係るセンサデバイスの製造方法の一例を説明するための図である。FIG. 7A is a diagram for explaining an example of a method for manufacturing a sensor device according to an embodiment of the present technology. 図7Bは、本技術の一実施形態に係るセンサデバイスの製造方法の一例を説明するための図である。FIG. 7B is a diagram for explaining an example of a method for manufacturing a sensor device according to an embodiment of the present technology.
 以下、図面を参照して本技術の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。本技術は、その趣旨を逸脱しない範囲で種々変形(例えば各実施形態を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the present technology will be described with reference to the drawings. However, the embodiments described below are merely examples, and there is no intention to exclude the application of various modifications and techniques not specified below. The present technology can be implemented with various modifications (for example, by combining the embodiments) without departing from the spirit of the technology. In addition, in the description of the drawings below, the same or similar parts are denoted by the same or similar symbols. The drawings are schematic and do not necessarily correspond to actual dimensions or proportions. The drawings may also include portions that differ in dimensional relationships and ratios.
(センサデバイスの構成)
 図1は、本技術の一実施形態に係るセンサデバイスの概略的構造の一例を示す平面図である。また、図2は、本技術の一実施形態に係るセンサデバイスの概略的構造の一例を示す部分断面図である。
(Sensor device configuration)
FIG. 1 is a plan view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology. Moreover, FIG. 2 is a partial sectional view showing an example of a schematic structure of a sensor device according to an embodiment of the present technology.
 これらの図に示されるように、センサデバイス1は、インターポーザ基板10上にイメージセンサチップ20(1)を含む複数の半導体チップ(以下「チップ」という。)20が並置されパッケージ化されたLSIチップである。本開示のセンサデバイス1は、例えばCOW型の半導体デバイスであり得る。インターポーザ基板10は、例えばシリコン(Si)を主材料とした支持基板と、その上に形成される配線パターンを含む配線層11とを含み構成される半導体基板である。他の例で示されるように、インターポーザ基板10に代えて、集積回路層を含むロジック回路基板が用いられ得る。インターポーザ基板10上の周縁部には、幾つかの電極パッド30が形成されている。電極パッド30には、例えばワイヤボンディングが形成される。 As shown in these figures, the sensor device 1 is an LSI chip in which a plurality of semiconductor chips (hereinafter referred to as "chips") 20 including an image sensor chip 20(1) are juxtaposed and packaged on an interposer substrate 10. It is. The sensor device 1 of the present disclosure may be, for example, a COW type semiconductor device. The interposer substrate 10 is a semiconductor substrate that includes a support substrate mainly made of silicon (Si), for example, and a wiring layer 11 including a wiring pattern formed thereon. As shown in other examples, interposer substrate 10 may be replaced with a logic circuit board that includes an integrated circuit layer. Several electrode pads 30 are formed on the periphery of the interposer substrate 10 . For example, wire bonding is formed on the electrode pad 30.
 インターポーザ基板10とこれに載置される複数のチップ20とは、それぞれの接合面に形成された銅(Cu)電極どうしの接合により電気的に接続される。これにより、インターポーザ基板10上に並置された複数のチップ20間は、インターポーザ基板10の配線層11を介して電気的に接続される。本開示では、このようなCu電極どうしが接合された接続構造を「Cu-Cu接続構造」と称することがある。このようなCu-Cu接続構造は、従前のマイクロバンプによる接続構造に比べて、配線インピーダンスを低く抑えることができ、センサデバイス1のより高速な動作を可能とする。なお、便宜上、以下では、インターポーザ基板10側のCu電極を第1のCu電極12と表し、複数のチップ20側のCu電極を第2のCu電極23と表すものとする。 The interposer substrate 10 and the plurality of chips 20 placed thereon are electrically connected by bonding between copper (Cu) electrodes formed on their respective bonding surfaces. Thereby, the plurality of chips 20 arranged in parallel on the interposer substrate 10 are electrically connected via the wiring layer 11 of the interposer substrate 10. In this disclosure, such a connection structure in which Cu electrodes are joined together may be referred to as a "Cu--Cu connection structure." Such a Cu--Cu connection structure can suppress wiring impedance lower than the conventional connection structure using microbumps, and enables faster operation of the sensor device 1. For convenience, hereinafter, the Cu electrode on the interposer substrate 10 side will be referred to as the first Cu electrode 12, and the Cu electrodes on the multiple chips 20 side will be referred to as the second Cu electrode 23.
 複数のチップ20のそれぞれは、各種の半導体集積回路が形成された基板である。本開示では、複数のチップ20は、イメージセンサチップ20(1)とこれに関連した半導体集積回路チップ20(n)(nは各チップを区別するために用いる正数である。)とから構成される。半導体集積回路チップ20(n)は、例えば、クロックを生成するPLLチップやデータを保持するメモリチップ、測距等の演算処理等を行う信号処理チップ、外部との接続を可能にするための通信インターフェースチップ、及び測距光を発光する発光素子チップの少なくともいずれかであり得る。本例では、複数のチップ20のうちのイメージセンサチップ20(1)以外のチップ20(n)は、メモリチップ20(2)であるものとする。本開示では、複数のチップ20のそれぞれは、その上端面の高さが互いに揃うように構成されている。ここで、「上端面の高さが揃う」とは、各チップ20の実質的な半導体材料面の高さが揃っている又は同一であることをいう。例えば、イメージセンサチップ20(1)の場合、その上端面は、半導体材料面上に形成されるカラーフィルタ21やオンチップレンズ22を含まない面をいう。 Each of the plurality of chips 20 is a substrate on which various semiconductor integrated circuits are formed. In the present disclosure, the plurality of chips 20 includes an image sensor chip 20(1) and an associated semiconductor integrated circuit chip 20(n) (n is a positive number used to distinguish each chip). be done. The semiconductor integrated circuit chip 20(n) includes, for example, a PLL chip that generates a clock, a memory chip that stores data, a signal processing chip that performs arithmetic processing such as distance measurement, and a communication chip that enables connection with the outside. It can be at least one of an interface chip and a light emitting element chip that emits distance measuring light. In this example, it is assumed that among the plurality of chips 20, the chips 20(n) other than the image sensor chip 20(1) are memory chips 20(2). In the present disclosure, each of the plurality of chips 20 is configured such that the heights of the upper end surfaces thereof are the same. Here, "the heights of the upper end surfaces are the same" means that the heights of the substantial semiconductor material surfaces of each chip 20 are the same or the same. For example, in the case of the image sensor chip 20(1), the upper end surface is a surface that does not include the color filter 21 or on-chip lens 22 formed on the semiconductor material surface.
 イメージセンサチップ20(1)は、入射する光を受光する画素を構成する複数の受光素子(光電変換素子)がアレイ状に配置された画素アレイを含む半導体基板である。複数の受光素子のそれぞれは、例えばSPADであるが、これに限られない。各SPADは、飛来した光(フォトン)を検出し、これにより発生したキャリアを、アバランシェ増倍を用いて電気信号に変換し、出力する半導体素子である。イメージセンサチップ20(1)は、その受光素子が可視光(RGB光)に基づいて電気信号に変換するもので構成されても良いし、或いは、不可視光(例えば赤外線光)に基づいて電気信号に変換するもので構成されても良い。 The image sensor chip 20(1) is a semiconductor substrate that includes a pixel array in which a plurality of light receiving elements (photoelectric conversion elements) forming pixels that receive incident light are arranged in an array. Each of the plurality of light receiving elements is, for example, a SPAD, but is not limited to this. Each SPAD is a semiconductor element that detects incoming light (photons), converts carriers generated thereby into electrical signals using avalanche multiplication, and outputs the electrical signals. The image sensor chip 20(1) may have a light-receiving element that converts visible light (RGB light) into an electrical signal, or converts invisible light (for example, infrared light) into an electrical signal. It may also consist of something that converts into .
 また、図2に示されるように、本開示のイメージセンサチップ20(1)は、画素アレイが形成されたセンサ基板20(1)aと、画素アレイを制御するロジック回路が形成されたロジック基板20(1)bとが積層された積層型イメージセンサチップである。センサ基板20(1)a及びロジック基板20(1)bは、それぞれ、配線層24a及び24bを有し、配線層24a及び24bどうしが接合されることにより積層されている。また、イメージセンサチップ20(1)は、例えば、その裏面(上面)において光を受光する裏面照射型イメージセンサであり得る。イメージセンサチップ20(1)の上面(すなわち、センサ基板20(1)aの裏面)には、カラーフィルタ21及びオンチップレンズ22が積層形成されている。 Further, as shown in FIG. 2, the image sensor chip 20(1) of the present disclosure includes a sensor substrate 20(1)a on which a pixel array is formed, and a logic substrate on which a logic circuit for controlling the pixel array is formed. 20(1)b is a stacked image sensor chip. The sensor board 20(1)a and the logic board 20(1)b each have wiring layers 24a and 24b, and are stacked by bonding the wiring layers 24a and 24b to each other. Further, the image sensor chip 20(1) may be, for example, a back-illuminated image sensor that receives light on its back surface (top surface). A color filter 21 and an on-chip lens 22 are laminated on the upper surface of the image sensor chip 20(1) (that is, the back surface of the sensor substrate 20(1)a).
 また、ロジック基板20(1)bは、例えば、各画素の動作を制御する画素制御回路と、各画素のクエンチ及びリチャージを実現するフロントエンド回路等を含む。或いは、ロジック基板20(1)bは、信号処理回路を含んでも良い。 Furthermore, the logic board 20(1)b includes, for example, a pixel control circuit that controls the operation of each pixel, a front end circuit that realizes quenching and recharging of each pixel, and the like. Alternatively, the logic board 20(1)b may include a signal processing circuit.
 また、複数のチップ20の下面(すなわち、各チップ20がインターポーザ基板10の上面に対向する面)には、いくつかの第2のCu電極23が形成されている。イメージセンサチップ20(1)の第2のCu電極23は、例えば、ロジック基板20(1)bを貫通して形成されたビアホール25(貫通電極)を介して、ロジック基板20(1)bの配線層24bに接続されている。複数のチップ20の第2のCu電極23は、インターポーザ基板10の上面に形成された第1のCu電極12と接合されてCu-Cu接続構造を形成する。これにより、複数のチップ20間は、インターポーザ基板10の配線層を介して電気的に接続される。 Further, several second Cu electrodes 23 are formed on the lower surfaces of the plurality of chips 20 (that is, the surfaces where each chip 20 faces the upper surface of the interposer substrate 10). The second Cu electrode 23 of the image sensor chip 20(1) is connected to the logic board 20(1)b through a via hole 25 (through electrode) formed through the logic board 20(1)b, for example. It is connected to the wiring layer 24b. The second Cu electrodes 23 of the plurality of chips 20 are joined to the first Cu electrodes 12 formed on the upper surface of the interposer substrate 10 to form a Cu--Cu connection structure. Thereby, the plurality of chips 20 are electrically connected via the wiring layer of the interposer substrate 10.
(変形例)
 ここで、本開示のセンサデバイス1のチップ構造の変形例を説明する。上述した例では、センサデバイス1は、インターポーザ基板としてのインターポーザ基板10上にイメージセンサチップ20(1)及びメモリチップ20(2)が載置された構成であったが、これに限られず、以下に述べるように、種々の構成をとることができる。
(Modified example)
Here, a modification of the chip structure of the sensor device 1 of the present disclosure will be described. In the above example, the sensor device 1 has a configuration in which the image sensor chip 20 (1) and the memory chip 20 (2) are placed on the interposer substrate 10 as an interposer substrate, but the configuration is not limited to this, and the following will be described. As described in , various configurations are possible.
 図3は、本技術の一実施形態に係るセンサデバイスの概略的構造の第1の変形例を示す部分断面図である。同図では、インターポーザ基板10上に、複数のチップ20として、イメージセンサチップ20(1)と、メモリチップ20(2)と、信号処理チップ20(3)とが載置されたセンサデバイス1が例示されている。同図に示すセンサデバイス1もまた、複数のチップ20とインターポーザ基板10との間はCu-Cu接続構造によって電気的に接続されている。これにより、配線インピーダンスは低く抑えられ、センサデバイス1の高速に動作を可能にする。また、本例では、メモリチップ20(2)及び信号処理チップ20(3)のそれぞれの表面又はその一部には、反射防止膜26が形成されている。 FIG. 3 is a partial cross-sectional view showing a first modification of the schematic structure of the sensor device according to an embodiment of the present technology. In the figure, a sensor device 1 includes a plurality of chips 20, such as an image sensor chip 20 (1), a memory chip 20 (2), and a signal processing chip 20 (3), mounted on an interposer substrate 10. Illustrated. In the sensor device 1 shown in the figure, the plurality of chips 20 and the interposer substrate 10 are also electrically connected by a Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed. Further, in this example, an antireflection film 26 is formed on each surface or a portion of the memory chip 20(2) and the signal processing chip 20(3).
 反射防止膜26は、イメージセンサチップ20(1)に並置される他のチップ20(n)に照射した光の反射光がイメージセンサチップ20(1)へ入り込むことを防止する。反射防止膜26は、例えば青色のカラーフィルタ21と同じ材料で形成される。青色のカラーフィルタ21は、青色の波長の光を透過させ、赤色や緑色の波長の光を吸収する。したがって、青色の光は、青色のカラーフィルタ21を透過して他のチップ20(n)に到達するが、他のチップ20(n)の構成材料であるシリコンによって吸収され易く、その動作にも支障がない。このような反射防止膜26は、例えば、イメージセンサチップ20(1)上にカラーフィルタ21を形成する工程で併せて他のチップ20(n)上に形成される。すなわち、上述したように、本開示のセンサデバイス1では、イメージセンサチップ20(1)と他のチップ20(n)との上端面の高さが同じであることから、反射防止膜26の形成にカラーフィルタ21の形成工程を利用することができるようになっている。 The anti-reflection film 26 prevents reflected light from light irradiated onto another chip 20(n) arranged in parallel to the image sensor chip 20(1) from entering the image sensor chip 20(1). The antireflection film 26 is made of the same material as the blue color filter 21, for example. The blue color filter 21 transmits blue wavelength light and absorbs red and green wavelength light. Therefore, although the blue light passes through the blue color filter 21 and reaches the other chip 20(n), it is easily absorbed by the silicon that is the constituent material of the other chip 20(n), which may affect its operation. There is no problem. Such an anti-reflection film 26 is formed, for example, on the other chip 20(n) at the same time as the process of forming the color filter 21 on the image sensor chip 20(1). That is, as described above, in the sensor device 1 of the present disclosure, since the height of the top surface of the image sensor chip 20(1) and the other chips 20(n) are the same, the formation of the antireflection film 26 is The process for forming the color filter 21 can be used in this manner.
 或いは、反射防止膜26は、カラーフィルタ21を形成する工程を利用して、各色(すなわち、RGB)のカラーフィルタ21が積層されて形成されても良い。これにより、反射防止膜26は、各色のカラーフィルタ21によって特定の色の波長の光を吸収するので、イメージセンサチップ20(1)への光の入り込みを防止することができる。 Alternatively, the antireflection film 26 may be formed by stacking color filters 21 of each color (that is, RGB) using the process of forming the color filters 21. Thereby, the anti-reflection film 26 absorbs light of a specific color wavelength by the color filter 21 of each color, so that it is possible to prevent light from entering the image sensor chip 20(1).
 また、他の例として、反射防止膜26は、反射率を低く抑えた例えばタングステン(W)化合物材料によって成膜形成されても良い。本開示のようなセンサデバイス1では、画素出力のキャリブレーションのためのオプティカルブラック画素を形成するためにタングステンが用いられる。したがって、このようなオプティカルブラック画素の形成工程を利用して、タングステンの反射防止膜26の形成がなされ得る。 Furthermore, as another example, the antireflection film 26 may be formed of a tungsten (W) compound material with low reflectance, for example. In the sensor device 1 as disclosed herein, tungsten is used to form optical black pixels for pixel output calibration. Therefore, the tungsten antireflection film 26 can be formed using the optical black pixel formation process.
 図4は、本技術の一実施形態に係るセンサデバイスの概略的構造の第2の変形例を示す部分断面図である。同図では、インターポーザ基板10上に、複数のチップ20として、イメージセンサチップ20(1)と、メモリチップ20(2)と、信号処理チップ20(3)とが載置されたセンサデバイス1が例示されている。また、本例では、各チップ20どうしの間に反射防止膜26が充填されている。反射防止膜26は、例えば樹脂組成材料である。このような反射防止膜26は、半導体製造プロセスにおいて、例えばリソグラフィ工程でのレジスト樹脂の塗布の不均一を防止するために用いられ、除去されなかったものである。 FIG. 4 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology. In the figure, a sensor device 1 includes a plurality of chips 20, such as an image sensor chip 20 (1), a memory chip 20 (2), and a signal processing chip 20 (3), mounted on an interposer substrate 10. Illustrated. Further, in this example, an antireflection film 26 is filled between each chip 20. The antireflection film 26 is made of, for example, a resin composition material. Such an antireflection film 26 is used in a semiconductor manufacturing process, for example, to prevent uneven coating of resist resin in a lithography process, and is not removed.
 同図に示すセンサデバイス1もまた、複数のチップ20とインターポーザ基板10との間はCu-Cu接続構造によって電気的に接続されている。これにより、配線インピーダンスは低く抑えられ、センサデバイス1の高速に動作を可能にする。 In the sensor device 1 shown in the figure, the plurality of chips 20 and the interposer substrate 10 are also electrically connected by a Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
 図5は、本技術の一実施形態に係るセンサデバイスの概略的構造の第2の変形例を示す部分断面図である。同図では、インターポーザ基板10上に、複数のチップ20として、イメージセンサチップ20(1)と、発光素子チップ20(4)とが載置されたセンサデバイス1が例示されている。発光素子チップ20(4)は、測距用の光を発光する例えば垂直共振器型面発光レーザ(VCSEL)チップである。このように、イメージセンサチップ20(1)と発光素子チップ20(4)とが一体化されたLSIチップは、測距センサデバイスとして知られている。 FIG. 5 is a partial cross-sectional view showing a second modification of the schematic structure of the sensor device according to an embodiment of the present technology. In the figure, a sensor device 1 is illustrated in which an image sensor chip 20(1) and a light emitting element chip 20(4) are placed as a plurality of chips 20 on an interposer substrate 10. The light emitting element chip 20 (4) is, for example, a vertical cavity surface emitting laser (VCSEL) chip that emits light for distance measurement. The LSI chip in which the image sensor chip 20(1) and the light emitting element chip 20(4) are integrated in this way is known as a distance measurement sensor device.
 同図に示すセンサデバイス1もまた、複数のチップ20とインターポーザ基板10との間はCu-Cu接続構造によって電気的に接続されている。これにより、配線インピーダンスは低く抑えられ、センサデバイス1の高速に動作を可能にする。 In the sensor device 1 shown in the figure, the plurality of chips 20 and the interposer substrate 10 are also electrically connected by a Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
 図6は、本技術の一実施形態に係るセンサデバイスの概略的構造の第4の変形例を示す部分断面図である。同図では、半導体基板が、インターポーザ基板10に代えて、ロジック基板40であるセンサデバイス1の例が示されている。すなわち、本例のセンサデバイス1は、ロジック基板40と、これに載置された複数のチップ20とを含み構成されている。複数のチップ20は、上述したように、イメージセンサチップ20(1)とこれに関連する他のチップ20(n)である。ロジック基板40とこれに載置された複数のチップ20とは、上述したCu-Cu接続構造により電気的に接続されている。これにより、配線インピーダンスは低く抑えられ、センサデバイス1の高速に動作を可能にする。 FIG. 6 is a partial cross-sectional view showing a fourth modification of the schematic structure of the sensor device according to an embodiment of the present technology. The figure shows an example of the sensor device 1 in which the semiconductor substrate is a logic substrate 40 instead of the interposer substrate 10. That is, the sensor device 1 of this example includes a logic board 40 and a plurality of chips 20 mounted on the logic board 40. As described above, the plurality of chips 20 are the image sensor chip 20(1) and other chips 20(n) related thereto. The logic board 40 and the plurality of chips 20 mounted thereon are electrically connected by the above-mentioned Cu--Cu connection structure. Thereby, the wiring impedance is kept low and the sensor device 1 can operate at high speed.
 イメージセンサチップ20(1)は、積層型であっても良いし、センサ基板のみの単層型であっても良い。積層型のイメージセンサチップ20(1)の場合、上述したロジック基板20(1)bのロジック回路の一部がロジック基板40に形成され得る。イメージセンサチップ20(1)は、ロジック基板40とのCu-Cu接続構造を介して、ロジック基板40内のロジック回路並びにメモリチップ20(2)及び信号処理チップ20(3)に電気的に接続される。 The image sensor chip 20(1) may be of a laminated type or may be of a single layer type including only the sensor substrate. In the case of the stacked image sensor chip 20(1), a part of the logic circuit of the logic board 20(1)b described above may be formed on the logic board 40. The image sensor chip 20(1) is electrically connected to the logic circuit in the logic board 40, the memory chip 20(2), and the signal processing chip 20(3) via a Cu-Cu connection structure with the logic board 40. be done.
(センサデバイスの製造方法)
 次に、センサデバイス1の製造方法について説明する。図7A及び7Bは、本技術の一実施形態に係るセンサデバイスの製造方法の一例を説明するための図である。
(Method for manufacturing sensor device)
Next, a method for manufacturing the sensor device 1 will be described. 7A and 7B are diagrams for explaining an example of a method for manufacturing a sensor device according to an embodiment of the present technology.
 まず、センサ基板20(1)aが形成されたウェハW1と、ロジック基板20(1)bが形成されたウェハW2とがそれぞれ作製される(図7(a))。ウェハW1及びW2の作製には、既知の半導体製造プロセスを用いることができる。 First, a wafer W1 on which the sensor substrate 20(1)a is formed and a wafer W2 on which the logic substrate 20(1)b is formed are respectively produced (FIG. 7(a)). A known semiconductor manufacturing process can be used to fabricate the wafers W1 and W2.
 次に、ウェハW1とウェハW2とを互いの配線層どうしが対向するように所定の位置関係で貼り合わせて一体化する(図7(b))。ウェハW1とウェハW2とが一体化したウェハをWとする。また、同図(b)に示す例では、ロジック基板20(1)bの一方の面(貼り合わせた面とは反対側の面)は、BGR(バックグラインダ)により薄化され、更に、ビアホール25が形成され、第2のCu電極23が形成されている。 Next, the wafer W1 and the wafer W2 are bonded together in a predetermined positional relationship so that their wiring layers face each other (FIG. 7(b)). Let W be a wafer in which the wafer W1 and the wafer W2 are integrated. In addition, in the example shown in FIG. 2(b), one surface of the logic board 20(1)b (the surface opposite to the bonded surface) is thinned by a BGR (back grinder), and furthermore, via holes are formed. 25 is formed, and a second Cu electrode 23 is formed.
 次に、ウェハWは、保護用の仮シートが貼着された後、ダイシングされて、これにより、個片化された積層型のイメージセンサチップ20(1)が得られる(図7(c))。なお、同図には示されていないが、複数のチップ20のうちのイメージセンサチップ20(1)以外の他のチップもまた、同様のプロセスによって作製される。ここでは、他のチップは、メモリチップ20(2)及び信号処理チップ20(3)であるものとする。 Next, the wafer W is diced after a temporary protective sheet is pasted thereon, thereby obtaining individualized stacked image sensor chips 20(1) (FIG. 7(c)). ). Note that although not shown in the figure, other chips other than the image sensor chip 20(1) among the plurality of chips 20 are also manufactured by the same process. Here, it is assumed that the other chips are the memory chip 20(2) and the signal processing chip 20(3).
 次に、個片化されたイメージセンサチップ20(1)は、メモリチップ20(2)及び信号処理チップ20(3)とともにインターポーザ基板10上に載置されて結合される(図7(d))。このとき、各チップ20の第2のCu電極23は、インターポーザ基板10の第1のCu電極12と例えば熱圧着により接合され、Cu-Cu接続構造を形成する。また、複数のチップ20間に形成される空間には反射防止膜26が充填される。反射防止膜26は、例えばリソグラフィ工程でのレジスト樹脂の塗布の不均一を防止する。更に、インターポーザ基板10上に形成された複数のチップ20の上面は例えば研磨されて高さが揃えられる。これにより、以降の工程においても、特殊な装置や設備を利用することなく、従前の装置や設備を用いることができる。 Next, the image sensor chip 20(1) that has been separated into pieces is placed on the interposer substrate 10 and combined together with the memory chip 20(2) and the signal processing chip 20(3) (FIG. 7(d) ). At this time, the second Cu electrode 23 of each chip 20 is bonded to the first Cu electrode 12 of the interposer substrate 10 by, for example, thermocompression bonding, forming a Cu--Cu connection structure. Furthermore, the spaces formed between the plurality of chips 20 are filled with an antireflection film 26 . The antireflection film 26 prevents nonuniform application of resist resin during, for example, a lithography process. Furthermore, the upper surfaces of the plurality of chips 20 formed on the interposer substrate 10 are polished to have the same height, for example. Thereby, even in subsequent steps, conventional equipment and equipment can be used without using special equipment or equipment.
 次に、インターポーザ基板10上に載置されたイメージセンサチップ20(1)の上面には、カラーフィルタ21が形成され、更に、オンチップレンズ22が形成される(図7(e))。このように、本例の製造方法では、複数のチップ20の上面の高さが揃った状態で、熱圧着による接合工程の後に、カラーフィルタ21及びオンチップレンズ22を行うことができる。 Next, a color filter 21 is formed on the upper surface of the image sensor chip 20(1) placed on the interposer substrate 10, and an on-chip lens 22 is further formed (FIG. 7(e)). As described above, in the manufacturing method of this example, the color filter 21 and the on-chip lens 22 can be formed after the bonding process by thermocompression bonding with the top surfaces of the plurality of chips 20 having the same height.
 そして、インターポーザ基板10上の複数のチップ間に充填されていた反射防止膜26は除去され、更に、電極パッド30が形成されて、製品としてのセンサデバイス1となる。 Then, the antireflection film 26 filled between the plurality of chips on the interposer substrate 10 is removed, and furthermore, the electrode pads 30 are formed to form the sensor device 1 as a product.
 このように、本開示のセンサデバイス1においては、インターポーザ基板10とその上に配置される複数のチップ20とがCu-Cu接続構造されているので、従前に比してインピーダンスを低く抑えることができ、高速通信に適応できるようになる。 In this way, in the sensor device 1 of the present disclosure, the interposer substrate 10 and the plurality of chips 20 arranged thereon have a Cu-Cu connection structure, so that the impedance can be kept lower than before. This makes it possible to adapt to high-speed communication.
 また、本開示のセンサデバイス1においては、インターポーザ基板10と複数のチップ20との間の電気的接続はCu-Cu接続構造であるので、Cu電極の微細化を可能にし、また、配線密度の高密度化を可能にし、これにより、チップサイズの更なる小型化を図ることができるようになる。 Further, in the sensor device 1 of the present disclosure, the electrical connection between the interposer substrate 10 and the plurality of chips 20 is a Cu-Cu connection structure, which enables miniaturization of the Cu electrode and also reduces the wiring density. This makes it possible to increase the density, thereby making it possible to further reduce the chip size.
 更に、本開示のセンサデバイス1においては、中間基板上に載置される複数のチップ20の上端面の高さが揃っているので、半導体製造プロセスが複雑化せず、既存の設備を利用して製造することができる。 Furthermore, in the sensor device 1 of the present disclosure, the heights of the upper end surfaces of the plurality of chips 20 placed on the intermediate substrate are the same, so the semiconductor manufacturing process is not complicated and existing equipment can be used. It can be manufactured using
 上記各実施形態は、本技術を説明するための例示であり、本技術をこれらの実施形態にのみ限定する趣旨ではない。本技術は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。 The embodiments described above are examples for explaining the present technology, and are not intended to limit the present technology only to these embodiments. The present technology can be implemented in various forms without departing from the gist thereof.
 例えば、本明細書に開示される方法においては、その結果に矛盾が生じない限り、ステップ、動作又は機能を並行して又は異なる順に実施しても良い。説明されたステップ、動作及び機能は、単なる例として提供されており、ステップ、動作及び機能のうちのいくつかは、技術の要旨を逸脱しない範囲で、省略でき、また、互いに結合させることで一つのものとしてもよく、また、他のステップ、動作又は機能を追加しても良い。 For example, in the methods disclosed herein, steps, acts, or functions may be performed in parallel or in a different order unless the results are inconsistent. The steps, acts, and functions described are provided as examples only, and some of the steps, acts, and functions may be omitted or combined with each other without departing from the spirit of the technology. It is also possible to add other steps, actions, or functions.
 また、本明細書では、さまざまな実施形態が開示されているが、一の実施形態における特定のフィーチャ(技術的事項)を、適宜改良しながら、他の実施形態に追加し、又は該他の実施形態における特定のフィーチャと置換することができ、そのような形態も本技術の要旨に含まれる。 Further, although various embodiments are disclosed in this specification, specific features (technical matters) in one embodiment may be added to other embodiments while improving them as appropriate, or Certain features in the embodiments may be replaced and such forms are also within the scope of the present technology.
 また、本技術は、以下のような技術的事項を含み構成されても良い。
(1)
 配線層を含み、該配線層に電気的に接続された第1のCu電極を備える半導体基板と、
 前記半導体基板上に載置され、光電変換素子がアレイ状に配置された画素アレイが形成されたイメージセンサチップと、
 前記半導体基板上に前記イメージセンサチップに並置された半導体集積回路チップと、を備え、
 前記イメージセンサチップ及び前記半導体集積回路チップのそれぞれは、前記半導体基板に対向する面に前記第1のCu電極と接合される第2の電極を備える、
センサデバイス。
(2)
 前記イメージセンサチップと前記半導体集積回路チップとは、その上端面の高さが揃っている、
前記(1)に記載のセンサデバイス。
(3)
 前記半導体基板は、インターポーザ基板である、
前記(1)又は(2)に記載のセンサデバイス。
(4)
 前記半導体基板は、ロジック回路が形成されたロジック基板である、
前記(1)から(3)のいずれか一つに記載のセンサデバイス。
(5)
 前記イメージセンサチップは、前記画素アレイを含むセンサ基板と、前記画素アレイを制御するロジック基板とが積層された積層型イメージセンサチップである、
前記(1)から(4)のいずれか一つに記載のセンサデバイス。
(6)
 前記半導体集積回路チップは、メモリチップ、信号処理チップ、及び発光素子チップの少なくともいずれかである、
前記(1)から(5)のいずれか一つに記載のセンサデバイス。
(7)
 前記半導体集積回路チップの表面の少なくとも一部には、照射される光の反射を防止する反射防止膜が形成されている、
前記(1)から(6)のいずれか一つに記載のセンサデバイス。
(8)
 前記反射防止膜は、カラーフィルタである、
前記(1)から(3)のいずれか一つに記載のセンサデバイス。
(9)
 前記カラーフィルタは、少なくとも青色の波長の光を透過させる青色フィルタである、前記(8)に記載のセンサデバイス。
Further, the present technology may be configured to include the following technical matters.
(1)
a semiconductor substrate including a wiring layer and having a first Cu electrode electrically connected to the wiring layer;
an image sensor chip placed on the semiconductor substrate and formed with a pixel array in which photoelectric conversion elements are arranged in an array;
a semiconductor integrated circuit chip juxtaposed to the image sensor chip on the semiconductor substrate;
Each of the image sensor chip and the semiconductor integrated circuit chip includes a second electrode bonded to the first Cu electrode on a surface facing the semiconductor substrate.
sensor device.
(2)
The image sensor chip and the semiconductor integrated circuit chip have upper end surfaces that are the same in height;
The sensor device according to (1) above.
(3)
the semiconductor substrate is an interposer substrate;
The sensor device according to (1) or (2) above.
(4)
The semiconductor substrate is a logic substrate on which a logic circuit is formed.
The sensor device according to any one of (1) to (3) above.
(5)
The image sensor chip is a stacked image sensor chip in which a sensor substrate including the pixel array and a logic board that controls the pixel array are stacked.
The sensor device according to any one of (1) to (4) above.
(6)
The semiconductor integrated circuit chip is at least one of a memory chip, a signal processing chip, and a light emitting element chip.
The sensor device according to any one of (1) to (5) above.
(7)
An anti-reflection film is formed on at least a portion of the surface of the semiconductor integrated circuit chip to prevent reflection of irradiated light.
The sensor device according to any one of (1) to (6) above.
(8)
The anti-reflection film is a color filter,
The sensor device according to any one of (1) to (3) above.
(9)
The sensor device according to (8), wherein the color filter is a blue filter that transmits at least blue wavelength light.
1…センサデバイス
10…インターポーザ基板
 11…配線層
 12…第1のCu電極
20…チップ
 20(1)…イメージセンサチップ
  20(1)a…センサ基板
  20(1)b…ロジック基板
 20(2)…メモリチップ
 20(3)…信号処理チップ
 20(4)…発光素子チップ
 21…カラーフィルタ
 22…オンチップレンズ
 23…第2のCu電極
 24a,24b…配線層
 25…ビアホール
 26…反射防止膜
 27…埋め込み材
30…電極パッド
40…ロジック基板
1...Sensor device 10...Interposer board 11...Wiring layer 12...1st Cu electrode 20...Chip 20(1)...Image sensor chip 20(1)a...Sensor board 20(1)b...Logic board 20(2) ...Memory chip 20 (3) ... Signal processing chip 20 (4) ... Light emitting element chip 21 ... Color filter 22 ... On-chip lens 23 ... Second Cu electrode 24a, 24b ... Wiring layer 25 ... Via hole 26 ... Antireflection film 27 ...embedding material 30...electrode pad 40...logic board

Claims (9)

  1.  配線層を含み、該配線層に電気的に接続された第1のCu電極を備える半導体基板と、
     前記半導体基板上に載置され、光電変換素子がアレイ状に配置された画素アレイが形成されたイメージセンサチップと、
     前記半導体基板上に前記イメージセンサチップに並置された半導体集積回路チップと、を備え、
     前記イメージセンサチップ及び前記半導体集積回路チップのそれぞれは、前記半導体基板に対向する面に前記第1のCu電極と接合される第2の電極を備える、
    センサデバイス。
    a semiconductor substrate including a wiring layer and having a first Cu electrode electrically connected to the wiring layer;
    an image sensor chip placed on the semiconductor substrate and formed with a pixel array in which photoelectric conversion elements are arranged in an array;
    a semiconductor integrated circuit chip juxtaposed to the image sensor chip on the semiconductor substrate;
    Each of the image sensor chip and the semiconductor integrated circuit chip includes a second electrode bonded to the first Cu electrode on a surface facing the semiconductor substrate.
    sensor device.
  2.  前記イメージセンサチップと前記半導体集積回路チップとは、その上端面の高さが揃うように構成される、
    請求項1に記載のセンサデバイス。
    The image sensor chip and the semiconductor integrated circuit chip are configured such that the heights of their upper end surfaces are the same;
    The sensor device according to claim 1.
  3.  前記半導体基板は、インターポーザ基板である、
    請求項2に記載のセンサデバイス。
    the semiconductor substrate is an interposer substrate;
    The sensor device according to claim 2.
  4.  前記半導体基板は、ロジック回路が形成されたロジック基板である、
    請求項2に記載のセンサデバイス。
    The semiconductor substrate is a logic substrate on which a logic circuit is formed.
    The sensor device according to claim 2.
  5.  前記イメージセンサチップは、前記画素アレイを含むセンサ基板と、前記画素アレイを制御するロジック基板とが積層された積層型イメージセンサチップである、
    請求項2に記載のセンサデバイス。
    The image sensor chip is a stacked image sensor chip in which a sensor substrate including the pixel array and a logic board that controls the pixel array are stacked.
    The sensor device according to claim 2.
  6.  前記半導体集積回路チップは、メモリチップ、信号処理チップ、及び発光素子チップの少なくともいずれかである、
    請求項2に記載のセンサデバイス。
    The semiconductor integrated circuit chip is at least one of a memory chip, a signal processing chip, and a light emitting element chip.
    The sensor device according to claim 2.
  7.  前記半導体集積回路チップの表面の少なくとも一部には、照射される光の反射を防止する反射防止膜が形成されている、
    請求項2に記載のセンサデバイス。
    An anti-reflection film is formed on at least a portion of the surface of the semiconductor integrated circuit chip to prevent reflection of irradiated light.
    The sensor device according to claim 2.
  8.  前記反射防止膜は、カラーフィルタである、
    請求項7に記載のセンサデバイス。
    The anti-reflection film is a color filter,
    The sensor device according to claim 7.
  9.  前記カラーフィルタは、少なくとも青色の波長の光を透過させる青色フィルタである、請求項8に記載のセンサデバイス。
     
    The sensor device according to claim 8, wherein the color filter is a blue filter that transmits at least light of a blue wavelength.
PCT/JP2023/006902 2022-04-08 2023-02-27 Sensor device WO2023195265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022064417 2022-04-08
JP2022-064417 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195265A1 true WO2023195265A1 (en) 2023-10-12

Family

ID=88242834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006902 WO2023195265A1 (en) 2022-04-08 2023-02-27 Sensor device

Country Status (1)

Country Link
WO (1) WO2023195265A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241495A (en) * 2003-02-04 2004-08-26 Nikon Corp Solid-state imaging device
WO2006129762A1 (en) * 2005-06-02 2006-12-07 Sony Corporation Semiconductor image sensor module and method for manufacturing same
WO2016143194A1 (en) * 2015-03-11 2016-09-15 オリンパス株式会社 Image capture device
JP2016171297A (en) * 2015-03-12 2016-09-23 ソニー株式会社 Solid-state imaging device, manufacturing method, and electronic device
WO2020095544A1 (en) * 2018-11-07 2020-05-14 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic appliance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241495A (en) * 2003-02-04 2004-08-26 Nikon Corp Solid-state imaging device
WO2006129762A1 (en) * 2005-06-02 2006-12-07 Sony Corporation Semiconductor image sensor module and method for manufacturing same
WO2016143194A1 (en) * 2015-03-11 2016-09-15 オリンパス株式会社 Image capture device
JP2016171297A (en) * 2015-03-12 2016-09-23 ソニー株式会社 Solid-state imaging device, manufacturing method, and electronic device
WO2020095544A1 (en) * 2018-11-07 2020-05-14 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic appliance

Similar Documents

Publication Publication Date Title
US10930699B2 (en) Method and apparatus for image sensor packaging
US9337227B2 (en) Multi-substrate image sensor having a dual detection function
US9748304B2 (en) Image sensor devices, methods of manufacture thereof, and semiconductor device manufacturing methods
TWI612648B (en) Front side illuminated image sensors
WO2021146860A1 (en) Stacked chip, manufacturing method, image sensor, and electronic device
TW201803056A (en) Semiconductor package and manufacturing method thereof
KR102382364B1 (en) Wafer level image sensor package
KR20180016053A (en) Stacked Image Sensor Package And Stacked Image Sensor Module
US9947711B2 (en) Semiconductor device with surface integrated focusing element and method of producing a semiconductor device with focusing element
JP2012094882A (en) Manufacturing method for wafer-level image sensor module
US20130249031A1 (en) Quantum Efficiency Back Side Illuminated CMOS Image Sensor And Package, And Method Of Making Same
US20130168791A1 (en) Quantum Efficiency Back Side Illuminated CMOS Image Sensor And Package, And Method Of Making Same
CN110945660B (en) Stacked chip, manufacturing method, image sensor and electronic device
CN210866179U (en) Stacked image sensing chip, image sensor and electronic device
JP2009176949A (en) Backside irradiation-type solid state image pickup device and its production process
CN112166504A (en) Image pickup apparatus
WO2023195265A1 (en) Sensor device
US20230197760A1 (en) Stacked image sensor device and method of forming same
WO2020063121A1 (en) Stacked image sensor pixel structure and preparation method
CN109585434B (en) Wafer-level light sensing system packaging structure and manufacturing method thereof
KR20210110154A (en) Stacked image sensor device and method of forming same
CN111009542A (en) Packaging method and packaging structure
US20120199924A1 (en) Bsi image sensor package with variable light transmission for even reception of different wavelengths
US20230064356A1 (en) Image sensor ball grid array package
WO2022266560A1 (en) Stacked integrated circuit dies and interconnect structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784558

Country of ref document: EP

Kind code of ref document: A1