WO2023195251A1 - Surface-treated steel sheet and method for producing same - Google Patents

Surface-treated steel sheet and method for producing same Download PDF

Info

Publication number
WO2023195251A1
WO2023195251A1 PCT/JP2023/006069 JP2023006069W WO2023195251A1 WO 2023195251 A1 WO2023195251 A1 WO 2023195251A1 JP 2023006069 W JP2023006069 W JP 2023006069W WO 2023195251 A1 WO2023195251 A1 WO 2023195251A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
steel sheet
less
treated steel
water
Prior art date
Application number
PCT/JP2023/006069
Other languages
French (fr)
Japanese (ja)
Inventor
卓嗣 植野
祐介 中川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023532834A priority Critical patent/JP7327718B1/en
Publication of WO2023195251A1 publication Critical patent/WO2023195251A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a surface-treated steel sheet, and particularly to a surface-treated steel sheet that has excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, paint secondary adhesion, and weldability.
  • the surface-treated steel sheet of the present invention can be suitably used for containers such as cans.
  • the present invention also relates to a method for manufacturing the surface-treated steel sheet.
  • Sn-plated steel sheet has excellent corrosion resistance, weldability, workability, and is easy to manufacture, so it has been used as a material for various metal cans such as beverage cans, food cans, pail cans, and 18-liter cans for 200 years. It has been used for more than a long time.
  • tin-free steel sheets which are surface-treated steel sheets that do not use Sn, have been developed.
  • a tin-free steel sheet is a surface-treated steel sheet in which a metal Cr layer and an oxidized Cr layer are formed on the surface of the steel sheet, and is usually manufactured by electrolytically treating the steel sheet in an electrolyte containing hexavalent Cr (Patent Document 1-3). Since tin-free steel sheets have excellent corrosion resistance and paint adhesion, they are now extremely commonly used as container steel sheets in place of tinplate. However, this tin-free steel sheet has a chromium oxide layer, which is an insulating film, on its surface, and therefore has poor weldability.
  • Ni-plated steel sheets that use Ni instead of Sn are known (Patent Documents 4 and 5).
  • Patent Documents 4 and 5 when using Ni-plated steel sheets as a material for welded cans, it is necessary to apply a chromate treatment film on the Ni-plated steel sheets using an aqueous solution containing hexavalent Cr in order to ensure corrosion resistance and paint adhesion. becomes.
  • a surface treatment layer is formed by performing electrolytic treatment in an electrolytic solution containing a trivalent chromium compound such as basic chromium sulfate.
  • a surface treatment layer can be formed without using hexavalent chromium.
  • the method allows adhesion to a resin film in a humid environment (hereinafter referred to as "film wet adhesion”) and adhesion to a paint in a humid environment (hereinafter referred to as "paint 2"). It is possible to obtain a surface-treated steel sheet with excellent adhesion.
  • the present invention was made in view of the above-mentioned circumstances, and its purpose is to enable production without using hexavalent chromium, and to provide film corrosion resistance, paint corrosion resistance, film wet adhesion, and paint secondary adhesion.
  • the object of the present invention is to provide a surface-treated steel sheet with excellent properties and weldability.
  • the inventors of the present invention conducted intensive studies to achieve the above object, and as a result, they obtained the following findings (1) and (2).
  • a surface-treated steel sheet having a metal Cr layer and an oxidized Cr layer on the Ni-containing layer the water contact angle and the sum of the atomic ratios of K, Na, Mg, and Ca adsorbed on the surface to Cr are: By controlling each to a specific range, a surface-treated steel sheet with excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, paint secondary adhesion, and weldability can be obtained.
  • the above-mentioned surface-treated steel sheet is subjected to cathodic electrolytic treatment in an electrolytic solution containing trivalent chromium ions prepared by a specific method, and then final water washing is performed using water whose electrical conductivity is below a predetermined value. It can be manufactured by performing the following steps.
  • the present invention has been completed based on the above findings.
  • the gist of the present invention is as follows.
  • Ni-containing layer has a Ni adhesion amount of 200 mg/m 2 or more and 2000 mg/m 2 or less per side of the steel sheet.
  • a surface comprising a steel plate, a Ni-containing layer disposed on at least one surface of the steel plate, a metallic Cr layer disposed on the Ni-containing layer, and an oxidized Cr layer disposed on the metallic Cr layer.
  • a method for manufacturing a treated steel sheet comprising: an electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions; a cathodic electrolytic treatment step of cathodic electrolytically treating a steel plate having a Ni-containing layer on at least one surface in the electrolytic solution; a washing step of washing the steel plate after the cathodic electrolytic treatment at least once with water,
  • the electrolyte preparation step Mixing a trivalent chromium ion source, a carboxylic acid compound, and water,
  • the electrolytic solution is prepared by adjusting the pH to 4.0 to 7.0 and the temperature to 40 to 70°C,
  • the present invention it is possible to provide a surface-treated steel sheet that has excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, paint secondary adhesion, and weldability without using hexavalent chromium.
  • the surface-treated steel sheet of the present invention can be suitably used as a material for containers and the like.
  • a surface-treated steel sheet in an embodiment of the present invention includes a steel sheet, a Ni-containing layer placed on at least one surface of the steel sheet, a metal Cr layer placed on the Ni-containing layer, and a metal Cr layer placed on the Ni-containing layer.
  • This is a surface-treated steel sheet having a Cr oxide layer disposed thereon.
  • the water contact angle of the surface-treated steel sheet is 50° or less, and the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to Cr is 5.0% or less. It is important that there be.
  • the steel plate any steel plate can be used without particular limitation.
  • the steel plate is preferably a steel plate for cans.
  • As the steel plate for example, an ultra-low carbon steel plate or a low carbon steel plate can be used.
  • the method for manufacturing the steel plate is not particularly limited either, and steel plates manufactured by any method can be used.
  • a cold-rolled steel plate may be used as the steel plate.
  • the cold-rolled steel sheet can be manufactured by a general manufacturing process that includes, for example, hot rolling, pickling, cold rolling, annealing, and temper rolling.
  • the Cr content is preferably 0.10% by mass or less, more preferably 0.08% by mass or less. If the Cr content of the steel sheet is within the above range, Cr will not be excessively concentrated on the surface of the steel sheet, and as a result, the atomic ratio of Ni to Cr on the surface of the finally obtained surface-treated steel sheet will be 100. % or less.
  • the steel plate may contain C, Mn, P, S, Si, Cu, Ni, Mo, Al, and unavoidable impurities within a range that does not impair the effects of the present invention. In this case, as the steel plate, for example, a steel plate having a composition specified in ASTM A623M-09 can be suitably used.
  • C in mass %, C: 0.0001 to 0.13%, Si: 0 to 0.020%, Mn: 0.01-0.60% P: 0 to 0.020%, S: 0 to 0.030%, Al: 0-0.20%, N: 0 to 0.040%, Cu: 0 to 0.20%, Ni: 0 to 0.15%, Cr: 0 to 0.10%, Mo: 0 to 0.05%, Ti: 0 to 0.020%, Nb: 0 to 0.020%, B: 0 to 0.020%, Ca: 0-0.020%, Sn: 0 to 0.020%, Sb: 0 to 0.020%, It is preferable to use a steel plate having a composition consisting of Fe and the remainder Fe and unavoidable impurities.
  • the thickness of the steel plate is not particularly limited, but is preferably 0.60 mm or less.
  • “steel plate” is defined here to include “steel strip.”
  • the lower limit of the plate thickness is not particularly limited either, but it is preferably 0.10 mm or more.
  • Ni-containing layer When a surface-treated steel sheet is used as a steel sheet for cans, it is generally welded by resistance welding such as wire seam welding. Since Ni is an element with excellent forge weldability, weldability can be improved by arranging a Ni-containing layer. That is, when a Ni-containing layer is present, excellent welding strength can be obtained from lower resistance heat generation, so the lower limit of the weldable current is widened.
  • the Ni-containing layer may be provided on at least one surface of the steel plate, and may be provided on both surfaces.
  • the Ni-containing layer only needs to cover at least a portion of the steel plate, and may cover the entire surface on which the Ni-containing layer is provided.
  • the Ni-containing layer may be a continuous layer or a discontinuous layer. Examples of the discontinuous layer include a layer having an island structure.
  • any layer containing nickel can be used, for example, one or both of a Ni layer and a Ni alloy layer can be used.
  • a Ni alloy layer formed by diffusion annealing after Ni plating is also included in the Ni alloy layer.
  • examples of the Ni alloy layer include a Ni--Fe alloy layer.
  • the Ni-containing layer is preferably a Ni-based plating layer.
  • the term "Ni-based plating layer” is defined as a plating layer having a Ni content of 50% by mass or more.
  • the Ni-based plating layer is a Ni-plated layer or a plating layer made of a Ni-based alloy.
  • the Ni-based plating layer may be a dispersed plating layer (composite plating layer) in which solid fine particles are dispersed in Ni or a Ni-based alloy as a matrix.
  • the solid particles are not particularly limited and may be made of any material.
  • the fine particles may be either inorganic fine particles or organic fine particles. Examples of the organic fine particles include fine particles made of resin. Although any resin can be used as the resin, it is preferable to use a fluororesin, and it is more preferable to use polytetrafluoroethylene (PTFE).
  • the inorganic fine particles are not particularly limited, and fine particles made of any inorganic material can be used.
  • the inorganic material may be, for example, a metal (including an alloy), a compound, or another simple substance.
  • fine particles made of at least one selected from the group consisting of oxides, nitrides, and carbides, and it is preferable to use fine particles of metal oxides.
  • the metal oxide include aluminum oxide, chromium oxide, titanium oxide, and zinc oxide.
  • the particle size of the fine particles used in the dispersion plating is not particularly limited, and particles of any size can be used. However, it is preferable that the diameter of the fine particles does not exceed the thickness of the dispersed plating layer as the Ni-containing layer. Typically, the diameter of the fine particles is preferably 1 nm to 50 ⁇ m, more preferably 10 nm to 1000 nm.
  • the amount of Ni deposited in the Ni-containing layer is not particularly limited and can be any amount.
  • the amount of Ni deposited on one side of the steel sheet is preferably 200 mg/m 2 or more, and more preferably 250 mg/m 2 or more.
  • the amount of Ni deposited exceeds 2000 mg/m 2 , the effect of improving weldability is saturated. Therefore, from the viewpoint of reducing excessive costs, the amount of Ni deposited is preferably 2000 mg/m 2 or less, more preferably 1800 mg/m 2 or less.
  • the amount of Ni adhered to the Ni-containing layer is measured by a calibration curve method using fluorescent X-rays. Prepare multiple steel plates with known Ni adhesion amounts, measure the fluorescent X-ray intensity derived from Ni in advance, and linearly approximate the relationship between the measured fluorescent X-ray intensity and the Ni adhesion amount to obtain a calibration curve. do. The intensity of fluorescent X-rays originating from Ni in the surface-treated steel sheet can be measured, and the amount of Ni adhered to the Ni-containing layer can be measured using the above-mentioned calibration curve.
  • the formation of the Ni-containing layer is not particularly limited, and can be performed by any method such as electroplating.
  • any plating bath can be used. Examples of plating baths that can be used include Watt bath, sulfamic acid bath, and Wood bath.
  • the Ni--Fe alloy layer can be formed by forming the Ni layer on the surface of the steel sheet by a method such as electroplating, and then annealing it.
  • the surface side of the Ni-containing layer may contain Ni oxide or may not contain it at all, but from the viewpoint of further improving secondary paint adhesion and sulfurization resistance, the Ni-containing layer Preferably, the surface side does not contain Ni oxide.
  • Ni oxide can also be formed by dissolved oxygen contained in the washing water after Ni plating, it is preferable to remove the Ni oxide contained in the Ni-containing layer by a pretreatment described below.
  • a metallic Cr layer is present on the Ni-containing layer.
  • the amount of the metal Cr layer deposited is not particularly limited, and can be set to any value.
  • the amount of Cr deposited on one side of the steel sheet is preferably 2 mg/m 2 or more, and preferably 4 mg/m 2 or more. More preferred.
  • the upper limit of the amount of the metal Cr layer deposited there is no particular limitation on the upper limit of the amount of the metal Cr layer deposited, but if the amount of the metal Cr layer deposited is excessive, the contact resistance may increase and weldability may be impaired. Therefore, from the viewpoint of ensuring more stable weldability, the amount of Cr deposited on one side of the steel plate is preferably less than 40 mg/m 2 , and 35 mg/m 2 or less. It is more preferable that
  • the amount of Cr attached to the metal Cr layer can be measured by a fluorescent X-ray method. Specifically, first, the amount of Cr (total amount of Cr) in the surface-treated steel sheet is measured using a fluorescent X-ray device. Next, the surface-treated steel sheet is subjected to an alkaline treatment by immersing it in 7.5N-NaOH at 90° C. for 10 minutes, and then thoroughly washed with water. Thereafter, the amount of Cr (the amount of Cr after alkali treatment) is measured again using the fluorescent X-ray device. Furthermore, the Cr content (original Cr content) of the steel sheet after the metal Cr layer and the oxidized Cr layer have been peeled off is measured using a fluorescent X-ray device.
  • a commercially available hydrochloric acid-based chromium plating remover can be used to remove the metal Cr layer and the oxidized Cr layer.
  • the value obtained by subtracting the original plate Cr amount from the Cr amount after alkali treatment is defined as the Cr adhesion amount per one side of the steel sheet of the metal Cr layer. Note that the total amount of Cr is used to calculate the amount of Cr deposited as the oxidized Cr layer, which will be described later.
  • the metal Cr constituting the metal Cr layer may be amorphous Cr or crystalline Cr. That is, the metal Cr layer can contain one or both of amorphous Cr and crystalline Cr.
  • the metal Cr layer manufactured by the method described below generally contains amorphous Cr, and may further contain crystalline Cr. Although the formation mechanism of the metallic Cr layer is not clear, it is thought that when amorphous Cr is formed, crystallization progresses partially, resulting in a metallic Cr layer containing both amorphous and crystalline phases.
  • the ratio of crystalline Cr to the total of amorphous Cr and crystalline Cr contained in the metal Cr layer is preferably 0% or more and 80% or less, and more preferably 0% or more and 50% or less.
  • the ratio of crystalline Cr can be measured by observing the metal Cr layer with a scanning transmission electron microscope (STEM). Specifically, first, a STEM image is acquired at a magnification of approximately 2 million to 10 million times using a beam diameter that provides a resolution of 1 nm or less. In the obtained STEM image, the area where lattice fringes can be seen is defined as a crystalline phase, and the area where a maize pattern can be seen is defined as amorphous, and the areas of both are determined. From the results, the ratio of the area of crystalline Cr to the total area of amorphous Cr and crystalline Cr is calculated.
  • Cr oxide layer A Cr oxide layer is present on the metal Cr layer.
  • the amount of the Cr oxide layer deposited is not particularly limited, and can be set to any value. However, from the viewpoint of further improving corrosion resistance, it is preferable that the amount of Cr oxide layer deposited is 0.1 mg/m 2 or more in terms of the amount of Cr deposited on one side of the steel sheet.
  • the upper limit of the amount of the Cr oxide layer deposited is not particularly limited, but if the amount of the Cr oxide layer deposited is excessive, the contact resistance may increase and weldability may be impaired.
  • the amount of Cr oxide layer deposited is 15.0 mg/m 2 or less in terms of the amount of Cr deposited per one side of the steel plate.
  • the amount of Cr attached to the oxidized Cr layer can be measured by a fluorescent X-ray method. Specifically, the amount of Cr deposited in the oxidized Cr layer can be determined by subtracting the amount of Cr after the alkali treatment from the total amount of Cr measured using the aforementioned fluorescent X-ray device.
  • the metal Cr layer and the oxidized Cr layer may contain C. However, if an excessive amount of C is contained in the metal Cr layer and the oxidized Cr layer, the weld heat affected zone may harden during welding and cracks may occur. Therefore, the C content in the metal Cr layer is preferably 40% or less, more preferably 35% or less, as an atomic ratio to Cr. Similarly, the C content in the Cr oxide layer is preferably 40% or less, more preferably 35% or less, as an atomic ratio to Cr. The metal Cr layer and the oxidized Cr layer may not contain C, and therefore, the lower limit of the C content contained in the metal Cr layer and the oxidized Cr layer may be 0% in terms of atomic ratio to Cr, respectively. .
  • the C content in the metal Cr layer and the C content in the oxidized Cr layer can each be measured by X-ray photoelectron spectroscopy (XPS). Specifically, to measure the C content by XPS, the C atomic ratio and Cr atomic ratio are determined by the relative sensitivity coefficient method from the integrated intensities of the narrow spectra of Cr2p and C1s measured by XPS, and the C atomic ratio/Cr atomic ratio is calculated. This can be done by calculating the ratio.
  • XPS X-ray photoelectron spectroscopy
  • C derived from contamination is detected from the outermost layer of the surface-treated steel sheet
  • C content in the Cr oxide layer for example, 0.2 nm in terms of SiO 2 is removed from the outermost layer. Measurement may be performed after sputtering to a depth greater than or equal to the depth.
  • the C content in the metal Cr layer may be measured after sputtering is performed from the outermost layer after the alkali treatment described above to a depth of 1/2 of the thickness of the metal Cr layer.
  • the thickness of the metal Cr layer used in the above measurement can be determined by the following procedure. First, XPS measurements are performed every 1 nm in the depth direction from the outermost layer after alkali treatment to measure the Cr atomic ratio and the Ni atomic ratio. Next, a cubic equation that approximates the relationship between the Ni atomic ratio/Cr atomic ratio with respect to the depth from the outermost layer after the alkali treatment is determined by the method of least squares. Using the obtained cubic equation, the depth from the outermost layer at which the Ni atomic ratio/Cr atomic ratio becomes 1 is calculated, and this is taken as the thickness of the metal Cr layer.
  • a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI can be used.
  • the X-ray source is a monochrome AlK ⁇ ray
  • the voltage is 15 kV
  • the beam diameter is 100 ⁇ m ⁇
  • the extraction angle is 45°
  • the sputtering conditions are Ar ion acceleration voltage 1 kV
  • the sputter rate is 1.50 nm/min in terms of SiO 2 .
  • the form of C present in the metal Cr layer and Cr oxide layer is not particularly limited, but if it exists as a precipitate, corrosion resistance may decrease due to the formation of local batteries. Therefore, it is preferable that the sum of the volume fractions of carbides and clusters having a clear crystal structure is 10% or less, and it is more preferable that they are not contained at all (0%).
  • the presence or absence of carbides can be confirmed, for example, by compositional analysis using energy dispersive X-ray spectroscopy (EDS) or wavelength dispersive X-ray spectroscopy (WDS) attached to a scanning electron microscope (SEM) or transmission electron microscope (TEM). I can do it.
  • the presence or absence of clusters can be confirmed, for example, by performing cluster analysis on data after three-dimensional composition analysis using a three-dimensional atom probe (3DAP).
  • the metal Cr layer may contain O.
  • the upper limit of the O content in the metal Cr layer is not particularly limited, but if the O content is high, Cr oxide may precipitate and corrosion resistance may deteriorate due to the formation of local batteries. Therefore, the O content is preferably 30% or less, more preferably 25% or less, as an atomic ratio to Cr.
  • the metal Cr layer does not need to contain O, and therefore, the lower limit of the Cr contained in the metal Cr layer is not particularly limited and may be 0%.
  • the content of O in the metal Cr layer can be measured by compositional analysis such as EDS and WDS attached to SEM or TEM, or 3DAP.
  • One or both of the metal Cr layer and the oxidized Cr layer may contain Ni.
  • the upper limit of the Ni content in the metal Cr layer is not particularly limited, it is preferably less than 100% as an atomic ratio to Cr.
  • the upper limit of the Ni content in the Cr oxide layer is not particularly limited, but it is preferably less than 100% as an atomic ratio to Cr.
  • the metal Cr layer and the oxidized Cr layer do not need to contain Ni, so the lower limit of the atomic ratio of Ni to Cr is not particularly limited and may be 0%.
  • the Ni content on the surface of the surface-treated steel sheet, that is, on the surface of the Cr oxide layer, is not particularly limited, but the lower it is, the better the wet adhesion of the film and the secondary adhesion of the paint will be. Therefore, the atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet is preferably 100% or less, more preferably 80% or less.
  • the Ni content in the metal Cr layer and the Cr oxide layer can be measured by XPS similarly to the C content.
  • the atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet, that is, on the surface of the Cr oxide layer, can be measured by XPS of the surface of the surface-treated steel sheet.
  • the narrow spectra of Cr2p and Ni2p may be used to calculate the atomic ratio.
  • Ni is contained in the metal Cr layer and the Cr oxide layer.
  • the mechanism by which Ni is contained in the metal Cr layer and the Cr oxide layer is not clear, but in the process of forming the metal Cr layer and the Cr oxide layer on the steel sheet, a small amount of Ni contained in the Ni-containing layer is dissolved in the electrolyte. , Ni is considered to be incorporated into the film.
  • the metal Cr layer and Cr oxide layer contain metal impurities such as Cu, Zn, Sn, and Fe contained in the aqueous solution. S, N, Cl, Br, etc. may be included. However, the presence of these elements may reduce the wet adhesion of the film and the secondary adhesion of the paint. Therefore, the content of Fe in the metal Cr layer and the Cr oxide layer is preferably 10% or less as an atomic ratio to Cr, and more preferably not contained at all (0%).
  • the total amount of elements other than Cr, O, Ni, C, K, Na, Mg, Ca, and Fe is preferably 3% or less as an atomic ratio to Cr, and more preferably not contained at all (0%).
  • the content of the above elements is not particularly limited, and can be measured by XPS, for example, similarly to the content of C.
  • XPS X-ray photoelectron spectroscopy
  • the Fe content is preferably controlled to 10% or less as an atomic ratio to Cr.
  • the metal Cr layer and oxidized Cr layer are preferably crack-free.
  • the presence or absence of cracks can be confirmed by, for example, cutting out a cross section of the film using a focused ion beam (FIB) or the like and directly observing it using a transmission electron microscope (TEM).
  • FIB focused ion beam
  • TEM transmission electron microscope
  • the surface roughness of the surface-treated steel sheet of the present invention does not change significantly due to the formation of the metal Cr layer and the oxidized Cr layer, and is generally approximately equivalent to the surface roughness of the underlying steel sheet used.
  • the surface roughness of the surface-treated steel sheet is not particularly limited, it is preferable that the arithmetic mean roughness Ra is 0.1 ⁇ m or more and 4 ⁇ m or less. Moreover, it is preferable that the ten-point average roughness Rz is 0.2 ⁇ m or more and 6 ⁇ m or less.
  • the water contact angle of the surface-treated steel sheet is 50° or less.
  • the water contact angle is preferably 48° or less, more preferably 45° or less. Since the water contact angle is preferably as low as possible from the viewpoint of improving adhesion, its lower limit is not particularly limited and may be 0°. However, from the viewpoint of ease of manufacture, etc., the angle is preferably 3° or more, and more preferably 6° or more. Note that the water contact angle can be measured by the method described in Examples.
  • the present invention by making the surface hydrophilic to a level close to superhydrophilicity, strong hydrogen bonds are formed at the interface between the coating film and the surface-treated steel sheet, thereby making the surface highly hydrophilic even in a humid environment. This is based on the technical concept of maintaining adhesion, which is completely opposite to the prior art described above.
  • the surface-treated steel sheet of the present invention has high hydrophilicity with a water contact angle of 50° or less, and its surface is chemically active. Therefore, cations of elements such as K, Na, Mg, and Ca are easily adsorbed on the surface of the surface-treated steel sheet.
  • the present inventors have discovered that simply setting the water contact angle to 50° or less does not result in the original adhesion being exhibited due to the influence of the adsorbed cations.
  • by reducing the amount of the cations adsorbed on the surface of the surface-treated steel sheet it is possible to improve the adhesion to the resin and achieve excellent film wet adhesion and paint secondary adhesion.
  • the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to Cr is 5.0% or less, preferably 3.0% or less, and more preferably 1.0% or less. 0% or less. Since the lower the sum of the atomic ratios, the better, the lower limit is not particularly limited and may be 0%.
  • the total atomic ratio can be measured by the method described in Examples.
  • a surface-treated steel sheet having the above characteristics can be manufactured by the method described below.
  • a method for manufacturing a surface-treated steel sheet according to an embodiment of the present invention includes, on at least one surface of a steel sheet, a Ni-containing layer, a metal Cr layer disposed on the Ni-containing layer, and a metal Cr layer disposed on the metal Cr layer.
  • a method for manufacturing a surface-treated steel sheet having a Cr oxide layer which includes the following steps (1) to (3). Each step will be explained below.
  • An electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions (2)
  • a cathodic electrolytic treatment step of cathodic electrolytically treating a steel plate having a Ni-containing layer in the electrolytic solution (3) After the cathodic electrolytic treatment A water washing process in which the steel plate is washed at least once with water.
  • Electrode preparation process (i) Mixing In the electrolyte solution preparation step, first, a trivalent chromium ion source, a carboxylic acid compound, and water are mixed to form an aqueous solution.
  • trivalent chromium ion source any compound that can supply trivalent chromium ions can be used.
  • the trivalent chromium ion source for example, at least one selected from the group consisting of chromium chloride, chromium sulfate, and chromium nitrate can be used.
  • the content of the trivalent chromium ion-containing source in the aqueous solution is not particularly limited, but it is preferably 3 g/L or more and 50 g/L or less, and 5 g/L or more and 40 g/L or less in terms of trivalent chromium ions. More preferred.
  • the trivalent chromium ion source Atotech's BluCr (registered trademark) TFS A can be used.
  • the carboxylic acid compound is not particularly limited, and any carboxylic acid compound can be used.
  • the carboxylic acid compound may be at least one of a carboxylic acid and a carboxylate salt, and is preferably at least one of an aliphatic carboxylic acid and a salt of an aliphatic carboxylic acid.
  • the aliphatic carboxylic acid preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Further, the number of carbon atoms in the aliphatic carboxylate is preferably 1 to 10, more preferably 1 to 5.
  • the content of the carboxylic acid compound is not particularly limited, it is preferably 0.1 mol/L or more and 5.5 mol/L or less, and more preferably 0.15 mol/L or more and 5.3 mol/L or less.
  • the carboxylic acid compound Atotech's BluCr (registered trademark) TFS B can be used.
  • water is used as a solvent for preparing the electrolyte.
  • water it is preferable to use ion-exchanged water from which cations have been removed in advance using an ion-exchange resin or the like, or highly purified water such as distilled water.
  • highly purified water such as distilled water.
  • water whose electrical conductivity is 30 ⁇ S/m or less.
  • K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet it is preferable that K, Na, Mg, and Ca are not intentionally contained in the above-mentioned aqueous solution. Therefore, it is preferable that the components added to the aqueous solution, such as the above-mentioned trivalent chromium ion source, carboxylic acid compound, and pH adjuster described in detail below, do not contain K, Na, Mg, and Ca.
  • the pH adjuster it is preferable to use hydrochloric acid, sulfuric acid, nitric acid, etc. to lower the pH, and use ammonia water, etc. to increase the pH.
  • K, Na, Mg, and Ca that are unavoidably mixed into the aqueous solution or electrolyte are allowed, but the total concentration of K, Na, Mg, and Ca is preferably 2.0 mol/L or less, and 1 It is more preferably .5 mol/L or less, and even more preferably 1.0 mol/L or less.
  • the aqueous solution further contains at least one type of halide ion.
  • the content of halide ions is not particularly limited, but is preferably 0.05 mol/L or more and 3.0 mol/L or less, more preferably 0.10 mol/L or more and 2.5 mol/L or less.
  • Atotech's BluCr (registered trademark) TFS C1 and BluCr (registered trademark) TFS C2 can be used.
  • hexavalent chromium is not added to the above aqueous solution. Except for a very small amount of hexavalent chromium formed at the anode during the cathodic electrolytic treatment process, the electrolytic solution described above does not contain hexavalent chromium. In the cathodic electrolytic treatment process, a trace amount of hexavalent chromium formed at the anode is reduced to trivalent chromium, so the concentration of hexavalent chromium in the electrolyte does not increase.
  • metal ions other than trivalent chromium ions are not intentionally added to the above-mentioned aqueous solution.
  • the above metal ions are not limited, but include Cu ions, Zn ions, Ni ions, Fe ions, Sn ions, etc., and each is preferably 0 mg/L or more and 40 mg/L or less, and 0 mg/L or more and 20 mg/L. It is more preferably below, and most preferably 0 mg/L or more and 10 mg/L or less.
  • Ni ions may be dissolved in the electrolyte and eutectoid in the film during the cathodic electrolytic treatment process when the steel plate is immersed in the electrolyte, but this may affect the wet adhesion of the film. It does not affect secondary paint adhesion or weldability.
  • the Ni ion content is preferably 0 mg/L or more and 40 mg/L or less, more preferably 0 mg/L or more and 20 mg/L or less, and most preferably 0 mg/L or more and 10 mg/L or less.
  • Ni ion concentration is within the above range at the time of bath preparation, it is also preferable to maintain the Ni ion concentration in the electrolytic solution within the above range during the cathodic electrolytic treatment step. If Ni ions are controlled within the above range, they will not inhibit the formation of the metal Cr layer and the Cr oxide layer, and the metal Cr layer and the Cr oxide layer can be formed to have the required thickness.
  • the electrolytic solution is prepared by adjusting the pH of the aqueous solution to 4.0 to 7.0 and adjusting the temperature of the aqueous solution to 40 to 70°C.
  • the pH and temperature it is not enough to simply dissolve the trivalent chromium ion source and the carboxylic acid compound in water, and it is important to appropriately control the pH and temperature as described above. .
  • the pH of the mixed aqueous solution is adjusted to 4.0 to 7.0.
  • the pH is less than 4.0 or more than 7.0, the water contact angle of the surface-treated steel sheet manufactured using the obtained electrolyte becomes higher than 50°.
  • the pH is preferably 4.5 to 6.5.
  • the temperature of the aqueous solution after mixing is adjusted to 40 to 70°C. If the temperature is less than 40°C or more than 70°C, the water contact angle of the surface-treated steel sheet produced using the obtained electrolyte will be greater than 50°. Note that the holding time in the temperature range of 40 to 70°C is not particularly limited.
  • an electrolytic solution to be used in the next cathodic electrolytic treatment step can be obtained.
  • the electrolytic solution produced by the above procedure can be stored at room temperature.
  • a steel plate having a Ni-containing layer on at least one surface is subjected to cathodic electrolysis treatment in the electrolytic solution obtained in the electrolytic solution preparation step.
  • cathodic electrolytic treatment a metal Cr layer and a Cr oxide layer can be formed on the Ni-containing layer.
  • the temperature of the electrolyte during the cathodic electrolytic treatment is not particularly limited, but is preferably in the temperature range of 40° C. or higher and 70° C. or lower in order to efficiently form the metal Cr layer and the oxidized Cr layer. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the temperature of the electrolytic solution and maintain it in the above temperature range in the cathodic electrolytic treatment step.
  • the pH of the electrolyte during cathodic electrolytic treatment is not particularly limited, but is preferably 4.0 or higher, more preferably 4.5 or higher. Further, the pH is preferably 7.0 or less, more preferably 6.5 or less. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the pH of the electrolytic solution and maintain it within the above pH range in the cathodic electrolytic treatment step.
  • the current density in the cathodic electrolytic treatment is not particularly limited, and may be adjusted as appropriate so that a desired surface treatment layer is formed. However, when the current density is excessively high, the C content in the metal Cr layer increases, which may deteriorate weldability. Therefore, the current density is preferably less than 5.0 A/dm 2 , more preferably 3.0 A/dm 2 or less.
  • the lower limit of the current density is not particularly limited, but if the current density is too low, hexavalent Cr may be generated in the electrolyte, which may disrupt the stability of the bath. Therefore, the current density is preferably 0.01 A/dm 2 or more, more preferably 0.03 A/dm 2 or more.
  • the number of times the steel plate is subjected to cathodic electrolysis treatment is not particularly limited, and can be any number of times.
  • cathodic electrolytic treatment can be performed using an electrolytic treatment apparatus having an arbitrary number of passes of one or more.
  • the electrolysis time per pass is not particularly limited. However, if the electrolysis time per pass is too long, the conveyance speed (line speed) of the steel plate decreases, resulting in a decrease in productivity. Therefore, the electrolysis time per pass is preferably 5 seconds or less, more preferably 3 seconds or less.
  • the lower limit of the electrolysis time per pass is not particularly limited either, but if the electrolysis time is excessively shortened, it becomes necessary to increase the line speed accordingly, making control difficult. Therefore, the electrolysis time per pass is preferably 0.005 seconds or more, more preferably 0.01 seconds or more.
  • the amount of metallic Cr formed by cathodic electrolytic treatment can be controlled by the total electrical quantity density represented by the product of current density, electrolysis time, and number of passes. As mentioned above, if the amount of metal Cr is too large, the contact resistance will increase and weldability may be impaired, and if the amount of metal Cr is too small, corrosion resistance may be impaired. It is preferable to control the total electricity density so that the amount of Cr deposited on one side of the steel plate is 2 mg/m 2 or more and less than 40 mg/m 2 . However, since the relationship between the amount of metal Cr layer and the total electrical charge density varies depending on the configuration of the apparatus used in the cathode electrolytic treatment process, the actual electrolytic treatment conditions may be adjusted according to the apparatus.
  • the type of anode used when performing cathodic electrolysis treatment is not particularly limited, and any anode can be used.
  • the anode it is preferable to use an insoluble anode.
  • the insoluble anode it is preferable to use at least one selected from the group consisting of an anode in which Ti is coated with one or both of a platinum group metal and an oxide of a platinum group metal, and a graphite anode. More specifically, examples of the insoluble anode include an anode in which the surface of a Ti substrate is coated with platinum, iridium oxide, or ruthenium oxide.
  • the concentration of the electrolytic solution constantly changes due to the formation of a metal Cr layer and an oxidized Cr layer on the steel sheet, the removal and introduction of liquid, evaporation of water, etc.
  • the concentration of the electrolyte in the cathodic electrolytic treatment process varies depending on the equipment configuration and manufacturing conditions, so from the perspective of producing surface-treated steel sheets more stably, the concentration of the components contained in the electrolyte in the cathodic electrolytic treatment process is It is preferable to monitor and maintain the concentration within the above-mentioned concentration range.
  • the steel plate having the Ni-containing layer can be optionally pretreated.
  • the pretreatment By performing the pretreatment, the natural oxide film present on the surface of the Ni-containing layer can be removed and the surface can be activated.
  • the pretreatment method is not particularly limited, and any method can be used. For example, pickling by immersion in dilute sulfuric acid can be performed.
  • any treatment can be performed, but it is preferable to perform at least one of degreasing, pickling, and water washing.
  • degreasing rolling oil, rust preventive oil, etc. attached to the steel plate can be removed.
  • the degreasing can be carried out by any method without particular limitation. After degreasing, it is preferable to wash the steel plate with water to remove the degreasing solution adhering to the surface of the steel plate.
  • pickling it is possible to remove the natural oxide film present on the surface of the steel sheet and activate the surface.
  • the pickling can be carried out by any method without particular limitation. After pickling, it is preferable to wash the steel plate with water to remove the pickling solution adhering to the surface of the steel plate.
  • water washing process Next, the steel plate after the cathodic electrolytic treatment is washed with water at least once. By washing with water, the electrolyte remaining on the surface of the steel plate can be removed.
  • the water washing can be performed by any method without particular limitation.
  • a water washing tank can be provided downstream of an electrolytic cell for performing cathodic electrolytic treatment, and the steel plate after cathodic electrolytic treatment can be continuously immersed in water.
  • water washing may be performed by spraying water onto the steel plate after cathodic electrolysis treatment.
  • the number of times the water washing is performed is not particularly limited, and may be once, twice or more. However, in order to avoid an excessive increase in the number of water washing tanks, it is preferable that the number of water washings be 5 times or less. Moreover, when performing the water washing process two or more times, each water washing may be performed by the same method or may be performed by different methods.
  • the electrical conductivity is preferably 1 ⁇ S/m or more, more preferably 5 ⁇ S/m or more, and even more preferably 10 ⁇ S/m or more.
  • water with an electrical conductivity of 100 ⁇ S/m or less is used for the last washing, so for washing other than the last washing, Any water can be used.
  • Water with an electrical conductivity of 100 ⁇ S/m or less may be used for washing other than the final washing, but from the perspective of reducing costs, it is recommended to use water with an electrical conductivity of 100 ⁇ S/m or less only in the final washing. It is preferable to use ordinary water such as tap water or industrial water for washing other than the final washing.
  • the electrical conductivity of the water used for the final washing is preferably 50 ⁇ S/m or less, and 30 ⁇ S/m or less. /m or less is more preferable.
  • the temperature of the water used for the washing process is not particularly limited and may be any temperature. However, since an excessively high temperature places an excessive burden on the washing equipment, it is preferable that the temperature of the water used for washing is 95° C. or lower. On the other hand, the lower limit of the temperature of the water used for washing is also not particularly limited, but it is preferably 0° C. or higher. The temperature of the water used for the washing may be room temperature.
  • the water washing time per water washing treatment is not particularly limited, but from the viewpoint of enhancing the effect of the water washing treatment, it is preferably 0.1 seconds or more, and more preferably 0.2 seconds or more. Further, the upper limit of the water washing time per water washing treatment is not particularly limited, but when manufacturing on a continuous line, the line speed will decrease and productivity will decrease, so it is preferably 10 seconds or less, and 10 seconds or less is preferable. More preferably seconds or less.
  • drying may be optionally performed.
  • the drying method is not particularly limited, and for example, a normal dryer or an electric oven drying method can be applied.
  • the temperature during the drying treatment is preferably 100°C or lower. Within the above range, deterioration of the surface treated film can be suppressed. Note that the lower limit is not particularly limited, but is usually about room temperature.
  • the use of the surface-treated steel sheet of the present invention is not particularly limited, it is particularly suitable as a surface-treated steel sheet for containers used for manufacturing various containers such as food cans, beverage cans, pail cans, and 18-liter cans.
  • a surface-treated steel sheet was manufactured according to the procedure described below, and its characteristics were evaluated.
  • electrolytic solutions having compositions A to G shown in Table 1 were prepared under the conditions shown in Table 1. That is, each component shown in Table 1 was mixed with water to form an aqueous solution, and then the aqueous solution was adjusted to the pH and temperature shown in Table 1. Note that the electrolytic solution G corresponds to the electrolytic solution used in the example of Patent Document 6. Ammonia water was used to raise the pH, and to lower the pH, sulfuric acid was used for electrolytes A, B, and G, hydrochloric acid was used for electrolytes C and D, and nitric acid was used for electrolytes E and F.
  • both sides of the steel plate were electrically plated with Ni to obtain a Ni-plated steel plate having Ni plating layers as Ni-containing layers on both sides of the steel plate.
  • a Watts bath was used for the electro-Ni plating.
  • the steel plate was sequentially subjected to electrolytic degreasing, water washing, pickling by immersion in dilute sulfuric acid, and water washing.
  • the amount of Ni deposited in the Ni plating layer was set to the values shown in Tables 2 and 3 by changing the electrical quantity density. The amount of Ni deposited on the Ni-containing layer was measured by the above-mentioned calibration curve method using fluorescent X-rays.
  • Ni--Fe alloy layer was formed as the Ni-containing layer. That is, after forming a Ni plating layer by the method described above, a Ni--Fe alloy layer was formed by annealing.
  • steel plate As the steel plate, a steel plate for cans (T4 original plate) having a Cr content of the values shown in Tables 2 and 3 and a plate thickness of 0.17 mm was used.
  • the amount of Cr deposited on one side of the steel sheet in the metal Cr layer and the amount of Cr deposited on one side of the steel sheet in the oxidized Cr layer were measured using the method described above.
  • the C atomic ratio of the metal Cr layer was measured using the method described above.
  • the "C atomic ratio" of the metal Cr layer shown in Tables 4 and 5 is a value representing the C content in the metal Cr layer in terms of the atomic ratio to Cr.
  • the water contact angle, the amount of adsorbed elements, and the atomic ratio of Ni on the outermost surface were measured using the following methods. The measurement results are shown in Tables 4 and 5.
  • the water contact angle was measured using an automatic contact angle meter model CA-VP manufactured by Kyowa Interface Science.
  • the surface temperature of the surface-treated steel sheet was set to 20°C ⁇ 1°C, distilled water at 20 ⁇ 1°C was used, and a droplet volume of 2 ⁇ l of distilled water was dropped onto the surface of the surface-treated steel sheet, and after 1 second, ⁇ /
  • the contact angle was measured by method 2, and the arithmetic average value of the contact angles for 5 drops was taken as the water contact angle.
  • the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to Cr was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, Mg1s, and Cr2p on the outermost surface of the sample, the atomic ratio was quantified by the relative sensitivity coefficient method, and was calculated as (K atomic ratio + Na atomic ratio + Ca atomic ratio + Mg atomic ratio) / Cr atomic ratio. The ratio was calculated.
  • a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the extraction angle was 45°.
  • Ni atomic ratio on the outermost surface The atomic ratio of Ni content to Cr on the outermost surface of the surface-treated steel sheet was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of Ni2p and Cr2p on the outermost surface of the sample, the atomic ratio was quantified by the relative sensitivity coefficient method, and the Ni atomic ratio/Cr atomic ratio was calculated.
  • XPS measurements a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the extraction angle was 45°.
  • the obtained surface-treated steel sheet was evaluated for film wet adhesion, secondary paint adhesion, and weldability using the following methods. The evaluation results are also listed in Tables 4 and 5.
  • An isophthalic acid copolymerized polyethylene terephthalate film having a stretching ratio of 3.1 x 3.1, a thickness of 25 ⁇ m, a copolymerization ratio of 12 mol%, and a melting point of 224°C is laminated on both sides of the obtained surface-treated steel sheet to obtain a laminated steel sheet.
  • the lamination was carried out under conditions such that the crystallinity of the resin film was 10% or less, specifically, the feed speed of the steel plate: 40 m/min, the nip length of the rubber roll: 17 mm, and the time from crimping to water cooling: 1 sec. .
  • the crystallinity of the resin film was determined by the density gradient tube method in accordance with JIS K7112.
  • the nip length refers to the length of the portion where the rubber roll and the steel plate are in contact with each other in the conveyance direction.
  • An epoxyphenol paint was applied to the surface of the obtained surface-treated steel sheet, and baked at 210° C. for 10 minutes to produce a coated steel sheet.
  • the amount of coating applied was 50 mg/dm 2 .
  • a cutter was used to make a cross cut deep enough to reach the base iron (steel plate) on the film surface of the produced laminated steel plate and the painted surface of the painted steel plate.
  • a laminated steel plate with cross cuts and a painted steel plate were immersed for 96 hours in a test solution at 55°C consisting of a mixed aqueous solution containing 1.5% by mass citric acid and 1.5% by mass common salt. After dipping, washing and drying, cellophane adhesive tape was applied to the film surface of the laminated steel sheet and the painted surface of the painted steel sheet, and tape peeling was performed by peeling it off.
  • the film peeling width (the total width of the left and right sides extending from the cut part) was measured at four arbitrary locations on the cross-cut part of the laminated steel plate, and the average value of the four locations was determined and considered as the corrosion width.
  • the paint peeling width (the total width of the left and right sides extending from the cut part) was measured at four arbitrary locations on the cross-cut portion of the painted steel plate, and the average value of the four locations was determined and considered as the corrosion width.
  • Film corrosion resistance and paint corrosion resistance were evaluated on the following four levels. In practical terms, if the rating is 1 to 3, it can be said that the material has excellent corrosion resistance.
  • Corrosion width less than 0.3 mm 2 Corrosion width 0.3 mm or more and less than 0.5 mm 3: Corrosion width 0.5 mm or more and less than 1.0 mm 4: Corrosion width 1.0 mm or more
  • Film wet adhesion was evaluated by a 180° peel test in a retort atmosphere at a temperature of 130° C. and a relative humidity of 100% using the laminated steel plate. The specific steps were as follows.
  • test pieces were cut out from each of the above laminated steel plates: three test pieces with the front side as the target side and three test pieces with the back side as the target side.
  • the size of each test piece was 30 mm in width and 100 mm in length.
  • the film and steel plate on the opposite side of the target surface were cut, leaving the film on the target surface.
  • the test piece was fixed in the longitudinal direction up to 15 mm from the bottom so that the steel plate was perpendicular to the ground, and the part 30 mm wide and 15 mm long above the cutting position was the target I made it hang down while being connected by a film on the surface.
  • a weight of 100 g was attached to the hanging portion of 30 mm in width and 15 mm in length.
  • the test piece in this state was left in a retort atmosphere at a temperature of 130° and a relative humidity of 100% for 30 minutes, and then opened to the atmosphere.
  • the length by which the film on the target surface was peeled off from the surface-treated steel sheet was defined as the film peeling length, and for each laminated steel sheet, the average value of the film peeling length in six test pieces was determined.
  • the film wet adhesion was evaluated on the following four levels. In practical terms, if the evaluation is 1 to 3, it can be said that the film has excellent wet adhesion.
  • the average value of the three test pieces was evaluated on the following four levels. In practical terms, if the rating is 1 to 3, it can be said that the secondary paint adhesion is excellent. 1: 2.5 kgf or more 2: 2.0 kgf or more and less than 2.5 kgf 3: 1.5 kgf or more and less than 2.0 kgf 4: Less than 1.5 kgf
  • the surface-treated steel sheets that meet the conditions of the present invention have excellent film corrosion resistance, paint corrosion resistance, and film wetness, even though they were manufactured without using hexavalent chromium. It had excellent adhesion, secondary paint adhesion, and weldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The present invention provides a surface-treated steel sheet which can be produced without using hexavalent chromium, and which exhibits excellent film corrosion resistance, coating corrosion resistance, film wet adhesion, coating material secondary adhesion and weldability. The present invention provides a surface-treated steel sheet which comprises, on at least one surface of a steel sheet, an Ni-containing layer, a Cr metal layer that is arranged on the Ni-containing layer, and a Cr oxide layer that is arranged on the Cr metal layer, wherein: the water contact angle is 50° or less; and the sum of the atomic ratios, relative to Cr, of K, Na, Mg and Ca adsorbed on the surface of the steel sheet is 5.0% or less.

Description

表面処理鋼板およびその製造方法Surface treated steel sheet and its manufacturing method
 本発明は、表面処理鋼板に関し、特に、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れる表面処理鋼板に関する。本発明の表面処理鋼板は、缶などの容器に好適に用いることができる。また、本発明は、前記表面処理鋼板の製造方法に関する。 The present invention relates to a surface-treated steel sheet, and particularly to a surface-treated steel sheet that has excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, paint secondary adhesion, and weldability. The surface-treated steel sheet of the present invention can be suitably used for containers such as cans. The present invention also relates to a method for manufacturing the surface-treated steel sheet.
 Snめっき鋼板(ぶりき)は、耐食性、溶接性、加工性に優れ、製造も容易であることから、飲料缶、食品缶、ペール缶、18リットル缶などの各種金属缶の素材として、200年以上にわたって使用されてきた。 Sn-plated steel sheet (tinplate) has excellent corrosion resistance, weldability, workability, and is easy to manufacture, so it has been used as a material for various metal cans such as beverage cans, food cans, pail cans, and 18-liter cans for 200 years. It has been used for more than a long time.
 しかし、Snは高価な材料であることから、Snを使用しない表面処理鋼板であるティンフリー鋼板(TFS)が開発された。ティンフリー鋼板は、鋼板の表面に金属Cr層と酸化Cr層が形成された表面処理鋼板であり、通常、6価Crを含む電解液中で鋼板を電解処理することにより製造される(特許文献1~3)。ティンフリー鋼板は、耐食性や塗料密着性に優れていることから、現在では、ぶりきに代わる容器用鋼板として極めて一般的に使用されている。しかし、このティンフリー鋼板は、表層に絶縁皮膜である酸化クロム層を備えるため、溶接性には乏しい。 However, since Sn is an expensive material, tin-free steel sheets (TFS), which are surface-treated steel sheets that do not use Sn, have been developed. A tin-free steel sheet is a surface-treated steel sheet in which a metal Cr layer and an oxidized Cr layer are formed on the surface of the steel sheet, and is usually manufactured by electrolytically treating the steel sheet in an electrolyte containing hexavalent Cr (Patent Document 1-3). Since tin-free steel sheets have excellent corrosion resistance and paint adhesion, they are now extremely commonly used as container steel sheets in place of tinplate. However, this tin-free steel sheet has a chromium oxide layer, which is an insulating film, on its surface, and therefore has poor weldability.
 一方、溶接性に優れ、かつSnを使用しない表面処理鋼板としては、Snの代わりにNiを使用したNiめっき鋼板が知られている(特許文献4、5)。しかし、Niめっき鋼板を溶接缶の素材として使用する場合、耐食性や塗料密着性を確保するために、Niめっき鋼板上に6価Crを含む水溶液を使用してクロメート処理皮膜を付与することが必要となる。 On the other hand, as surface-treated steel sheets that have excellent weldability and do not use Sn, Ni-plated steel sheets that use Ni instead of Sn are known (Patent Documents 4 and 5). However, when using Ni-plated steel sheets as a material for welded cans, it is necessary to apply a chromate treatment film on the Ni-plated steel sheets using an aqueous solution containing hexavalent Cr in order to ensure corrosion resistance and paint adhesion. becomes.
 近年、環境に対する意識の高まりから、世界的に6価Crの使用が規制される方向に向かっている。そのため、容器等に用いられる表面処理鋼板の分野においても、6価クロムを使用しない製造方法の確立が求められている。 In recent years, due to increasing environmental awareness, the use of hexavalent Cr is being regulated worldwide. Therefore, in the field of surface-treated steel sheets used for containers and the like, there is a need to establish a manufacturing method that does not use hexavalent chromium.
 6価クロムを使用せずに表面処理鋼板を形成する方法としては、例えば、特許文献6、7で提案されている方法が知られている。この方法では、塩基性硫酸クロムなどの3価クロム化合物を含む電解液中で電解処理を行うことによって表面処理層を形成している。 As a method for forming a surface-treated steel sheet without using hexavalent chromium, for example, the methods proposed in Patent Documents 6 and 7 are known. In this method, a surface treatment layer is formed by performing electrolytic treatment in an electrolytic solution containing a trivalent chromium compound such as basic chromium sulfate.
特開昭58-110695号公報Japanese Patent Application Publication No. 58-110695 特開昭55-134197号公報Japanese Patent Application Publication No. 55-134197 特開昭57-035699号公報Japanese Unexamined Patent Publication No. 57-035699 特開平11-117085号公報Japanese Patent Application Publication No. 11-117085 特開2007-231394号公報Japanese Patent Application Publication No. 2007-231394 特表2016-505708号公報Special table 2016-505708 publication 特表2015-520794号公報Special table 2015-520794 publication
 特許文献6、7で提案されている方法によれば、6価クロムを用いることなく表面処理層を形成することができる。そして、特許文献6、7によれば、前記方法により、湿潤環境下における樹脂フィルムに対する密着性(以下、「フィルム湿潤密着性」という)および湿潤環境下における塗料に対する密着性(以下、「塗料2次密着性」という)に優れる表面処理鋼板を得ることができる。 According to the methods proposed in Patent Documents 6 and 7, a surface treatment layer can be formed without using hexavalent chromium. According to Patent Documents 6 and 7, the method allows adhesion to a resin film in a humid environment (hereinafter referred to as "film wet adhesion") and adhesion to a paint in a humid environment (hereinafter referred to as "paint 2"). It is possible to obtain a surface-treated steel sheet with excellent adhesion.
 しかし、特許文献6、7で提案されているような従来の方法で得られる表面処理鋼板は、フィルム湿潤密着性と塗料2次密着性には優れるものの、溶接性が劣っており、6価クロムを用いた方法で製造される表面処理鋼板の代替として使用するには性能が十分ではなかった。 However, although surface-treated steel sheets obtained by conventional methods such as those proposed in Patent Documents 6 and 7 have excellent film wet adhesion and secondary paint adhesion, they have poor weldability and contain hexavalent chromium. The performance was not sufficient to be used as a substitute for surface-treated steel sheets manufactured by the method using the method.
 そのため、6価クロムを用いることなく製造することができ、かつ、優れたフィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性を兼ね備えた表面処理鋼板が求められている。 Therefore, there is a need for a surface-treated steel sheet that can be manufactured without using hexavalent chromium and has excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, secondary paint adhesion, and weldability. .
 本発明は、上記実状に鑑みてなされたものであって、その目的は、6価クロムを用いることなく製造することができ、かつ、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れる表面処理鋼板を提供することにある。 The present invention was made in view of the above-mentioned circumstances, and its purpose is to enable production without using hexavalent chromium, and to provide film corrosion resistance, paint corrosion resistance, film wet adhesion, and paint secondary adhesion. The object of the present invention is to provide a surface-treated steel sheet with excellent properties and weldability.
 本発明の発明者らは、上記目的を達成するために鋭意検討を行なった結果、次の(1)および(2)の知見を得た。 The inventors of the present invention conducted intensive studies to achieve the above object, and as a result, they obtained the following findings (1) and (2).
(1)Ni含有層上に金属Cr層と酸化Cr層とを有する表面処理鋼板において、水接触角と、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、それぞれ特定の範囲に制御することにより、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れた表面処理鋼板を得ることができる。 (1) In a surface-treated steel sheet having a metal Cr layer and an oxidized Cr layer on the Ni-containing layer, the water contact angle and the sum of the atomic ratios of K, Na, Mg, and Ca adsorbed on the surface to Cr are: By controlling each to a specific range, a surface-treated steel sheet with excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, paint secondary adhesion, and weldability can be obtained.
(2)上記表面処理鋼板は、3価クロムイオンを含有する特定の方法で調製した電解液中で陰極電解処理を行い、その後、電気伝導度が所定の値以下である水を用いて最終水洗を行うことにより製造することができる。 (2) The above-mentioned surface-treated steel sheet is subjected to cathodic electrolytic treatment in an electrolytic solution containing trivalent chromium ions prepared by a specific method, and then final water washing is performed using water whose electrical conductivity is below a predetermined value. It can be manufactured by performing the following steps.
 本発明は、以上の知見に基づいて完成されたものである。本発明の要旨は次のとおりである。 The present invention has been completed based on the above findings. The gist of the present invention is as follows.
1.鋼板と、
 前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、
 前記Ni含有層上に配置された金属Cr層と、
 前記金属Cr層上に配置された酸化Cr層とを有し、
 水接触角が50°以下であり、
 表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。
1. steel plate and
a Ni-containing layer disposed on at least one surface of the steel plate;
a metal Cr layer disposed on the Ni-containing layer;
and a Cr oxide layer disposed on the metal Cr layer,
The water contact angle is 50° or less,
A surface-treated steel sheet in which the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to Cr is 5.0% or less.
2.前記Ni含有層は、Ni付着量が前記鋼板の片面当たり200mg/m以上2000mg/m以下である、上記1に記載の表面処理鋼板。 2. The surface-treated steel sheet according to 1 above, wherein the Ni-containing layer has a Ni adhesion amount of 200 mg/m 2 or more and 2000 mg/m 2 or less per side of the steel sheet.
3.前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2mg/m以上40mg/m未満である、上記1または2に記載の表面処理鋼板。 3. The surface-treated steel sheet according to 1 or 2 above, wherein the metal Cr layer has a Cr adhesion amount of 2 mg/m 2 or more and less than 40 mg/m 2 per side of the steel sheet.
4.前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m以上15.0mg/m以下である、上記1~3のいずれか一項に記載の表面処理鋼板。 4. 4. The surface-treated steel sheet according to any one of 1 to 3 above, wherein the Cr oxide layer has a Cr adhesion amount of 0.1 mg/m 2 or more and 15.0 mg/m 2 or less per side of the steel sheet.
5.前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、上記1~4のいずれか一項に記載の表面処理鋼板。 5. 5. The surface-treated steel sheet according to any one of 1 to 4 above, wherein the atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet is 100% or less.
6.鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、
 3価クロムイオンを含有する電解液を調製する電解液調製工程と、
 少なくとも一方の面にNi含有層を有する鋼板を前記電解液中で陰極電解処理する陰極電解処理工程と、
 前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程とを含み、
 前記電解液調製工程では、
  3価クロムイオン源、カルボン酸化合物、および水を混合し、
  pHを4.0~7.0に調整するとともに、温度を40~70℃に調整することによって前記電解液が調製され、
 前記水洗工程では、
  少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
6. A surface comprising a steel plate, a Ni-containing layer disposed on at least one surface of the steel plate, a metallic Cr layer disposed on the Ni-containing layer, and an oxidized Cr layer disposed on the metallic Cr layer. A method for manufacturing a treated steel sheet, the method comprising:
an electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions;
a cathodic electrolytic treatment step of cathodic electrolytically treating a steel plate having a Ni-containing layer on at least one surface in the electrolytic solution;
a washing step of washing the steel plate after the cathodic electrolytic treatment at least once with water,
In the electrolyte preparation step,
Mixing a trivalent chromium ion source, a carboxylic acid compound, and water,
The electrolytic solution is prepared by adjusting the pH to 4.0 to 7.0 and the temperature to 40 to 70°C,
In the water washing step,
A method for producing a surface-treated steel sheet, using water with an electrical conductivity of 100 μS/m or less in at least the final washing.
 本発明によれば、6価クロムを使用することなく、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れる表面処理鋼板を提供することができる。本発明の表面処理鋼板は、容器等の材料として好適に用いることができる。 According to the present invention, it is possible to provide a surface-treated steel sheet that has excellent film corrosion resistance, paint corrosion resistance, film wet adhesion, paint secondary adhesion, and weldability without using hexavalent chromium. The surface-treated steel sheet of the present invention can be suitably used as a material for containers and the like.
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。 Hereinafter, a method for implementing the present invention will be specifically described. Note that the following description shows examples of preferred embodiments of the present invention, and the present invention is not limited thereto.
 本発明の一実施形態における表面処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板である。本発明においては、前記表面処理鋼板の水接触角が50°以下であり、かつ、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下であることが重要である。以下、前記表面処理鋼板の構成要件のそれぞれについて説明する。 A surface-treated steel sheet in an embodiment of the present invention includes a steel sheet, a Ni-containing layer placed on at least one surface of the steel sheet, a metal Cr layer placed on the Ni-containing layer, and a metal Cr layer placed on the Ni-containing layer. This is a surface-treated steel sheet having a Cr oxide layer disposed thereon. In the present invention, the water contact angle of the surface-treated steel sheet is 50° or less, and the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to Cr is 5.0% or less. It is important that there be. Each of the constituent requirements of the surface-treated steel sheet will be explained below.
[鋼板]
 前記鋼板としては、特に限定されることなく任意の鋼板を用いることができる。前記鋼板は、缶用鋼板であることが好ましい。前記鋼板としては、例えば、極低炭素鋼板または低炭素鋼板を用いることができる。前記鋼板の製造方法についても特に限定されず、任意の方法で製造された鋼板を用いることができる。通常は、前記鋼板として冷延鋼板を使用すればよい。前記冷延鋼板は、例えば、熱間圧延、酸洗、冷間圧延、焼鈍、および調質圧延を行う、一般的な製造工程により製造することができる。
[Steel plate]
As the steel plate, any steel plate can be used without particular limitation. The steel plate is preferably a steel plate for cans. As the steel plate, for example, an ultra-low carbon steel plate or a low carbon steel plate can be used. The method for manufacturing the steel plate is not particularly limited either, and steel plates manufactured by any method can be used. Usually, a cold-rolled steel plate may be used as the steel plate. The cold-rolled steel sheet can be manufactured by a general manufacturing process that includes, for example, hot rolling, pickling, cold rolling, annealing, and temper rolling.
 前記鋼板の成分組成は特に限定されないが、Cr含有量は0.10質量%以下であることが好ましく、0.08質量%以下であることがより好ましい。前記鋼板のCr含有量を上記の範囲とすれば、鋼板表面に過度にCrが濃化することがなく、その結果、最終的に得られる表面処理鋼板の表面におけるNiのCrに対する原子比率を100%以下とすることができる。さらに、前記鋼板には、本発明の範囲の効果を損なわない範囲でC、Mn、P、S、Si、Cu、Ni、Mo、Al、不可避的不純物を含有してもよい。その際、前記鋼板としては、例えば、ASTM A623M-09に規定される成分組成の鋼板を好適に用いることができる。 Although the composition of the steel sheet is not particularly limited, the Cr content is preferably 0.10% by mass or less, more preferably 0.08% by mass or less. If the Cr content of the steel sheet is within the above range, Cr will not be excessively concentrated on the surface of the steel sheet, and as a result, the atomic ratio of Ni to Cr on the surface of the finally obtained surface-treated steel sheet will be 100. % or less. Furthermore, the steel plate may contain C, Mn, P, S, Si, Cu, Ni, Mo, Al, and unavoidable impurities within a range that does not impair the effects of the present invention. In this case, as the steel plate, for example, a steel plate having a composition specified in ASTM A623M-09 can be suitably used.
 本発明の一実施形態においては、質量%で、
C :0.0001~0.13%、
Si:0~0.020%、
Mn:0.01~0.60%
P :0~0.020%、
S :0~0.030%、
Al:0~0.20%、
N :0~0.040%、
Cu:0~0.20%、
Ni:0~0.15%、
Cr:0~0.10%、
Mo:0~0.05%、
Ti:0~0.020%、
Nb:0~0.020%、
B :0~0.020%、
Ca:0~0.020%、
Sn:0~0.020%、
Sb:0~0.020%、
および残部のFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。上記成分組成のうち、Si、P、S、Al、およびNは含有量が低いほど好ましい成分であり、Cu、Ni、Cr、Mo、Ti、Nb、B、Ca、Sn、およびSbは、任意に添加し得る成分である。
In one embodiment of the invention, in mass %,
C: 0.0001 to 0.13%,
Si: 0 to 0.020%,
Mn: 0.01-0.60%
P: 0 to 0.020%,
S: 0 to 0.030%,
Al: 0-0.20%,
N: 0 to 0.040%,
Cu: 0 to 0.20%,
Ni: 0 to 0.15%,
Cr: 0 to 0.10%,
Mo: 0 to 0.05%,
Ti: 0 to 0.020%,
Nb: 0 to 0.020%,
B: 0 to 0.020%,
Ca: 0-0.020%,
Sn: 0 to 0.020%,
Sb: 0 to 0.020%,
It is preferable to use a steel plate having a composition consisting of Fe and the remainder Fe and unavoidable impurities. Among the above component compositions, the lower the content of Si, P, S, Al, and N, the more preferable the components are.Cu, Ni, Cr, Mo, Ti, Nb, B, Ca, Sn, and Sb are optional. It is a component that can be added to
 前記鋼板の板厚は特に限定されないが、0.60mm以下であることが好ましい。なお、ここで「鋼板」には「鋼帯」を包含するものと定義する。一方、前記板厚の下限についてもとくに限定されないが、0.10mm以上とすることが好ましい。 The thickness of the steel plate is not particularly limited, but is preferably 0.60 mm or less. Note that "steel plate" is defined here to include "steel strip." On the other hand, the lower limit of the plate thickness is not particularly limited either, but it is preferably 0.10 mm or more.
[Ni含有層]
 表面処理鋼板を缶用鋼板として用いる場合、一般的に、ワイヤーシーム溶接等の抵抗溶接で溶接される。Niは鍛接性に優れる元素であるため、Ni含有層を配置することにより溶接性を向上させることができる。すなわち、Ni含有層が存在する場合、より低い抵抗発熱から優れた溶接強度が得られるため、溶接可能な電流の下限が広がる。
[Ni-containing layer]
When a surface-treated steel sheet is used as a steel sheet for cans, it is generally welded by resistance welding such as wire seam welding. Since Ni is an element with excellent forge weldability, weldability can be improved by arranging a Ni-containing layer. That is, when a Ni-containing layer is present, excellent welding strength can be obtained from lower resistance heat generation, so the lower limit of the weldable current is widened.
 前記Ni含有層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Ni含有層は、鋼板の少なくとも一部を覆っていればよく、該Ni含有層が設けられた面の全体を覆っていてもよい。また、前記Ni含有層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。 The Ni-containing layer may be provided on at least one surface of the steel plate, and may be provided on both surfaces. The Ni-containing layer only needs to cover at least a portion of the steel plate, and may cover the entire surface on which the Ni-containing layer is provided. Further, the Ni-containing layer may be a continuous layer or a discontinuous layer. Examples of the discontinuous layer include a layer having an island structure.
 前記Ni含有層としては、ニッケルが含まれている任意の層を用いることができ、例えば、Ni層およびNi合金層の一方または両方を用いることができる。例えば、Niめっき後の拡散焼鈍処理によってNi合金層となっている場合もNi合金層に含める。また、前記Ni合金層としては、例えば、Ni-Fe合金層が挙げられる。 As the Ni-containing layer, any layer containing nickel can be used, for example, one or both of a Ni layer and a Ni alloy layer can be used. For example, a Ni alloy layer formed by diffusion annealing after Ni plating is also included in the Ni alloy layer. Furthermore, examples of the Ni alloy layer include a Ni--Fe alloy layer.
 前記Ni含有層は、Ni基めっき層であることが好ましい。ここで、「Ni基めっき層」とは、Ni含有量が50質量%以上であるめっき層を指すものと定義する。言い換えると、前記Ni基めっき層は、Niめっき層、またはNi基合金からなるめっき層である。 The Ni-containing layer is preferably a Ni-based plating layer. Here, the term "Ni-based plating layer" is defined as a plating layer having a Ni content of 50% by mass or more. In other words, the Ni-based plating layer is a Ni-plated layer or a plating layer made of a Ni-based alloy.
 前記Ni基めっき層は、マトリックスとしてのNiまたはNi基合金中に、固体微粒子が分散した分散めっき層(複合めっき層)であってもよい。前記固体微粒子としては、とくに限定されることなく任意の材質の微粒子を用いることができる。前記微粒子は、無機微粒子および有機微粒子のいずれであってもよい。前記有機微粒子としては、例えば、樹脂からなる微粒子が挙げられる。前記樹脂としては、任意の樹脂を使用できるが、フッ素樹脂を用いることが好ましく、ポリテトラフルオロエチレン(PTFE)を用いることがより好ましい。前記無機微粒子としては、とくに限定されることなく任意の無機材料からなる微粒子を使用することができる。前記無機材料は、例えば、金属(合金を含む)であってもよく、化合物であってもよく、その他の単体であってもよい。中でも、酸化物、窒化物、および炭化物からなる群より選択される少なくとも1つからなる微粒子を用いることが好ましく、金属酸化物の微粒子を用いることが好ましい。前記金属酸化物としては、例えば、酸化アルミニウム、酸化クロム、酸化チタン、酸化亜鉛などが挙げられる。 The Ni-based plating layer may be a dispersed plating layer (composite plating layer) in which solid fine particles are dispersed in Ni or a Ni-based alloy as a matrix. The solid particles are not particularly limited and may be made of any material. The fine particles may be either inorganic fine particles or organic fine particles. Examples of the organic fine particles include fine particles made of resin. Although any resin can be used as the resin, it is preferable to use a fluororesin, and it is more preferable to use polytetrafluoroethylene (PTFE). The inorganic fine particles are not particularly limited, and fine particles made of any inorganic material can be used. The inorganic material may be, for example, a metal (including an alloy), a compound, or another simple substance. Among these, it is preferable to use fine particles made of at least one selected from the group consisting of oxides, nitrides, and carbides, and it is preferable to use fine particles of metal oxides. Examples of the metal oxide include aluminum oxide, chromium oxide, titanium oxide, and zinc oxide.
 前記分散めっきに用いる微粒子の粒径は特に限定されず、任意のサイズの粒子を使用することができる。しかし、微粒子の直径が、Ni含有層としての分散めっき層の厚さを超えないことが好ましい。典型的には、前記微粒子の直径を、1nm~50μmとすることが好ましく、10nm~1000nmとすることがより好ましい。 The particle size of the fine particles used in the dispersion plating is not particularly limited, and particles of any size can be used. However, it is preferable that the diameter of the fine particles does not exceed the thickness of the dispersed plating layer as the Ni-containing layer. Typically, the diameter of the fine particles is preferably 1 nm to 50 μm, more preferably 10 nm to 1000 nm.
 前記Ni含有層におけるNi付着量は、特に限定されることなく任意の量とすることができる。しかし、表面処理鋼板の溶接性と耐食性をさらに向上させるという観点からは、Ni付着量を鋼板片面当たり200mg/m以上とすることが好ましく、250mg/m以上とすることがより好ましい。一方、前記Ni付着量が2000mg/mを超えると溶接性を向上させる効果が飽和する。そのため、過剰なコストを削減するという観点で、前記Ni付着量を2000mg/m以下とすることが好ましく、1800mg/m以下とすることがより好ましい。 The amount of Ni deposited in the Ni-containing layer is not particularly limited and can be any amount. However, from the viewpoint of further improving the weldability and corrosion resistance of the surface-treated steel sheet, the amount of Ni deposited on one side of the steel sheet is preferably 200 mg/m 2 or more, and more preferably 250 mg/m 2 or more. On the other hand, when the amount of Ni deposited exceeds 2000 mg/m 2 , the effect of improving weldability is saturated. Therefore, from the viewpoint of reducing excessive costs, the amount of Ni deposited is preferably 2000 mg/m 2 or less, more preferably 1800 mg/m 2 or less.
 前記Ni含有層のNi付着量は蛍光X線による検量線法で測定する。Ni付着量が既知である複数の鋼板を準備し、Niに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とNi付着量との関係を線形近似して検量線とする。表面処理鋼板のNiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記Ni含有層のNi付着量を測定することができる。 The amount of Ni adhered to the Ni-containing layer is measured by a calibration curve method using fluorescent X-rays. Prepare multiple steel plates with known Ni adhesion amounts, measure the fluorescent X-ray intensity derived from Ni in advance, and linearly approximate the relationship between the measured fluorescent X-ray intensity and the Ni adhesion amount to obtain a calibration curve. do. The intensity of fluorescent X-rays originating from Ni in the surface-treated steel sheet can be measured, and the amount of Ni adhered to the Ni-containing layer can be measured using the above-mentioned calibration curve.
 前記Ni含有層の形成は、特に限定されることなく、電気めっき法など、任意の方法で行うことができる。電気めっき法によりNi含有層を形成する場合、任意のめっき浴を用いることができる。使用できるめっき浴としては、例えば、ワット浴、スルファミン酸浴、またはウッド浴などを挙げることができる。Ni含有層としてNi-Fe合金層を形成する場合、電気めっき等の方法により鋼板表面上にNi層を形成した後、焼鈍することによりNi-Fe合金層を形成できる。 The formation of the Ni-containing layer is not particularly limited, and can be performed by any method such as electroplating. When forming the Ni-containing layer by electroplating, any plating bath can be used. Examples of plating baths that can be used include Watt bath, sulfamic acid bath, and Wood bath. When forming a Ni--Fe alloy layer as the Ni-containing layer, the Ni--Fe alloy layer can be formed by forming the Ni layer on the surface of the steel sheet by a method such as electroplating, and then annealing it.
 前記Ni含有層の表面側にはNi酸化物を含有してもよいし、全く含有しなくてもよいが、塗料2次密着性と耐硫化黒変性をさらに向上させる観点からは、Ni含有層の表面側にはNi酸化物を含有しないことが好ましい。Ni酸化物はNiめっき後の水洗水中に含有される溶存酸素などによっても形成されうるが、後述する前処理などで前記Ni含有層に含有するNi酸化物を除去することが好ましい。 The surface side of the Ni-containing layer may contain Ni oxide or may not contain it at all, but from the viewpoint of further improving secondary paint adhesion and sulfurization resistance, the Ni-containing layer Preferably, the surface side does not contain Ni oxide. Although Ni oxide can also be formed by dissolved oxygen contained in the washing water after Ni plating, it is preferable to remove the Ni oxide contained in the Ni-containing layer by a pretreatment described below.
[金属Cr層]
 前記Ni含有層上には金属Cr層が存在する。
[Metal Cr layer]
A metallic Cr layer is present on the Ni-containing layer.
 前記金属Cr層の付着量は特に限定されず、任意の値とすることができる。しかし、耐食性をさらに向上させるという観点からは、金属Cr層の付着量を、前記鋼板の片面当たりのCr付着量で2mg/m以上とすることが好ましく、4mg/m以上とすることがより好ましい。一方、前記金属Cr層の付着量の上限についても特に限定されないが、前記金属Cr層の付着量が過剰であると、接触抵抗が大きくなり、溶接性が損なわれる場合がある。そのため、より安定して溶接性を確保するという観点からは、金属Cr層の付着量を、前記鋼板の片面当たりのCr付着量で40mg/m未満とすることが好ましく、35mg/m以下とすることがより好ましい。 The amount of the metal Cr layer deposited is not particularly limited, and can be set to any value. However, from the viewpoint of further improving corrosion resistance, the amount of Cr deposited on one side of the steel sheet is preferably 2 mg/m 2 or more, and preferably 4 mg/m 2 or more. More preferred. On the other hand, there is no particular limitation on the upper limit of the amount of the metal Cr layer deposited, but if the amount of the metal Cr layer deposited is excessive, the contact resistance may increase and weldability may be impaired. Therefore, from the viewpoint of ensuring more stable weldability, the amount of Cr deposited on one side of the steel plate is preferably less than 40 mg/m 2 , and 35 mg/m 2 or less. It is more preferable that
 なお、金属Cr層におけるCr付着量は、蛍光X線法により測定することができる。具体的には、まず、蛍光X線装置を用いて表面処理鋼板におけるCr量(全Cr量)を測定する。次いで、前記表面処理鋼板に、90℃の7.5N-NaOH中に10分間浸漬するアルカリ処理を施した後、十分に水洗する。その後、再び、蛍光X線装置を用いてCr量(アルカリ処理後Cr量)を測定する。さらに、金属Cr層と酸化Cr層を剥離した後の鋼板について、蛍光X線装置を用いて、Cr量(原板Cr量)を測定する。金属Cr層と酸化Cr層の剥離には、例えば、市販されている塩酸系などのクロムめっき剥離剤が使用できる。アルカリ処理後Cr量から原板Cr量を差し引いた値を、金属Cr層の前記鋼板の片面当たりのCr付着量とする。なお、前記全Cr量は、後述する酸化Cr層としてのCr付着量の算出に用いる。 Note that the amount of Cr attached to the metal Cr layer can be measured by a fluorescent X-ray method. Specifically, first, the amount of Cr (total amount of Cr) in the surface-treated steel sheet is measured using a fluorescent X-ray device. Next, the surface-treated steel sheet is subjected to an alkaline treatment by immersing it in 7.5N-NaOH at 90° C. for 10 minutes, and then thoroughly washed with water. Thereafter, the amount of Cr (the amount of Cr after alkali treatment) is measured again using the fluorescent X-ray device. Furthermore, the Cr content (original Cr content) of the steel sheet after the metal Cr layer and the oxidized Cr layer have been peeled off is measured using a fluorescent X-ray device. For example, a commercially available hydrochloric acid-based chromium plating remover can be used to remove the metal Cr layer and the oxidized Cr layer. The value obtained by subtracting the original plate Cr amount from the Cr amount after alkali treatment is defined as the Cr adhesion amount per one side of the steel sheet of the metal Cr layer. Note that the total amount of Cr is used to calculate the amount of Cr deposited as the oxidized Cr layer, which will be described later.
 前記金属Cr層を構成する金属Crは、非晶質Crであってもよく、結晶性Crであってもよい。すなわち、前記金属Cr層は、非晶質Crおよび結晶性Crの一方または両方を含有することができる。後述する方法で製造される金属Cr層は、一般的には非晶質Crを含有しており、さらに結晶性Crを含有している場合もある。金属Cr層の形成メカニズムは明らかではないが、非晶質Crが形成される際に部分的に結晶化が進むことで、非晶質と結晶相の両者を含む金属Cr層となると考えられる。 The metal Cr constituting the metal Cr layer may be amorphous Cr or crystalline Cr. That is, the metal Cr layer can contain one or both of amorphous Cr and crystalline Cr. The metal Cr layer manufactured by the method described below generally contains amorphous Cr, and may further contain crystalline Cr. Although the formation mechanism of the metallic Cr layer is not clear, it is thought that when amorphous Cr is formed, crystallization progresses partially, resulting in a metallic Cr layer containing both amorphous and crystalline phases.
 金属Cr層に含まれる非晶質Crおよび結晶性Crの合計に対する結晶性Crの割合は、0%以上80%以下であることが好ましく、0%以上50%以下であることがより好ましい。ここで、前記結晶性Crの割合は、金属Cr層を走査型透過電子顕微鏡(STEM)で観察することにより測定することができる。具体的には、まず、1nm以下の分解能が得られるビーム径にて、200万倍から1000万倍程度の倍率でSTEM像を取得する。得られたSTEM像において、格子縞の確認できる領域を結晶相とし、メイズパターンの確認できる領域を非晶質として、両者の面積を求める。その結果から、非晶質Crおよび結晶性Crの合計面積に対する結晶性Crの面積の比を算出する。 The ratio of crystalline Cr to the total of amorphous Cr and crystalline Cr contained in the metal Cr layer is preferably 0% or more and 80% or less, and more preferably 0% or more and 50% or less. Here, the ratio of crystalline Cr can be measured by observing the metal Cr layer with a scanning transmission electron microscope (STEM). Specifically, first, a STEM image is acquired at a magnification of approximately 2 million to 10 million times using a beam diameter that provides a resolution of 1 nm or less. In the obtained STEM image, the area where lattice fringes can be seen is defined as a crystalline phase, and the area where a maize pattern can be seen is defined as amorphous, and the areas of both are determined. From the results, the ratio of the area of crystalline Cr to the total area of amorphous Cr and crystalline Cr is calculated.
[酸化Cr層]
 前記金属Cr層上には酸化Cr層が存在する。前記酸化Cr層の付着量は特に限定されず、任意の値とすることができる。しかし、耐食性をさらに向上させるという観点からは、酸化Cr層の付着量を、鋼板の片面当たりのCr付着量で0.1mg/m以上とすることが好ましい。一方、前記酸化Cr層の付着量の上限についても特に限定されないが、前記酸化Cr層の付着量が過剰であると、接触抵抗が大きくなり、溶接性が損なわれる場合がある。そのため、より安定して溶接性を確保するという観点からは、酸化Cr層の付着量を、鋼板の片面当たりのCr付着量で15.0mg/m以下とすることが好ましい。なお、酸化Cr層におけるCr付着量は、蛍光X線法により測定することができる。具体的には、前述の蛍光X線装置を用いて測定した全Cr量からアルカリ処理後Cr量を差し引くことにより、酸化Cr層におけるCr付着量を求めることができる。
[Cr oxide layer]
A Cr oxide layer is present on the metal Cr layer. The amount of the Cr oxide layer deposited is not particularly limited, and can be set to any value. However, from the viewpoint of further improving corrosion resistance, it is preferable that the amount of Cr oxide layer deposited is 0.1 mg/m 2 or more in terms of the amount of Cr deposited on one side of the steel sheet. On the other hand, the upper limit of the amount of the Cr oxide layer deposited is not particularly limited, but if the amount of the Cr oxide layer deposited is excessive, the contact resistance may increase and weldability may be impaired. Therefore, from the viewpoint of ensuring more stable weldability, it is preferable that the amount of Cr oxide layer deposited is 15.0 mg/m 2 or less in terms of the amount of Cr deposited per one side of the steel plate. Note that the amount of Cr attached to the oxidized Cr layer can be measured by a fluorescent X-ray method. Specifically, the amount of Cr deposited in the oxidized Cr layer can be determined by subtracting the amount of Cr after the alkali treatment from the total amount of Cr measured using the aforementioned fluorescent X-ray device.
 上記金属Cr層および酸化Cr層の一方または両方には、Cが含有されていてもよい。しかし、金属Cr層および酸化Cr層中にCを過剰に含有すると、溶接を行う際に溶接熱影響部が硬化し、割れを生じる場合がある。そのため、金属Cr層中のC含有量は、Crに対する原子比率として、40%以下であることが好ましく、35%以下であることがより好ましい。同様に、酸化Cr層中のC含有量についても、Crに対する原子比率として、40%以下であることが好ましく、35%以下であることがより好ましい。金属Cr層および酸化Cr層はCを含んでいなくてもよく、したがって、金属Cr層および酸化Cr層に含まれるC含有量の下限は、それぞれ、Crに対する原子比率で0%であってよい。 One or both of the metal Cr layer and the oxidized Cr layer may contain C. However, if an excessive amount of C is contained in the metal Cr layer and the oxidized Cr layer, the weld heat affected zone may harden during welding and cracks may occur. Therefore, the C content in the metal Cr layer is preferably 40% or less, more preferably 35% or less, as an atomic ratio to Cr. Similarly, the C content in the Cr oxide layer is preferably 40% or less, more preferably 35% or less, as an atomic ratio to Cr. The metal Cr layer and the oxidized Cr layer may not contain C, and therefore, the lower limit of the C content contained in the metal Cr layer and the oxidized Cr layer may be 0% in terms of atomic ratio to Cr, respectively. .
 金属Cr層中のC含有量および酸化Cr層中のC含有量は、それぞれ、X線光電子分光(XPS)により測定することができる。XPSによるC含有量の測定は、具体的には、XPSにより測定したCr2pとC1sのナロースペクトルの積分強度から、相対感度係数法でC原子比率およびCr原子比率を求め、C原子比率/Cr原子比率を算出することにより実施できる。 The C content in the metal Cr layer and the C content in the oxidized Cr layer can each be measured by X-ray photoelectron spectroscopy (XPS). Specifically, to measure the C content by XPS, the C atomic ratio and Cr atomic ratio are determined by the relative sensitivity coefficient method from the integrated intensities of the narrow spectra of Cr2p and C1s measured by XPS, and the C atomic ratio/Cr atomic ratio is calculated. This can be done by calculating the ratio.
 なお、表面処理鋼板の最表層からはコンタミネーション由来のCが検出されてしまうため、酸化Cr層中のCの含有量を正確に測定するために最表層からSiO換算で例えば0.2nmの深さ以上スパッタした後に測定を行えばよい。一方、金属Cr層中のCの含有量は、上述したアルカリ処理後の最表層から金属Cr層の厚さの1/2の深さまでスパッタした後に測定すればよい。 In addition, since C derived from contamination is detected from the outermost layer of the surface-treated steel sheet, in order to accurately measure the C content in the Cr oxide layer, for example, 0.2 nm in terms of SiO 2 is removed from the outermost layer. Measurement may be performed after sputtering to a depth greater than or equal to the depth. On the other hand, the C content in the metal Cr layer may be measured after sputtering is performed from the outermost layer after the alkali treatment described above to a depth of 1/2 of the thickness of the metal Cr layer.
 上記の測定に用いる金属Cr層の厚みは、以下の手順で求めることができる。まず、アルカリ処理後の最表層から深さ方向に1nmごとにXPSによる測定を行い、Cr原子比率およびNi原子比率を測定する。次いで、アルカリ処理後の最表層からの深さに対する、Ni原子比率/Cr原子比率の関係を近似する3次式を最小二乗法により求める。得られた3次式を用いて、Ni原子比率/Cr原子比率が1となる最表層からの深さを算出し、これを金属Cr層の厚みとする。 The thickness of the metal Cr layer used in the above measurement can be determined by the following procedure. First, XPS measurements are performed every 1 nm in the depth direction from the outermost layer after alkali treatment to measure the Cr atomic ratio and the Ni atomic ratio. Next, a cubic equation that approximates the relationship between the Ni atomic ratio/Cr atomic ratio with respect to the depth from the outermost layer after the alkali treatment is determined by the method of least squares. Using the obtained cubic equation, the depth from the outermost layer at which the Ni atomic ratio/Cr atomic ratio becomes 1 is calculated, and this is taken as the thickness of the metal Cr layer.
 前記測定には、例えば、アルバックファイ社製の走査型X線光電子分光分析装置PHI X-toolを使用することができる。X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とし、スパッタ条件はArイオンを加速電圧1kV、スパッタレートはSiO換算で1.50nm/minとすればよい。 For the measurement, for example, a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI can be used. The X-ray source is a monochrome AlKα ray, the voltage is 15 kV, the beam diameter is 100 μmφ, the extraction angle is 45°, the sputtering conditions are Ar ion acceleration voltage 1 kV, and the sputter rate is 1.50 nm/min in terms of SiO 2 .
 金属Cr層および酸化Cr層にCが含有されるメカニズムは明らかではないが、鋼板に金属Cr層と酸化Cr層を形成する工程で、電解液中に含まれるカルボン酸化合物が分解し、皮膜に取り込まれると考えられる。 The mechanism by which C is contained in the metal Cr layer and the Cr oxide layer is not clear, but in the process of forming the metal Cr layer and the Cr oxide layer on the steel sheet, the carboxylic acid compound contained in the electrolyte is decomposed and the film is formed. It is thought that it will be incorporated.
 金属Cr層および酸化Cr層中のCの存在形態は特に限定されないが、析出物として存在すると局部電池の形成によって耐食性が低下する場合がある。このため明確な結晶構造を有する炭化物やクラスターの体積分率の和が10%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。炭化物の有無は例えば走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)に付属のエネルギー分散型X線分光(EDS)や波長分散型X線分光(WDS)による組成分析により確認することが出来る。クラスターの有無に関しては、例えば3次元アトムプローブ(3DAP)による3次元組成分析後のデータに対して、クラスター解析を行う事で確認することができる。 The form of C present in the metal Cr layer and Cr oxide layer is not particularly limited, but if it exists as a precipitate, corrosion resistance may decrease due to the formation of local batteries. Therefore, it is preferable that the sum of the volume fractions of carbides and clusters having a clear crystal structure is 10% or less, and it is more preferable that they are not contained at all (0%). The presence or absence of carbides can be confirmed, for example, by compositional analysis using energy dispersive X-ray spectroscopy (EDS) or wavelength dispersive X-ray spectroscopy (WDS) attached to a scanning electron microscope (SEM) or transmission electron microscope (TEM). I can do it. The presence or absence of clusters can be confirmed, for example, by performing cluster analysis on data after three-dimensional composition analysis using a three-dimensional atom probe (3DAP).
 金属Cr層にはOが含有されていてもよい。金属Cr層中のO含有量の上限は特に限定されないが、O含有量が高い場合には酸化Crが析出し、局部電池の形成によって耐食性が低下する場合がある。このため、O含有量はCrに対する原子比率として、30%以下であることが好ましく、25%以下であることがより好ましい。金属Cr層はOを含んでいなくてもよく、したがって、金属Cr層に含まれるCrに対する下限は特に限定されず、0%であってもよい。 The metal Cr layer may contain O. The upper limit of the O content in the metal Cr layer is not particularly limited, but if the O content is high, Cr oxide may precipitate and corrosion resistance may deteriorate due to the formation of local batteries. Therefore, the O content is preferably 30% or less, more preferably 25% or less, as an atomic ratio to Cr. The metal Cr layer does not need to contain O, and therefore, the lower limit of the Cr contained in the metal Cr layer is not particularly limited and may be 0%.
 金属Cr層中のOの含有量は、SEMやTEMに付属のEDSおよびWDS、もしくは3DAPなどの組成分析により測定することが出来る。 The content of O in the metal Cr layer can be measured by compositional analysis such as EDS and WDS attached to SEM or TEM, or 3DAP.
 上記金属Cr層および酸化Cr層の一方または両方には、Niが含有されていてもよい。金属Cr層中のNi含有量の上限は特に限定されないが、Crに対する原子比率として、100%未満であることが好ましい。同様に、酸化Cr層中のNi含有量の上限は特に限定されないが、Crに対する原子比率として、100%未満であることが好ましい。金属Cr層および酸化Cr層はNiを含んでいなくてもよく、したがって、前記NiのCrに対する原子比率の下限は特に限定されず、0%であってよい。 One or both of the metal Cr layer and the oxidized Cr layer may contain Ni. Although the upper limit of the Ni content in the metal Cr layer is not particularly limited, it is preferably less than 100% as an atomic ratio to Cr. Similarly, the upper limit of the Ni content in the Cr oxide layer is not particularly limited, but it is preferably less than 100% as an atomic ratio to Cr. The metal Cr layer and the oxidized Cr layer do not need to contain Ni, so the lower limit of the atomic ratio of Ni to Cr is not particularly limited and may be 0%.
 表面処理鋼板の表面、すなわち酸化Cr層の表面におけるNi含有量は特に限定されないが、低ければ低いほどフィルム湿潤密着性と塗料2次密着性に優れる。そのため、表面処理鋼板の表面におけるNiの、Crに対する原子比率を100%以下とすることが好ましく、80%以下とすることがより好ましい。 The Ni content on the surface of the surface-treated steel sheet, that is, on the surface of the Cr oxide layer, is not particularly limited, but the lower it is, the better the wet adhesion of the film and the secondary adhesion of the paint will be. Therefore, the atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet is preferably 100% or less, more preferably 80% or less.
 金属Cr層および酸化Cr層中のNiの含有量は、Cの含有量と同様、XPSにより測定することができる。表面処理鋼板の表面、すなわち酸化Cr層の表面におけるNiの、Crに対する原子比率は、表面処理鋼板の表面のXPSにより測定することができる。原子比率の算出にはCr2pとNi2pのナロースペクトルを用いればよい。 The Ni content in the metal Cr layer and the Cr oxide layer can be measured by XPS similarly to the C content. The atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet, that is, on the surface of the Cr oxide layer, can be measured by XPS of the surface of the surface-treated steel sheet. The narrow spectra of Cr2p and Ni2p may be used to calculate the atomic ratio.
 金属Cr層および酸化Cr層にNiが含有されるメカニズムは明らかではないが、鋼板に金属Cr層と酸化Cr層を形成する工程で、Ni含有層に含まれるNiが電解液に微量に溶解し、Niが皮膜に取り込まれると考えられる。 The mechanism by which Ni is contained in the metal Cr layer and the Cr oxide layer is not clear, but in the process of forming the metal Cr layer and the Cr oxide layer on the steel sheet, a small amount of Ni contained in the Ni-containing layer is dissolved in the electrolyte. , Ni is considered to be incorporated into the film.
 上記金属Cr層および酸化Cr層には、Cr、O、Ni、Cと後述するK、Na、MgおよびCa以外には、水溶液中に含まれるCu、Zn、Sn、Fe等の金属不純物や、S、N、Cl、Br等が含まれる場合がある。しかし、それらの元素が存在すると、フィルム湿潤密着性と塗料2次密着性が低下する場合がある。そのため、金属Cr層および酸化Cr層中のFeの含有量は、Crに対する原子比率として、10%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。Cr、O、Ni、C、K、Na、Mg、Ca、Fe以外の元素の合計は、Crに対する原子比率として、3%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。上記元素の含有量は、特に限定されないが、例えば、Cの含有量と同様にXPSで測定することができる。特に、Fe元素の含有量をXPSで測定する場合は、Fe2pのナロースペクトルを用いるが、NiLLMピークと重なりFe含有量の定量値が実際より高めに算出される場合があるため、上述したように、Fe含有量は他の元素とは異なり、Crに対する原子比率として、10%以下に制御することが好ましい。 In addition to Cr, O, Ni, and C, as well as K, Na, Mg, and Ca, which will be described later, the metal Cr layer and Cr oxide layer contain metal impurities such as Cu, Zn, Sn, and Fe contained in the aqueous solution. S, N, Cl, Br, etc. may be included. However, the presence of these elements may reduce the wet adhesion of the film and the secondary adhesion of the paint. Therefore, the content of Fe in the metal Cr layer and the Cr oxide layer is preferably 10% or less as an atomic ratio to Cr, and more preferably not contained at all (0%). The total amount of elements other than Cr, O, Ni, C, K, Na, Mg, Ca, and Fe is preferably 3% or less as an atomic ratio to Cr, and more preferably not contained at all (0%). . The content of the above elements is not particularly limited, and can be measured by XPS, for example, similarly to the content of C. In particular, when measuring the content of Fe element by XPS, a narrow spectrum of Fe2p is used, but since it overlaps with the NiLLM peak and the quantitative value of Fe content may be calculated higher than the actual value, as mentioned above, Unlike other elements, the Fe content is preferably controlled to 10% or less as an atomic ratio to Cr.
 上記金属Cr層および酸化Cr層は、クラックフリーであることが好ましい。クラックの有無は、例えば、皮膜断面を収束イオンビーム(FIB)等で切り出し、透過型電子顕微鏡(TEM)により直接観察することで確認できる。 The metal Cr layer and oxidized Cr layer are preferably crack-free. The presence or absence of cracks can be confirmed by, for example, cutting out a cross section of the film using a focused ion beam (FIB) or the like and directly observing it using a transmission electron microscope (TEM).
 また、本発明の表面処理鋼板の表面粗さは、金属Cr層および酸化Cr層の形成で大きく変化せず、通常は使用した下地鋼板の表面粗さとほぼ同等である。表面処理鋼板の表面粗さは特に限定されないが、算術平均粗さRaが0.1μm以上4μm以下であることが好ましい。また、十点平均粗さRzは0.2μm以上6μm以下であることが好ましい。 Furthermore, the surface roughness of the surface-treated steel sheet of the present invention does not change significantly due to the formation of the metal Cr layer and the oxidized Cr layer, and is generally approximately equivalent to the surface roughness of the underlying steel sheet used. Although the surface roughness of the surface-treated steel sheet is not particularly limited, it is preferable that the arithmetic mean roughness Ra is 0.1 μm or more and 4 μm or less. Moreover, it is preferable that the ten-point average roughness Rz is 0.2 μm or more and 6 μm or less.
[水接触角]
 本発明においては、表面処理鋼板の水接触角が50°以下であることが重要である。水接触角が50°以下となるよう表面処理鋼板の表面を高度に親水化することにより、塗料に含まれる樹脂と表面処理鋼板との間に強固な水素結合が形成され、その結果、湿潤環境下においても高い密着性を得ることができる。塗料2次密着性をさらに向上させるという観点からは、水接触角を48°以下とすることが好ましく、45°以下とすることがより好ましい。前記水接触角は、密着性向上の観点からは低ければ低いほど好ましいため、その下限はとくに限定されず、0°であってもよい。しかし、製造しやすさなどの観点からは、3°以上とすることが好ましく、6°以上とすることがより好ましい。なお、前記水接触角は、実施例に記載した方法で測定することができる。
[Water contact angle]
In the present invention, it is important that the water contact angle of the surface-treated steel sheet is 50° or less. By making the surface of the surface-treated steel sheet highly hydrophilic so that the water contact angle is 50 degrees or less, strong hydrogen bonds are formed between the resin contained in the paint and the surface-treated steel sheet, and as a result, the wet environment High adhesion can be obtained even at the bottom. From the viewpoint of further improving the secondary paint adhesion, the water contact angle is preferably 48° or less, more preferably 45° or less. Since the water contact angle is preferably as low as possible from the viewpoint of improving adhesion, its lower limit is not particularly limited and may be 0°. However, from the viewpoint of ease of manufacture, etc., the angle is preferably 3° or more, and more preferably 6° or more. Note that the water contact angle can be measured by the method described in Examples.
 表面処理鋼板の表面が親水化するメカニズムは明らかではないが、電解液中で陰極電解することによって金属Cr層と酸化Cr層を形成する際に、電解液に含まれるカルボン酸あるいはカルボン酸塩が分解し、皮膜に取り込まれることによって、カルボキシル基等の親水性の官能基が表面に付与されるためだと考えられる。ただし、後述するように特定の条件で電解液を調製しなかった場合は、電解液にカルボン酸あるいはカルボン酸塩が含有されていたとしても、表面処理鋼板の表面は親水化しない。表面処理鋼板の表面の親水化に、電解液の調製条件が影響するメカニズムは明らかではないが、後述する条件で適切に電解液を調製した場合は、カルボキシル基等の親水性の官能基が表面に付与されやすいような錯体が形成されるためであると推定している。 The mechanism by which the surface of a surface-treated steel sheet becomes hydrophilic is not clear, but when a metal Cr layer and a Cr oxide layer are formed by cathodic electrolysis in an electrolyte, carboxylic acids or carboxylates contained in the electrolyte are This is thought to be because hydrophilic functional groups such as carboxyl groups are imparted to the surface by being decomposed and incorporated into the film. However, if the electrolytic solution is not prepared under specific conditions as described below, even if the electrolytic solution contains a carboxylic acid or a carboxylate salt, the surface of the surface-treated steel sheet will not become hydrophilic. The mechanism by which the preparation conditions of the electrolytic solution affect the hydrophilization of the surface of the surface-treated steel sheet is not clear, but if the electrolytic solution is properly prepared under the conditions described below, hydrophilic functional groups such as carboxyl groups will form on the surface. It is presumed that this is due to the formation of a complex that is easily attached to.
 なお、特許文献1~5で提案されているような従来の6価クロム浴を用いて製造される表面処理鋼板においては、表層に存在するクロム水和酸化物層の組成が湿潤環境下での塗料またはフィルムに対する密着性に大きく影響を及ぼすことが報告されている。湿潤環境下では、塗膜やフィルム中を浸透してきた水が、塗膜またはフィルムとクロム水和酸化物層との間の界面の接着を阻害する。そのため、親水性であるOH基がクロム水和酸化物層に多く存在する場合は、界面における水の拡張濡れが促進され、接着力が低下すると考えられていた。したがって、従来の表面処理鋼板においては、クロム水和酸化物のオキソ化の進行によるOH基の減少、すなわち表面の疎水化によって湿潤環境下での塗料やフィルムとの密着性を向上させていた。 In addition, in surface-treated steel sheets manufactured using conventional hexavalent chromium baths as proposed in Patent Documents 1 to 5, the composition of the chromium hydrated oxide layer present on the surface layer is different from that in a humid environment. It has been reported that it greatly affects the adhesion to paints or films. In a humid environment, water penetrating through the coating or film inhibits adhesion at the interface between the coating or film and the chromium hydrated oxide layer. Therefore, it was thought that if a large amount of hydrophilic OH groups were present in the chromium hydrated oxide layer, the expansion wetting of water at the interface would be promoted and the adhesive force would be reduced. Therefore, in conventional surface-treated steel sheets, the adhesion with paints and films in a humid environment was improved by reducing the number of OH groups, that is, by making the surface hydrophobic, due to the progress of oxation of hydrated chromium oxide.
 これに対して本発明は、表面を超親水性に近いレベルまで親水化させることによって、塗膜と表面処理鋼板との間の界面に強固な水素結合を形成させ、それにより湿潤環境下でも高い密着性を維持するという、上述した従来技術とはまったく逆の技術的思想に基づくものである。 On the other hand, in the present invention, by making the surface hydrophilic to a level close to superhydrophilicity, strong hydrogen bonds are formed at the interface between the coating film and the surface-treated steel sheet, thereby making the surface highly hydrophilic even in a humid environment. This is based on the technical concept of maintaining adhesion, which is completely opposite to the prior art described above.
[吸着元素の原子比率]
 上述したように、本発明の表面処理鋼板は水接触角が50°以下という高い親水性を有しており、その表面は化学的に活性である。そのため、前記表面処理鋼板の表面には、K、Na、Mg、およびCaなどの元素のカチオンが吸着しやすい。本発明者らは、単純に水接触角を50°以下とするのみでは、吸着した前記カチオンの影響のため、本来の密着性が発揮されないことを見出した。本発明では、表面処理鋼板の表面に吸着した前記カチオンの量を低減することにより、樹脂に対する密着性を向上させ、優れたフィルム湿潤密着性と塗料2次密着性を実現することができる。
[Atomic ratio of adsorbed elements]
As described above, the surface-treated steel sheet of the present invention has high hydrophilicity with a water contact angle of 50° or less, and its surface is chemically active. Therefore, cations of elements such as K, Na, Mg, and Ca are easily adsorbed on the surface of the surface-treated steel sheet. The present inventors have discovered that simply setting the water contact angle to 50° or less does not result in the original adhesion being exhibited due to the influence of the adsorbed cations. In the present invention, by reducing the amount of the cations adsorbed on the surface of the surface-treated steel sheet, it is possible to improve the adhesion to the resin and achieve excellent film wet adhesion and paint secondary adhesion.
 具体的には、表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、5.0%以下、好ましくは3.0%以下、より好ましくは1.0%以下とする。前記原子比率の合計は低ければ低いほどよいため、下限は特に限定されず、0%であってよい。前記原子比率の合計は、実施例に記載した方法で測定することができる。 Specifically, the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to Cr is 5.0% or less, preferably 3.0% or less, and more preferably 1.0% or less. 0% or less. Since the lower the sum of the atomic ratios, the better, the lower limit is not particularly limited and may be 0%. The total atomic ratio can be measured by the method described in Examples.
[製造方法]
 本発明の一実施形態における表面処理鋼板の製造方法では、以下に説明する方法で、上記特性を備えた表面処理鋼板を製造することができる。
[Production method]
In a method for manufacturing a surface-treated steel sheet according to an embodiment of the present invention, a surface-treated steel sheet having the above characteristics can be manufactured by the method described below.
 本発明の一実施形態における表面処理鋼板の製造方法は、鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、次の(1)~(3)の工程を含む。以下、各工程について説明する。
(1)3価クロムイオンを含有する電解液を調製する電解液調製工程
(2)Ni含有層を有する鋼板を前記電解液中で陰極電解処理する陰極電解処理工程
(3)前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程
A method for manufacturing a surface-treated steel sheet according to an embodiment of the present invention includes, on at least one surface of a steel sheet, a Ni-containing layer, a metal Cr layer disposed on the Ni-containing layer, and a metal Cr layer disposed on the metal Cr layer. A method for manufacturing a surface-treated steel sheet having a Cr oxide layer, which includes the following steps (1) to (3). Each step will be explained below.
(1) An electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions (2) A cathodic electrolytic treatment step of cathodic electrolytically treating a steel plate having a Ni-containing layer in the electrolytic solution (3) After the cathodic electrolytic treatment A water washing process in which the steel plate is washed at least once with water.
[電解液調製工程]
(i)混合
 上記電解液調製工程では、まず、3価クロムイオン源、カルボン酸化合物、および水を混合して水溶液とする。
[Electrolyte preparation process]
(i) Mixing In the electrolyte solution preparation step, first, a trivalent chromium ion source, a carboxylic acid compound, and water are mixed to form an aqueous solution.
 前記3価クロムイオン源としては、3価クロムイオンを供給できる化合物であれば、任意のものを使用できる。前記3価クロムイオン源としては、例えば、塩化クロム、硫酸クロム、および硝酸クロムからなる群より選択される少なくとも1つを使用することができる。 As the trivalent chromium ion source, any compound that can supply trivalent chromium ions can be used. As the trivalent chromium ion source, for example, at least one selected from the group consisting of chromium chloride, chromium sulfate, and chromium nitrate can be used.
 前記水溶液における3価クロムイオン含有源の含有量は特に限定されないが、3価クロムイオン換算で3g/L以上50g/L以下であることが好ましく、5g/L以上40g/L以下であることがより好ましい。前記3価クロムイオン源としては、Atotech社のBluCr(登録商標)TFS Aを使用することができる。 The content of the trivalent chromium ion-containing source in the aqueous solution is not particularly limited, but it is preferably 3 g/L or more and 50 g/L or less, and 5 g/L or more and 40 g/L or less in terms of trivalent chromium ions. More preferred. As the trivalent chromium ion source, Atotech's BluCr (registered trademark) TFS A can be used.
 前記カルボン酸化合物としては、特に限定されることなく、任意のカルボン酸化合物を使用できる。前記カルボン酸化合物は、カルボン酸およびカルボン酸塩の少なくとも一方であってよく、脂肪族カルボン酸および脂肪族カルボン酸の塩の少なくとも一方であることが好ましい。前記脂肪族カルボン酸の炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、前記脂肪族カルボン酸塩の炭素数は、1~10であることが好ましく、1~5であることが好ましい。前記カルボン酸化合物の含有量は特に限定されないが、0.1mol/L以上5.5mol/L以下であることが好ましく、0.15mol/L以上5.3mol/L以下であることがより好ましい。前記カルボン酸化合物としては、Atotech社のBluCr(登録商標)TFS Bを使用することができる。 The carboxylic acid compound is not particularly limited, and any carboxylic acid compound can be used. The carboxylic acid compound may be at least one of a carboxylic acid and a carboxylate salt, and is preferably at least one of an aliphatic carboxylic acid and a salt of an aliphatic carboxylic acid. The aliphatic carboxylic acid preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Further, the number of carbon atoms in the aliphatic carboxylate is preferably 1 to 10, more preferably 1 to 5. Although the content of the carboxylic acid compound is not particularly limited, it is preferably 0.1 mol/L or more and 5.5 mol/L or less, and more preferably 0.15 mol/L or more and 5.3 mol/L or less. As the carboxylic acid compound, Atotech's BluCr (registered trademark) TFS B can be used.
 本発明では、電解液を調製するための溶媒として水を使用する。前記水としては、イオン交換樹脂等であらかじめカチオンを除去したイオン交換水や、蒸留水のような純度の高い水を用いることが好ましい。後述するように、電解液中に含まれるK、Na、Mg、およびCaの量を低減するという観点からは、電気伝導度が30μS/m以下である水を使用することが好ましい。 In the present invention, water is used as a solvent for preparing the electrolyte. As the water, it is preferable to use ion-exchanged water from which cations have been removed in advance using an ion-exchange resin or the like, or highly purified water such as distilled water. As will be described later, from the viewpoint of reducing the amounts of K, Na, Mg, and Ca contained in the electrolytic solution, it is preferable to use water whose electrical conductivity is 30 μS/m or less.
 表面処理鋼板の表面に吸着するK、Na、Mg、およびCaを減少させるため、上述の水溶液中には、K、Na、Mg、およびCaを、意図的に含有しないことが好ましい。そのため、上述の3価クロムイオン源、カルボン酸化合物、および以下に詳述するpH調整剤などの、水溶液に添加する成分には、K、Na、Mg、およびCaを含まないことが好ましい。pH調整剤としては、pH低下には塩酸、硫酸、硝酸等を使用し、pH上昇にはアンモニア水等を使用することが好ましい。水溶液や電解液中に不可避的に混入したK、Na、Mg、およびCaは許容されるが、K、Na、Mg、およびCaの合計濃度は2.0mol/L以下であることが好ましく、1.5mol/L以下であることがより好ましく、1.0mol/L以下であることがさらに好ましい。 In order to reduce K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet, it is preferable that K, Na, Mg, and Ca are not intentionally contained in the above-mentioned aqueous solution. Therefore, it is preferable that the components added to the aqueous solution, such as the above-mentioned trivalent chromium ion source, carboxylic acid compound, and pH adjuster described in detail below, do not contain K, Na, Mg, and Ca. As the pH adjuster, it is preferable to use hydrochloric acid, sulfuric acid, nitric acid, etc. to lower the pH, and use ammonia water, etc. to increase the pH. K, Na, Mg, and Ca that are unavoidably mixed into the aqueous solution or electrolyte are allowed, but the total concentration of K, Na, Mg, and Ca is preferably 2.0 mol/L or less, and 1 It is more preferably .5 mol/L or less, and even more preferably 1.0 mol/L or less.
 陰極電解処理工程における陽極での6価クロム生成を効果的に抑制し、上述の電解液の安定性を向上させるため、前記水溶液中にはさらに少なくとも1種のハロゲン化物イオンを含有させることが好ましい。ハロゲン化物イオンの含有量は特に限定されないが、0.05mol/L以上3.0mol/L以下であることが好ましく、0.10mol/L以上2.5mol/L以下であることがより好ましい。前記ハロゲン化物イオンを含有させるには、Atotech社のBluCr(登録商標)TFS C1およびBluCr(登録商標)TFS C2を使用することができる。 In order to effectively suppress the production of hexavalent chromium at the anode in the cathodic electrolytic treatment step and improve the stability of the electrolytic solution, it is preferable that the aqueous solution further contains at least one type of halide ion. . The content of halide ions is not particularly limited, but is preferably 0.05 mol/L or more and 3.0 mol/L or less, more preferably 0.10 mol/L or more and 2.5 mol/L or less. In order to contain the halide ions, Atotech's BluCr (registered trademark) TFS C1 and BluCr (registered trademark) TFS C2 can be used.
 上述の水溶液には、6価クロムを添加しないことが好ましい。陰極電解処理工程において陽極で形成する極微量の6価クロムを除き、上述の電解液中には6価クロムを含有しない。陰極電解処理工程において陽極で形成する極微量の6価クロムは3価クロムに還元されるため、電解液中の6価クロム濃度は増加しない。 It is preferable that hexavalent chromium is not added to the above aqueous solution. Except for a very small amount of hexavalent chromium formed at the anode during the cathodic electrolytic treatment process, the electrolytic solution described above does not contain hexavalent chromium. In the cathodic electrolytic treatment process, a trace amount of hexavalent chromium formed at the anode is reduced to trivalent chromium, so the concentration of hexavalent chromium in the electrolyte does not increase.
 上述の水溶液は、3価クロムイオン以外の金属イオンを意図的に添加しないことが好ましい。上記金属イオンは限定されないが、Cuイオン、Znイオン、Niイオン、Feイオン、Snイオン等が挙げられ、それぞれ、0mg/L以上40mg/L以下であることが好ましく、0mg/L以上20mg/L以下であることがさらに好ましく、0mg/L以上10mg/L以下であることが最も好ましい。上記金属イオンのうち、Niイオンについては、陰極電解処理工程において上述の電解液中への鋼板の浸漬で電解液中に溶解し、皮膜中に共析することがあるが、フィルム湿潤密着性と塗料2次密着性と溶接性には影響しない。Niイオンは0mg/L以上40mg/L以下であることが好ましく、0mg/L以上20mg/L以下であることがさらに好ましく、0mg/L以上10mg/L以下であることが最も好ましい。なお、Niイオン濃度は、建浴時に上記範囲とすることが好ましいが、陰極電解処理工程においても、電解液中のNiイオン濃度を上記範囲に維持することが好ましい。Niイオンは、上記の範囲内で制御すれば、金属Cr層と酸化Cr層の形成を阻害せず、必要な厚さの金属Cr層および酸化Cr層を形成することができる。 It is preferable that metal ions other than trivalent chromium ions are not intentionally added to the above-mentioned aqueous solution. The above metal ions are not limited, but include Cu ions, Zn ions, Ni ions, Fe ions, Sn ions, etc., and each is preferably 0 mg/L or more and 40 mg/L or less, and 0 mg/L or more and 20 mg/L. It is more preferably below, and most preferably 0 mg/L or more and 10 mg/L or less. Among the metal ions mentioned above, Ni ions may be dissolved in the electrolyte and eutectoid in the film during the cathodic electrolytic treatment process when the steel plate is immersed in the electrolyte, but this may affect the wet adhesion of the film. It does not affect secondary paint adhesion or weldability. The Ni ion content is preferably 0 mg/L or more and 40 mg/L or less, more preferably 0 mg/L or more and 20 mg/L or less, and most preferably 0 mg/L or more and 10 mg/L or less. Although it is preferable that the Ni ion concentration is within the above range at the time of bath preparation, it is also preferable to maintain the Ni ion concentration in the electrolytic solution within the above range during the cathodic electrolytic treatment step. If Ni ions are controlled within the above range, they will not inhibit the formation of the metal Cr layer and the Cr oxide layer, and the metal Cr layer and the Cr oxide layer can be formed to have the required thickness.
(ii)pHと温度の調整
 次に、前記水溶液のpHを4.0~7.0に調整するとともに、前記水溶液の温度を40~70℃に調整することによって前記電解液を調製する。上述した表面処理鋼板を製造するためには、単に3価クロムイオン源とカルボン酸化合物を水に溶解させるだけでは不十分であり、上記のとおりpHと温度を適正に制御することが重要である。
(ii) Adjustment of pH and Temperature Next, the electrolytic solution is prepared by adjusting the pH of the aqueous solution to 4.0 to 7.0 and adjusting the temperature of the aqueous solution to 40 to 70°C. In order to manufacture the above-mentioned surface-treated steel sheet, it is not enough to simply dissolve the trivalent chromium ion source and the carboxylic acid compound in water, and it is important to appropriately control the pH and temperature as described above. .
pH:4.0~7.0
 前記電解液調製工程においては、混合後の水溶液のpHを4.0~7.0に調整する。pHが4.0未満または7.0超であると、得られた電解液を用いて製造した表面処理鋼板の水接触角は50°より高くなる。pHは、4.5~6.5とすることが好ましい。
pH: 4.0-7.0
In the electrolytic solution preparation step, the pH of the mixed aqueous solution is adjusted to 4.0 to 7.0. When the pH is less than 4.0 or more than 7.0, the water contact angle of the surface-treated steel sheet manufactured using the obtained electrolyte becomes higher than 50°. The pH is preferably 4.5 to 6.5.
温度:40~70℃
 前記電解液調製工程では、混合後の水溶液の温度を40~70℃に調整する。温度が40℃未満、あるいは70℃超であると、得られた電解液を用いて製造した表面処理鋼板の水接触角が50°より大きくなる。なお、40~70℃の温度域での保持時間は特に限定されない。
Temperature: 40-70℃
In the electrolyte solution preparation step, the temperature of the aqueous solution after mixing is adjusted to 40 to 70°C. If the temperature is less than 40°C or more than 70°C, the water contact angle of the surface-treated steel sheet produced using the obtained electrolyte will be greater than 50°. Note that the holding time in the temperature range of 40 to 70°C is not particularly limited.
 以上の手順により、次の陰極電解処理工程において使用する電解液を得ることができる。なお、上記の手順で製造された電解液は室温で保管することができる。 Through the above procedure, an electrolytic solution to be used in the next cathodic electrolytic treatment step can be obtained. Note that the electrolytic solution produced by the above procedure can be stored at room temperature.
[陰極電解処理工程]
 次に、少なくとも一方の面にNi含有層を有する鋼板を上記電解液調製工程で得られた電解液中で陰極電解処理する。前記陰極電解処理により、前記Ni含有層上に金属Cr層と酸化Cr層とを形成することができる。
[Cathode electrolytic treatment process]
Next, a steel plate having a Ni-containing layer on at least one surface is subjected to cathodic electrolysis treatment in the electrolytic solution obtained in the electrolytic solution preparation step. By the cathodic electrolytic treatment, a metal Cr layer and a Cr oxide layer can be formed on the Ni-containing layer.
 陰極電解処理を行う際の電解液の温度は、特に限定されないが、金属Cr層と酸化Cr層を効率的に形成するために、40℃以上70℃以下の温度域とすることが好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、陰極電解処理工程において、電解液の温度をモニターし、上記の温度域に維持することが好ましい。 The temperature of the electrolyte during the cathodic electrolytic treatment is not particularly limited, but is preferably in the temperature range of 40° C. or higher and 70° C. or lower in order to efficiently form the metal Cr layer and the oxidized Cr layer. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the temperature of the electrolytic solution and maintain it in the above temperature range in the cathodic electrolytic treatment step.
 陰極電解処理を行う際の電解液のpHは特に限定されないが、4.0以上とすることが好ましく、4.5以上とすることがより好ましい。また、前記pHは、7.0以下とすることが好ましく、6.5以下とすることがより好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、陰極電解処理工程において、電解液のpHをモニターし、上記pHの範囲に維持することが好ましい。 The pH of the electrolyte during cathodic electrolytic treatment is not particularly limited, but is preferably 4.0 or higher, more preferably 4.5 or higher. Further, the pH is preferably 7.0 or less, more preferably 6.5 or less. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the pH of the electrolytic solution and maintain it within the above pH range in the cathodic electrolytic treatment step.
 上記陰極電解処理における電流密度は特に限定されず、所望の表面処理層が形成されるよう適宜調整すればよい。しかし、過度に電流密度が高いと、金属Cr層中のC含有量が増加し、溶接性を劣化させる場合がある。そのため、電流密度は5.0A/dm未満とすることが好ましく、3.0A/dm以下とすることがより好ましい。電流密度の下限については特に限定されないが、過度に電流密度が低いと電解液中で6価Crが生成し、浴の安定性が崩れるおそれがある。そのため、電流密度は0.01A/dm以上とすることが好ましく、0.03A/dm以上とすることがより好ましい。 The current density in the cathodic electrolytic treatment is not particularly limited, and may be adjusted as appropriate so that a desired surface treatment layer is formed. However, when the current density is excessively high, the C content in the metal Cr layer increases, which may deteriorate weldability. Therefore, the current density is preferably less than 5.0 A/dm 2 , more preferably 3.0 A/dm 2 or less. The lower limit of the current density is not particularly limited, but if the current density is too low, hexavalent Cr may be generated in the electrolyte, which may disrupt the stability of the bath. Therefore, the current density is preferably 0.01 A/dm 2 or more, more preferably 0.03 A/dm 2 or more.
 鋼板に陰極電解処理を施す回数は特に限定されず、任意の回数とすることができる。言い換えると、1また2以上の任意の数のパスを有する電解処理装置を用いて陰極電解処理を行うことができる。例えば、鋼板(鋼帯)を搬送しながら複数のパスを通過させることによって連続的に陰極電解処理を実施することも好ましい。なお、陰極電解処理の回数(すなわち、パス数)を増加させると、それに見合った数の電解槽が必要となるため、陰極電解処理の回数(パス数)は20以下とすることが好ましい。 The number of times the steel plate is subjected to cathodic electrolysis treatment is not particularly limited, and can be any number of times. In other words, cathodic electrolytic treatment can be performed using an electrolytic treatment apparatus having an arbitrary number of passes of one or more. For example, it is also preferable to carry out cathodic electrolytic treatment continuously by passing a plurality of passes while conveying the steel plate (steel strip). Note that if the number of cathodic electrolytic treatments (that is, the number of passes) is increased, a commensurate number of electrolytic cells will be required, so the number of cathodic electrolytic treatments (the number of passes) is preferably 20 or less.
 1パスあたりの電解時間は、特に限定されない。しかし、1パスあたりの電解時間が長すぎると、鋼板の搬送速度(ラインスピード)が下がって生産性が低下する。そのため、1パス当たりの電解時間は5秒以下とすることが好ましく、3秒以下とすることがより好ましい。1パスあたりの電解時間の下限についても特に限定されないが、電解時間を過度に短くすると、それに合わせてラインスピードを上げる必要が生じ、制御が困難となる。そのため、1パス当たりの電解時間は0.005秒以上とすることが好ましく、0.01秒以上とすることがより好ましい。 The electrolysis time per pass is not particularly limited. However, if the electrolysis time per pass is too long, the conveyance speed (line speed) of the steel plate decreases, resulting in a decrease in productivity. Therefore, the electrolysis time per pass is preferably 5 seconds or less, more preferably 3 seconds or less. The lower limit of the electrolysis time per pass is not particularly limited either, but if the electrolysis time is excessively shortened, it becomes necessary to increase the line speed accordingly, making control difficult. Therefore, the electrolysis time per pass is preferably 0.005 seconds or more, more preferably 0.01 seconds or more.
 陰極電解処理によって形成される金属Cr量は、電流密度と電解時間とパス数の積で表されるトータルの電気量密度で制御することができる。上述したように、金属Cr量が過度に多いと、接触抵抗が大きくなり、溶接性が損なわれる場合があり、金属Cr層が過度に少ないと耐食性が損なわれる場合があるため、金属Cr層の前記鋼板の片面当たりのCr付着量を2mg/m以上40mg/m未満とするようにトータルの電気量密度を制御することが好ましい。ただし、金属Cr層量とトータルの電気量密度の関係は、陰極電解処理工程に使用する装置の構成で変わるため、実際の電解処理条件は装置に合わせて調整すればよい。 The amount of metallic Cr formed by cathodic electrolytic treatment can be controlled by the total electrical quantity density represented by the product of current density, electrolysis time, and number of passes. As mentioned above, if the amount of metal Cr is too large, the contact resistance will increase and weldability may be impaired, and if the amount of metal Cr is too small, corrosion resistance may be impaired. It is preferable to control the total electricity density so that the amount of Cr deposited on one side of the steel plate is 2 mg/m 2 or more and less than 40 mg/m 2 . However, since the relationship between the amount of metal Cr layer and the total electrical charge density varies depending on the configuration of the apparatus used in the cathode electrolytic treatment process, the actual electrolytic treatment conditions may be adjusted according to the apparatus.
 陰極電解処理を実施する際に使用する陽極の種類は特に限定されず、任意の陽極を使用できる。前記陽極としては、不溶性陽極を用いることが好ましい。前記不溶性陽極としては、Tiに白金族金属および白金族金属の酸化物の一方または両方を被覆した陽極、ならびにグラファイト陽極からなる群より選択される少なくとも1つを用いることが好ましい。より具体的には、前記不溶性陽極としては、基体としてのTiの表面に、白金、酸化イリジウム、または酸化ルテニウムを被覆した陽極が例示される。 The type of anode used when performing cathodic electrolysis treatment is not particularly limited, and any anode can be used. As the anode, it is preferable to use an insoluble anode. As the insoluble anode, it is preferable to use at least one selected from the group consisting of an anode in which Ti is coated with one or both of a platinum group metal and an oxide of a platinum group metal, and a graphite anode. More specifically, examples of the insoluble anode include an anode in which the surface of a Ti substrate is coated with platinum, iridium oxide, or ruthenium oxide.
 上記陰極処理工程では、鋼板への金属Cr層と酸化Cr層の形成、液の持ち出しや持ち込み、水の蒸発等の影響で、電解液の濃度は常に変化する。陰極電解処理工程における電解液の濃度変化は、装置の構成や製造条件で変わるため、表面処理鋼板をより安定的に製造するという観点からは、陰極電解処理工程において電解液に含まれる成分の濃度をモニターし、上述した濃度範囲に維持することが好ましい。 In the cathode treatment step, the concentration of the electrolytic solution constantly changes due to the formation of a metal Cr layer and an oxidized Cr layer on the steel sheet, the removal and introduction of liquid, evaporation of water, etc. The concentration of the electrolyte in the cathodic electrolytic treatment process varies depending on the equipment configuration and manufacturing conditions, so from the perspective of producing surface-treated steel sheets more stably, the concentration of the components contained in the electrolyte in the cathodic electrolytic treatment process is It is preferable to monitor and maintain the concentration within the above-mentioned concentration range.
 なお、前記陰極電解処理に先だって、Ni含有層を有する鋼板に対して任意に前処理を施すことができる。前処理を行うことにより、Ni含有層の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記前処理の方法は特に限定されず、任意の方法を用いることができるが、例えば希硫酸への浸漬による酸洗などを行うことができる。 Note that, prior to the cathodic electrolytic treatment, the steel plate having the Ni-containing layer can be optionally pretreated. By performing the pretreatment, the natural oxide film present on the surface of the Ni-containing layer can be removed and the surface can be activated. The pretreatment method is not particularly limited, and any method can be used. For example, pickling by immersion in dilute sulfuric acid can be performed.
 前記前処理を行った後には、表面に付着した前処理液を除去する観点で水洗することが好ましい。 After performing the pretreatment, it is preferable to wash with water in order to remove the pretreatment liquid adhering to the surface.
 また、下地鋼板の表面にNi含有層を形成する際には、下地鋼板に対して前処理を施すことが好ましい。前記前処理としては、任意の処理を行うことができるが、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。 Furthermore, when forming a Ni-containing layer on the surface of the base steel plate, it is preferable to perform pretreatment on the base steel plate. As the pretreatment, any treatment can be performed, but it is preferable to perform at least one of degreasing, pickling, and water washing.
 脱脂を行うことにより、鋼板に付着した圧延油や防錆油等を除去することができる。前記脱脂は、特に限定されず任意の方法で行うことができる。脱脂後は鋼板表面に付着した脱脂処理液を除去するために水洗を行うことが好ましい。 By degreasing, rolling oil, rust preventive oil, etc. attached to the steel plate can be removed. The degreasing can be carried out by any method without particular limitation. After degreasing, it is preferable to wash the steel plate with water to remove the degreasing solution adhering to the surface of the steel plate.
 また、酸洗を行うことにより、鋼板の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記酸洗は、特に限定されず任意の方法で行うことができる。酸洗後は鋼板表面に付着した酸洗処理液を除去するために水洗することが好ましい。 Additionally, by performing pickling, it is possible to remove the natural oxide film present on the surface of the steel sheet and activate the surface. The pickling can be carried out by any method without particular limitation. After pickling, it is preferable to wash the steel plate with water to remove the pickling solution adhering to the surface of the steel plate.
[水洗工程]
 次に、上記陰極電解処理後の鋼板を少なくとも1回水洗する。水洗を行うことにより、鋼板の表面に残留している電解液を除去することができる。前記水洗は、特に限定されることなく任意の方法で行うことができる。例えば、陰極電解処理を行うための電解槽の下流に水洗タンクを設け、陰極電解処理後の鋼板を連続的に水に浸漬することができる。また、陰極電解処理後の鋼板にスプレーで水を吹き付けることによって水洗を行ってもよい。
[Water washing process]
Next, the steel plate after the cathodic electrolytic treatment is washed with water at least once. By washing with water, the electrolyte remaining on the surface of the steel plate can be removed. The water washing can be performed by any method without particular limitation. For example, a water washing tank can be provided downstream of an electrolytic cell for performing cathodic electrolytic treatment, and the steel plate after cathodic electrolytic treatment can be continuously immersed in water. Alternatively, water washing may be performed by spraying water onto the steel plate after cathodic electrolysis treatment.
 水洗を行う回数は特に限定されず、1回でも、2回以上でもよい。しかし、水洗タンクの数が過剰に多くなることを避けるため、水洗の回数は5回以下とすることが好ましい。また、水洗処理を2回以上行う場合、各水洗は、同じ方法で行ってもよく、異なる方法で行ってもよい。 The number of times the water washing is performed is not particularly limited, and may be once, twice or more. However, in order to avoid an excessive increase in the number of water washing tanks, it is preferable that the number of water washings be 5 times or less. Moreover, when performing the water washing process two or more times, each water washing may be performed by the same method or may be performed by different methods.
 本発明においては、前記水洗処理工程の少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用することが重要である。これにより、表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量を低減し、その結果として密着性を向上させることができる。電気伝導度100μS/m以下の水は、任意の方法で製造することができる。前記電気伝導度100μS/m以下の水は、例えば、イオン交換水または蒸留水であってよい。一方、前記電気伝導度の下限はとくに限定されないが、過度の低減は製造コストの増加を招く。そのため、製造コストの観点からは、前記電気伝導度を1μS/m以上とすることが好ましく、5μS/m以上とすることがより好ましく、10μS/m以上とすることがさらに好ましい。 In the present invention, it is important to use water with an electrical conductivity of 100 μS/m or less in at least the final water washing of the water washing process. Thereby, the amount of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet can be reduced, and as a result, the adhesion can be improved. Water having an electrical conductivity of 100 μS/m or less can be produced by any method. The water having an electrical conductivity of 100 μS/m or less may be, for example, ion exchange water or distilled water. On the other hand, although the lower limit of the electrical conductivity is not particularly limited, excessive reduction will lead to an increase in manufacturing costs. Therefore, from the viewpoint of manufacturing cost, the electrical conductivity is preferably 1 μS/m or more, more preferably 5 μS/m or more, and even more preferably 10 μS/m or more.
 なお、前記水洗処理工程において2回以上の水洗を行う場合、最後の水洗に電気伝導度100μS/m以下の水を使用すれば上述した効果が得られるため、最後の水洗以外の水洗には、任意の水を用いることができる。最後の水洗以外の水洗にも電気伝導度100μS/m以下の水を用いても良いが、コストを低減するという観点からは、最後の水洗にのみ電気伝導度100μS/m以下の水を使用し、最後の水洗以外の水洗には、水道水、工業用水など、通常の水を使用することが好ましい。 In addition, when washing with water twice or more in the water washing process, the above-mentioned effect can be obtained if water with an electrical conductivity of 100 μS/m or less is used for the last washing, so for washing other than the last washing, Any water can be used. Water with an electrical conductivity of 100 µS/m or less may be used for washing other than the final washing, but from the perspective of reducing costs, it is recommended to use water with an electrical conductivity of 100 µS/m or less only in the final washing. It is preferable to use ordinary water such as tap water or industrial water for washing other than the final washing.
 表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量をさらに低減するという観点からは、最後の水洗に使用する水の電気伝導度は50μS/m以下とすることが好ましく、30μS/m以下とすることがより好ましい。 From the viewpoint of further reducing the amount of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet, the electrical conductivity of the water used for the final washing is preferably 50 μS/m or less, and 30 μS/m or less. /m or less is more preferable.
 水洗処理に用いる水の温度は、特に限定されず、任意の温度であってよい。しかし、過度に温度が高いと水洗設備に過剰な負担がかかるため、水洗に使用する水の温度は95℃以下とすることが好ましい。一方、水洗に使用する水の温度の下限も特に限定されないが、0℃以上であることが好ましい。前記水洗に使用する水の温度は室温であってもよい。 The temperature of the water used for the washing process is not particularly limited and may be any temperature. However, since an excessively high temperature places an excessive burden on the washing equipment, it is preferable that the temperature of the water used for washing is 95° C. or lower. On the other hand, the lower limit of the temperature of the water used for washing is also not particularly limited, but it is preferably 0° C. or higher. The temperature of the water used for the washing may be room temperature.
 水洗処理1回あたりの水洗時間は、特に限定されないが、水洗処理の効果を高めるという観点からは0.1秒以上が好ましく、0.2秒以上がさらに好ましい。また、水洗処理の1回あたりの水洗時間の上限も、特に限定されないが、連続ラインで製造を行う場合は、ラインスピードが下がって生産性が低下するという理由から、10秒以下が好ましく、8秒以下がさらに好ましい。 The water washing time per water washing treatment is not particularly limited, but from the viewpoint of enhancing the effect of the water washing treatment, it is preferably 0.1 seconds or more, and more preferably 0.2 seconds or more. Further, the upper limit of the water washing time per water washing treatment is not particularly limited, but when manufacturing on a continuous line, the line speed will decrease and productivity will decrease, so it is preferably 10 seconds or less, and 10 seconds or less is preferable. More preferably seconds or less.
 上記水洗処理工程の後には、任意に乾燥を行ってもよい。乾燥の方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、表面処理皮膜の変質を抑制できる。なお、下限は特に限定されないが、通常、室温程度である。 After the water washing step, drying may be optionally performed. The drying method is not particularly limited, and for example, a normal dryer or an electric oven drying method can be applied. The temperature during the drying treatment is preferably 100°C or lower. Within the above range, deterioration of the surface treated film can be suppressed. Note that the lower limit is not particularly limited, but is usually about room temperature.
 本発明の表面処理鋼板の用途は特に限定されないが、例えば、食缶、飲料缶、ペール缶、18リットル缶など種々の容器の製造に使用される容器用表面処理鋼板として特に好適である。 Although the use of the surface-treated steel sheet of the present invention is not particularly limited, it is particularly suitable as a surface-treated steel sheet for containers used for manufacturing various containers such as food cans, beverage cans, pail cans, and 18-liter cans.
 本発明の効果を確認するために、以下に述べる手順で表面処理鋼板を製造し、その特性を評価した。 In order to confirm the effects of the present invention, a surface-treated steel sheet was manufactured according to the procedure described below, and its characteristics were evaluated.
(電解液調製工程)
 まず、表1に示す組成A~Gを有する電解液を、表1に示した各条件で調製した。すなわち、表1に示した各成分を水と混合して水溶液とし、次いで前記水溶液を表1に示したpHおよび温度に調整した。なお、電解液Gは、特許文献6の実施例で使用されている電解液に相当する。pHの上昇にはいずれもアンモニア水を使用し、pHの低下には電解液A、B、Gには硫酸、電解液C、Dには塩酸、電解液E、Fには硝酸を使用した。
(Electrolyte preparation process)
First, electrolytic solutions having compositions A to G shown in Table 1 were prepared under the conditions shown in Table 1. That is, each component shown in Table 1 was mixed with water to form an aqueous solution, and then the aqueous solution was adjusted to the pH and temperature shown in Table 1. Note that the electrolytic solution G corresponds to the electrolytic solution used in the example of Patent Document 6. Ammonia water was used to raise the pH, and to lower the pH, sulfuric acid was used for electrolytes A, B, and G, hydrochloric acid was used for electrolytes C and D, and nitric acid was used for electrolytes E and F.
(Ni含有層の形成)
 一方、鋼板に両面に電気Niめっきを施して、前記鋼板の両面にNi含有層としてのNiめっき層を備えるNiめっき鋼板を得た。前記電気Niめっきには、ワット浴を使用した。また、前記電気Niめっきに先だって、前記鋼板には電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施した。前記電気Niめっきにおいては、電気量密度を変えることによりNiめっき層のNi付着量を表2、3に示す値とした。前記Ni含有層のNi付着量は、上述した蛍光X線による検量線法で測定した。Niめっき層形成後は水洗を施し、キープウェットのまま次の陰極電解処理工程に供した。なお、一部の実施例においては、Ni含有層としてNi-Fe合金層を形成した。すなわち、上述した方法によりNiめっき層を形成した後、焼鈍することによりNi-Fe合金層を形成した。
(Formation of Ni-containing layer)
On the other hand, both sides of the steel plate were electrically plated with Ni to obtain a Ni-plated steel plate having Ni plating layers as Ni-containing layers on both sides of the steel plate. A Watts bath was used for the electro-Ni plating. Further, prior to the electrolytic Ni plating, the steel plate was sequentially subjected to electrolytic degreasing, water washing, pickling by immersion in dilute sulfuric acid, and water washing. In the electrolytic Ni plating, the amount of Ni deposited in the Ni plating layer was set to the values shown in Tables 2 and 3 by changing the electrical quantity density. The amount of Ni deposited on the Ni-containing layer was measured by the above-mentioned calibration curve method using fluorescent X-rays. After forming the Ni plating layer, it was washed with water and subjected to the next cathode electrolytic treatment step while kept wet. Note that in some examples, a Ni--Fe alloy layer was formed as the Ni-containing layer. That is, after forming a Ni plating layer by the method described above, a Ni--Fe alloy layer was formed by annealing.
 前記鋼板としては、Cr含有量が表2、3に示す値であり、板厚が0.17mmである缶用鋼板(T4原板)を使用した。 As the steel plate, a steel plate for cans (T4 original plate) having a Cr content of the values shown in Tables 2 and 3 and a plate thickness of 0.17 mm was used.
(陰極電解処理工程)
 次に、前記Niめっき鋼板に対して、表2、3に示す条件で陰極電解処理を施した。なお、陰極電解処理の際の電解液は表1に示したpHと温度に保持した。陰極電解処理時の電気量密度は表2、3に示す値であり、電解時間とパス数は適宜変化させた。陰極電解処理時の陽極としては、基体としてのTiに酸化イリジウムをコーティングした不溶性陽極を使用した。陰極電解処理を行った後は、水洗処理を行い、ブロアを用いて室温で乾燥を行った。
(Cathode electrolytic treatment process)
Next, the Ni-plated steel sheet was subjected to cathodic electrolysis treatment under the conditions shown in Tables 2 and 3. Note that the electrolytic solution during the cathode electrolytic treatment was maintained at the pH and temperature shown in Table 1. The electric charge density during the cathode electrolysis treatment was the value shown in Tables 2 and 3, and the electrolysis time and number of passes were changed as appropriate. As an anode during the cathodic electrolytic treatment, an insoluble anode in which Ti as a substrate was coated with iridium oxide was used. After the cathodic electrolytic treatment, the sample was washed with water and dried at room temperature using a blower.
(水洗工程)
 次いで、上記陰極電解処理後の鋼板に水洗処理を施した。前記水洗処理は、表2、3に示した条件で1~5回行った。各回の水洗の方法と、使用した水の電気伝導度は表2、3に示したとおりとした。
(Water washing process)
Next, the steel plate subjected to the cathodic electrolytic treatment was subjected to a water washing treatment. The water washing treatment was performed 1 to 5 times under the conditions shown in Tables 2 and 3. The method of washing each time and the electrical conductivity of the water used were as shown in Tables 2 and 3.
 得られた表面処理鋼板のそれぞれについて、前述の方法で金属Cr層の前記鋼板の片面当たりのCr付着量、酸化Cr層の前記鋼板の片面当たりのCr付着量を測定した。同様に、前述した方法で金属Cr層のC原子比率を測定した。なお、表4、5に示した金属Cr層の「C原子比率」は、金属Cr層中のC含有量を、Crに対する原子比率で表した値である。また、得られた表面処理鋼板のそれぞれについて、水接触角、吸着元素量、および最表面におけるNiの原子比率下記の方法で測定した。測定結果は表4、5に示す。 For each of the obtained surface-treated steel sheets, the amount of Cr deposited on one side of the steel sheet in the metal Cr layer and the amount of Cr deposited on one side of the steel sheet in the oxidized Cr layer were measured using the method described above. Similarly, the C atomic ratio of the metal Cr layer was measured using the method described above. Note that the "C atomic ratio" of the metal Cr layer shown in Tables 4 and 5 is a value representing the C content in the metal Cr layer in terms of the atomic ratio to Cr. Further, for each of the obtained surface-treated steel sheets, the water contact angle, the amount of adsorbed elements, and the atomic ratio of Ni on the outermost surface were measured using the following methods. The measurement results are shown in Tables 4 and 5.
(水接触角)
 水接触角は、協和界面科学社製の自動接触角計CA-VP型を用いて測定した。表面処理鋼板の表面温度を20℃±1℃とし、水は20±1℃の蒸留水を使用し、2μlの液滴量で蒸留水を表面処理鋼板の表面に滴下し、1秒後にθ/2法によって接触角を測定し、5滴分の接触角の相加平均値を水接触角とした。
(water contact angle)
The water contact angle was measured using an automatic contact angle meter model CA-VP manufactured by Kyowa Interface Science. The surface temperature of the surface-treated steel sheet was set to 20°C ± 1°C, distilled water at 20 ± 1°C was used, and a droplet volume of 2 μl of distilled water was dropped onto the surface of the surface-treated steel sheet, and after 1 second, θ/ The contact angle was measured by method 2, and the arithmetic average value of the contact angles for 5 drops was taken as the water contact angle.
(吸着元素量)
 表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のK2p、Na1s、Ca2p、Mg1s、およびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、(K原子比率+Na原子比率+Ca原子比率+Mg原子比率)/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
(Amount of adsorbed elements)
The total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to Cr was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, Mg1s, and Cr2p on the outermost surface of the sample, the atomic ratio was quantified by the relative sensitivity coefficient method, and was calculated as (K atomic ratio + Na atomic ratio + Ca atomic ratio + Mg atomic ratio) / Cr atomic ratio. The ratio was calculated. For XPS measurements, a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlKα ray, the voltage was 15 kV, the beam diameter was 100 μmφ, and the extraction angle was 45°.
(最表面におけるNiの原子比率)
 表面処理鋼板の最表面におけるNi含有量のCrに対する原子比率を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のNi2pおよびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、Ni原子比率/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
(Ni atomic ratio on the outermost surface)
The atomic ratio of Ni content to Cr on the outermost surface of the surface-treated steel sheet was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of Ni2p and Cr2p on the outermost surface of the sample, the atomic ratio was quantified by the relative sensitivity coefficient method, and the Ni atomic ratio/Cr atomic ratio was calculated. For XPS measurements, a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlKα ray, the voltage was 15 kV, the beam diameter was 100 μmφ, and the extraction angle was 45°.
 さらに、得られた表面処理鋼板について、以下の方法でフィルム湿潤密着性、塗料2次密着性、溶接性を評価した。評価結果を表4、5に併記する。 Furthermore, the obtained surface-treated steel sheet was evaluated for film wet adhesion, secondary paint adhesion, and weldability using the following methods. The evaluation results are also listed in Tables 4 and 5.
(サンプルの作製)
 フィルム耐食性およびフィルム湿潤密着性の評価に使用するサンプルとしてのラミネート鋼板を、以下の手順で作製した。
(Preparation of sample)
A laminated steel plate as a sample used for evaluation of film corrosion resistance and film wet adhesion was produced according to the following procedure.
 得られた表面処理鋼板の両面に、延伸倍率:3.1×3.1、厚さ25μm、共重合比12モル%、融点224℃のイソフタル酸共重合ポリエチレンテレフタラートフィルムをラミネートしてラミネート鋼板を作製した。前記ラミネートは、樹脂フィルムの結晶化度が10%以下となる条件、具体的には、鋼板の送り速度:40m/min、ゴムロールのニップ長:17mm、圧着後水冷までの時間:1secで実施した。なお、樹脂フィルムの結晶化度は、JIS K7112に準拠した密度勾配管法により求めた。また、ニップ長とは、ゴムロールと鋼板が接する部分の搬送方向の長さのことである。 An isophthalic acid copolymerized polyethylene terephthalate film having a stretching ratio of 3.1 x 3.1, a thickness of 25 μm, a copolymerization ratio of 12 mol%, and a melting point of 224°C is laminated on both sides of the obtained surface-treated steel sheet to obtain a laminated steel sheet. was created. The lamination was carried out under conditions such that the crystallinity of the resin film was 10% or less, specifically, the feed speed of the steel plate: 40 m/min, the nip length of the rubber roll: 17 mm, and the time from crimping to water cooling: 1 sec. . The crystallinity of the resin film was determined by the density gradient tube method in accordance with JIS K7112. In addition, the nip length refers to the length of the portion where the rubber roll and the steel plate are in contact with each other in the conveyance direction.
 また、塗装耐食性および塗料2次密着性の評価に使用するサンプルとしての塗装鋼板を、以下の手順で作製した。 In addition, a coated steel plate as a sample used for evaluation of paint corrosion resistance and paint secondary adhesion was produced according to the following procedure.
 得られた表面処理鋼板の表面に、エポキシフェノール系塗料を塗布し、210℃で10分間の焼付を行って塗装鋼板を作製した。塗装の付着量は50mg/dmとした。 An epoxyphenol paint was applied to the surface of the obtained surface-treated steel sheet, and baked at 210° C. for 10 minutes to produce a coated steel sheet. The amount of coating applied was 50 mg/dm 2 .
(フィルム耐食性、塗装耐食性)
 作製したラミネート鋼板のフィルム面および塗装鋼板の塗装面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れたラミネート鋼板および塗装鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、ラミネート鋼板のフィルム面、および塗装鋼板の塗装面にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。フィルム耐食性については、ラミネート鋼板のクロスカット部の任意の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求め、腐食幅とみなした。塗装耐食性については、塗装鋼板のクロスカット部の任意の4箇所について塗装剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求め、腐食幅とみなした。フィルム耐食性および塗装耐食性は、下記の4水準で評価した。実用上、評価が1~3であれば、耐食性に優れるといえる。
 1:腐食幅0.3mm未満
 2:腐食幅0.3mm以上0.5mm未満
 3:腐食幅0.5mm以上1.0mm未満
 4:腐食幅1.0mm以上
(Film corrosion resistance, paint corrosion resistance)
A cutter was used to make a cross cut deep enough to reach the base iron (steel plate) on the film surface of the produced laminated steel plate and the painted surface of the painted steel plate. A laminated steel plate with cross cuts and a painted steel plate were immersed for 96 hours in a test solution at 55°C consisting of a mixed aqueous solution containing 1.5% by mass citric acid and 1.5% by mass common salt. After dipping, washing and drying, cellophane adhesive tape was applied to the film surface of the laminated steel sheet and the painted surface of the painted steel sheet, and tape peeling was performed by peeling it off. Regarding film corrosion resistance, the film peeling width (the total width of the left and right sides extending from the cut part) was measured at four arbitrary locations on the cross-cut part of the laminated steel plate, and the average value of the four locations was determined and considered as the corrosion width. Regarding paint corrosion resistance, the paint peeling width (the total width of the left and right sides extending from the cut part) was measured at four arbitrary locations on the cross-cut portion of the painted steel plate, and the average value of the four locations was determined and considered as the corrosion width. Film corrosion resistance and paint corrosion resistance were evaluated on the following four levels. In practical terms, if the rating is 1 to 3, it can be said that the material has excellent corrosion resistance.
1: Corrosion width less than 0.3 mm 2: Corrosion width 0.3 mm or more and less than 0.5 mm 3: Corrosion width 0.5 mm or more and less than 1.0 mm 4: Corrosion width 1.0 mm or more
(フィルム湿潤密着性)
 フィルム湿潤密着性は、上記ラミネート鋼板を使用して、温度130℃、相対湿度100%のレトルト雰囲気における180°ピール試験により評価した。具体的な手順は以下の通りとした。
(Film wet adhesion)
Film wet adhesion was evaluated by a 180° peel test in a retort atmosphere at a temperature of 130° C. and a relative humidity of 100% using the laminated steel plate. The specific steps were as follows.
 まず、上記ラミネート鋼板のそれぞれから、表面を対象面とする試験片3枚と、裏面を対象面とする試験片3枚の、合計6枚の試験片を切り出した。各試験片のサイズは、幅30mm、長さ100mmとした。次に、各試験片の長さ方向の上部から15mmの位置で、対象面のフィルムを残し、対象面と反対側の面のフィルムと鋼板とを切断した。切断後の試験片を、鋼板が地面と垂直となるように、試験片の長さ方向で下部から15mmまでの部分を固定し、切断位置より上方の幅30mm、長さ15mmの部位が、対象面のフィルムでつながった状態で垂れ下がるようにした。そして、垂れ下がっている幅30mm長さ15mmの部位に、100gの錘を装着した。 First, a total of six test pieces were cut out from each of the above laminated steel plates: three test pieces with the front side as the target side and three test pieces with the back side as the target side. The size of each test piece was 30 mm in width and 100 mm in length. Next, at a position 15 mm from the top of each test piece in the length direction, the film and steel plate on the opposite side of the target surface were cut, leaving the film on the target surface. After cutting, the test piece was fixed in the longitudinal direction up to 15 mm from the bottom so that the steel plate was perpendicular to the ground, and the part 30 mm wide and 15 mm long above the cutting position was the target I made it hang down while being connected by a film on the surface. Then, a weight of 100 g was attached to the hanging portion of 30 mm in width and 15 mm in length.
 この状態の試験片を、温度130°、相対湿度100%のレトルト雰囲気中に30分間放置した後、大気開放した。対象面のフィルムが表面処理鋼板から剥離した長さをフィルム剥離長とし、各ラミネート鋼板について、6つの試験片におけるフィルム剥離長の平均値を求めた。得られたフィルム剥離長の平均値を用いて、以下の4水準でフィルム湿潤密着性を評価した。実用上、評価が1~3であれば、フィルム湿潤密着性に優れるといえる。
 1:剥離長20mm未満
 2:剥離長20mm以上40mm未満
 3:剥離長40mm以上60mm未満
 4:剥離長60mm以上
The test piece in this state was left in a retort atmosphere at a temperature of 130° and a relative humidity of 100% for 30 minutes, and then opened to the atmosphere. The length by which the film on the target surface was peeled off from the surface-treated steel sheet was defined as the film peeling length, and for each laminated steel sheet, the average value of the film peeling length in six test pieces was determined. Using the average value of the obtained film peel lengths, the film wet adhesion was evaluated on the following four levels. In practical terms, if the evaluation is 1 to 3, it can be said that the film has excellent wet adhesion.
1: Peel length less than 20 mm 2: Peel length 20 mm or more and less than 40 mm 3: Peel length 40 mm or more and less than 60 mm 4: Peel length 60 mm or more
(塗料2次密着性)
 同じ条件で作製した塗装鋼板2枚を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×10Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片は、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、168時間浸漬した。浸漬後、洗浄および乾燥をした後、分割した試験片の2枚の鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。3つの試験片の平均値を下記の4水準で評価した。実用上、評価が1~3であれば、塗料2次密着性に優れるといえる。
 1:2.5kgf以上
 2:2.0kgf以上2.5kgf未満
 3:1.5kgf以上2.0kgf未満
 4:1.5kgf未満
(Paint secondary adhesion)
Two coated steel plates made under the same conditions were laminated with a nylon adhesive film in between so that the coated surfaces faced each other, and then the pressure was 2.94×10 5 Pa, the temperature was 190°C, and the bonding time was 30 seconds. Pasted below. Thereafter, this was divided into test pieces with a width of 5 mm. The divided test pieces were immersed for 168 hours in a test solution at 55°C consisting of a mixed aqueous solution containing 1.5% by mass of citric acid and 1.5% by mass of common salt. After immersion, washing, and drying, the two steel plates of the divided test piece were peeled off using a tensile tester, and the tensile strength when peeled off was measured. The average value of the three test pieces was evaluated on the following four levels. In practical terms, if the rating is 1 to 3, it can be said that the secondary paint adhesion is excellent.
1: 2.5 kgf or more 2: 2.0 kgf or more and less than 2.5 kgf 3: 1.5 kgf or more and less than 2.0 kgf 4: Less than 1.5 kgf
(溶接性)
 得られた表面処理鋼板について、塗装焼付工程を想定して210℃×10分の熱処理を施した後、2枚のサンプルを、DR型1質量%Cr-Cu電極(先端径2.3mm、曲率R40mmとして加工した電極)で挟み込み、下記条件で通電した。
 ・アマダミヤチ社製トランジスタ式電源:MDA-8000A
 ・溶接ヘッド:AH-200
 ・加圧:40kgf
 ・通電時間:1.6msec.(スロープ0.2msec.)
 ・波形:矩形波
(Weldability)
The obtained surface-treated steel sheets were heat-treated at 210°C for 10 minutes assuming a paint baking process, and then the two samples were heated using a DR type 1 mass% Cr-Cu electrode (tip diameter 2.3 mm, curvature It was sandwiched between electrodes (processed to have an R of 40 mm) and energized under the following conditions.
・Amada Miyachi transistor power supply: MDA-8000A
・Welding head: AH-200
・Pressurization: 40kgf
・Electrification time: 1.6msec. (Slope 0.2msec.)
・Waveform: Square wave
 充分な強度が得られる下限電流と、チリ発生しない上限電流とから、適正電流範囲(=上限電流―下限電流)を求め、下記の4水準で評価した。実用上、評価が1~3であれば、溶接性に優れるといえる。
 1:2.5kA以上
 2:2.0kA以上、2.5kA未満
 3:1.5kA以上、2.0kA未満
 4:1.5kA未満
An appropriate current range (=upper limit current - lower limit current) was determined from the lower limit current that provides sufficient strength and the upper limit current that does not cause dusting, and was evaluated using the following four levels. In practical terms, if the evaluation is 1 to 3, it can be said that the weldability is excellent.
1: 2.5kA or more 2: 2.0kA or more, less than 2.5kA 3: 1.5kA or more, less than 2.0kA 4: Less than 1.5kA
 表4、5に示した結果から明らかなように、本発明の条件を満たす表面処理鋼板は、いずれも6価クロムを用いず製造したにもかかわらず、優れたフィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性を兼ね備えていた。 As is clear from the results shown in Tables 4 and 5, the surface-treated steel sheets that meet the conditions of the present invention have excellent film corrosion resistance, paint corrosion resistance, and film wetness, even though they were manufactured without using hexavalent chromium. It had excellent adhesion, secondary paint adhesion, and weldability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (6)

  1.  鋼板と、
     前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、
     前記Ni含有層上に配置された金属Cr層と、
     前記金属Cr層上に配置された酸化Cr層とを有し、
     水接触角が50°以下であり、
     表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。
    steel plate and
    a Ni-containing layer disposed on at least one surface of the steel plate;
    a metal Cr layer disposed on the Ni-containing layer;
    and a Cr oxide layer disposed on the metal Cr layer,
    The water contact angle is 50° or less,
    A surface-treated steel sheet in which the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to Cr is 5.0% or less.
  2.  前記Ni含有層は、Ni付着量が前記鋼板の片面当たり200mg/m以上2000mg/m以下である、請求項1に記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1, wherein the Ni-containing layer has a Ni adhesion amount of 200 mg/m 2 or more and 2000 mg/m 2 or less per side of the steel sheet.
  3.  前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2mg/m以上40mg/m未満である、請求項1または2に記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1 or 2, wherein the metal Cr layer has a Cr adhesion amount of 2 mg/m 2 or more and less than 40 mg/m 2 per side of the steel sheet.
  4.  前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m以上15.0mg/m以下である、請求項1~3のいずれか一項に記載の表面処理鋼板。 The surface-treated steel sheet according to any one of claims 1 to 3, wherein the oxidized Cr layer has a Cr adhesion amount of 0.1 mg/m 2 or more and 15.0 mg/m 2 or less per side of the steel sheet.
  5.  前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、請求項1~4のいずれか一項に記載の表面処理鋼板。 The surface-treated steel sheet according to any one of claims 1 to 4, wherein the atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet is 100% or less.
  6.  鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、
     3価クロムイオンを含有する電解液を調製する電解液調製工程と、
     少なくとも一方の面にNi含有層を有する鋼板を前記電解液中で陰極電解処理する陰極電解処理工程と、
     前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程とを含み、
     前記電解液調製工程では、
      3価クロムイオン源、カルボン酸化合物、および水を混合し、
      pHを4.0~7.0に調整するとともに、温度を40~70℃に調整することによって前記電解液が調製され、
     前記水洗工程では、
      少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
    A surface comprising a steel plate, a Ni-containing layer disposed on at least one surface of the steel plate, a metallic Cr layer disposed on the Ni-containing layer, and an oxidized Cr layer disposed on the metallic Cr layer. A method for manufacturing a treated steel sheet, the method comprising:
    an electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions;
    a cathodic electrolytic treatment step of cathodic electrolytically treating a steel plate having a Ni-containing layer on at least one surface in the electrolytic solution;
    a washing step of washing the steel plate after the cathodic electrolytic treatment at least once with water,
    In the electrolyte preparation step,
    Mixing a trivalent chromium ion source, a carboxylic acid compound, and water,
    The electrolytic solution is prepared by adjusting the pH to 4.0 to 7.0 and the temperature to 40 to 70°C,
    In the water washing step,
    A method for producing a surface-treated steel sheet, using water with an electrical conductivity of 100 μS/m or less in at least the final washing.
PCT/JP2023/006069 2022-04-08 2023-02-20 Surface-treated steel sheet and method for producing same WO2023195251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532834A JP7327718B1 (en) 2022-04-08 2023-02-20 Surface-treated steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-064801 2022-04-08
JP2022064801 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195251A1 true WO2023195251A1 (en) 2023-10-12

Family

ID=88242845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006069 WO2023195251A1 (en) 2022-04-08 2023-02-20 Surface-treated steel sheet and method for producing same

Country Status (1)

Country Link
WO (1) WO2023195251A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129979A1 (en) * 2006-05-09 2007-11-15 Sandvik Intellectual Property Ab Flapper valve material, production and use thereof
JP2009035806A (en) * 2007-07-12 2009-02-19 Okuno Chem Ind Co Ltd Trivalent chromium plating bath and method of preparing the same
JP2014513214A (en) * 2011-05-03 2014-05-29 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Electroplating bath and method for producing black chrome layer
JP2020109205A (en) * 2018-12-13 2020-07-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for production of metal strip coated with coating of chromium and chromium oxide using electrolyte solution with trivalent chromium compound
JP2020200533A (en) * 2019-06-06 2020-12-17 Jfeスチール株式会社 Steel sheet for can and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129979A1 (en) * 2006-05-09 2007-11-15 Sandvik Intellectual Property Ab Flapper valve material, production and use thereof
JP2009035806A (en) * 2007-07-12 2009-02-19 Okuno Chem Ind Co Ltd Trivalent chromium plating bath and method of preparing the same
JP2014513214A (en) * 2011-05-03 2014-05-29 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Electroplating bath and method for producing black chrome layer
JP2020109205A (en) * 2018-12-13 2020-07-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method for production of metal strip coated with coating of chromium and chromium oxide using electrolyte solution with trivalent chromium compound
JP2020200533A (en) * 2019-06-06 2020-12-17 Jfeスチール株式会社 Steel sheet for can and production method thereof

Also Published As

Publication number Publication date
TW202342818A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP5884947B2 (en) Ni-plated steel sheet and method for producing Ni-plated steel sheet
JP5760355B2 (en) Steel plate for containers
JP7070823B1 (en) Surface-treated steel sheet and its manufacturing method
WO2022138006A1 (en) Surface-treated steel sheet and production method therefor
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
JP7327718B1 (en) Surface-treated steel sheet and manufacturing method thereof
WO2023195251A1 (en) Surface-treated steel sheet and method for producing same
TWI845179B (en) Surface treated steel plate and manufacturing method thereof
JP7070822B1 (en) Surface-treated steel sheet and its manufacturing method
JP7327719B1 (en) Surface-treated steel sheet and manufacturing method thereof
TWI840140B (en) Surface treated steel plate and manufacturing method thereof
JP7435925B1 (en) Surface treated steel sheet and its manufacturing method
JP7435924B1 (en) Surface treated steel sheet and its manufacturing method
WO2023195252A1 (en) Surface-treated steel sheet and production method therefor
WO2022138005A1 (en) Surface-treated steel sheet and production method therefor
JP7401039B1 (en) Surface treated steel sheet and its manufacturing method
JP7401033B1 (en) Surface treated steel sheet and its manufacturing method
JP7460035B1 (en) Surface-treated steel sheet and its manufacturing method
WO2021261155A1 (en) Surface-treated steel sheet, metal container, and method for manufacturing surface-treated steel sheet
WO2024018723A1 (en) Surface-treated steel sheet and method for producing same
WO2024111158A1 (en) Surface-treated steel sheet and method for producing same
WO2024111159A1 (en) Surface-treated steel sheet and method for producing same
WO2024111157A1 (en) Surface-treated steel sheet and method for producing same
TW202421845A (en) Surface treated steel plate and manufacturing method thereof
TW202421847A (en) Surface treated steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023532834

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784544

Country of ref document: EP

Kind code of ref document: A1