WO2023195258A1 - Rotor, and rotating electric machine - Google Patents

Rotor, and rotating electric machine Download PDF

Info

Publication number
WO2023195258A1
WO2023195258A1 PCT/JP2023/006316 JP2023006316W WO2023195258A1 WO 2023195258 A1 WO2023195258 A1 WO 2023195258A1 JP 2023006316 W JP2023006316 W JP 2023006316W WO 2023195258 A1 WO2023195258 A1 WO 2023195258A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
magnet
rotor
flat surface
circumferential direction
Prior art date
Application number
PCT/JP2023/006316
Other languages
French (fr)
Japanese (ja)
Inventor
真弘 北野
智哉 上田
嵩征 原
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023195258A1 publication Critical patent/WO2023195258A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotor and a rotating electric machine.
  • Rotating electric machines can suppress vibration and noise by reducing cogging torque.
  • BACKGROUND ART Conventional rotating electric machines reduce cogging torque by providing step skew in a rotor and a stator, as described in Patent Document 1, for example.
  • One of the objects of the present invention is to provide a rotor and a rotating electrical machine that can reduce cogging torque without providing skew.
  • One aspect of the rotor of the present invention is a rotor having a plurality of magnetic poles arranged along the circumferential direction, the rotor core extending in a columnar shape around a central axis, and the rotor core being held in a magnet hole of the rotor core and forming the magnetic poles. It has a plurality of magnets. A straight line passing through the center of the magnetic pole when viewed from the axial direction is the d-axis.
  • the outer circumferential surface of the rotor core facing outward in the radial direction includes a plurality of outer end portions located on the d-axis of each of the magnetic poles, and a plurality of outer end portions located between the outer end portions in the circumferential direction and further than the outer end portions.
  • a plurality of retraction portions are provided which are offset inward in the radial direction.
  • One aspect of the rotating electrical machine of the present invention includes the rotor and a stator disposed radially outside the rotor.
  • FIG. 1 is a schematic cross-sectional view of a rotating electrical machine according to an embodiment.
  • FIG. 2 is a cross-sectional view of a rotating electric machine according to an embodiment.
  • FIG. 3 is a partial cross-sectional view of the rotor of one embodiment.
  • FIG. 4 is a graph showing simulation results of cogging torque when the first angle is changed in one embodiment.
  • FIG. 5 is a graph showing simulation results of cogging torque in the example and the comparative example.
  • the central axis J is shown as appropriate.
  • the central axis J is a virtual line passing through the center of the rotating electrical machine in the following embodiments.
  • the Z axis shown as appropriate in each figure indicates the direction in which the central axis J extends.
  • the axial direction of the central axis J that is, the direction parallel to the Z axis
  • the radial direction centered on the central axis J is simply referred to as the "radial direction.”
  • the circumferential direction centered on is simply called the "circumferential direction.”
  • the arrow ⁇ shown in the drawings indicates the circumferential direction.
  • the side that moves counterclockwise around the central axis J when viewed from the axial direction that is, the side that the arrow ⁇ points to (+ ⁇ side) will be referred to as "one side in the circumferential direction," and the side that moves clockwise, In other words, the opposite side (- ⁇ side) to the side toward which the arrow ⁇ is directed is called “the other side in the circumferential direction.”
  • FIG. 1 is a schematic cross-sectional view of the rotating electrical machine 10 along the central axis J.
  • FIG. 2 is a cross-sectional view of the rotating electrical machine 10 along a plane perpendicular to the central axis J. Note that in FIG. 2, illustration of the housing 9 is omitted.
  • the rotating electrical machine 10 of this embodiment is an inner rotor type rotating electrical machine.
  • the rotating electric machine 10 includes a rotor 30, a stator 40, and a housing 9 that accommodates the rotor 30 and the stator 40 inside.
  • the rotating electric machine of this embodiment is an inner rotor type motor with 8 poles and 48 slots. Further, in this embodiment, the rotating electric machine 10 is a three-phase AC motor.
  • stator 40 faces the rotor 30 with a gap therebetween.
  • Stator 40 is arranged radially outside of rotor 30.
  • Stator 40 includes a stator core 41, an insulator 42a, and a plurality of coils 42.
  • Stator core 41 has an annular core back 41a and a plurality of teeth 41b that protrude radially inward from core back 41a.
  • the plurality of coils 42 are respectively attached to the plurality of teeth 41b via insulators 42a.
  • the rotor 30 is rotatable around a central axis J extending in the axial direction.
  • the rotor 30 includes a shaft 31, a rotor core 32, and a plurality of magnets 36.
  • the shaft 31 has a cylindrical shape that extends in the axial direction centering on the central axis J.
  • the rotor core 32 has an annular shape centered on the central axis J.
  • the rotor 30 includes a plurality of magnetic poles 3 arranged along the circumferential direction.
  • the plurality of magnetic poles 3 constitute N poles and S poles alternately in the circumferential direction.
  • the rotor 30 of this embodiment includes eight magnetic poles 3. Therefore, the rotor 30 is assumed to have four d-axes and four q-axes.
  • a straight line passing through the center of the magnetic pole 3 when looking at the rotor 30 from the axial direction is the d-axis Ld.
  • the bisector of the d-axes Ld adjacent to each other in the circumferential direction is the q-axis Lq. All d-axes Ld and q-axes Lq pass through the central axis J.
  • the magnetic pole 3 is composed of a plurality of magnets 36.
  • one magnetic pole 3 includes three magnets 36.
  • the rotor 30 of this embodiment has 24 magnets 36.
  • the three magnets 36 of one magnetic pole 3 are arranged symmetrically about the d-axis Ld.
  • the rotor core 32 extends in the axial direction centering on the central axis J in a columnar shape.
  • the rotor core 32 has a central hole 32a that passes through the rotor core 32 in the axial direction, and a plurality of lightening holes 32h.
  • the central hole 32a has a substantially circular shape centered on the central axis J.
  • the shaft 31 (see FIG. 1) is passed through the central hole 32a in the axial direction.
  • the lightening holes 32h are arranged along the circumferential direction.
  • the lightening hole 32h is arranged on the q-axis Lq.
  • the rotor core 32 is made of magnetic material. Although not particularly illustrated, the rotor core 32 has a plurality of laminations stacked in the axial direction.
  • a lamination is a plate-like member. The plate surface of the lamination faces in the axial direction.
  • the lamination has a substantially annular plate shape centered on the central axis J.
  • the lamination is, for example, an electrical steel sheet.
  • a plurality of magnet holes 38 are provided in the rotor core 32. When viewed from the axial direction, the magnet holes 38 are arranged radially outward of the center hole 32a and spaced apart in the circumferential direction. Each magnet hole 38 passes through the rotor core 32 in the axial direction. The magnet hole 38 has a uniform shape and extends in the axial direction.
  • One magnet 36 is arranged in each magnet hole 38 .
  • the magnet 36 is fixed to the inner surface of the magnet hole 38 by known means such as resin molding, caulking, and adhesive. That is, the magnet 36 is held in the magnet hole 38 of the rotor core 32.
  • FIG. 3 is a partial cross-sectional view of the rotor 30 around the magnetic poles 3.
  • the plurality of magnet holes 38 include a first magnet hole 38A and a second magnet hole 38B.
  • the first magnet hole 38A is arranged radially outward of the second magnet hole 38B.
  • the pair of second magnet holes 38B are arranged symmetrically in the circumferential direction with respect to the d-axis Ld.
  • the number of second magnet holes 38B in this embodiment is twice the number of first magnet holes 38A.
  • the three magnet holes 38 in which the three magnets 36 constituting one magnetic pole 3 are arranged are called a group S of magnet holes 38.
  • one of the circumferential one side (+ ⁇ side) of the d-axis Ld becomes smaller as it goes radially outward as seen from the axial direction. ).
  • the other one on the other side in the circumferential direction (- ⁇ side) of the d-axis Ld becomes smaller on the other side in the circumferential direction (- ⁇ side) as it goes radially outward when viewed from the axial direction. ⁇ side). That is, the distance between the pair of second magnet holes 38B included in one set S in the circumferential direction gradually increases toward the outside in the radial direction.
  • the first magnet hole 38A is arranged in the circumferential direction between each radially outer end 36h of the pair of second magnet holes 38B.
  • the first magnet hole 38A is arranged radially outward with respect to the pair of second magnet holes 38B.
  • the first magnet hole 38A extends orthogonally to the d-axis Ld.
  • a pair of first flux barrier parts 38c are provided at both ends of the first magnet hole 38A.
  • the pair of first flux barrier parts 38c are arranged at both ends of the magnet 36 accommodated in the first magnet hole 38A.
  • a second flux barrier portion 38d is provided at the radially inner end of the second magnet hole 38B.
  • a third flux barrier portion 38e is provided at the radially outer end of the second magnet hole 38B.
  • the second flux barrier section 38d and the third flux barrier section 38e are arranged at both ends of the magnet 36 accommodated in the second magnet hole 38B.
  • the "flux barrier section” is a section that can suppress the flow of magnetic flux.
  • the configuration of each of the flux barrier parts 38c, 38d, and 38e is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a gap or a non-magnetic part such as a resin part.
  • the flux barrier portions 38c, 38d, and 38e are void portions formed by holes that penetrate the rotor core 32 in the axial direction.
  • the type of magnet 36 is not particularly limited.
  • the magnet 36 may be, for example, a neodymium magnet or a ferrite magnet.
  • the magnet 36 has a rectangular parallelepiped shape that is long in the axial direction. Therefore, the magnet 36 has a rectangular shape when viewed from the axial direction.
  • the direction along the short side of the magnet 36 will be referred to as the thickness direction
  • the direction along the long side will be referred to as the longitudinal direction.
  • the magnet 36 of this embodiment has a thickness direction as a magnetization direction.
  • the magnet 36 extends, for example, from one axial end of the rotor core 32 to the other axial end. Note that the axial dimension of the magnet 36 may be shorter than the axial dimension of the rotor core 32 (the axial dimension of the magnet hole 38). Furthermore, the shape of the magnet 36 is not limited to that described above.
  • the magnet 36 disposed in the first magnet hole 38A will be referred to as a first magnet 36A.
  • the magnet 36 disposed in the second magnet hole 38B is referred to as a second magnet 36B.
  • the magnetic pole 3 includes one first magnet 36A and a pair of second magnets 36B.
  • the first magnet 36A and the second magnet 36B of this embodiment both have a rectangular shape when viewed from the axial direction, but have different dimensions in the thickness direction and the longitudinal direction. However, the first magnet 36A and the second magnet 36B may have the same shape.
  • One first magnet 36A included in one magnetic pole 3 is arranged on the d-axis Ld.
  • the first magnet 36A makes the thickness direction coincide with the radial direction. Therefore, the first magnet 36A has its magnetization direction in the direction in which the d-axis Ld extends. Further, the center position of the first magnet 36A in the longitudinal direction is located on the d-axis Ld.
  • a pair of second magnets 36B included in one magnetic pole 3 are arranged symmetrically in the circumferential direction with respect to the d-axis Ld.
  • the pair of second magnets 36B are spaced apart from each other toward the outside in the radial direction.
  • the second magnet 36B has its thickness direction directed toward the first magnet 36A.
  • the magnetization direction of the second magnet 36B points toward the first magnet 36A.
  • One first magnet 36A and a pair of second magnets 36B constituting one magnetic pole 3 each have the same polarity radially outward. For example, if the radially outward facing surface of the first magnet 36A is a north pole, the radially outward facing surface of the second magnet 36B is also a north pole.
  • Rotor core 32 has an outer circumferential surface 35.
  • the outer circumferential surface 35 is a surface facing outward in the radial direction.
  • the outer peripheral surface 35 is provided with a plurality of outer end portions 35c and a plurality of retraction portions 35d.
  • the outer end portion 35c is located on the d-axis Ld of each magnetic pole 3.
  • the outer end portion 35c extends in an arc shape when viewed from the axial direction.
  • the plurality of outer end portions 35c are arranged on a virtual circle CV centered on the central axis J.
  • the outer circumferential surface 35 of the rotor core 32 is not provided with a portion that protrudes radially outward from the virtual circle CV. That is, the outer end portion 35c constitutes the outer diameter of the rotor core 32.
  • the outer end portion 35c is a fixed area provided on both sides of the d-axis Ld in the circumferential direction with the d-axis Ld as the center.
  • the outer end portion 35c is provided for each magnetic pole 3. Therefore, the rotor core 32 of this embodiment is provided with eight outer end portions 35c, the same number as the magnetic poles 3.
  • the retraction portion 35d is offset radially inward from the outer end portion 35c. Therefore, the outer end 35c is located radially inward than the virtual circle CV passing through the outer end 35c.
  • the retraction portion 35d is located between a pair of outer end portions 35c adjacent to each other in the circumferential direction.
  • the retraction portion 35d is located on the q-axis Lq.
  • the rotor core 32 is provided with the same number (eight) of retraction portions 35d as the outer end portions 35c.
  • the outer end portion 35c located on the d-axis Ld constitutes the outermost diameter of the rotor core 32. Therefore, the rotor 30 is closest to the stator 40 in the radial direction at the outer end 35c.
  • the outer diameter of the retracted portion 35d is smaller than the outer diameter of the outer end portion 35c. Therefore, the radial gap between the rotor 30 and the stator 40 is larger on the radially outer side of the retracted portion 35d than on the radially outer side of the outer end portion 35c.
  • the rotor 30 can make the attractive force and repulsive force received from the magnetic field of the stator 40 at the retracting portion 35d relatively smaller than the attractive force and repulsive force received at the outer end portion 35c.
  • the rotating electric machine 10 of this embodiment has a sufficiently large number of poles relative to the number of slots, and one magnetic pole 3 faces a plurality of teeth 41b.
  • the force that one magnetic pole 3 receives from the stator 40 on the d-axis Ld and the force that it receives from the stator 40 at the end in the circumferential direction are different in phase and cause cogging torque.
  • the outer circumferential surface 35 of the rotor 30 of this embodiment is provided with a retraction portion 35d between the d-axes Ld arranged in the circumferential direction, thereby reducing the force received from the stator 40 in areas remote from the d-axis Ld on both sides in the circumferential direction. Therefore, the cogging torque of the rotating electric machine 10 can be suppressed.
  • the retraction portion 35d has a first flat surface 35a and a second flat surface 35b as flat surfaces. That is, the retraction portion 35d has flat surfaces 35a and 35b.
  • the first flat surface 35a and the second flat surface 35b are flat surfaces each facing outward in the radial direction and extending along the axial direction.
  • the first flat surface 35a is located between the outer end 35c and the second flat surface 35b in the circumferential direction.
  • the second flat surface 35b is located between the first flat surfaces 35a in the circumferential direction. Therefore, one retraction portion 35d is provided with one second flat surface 35b and a pair of first flat surfaces 35a located on both sides of the second flat surface 35b in the circumferential direction.
  • the first flat surface 35a is orthogonal to a virtual orthogonal line La passing through the central axis J when viewed from the axial direction. Therefore, the distance between the first flat surface 35a and the virtual circle CV is greatest on the orthogonal line La. Similarly, the distance between the first flat surface 35a and the stator 40 is also greatest on the orthogonal line La.
  • the first flat surface 35a is located on the radially outer side of the radially outer end 36k of the first magnet 36A. Note that the radially outer end 36k of the first magnet 36A means a portion of the first magnet 36A that is disposed farthest from the center axis J in the radial direction.
  • the radial position is furthest away from the central axis J at the longitudinal end 36k. Therefore, the first flat surface 35a is located on the radially outer side of the longitudinal end portion 36k of the first magnet 36A.
  • the first flat surface 35a is located on the radially outer side of the first flux barrier section 38c.
  • the first flux barrier portion 38c faces the end portion 36k of the first magnet 36A in the longitudinal direction of the first magnet 36A.
  • the magnetic flux within the rotor core 32 tends to concentrate between the first flux barrier portion 38c and the outer peripheral surface 35.
  • the first flat surface 35a is located on the radially outer side of the portion of the rotor core 32 where the magnetic flux density is high.
  • the second flat surface 35b is arranged on the q-axis Lq.
  • the second flat surface 35b is a surface perpendicular to the q-axis. That is, the q-axis Lq is a line orthogonal to the second flat surface 35b.
  • the second flat surface 35b is perpendicular to a virtual orthogonal line (q-axis Lq) passing through the central axis when viewed from the axial direction.
  • the distance between the second flat surface 35b and the virtual circle CV is greatest on the q-axis Lq.
  • the distance between the second flat surface 35b and the stator 40 is also the largest on the q-axis Lq.
  • the second flat surface 35b is located on the radially outer side of the radially outer end 36h of the second magnet 36B.
  • the second flat surface 35b is located on the radially outer side of the third flux barrier portion 38e.
  • the third flux barrier portion 38e faces the end portion 36h of the second magnet 36B in the longitudinal direction of the second magnet 36B.
  • the magnetic flux within the rotor core 32 tends to concentrate between the third flux barrier portion 38e and the outer peripheral surface 35.
  • the second flat surface 35b is located on the radially outer side of the portion of the rotor core 32 where the magnetic flux density is high.
  • the retraction portion 35d has a first flat surface 35a and a second flat surface 35b, which are perpendicular to virtual orthogonal lines La and Lq passing through the central axis when viewed from the axial direction. . Therefore, the dimensions of the retracted portion 35d can be measured on a flat surface, and the dimensions can be easily controlled in the manufacturing process of the rotor core 32.
  • the first flat surface 35a is located on the radially outer side of the radially outer end 36k of the first magnet 36A
  • the second flat surface 35b is located on the radially outer side of the second magnet 36B. It is located on the radially outer side of the end portion 36h.
  • the magnetic flux within the rotor core 32 tends to increase on the radially outer side of the ends 36k and 36h of the magnet 36. Therefore, the attractive force and repulsive force applied from the stator 40 to the radially outer sides of the end portions 36k and 36h of the magnet 36 change with large amplitude depending on the rotation angle, and become a factor in increasing the cogging torque.
  • the rotor core 32 is provided with flux barrier parts 38c and 38e that face the ends 36k and 36h of the magnet 36.
  • the magnetic flux density within the rotor core 32 tends to be high on the radially outer side of the flux barrier portions 38c and 38e.
  • the first flat surface 35a and the second flat surface 35b are located on the radially outer side of the flux barrier parts 38c and 35e, so that the stator 40 It is possible to suppress the magnetic flux density between the two and reduce the cogging torque.
  • the retraction portion 35d has a first flat surface 35a located on the radially outer side of the radially outer end 36k of the first magnet 36A.
  • the first flat surface 35a reduces the attractive force and repulsive force acting on the radially outer region of the end portion 36k of the first magnet 36A.
  • the first flat surface 35a can reduce cogging torque caused by the first magnet 36A.
  • the effect of suppressing cogging torque by the first flat surface 35a can be obtained with the rotor 30 having the first magnet 36A. This effect can also be obtained, for example, in the rotor 30 that has only the first magnet 36A and does not have the second magnet 36B.
  • the angle formed by the orthogonal line La passing through the central axis J and orthogonal to the first flat surface 35a and the d-axis Ld is defined as a first angle ⁇ .
  • the angle formed by the d-axis Ld and the q-axis Lq is defined as a second angle ⁇ . Since the rotor 30 of this embodiment has eight poles, the second angle ⁇ is 22.5°.
  • the first angle ⁇ is preferably 49% or more and 50.5% or less with respect to the second angle ⁇ (49% ⁇ / ⁇ 50.5%).
  • FIG. 4 is a graph showing the simulation results of cogging torque when the first angle ⁇ is changed in this embodiment.
  • the cogging torque changes by changing the first angle ⁇ .
  • the cogging torque can be reduced most when the first angle ⁇ is approximately 49.5% of the second angle ⁇ . More specifically, cogging torque can be effectively suppressed by setting the first angle ⁇ to 49% or more and 50.5% or less of the second angle ⁇ .
  • the retraction portion 35d has a second flat surface 35b located on the radially outer side of the radially outer end of the second magnet 36B.
  • the second flat surface 35b reduces the attractive force and repulsive force acting on the radially outer region of the end portion 36h of the second magnet 36B.
  • the second flat surface 35b can reduce cogging torque caused by the second magnet 36B.
  • the effect of suppressing cogging torque by the second flat surface 35b can be obtained if the rotor 30 has a pair of second magnets 36B. This effect can also be obtained, for example, in the rotor 30 that has only the pair of second magnets 36B and does not have the first magnet 36A.
  • the second flat surface 35b is perpendicular to the q-axis Lq. Therefore, the second flat surface 35b is spaced farthest from the stator 40 on the q-axis Lq. Since the q-axis Lq is located between the d-axes Ld, the function of the q-axis Lq is that the magnetic flux density is low.
  • the second flat surface 35b orthogonal to the q-axis Lq, reduction in the average torque of the rotor 30 can be suppressed. That is, by setting the second flat surface 35b to the q-axis Lq, cogging torque can be suppressed while maintaining the average torque.
  • the retraction portion 35d has the largest offset amount on the q-axis Lq. That is, the amount of offset of the second flat surface 35b is larger than the amount of offset of the first flat surface 35a.
  • the offset amount means the distance in the radial direction from the virtual circle CV. Even if the offset amount is increased near the q-axis Lq, it is easy to maintain the average torque. According to this embodiment, cogging torque can be suppressed while maintaining average torque.
  • FIG. 5 is a graph showing the simulation results of cogging torque of the example and the comparative example.
  • the rotating electrical machine of the example is a rotating electrical machine having the same configuration as this embodiment.
  • the rotating electrical machine of the comparative example is a rotating electrical machine with a conventional structure. That is, in the rotating electric machine of the comparative example, the outer peripheral surface of the rotor core is circular when viewed from the axial direction. The outer circumferential surface of the rotor core of the comparative example is located on the virtual circle CV in FIG. 3 over the entire circumference.
  • the horizontal axis is the rotation angle
  • the vertical axis is the rotational torque of the rotor.
  • cogging torque can be reduced compared to the conventional structure (comparative example).
  • the rotating electric machine to which the present invention is applied is not limited to a motor, but may be a generator.
  • the use of the rotating electric machine is not particularly limited.
  • the rotating electric machine may be mounted on a vehicle for purposes other than driving the vehicle, or may be mounted on equipment other than the vehicle.
  • the posture when the rotating electric machine is used is not particularly limited.
  • a rotor having a plurality of magnetic poles arranged along the circumferential direction including a rotor core extending in a columnar shape around a central axis, and a plurality of magnets held in magnet holes of the rotor core and forming the magnetic poles.
  • a straight line passing through the center of the magnetic pole when viewed from the axial direction is the d-axis, and the outer peripheral surface of the rotor core facing outward in the radial direction has a plurality of outer end portions located on the d-axis of each of the magnetic poles. and a plurality of retraction portions located between the outer end portions in the circumferential direction and offset radially inward from the outer end portions.
  • the magnetic pole includes a first magnet that is arranged on the d-axis and whose magnetization direction is in the direction in which the d-axis extends, and the recessed portion includes a radially outer end of the first magnet as the flat surface.
  • the bisector of the d-axes adjacent to each other in the circumferential direction is the q-axis, and when viewed from the axial direction, the orthogonal line passing through the central axis and orthogonal to the first flat surface and the d-axis.
  • the magnetic poles include a pair of second magnets arranged symmetrically in the circumferential direction with respect to the d-axis, and the pair of second magnets are spaced apart from each other toward the outside in the radial direction.
  • the retracting portion has a second flat surface located radially outward of the radially outer end of the second magnet as the flat surface, according to any one of (3) to (5).
  • Rotor. (7) The q-axis is the bisector between the d-axes adjacent to each other in the circumferential direction, and the second flat surface is perpendicular to the q-axis located on the bisector between the d-axes adjacent to the circumferential direction. , (6).
  • the rotor described in (1) to (7) is provided, and a stator disposed radially outward of the rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

One aspect of a rotor of the present invention has a plurality of magnetic poles arranged along the circumferential direction, a rotor core extending in a columnar shape centered on a central axis, and a plurality of magnets that are held in a magnet hole of the rotor core and form magnetic poles. A straight line passing through the center of the magnetic poles when seen axially is a d-axis. An outer circumferential surface of the rotor core, which faces radially outward, has a plurality of outer end portions located on the d-axis of the respective magnetic poles, and a plurality of retract portions, each of which is located between the outer end portions in the circumferential direction, and offset to a radially inner side relative to the outer end portions.

Description

ロータ、および回転電機Rotor and rotating electric machine
 本発明は、ロータ、および回転電機に関する。 The present invention relates to a rotor and a rotating electric machine.
 本出願は、2022年4月8日に提出された日本特許出願第2022-064651号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。 This application is based on Japanese Patent Application No. 2022-064651 filed on April 8, 2022. This application claims priority over that application. The entire contents are incorporated into this application by reference.
 回転電機は、コギングトルクを低減させることにより、振動や騒音を抑えることができる。従来の回転電機は、例えば特許文献1に記載されるように、ロータおよびステータに段スキューを設けてコギングトルクを低減している。 Rotating electric machines can suppress vibration and noise by reducing cogging torque. BACKGROUND ART Conventional rotating electric machines reduce cogging torque by providing step skew in a rotor and a stator, as described in Patent Document 1, for example.
日本国公開公報特開2004-159492号公報Japanese Publication No. 2004-159492
 スキューを設けると回転電機の製造工程が増え、生産性が低下するという問題がある。このため、スキューを設けることなくコギングトルクを低減できるロータ、および回転電機の開発が期待されている。 There is a problem that providing a skew increases the number of manufacturing steps for the rotating electric machine and reduces productivity. For this reason, there are expectations for the development of rotors and rotating electric machines that can reduce cogging torque without providing skew.
 本発明は、スキューを設けることなく、コギングトルクを低減できるロータ、および回転電機を提供することを目的の一つとする。 One of the objects of the present invention is to provide a rotor and a rotating electrical machine that can reduce cogging torque without providing skew.
 本発明のロータの一つの態様は、周方向に沿って並ぶ複数の磁極を有するロータであって、中心軸線を中心として柱状に延びるロータコアと、前記ロータコアのマグネット孔に保持され前記磁極を構成する複数のマグネットと、を有する。軸方向から見て前記磁極の中心を通過する直線がd軸である。前記ロータコアの径方向外側を向く外周面には、それぞれの前記磁極のd軸上に位置する複数の外端部と、周方向において前記外端部の間に位置し、前記外端部よりも径方向内側にオフセットされた複数の退避部と、が設けられる。 One aspect of the rotor of the present invention is a rotor having a plurality of magnetic poles arranged along the circumferential direction, the rotor core extending in a columnar shape around a central axis, and the rotor core being held in a magnet hole of the rotor core and forming the magnetic poles. It has a plurality of magnets. A straight line passing through the center of the magnetic pole when viewed from the axial direction is the d-axis. The outer circumferential surface of the rotor core facing outward in the radial direction includes a plurality of outer end portions located on the d-axis of each of the magnetic poles, and a plurality of outer end portions located between the outer end portions in the circumferential direction and further than the outer end portions. A plurality of retraction portions are provided which are offset inward in the radial direction.
 本発明の回転電機の一つの態様は、前記ロータと、前記ロータの径方向外側に配置されるステータと、を備える。 One aspect of the rotating electrical machine of the present invention includes the rotor and a stator disposed radially outside the rotor.
 本発明の一態様によれば、スキューを設けることなく、コギングトルクを低減できるロータ、および回転電機を提供できる。 According to one aspect of the present invention, it is possible to provide a rotor and a rotating electrical machine that can reduce cogging torque without providing skew.
図1は、一実施形態の回転電機の断面模式図である。FIG. 1 is a schematic cross-sectional view of a rotating electrical machine according to an embodiment. 図2は、一実施形態の回転電機の断面図である。FIG. 2 is a cross-sectional view of a rotating electric machine according to an embodiment. 図3は、一実施形態のロータの部分断面図である。FIG. 3 is a partial cross-sectional view of the rotor of one embodiment. 図4は、一実施形態において第1角度を変えた場合のコギングトルクのシミュレーション結果を示すグラフである。FIG. 4 is a graph showing simulation results of cogging torque when the first angle is changed in one embodiment. 図5は、実施例と比較例のコギングトルクのシミュレーション結果を示すグラフである。FIG. 5 is a graph showing simulation results of cogging torque in the example and the comparative example.
 各図には適宜、中心軸線Jを示している。中心軸線Jは、以下の実施形態における回転電機の中心を通る仮想線である。各図に適宜示すZ軸は、中心軸線Jが延びる方向を示している。以下の説明においては、中心軸線Jの軸方向、すなわちZ軸と平行な方向を単に「軸方向」と呼び、中心軸線Jを中心とする径方向を単に「径方向」と呼び、中心軸線Jを中心とする周方向を単に「周方向」と呼ぶ。 In each figure, the central axis J is shown as appropriate. The central axis J is a virtual line passing through the center of the rotating electrical machine in the following embodiments. The Z axis shown as appropriate in each figure indicates the direction in which the central axis J extends. In the following description, the axial direction of the central axis J, that is, the direction parallel to the Z axis, is simply referred to as the "axial direction," and the radial direction centered on the central axis J is simply referred to as the "radial direction." The circumferential direction centered on is simply called the "circumferential direction."
 適宜図に示す矢印θは、周方向を示している。以下の説明においては、軸方向から見て中心軸線Jを中心として反時計回りに進む側、すなわち矢印θが向く側(+θ側)を「周方向一方側」と呼び、時計回りに進む側、すなわち矢印θが向く側と逆側(-θ側)を「周方向他方側」と呼ぶ。 The arrow θ shown in the drawings indicates the circumferential direction. In the following explanation, the side that moves counterclockwise around the central axis J when viewed from the axial direction, that is, the side that the arrow θ points to (+θ side) will be referred to as "one side in the circumferential direction," and the side that moves clockwise, In other words, the opposite side (-θ side) to the side toward which the arrow θ is directed is called "the other side in the circumferential direction."
 (回転電機)
 図1は、中心軸線Jに沿う回転電機10の断面模式図である。図2は、中心軸線Jと直交する平面に沿う回転電機10の断面図である。なお、図2において、ハウジング9の図示は省略されている。
(rotating electrical machine)
FIG. 1 is a schematic cross-sectional view of the rotating electrical machine 10 along the central axis J. FIG. 2 is a cross-sectional view of the rotating electrical machine 10 along a plane perpendicular to the central axis J. Note that in FIG. 2, illustration of the housing 9 is omitted.
 図1に示すように、本実施形態の回転電機10は、インナーロータ型の回転電機である。回転電機10は、ロータ30と、ステータ40と、ロータ30、およびステータ40を内部に収容するハウジング9と、を備える。図2に示すように、本実施形態の回転電機は、8極48スロットのインナーロータ型のモータである。また、本実施形態において回転電機10は、三相交流モータである。 As shown in FIG. 1, the rotating electrical machine 10 of this embodiment is an inner rotor type rotating electrical machine. The rotating electric machine 10 includes a rotor 30, a stator 40, and a housing 9 that accommodates the rotor 30 and the stator 40 inside. As shown in FIG. 2, the rotating electric machine of this embodiment is an inner rotor type motor with 8 poles and 48 slots. Further, in this embodiment, the rotating electric machine 10 is a three-phase AC motor.
 (ステータ)
 図1に示すように、ステータ40は、ロータ30と隙間を介して対向している。ステータ40は、ロータ30の径方向外側に配置される。ステータ40は、ステータコア41と、インシュレータ42aと、複数のコイル42と、を有する。ステータコア41は、環状のコアバック41aと、コアバック41aから径方向内側に突出する複数のティース41bと、を有する。複数のコイル42は、インシュレータ42aを介して複数のティース41bにそれぞれ取り付けられている。
(stator)
As shown in FIG. 1, the stator 40 faces the rotor 30 with a gap therebetween. Stator 40 is arranged radially outside of rotor 30. Stator 40 includes a stator core 41, an insulator 42a, and a plurality of coils 42. Stator core 41 has an annular core back 41a and a plurality of teeth 41b that protrude radially inward from core back 41a. The plurality of coils 42 are respectively attached to the plurality of teeth 41b via insulators 42a.
 (ロータ)
 ロータ30は、軸方向に延びる中心軸線Jを中心として回転可能である。ロータ30は、シャフト31と、ロータコア32と、複数のマグネット36と、を備える。シャフト31は、中心軸線Jを中心として軸方向に延びる円柱状である。
(rotor)
The rotor 30 is rotatable around a central axis J extending in the axial direction. The rotor 30 includes a shaft 31, a rotor core 32, and a plurality of magnets 36. The shaft 31 has a cylindrical shape that extends in the axial direction centering on the central axis J.
 図2に示すように、ロータコア32は、中心軸線Jを中心とする環状である。ロータ30は、周方向に沿って並ぶ複数の磁極3を備える。複数の磁極3は、周方向においてN極とS極とを交互に構成する。本実施形態のロータ30は、8個の磁極3を備える。したがって、ロータ30には、4つのd軸と4つのq軸が想定される。ロータ30を軸方向から見て磁極3の中心を通過する直線がd軸Ldである。また、ロータ30を軸方向から見て、周方向に隣り合うd軸Ld同士の二等分線がq軸Lqである。全てのd軸Ld、およびq軸Lqは、中心軸線Jを通過する。 As shown in FIG. 2, the rotor core 32 has an annular shape centered on the central axis J. The rotor 30 includes a plurality of magnetic poles 3 arranged along the circumferential direction. The plurality of magnetic poles 3 constitute N poles and S poles alternately in the circumferential direction. The rotor 30 of this embodiment includes eight magnetic poles 3. Therefore, the rotor 30 is assumed to have four d-axes and four q-axes. A straight line passing through the center of the magnetic pole 3 when looking at the rotor 30 from the axial direction is the d-axis Ld. Further, when the rotor 30 is viewed from the axial direction, the bisector of the d-axes Ld adjacent to each other in the circumferential direction is the q-axis Lq. All d-axes Ld and q-axes Lq pass through the central axis J.
 磁極3は、複数のマグネット36によって構成される。本実施形態において、1つの磁極3には、3つのマグネット36が含まれる。本実施形態のロータ30は、24個のマグネット36を有する。1つの磁極3の3つのマグネット36は、d軸Ldを中心として線対称に配置される。 The magnetic pole 3 is composed of a plurality of magnets 36. In this embodiment, one magnetic pole 3 includes three magnets 36. The rotor 30 of this embodiment has 24 magnets 36. The three magnets 36 of one magnetic pole 3 are arranged symmetrically about the d-axis Ld.
 (ロータコア)
 ロータコア32は、中心軸線Jを中心として軸方向に沿って柱状に延びる。ロータコア32は、ロータコア32を軸方向に貫通する中央孔32a、および複数の肉抜き孔32hを有する。中央孔32aは、中心軸線Jを中心とする略円形である。中央孔32aには、シャフト31(図1参照)が軸方向に通される。肉抜き孔32hは、周方向に沿って並ぶ。肉抜き孔32hは、q軸Lq上に配置される。本実施形態の肉抜き孔32hは、軸方向から見て略三角形状であるが、肉抜き孔32hの形状は本実施形態に限定されない。
(rotor core)
The rotor core 32 extends in the axial direction centering on the central axis J in a columnar shape. The rotor core 32 has a central hole 32a that passes through the rotor core 32 in the axial direction, and a plurality of lightening holes 32h. The central hole 32a has a substantially circular shape centered on the central axis J. The shaft 31 (see FIG. 1) is passed through the central hole 32a in the axial direction. The lightening holes 32h are arranged along the circumferential direction. The lightening hole 32h is arranged on the q-axis Lq. Although the lightening hole 32h of this embodiment has a substantially triangular shape when viewed from the axial direction, the shape of the lightening hole 32h is not limited to this embodiment.
 ロータコア32は、磁性体製である。特に図示しないが、ロータコア32は、軸方向に積層される複数のラミネーションを有する。ラミネーションは、板状の部材である。ラミネーションの板面は、軸方向を向く。ラミネーションは、中心軸線Jを中心とする略円環板状である。ラミネーションは、例えば電磁鋼板である。 The rotor core 32 is made of magnetic material. Although not particularly illustrated, the rotor core 32 has a plurality of laminations stacked in the axial direction. A lamination is a plate-like member. The plate surface of the lamination faces in the axial direction. The lamination has a substantially annular plate shape centered on the central axis J. The lamination is, for example, an electrical steel sheet.
 ロータコア32には、複数のマグネット孔38が設けられる。軸方向から見て、各マグネット孔38は、中央孔32aの径方向外側かつ周方向に間隔をあけて配置される。各マグネット孔38は、ロータコア32を軸方向に貫通する。マグネット孔38は、一様な形状で軸方向に延びる。1つのマグネット孔38には、それぞれ、1つのマグネット36が配置される。マグネット36は、樹脂モールド、かしめ、接着等の公知の手段によってマグネット孔38の内側面に固定される。すなわち、マグネット36は、ロータコア32のマグネット孔38に保持される。 A plurality of magnet holes 38 are provided in the rotor core 32. When viewed from the axial direction, the magnet holes 38 are arranged radially outward of the center hole 32a and spaced apart in the circumferential direction. Each magnet hole 38 passes through the rotor core 32 in the axial direction. The magnet hole 38 has a uniform shape and extends in the axial direction. One magnet 36 is arranged in each magnet hole 38 . The magnet 36 is fixed to the inner surface of the magnet hole 38 by known means such as resin molding, caulking, and adhesive. That is, the magnet 36 is held in the magnet hole 38 of the rotor core 32.
 図3は、磁極3の周囲におけるロータ30の部分断面図である。
 複数のマグネット孔38は、第1マグネット孔38Aと、第2マグネット孔38Bと、を含む。第1マグネット孔38Aは、第2マグネット孔38Bの径方向外側に配置される。一対の第2マグネット孔38Bは、d軸Ldに対して周方向に対称に配置される。
FIG. 3 is a partial cross-sectional view of the rotor 30 around the magnetic poles 3.
The plurality of magnet holes 38 include a first magnet hole 38A and a second magnet hole 38B. The first magnet hole 38A is arranged radially outward of the second magnet hole 38B. The pair of second magnet holes 38B are arranged symmetrically in the circumferential direction with respect to the d-axis Ld.
 本実施形態の第2マグネット孔38Bの数は、第1マグネット孔38Aの数の2倍である。これら3つのマグネット孔38にそれぞれ1つずつ配置される合計3つのマグネット36は、1つの磁極3を構成する。1つの磁極3を構成する3つのマグネット36が配置される3つのマグネット孔38を、マグネット孔38の組Sと呼ぶ。 The number of second magnet holes 38B in this embodiment is twice the number of first magnet holes 38A. A total of three magnets 36, one placed in each of these three magnet holes 38, constitute one magnetic pole 3. The three magnet holes 38 in which the three magnets 36 constituting one magnetic pole 3 are arranged are called a group S of magnet holes 38.
 1つの組Sの一対の第2マグネット孔38Bのうち、d軸Ldの周方向一方側(+θ側)の一方は、軸方向から見て、径方向外側へ向かうに従い周方向一方側(+θ側)に向けて延びる。1つの組Sの一対の第2マグネット孔38Bのうち、d軸Ldの周方向他方側(-θ側)の他方は、軸方向から見て、径方向外側へ向かうに従い周方向他方側(-θ側)に向けて延びる。すなわち、1つの組Sに含まれる一対の第2マグネット孔38Bの周方向の間の距離は、径方向外側に向かうにつれて、徐々に大きくなる。一方で、第1マグネット孔38Aは、周方向において、一対の第2マグネット孔38Bの各径方向外側の端部36h間に配置される。第1マグネット孔38Aは、一対の第2マグネット孔38Bに対し径方向外側に配置される。第1マグネット孔38Aは、d軸Ldと直交して延びる。 Of the pair of second magnet holes 38B of one set S, one of the circumferential one side (+θ side) of the d-axis Ld becomes smaller as it goes radially outward as seen from the axial direction. ). Of the pair of second magnet holes 38B of one set S, the other one on the other side in the circumferential direction (-θ side) of the d-axis Ld becomes smaller on the other side in the circumferential direction (-θ side) as it goes radially outward when viewed from the axial direction. θ side). That is, the distance between the pair of second magnet holes 38B included in one set S in the circumferential direction gradually increases toward the outside in the radial direction. On the other hand, the first magnet hole 38A is arranged in the circumferential direction between each radially outer end 36h of the pair of second magnet holes 38B. The first magnet hole 38A is arranged radially outward with respect to the pair of second magnet holes 38B. The first magnet hole 38A extends orthogonally to the d-axis Ld.
 第1マグネット孔38Aの両端部には、一対の第1フラックスバリア部38cが設けられる。一対の第1フラックスバリア部38cは、第1マグネット孔38Aに収容されるマグネット36の両端部に配置される。第2マグネット孔38Bの径方向内側の端部には、第2フラックスバリア部38dが設けられる。第2マグネット孔38Bの径方向外側の端部には、第3フラックスバリア部38eが設けられる。第2フラックスバリア部38d、および第3フラックスバリア部38eは、第2マグネット孔38Bに収容されるマグネット36の両端部に配置される。 A pair of first flux barrier parts 38c are provided at both ends of the first magnet hole 38A. The pair of first flux barrier parts 38c are arranged at both ends of the magnet 36 accommodated in the first magnet hole 38A. A second flux barrier portion 38d is provided at the radially inner end of the second magnet hole 38B. A third flux barrier portion 38e is provided at the radially outer end of the second magnet hole 38B. The second flux barrier section 38d and the third flux barrier section 38e are arranged at both ends of the magnet 36 accommodated in the second magnet hole 38B.
 本明細書において「フラックスバリア部」とは、磁束の流れを抑制できる部分である。それぞれのフラックスバリア部38c、38d、38eの構成は、磁束の流れを抑制できるならば、特に限定されず、空隙部を含んでもよいし、樹脂部等の非磁性部を含んでもよい。本実施形態においてフラックスバリア部38c、38d、38eは、ロータコア32を軸方向に貫通する孔によって構成された空隙部である。 In this specification, the "flux barrier section" is a section that can suppress the flow of magnetic flux. The configuration of each of the flux barrier parts 38c, 38d, and 38e is not particularly limited as long as it can suppress the flow of magnetic flux, and may include a gap or a non-magnetic part such as a resin part. In this embodiment, the flux barrier portions 38c, 38d, and 38e are void portions formed by holes that penetrate the rotor core 32 in the axial direction.
 マグネット36は、各マグネット孔38に1つずつ配置される。マグネット36の種類は、特に限定されない。マグネット36は、例えば、ネオジム磁石であってもよいし、フェライト磁石であってもよい。 One magnet 36 is placed in each magnet hole 38. The type of magnet 36 is not particularly limited. The magnet 36 may be, for example, a neodymium magnet or a ferrite magnet.
 マグネット36は、軸方向に長い直方体状である。したがって、マグネット36は、軸方向から見て矩形状である。以下の説明において、マグネット36を軸方向から見て、マグネット36の短辺に沿う方向を厚さ方向と呼び、長辺に沿う方向を長手方向と呼ぶ。本実施形態のマグネット36は、厚さ方向を磁化方向とする。 The magnet 36 has a rectangular parallelepiped shape that is long in the axial direction. Therefore, the magnet 36 has a rectangular shape when viewed from the axial direction. In the following description, when the magnet 36 is viewed from the axial direction, the direction along the short side of the magnet 36 will be referred to as the thickness direction, and the direction along the long side will be referred to as the longitudinal direction. The magnet 36 of this embodiment has a thickness direction as a magnetization direction.
 マグネット36は、例えば、ロータコア32の軸方向一端部から軸方向他端部まで延びる。なお、マグネット36の軸方向の寸法は、ロータコア32の軸方向の寸法(マグネット孔38の軸方向の寸法)よりも短くてもよい。また、マグネット36の形状は、上述のものに限られない。 The magnet 36 extends, for example, from one axial end of the rotor core 32 to the other axial end. Note that the axial dimension of the magnet 36 may be shorter than the axial dimension of the rotor core 32 (the axial dimension of the magnet hole 38). Furthermore, the shape of the magnet 36 is not limited to that described above.
 以下の説明において、第1マグネット孔38Aに配置されるマグネット36を第1マグネット36Aと呼ぶ。同様に、第2マグネット孔38Bに配置されるマグネット36を第2マグネット36Bと呼ぶ。磁極3には、1つの第1マグネット36Aと一対の第2マグネット36Bとが含まれる。本実施形態の第1マグネット36A、および第2マグネット36Bは、軸方向から見て共に矩形状であるものの、厚さ方向、および長手方向の寸法がそれぞれ異なる。しかしながら、第1マグネット36Aと第2マグネット36Bとは、互いに同形状であってもよい。 In the following description, the magnet 36 disposed in the first magnet hole 38A will be referred to as a first magnet 36A. Similarly, the magnet 36 disposed in the second magnet hole 38B is referred to as a second magnet 36B. The magnetic pole 3 includes one first magnet 36A and a pair of second magnets 36B. The first magnet 36A and the second magnet 36B of this embodiment both have a rectangular shape when viewed from the axial direction, but have different dimensions in the thickness direction and the longitudinal direction. However, the first magnet 36A and the second magnet 36B may have the same shape.
 1つの磁極3に含まれる1つの第1マグネット36Aは、d軸Ld上に配置される。第1マグネット36Aは、厚さ方向を径方向と一致させる。したがって、第1マグネット36Aは、d軸Ldの延びる方向を磁化方向とする。また、第1マグネット36Aの長手方向の中心位置は、d軸Ld上に位置する。 One first magnet 36A included in one magnetic pole 3 is arranged on the d-axis Ld. The first magnet 36A makes the thickness direction coincide with the radial direction. Therefore, the first magnet 36A has its magnetization direction in the direction in which the d-axis Ld extends. Further, the center position of the first magnet 36A in the longitudinal direction is located on the d-axis Ld.
 1つの磁極3に含まれる一対の第2マグネット36Bは、d軸Ldに対し周方向に線対称に配置される。一対の第2マグネット36Bは、径方向外側に向かうに従い互いに離間して配置される。第2マグネット36Bは、厚さ方向を第1マグネット36Aに向ける。第2マグネット36Bの磁化方向は、第1マグネット36Aを向ける。 A pair of second magnets 36B included in one magnetic pole 3 are arranged symmetrically in the circumferential direction with respect to the d-axis Ld. The pair of second magnets 36B are spaced apart from each other toward the outside in the radial direction. The second magnet 36B has its thickness direction directed toward the first magnet 36A. The magnetization direction of the second magnet 36B points toward the first magnet 36A.
 1つの磁極3を構成する1つの第1マグネット36A、および一対の第2マグネット36Bは、それぞれ径方向外側に同極を向ける。例えば、第1マグネット36Aの径方向外側を向く面がN極である場合、第2マグネット36Bの径方向外側を向く面もN極である。 One first magnet 36A and a pair of second magnets 36B constituting one magnetic pole 3 each have the same polarity radially outward. For example, if the radially outward facing surface of the first magnet 36A is a north pole, the radially outward facing surface of the second magnet 36B is also a north pole.
 (ロータコアの外周面)
 ロータコア32は、外周面35を有する。外周面35は、径方向外側を向く面である。外周面35には、複数の外端部35cと複数の退避部35dとが設けられる。
(Outer peripheral surface of rotor core)
Rotor core 32 has an outer circumferential surface 35. The outer circumferential surface 35 is a surface facing outward in the radial direction. The outer peripheral surface 35 is provided with a plurality of outer end portions 35c and a plurality of retraction portions 35d.
 外端部35cは、それぞれの磁極3のd軸Ld上に位置する。外端部35cは、軸方向から見て円弧状に延びる。複数の外端部35cは、中心軸線Jを中心とする仮想円CV上に配置される。ロータコア32の外周面35には、仮想円CVより径方向外側に突出する部分は設けられない。すなわち、外端部35cは、ロータコア32の外径を構成する。外端部35cは、d軸Ldを中心としてd軸Ldの周方向両側に設けられる一定の領域である。外端部35cは、磁極3毎に設けられる。したがって、本実施形態のロータコア32には、磁極3と同数の8つの外端部35cが設けられる。 The outer end portion 35c is located on the d-axis Ld of each magnetic pole 3. The outer end portion 35c extends in an arc shape when viewed from the axial direction. The plurality of outer end portions 35c are arranged on a virtual circle CV centered on the central axis J. The outer circumferential surface 35 of the rotor core 32 is not provided with a portion that protrudes radially outward from the virtual circle CV. That is, the outer end portion 35c constitutes the outer diameter of the rotor core 32. The outer end portion 35c is a fixed area provided on both sides of the d-axis Ld in the circumferential direction with the d-axis Ld as the center. The outer end portion 35c is provided for each magnetic pole 3. Therefore, the rotor core 32 of this embodiment is provided with eight outer end portions 35c, the same number as the magnetic poles 3.
 退避部35dは、外端部35cよりも径方向内側にオフセットされる。このため、外端部35cは、外端部35cを通過する仮想円CVよりも径方向内側に位置する。退避部35dは、周方向において隣り合う一対の外端部35cの間に位置する。退避部35dは、q軸Lq上に位置する。ロータコア32には、外端部35cと同数(8つ)の退避部35dが設けられる。 The retraction portion 35d is offset radially inward from the outer end portion 35c. Therefore, the outer end 35c is located radially inward than the virtual circle CV passing through the outer end 35c. The retraction portion 35d is located between a pair of outer end portions 35c adjacent to each other in the circumferential direction. The retraction portion 35d is located on the q-axis Lq. The rotor core 32 is provided with the same number (eight) of retraction portions 35d as the outer end portions 35c.
 本実施形態によれば、d軸Ld上に位置する外端部35cが、ロータコア32の最外径を構成する。このため、ロータ30は、外端部35cにおいて、ステータ40との径方向の距離が最も近くなる。一方で、退避部35dにおける外径は、外端部35cの外径よりも小さい。このため、ロータ30とステータ40との径方向の隙間は、退避部35dの径方向外側で、外端部35cの径方向外側よりも大きくなる。本実施形態によれば、ロータ30は、退避部35dでステータ40の磁界から受ける引力および斥力を、外端部35cで受ける引力および斥力と比較して相対的に小さくすることができる。 According to this embodiment, the outer end portion 35c located on the d-axis Ld constitutes the outermost diameter of the rotor core 32. Therefore, the rotor 30 is closest to the stator 40 in the radial direction at the outer end 35c. On the other hand, the outer diameter of the retracted portion 35d is smaller than the outer diameter of the outer end portion 35c. Therefore, the radial gap between the rotor 30 and the stator 40 is larger on the radially outer side of the retracted portion 35d than on the radially outer side of the outer end portion 35c. According to this embodiment, the rotor 30 can make the attractive force and repulsive force received from the magnetic field of the stator 40 at the retracting portion 35d relatively smaller than the attractive force and repulsive force received at the outer end portion 35c.
 図2に示すように、本実施形態の回転電機10は、スロット数に対して極数が十分に多く1つの磁極3は複数のティース41bと対向する。1つの磁極3が、d軸Ld上でステータ40から受ける力と、周方向の端部でステータ40から受ける力とは、位相が異なっておりコギングトルクの原因となる。 As shown in FIG. 2, the rotating electric machine 10 of this embodiment has a sufficiently large number of poles relative to the number of slots, and one magnetic pole 3 faces a plurality of teeth 41b. The force that one magnetic pole 3 receives from the stator 40 on the d-axis Ld and the force that it receives from the stator 40 at the end in the circumferential direction are different in phase and cause cogging torque.
 本実施形態のロータ30の外周面35には、周方向に並ぶd軸Ld同士の間に退避部35dを設けることで、d軸Ldから周方向両側に離れた領域でステータ40から受ける力を小さくすることができ、回転電機10のコギングトルクを抑制することができる。 The outer circumferential surface 35 of the rotor 30 of this embodiment is provided with a retraction portion 35d between the d-axes Ld arranged in the circumferential direction, thereby reducing the force received from the stator 40 in areas remote from the d-axis Ld on both sides in the circumferential direction. Therefore, the cogging torque of the rotating electric machine 10 can be suppressed.
 図3に示すように、退避部35dは、平坦面として、第1平坦面35aと第2平坦面35bとを有する。すなわち、退避部35dは、平坦面35a、35bを有する。第1平坦面35a、および第2平坦面35bは、それぞれ径方向外側を向き軸方向に沿って延びる平坦な面である。第1平坦面35aは、周方向において外端部35cと第2平坦面35bとの間に位置する。一方で、第2平坦面35bは、周方向において第1平坦面35a同士の間に位置する。このため、1つの退避部35dには、1つの第2平坦面35bと、この第2平坦面35bの周方向両側に位置する一対の第1平坦面35aが設けられる。 As shown in FIG. 3, the retraction portion 35d has a first flat surface 35a and a second flat surface 35b as flat surfaces. That is, the retraction portion 35d has flat surfaces 35a and 35b. The first flat surface 35a and the second flat surface 35b are flat surfaces each facing outward in the radial direction and extending along the axial direction. The first flat surface 35a is located between the outer end 35c and the second flat surface 35b in the circumferential direction. On the other hand, the second flat surface 35b is located between the first flat surfaces 35a in the circumferential direction. Therefore, one retraction portion 35d is provided with one second flat surface 35b and a pair of first flat surfaces 35a located on both sides of the second flat surface 35b in the circumferential direction.
 第1平坦面35aは、軸方向から見て、中心軸線Jを通過する仮想的な直交線Laに対して直交する。したがって、第1平坦面35aと仮想円CVとの距離は、直交線La上で最も大きくなる。同様に、第1平坦面35aとステータ40との距離も、直交線La上で最も大きくなる。第1平坦面35aは、第1マグネット36Aの径方向外側の端部36kの径方向外側に位置する。なお、第1マグネット36Aの径方向外側の端部36kとは、第1マグネット36Aの径方向位置が、最も中心軸線Jから離間して配置される部分を意味する。本実施形態の第1マグネット36Aは、長手方向の端部36kにおいて径方向位置が最も中心軸線Jから離間する。したがって、第1平坦面35aは、第1マグネット36Aの長手方向の端部36kの径方向外側に位置する。 The first flat surface 35a is orthogonal to a virtual orthogonal line La passing through the central axis J when viewed from the axial direction. Therefore, the distance between the first flat surface 35a and the virtual circle CV is greatest on the orthogonal line La. Similarly, the distance between the first flat surface 35a and the stator 40 is also greatest on the orthogonal line La. The first flat surface 35a is located on the radially outer side of the radially outer end 36k of the first magnet 36A. Note that the radially outer end 36k of the first magnet 36A means a portion of the first magnet 36A that is disposed farthest from the center axis J in the radial direction. In the first magnet 36A of this embodiment, the radial position is furthest away from the central axis J at the longitudinal end 36k. Therefore, the first flat surface 35a is located on the radially outer side of the longitudinal end portion 36k of the first magnet 36A.
 第1平坦面35aは、第1フラックスバリア部38cの径方向外側に位置する。第1フラックスバリア部38cは、第1マグネット36Aの端部36kと、第1マグネット36Aの長手方向において対向する。ロータコア32内の磁束は、第1フラックスバリア部38cと外周面35との間に集中し易い。第1平坦面35aは、ロータコア32内の磁束密度が高くなる部分の径方向外側に位置する。 The first flat surface 35a is located on the radially outer side of the first flux barrier section 38c. The first flux barrier portion 38c faces the end portion 36k of the first magnet 36A in the longitudinal direction of the first magnet 36A. The magnetic flux within the rotor core 32 tends to concentrate between the first flux barrier portion 38c and the outer peripheral surface 35. The first flat surface 35a is located on the radially outer side of the portion of the rotor core 32 where the magnetic flux density is high.
 第2平坦面35bは、q軸Lq上に配置される。第2平坦面35bは、q軸と直交する面である。すなわち、q軸Lqは、第2平坦面35bの直交線である。また、第2平坦面35bは、軸方向から見て、中心軸線を通過する仮想的な直交線(q軸Lq)に対して直交する。第2平坦面35bと仮想円CVとの距離は、q軸Lq上で最も大きくなる。同様に、第2平坦面35bは、第2平坦面35bとステータ40との距離も、q軸Lq上で最も大きくなる。第2平坦面35bは、第2マグネット36Bの径方向外側の端部36hの径方向外側に位置する。 The second flat surface 35b is arranged on the q-axis Lq. The second flat surface 35b is a surface perpendicular to the q-axis. That is, the q-axis Lq is a line orthogonal to the second flat surface 35b. Moreover, the second flat surface 35b is perpendicular to a virtual orthogonal line (q-axis Lq) passing through the central axis when viewed from the axial direction. The distance between the second flat surface 35b and the virtual circle CV is greatest on the q-axis Lq. Similarly, in the second flat surface 35b, the distance between the second flat surface 35b and the stator 40 is also the largest on the q-axis Lq. The second flat surface 35b is located on the radially outer side of the radially outer end 36h of the second magnet 36B.
 第2平坦面35bは、第3フラックスバリア部38eの径方向外側に位置する。第3フラックスバリア部38eは、第2マグネット36Bの端部36hと、第2マグネット36Bの長手方向において対向する。ロータコア32内の磁束は、第3フラックスバリア部38eと外周面35との間に集中し易い。第2平坦面35bは、ロータコア32内の磁束密度が高くなる部分の径方向外側に位置する。 The second flat surface 35b is located on the radially outer side of the third flux barrier portion 38e. The third flux barrier portion 38e faces the end portion 36h of the second magnet 36B in the longitudinal direction of the second magnet 36B. The magnetic flux within the rotor core 32 tends to concentrate between the third flux barrier portion 38e and the outer peripheral surface 35. The second flat surface 35b is located on the radially outer side of the portion of the rotor core 32 where the magnetic flux density is high.
 本実施形態によれば、退避部35dは、軸方向から見て、中心軸線を通過する仮想的な直交線La、Lqに対して直交する第1平坦面35a、および第2平坦面35bを有する。このため、退避部35dの寸法測定を平坦面において行うことができ、ロータコア32の製造工程における寸法管理が容易となる。 According to the present embodiment, the retraction portion 35d has a first flat surface 35a and a second flat surface 35b, which are perpendicular to virtual orthogonal lines La and Lq passing through the central axis when viewed from the axial direction. . Therefore, the dimensions of the retracted portion 35d can be measured on a flat surface, and the dimensions can be easily controlled in the manufacturing process of the rotor core 32.
 本実施形態によれば、第1平坦面35aは、第1マグネット36Aの径方向外側の端部36kの径方向外側に位置し、第2平坦面35bは、第2マグネット36Bの径方向外側の端部36hの径方向外側に位置する。ロータコア32内の磁束は、マグネット36の端部36k、36hの径方向外側で高まり易い。このため、マグネット36の端部36k、36hの径方向外側に対しステータ40から付与される引力および斥力は、回転角によって大きな振幅で変化しコギングトルク増大の要因となる。マグネット36の端部36k、36hの径方向外側に平坦面35a、35bを設けることで、マグネット36の端部36k、36hに生じる引力および斥力を抑制することができ、回転電機10のコギングトルクを低減できる。 According to this embodiment, the first flat surface 35a is located on the radially outer side of the radially outer end 36k of the first magnet 36A, and the second flat surface 35b is located on the radially outer side of the second magnet 36B. It is located on the radially outer side of the end portion 36h. The magnetic flux within the rotor core 32 tends to increase on the radially outer side of the ends 36k and 36h of the magnet 36. Therefore, the attractive force and repulsive force applied from the stator 40 to the radially outer sides of the end portions 36k and 36h of the magnet 36 change with large amplitude depending on the rotation angle, and become a factor in increasing the cogging torque. By providing flat surfaces 35a and 35b on the radially outer sides of the ends 36k and 36h of the magnet 36, the attractive and repulsive forces generated at the ends 36k and 36h of the magnet 36 can be suppressed, and the cogging torque of the rotating electric machine 10 can be reduced. Can be reduced.
 特に本実施形態では、ロータコア32にマグネット36の端部36k、36hと対向するフラックスバリア部38c、38eが設けられている。ロータコア32内の磁束密度は、フラックスバリア部38c、38e径方向外側で高くなりやすい。本実施形態において、第1平坦面35a、および第2平坦面35bは、それぞれフラックスバリア部38c、35eの径方向外側に位置するため、フラックスバリア部38c、35eの径方向外側の領域でステータ40との間の磁束密度を抑制できコギングトルクを低減できる。 In particular, in this embodiment, the rotor core 32 is provided with flux barrier parts 38c and 38e that face the ends 36k and 36h of the magnet 36. The magnetic flux density within the rotor core 32 tends to be high on the radially outer side of the flux barrier portions 38c and 38e. In this embodiment, the first flat surface 35a and the second flat surface 35b are located on the radially outer side of the flux barrier parts 38c and 35e, so that the stator 40 It is possible to suppress the magnetic flux density between the two and reduce the cogging torque.
 本実施形態によれば、退避部35dは、第1マグネット36Aの径方向外側の端部36kの径方向外側に位置する第1平坦面35aを有する。第1平坦面35aは、第1マグネット36Aの端部36kの径方向外側の領域に働く引力および斥力を低減する。第1平坦面35aは、第1マグネット36Aに起因するコギングトルクを低減することができる。 According to this embodiment, the retraction portion 35d has a first flat surface 35a located on the radially outer side of the radially outer end 36k of the first magnet 36A. The first flat surface 35a reduces the attractive force and repulsive force acting on the radially outer region of the end portion 36k of the first magnet 36A. The first flat surface 35a can reduce cogging torque caused by the first magnet 36A.
 なお、第1平坦面35aによるコギングトルク抑制の効果は、第1マグネット36Aを有するロータ30であれば得ることができるものである。この効果は、例えば、第1マグネット36Aのみを有し第2マグネット36Bを有さないロータ30においても得ることができる。 Note that the effect of suppressing cogging torque by the first flat surface 35a can be obtained with the rotor 30 having the first magnet 36A. This effect can also be obtained, for example, in the rotor 30 that has only the first magnet 36A and does not have the second magnet 36B.
 ここで、中心軸線Jを通過し第1平坦面35aと直交する直交線Laとd軸Ldとがなす角度を第1角度αとする。また、d軸Ldとq軸Lqとがなす角度を第2角度φとする。本実施形態のロータ30は、8極であるため、第2角度φは、22.5°である。第1角度αは、第2角度φに対して、49%以上50.5%以下であることが好ましい(49%≦α/φ≦50.5%)。 Here, the angle formed by the orthogonal line La passing through the central axis J and orthogonal to the first flat surface 35a and the d-axis Ld is defined as a first angle α. Further, the angle formed by the d-axis Ld and the q-axis Lq is defined as a second angle φ. Since the rotor 30 of this embodiment has eight poles, the second angle φ is 22.5°. The first angle α is preferably 49% or more and 50.5% or less with respect to the second angle φ (49%≦α/φ≦50.5%).
 図4は、本実施形態において、第1角度αを変えた場合のコギングトルクのシミュレーション結果を示すグラフである。図4に示すように、第1角度αを変化させることでコギングトルクが変化する。図4によれば、第1角度αを第2角度φに対し49.5%近傍とする場合に、コギングトルクを最も低減できる。より具体的には、第1角度αを第2角度φに対し49%以上50.5%以下とすることで、コギングトルクを効果的に抑制できる。 FIG. 4 is a graph showing the simulation results of cogging torque when the first angle α is changed in this embodiment. As shown in FIG. 4, the cogging torque changes by changing the first angle α. According to FIG. 4, the cogging torque can be reduced most when the first angle α is approximately 49.5% of the second angle φ. More specifically, cogging torque can be effectively suppressed by setting the first angle α to 49% or more and 50.5% or less of the second angle φ.
 本実施形態において、退避部35dは、第2マグネット36Bの径方向外側の端部の径方向外側に位置する第2平坦面35bを有する。第2平坦面35bは、第2マグネット36Bの端部36hの径方向外側の領域に働く引力および斥力を低減する。第2平坦面35bは、第2マグネット36Bに起因するコギングトルクを低減することができる。 In the present embodiment, the retraction portion 35d has a second flat surface 35b located on the radially outer side of the radially outer end of the second magnet 36B. The second flat surface 35b reduces the attractive force and repulsive force acting on the radially outer region of the end portion 36h of the second magnet 36B. The second flat surface 35b can reduce cogging torque caused by the second magnet 36B.
 なお、第2平坦面35bによるコギングトルク抑制の効果は、一対の第2マグネット36Bを有するロータ30であれば得ることができるものである。この効果は、例えば、一対の第2マグネット36Bのみを有し、第1マグネット36Aを有さないロータ30においても得ることができる。 Note that the effect of suppressing cogging torque by the second flat surface 35b can be obtained if the rotor 30 has a pair of second magnets 36B. This effect can also be obtained, for example, in the rotor 30 that has only the pair of second magnets 36B and does not have the first magnet 36A.
 本実施形態において、第2平坦面35bは、q軸Lqと直交する。このため、第2平坦面35bは、q軸Lqにおいて最もステータ40から離間する。q軸Lqは、d軸Ld同士の間に位置するため、q軸Lqの機能は磁束密度が低い。第2平坦面35bをq軸Lqに対して直交させることで、ロータ30の平均トルクの低減を抑制することができる。すなわち、第2平坦面35bをq軸Lqとすることで、平均トルクを維持しつつコギングトルクを抑制できる。 In this embodiment, the second flat surface 35b is perpendicular to the q-axis Lq. Therefore, the second flat surface 35b is spaced farthest from the stator 40 on the q-axis Lq. Since the q-axis Lq is located between the d-axes Ld, the function of the q-axis Lq is that the magnetic flux density is low. By making the second flat surface 35b orthogonal to the q-axis Lq, reduction in the average torque of the rotor 30 can be suppressed. That is, by setting the second flat surface 35b to the q-axis Lq, cogging torque can be suppressed while maintaining the average torque.
 また、本実施形態において、退避部35dは、q軸Lq上で最もオフセット量が大きい。すなわち、第2平坦面35bのオフセット量は、第1平坦面35aのオフセット量より大きい。ここで、オフセット量とは、仮想円CVとの径方向の距離を意味する。q軸Lqの近傍でオフセット量を大きくしても平均トルクを維持し易い。本実施形態によれば、平均トルクを維持しつつコギングトルクを抑制できる。 Furthermore, in this embodiment, the retraction portion 35d has the largest offset amount on the q-axis Lq. That is, the amount of offset of the second flat surface 35b is larger than the amount of offset of the first flat surface 35a. Here, the offset amount means the distance in the radial direction from the virtual circle CV. Even if the offset amount is increased near the q-axis Lq, it is easy to maintain the average torque. According to this embodiment, cogging torque can be suppressed while maintaining average torque.
 図5は、実施例と比較例のコギングトルクのシミュレーション結果を示すグラフである。実施例の回転電機は、本実施形態と同等の構成を有する回転電機である。また、比較例の回転電機は、従来構造の回転電機である。すなわち、比較例の回転電機において、ロータコアの外周面は、軸方向から見て円形である。比較例のロータコアの外周面は、全周に亘って図3の仮想円CV上に位置する。図5において、横軸は回転角であり、縦軸はロータの回転トルクである。図5に示すように、本実施形態(実施例)の回転電機によれば、従来構造(比較例)と比較してコギングトルクを低減することができる。 FIG. 5 is a graph showing the simulation results of cogging torque of the example and the comparative example. The rotating electrical machine of the example is a rotating electrical machine having the same configuration as this embodiment. Moreover, the rotating electrical machine of the comparative example is a rotating electrical machine with a conventional structure. That is, in the rotating electric machine of the comparative example, the outer peripheral surface of the rotor core is circular when viewed from the axial direction. The outer circumferential surface of the rotor core of the comparative example is located on the virtual circle CV in FIG. 3 over the entire circumference. In FIG. 5, the horizontal axis is the rotation angle, and the vertical axis is the rotational torque of the rotor. As shown in FIG. 5, according to the rotating electrical machine of this embodiment (example), cogging torque can be reduced compared to the conventional structure (comparative example).
 本発明が適用される回転電機は、モータに限られず、発電機であってもよい。回転電機の用途は、特に限定されない。回転電機は、例えば、車両を駆動させる用途以外の用途で車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。また、回転電機が用いられる際の姿勢は、特に限定されない。 The rotating electric machine to which the present invention is applied is not limited to a motor, but may be a generator. The use of the rotating electric machine is not particularly limited. For example, the rotating electric machine may be mounted on a vehicle for purposes other than driving the vehicle, or may be mounted on equipment other than the vehicle. Moreover, the posture when the rotating electric machine is used is not particularly limited.
 なお、本技術は以下のような構成をとることが可能である。
(1) 周方向に沿って並ぶ複数の磁極を有するロータであって、中心軸線を中心として柱状に延びるロータコアと、前記ロータコアのマグネット孔に保持され前記磁極を構成する複数のマグネットと、を有し、軸方向から見て前記磁極の中心を通過する直線がd軸であり、前記ロータコアの径方向外側を向く外周面には、それぞれの前記磁極のd軸上に位置する複数の外端部と、周方向において前記外端部の間に位置し、前記外端部よりも径方向内側にオフセットされた複数の退避部と、が設けられる、ロータ。
(2) 前記退避部は、軸方向から見て、中心軸線を通過する仮想的な直交線に対して直交する平坦面を有する、(1)に記載のロータ。
(3) 前記平坦面は、前記マグネットの径方向外側の端部の径方向外側に位置する、(2)に記載のロータ。
(4) 前記磁極にはd軸上に配置され前記d軸の延びる方向を磁化方向とする第1マグネットが含まれ、前記退避部は、前記平坦面として前記第1マグネットの径方向外側の端部の径方向外側に位置する第1平坦面を有する、(3)に記載のロータ。
(5) 周方向に隣り合うd軸同士の二等分線がq軸であり、軸方向から見て、前記中心軸線を通過し前記第1平坦面と直交する前記直交線と前記d軸とがなす角度は、前記d軸と前記q軸とがなす角度に対して、49%以上50.5%以下である、(4)に記載のロータ。
(6) 前記磁極には前記d軸に対し周方向に線対称に配置される一対の第2マグネットが含まれ、一対の前記第2マグネットは、径方向外側に向かうに従い互いに離間して配置され、前記退避部は、前記平坦面として前記第2マグネットの径方向外側の端部の径方向外側に位置する第2平坦面を有する、(3)~(5)の何れか一項に記載のロータ。
(7) 周方向に隣り合うd軸同士の二等分線がq軸であり、前記第2平坦面は、周方向に隣り合うd軸同士の二等分線上に位置するq軸と直交する、(6)に記載のロータ。(8) (1)~(7)に記載のロータと、前記ロータの径方向外側に配置されるステータと、を備える。
Note that the present technology can have the following configuration.
(1) A rotor having a plurality of magnetic poles arranged along the circumferential direction, including a rotor core extending in a columnar shape around a central axis, and a plurality of magnets held in magnet holes of the rotor core and forming the magnetic poles. A straight line passing through the center of the magnetic pole when viewed from the axial direction is the d-axis, and the outer peripheral surface of the rotor core facing outward in the radial direction has a plurality of outer end portions located on the d-axis of each of the magnetic poles. and a plurality of retraction portions located between the outer end portions in the circumferential direction and offset radially inward from the outer end portions.
(2) The rotor according to (1), wherein the retracting portion has a flat surface that is perpendicular to a virtual orthogonal line passing through the central axis when viewed from the axial direction.
(3) The rotor according to (2), wherein the flat surface is located on the radially outer side of the radially outer end of the magnet.
(4) The magnetic pole includes a first magnet that is arranged on the d-axis and whose magnetization direction is in the direction in which the d-axis extends, and the recessed portion includes a radially outer end of the first magnet as the flat surface. The rotor according to (3), wherein the rotor has a first flat surface located on a radially outer side of the rotor.
(5) The bisector of the d-axes adjacent to each other in the circumferential direction is the q-axis, and when viewed from the axial direction, the orthogonal line passing through the central axis and orthogonal to the first flat surface and the d-axis The rotor according to (4), wherein the angle formed by the d-axis and the q-axis is 49% or more and 50.5% or less with respect to the angle formed by the d-axis and the q-axis.
(6) The magnetic poles include a pair of second magnets arranged symmetrically in the circumferential direction with respect to the d-axis, and the pair of second magnets are spaced apart from each other toward the outside in the radial direction. , the retracting portion has a second flat surface located radially outward of the radially outer end of the second magnet as the flat surface, according to any one of (3) to (5). Rotor.
(7) The q-axis is the bisector between the d-axes adjacent to each other in the circumferential direction, and the second flat surface is perpendicular to the q-axis located on the bisector between the d-axes adjacent to the circumferential direction. , (6). (8) The rotor described in (1) to (7) is provided, and a stator disposed radially outward of the rotor.
 以上に、本発明の実施形態およびその変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 The embodiments of the present invention and their modifications have been described above, but each configuration and combination thereof in the embodiments and modifications are merely examples, and additions of configurations and modifications may be made without departing from the spirit of the present invention. Omissions, substitutions and other changes are possible. Moreover, the present invention is not limited by the embodiments.
 3…磁極、10…回転電機、30…ロータ、32…ロータコア、35…外周面、35a…第1平坦面(平坦面)、35b…第2平坦面(平坦面)、35c…外端部、35d…退避部、36…マグネット、36h,36k…端部、36A…第1マグネット、36B…第2マグネット、38…マグネット孔、40…ステータ、48…極、J…中心軸線、La…直交線、Ld…d軸、Lq…q軸(直交線) 3... Magnetic pole, 10... Rotating electric machine, 30... Rotor, 32... Rotor core, 35... Outer peripheral surface, 35a... First flat surface (flat surface), 35b... Second flat surface (flat surface), 35c... Outer end part, 35d... Retraction part, 36... Magnet, 36h, 36k... End, 36A... First magnet, 36B... Second magnet, 38... Magnet hole, 40... Stator, 48... Pole, J... Central axis line, La... Orthogonal line , Ld...d axis, Lq...q axis (orthogonal line)

Claims (8)

  1. 周方向に沿って並ぶ複数の磁極を有するロータであって、
     中心軸線を中心として柱状に延びるロータコアと、
     前記ロータコアのマグネット孔に保持され前記磁極を構成する複数のマグネットと、を有し、
     軸方向から見て前記磁極の中心を通過する直線がd軸であり、
     前記ロータコアの径方向外側を向く外周面には、
      それぞれの前記磁極のd軸上に位置する複数の外端部と、
      周方向において前記外端部の間に位置し、前記外端部よりも径方向内側にオフセットされた複数の退避部と、が設けられる、
    ロータ。
    A rotor having a plurality of magnetic poles arranged along the circumferential direction,
    A rotor core that extends in a columnar shape around a central axis,
    a plurality of magnets held in the magnet holes of the rotor core and forming the magnetic poles;
    A straight line passing through the center of the magnetic pole when viewed from the axial direction is the d-axis,
    The outer circumferential surface of the rotor core facing outward in the radial direction includes:
    a plurality of outer ends located on the d-axis of each of the magnetic poles;
    a plurality of retraction portions located between the outer ends in the circumferential direction and offset radially inward from the outer ends;
    Rotor.
  2.  前記退避部は、軸方向から見て、中心軸線を通過する仮想的な直交線に対して直交する平坦面を有する、
    請求項1に記載のロータ。
    The retraction portion has a flat surface that is perpendicular to a virtual orthogonal line passing through the central axis when viewed from the axial direction.
    A rotor according to claim 1.
  3.  前記平坦面は、前記マグネットの径方向外側の端部の径方向外側に位置する、
    請求項2に記載のロータ。
    The flat surface is located on the radially outer side of the radially outer end of the magnet.
    A rotor according to claim 2.
  4.  前記磁極にはd軸上に配置され前記d軸の延びる方向を磁化方向とする第1マグネットが含まれ、
     前記退避部は、前記平坦面として前記第1マグネットの径方向外側の端部の径方向外側に位置する第1平坦面を有する、
    請求項3に記載のロータ。
    The magnetic pole includes a first magnet that is arranged on the d-axis and whose magnetization direction is the direction in which the d-axis extends,
    The retraction portion has a first flat surface located radially outward of a radially outer end of the first magnet as the flat surface.
    A rotor according to claim 3.
  5.  周方向に隣り合うd軸同士の二等分線がq軸であり、
     軸方向から見て、前記中心軸線を通過し前記第1平坦面と直交する前記直交線と前記d軸とがなす角度は、前記d軸と前記q軸とがなす角度に対して、49%以上50.5%以下である、
    請求項4に記載のロータ。
    The bisector of the d-axes adjacent to each other in the circumferential direction is the q-axis,
    Viewed from the axial direction, the angle formed by the orthogonal line passing through the central axis and orthogonal to the first flat surface and the d-axis is 49% of the angle formed by the d-axis and the q-axis. It is not less than 50.5%,
    A rotor according to claim 4.
  6.  前記磁極には前記d軸に対し周方向に線対称に配置される一対の第2マグネットが含まれ、
     一対の前記第2マグネットは、径方向外側に向かうに従い互いに離間して配置され、 前記退避部は、前記平坦面として前記第2マグネットの径方向外側の端部の径方向外側に位置する第2平坦面を有する、
    請求項3~5の何れか一項に記載のロータ。
    The magnetic poles include a pair of second magnets disposed line-symmetrically in the circumferential direction with respect to the d-axis,
    The pair of second magnets are arranged to be spaced apart from each other as they go radially outward, and the recessed portion is a second magnet located radially outward of a radially outer end of the second magnet as the flat surface. having a flat surface,
    The rotor according to any one of claims 3 to 5.
  7.  周方向に隣り合うd軸同士の二等分線がq軸であり、
     前記第2平坦面は、周方向に隣り合うd軸同士の二等分線上に位置するq軸と直交する、
    請求項6に記載のロータ。
    The bisector of the d-axes adjacent to each other in the circumferential direction is the q-axis,
    The second flat surface is orthogonal to the q-axis located on the bisector of the d-axes adjacent to each other in the circumferential direction.
    A rotor according to claim 6.
  8.  請求項1~5の何れか一項に記載のロータと、
     前記ロータの径方向外側に配置されるステータと、を備える、回転電機。
    A rotor according to any one of claims 1 to 5,
    A rotating electrical machine, comprising: a stator disposed radially outside the rotor.
PCT/JP2023/006316 2022-04-08 2023-02-21 Rotor, and rotating electric machine WO2023195258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022064651 2022-04-08
JP2022-064651 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195258A1 true WO2023195258A1 (en) 2023-10-12

Family

ID=88242847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006316 WO2023195258A1 (en) 2022-04-08 2023-02-21 Rotor, and rotating electric machine

Country Status (1)

Country Link
WO (1) WO2023195258A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300692A (en) * 2005-04-14 2007-11-15 Toyota Industries Corp Rotary electric machine with embedded permanent magnet, motor for car air conditioner and enclosed motor-driven compressor
JP2021197814A (en) * 2020-06-12 2021-12-27 日本電産株式会社 Rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300692A (en) * 2005-04-14 2007-11-15 Toyota Industries Corp Rotary electric machine with embedded permanent magnet, motor for car air conditioner and enclosed motor-driven compressor
JP2021197814A (en) * 2020-06-12 2021-12-27 日本電産株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
JP5969946B2 (en) Synchronous reluctance motor
JP5868513B2 (en) Permanent magnet embedded motor
JP2018153047A (en) Rotor of dynamo-electric machine
WO2017061305A1 (en) Rotor and rotating electric machine
US20130278106A1 (en) Rotor assembly
JP2014039475A (en) Pm synchronous motor
WO2020110191A1 (en) Rotating electrical machine
JP3672919B1 (en) Permanent magnet type rotary motor
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JPWO2020194390A1 (en) Rotating machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
US11594923B2 (en) Rotor and motor including the same
WO2023195258A1 (en) Rotor, and rotating electric machine
JP5041415B2 (en) Axial gap type motor
US20170317541A1 (en) Interior magnet rotary electric machine
WO2018070430A1 (en) Synchronous reluctance rotary electric machine
WO2018101160A1 (en) Magnet unit
WO2022264787A1 (en) Stator and rotary electric machine
WO2019069661A1 (en) Rotor and motor
US20240063671A1 (en) Rotor
WO2023089667A1 (en) Dynamo-electric machine rotor
CN214799084U (en) Permanent magnet rotor and motor
WO2023053371A1 (en) Rotor and motor
WO2023132011A1 (en) Rotor
WO2024029449A1 (en) Embedded magnet-type rotor and rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784551

Country of ref document: EP

Kind code of ref document: A1