WO2024111157A1 - Surface-treated steel sheet and method for producing same - Google Patents

Surface-treated steel sheet and method for producing same Download PDF

Info

Publication number
WO2024111157A1
WO2024111157A1 PCT/JP2023/025345 JP2023025345W WO2024111157A1 WO 2024111157 A1 WO2024111157 A1 WO 2024111157A1 JP 2023025345 W JP2023025345 W JP 2023025345W WO 2024111157 A1 WO2024111157 A1 WO 2024111157A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
layer
treated steel
oxide
amount
Prior art date
Application number
PCT/JP2023/025345
Other languages
French (fr)
Japanese (ja)
Inventor
卓嗣 植野
祐介 中川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023561105A priority Critical patent/JP7401039B1/en
Publication of WO2024111157A1 publication Critical patent/WO2024111157A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present invention relates to a surface-treated steel sheet, and in particular to a surface-treated steel sheet that has excellent adhesion to BPA (bisphenol A)-free paint.
  • the surface-treated steel sheet of the present invention can be suitably used for containers such as cans.
  • the present invention also relates to a method for manufacturing the surface-treated steel sheet.
  • Sn-plated steel sheet (tinplate), a type of surface-treated steel sheet, is widely used as a material for various metal cans such as beverage cans, food cans, pail cans, and 18-liter cans because it has excellent corrosion resistance, weldability, and workability, and is easy to manufacture.
  • the surface of the surface-treated steel sheets used for these applications is coated with an organic resin coating, such as an epoxy-based paint, to accommodate the various contents.
  • an organic resin coating such as an epoxy-based paint
  • the chromium oxide layer formed on the outermost surface by electrolytically treating or immersing the steel sheet in an aqueous solution containing hexavalent chromium plays an important role.
  • the chromium oxide layer provides excellent adhesion to the organic resin coating layer, and as a result, corrosion resistance to the various contents is guaranteed (Patent Documents 1 to 5).
  • Patent Document 8 A method for producing surface-treated steel sheets without using hexavalent chromium is proposed, for example, in Patent Document 8. This method proposes a surface-treated steel sheet in which a coating containing a zirconium compound is formed on the surface of a Sn-plated steel sheet.
  • Patent Document 8 makes it possible to form a surface treatment layer without using hexavalent chromium. Furthermore, Patent Document 8 also shows that the method makes it possible to obtain a surface-treated steel sheet that has excellent adhesion to epoxy-based paints.
  • the present invention was made in consideration of the above situation, and its purpose is to provide a surface-treated steel sheet that can be manufactured without using hexavalent chromium and has excellent adhesion to BPA-free paint.
  • the inventors of the present invention conducted extensive research to achieve the above objective, and as a result, have come to the following findings (1) and (2).
  • the contact angle of ethylene glycol and the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements can be controlled within a specific range, thereby obtaining a surface-treated steel sheet with excellent adhesion to BPA-free paint.
  • the above-mentioned surface-treated steel sheet can be produced by forming a coating, adjusting the surface under specified conditions, and then performing a final water wash using water whose electrical conductivity is equal to or lower than a specified value.
  • the present invention was completed based on the above findings.
  • the gist of the present invention is as follows:
  • At least one surface of the steel plate is A Sn plating layer; A surface-treated steel sheet having a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn plating layer, The contact angle of ethylene glycol is 50° or less, A surface-treated steel sheet having a total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements of 5.0% or less.
  • a method for producing a surface-treated steel sheet having a Sn-plated layer on at least one surface of the steel sheet, and a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn-plated layer comprising the steps of: a coating formation step of treating a surface of a steel sheet having a Sn plating layer on at least one surface thereof with an aqueous solution containing at least one of Zr ions and Ti ions to form the coating layer on the Sn plating layer; a surface conditioning step of maintaining the aqueous solution at 1.0 to 30.0 g/ m2 on the surface of the coating layer for 0.1 to 20.0 seconds; and a water washing step of washing the steel sheet after the surface conditioning step at least once with water, In the water washing step, A method for producing a surface-treated steel sheet, comprising using water having an electrical conductivity of 100 ⁇ S/m or less in at least the final water washing.
  • the present invention it is possible to provide a surface-treated steel sheet that has excellent adhesion to BPA-free paints without using hexavalent chromium.
  • the surface-treated steel sheet of the present invention can be suitably used as a material for containers, etc.
  • the surface-treated steel sheet has a Sn-plated layer on at least one surface of the steel sheet, and a coating layer disposed on the Sn-plated layer, the coating layer containing at least one of Zr oxide and Ti oxide.
  • the contact angle of ethylene glycol on the surface-treated steel sheet is 50° or less, and that the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements is 5.0% or less.
  • the steel sheet is not particularly limited and any steel sheet can be used, but it is preferable to use a steel sheet for cans.
  • the steel sheet can be, for example, an ultra-low carbon steel sheet or a low carbon steel sheet.
  • the manufacturing method of the steel sheet is also not particularly limited and any steel sheet manufactured by any method can be used, but usually a cold-rolled steel sheet can be used.
  • the cold-rolled steel sheet can be manufactured by a general manufacturing process that includes, for example, hot rolling, pickling, cold rolling, annealing, and temper rolling.
  • the composition of the steel plate is not particularly limited, but the steel plate may contain C, Mn, Cr, P, S, Si, Cu, Ni, Mo, Al, and unavoidable impurities within a range that does not impair the effects of the present invention.
  • a steel plate having a composition specified in ASTM A623M-09 can be suitably used as the steel plate.
  • C in weight percent: C: 0.0001 to 0.13%, Si: 0 to 0.020%, Mn: 0.01 to 0.60% P: 0 to 0.020%, S: 0 to 0.030%, Al: 0 to 0.20%, N: 0 to 0.040%, Cu: 0 to 0.20%, Ni: 0 to 0.15%, Cr: 0 to 0.10%, Mo: 0 to 0.05%, Ti: 0 to 0.020%, Nb: 0 to 0.020%, B: 0 to 0.020%, Ca: 0 to 0.020%, Sn: 0 to 0.020%, Sb: 0 to 0.020%, and the balance being Fe and unavoidable impurities.
  • the lower the content of Si, P, S, Al, and N the more preferable the components are, and Cu, Ni, Cr, Mo, Ti, Nb, B, Ca, Sn, and Sb are components that may be added as desired.
  • the lower limit of the thickness of the steel plate is not particularly limited, but it is preferable that the thickness is 0.10 mm or more.
  • the upper limit of the thickness is not particularly limited, but it is preferable that the thickness is 0.60 mm or less.
  • “steel plate” is defined to include “steel strip”.
  • the Sn plating layer may be provided on at least one surface of the steel sheet, or may be provided on both surfaces.
  • the Sn plating layer may cover at least a portion of the steel sheet, or may cover the entire surface on which the Sn plating layer is provided.
  • the Sn plating layer may be a continuous layer or a discontinuous layer.
  • An example of the discontinuous layer is a layer having an island structure.
  • the Sn plating layer also includes a portion of the Sn plating layer that has been alloyed.
  • a portion of the Sn plating layer that has been turned into a Sn alloy layer by a heat melting treatment after Sn plating is also included in the Sn plating layer.
  • the Sn alloy layer include an Fe-Sn alloy layer and an Fe-Sn-Ni alloy layer.
  • a part of the steel sheet side of the Sn-plated layer can be made into an Fe-Sn alloy layer.
  • a part of the steel sheet side of the Sn-plated layer can be made into either or both of an Fe-Sn-Ni alloy layer and an Fe-Sn alloy layer.
  • the Sn coating weight in the Sn plating layer is not particularly limited and may be any amount. However, from the viewpoint of further improving the appearance and corrosion resistance of the surface-treated steel sheet, it is preferable that the Sn coating weight is 20.0 g/ m2 or less per one side of the steel sheet. From the same viewpoint, it is preferable that the Sn coating weight is 0.1 g/ m2 or more, and more preferably 0.2 g/ m2 or more. Moreover, from the viewpoint of further improving the workability, it is even more preferable that the Sn coating weight is 1.0 g/ m2 or more.
  • the amount of Sn adhesion can be measured by the electrolytic stripping method specified in JIS G 3303.
  • the formation of the Sn plating layer is not particularly limited, and can be performed by any method, such as electroplating or hot-dip plating.
  • any plating bath can be used. Examples of plating baths that can be used include a phenolsulfonic acid Sn plating bath, a methanesulfonic acid Sn plating bath, or a halogen-based Sn plating bath.
  • a reflow process may be performed.
  • an alloy layer such as an Fe-Sn alloy layer can be formed underneath the unalloyed Sn plating layer (on the steel sheet side) by heating the Sn plating layer to a temperature equal to or higher than the melting point of Sn (231.9°C). Also, if the reflow process is omitted, a Sn-plated steel sheet having an unalloyed Sn plating layer is obtained.
  • the surface side of the Sn plating layer may contain Sn oxides, or it may not contain any at all. However, from the viewpoint of improving coating secondary adhesion, which is adhesion to paint in a wet environment, and sulfide staining resistance, it is preferable for the surface side of the Sn plating layer to contain Sn oxides. Sn oxides can also be formed during reflow processing or due to dissolved oxygen contained in the rinsing water after Sn plating, but it is preferable to control the amount of Sn oxides contained in the Sn plating layer by pretreatment, which will be described later.
  • the surface-treated steel sheet may further have an optional Ni-containing layer.
  • the surface-treated steel sheet in one embodiment of the present invention may further have an Ni-containing layer disposed under the Sn-plated layer.
  • the surface-treated steel sheet in one embodiment of the present invention may be a surface-treated steel sheet having, on at least one surface of the steel sheet, a Ni-containing layer, a Sn-plated layer disposed on the Ni-containing layer, and a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn-plated layer.
  • the Ni-containing layer may be any layer containing nickel, for example, a Ni layer and/or a Ni alloy layer.
  • An example of the Ni layer is a Ni plating layer.
  • An example of the Ni alloy layer is a Ni-Fe alloy layer.
  • the method for forming the Ni-containing layer is not particularly limited, and any method, such as electroplating, can be used.
  • the Ni layer can be formed on the steel sheet surface by electroplating or other methods, and then annealing to form the Ni-Fe alloy layer.
  • the Ni adhesion amount of the Ni-containing layer is not particularly limited, from the viewpoint of improving resistance to sulfidation blackening, it is preferable that the Ni adhesion amount per one side of the steel sheet is 2 mg/ m2 or more. Also, from the viewpoint of cost, it is preferable that the Ni adhesion amount per one side of the steel sheet is 2000 mg/ m2 or less.
  • the Ni adhesion amount of the Ni-containing layer is measured by a calibration curve method using fluorescent X-rays. First, multiple steel plates with known Ni adhesion amounts are prepared, and the fluorescent X-ray intensity derived from Ni is measured for the steel plates in advance. The relationship between the measured fluorescent X-ray intensity and the Ni adhesion amount is linearly approximated to create a calibration curve. Next, the fluorescent X-ray intensity derived from Ni of the surface-treated steel plate is measured, and the Ni adhesion amount of the Ni-containing layer can be obtained using the above-mentioned calibration curve.
  • a coating layer containing at least one of Zr oxide and Ti oxide is present on the Sn plating layer.
  • the inclusion of at least one of Zr oxide and Ti oxide in the coating layer is necessary to obtain excellent adhesion with a BPA-free paint.
  • the lower limit of the total adhesion amount of Zr oxide and Ti oxide in the coating layer is not particularly limited.
  • the total adhesion amount of Zr oxide and Ti oxide is preferably 0.3 mg/m 2 or more per one side of the steel sheet in terms of the amount of metal Zr and the amount of metal Ti, more preferably 0.4 mg/m 2 or more, and even more preferably 0.5 mg/m 2 or more.
  • the upper limit of the total adhesion amount of Zr oxide and Ti oxide in the coating layer is also not particularly limited.
  • the total adhesion amount of Zr oxide and Ti oxide is preferably 50.0 mg/m 2 or less per one side of the steel sheet in terms of the amount of metal Zr and the amount of metal Ti, more preferably 45.0 mg/m 2 or less, and even more preferably 40.0 mg/m 2 or less.
  • the amount of Zr oxide adhesion is calculated by converting the amount of metallic Zr
  • the amount of Ti oxide adhesion is calculated by converting the amount of metallic Ti.
  • the amount of Zr oxide attached in the coating layer is measured using a calibration curve method using fluorescent X-rays.
  • a calibration curve method using fluorescent X-rays First, multiple steel plates with known amounts of attached metal Zr are prepared, and the fluorescent X-ray intensity originating from Zr is measured in advance for the steel plates. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of attached metal Zr. Next, the fluorescent X-ray intensity originating from Zr in the surface-treated steel plate is measured, and the amount of attached Zr oxide in the coating layer can be calculated in terms of metallic Zr using the above-mentioned calibration curve.
  • the amount of Ti oxide attached in the coating layer is measured by a calibration curve method using fluorescent X-rays.
  • a calibration curve method using fluorescent X-rays.
  • a calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of attached metal Ti.
  • the fluorescent X-ray intensity derived from Ti in the surface-treated steel plate is measured, and the amount of attached Ti oxide in the coating layer can be calculated in terms of metallic Ti using the above-mentioned calibration curve.
  • the coating layer may contain P from the viewpoint of further improving adhesion to the BPA-free paint.
  • the upper limit of the amount of P contained in the coating layer is not particularly limited, but since the adhesion to the BPA-free paint may be impaired due to cohesive failure of the coating layer, it is preferable that the amount is 50.0 mg/ m2 or less per one side of the steel sheet.
  • the lower limit of the amount of P contained in the coating layer is not particularly limited, and may be, for example, 0.0 mg/ m2 , or may not be contained at all.
  • the amount of P attached in the coating layer is measured using a calibration curve method using fluorescent X-rays.
  • a calibration curve method using fluorescent X-rays First, multiple steel plates with known amounts of P attached are prepared, and the fluorescent X-ray intensity originating from P is measured in advance for the steel plates. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of P attached. Next, the fluorescent X-ray intensity originating from P in the surface-treated steel plate is measured, and the amount of P attached in the coating layer can be determined using the above-mentioned calibration curve.
  • the coating layer may contain Mn from the viewpoint of further improving adhesion to the BPA-free paint.
  • the upper limit of the amount of Mn contained in the coating layer is not particularly limited, but since the adhesion to the BPA-free paint may be impaired due to cohesive failure of the coating layer, it is preferable that the amount is 50.0 mg/ m2 or less per one side of the steel sheet.
  • the lower limit of the amount of Mn contained in the coating layer is not particularly limited, and may be, for example, 0.0 mg/ m2 , or may not be contained at all.
  • the amount of Mn attached in the coating layer is measured using a calibration curve method using fluorescent X-rays.
  • a calibration curve method using fluorescent X-rays First, multiple steel plates with known amounts of Mn attached are prepared, and the fluorescent X-ray intensity derived from Mn for the steel plates is measured in advance. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of Mn attached. Next, the fluorescent X-ray intensity derived from Mn in the surface-treated steel plate is measured, and the amount of Mn attached in the coating layer can be determined using the above-mentioned calibration curve.
  • the coating layer may contain Sn.
  • the upper limit of the Sn content in the coating layer is not particularly limited.
  • the coating layer may not contain Sn, and may have a Sn content of 0.0 mg/ m2 .
  • the coating layer may contain C. There is no particular upper limit to the C content in the coating layer.
  • the coating layer may not contain C, and the C content may be 0.0 mg/ m2 .
  • the coating layer may contain elements other than Zr, Ti, O, Sn, Mn, P, Ni, and C, as well as K, Na, Mg, and Ca, which will be described later.
  • elements other than the above elements include metal impurities such as Cu, Zn, and Fe contained in the aqueous solution used in the coating formation process, which will be described later, and elements such as S, N, F, Cl, Br, and Si.
  • elements other than Zr, Ti, O, Sn, Mn, P, Ni, C, K, Na, Mg, and Ca are present in excess, adhesion to the BPA-free paint may decrease.
  • the total content of elements other than Zr, Ti, O, Sn, Mn, P, Ni, C, K, Na, Mg, and Ca in the coating layer is preferably 30% or less in atomic ratio, and more preferably 20% or less.
  • the coating layer may not contain elements other than Zr, Ti, O, Sn, Mn, P, Ni, C, K, Na, Mg, and Ca, and may be 0% in atomic ratio.
  • the content of the above elements can be measured using XPS (X-ray photoelectron spectroscopy).
  • the contact angle of ethylene glycol of the surface-treated steel sheet is 50° or less.
  • the contact angle of ethylene glycol is preferably 48° or less, and more preferably 45° or less.
  • the lower limit of the contact angle of ethylene glycol is not particularly limited, and may be 0°. However, from the viewpoint of ease of production, it may be 5° or more, or 8° or more.
  • the surface of the surface-treated steel sheet of the present invention i.e., the surface state of the coating layer containing at least one of Zr oxide and Ti oxide
  • the contact angle of ethylene glycol does not change significantly, for example, even after heat treatment equivalent to paint baking. It is presumed that such thermal stability of the surface state also contributes to improved adhesion with BPA-free paint. Therefore, the contact angle of ethylene glycol of the surface-treated steel sheet after heat treatment equivalent to paint is preferably 50° or less, more preferably 48° or less, and even more preferably 45° or less.
  • the lower limit of the contact angle of ethylene glycol of the surface-treated steel sheet after heat treatment equivalent to paint is not particularly limited and may be 0°, but the contact angle may be 5° or more, or 8° or more.
  • the conditions of the heat treatment equivalent to paint are a maximum temperature of 200°C and a holding time at the maximum temperature of 10 minutes.
  • the mechanism by which the contact angle of ethylene glycol on a surface-treated steel sheet becomes 50° or less is unclear, but it is thought that the micro-roughness of the surface is adjusted in the surface conditioning process described below, and the surface is modified to have a high affinity with ethylene glycol. If the surface conditioning process described below is not carried out, even if the surface of the surface-treated steel sheet has a high affinity with ethylene glycol immediately after production, the coating layer cannot be fixed in a state of high affinity, and the contact angle of ethylene glycol exceeds 50°.
  • the contact angle of ethylene glycol can be measured by the ⁇ /2 method.
  • the temperature of the surface-treated steel sheet to be measured is set to 20°C, and ethylene glycol at a temperature of 20°C is dropped onto the surface of the surface-treated steel sheet.
  • the contact angle 1 second after the drop is calculated by the ⁇ /2 method. More specifically, it can be measured by the method described in the Examples.
  • the surface of the surface-treated steel sheet may be coated with a rust-preventive oil such as CSO (Cottonseed Oil), DOS (Dioctyl Sebacate), or ATBC (Acetyl Tributyl Citrate).
  • the contact angle measured by the method described in the Examples after the coating-equivalent heat treatment is performed to vaporize the coated oil is regarded as the contact angle of ethylene glycol on the surface-treated steel sheet after coating.
  • the surface-treated steel sheet of the present invention is stable against heat treatment, so if the contact angle measured after the heat treatment and the atomic ratio of the adsorbed elements described below satisfy the conditions of the present invention, the effect of the present invention is also expected to be achieved for the surface-treated steel sheet before the heat treatment.
  • additive components such as rust inhibitors contained in the oil applied may remain on the surface of the surface-treated steel sheet even after the heat treatment equivalent to painting, but the amount is so small that it does not affect the contact angle of ethylene glycol and the atomic ratio of the adsorbed elements described above.
  • the adhesion to epoxy-based paints in a humid environment was improved by reducing the number of OH groups through the progression of oxidation of the chromium hydrate oxide, i.e., by hydrophobizing the surface.
  • the present invention focuses on ethylene glycol rather than water, and has found that by adjusting the surface to have a high affinity for ethylene glycol, it is possible to ensure strong adhesion with BPA-free paint. Therefore, it can be said that the present invention is based on a technical concept that is completely different from the conventional technology described above.
  • the mechanism by which adhesion to BPA-free paint is improved by adjusting the surface to have a high affinity for ethylene glycol is not clear.
  • ethylene glycol is one of the hydroxyl monomers that is a component of the polyester resin that makes up BPA-free paint, it is presumed that adhesion to BPA-free paint is improved by adjusting the surface to have a high affinity for ethylene glycol.
  • the surface-treated steel sheet of the present invention has a contact angle of ethylene glycol of 50° or less, and its surface is chemically active. Therefore, cations of elements such as K, Na, Mg, and Ca are easily adsorbed on the surface of the surface-treated steel sheet.
  • the inventors have found that simply making the contact angle of ethylene glycol 50° or less does not provide the original adhesion due to the influence of the adsorbed cations.
  • the adhesion to BPA-free paint can be improved by reducing the amount of the cations adsorbed on the surface of the surface-treated steel sheet.
  • the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to all elements is 5.0% or less, preferably 3.0% or less, and more preferably 1.0% or less.
  • the total atomic ratio can be measured by XPS.
  • the atomic ratio of K, Na, Mg, and Ca to all elements can be obtained by the relative sensitivity coefficient method from the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, and Mg1s on the outermost surface of the surface-treated steel sheet. More specifically, it can be measured by the method described in the examples.
  • the atomic ratio measured by the method described in the examples after performing the heat treatment equivalent to painting to vaporize the oil applied is regarded as the atomic ratio of the adsorbed elements of the surface-treated steel sheet after oiling.
  • a surface-treated steel sheet having the above-mentioned properties can be produced by the method described below.
  • a method for producing a surface-treated steel sheet according to one embodiment of the present invention is a method for producing a surface-treated steel sheet having a Sn-plated layer and a coating layer disposed on the Sn-plated layer on at least one surface of the steel sheet, and includes the following steps (1) to (3). Each step will be described below.
  • the surface-treated steel sheet may further have a Ni-containing layer disposed under the Sn-plated layer.
  • a steel sheet having a Ni-containing layer on at least one surface and a Sn-plated layer disposed on the Ni-containing layer may be subjected to a film formation process.
  • a surface of a steel sheet having a Sn-plated layer on at least one side is treated with an aqueous solution containing at least one of Zr ions and Ti ions to form a coating layer on the Sn-plated layer.
  • the coating layer formed is a coating layer containing at least one of Zr oxide and Ti oxide.
  • the treatment with the aqueous solution is not particularly limited and can be carried out by any method.
  • the treatment can be carried out by electrolysis.
  • cathodic electrolysis conventional equipment used for chromate treatment and the like can be used as is. Therefore, from the viewpoint of reducing equipment costs, it is preferable to form the coating layer by cathodic electrolysis.
  • the method for preparing the aqueous solution is not particularly limited, but for example, the aqueous solution can be prepared by dissolving one or both of a Zr-containing compound as a Zr ion source and a Ti-containing compound as a Ti ion source in water.
  • the water can be distilled water or deionized water, but is not limited thereto and any water can be used.
  • any compound capable of supplying Zr ions and Ti ions, respectively, can be used.
  • a Zr salt such as ZrF4 or a Zr complex such as H2ZrF6 or K2ZrF6 is preferably used.
  • the Zr ions become Zr oxides and form a coating as the pH rises on the surface of the cathode.
  • a Ti salt such as TiF4 or a Ti complex such as H2TiF6 or K2TiF6 is preferably used.
  • the Ti ions become Ti oxides and form a coating as the pH rises on the surface of the cathode.
  • the aqueous solution may further contain at least one selected from the group consisting of fluoride ions, nitrate ions, ammonium ions, phosphate ions, Mn ions, and sulfate ions.
  • fluoride ions nitrate ions
  • ammonium ions phosphate ions
  • Mn ions Mn ions
  • sulfate ions sulfate ions.
  • the aqueous solution contains both nitrate ions and ammonium ions, processing can be carried out in a short time of several to several tens of seconds, which is extremely advantageous from an industrial standpoint. Therefore, it is preferable that the aqueous solution contains both nitrate ions and ammonium ions in addition to at least one of Zr ions and Ti ions.
  • the unit of ion concentration "ppm" refers to parts per million by mass unless otherwise specified.
  • the lower limit of the Zr ion concentration is not particularly limited, but is preferably 100 ppm or more.
  • the upper limit of the Zr ion concentration is also not particularly limited, but is preferably 4000 ppm or less.
  • the lower limit of the Ti ion concentration is not particularly limited, but is preferably 100 ppm or more.
  • the upper limit of the Ti ion concentration is also not particularly limited, but is preferably 4000 ppm or less.
  • the lower limit of the concentration of fluorine ions is not particularly limited, but is preferably 120 ppm or more.
  • the upper limit of the concentration of fluorine ions is also not particularly limited, but is preferably 4000 ppm or less.
  • the lower limit of the concentration of phosphate ions is not particularly limited, but is preferably 50 ppm or more.
  • the upper limit of the concentration of phosphate ions is also not particularly limited, but is preferably 5000 ppm or less.
  • the lower limit of the concentration of Mn ions is not particularly limited, but is preferably 50 ppm or more.
  • the upper limit of the concentration of Mn ions is also not particularly limited, but is preferably 5000 ppm or less.
  • the lower limit of the concentration of ammonium ions is not particularly limited, but may be 0 ppm.
  • the upper limit of the concentration of ammonium ions is also not particularly limited, but is preferably 20000 ppm or less.
  • the lower limit of the concentration of nitrate ions is not particularly limited, but may be 0 ppm.
  • the upper limit of the concentration of nitrate ions is not particularly limited, but it is preferably 20,000 ppm or less.
  • the lower limit of the concentration of sulfate ions is not particularly limited, and may be 0 ppm.
  • the upper limit of the concentration of sulfate ions is not particularly limited, but it is preferably 20,000 ppm or less.
  • the upper limit of the temperature of the aqueous solution when performing the cathodic electrolysis is not particularly limited, but for example, it is preferable to set it to 50°C or less.
  • the temperature of the aqueous solution when performing the cathodic electrolysis is not particularly limited, but for example, it is preferable to set it to 50°C or less.
  • the occurrence of defects, cracks, microcracks, etc. in the coating layer to be formed can be suppressed, and the adhesion with the BPA-free paint can be further improved.
  • the lower limit of the temperature of the aqueous solution when performing the cathodic electrolysis is not particularly limited, but for example, it is preferable to set it to 10°C or more.
  • the efficiency of coating generation can be increased. Furthermore, if the temperature of the aqueous solution is set to 10°C or more, cooling of the aqueous solution is not required even when the outside air temperature is high, such as in summer, so it is economical.
  • the lower limit of the pH of the aqueous solution is not particularly limited, but is preferably 3 or more. If the pH is 3 or more, the production efficiency of Zr oxide or Ti oxide can be further improved.
  • the upper limit of the pH of the aqueous solution is also not particularly limited, but is preferably 5 or less. If the pH is 5 or less, it is possible to prevent a large amount of precipitation from occurring in the aqueous solution, and to improve continuous productivity.
  • nitric acid for the purpose of adjusting the pH and improving the electrolysis efficiency, for example, nitric acid, ammonia water, etc. may be added to the aqueous solution.
  • the lower limit of the current density during cathodic electrolysis is not particularly limited, but is preferably 0.05 A/dm 2 or more, and more preferably 1 A/dm 2 or more. If the current density is 0.05 A/dm 2 or more, the production efficiency of Zr oxide or Ti oxide is improved. As a result, a coating layer containing more stable Zr oxide or Ti oxide can be produced, and the adhesion with the BPA-free paint can be further improved.
  • the upper limit of the current density during cathodic electrolysis is not particularly limited, but is preferably 50 A/dm 2 or less, and more preferably 10 A/dm 2 or less. If the current density is 50 A/dm 2 or less, the production efficiency of Zr oxide or Ti oxide can be moderated, and the production of coarse and poorly adhesive Zr oxide or Ti oxide can be suppressed.
  • the electrolysis time in the above-mentioned cathodic electrolysis treatment is not particularly limited, and can be adjusted appropriately according to the current density so that the above-mentioned Zr and Ti deposition amounts are obtained.
  • the current pattern in the above cathodic electrolysis treatment may be continuous or intermittent current.
  • the relationship between the aqueous solution and the steel sheet when performing the above cathodic electrolysis is not particularly limited, and they may be relatively stationary or moving, but from the standpoint of promoting the reaction and improving uniformity, it is preferable to perform cathodic electrolysis while moving the steel sheet and the aqueous solution relative to each other.
  • the steel sheet and the aqueous solution can be moved relative to each other by continuously performing cathodic electrolysis while passing the steel sheet through a treatment tank containing an aqueous solution containing at least one of Zr ions or Ti ions.
  • the relative flow velocity between the aqueous solution and the steel sheet is 50 m/min or more. If the relative flow velocity is 50 m/min or more, the pH of the steel sheet surface where hydrogen is generated as a result of the passage of electricity can be made more uniform, and the generation of coarse Zr oxides or Ti oxides can be effectively suppressed. There is no particular upper limit to the relative flow velocity.
  • the coating layer obtained in the coating formation step is subjected to surface conditioning. Specifically, the aqueous solution is held on the surface of the coating layer in an amount of 1.0 to 30.0 g/ m2 or less for 0.1 to 20.0 seconds.
  • the coating layer can be fixed in a state with high affinity for ethylene glycol.
  • the mechanism by which the surface conditioning process allows the coating layer to be fixed in a state with high affinity for ethylene glycol is not clear, but it is thought to be as follows. That is, by bringing the coating layer into contact with the aqueous solution, the surface of the coating layer is slightly etched, and fine irregularities are formed on the surface of the coating layer. The effect of these fine irregularities improves the affinity of the coating layer for ethylene glycol.
  • This affinity differs from the affinity caused by the presence of hydrophilic functional groups such as OH groups, and is caused by the physical structure of the surface roughness, and therefore has excellent thermal stability.
  • the state of the aqueous solution on the surface of the coating layer is not particularly limited, but from the viewpoint of uniformly progressing etching, it is preferable for the aqueous solution to be in the form of a liquid film.
  • Amount of aqueous solution 1.0 to 30.0 g/ m2 If the amount of the aqueous solution used in the surface preparation is 1.0 g/ m2 or less, etching does not proceed sufficiently, and as a result, the contact angle of ethylene glycol becomes larger than 50°. Therefore, the amount of the aqueous solution is 1.0 g/ m2 or more, preferably 2.0 g/ m2 or more, and more preferably 3.0 g/ m2 or more. On the other hand, if the amount of the aqueous solution is more than 30.0 g/ m2 , the affinity to ethylene glycol decreases, and as a result, the contact angle of ethylene glycol becomes larger than 50°. Therefore, the amount of the aqueous solution is 30.0 g/ m2 or less, preferably 28.0 g/ m2 or less, and more preferably 25.0 g/ m2 or less.
  • Holding time 0.1 to 20.0 seconds
  • the holding time is set to 0.1 seconds or more, preferably 0.2 seconds or more, and more preferably 0.3 seconds or more.
  • the holding time exceeds 20.0 seconds, the contact angle of ethylene glycol also becomes larger than 50°. This is considered to be because etching proceeds excessively, and the surface state is not suitable for expressing affinity for ethylene glycol. Therefore, the holding time is set to 20.0 seconds or less, preferably 18.0 seconds or less, and more preferably 15.0 seconds or less.
  • the amount of the aqueous solution can be measured with a moisture meter using a filter type infrared absorption method. Specifically, the absorbance on the surface is measured with a moisture meter using a filter type infrared absorption method, and the amount of the aqueous solution is calculated from the absorbance using a calibration curve that has been obtained in advance.
  • the calibration curve can be created by the following procedure. First, the steel plate having the coating layer is placed on an electronic balance. The aqueous solution is dropped onto the steel plate having the coating layer with a pipette to form a liquid film on the entire surface of the steel plate having the coating layer.
  • the weight of the aqueous solution present on the steel plate having the coating layer is calculated from the weight of the steel plate having the coating layer before the aqueous solution is dropped and the weight of the steel plate having the coating layer after the aqueous solution is dropped.
  • the amount of the aqueous solution per unit area is calculated by dividing the weight of the aqueous solution obtained by the area of the steel plate having the coating layer.
  • the absorbance on the surface of the steel plate having the coating layer is measured with a moisture meter using a filter type infrared absorption method. The above measurements are performed multiple times while changing the amount of aqueous solution, and a calibration curve showing the correlation between the amount of aqueous solution and the absorbance is created.
  • the calibration curve can be a linear approximation of the correlation between the amount of aqueous solution and the absorbance.
  • the method for adjusting the amount of aqueous solution present on the surface of the coating layer is not particularly limited, and any method can be used.
  • the amount of the aqueous solution on the surface of the steel sheet can be adjusted by squeezing the liquid with a wringer roll or by wiping.
  • the steel sheet having the Sn-plated layer can be pretreated as desired.
  • the pretreatment for example, it is possible to remove the natural oxide film present on the surface of the Sn-plated layer.
  • By removing the natural oxide film it is possible to adjust the amount of Sn oxide and also to activate the surface.
  • the method of the pretreatment is not particularly limited and any method can be used, but it is preferable to perform one or both of electrolysis in an alkaline aqueous solution and immersion treatment in an alkaline aqueous solution as the pretreatment.
  • One or both of cathodic electrolysis and anodic electrolysis can be used as the electrolysis.
  • the alkaline aqueous solution may contain one or more electrolytes.
  • the electrolyte is not particularly limited and any electrolyte may be used.
  • carbonate is preferably used as the electrolyte, and sodium bicarbonate is more preferably used.
  • There is also no particular limit to the upper limit of the concentration of the alkaline aqueous solution but it is preferably 30 g/L or less, and more preferably 20 g/L or less.
  • the lower limit of the temperature of the alkaline aqueous solution is not particularly limited, but is preferably 10°C or higher, and more preferably 15°C or higher.
  • the upper limit of the temperature of the alkaline aqueous solution is also not particularly limited, but is preferably 70°C or lower, and more preferably 60°C or lower.
  • the lower limit of the electricity density in the cathodic electrolysis is not particularly limited, but is preferably 0.5 C/ dm2 or more, and more preferably 1.0 C/ dm2 or more.
  • the upper limit of the electricity density in the cathodic electrolysis is not particularly limited, but if it is too high, the effect of the pretreatment will be saturated, so the electricity density is preferably 10.0 C/ dm2 or less.
  • the lower limit of the immersion time in the immersion treatment is not particularly limited, but it is preferably 0.1 seconds or more, and more preferably 0.5 seconds or more.
  • the upper limit of the immersion time is also not particularly limited, but since the effect of the pretreatment is saturated if it is too long, the immersion time is preferably 10 seconds or less.
  • the lower limit of the electricity density in the anodic electrolysis is not particularly limited, but is preferably 0.5 C/ dm2 or more, and more preferably 1.0 C/ dm2 or more.
  • the upper limit of the electricity density in the anodic electrolysis is not particularly limited, but if it is too high, the effect of the pretreatment will be saturated, so the electricity density is preferably 10.0 C/ dm2 or less.
  • any pretreatment can be performed, but it is preferable to perform at least one of degreasing, pickling, and water washing.
  • degreasing rolling oil, rust-preventive oil, etc. adhering to the steel plate can be removed.
  • the degreasing can be carried out by any method without any particular restrictions. After degreasing, it is preferable to wash the steel plate with water to remove the degreasing solution adhering to the surface of the steel plate.
  • pickling can remove the natural oxide film present on the surface of the steel sheet and activate the surface.
  • pickling method There are no particular limitations on the pickling method, and any method can be used. After pickling, it is preferable to rinse the steel sheet with water to remove the pickling solution adhering to the surface.
  • washing process Next, the steel sheet after the surface conditioning step is washed with water at least once. By washing with water, the aqueous solution remaining on the surface of the steel sheet can be removed.
  • the washing with water can be carried out by any method without any particular limitation.
  • a washing tank can be provided downstream of a tank for film formation, and the steel sheet after the film formation step can be continuously immersed in water.
  • washing with water can be carried out by spraying water onto the steel sheet after the film formation step.
  • the number of times that the washing is performed is not particularly limited, and may be one or more than two times. However, in order to avoid an excessive number of washing tanks, it is preferable to limit the number of washings to five or less. Furthermore, when washing is performed two or more times, each washing may be performed using the same method or different methods.
  • water with an electrical conductivity of 100 ⁇ S/m or less in at least the final wash in the water washing process. This reduces the amount of K, Na, Mg, and Ca adsorbed to the surface of the coated steel sheet, thereby improving adhesion.
  • Water with an electrical conductivity of 100 ⁇ S/m or less can be produced by any method.
  • the water with an electrical conductivity of 100 ⁇ S/m or less may be, for example, reverse osmosis water, ion-exchanged water, or distilled water.
  • the electrical conductivity of the water used for washing can be measured using a conductivity meter.
  • the above-mentioned effect can be obtained by using water with an electrical conductivity of 100 ⁇ S/m or less for the final wash, so any water can be used for the washes other than the final wash.
  • Water with an electrical conductivity of 100 ⁇ S/m or less may also be used for the washes other than the final wash.
  • the electrical conductivity of the water used in the final water wash is preferably 50 ⁇ S/m or less, and more preferably 30 ⁇ S/m or less.
  • the lower limit of the electrical conductivity is not particularly limited and may be 0 ⁇ S/m. However, from the viewpoint of reducing costs, it is preferable that the electrical conductivity is 1 ⁇ S/m or more.
  • the temperature of the water used in the washing process is not particularly limited and may be any temperature. However, an excessively high temperature places an excessive burden on the washing equipment, so the temperature of the water used in washing is preferably 95°C or less.
  • the lower limit of the temperature of the water used in washing is not particularly limited, but it is preferably 0°C or higher.
  • the temperature of the water used in the washing may be room temperature.
  • the washing time per washing process is not particularly limited, but from the viewpoint of enhancing the effect of the washing process, it is preferably 0.1 seconds or more, and more preferably 0.2 seconds or more.
  • the upper limit of the washing time per washing process is also not particularly limited, but when manufacturing on a continuous line, the line speed is reduced, and therefore, productivity is reduced, so it is preferably 10 seconds or less, and more preferably 8 seconds or less.
  • drying may be performed as desired.
  • a normal dryer or electric oven drying method can be used.
  • the temperature during the drying process is preferably 100°C or lower. If the temperature is within the above range, deterioration of the surface treatment film can be suppressed.
  • the lower limit is not particularly limited, but is usually around room temperature.
  • the uses of the surface-treated steel sheet of the present invention are not particularly limited, but it is particularly suitable as a surface-treated steel sheet for containers used in the manufacture of various containers such as food cans, beverage cans, pail cans, and 18-liter cans.
  • the steel sheet was electrolytically degreased, washed with water, pickled by immersion in dilute sulfuric acid, and washed with water in sequence, and then electroplated with Sn using a phenolsulfonic acid bath to form a Sn plating layer on both sides of the steel sheet. At that time, the electric current time was changed to obtain the Sn adhesion amount of the Sn plating layer as shown in Tables 2 and 3.
  • the steel sheet prior to the electroplating with Sn, was electroplated with Ni using a Watts bath to form a Ni plating layer as a Ni-containing layer on both sides of the steel sheet.
  • the electric current time and the current density were changed to obtain the Ni adhesion amount of the Ni plating layer as shown in Tables 2 and 3.
  • the Sn adhesion amount of the Sn plating layer was measured by the electrolytic stripping method specified in JIS G 3303.
  • the Ni adhesion amount of the Ni plating layer was measured by the above-mentioned fluorescent X-ray calibration curve method.
  • a reflow treatment was performed.
  • the sample was heated for 5 seconds at a heating rate of 50°C/sec using a direct current heating method, and then immersed in water and quenched.
  • the steel plate used was a can steel plate (T4 base plate) with a thickness of 0.17 mm.
  • the electric charge density in the cathodic electrolysis was 2.0 C/dm 2
  • the electric charge density in the anodic electrolysis was 4.0 C/dm 2
  • the immersion time in the immersion treatment was 1 second. For comparison, no pretreatment was performed in some examples.
  • the surface of the Sn-plated steel sheet was treated with an aqueous solution to form a coating layer on the Sn-plated layer.
  • an aqueous solution having the composition shown in Table 1 was used as the aqueous solution, and a cathodic electrolysis treatment was performed in the aqueous solution to form a coating layer.
  • the temperature of the aqueous solution was set to 35° C., and the pH was adjusted to 3 to 5.
  • the Zr deposition amount and the Ti deposition amount were controlled by adjusting the electric charge density.
  • Zirconium fluoride (ZrF 4 ) was used as the Zr-containing compound, and titanium fluoride (TiF 4 ) was used as the Ti-containing compound.
  • the aqueous solution was prepared by further using compounds other than the Zr-containing compound and the Ti-containing compound to adjust the concentration of each ion so as to have the composition shown in Table 1.
  • the amount of Zr oxide, Ti oxide, P, and Mn attached in the coating layer of each of the obtained surface-treated steel sheets was measured.
  • the measurements were performed using the fluorescent X-ray calibration curve method described above.
  • the measurement results are shown in Tables 4 and 5.
  • the amount of Zr oxide and Ti oxide attached is shown as the amount of metallic Zr and the amount of metallic Ti, respectively.
  • the contact angle of ethylene glycol on the obtained surface-treated steel sheet was measured using an automatic contact angle meter CA-VP type manufactured by Kyowa Interface Science Co., Ltd.
  • the surface temperature of the surface-treated steel sheet was set to 20°C ⁇ 1°C, and ethylene glycol used was 20 ⁇ 1°C, special reagent grade ethylene glycol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Ethylene glycol was dropped onto the surface of the surface-treated steel sheet in a droplet amount of 2 ⁇ l, and the contact angle was measured one second later by the ⁇ /2 method, and the arithmetic mean value of the contact angles of five drops was taken as the contact angle of ethylene glycol.
  • the contact angle was also measured after the surface-treated steel sheet was subjected to heat treatment at 200°C for 10 minutes.
  • the measurement conditions were the same as above.
  • the contact angle values were essentially the same before and after the heat treatment.
  • the contact angle values changed significantly due to the heat treatment.
  • the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to all elements was measured by XPS. No sputtering was performed in the measurement.
  • the atomic ratio to all elements detected by the relative sensitivity coefficient method was quantified from the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, and Mg1s on the outermost surface of the sample, and (K atomic ratio + Na atomic ratio + Ca atomic ratio + Mg atomic ratio) was calculated.
  • a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, and the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the take-off angle was 45°.
  • a BPA-free painted steel sheet as a sample to be used for evaluating adhesion to a BPA-free paint was prepared by the following procedure.
  • a polyester-based paint for the inner surface of a can (BPA-free paint) was applied to the surface of the obtained surface-treated steel sheet, and baked at 180° C. for 10 minutes to produce a BPA-free painted steel sheet.
  • the coating weight of the paint was 60 mg/ dm2 .
  • the average value of the three test pieces was evaluated according to the following four levels. In practical terms, if the results are 1 to 3, it can be evaluated as having excellent adhesion to the BPA-free paint. 1: 2.5 kgf or more 2: 2.0 kgf or more but less than 2.5 kgf 3: 1.5 kgf or more but less than 2.0 kgf 4: Less than 1.5 kgf

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention provides a surface-treated steel sheet which can be produced without the use of hexavalent chromium, and which has excellent adhesion with BPA-free paint. Provided is a surface-treated steel sheet comprising, on at least one surface of a steel sheet, a Sn plating layer, and a coating layer disposed on the Sn plating layer and containing at least one of a Zr oxide and a Ti oxide, wherein the ethylene glycol contact angle is not greater than 50°, and the sum of the atomic ratios of the K, Na, Mg, and Ca adsorbed on the surface of the steel sheet is not greater than 5.0%.

Description

表面処理鋼板およびその製造方法Surface-treated steel sheet and its manufacturing method
 本発明は、表面処理鋼板に関し、特に、BPA(ビスフェノールA)フリー塗料との密着性に優れる表面処理鋼板に関する。本発明の表面処理鋼板は、缶などの容器に好適に用いることができる。また、本発明は、前記表面処理鋼板の製造方法に関する。 The present invention relates to a surface-treated steel sheet, and in particular to a surface-treated steel sheet that has excellent adhesion to BPA (bisphenol A)-free paint. The surface-treated steel sheet of the present invention can be suitably used for containers such as cans. The present invention also relates to a method for manufacturing the surface-treated steel sheet.
 表面処理鋼板の1種であるSnめっき鋼板(ぶりき)は、耐食性、溶接性、加工性に優れ、製造も容易であることから、飲料缶、食品缶、ペール缶、18リットル缶などの各種金属缶の素材として広く用いられている。 Sn-plated steel sheet (tinplate), a type of surface-treated steel sheet, is widely used as a material for various metal cans such as beverage cans, food cans, pail cans, and 18-liter cans because it has excellent corrosion resistance, weldability, and workability, and is easy to manufacture.
 これらの用途に用いられる表面処理鋼板には、さまざまな内容物に対応するために、該鋼板の表面にエポキシ系塗料などの有機樹脂被覆が施される。有機樹脂被覆を施す場合、6価Crを含む水溶液中で鋼板を電解処理あるいは浸漬処理することで最表面に形成した酸化Cr層が重要な役割を果たす。すなわち、前記酸化Cr層によって有機樹脂被覆層に対する優れた密着性が達成され、その結果、さまざまな内容物に対する耐食性が担保される(特許文献1~5)。  The surface of the surface-treated steel sheets used for these applications is coated with an organic resin coating, such as an epoxy-based paint, to accommodate the various contents. When the organic resin coating is applied, the chromium oxide layer formed on the outermost surface by electrolytically treating or immersing the steel sheet in an aqueous solution containing hexavalent chromium plays an important role. In other words, the chromium oxide layer provides excellent adhesion to the organic resin coating layer, and as a result, corrosion resistance to the various contents is guaranteed (Patent Documents 1 to 5).
 一方で、エポキシ系塗料に含まれるBPAが人間に有害な影響がある可能性が示唆されている。そのため、BPAを含有しないポリエステル系樹脂を用いたBPAフリー塗料の開発が進められており(特許文献6、7)、エポキシ系塗料からの置き換えが求められている。しかし、これまで缶用鋼板として用いられてきたぶりきは、エポキシ系塗料に対する密着性と比較し、BPAフリー塗料に対する密着性が乏しい。よって、さまざまな内容物に対する耐食性が十分に確保できず、各種金属缶へのBPAフリー塗料の適用は進んでいないという現状がある。 On the other hand, it has been suggested that the BPA contained in epoxy-based paints may have harmful effects on humans. For this reason, development of BPA-free paints using polyester-based resins that do not contain BPA is underway (Patent Documents 6 and 7), and there is a demand to replace epoxy-based paints. However, tinplate, which has been used as steel sheet for cans up to now, has poor adhesion to BPA-free paints compared to its adhesion to epoxy-based paints. As a result, sufficient corrosion resistance against various contents cannot be ensured, and the application of BPA-free paints to various metal cans has not progressed.
 さらに近年、環境に対する意識の高まりから、世界的に6価Crの使用が規制される方向に向かっている。そのため、各種金属缶に用いられる表面処理鋼板の分野においても、6価クロムを使用しない製造方法の確立が求められている。 Furthermore, in recent years, due to growing environmental awareness, there has been a trend toward restricting the use of hexavalent chromium worldwide. As a result, there is a demand for the establishment of manufacturing methods that do not use hexavalent chromium, even in the field of surface-treated steel sheets used for various metal cans.
 6価クロムを使用せずに表面処理鋼板を製造する方法としては、例えば、特許文献8で提案されている方法が知られている。この方法では、Snめっき鋼板の表面にジルコニウム化合物を含有する皮膜を形成した表面処理鋼板が提案されている。 A method for producing surface-treated steel sheets without using hexavalent chromium is proposed, for example, in Patent Document 8. This method proposes a surface-treated steel sheet in which a coating containing a zirconium compound is formed on the surface of a Sn-plated steel sheet.
特開昭58-110695号公報Japanese Patent Application Laid-Open No. 58-110695 特開昭55-134197号公報Japanese Patent Application Laid-Open No. 55-134197 特開昭57-035699号公報Japanese Patent Application Laid-Open No. 57-035699 特開平11-117085号公報Japanese Patent Application Laid-Open No. 11-117085 特開2007-231394号公報JP 2007-231394 A 特開2013-144753号公報JP 2013-144753 A 特開2008-050486号公報JP 2008-050486 A 特開2018-135569号公報JP 2018-135569 A
 特許文献8で提案されている方法によれば、6価クロムを用いることなく表面処理層を形成することができる。そして、特許文献8によれば、前記方法により、エポキシ系塗料との密着性に優れる表面処理鋼板を得ることができる。 The method proposed in Patent Document 8 makes it possible to form a surface treatment layer without using hexavalent chromium. Furthermore, Patent Document 8 also shows that the method makes it possible to obtain a surface-treated steel sheet that has excellent adhesion to epoxy-based paints.
 しかし、特許文献8で提案されているような従来の方法で得られる表面処理鋼板は、エポキシ系塗料に対する密着性には優れるものの、BPAフリー塗料との密着性が劣っており、結果としてBPAフリー塗装耐食性が十分ではなかった。それゆえ、さまざま内容物への耐食性を確保したまま、BPAフリー塗料へ置き換えることができなかった。 However, surface-treated steel sheets obtained by the conventional method proposed in Patent Document 8 have excellent adhesion to epoxy-based paints, but poor adhesion to BPA-free paints, and as a result, the corrosion resistance of the BPA-free paint is insufficient. Therefore, it was not possible to replace the BPA-free paint with a BPA-free paint while maintaining corrosion resistance to various contents.
 そのため、6価クロムを用いることなく製造することができ、BPAフリー塗料に対する優れた密着性を有する表面処理鋼板が求められている。 Therefore, there is a demand for surface-treated steel sheets that can be manufactured without using hexavalent chromium and have excellent adhesion to BPA-free paints.
 本発明は、上記実状に鑑みてなされたものであって、その目的は、6価クロムを用いることなく製造することができ、かつ、BPAフリー塗料との密着性に優れる表面処理鋼板を提供することにある。 The present invention was made in consideration of the above situation, and its purpose is to provide a surface-treated steel sheet that can be manufactured without using hexavalent chromium and has excellent adhesion to BPA-free paint.
 本発明の発明者らは、上記目的を達成するために鋭意検討を行なった結果、次の(1)および(2)の知見を得た。 The inventors of the present invention conducted extensive research to achieve the above objective, and as a result, have come to the following findings (1) and (2).
(1)Snめっき層上にZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層を有する表面処理鋼板において、エチレングリコールの接触角と、表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計を、それぞれ特定の範囲に制御することにより、BPAフリー塗料との密着性に優れた表面処理鋼板を得ることができる。 (1) In a surface-treated steel sheet having a coating layer containing at least one of Zr oxide and Ti oxide on a Sn plating layer, the contact angle of ethylene glycol and the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements can be controlled within a specific range, thereby obtaining a surface-treated steel sheet with excellent adhesion to BPA-free paint.
(2)上記表面処理鋼板は、皮膜形成後、所定の条件で表面調整を行い、さらに、電気伝導度が所定の値以下である水を用いて最終水洗を行うことにより製造することができる。 (2) The above-mentioned surface-treated steel sheet can be produced by forming a coating, adjusting the surface under specified conditions, and then performing a final water wash using water whose electrical conductivity is equal to or lower than a specified value.
 本発明は、以上の知見に基づいて完成されたものである。本発明の要旨は次のとおりである。 The present invention was completed based on the above findings. The gist of the present invention is as follows:
1.鋼板の少なくとも一方の面に、
 Snめっき層と、
 前記Snめっき層上に配置された、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板であって、
 エチレングリコールの接触角が50°以下であり、
 表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計が、5.0%以下である、表面処理鋼板。
1. At least one surface of the steel plate is
A Sn plating layer;
A surface-treated steel sheet having a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn plating layer,
The contact angle of ethylene glycol is 50° or less,
A surface-treated steel sheet having a total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements of 5.0% or less.
2.前記Snめっき層は、Sn付着量が前記鋼板の片面当たり0.1~20.0g/mである、上記1に記載の表面処理鋼板。 2. The surface-treated steel sheet according to claim 1, wherein the Sn plating layer has a Sn coating weight of 0.1 to 20.0 g/ m2 per one side of the steel sheet.
3.前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計が、金属Zr量と金属Ti量で前記鋼板の片面当たり0.3~50.0mg/mである、上記1または2に記載の表面処理鋼板。 3. The surface-treated steel sheet according to 1 or 2 above, wherein the total amount of deposited Zr oxide and Ti oxide in the coating layer is 0.3 to 50.0 mg/ m2 per side of the steel sheet in terms of the amount of metallic Zr and the amount of metallic Ti.
4.前記皮膜層は、さらにPを含有し、P付着量が前記鋼板の片面当たり50.0mg/m以下である、上記1~3のいずれか一項に記載の表面処理鋼板。 4. The surface-treated steel sheet according to any one of the above 1 to 3, wherein the coating layer further contains P, and the P coating amount is 50.0 mg/ m2 or less per one side of the steel sheet.
5.前記皮膜層は、さらにMnを含有し、Mn付着量が前記鋼板の片面当たり50.0mg/m以下である、上記1~4のいずれか一項に記載の表面処理鋼板。 5. The surface-treated steel sheet according to any one of the above 1 to 4, wherein the coating layer further contains Mn, and the Mn coating amount is 50.0 mg/ m2 or less per one side of the steel sheet.
6.前記表面処理鋼板が、前記Snめっき層の下に配置されたNi含有層をさらに有する、上記1~5のいずれか一項に記載の表面処理鋼板。 6. The surface-treated steel sheet according to any one of claims 1 to 5 above, further comprising a Ni-containing layer disposed under the Sn-plated layer.
7.前記Ni含有層は、Ni付着量が前記鋼板の片面当たり、2mg/m~2000mg/m以下である、上記6に記載の表面処理鋼板。 7. The surface-treated steel sheet according to the above 6, wherein the Ni-containing layer has a Ni coating amount of 2 mg/m 2 to 2000 mg/m 2 per one side of the steel sheet.
8.鋼板の少なくとも一方の面に、Snめっき層と、前記Snめっき層上に配置されたZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板の製造方法であって、
 少なくとも一方の面にSnめっき層を有する鋼板の表面を、ZrイオンおよびTiイオンの少なくとも一方を含有する水溶液で処理して、前記Snめっき層上に前記皮膜層を形成する皮膜形成工程と、
 前記皮膜層の表面に前記水溶液が1.0~30.0g/m存在する状態で、0.1~20.0秒保持する表面調整工程と、
 前記表面調整工程後の前記鋼板を少なくとも1回水洗する水洗工程とを含み、
 前記水洗工程では、
  少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
8. A method for producing a surface-treated steel sheet having a Sn-plated layer on at least one surface of the steel sheet, and a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn-plated layer, comprising the steps of:
a coating formation step of treating a surface of a steel sheet having a Sn plating layer on at least one surface thereof with an aqueous solution containing at least one of Zr ions and Ti ions to form the coating layer on the Sn plating layer;
a surface conditioning step of maintaining the aqueous solution at 1.0 to 30.0 g/ m2 on the surface of the coating layer for 0.1 to 20.0 seconds;
and a water washing step of washing the steel sheet after the surface conditioning step at least once with water,
In the water washing step,
A method for producing a surface-treated steel sheet, comprising using water having an electrical conductivity of 100 μS/m or less in at least the final water washing.
9.前記表面処理鋼板が、前記Snめっき層の下に配置されたNi含有層をさらに有する、上記8に記載の表面処理鋼板の製造方法。 9. The method for producing a surface-treated steel sheet described in 8 above, wherein the surface-treated steel sheet further has a Ni-containing layer disposed under the Sn-plated layer.
 本発明によれば、6価クロムを使用することなく、BPAフリー塗料との密着性に優れる表面処理鋼板を提供することができる。本発明の表面処理鋼板は、容器等の材料として好適に用いることができる。 According to the present invention, it is possible to provide a surface-treated steel sheet that has excellent adhesion to BPA-free paints without using hexavalent chromium. The surface-treated steel sheet of the present invention can be suitably used as a material for containers, etc.
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。 Below, a method for implementing the present invention will be specifically described. Note that the following description shows an example of a preferred embodiment of the present invention, and the present invention is not limited thereto.
 本発明の一実施形態における表面処理鋼板は、鋼板の少なくとも一方の面に、Snめっき層と、前記Snめっき層上に配置された皮膜層を有し、前記皮膜層は、Zr酸化物およびTi酸化物の少なくとも一方を含有する。本発明においては、前記表面処理鋼板のエチレングリコールの接触角が50°以下であり、かつ、表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計が、5.0%以下であることが重要である。以下、前記表面処理鋼板の構成要件のそれぞれについて説明する。 In one embodiment of the present invention, the surface-treated steel sheet has a Sn-plated layer on at least one surface of the steel sheet, and a coating layer disposed on the Sn-plated layer, the coating layer containing at least one of Zr oxide and Ti oxide. In the present invention, it is important that the contact angle of ethylene glycol on the surface-treated steel sheet is 50° or less, and that the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements is 5.0% or less. Each of the constituent elements of the surface-treated steel sheet is explained below.
[鋼板]
 前記鋼板としては、とくに限定されることなく任意の鋼板を用いることができるが、缶用鋼板を用いることが好ましい。前記鋼板としては、例えば、極低炭素鋼板または低炭素鋼板を用いることができる。前記鋼板の製造方法についてもとくに限定されず、任意の方法で製造された鋼板を用いることができるが、通常は冷延鋼板を使用すればよい。前記冷延鋼板は、例えば、熱間圧延、酸洗、冷間圧延、焼鈍、および調質圧延を行う、一般的な製造工程により製造することができる。
[Steel plate]
The steel sheet is not particularly limited and any steel sheet can be used, but it is preferable to use a steel sheet for cans. The steel sheet can be, for example, an ultra-low carbon steel sheet or a low carbon steel sheet. The manufacturing method of the steel sheet is also not particularly limited and any steel sheet manufactured by any method can be used, but usually a cold-rolled steel sheet can be used. The cold-rolled steel sheet can be manufactured by a general manufacturing process that includes, for example, hot rolling, pickling, cold rolling, annealing, and temper rolling.
 前記鋼板の成分組成は特に限定されないが、前記鋼板には、本発明の範囲の効果を損なわない範囲でC、Mn、Cr、P、S、Si、Cu、Ni、Mo、Al、不可避的不純物を含有してもよい。その際、前記鋼板としては、例えば、ASTM A623M-09に規定される成分組成の鋼板を好適に用いることができる。 The composition of the steel plate is not particularly limited, but the steel plate may contain C, Mn, Cr, P, S, Si, Cu, Ni, Mo, Al, and unavoidable impurities within a range that does not impair the effects of the present invention. In this case, for example, a steel plate having a composition specified in ASTM A623M-09 can be suitably used as the steel plate.
 本発明の一実施形態においては、質量%で、
C :0.0001~0.13%、
Si:0~0.020%、
Mn:0.01~0.60%
P :0~0.020%、
S :0~0.030%、
Al:0~0.20%、
N :0~0.040%、
Cu:0~0.20%、
Ni:0~0.15%、
Cr:0~0.10%、
Mo:0~0.05%、
Ti:0~0.020%、
Nb:0~0.020%、
B :0~0.020%、
Ca:0~0.020%、
Sn:0~0.020%、
Sb:0~0.020%、
および残部のFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。上記成分組成のうち、Si、P、S、Al、およびNは含有量が低いほど好ましい成分であり、Cu、Ni、Cr、Mo、Ti、Nb、B、Ca、SnおよびSbは、任意に添加し得る成分である。
In one embodiment of the present invention, in weight percent:
C: 0.0001 to 0.13%,
Si: 0 to 0.020%,
Mn: 0.01 to 0.60%
P: 0 to 0.020%,
S: 0 to 0.030%,
Al: 0 to 0.20%,
N: 0 to 0.040%,
Cu: 0 to 0.20%,
Ni: 0 to 0.15%,
Cr: 0 to 0.10%,
Mo: 0 to 0.05%,
Ti: 0 to 0.020%,
Nb: 0 to 0.020%,
B: 0 to 0.020%,
Ca: 0 to 0.020%,
Sn: 0 to 0.020%,
Sb: 0 to 0.020%,
and the balance being Fe and unavoidable impurities. Of the above-mentioned composition, the lower the content of Si, P, S, Al, and N, the more preferable the components are, and Cu, Ni, Cr, Mo, Ti, Nb, B, Ca, Sn, and Sb are components that may be added as desired.
 前記鋼板の板厚の下限は特に限定されないが、前記板厚は0.10mm以上であることが好ましい。また、前記板厚の上限についても特に限定されないが、前記板厚は0.60mm以下であることが好ましい。なお、ここで「鋼板」には「鋼帯」を包含するものと定義する。 The lower limit of the thickness of the steel plate is not particularly limited, but it is preferable that the thickness is 0.10 mm or more. The upper limit of the thickness is not particularly limited, but it is preferable that the thickness is 0.60 mm or less. Here, "steel plate" is defined to include "steel strip".
[Snめっき層]
 前記Snめっき層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Snめっき層は、鋼板の少なくとも一部を覆っていればよく、該Snめっき層が設けられた面の全体を覆っていてもよい。また、前記Snめっき層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。
[Sn plating layer]
The Sn plating layer may be provided on at least one surface of the steel sheet, or may be provided on both surfaces. The Sn plating layer may cover at least a portion of the steel sheet, or may cover the entire surface on which the Sn plating layer is provided. The Sn plating layer may be a continuous layer or a discontinuous layer. An example of the discontinuous layer is a layer having an island structure.
 前記Snめっき層は、当該Snめっき層の一部が合金化したものも包含する。例えば、Snめっき層の一部が、Snめっき後の加熱溶融処理によってSn合金層となっている場合もSnめっき層に含める。前記Sn合金層の例としては、Fe-Sn合金層およびFe-Sn-Ni合金層が挙げられる。 The Sn plating layer also includes a portion of the Sn plating layer that has been alloyed. For example, a portion of the Sn plating layer that has been turned into a Sn alloy layer by a heat melting treatment after Sn plating is also included in the Sn plating layer. Examples of the Sn alloy layer include an Fe-Sn alloy layer and an Fe-Sn-Ni alloy layer.
 例えば、Snめっき後に通電加熱などによってSnを加熱溶融させることにより、Snめっき層の鋼板側の一部をFe-Sn合金層とすることができる。また、Ni含有層を表面に有する鋼板に対してSnめっきを行い、さらに通電加熱などによってSnを加熱溶融させることにより、Snめっき層の鋼板側の一部をFe-Sn-Ni合金層およびFe-Sn合金層の一方または両方とすることができる。 For example, by heating and melting the Sn by electrical heating or the like after Sn plating, a part of the steel sheet side of the Sn-plated layer can be made into an Fe-Sn alloy layer. Also, by plating a steel sheet having a Ni-containing layer on its surface with Sn, and then heating and melting the Sn by electrical heating or the like, a part of the steel sheet side of the Sn-plated layer can be made into either or both of an Fe-Sn-Ni alloy layer and an Fe-Sn alloy layer.
 前記Snめっき層におけるSn付着量は、特に限定されることなく任意の量とすることができる。しかし、表面処理鋼板の外観および耐食性をさらに向上させるという観点からは、Sn付着量を鋼板片面当たり20.0g/m以下とすることが好ましい。同様の観点から、前記Sn付着量を0.1g/m以上とすることが好ましく、0.2g/m以上とすることがより好ましい。また、加工性をさらに向上させるという観点からは、前記Sn付着量を1.0g/m以上とすることがさらに好ましい。 The Sn coating weight in the Sn plating layer is not particularly limited and may be any amount. However, from the viewpoint of further improving the appearance and corrosion resistance of the surface-treated steel sheet, it is preferable that the Sn coating weight is 20.0 g/ m2 or less per one side of the steel sheet. From the same viewpoint, it is preferable that the Sn coating weight is 0.1 g/ m2 or more, and more preferably 0.2 g/ m2 or more. Moreover, from the viewpoint of further improving the workability, it is even more preferable that the Sn coating weight is 1.0 g/ m2 or more.
 なお、前記Sn付着量は、JIS G 3303に定められた電解剥離法によって測定することができる。 The amount of Sn adhesion can be measured by the electrolytic stripping method specified in JIS G 3303.
 Snめっき層の形成は、とくに限定されることなく、電気めっき法や溶融めっき法など、任意の方法で行うことができる。電気めっき法によりSnめっき層を形成する場合、めっき浴としては任意のものを用いることができる。使用できるめっき浴としては、例えば、フェノールスルホン酸Snめっき浴、メタンスルホン酸Snめっき浴、またはハロゲン系Snめっき浴などを挙げることができる。 The formation of the Sn plating layer is not particularly limited, and can be performed by any method, such as electroplating or hot-dip plating. When forming the Sn plating layer by electroplating, any plating bath can be used. Examples of plating baths that can be used include a phenolsulfonic acid Sn plating bath, a methanesulfonic acid Sn plating bath, or a halogen-based Sn plating bath.
 Snめっき層を形成した後には、リフロー処理を行ってもよい。リフロー処理を行う場合、Snめっき層をSnの融点(231.9℃)以上の温度に加熱することにより、合金化されていないSnのめっき層の下層(鋼板側)にFe-Sn合金層などの合金層を形成することができる。また、リフロー処理を省略した場合には、合金化されていないSnのめっき層を有するSnめっき鋼板が得られる。 After the Sn plating layer is formed, a reflow process may be performed. When performing the reflow process, an alloy layer such as an Fe-Sn alloy layer can be formed underneath the unalloyed Sn plating layer (on the steel sheet side) by heating the Sn plating layer to a temperature equal to or higher than the melting point of Sn (231.9°C). Also, if the reflow process is omitted, a Sn-plated steel sheet having an unalloyed Sn plating layer is obtained.
 前記Snめっき層の表面側にはSn酸化物を含有してもよいし、全く含有しなくてもよい。しかし、湿潤環境下における塗料との密着性である塗料2次密着性(coating secondary adhesion)と耐硫化黒変性(sulfide staining resistance)を向上させる観点からは、Snめっき層の表面側にはSn酸化物を含有することが好ましい。Sn酸化物はリフロー処理や、Snめっき後の水洗水中に含有される溶存酸素などによっても形成されうるが、後述する前処理などで前記Snめっき層に含有するSn酸化物量を制御することが好ましい。 The surface side of the Sn plating layer may contain Sn oxides, or it may not contain any at all. However, from the viewpoint of improving coating secondary adhesion, which is adhesion to paint in a wet environment, and sulfide staining resistance, it is preferable for the surface side of the Sn plating layer to contain Sn oxides. Sn oxides can also be formed during reflow processing or due to dissolved oxygen contained in the rinsing water after Sn plating, but it is preferable to control the amount of Sn oxides contained in the Sn plating layer by pretreatment, which will be described later.
[Ni含有層]
 上記表面処理鋼板は、さらに任意にNi含有層を有することができる。例えば、本発明の一実施形態における表面処理鋼板は、前記Snめっき層の下に配置されたNi含有層をさらに有することができる。言い換えると、本発明の一実施形態における表面処理鋼板は、鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置されたSnめっき層と、前記Snめっき層上に配置された、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層を有する表面処理鋼板であってよい。
[Ni-containing layer]
The surface-treated steel sheet may further have an optional Ni-containing layer. For example, the surface-treated steel sheet in one embodiment of the present invention may further have an Ni-containing layer disposed under the Sn-plated layer. In other words, the surface-treated steel sheet in one embodiment of the present invention may be a surface-treated steel sheet having, on at least one surface of the steel sheet, a Ni-containing layer, a Sn-plated layer disposed on the Ni-containing layer, and a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn-plated layer.
 前記Ni含有層としては、ニッケルが含まれている任意の層を用いることができ、例えば、Ni層およびNi合金層の一方または両方を用いることができる。前記Ni層としては、例えば、Niめっき層が挙げられる。また、前記Ni合金層としては、例えば、Ni-Fe合金層が挙げられる。また、Ni含有層上にSnめっき層を形成し、次いでリフロー処理を行うことにより、合金化されていないSnのめっき層の下層(鋼板側)にFe-Sn-Ni合金層やFe-Sn合金層等を形成することもできる。 The Ni-containing layer may be any layer containing nickel, for example, a Ni layer and/or a Ni alloy layer. An example of the Ni layer is a Ni plating layer. An example of the Ni alloy layer is a Ni-Fe alloy layer. By forming a Sn plating layer on the Ni-containing layer and then performing a reflow treatment, an Fe-Sn-Ni alloy layer or an Fe-Sn alloy layer can be formed on the lower layer (on the steel sheet side) of the unalloyed Sn plating layer.
 Ni含有層を形成する方法はとくに限定されず、例えば、電気めっき法など、任意の方法を用いることができる。Ni含有層としてNi-Fe合金層を形成する場合、電気めっき法等の方法により鋼板表面上にNi層を形成した後、焼鈍することによりNi-Fe合金層を形成できる。 The method for forming the Ni-containing layer is not particularly limited, and any method, such as electroplating, can be used. When forming a Ni-Fe alloy layer as the Ni-containing layer, the Ni layer can be formed on the steel sheet surface by electroplating or other methods, and then annealing to form the Ni-Fe alloy layer.
 Ni含有層のNi付着量は特に限定されないが、耐硫化黒変性を向上させるという観点からは、鋼板片面当たりのNi付着量を2mg/m以上とすることが好ましい。また、コストの観点からは、鋼板片面当たりのNi付着量を、2000mg/m以下とすることが好ましい。 Although the Ni adhesion amount of the Ni-containing layer is not particularly limited, from the viewpoint of improving resistance to sulfidation blackening, it is preferable that the Ni adhesion amount per one side of the steel sheet is 2 mg/ m2 or more. Also, from the viewpoint of cost, it is preferable that the Ni adhesion amount per one side of the steel sheet is 2000 mg/ m2 or less.
 前記Ni含有層のNi付着量は蛍光X線による検量線法で測定する。まず、Ni付着量が既知である複数の鋼板を準備し、該鋼板についてNiに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とNi付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のNiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記Ni含有層のNi付着量を求めることができる。 The Ni adhesion amount of the Ni-containing layer is measured by a calibration curve method using fluorescent X-rays. First, multiple steel plates with known Ni adhesion amounts are prepared, and the fluorescent X-ray intensity derived from Ni is measured for the steel plates in advance. The relationship between the measured fluorescent X-ray intensity and the Ni adhesion amount is linearly approximated to create a calibration curve. Next, the fluorescent X-ray intensity derived from Ni of the surface-treated steel plate is measured, and the Ni adhesion amount of the Ni-containing layer can be obtained using the above-mentioned calibration curve.
[皮膜層]
 前記Snめっき層上にはZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層が存在する。Zr酸化物およびTi酸化物の少なくとも一方を前記皮膜層に含有させることは、優れたBPAフリー塗料との密着性を得るために必要である。
[Coating layer]
A coating layer containing at least one of Zr oxide and Ti oxide is present on the Sn plating layer. The inclusion of at least one of Zr oxide and Ti oxide in the coating layer is necessary to obtain excellent adhesion with a BPA-free paint.
 前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計の下限は特に限定されない。しかし、BPAフリー塗料との密着性をさらに向上させるという観点からは、Zr酸化物およびTi酸化物の付着量の合計は、金属Zr量と金属Ti量で鋼板片面当たり0.3mg/m以上が好ましく、0.4mg/m以上がより好ましく、0.5mg/m以上がさらに好ましい。一方、皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計の上限についても特に限定されない。しかし、Zr酸化物およびTi酸化物の付着量の合計が過度に多いと、皮膜層の凝集破壊によりBPAフリー塗料との密着性が損なわれる場合がある。そのため、より安定してBPAフリー塗料との密着性を確保するという観点からは、Zr酸化物およびTi酸化物の付着量の合計は、金属Zr量と金属Ti量で鋼板片面当たり50.0mg/m以下が好ましく、45.0mg/m以下がより好ましく、40.0mg/m以下がさらに好ましい。なお、Zr酸化物およびTi酸化物の付着量の合計を算出するにあたり、Zr酸化物の付着量としては金属Zr量に換算した値を使用し、Ti酸化物の付着量としては金属Ti量に換算した値を使用する。 The lower limit of the total adhesion amount of Zr oxide and Ti oxide in the coating layer is not particularly limited. However, from the viewpoint of further improving the adhesion to the BPA-free paint, the total adhesion amount of Zr oxide and Ti oxide is preferably 0.3 mg/m 2 or more per one side of the steel sheet in terms of the amount of metal Zr and the amount of metal Ti, more preferably 0.4 mg/m 2 or more, and even more preferably 0.5 mg/m 2 or more. On the other hand, the upper limit of the total adhesion amount of Zr oxide and Ti oxide in the coating layer is also not particularly limited. However, if the total adhesion amount of Zr oxide and Ti oxide is excessively large, the adhesion to the BPA-free paint may be impaired due to cohesive failure of the coating layer. Therefore, from the viewpoint of ensuring adhesion to the BPA-free paint more stably, the total adhesion amount of Zr oxide and Ti oxide is preferably 50.0 mg/m 2 or less per one side of the steel sheet in terms of the amount of metal Zr and the amount of metal Ti, more preferably 45.0 mg/m 2 or less, and even more preferably 40.0 mg/m 2 or less. In calculating the total amount of Zr oxide and Ti oxide adhesion, the amount of Zr oxide adhesion is calculated by converting the amount of metallic Zr, and the amount of Ti oxide adhesion is calculated by converting the amount of metallic Ti.
 前記皮膜層中におけるZr酸化物の付着量は蛍光X線による検量線法で測定する。まず、金属Zrとしての付着量が既知である複数の鋼板を準備し、該鋼板についてZrに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度と金属Zrとしての付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のZrに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるZr酸化物の付着量を金属Zr換算で求めることができる。 The amount of Zr oxide attached in the coating layer is measured using a calibration curve method using fluorescent X-rays. First, multiple steel plates with known amounts of attached metal Zr are prepared, and the fluorescent X-ray intensity originating from Zr is measured in advance for the steel plates. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of attached metal Zr. Next, the fluorescent X-ray intensity originating from Zr in the surface-treated steel plate is measured, and the amount of attached Zr oxide in the coating layer can be calculated in terms of metallic Zr using the above-mentioned calibration curve.
 また、前記皮膜層中におけるTi酸化物の付着量は蛍光X線による検量線法で測定する。まず、金属Tiとしての付着量が既知である複数の鋼板を準備し、該鋼板についてTiに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度と金属Tiとしての付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のTiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるTi酸化物の付着量を金属Ti換算で求めることができる。 The amount of Ti oxide attached in the coating layer is measured by a calibration curve method using fluorescent X-rays. First, multiple steel plates with known amounts of attached metal Ti are prepared, and the fluorescent X-ray intensity derived from Ti for the steel plates is measured in advance. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of attached metal Ti. Next, the fluorescent X-ray intensity derived from Ti in the surface-treated steel plate is measured, and the amount of attached Ti oxide in the coating layer can be calculated in terms of metallic Ti using the above-mentioned calibration curve.
 前記皮膜層には、BPAフリー塗料との密着性をさらに向上させるという観点から、Pを含有してもよい。皮膜層に含有するPの付着量の上限は特に限定されないが、皮膜層の凝集破壊によりBPAフリー塗料との密着性が損なわれる場合があるため、鋼板片面当たり50.0mg/m以下であることが好ましい。皮膜層に含有するPの付着量の下限は特に限定されず、例えば0.0mg/mであってよく、全く含有していなくてもよい。 The coating layer may contain P from the viewpoint of further improving adhesion to the BPA-free paint. The upper limit of the amount of P contained in the coating layer is not particularly limited, but since the adhesion to the BPA-free paint may be impaired due to cohesive failure of the coating layer, it is preferable that the amount is 50.0 mg/ m2 or less per one side of the steel sheet. The lower limit of the amount of P contained in the coating layer is not particularly limited, and may be, for example, 0.0 mg/ m2 , or may not be contained at all.
 前記皮膜層中におけるPの付着量は蛍光X線による検量線法で測定する。まず、P付着量が既知である複数の鋼板を準備し、該鋼板についてPに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とP付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のPに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるPの付着量を求めることができる。 The amount of P attached in the coating layer is measured using a calibration curve method using fluorescent X-rays. First, multiple steel plates with known amounts of P attached are prepared, and the fluorescent X-ray intensity originating from P is measured in advance for the steel plates. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of P attached. Next, the fluorescent X-ray intensity originating from P in the surface-treated steel plate is measured, and the amount of P attached in the coating layer can be determined using the above-mentioned calibration curve.
 前記皮膜層には、BPAフリー塗料との密着性をさらに向上させるという観点から、Mnを含有してもよい。皮膜層に含有するMnの付着量の上限は特に限定されないが、皮膜層の凝集破壊によりBPAフリー塗料との密着性が損なわれる場合があるため、鋼板片面当たり50.0mg/m以下であることが好ましい。皮膜層に含有するMnの付着量の下限は特に限定されず、例えば0.0mg/mであってよく、全く含有していなくてもよい。 The coating layer may contain Mn from the viewpoint of further improving adhesion to the BPA-free paint. The upper limit of the amount of Mn contained in the coating layer is not particularly limited, but since the adhesion to the BPA-free paint may be impaired due to cohesive failure of the coating layer, it is preferable that the amount is 50.0 mg/ m2 or less per one side of the steel sheet. The lower limit of the amount of Mn contained in the coating layer is not particularly limited, and may be, for example, 0.0 mg/ m2 , or may not be contained at all.
 前記皮膜層中におけるMnの付着量は蛍光X線による検量線法で測定する。まず、Mn付着量が既知である複数の鋼板を準備し、該鋼板についてMnに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とMn付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のMnに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるMnの付着量を求めることができる。 The amount of Mn attached in the coating layer is measured using a calibration curve method using fluorescent X-rays. First, multiple steel plates with known amounts of Mn attached are prepared, and the fluorescent X-ray intensity derived from Mn for the steel plates is measured in advance. A calibration curve is then created by linearly approximating the relationship between the measured fluorescent X-ray intensity and the amount of Mn attached. Next, the fluorescent X-ray intensity derived from Mn in the surface-treated steel plate is measured, and the amount of Mn attached in the coating layer can be determined using the above-mentioned calibration curve.
 上記皮膜層には、Snが含有されていてもよい。皮膜層中のSn含有量の上限は特に限定されない。皮膜層はSnを含んでいなくてもよく、0.0mg/mであってよい。 The coating layer may contain Sn. The upper limit of the Sn content in the coating layer is not particularly limited. The coating layer may not contain Sn, and may have a Sn content of 0.0 mg/ m2 .
 上記皮膜層には、Cが含有されていてもよい。皮膜層中のC含有量の上限は特に限定されない。皮膜層はCを含んでいなくてもよく、0.0mg/mであってよい。 The coating layer may contain C. There is no particular upper limit to the C content in the coating layer. The coating layer may not contain C, and the C content may be 0.0 mg/ m2 .
 上記皮膜層には、Zr、Ti、O、Sn、Mn、P、NiおよびC並びに後述するK、Na、MgおよびCa以外の元素が含まれる場合がある。前記元素以外の元素としては、後述する皮膜形成工程で使用する水溶液中に含まれるCu、Zn、Fe等の金属不純物及びS、N、F、Cl、Br、Si等の元素が挙げられる。しかし、Zr、Ti、O、Sn、Mn、P、Ni、C、K、Na、Mg及びCa以外の元素が過度に存在すると、BPAフリー塗料との密着性が低下する場合がある。そのため、皮膜層中のZr、Ti、O、Sn、Mn、P、Ni、C、K、Na、Mg及びCa以外の元素の含有量の合計が、原子比率で30%以下であることが好ましく、20%以下であることがより好ましい。皮膜層はZr、Ti、O、Sn、Mn、P、Ni、C、K、Na、Mg及びCa以外の元素を含んでいなくてもよく、原子比率で0%であってよい。上記元素の含有量はXPS(X線光電子分光法)で測定することができる。 The coating layer may contain elements other than Zr, Ti, O, Sn, Mn, P, Ni, and C, as well as K, Na, Mg, and Ca, which will be described later. Examples of elements other than the above elements include metal impurities such as Cu, Zn, and Fe contained in the aqueous solution used in the coating formation process, which will be described later, and elements such as S, N, F, Cl, Br, and Si. However, if elements other than Zr, Ti, O, Sn, Mn, P, Ni, C, K, Na, Mg, and Ca are present in excess, adhesion to the BPA-free paint may decrease. Therefore, the total content of elements other than Zr, Ti, O, Sn, Mn, P, Ni, C, K, Na, Mg, and Ca in the coating layer is preferably 30% or less in atomic ratio, and more preferably 20% or less. The coating layer may not contain elements other than Zr, Ti, O, Sn, Mn, P, Ni, C, K, Na, Mg, and Ca, and may be 0% in atomic ratio. The content of the above elements can be measured using XPS (X-ray photoelectron spectroscopy).
[エチレングリコールの接触角]
 本発明においては、表面処理鋼板のエチレングリコールの接触角が50°以下であることが重要である。エチレングリコールの接触角が50°以下となるよう表面処理鋼板の表面を制御することにより、BPAフリー塗料に含まれるポリエステル樹脂と表面処理鋼板との間に強固な結合が形成され、その結果、BPAフリー塗料との高い密着性を得ることができる。BPAフリー塗料との密着性をさらに向上させるという観点からは、エチレングリコールの接触角を48°以下とすることが好ましく、45°以下とすることがより好ましい。前記エチレングリコールの接触角は、BPAフリー塗料との密着性向上の観点からは低ければ低いほど好ましいため、その下限はとくに限定されず、0°であってもよい。しかし、製造しやすさなどの観点からは、5°以上であってよく、8°以上であってもよい。
[Contact angle of ethylene glycol]
In the present invention, it is important that the contact angle of ethylene glycol of the surface-treated steel sheet is 50° or less. By controlling the surface of the surface-treated steel sheet so that the contact angle of ethylene glycol is 50° or less, a strong bond is formed between the polyester resin contained in the BPA-free paint and the surface-treated steel sheet, and as a result, high adhesion to the BPA-free paint can be obtained. From the viewpoint of further improving the adhesion to the BPA-free paint, the contact angle of ethylene glycol is preferably 48° or less, and more preferably 45° or less. The lower limit of the contact angle of ethylene glycol is not particularly limited, and may be 0°. However, from the viewpoint of ease of production, it may be 5° or more, or 8° or more.
 さらに、本発明における表面処理鋼板の表面、すなわちZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層の表面の状態は、熱に対して安定であり、例えば塗装焼付相当の熱処理後にもエチレングリコールの接触角が大きく変化しない。そのような表面状態の熱安定性も、BPAフリー塗料との密着性の向上に寄与していると推定している。そのため、塗装相当熱処理後の表面処理鋼板のエチレングリコールの接触角についても50°以下であることが好ましく、48°以下であることがより好ましく、45°以下であることがさらに好ましい。また、塗装相当熱処理後の表面処理鋼板のエチレングリコールの接触角の下限はとくに限定されず、0°であってもよいが、前記接触角は、5°以上であってよく、8°以上であってもよい。なお、前記塗装相当熱処理の条件は、最高温度を200℃とし、前記最高温度での保持時間を10分とする。 Furthermore, the surface of the surface-treated steel sheet of the present invention, i.e., the surface state of the coating layer containing at least one of Zr oxide and Ti oxide, is stable against heat, and the contact angle of ethylene glycol does not change significantly, for example, even after heat treatment equivalent to paint baking. It is presumed that such thermal stability of the surface state also contributes to improved adhesion with BPA-free paint. Therefore, the contact angle of ethylene glycol of the surface-treated steel sheet after heat treatment equivalent to paint is preferably 50° or less, more preferably 48° or less, and even more preferably 45° or less. In addition, the lower limit of the contact angle of ethylene glycol of the surface-treated steel sheet after heat treatment equivalent to paint is not particularly limited and may be 0°, but the contact angle may be 5° or more, or 8° or more. The conditions of the heat treatment equivalent to paint are a maximum temperature of 200°C and a holding time at the maximum temperature of 10 minutes.
 表面処理鋼板のエチレングリコールの接触角が50°以下となるメカニズムは明らかではないが、後述する表面調整工程で表面の微小な粗さが調整され、エチレングリコールとの親和性が高い表面に改質されると考えられる。後述する表面調整工程を経なかった場合は、製造直後に表面処理鋼板の表面がエチレングリコールとの親和性が高い表面をしていたとしても、前記皮膜層を、前記親和性が高い状態で定着させることができず、エチレングリコールの接触角が50°を上回る。 The mechanism by which the contact angle of ethylene glycol on a surface-treated steel sheet becomes 50° or less is unclear, but it is thought that the micro-roughness of the surface is adjusted in the surface conditioning process described below, and the surface is modified to have a high affinity with ethylene glycol. If the surface conditioning process described below is not carried out, even if the surface of the surface-treated steel sheet has a high affinity with ethylene glycol immediately after production, the coating layer cannot be fixed in a state of high affinity, and the contact angle of ethylene glycol exceeds 50°.
 なお、前記エチレングリコールの接触角は、θ/2法により測定することができる。前記測定においては、測定対象の表面処理鋼板の温度を20℃とし、温度20℃のエチレングリコールを表面処理鋼板の表面に滴下する。滴下から1秒経過後の接触角を、θ/2法によって算出する。より具体的には、実施例に記載した方法で測定することができる。ここで、表面処理鋼板の表面に、CSO(Cottonseed Oil)、DOS(Dioctyl Sebacate)、ATBC(Acetyl Tributyl Citrate)などの防錆油が塗油されている場合がある。表面処理鋼板が塗油されている場合は、前記塗装相当熱処理を施して塗油された油を気化させてから、実施例に記載した方法により測定した接触角を、塗油後の当該表面処理鋼板のエチレングリコールの接触角とする。上述したように本発明の表面処理鋼板は熱処理に対して安定であるため、上記熱処理を行ってから測定した接触角及び後述する吸着元素の原子比率が本発明の条件を満たすならば、上記熱処理前の表面処理鋼板についても本発明の効果を奏すると考えられる。なお、塗油された油中に含まれる防錆剤などの添加成分が塗装相当熱処理後も表面処理鋼板の表面に残留することがあるが、その量は微量であるため、上述のエチレングリコールの接触角及び吸着元素の原子比率には影響を及ぼさない。 The contact angle of ethylene glycol can be measured by the θ/2 method. In the measurement, the temperature of the surface-treated steel sheet to be measured is set to 20°C, and ethylene glycol at a temperature of 20°C is dropped onto the surface of the surface-treated steel sheet. The contact angle 1 second after the drop is calculated by the θ/2 method. More specifically, it can be measured by the method described in the Examples. Here, the surface of the surface-treated steel sheet may be coated with a rust-preventive oil such as CSO (Cottonseed Oil), DOS (Dioctyl Sebacate), or ATBC (Acetyl Tributyl Citrate). If the surface-treated steel sheet is coated with oil, the contact angle measured by the method described in the Examples after the coating-equivalent heat treatment is performed to vaporize the coated oil is regarded as the contact angle of ethylene glycol on the surface-treated steel sheet after coating. As described above, the surface-treated steel sheet of the present invention is stable against heat treatment, so if the contact angle measured after the heat treatment and the atomic ratio of the adsorbed elements described below satisfy the conditions of the present invention, the effect of the present invention is also expected to be achieved for the surface-treated steel sheet before the heat treatment. Note that additive components such as rust inhibitors contained in the oil applied may remain on the surface of the surface-treated steel sheet even after the heat treatment equivalent to painting, but the amount is so small that it does not affect the contact angle of ethylene glycol and the atomic ratio of the adsorbed elements described above.
 なお、特許文献1~5で提案されているような従来の6価クロム浴を用いて製造される表面処理鋼板においては、表層に存在するクロム水和酸化物層の組成が湿潤環境下でのエポキシ系塗料に対する密着性に大きく影響を及ぼすことが報告されている。湿潤環境下では、エポキシ系塗膜を浸透してきた水が、エポキシ系塗膜とクロム水和酸化物層との間の界面の接着を阻害する。そのため、親水性であるOH基がクロム水和酸化物層に多く存在する場合は、界面における水の拡張濡れが促進され、接着力が低下すると考えられていた。したがって、従来の表面処理鋼板においては、クロム水和酸化物のオキソ化の進行によるOH基の減少、すなわち表面の疎水化によって湿潤環境下でのエポキシ系塗料に対する密着性を向上させていた。 It has been reported that in surface-treated steel sheets manufactured using conventional hexavalent chromium baths such as those proposed in Patent Documents 1 to 5, the composition of the chromium hydrate oxide layer present on the surface layer significantly affects adhesion to epoxy-based paints in a humid environment. In a humid environment, water that has penetrated the epoxy-based paint film inhibits adhesion at the interface between the epoxy-based paint film and the chromium hydrate oxide layer. For this reason, it was thought that when a large number of hydrophilic OH groups are present in the chromium hydrate oxide layer, the water's expansion and wetting at the interface is promoted, resulting in a decrease in adhesive strength. Therefore, in conventional surface-treated steel sheets, the adhesion to epoxy-based paints in a humid environment was improved by reducing the number of OH groups through the progression of oxidation of the chromium hydrate oxide, i.e., by hydrophobizing the surface.
 これに対して本発明は、水ではなくエチレングリコールに着目し、エチレングリコールとの親和性が高い表面に調整することによって、BPAフリー塗料との強固な密着性を確保できることを見出した。したがって本発明は、上述した従来技術とはまったく異なる技術的思想に基づくものであると言える。エチレングリコールとの親和性が高い表面に調整することによる、BPAフリー塗料との密着性向上メカニズムは明らかではない。しかし、エチレングリコールは、BPAフリー塗料を構成するポリエステル樹脂の構成成分である水酸基モノマーの一つであるため、エチレングリコールと親和性が高い表面に調整することで、BPAフリー塗料との密着性が向上したと推定している。 In contrast, the present invention focuses on ethylene glycol rather than water, and has found that by adjusting the surface to have a high affinity for ethylene glycol, it is possible to ensure strong adhesion with BPA-free paint. Therefore, it can be said that the present invention is based on a technical concept that is completely different from the conventional technology described above. The mechanism by which adhesion to BPA-free paint is improved by adjusting the surface to have a high affinity for ethylene glycol is not clear. However, because ethylene glycol is one of the hydroxyl monomers that is a component of the polyester resin that makes up BPA-free paint, it is presumed that adhesion to BPA-free paint is improved by adjusting the surface to have a high affinity for ethylene glycol.
[吸着元素の原子比率]
 上述したように、本発明の表面処理鋼板はエチレングリコールの接触角が50°以下であり、その表面は化学的に活性である。そのため、前記表面処理鋼板の表面には、K、Na、Mg、およびCaなどの元素のカチオンが吸着しやすい。本発明者らは、単純にエチレングリコールの接触角を50°以下とするのみでは、吸着した前記カチオンの影響のため、本来の密着性が発揮されないことを見出した。本発明では、表面処理鋼板の表面に吸着した前記カチオンの量を低減することにより、BPAフリー塗料との密着性を向上させることができる。
[Atomic ratio of adsorbed elements]
As described above, the surface-treated steel sheet of the present invention has a contact angle of ethylene glycol of 50° or less, and its surface is chemically active. Therefore, cations of elements such as K, Na, Mg, and Ca are easily adsorbed on the surface of the surface-treated steel sheet. The inventors have found that simply making the contact angle of ethylene glycol 50° or less does not provide the original adhesion due to the influence of the adsorbed cations. In the present invention, the adhesion to BPA-free paint can be improved by reducing the amount of the cations adsorbed on the surface of the surface-treated steel sheet.
 具体的には、表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの全元素に対する原子比率の合計を、5.0%以下、好ましくは3.0%以下、より好ましくは1.0%以下とする。前記原子比率の合計は低ければ低いほどよいため、下限は特に限定されず、0.0%であってよい。前記原子比率の合計は、XPSにより測定することができる。前記測定においては、表面処理鋼板の最表面におけるK2p、Na1s、Ca2p、Mg1sのナロースペクトルの積分強度から、相対感度係数法により、K、Na、Mg、およびCaの全元素に対する原子比率を求めればよい。より具体的には、実施例に記載した方法で測定することができる。なお、表面処理鋼板が塗油されている場合は、前記塗装相当熱処理を施して塗油された油を気化させてから、実施例に記載した方法により測定した原子比率を、塗油後の当該表面処理鋼板の吸着元素の原子比率とする。 Specifically, the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to all elements is 5.0% or less, preferably 3.0% or less, and more preferably 1.0% or less. The lower the total atomic ratio, the better, so there is no particular lower limit and it may be 0.0%. The total atomic ratio can be measured by XPS. In the measurement, the atomic ratio of K, Na, Mg, and Ca to all elements can be obtained by the relative sensitivity coefficient method from the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, and Mg1s on the outermost surface of the surface-treated steel sheet. More specifically, it can be measured by the method described in the examples. In addition, if the surface-treated steel sheet is oiled, the atomic ratio measured by the method described in the examples after performing the heat treatment equivalent to painting to vaporize the oil applied is regarded as the atomic ratio of the adsorbed elements of the surface-treated steel sheet after oiling.
[製造方法]
 本発明の一実施形態における表面処理鋼板の製造方法では、以下に説明する方法で、上記特性を備えた表面処理鋼板を製造することができる。
[Production method]
In a method for producing a surface-treated steel sheet according to one embodiment of the present invention, a surface-treated steel sheet having the above-mentioned properties can be produced by the method described below.
 本発明の一実施形態における表面処理鋼板の製造方法は、鋼板の少なくとも一方の面に、Snめっき層と、前記Snめっき層上に配置された皮膜層を有する表面処理鋼板の製造方法であって、次の(1)~(3)の工程を含む。以下、各工程について説明する。
(1)皮膜形成工程
(2)表面調整工程
(3)水洗工程
A method for producing a surface-treated steel sheet according to one embodiment of the present invention is a method for producing a surface-treated steel sheet having a Sn-plated layer and a coating layer disposed on the Sn-plated layer on at least one surface of the steel sheet, and includes the following steps (1) to (3). Each step will be described below.
(1) Film formation process (2) Surface preparation process (3) Water washing process
 なお、本発明の一実施形態においては、前記表面処理鋼板が、前記Snめっき層の下に配置されたNi含有層をさらに有することができる。Ni含有層を備える表面処理鋼板を製造する場合は、少なくとも一方の面にNi含有層と、前記Ni含有層上に配置されたSnめっき層とを有する鋼板を皮膜形成工程に供すればよい。 In one embodiment of the present invention, the surface-treated steel sheet may further have a Ni-containing layer disposed under the Sn-plated layer. When manufacturing a surface-treated steel sheet having a Ni-containing layer, a steel sheet having a Ni-containing layer on at least one surface and a Sn-plated layer disposed on the Ni-containing layer may be subjected to a film formation process.
[皮膜形成工程]
 上記皮膜形成工程においては、少なくとも一方の面にSnめっき層を有する鋼板の表面を、ZrイオンおよびTiイオンの少なくとも一方を含有する水溶液で処理して、前記Snめっき層上に皮膜層を形成する。形成される前記皮膜層は、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層である。
[Film formation process]
In the above-mentioned coating formation step, a surface of a steel sheet having a Sn-plated layer on at least one side is treated with an aqueous solution containing at least one of Zr ions and Ti ions to form a coating layer on the Sn-plated layer. The coating layer formed is a coating layer containing at least one of Zr oxide and Ti oxide.
 前記水溶液による処理は、とくに限定されることなく任意の方法で行うことができる。前記処理は、例えば、電解で行うことができる。前記処理を電解によって行う場合は、Snめっき層を有する鋼板を前記水溶液中で陰極電解処理することが好ましい。前記陰極電解処理には、クロメート処理等に用いられている従来の設備をそのまま使用することが可能である。そのため、設備コスト低減の観点からは、陰極電解処理により皮膜層を形成することが好ましい。 The treatment with the aqueous solution is not particularly limited and can be carried out by any method. For example, the treatment can be carried out by electrolysis. When the treatment is carried out by electrolysis, it is preferable to subject the steel sheet having the Sn plating layer to cathodic electrolysis in the aqueous solution. For the cathodic electrolysis, conventional equipment used for chromate treatment and the like can be used as is. Therefore, from the viewpoint of reducing equipment costs, it is preferable to form the coating layer by cathodic electrolysis.
 前記水溶液の調製方法はとくに限定されないが、例えば、Zrイオン源としてのZr含有化合物およびTiイオン源としてのTi含有化合物の一方または両方を水に溶解させることにより調製することができる。前記水としては、蒸留水または脱イオン水を用いることができるが、それに限定されず任意のものを用いることができる。 The method for preparing the aqueous solution is not particularly limited, but for example, the aqueous solution can be prepared by dissolving one or both of a Zr-containing compound as a Zr ion source and a Ti-containing compound as a Ti ion source in water. The water can be distilled water or deionized water, but is not limited thereto and any water can be used.
 前記Zr含有化合物およびTi含有化合物としては、それぞれ、ZrイオンおよびTiイオンを供給することができる任意の化合物を用いることができる。前記Zr含有化合物としては、例えば、ZrFなどのZr塩またはHZrFやKZrFなどのZr錯体を用いることが好ましい。Zrイオンは、陰極の表面におけるpH上昇に伴いZr酸化物となり皮膜を形成する。前記Ti含有化合物としては、例えば、TiFなどのTi塩、またはHTiFやKTiFなどのTi錯体を用いることが好ましい。Tiイオンは、陰極の表面におけるpH上昇に伴いTi酸化物となり皮膜を形成する。 As the Zr-containing compound and the Ti-containing compound, any compound capable of supplying Zr ions and Ti ions, respectively, can be used. As the Zr - containing compound, for example, a Zr salt such as ZrF4 or a Zr complex such as H2ZrF6 or K2ZrF6 is preferably used. The Zr ions become Zr oxides and form a coating as the pH rises on the surface of the cathode. As the Ti-containing compound, for example, a Ti salt such as TiF4 or a Ti complex such as H2TiF6 or K2TiF6 is preferably used. The Ti ions become Ti oxides and form a coating as the pH rises on the surface of the cathode.
 前記水溶液中には、さらに、フッ素イオン、硝酸イオン、アンモニウムイオン、リン酸イオン、Mnイオン、硫酸イオンからなる群より選択される少なくとも1つが含まれていてもよい。前記水溶液中が、硝酸イオンとアンモニウムイオンの両者を含有する場合、数秒から数十秒程度の短時間で処理が可能であり、工業的には極めて有利である。そのため、前記水溶液中は、ZrイオンおよびTiイオンの少なくとも一方に加え、硝酸イオンとアンモニウムイオンの両者を含有することが好ましい。以下、イオン濃度の単位である「ppm」は、特に断らない限り質量百万分率を指す。 The aqueous solution may further contain at least one selected from the group consisting of fluoride ions, nitrate ions, ammonium ions, phosphate ions, Mn ions, and sulfate ions. When the aqueous solution contains both nitrate ions and ammonium ions, processing can be carried out in a short time of several to several tens of seconds, which is extremely advantageous from an industrial standpoint. Therefore, it is preferable that the aqueous solution contains both nitrate ions and ammonium ions in addition to at least one of Zr ions and Ti ions. Hereinafter, the unit of ion concentration "ppm" refers to parts per million by mass unless otherwise specified.
 前記水溶液中がZrイオンを含有する場合、Zrイオンの濃度の下限は特に限定されないが、100ppm以上とすることが好ましい。また、Zrイオンの濃度の上限についても特に限定されないが、4000ppm以下とすることが好ましい。同様に、前記水溶液中がTiイオンを含有する場合、Tiイオンの濃度の下限は特に限定されないが、100ppm以上とすることが好ましい。また、Tiイオンの濃度の上限についても特に限定されないが、4000ppm以下とすることが好ましい。 When the aqueous solution contains Zr ions, the lower limit of the Zr ion concentration is not particularly limited, but is preferably 100 ppm or more. The upper limit of the Zr ion concentration is also not particularly limited, but is preferably 4000 ppm or less. Similarly, when the aqueous solution contains Ti ions, the lower limit of the Ti ion concentration is not particularly limited, but is preferably 100 ppm or more. The upper limit of the Ti ion concentration is also not particularly limited, but is preferably 4000 ppm or less.
 また、前記水溶液がフッ素イオンを含有する場合、フッ素イオンの濃度の下限は特に限定されないが、120ppm以上とすることが好ましい。また、フッ素イオンの濃度の上限についても特に限定されないが、4000ppm以下とすることが好ましい。前記水溶液がリン酸イオンを含有する場合、リン酸イオンの濃度の下限は特に限定されないが、50ppm以上とすることが好ましい。また、リン酸イオンの濃度の上限についても特に限定されないが、5000ppm以下とすることが好ましい。前記水溶液がMnイオンを含有する場合、Mnイオンの濃度の下限は特に限定されないが、50ppm以上とすることが好ましい。また、Mnイオンの濃度の上限についても特に限定されないが、5000ppm以下とすることが好ましい。前記水溶液がアンモニウムイオンを含有する場合、アンモニウムイオンの濃度の下限は特に限定されず、0ppmであってよい。また、アンモニウムイオンの濃度の上限についても特に限定されないが、20000ppm以下とすることが好ましい。前記水溶液が硝酸イオンを含有する場合、硝酸イオンの濃度の下限は特に限定されず、0ppmであってよい。また、硝酸イオンの濃度の上限についても特に限定されないが、20000ppm以下とすることが好ましい。前記水溶液が硫酸イオンを含有する場合、硫酸イオンの濃度の下限は特に限定されず、0ppmであってよい。また、硫酸イオンの濃度の上限についても特に限定されないが、20000ppm以下とすることが好ましい。 When the aqueous solution contains fluorine ions, the lower limit of the concentration of fluorine ions is not particularly limited, but is preferably 120 ppm or more. The upper limit of the concentration of fluorine ions is also not particularly limited, but is preferably 4000 ppm or less. When the aqueous solution contains phosphate ions, the lower limit of the concentration of phosphate ions is not particularly limited, but is preferably 50 ppm or more. The upper limit of the concentration of phosphate ions is also not particularly limited, but is preferably 5000 ppm or less. When the aqueous solution contains Mn ions, the lower limit of the concentration of Mn ions is not particularly limited, but is preferably 50 ppm or more. The upper limit of the concentration of Mn ions is also not particularly limited, but is preferably 5000 ppm or less. When the aqueous solution contains ammonium ions, the lower limit of the concentration of ammonium ions is not particularly limited, but may be 0 ppm. The upper limit of the concentration of ammonium ions is also not particularly limited, but is preferably 20000 ppm or less. When the aqueous solution contains nitrate ions, the lower limit of the concentration of nitrate ions is not particularly limited, but may be 0 ppm. In addition, the upper limit of the concentration of nitrate ions is not particularly limited, but it is preferably 20,000 ppm or less. When the aqueous solution contains sulfate ions, the lower limit of the concentration of sulfate ions is not particularly limited, and may be 0 ppm. In addition, the upper limit of the concentration of sulfate ions is not particularly limited, but it is preferably 20,000 ppm or less.
 陰極電解処理を行う際の前記水溶液の温度の上限はとくに限定されないが、例えば、50℃以下とすることが好ましい。50℃以下で陰極電解を行うことにより、非常に細かい粒子からなる、緻密で均一な皮膜組織の生成が可能となる。また、前記水溶液の温度を50℃以下とすることにより、形成される皮膜層における欠陥、割れ、マイクロクラック等の発生を抑制し、BPAフリー塗料との密着性をさらに向上させることができる。また、陰極電解処理を行う際の前記水溶液の温度の下限についてもとくに限定されないが、例えば、10℃以上とすることが好ましい。前記水溶液の温度を10℃以上とすることにより、皮膜の生成効率を高めることができる。また、前記水溶液の温度を10℃以上とすれば、夏場など外気温が高い場合であっても該水溶液の冷却が不要となるため、経済的である。 The upper limit of the temperature of the aqueous solution when performing the cathodic electrolysis is not particularly limited, but for example, it is preferable to set it to 50°C or less. By performing cathodic electrolysis at 50°C or less, it is possible to generate a dense and uniform coating structure consisting of very fine particles. Furthermore, by setting the temperature of the aqueous solution to 50°C or less, the occurrence of defects, cracks, microcracks, etc. in the coating layer to be formed can be suppressed, and the adhesion with the BPA-free paint can be further improved. Furthermore, the lower limit of the temperature of the aqueous solution when performing the cathodic electrolysis is not particularly limited, but for example, it is preferable to set it to 10°C or more. By setting the temperature of the aqueous solution to 10°C or more, the efficiency of coating generation can be increased. Furthermore, if the temperature of the aqueous solution is set to 10°C or more, cooling of the aqueous solution is not required even when the outside air temperature is high, such as in summer, so it is economical.
 前記水溶液のpHの下限は、とくに限定されないが、3以上とすることが好ましい。pHが3以上であれば、Zr酸化物あるいはTi酸化物の生成効率をさらに向上させることができる。また、前記水溶液のpHの上限についても、とくに限定されないが、5以下とすることが好ましい。pHが5以下であれば、前記水溶液中に沈殿が多量に発生することを防止し、連続生産性を良好にすることができる。 The lower limit of the pH of the aqueous solution is not particularly limited, but is preferably 3 or more. If the pH is 3 or more, the production efficiency of Zr oxide or Ti oxide can be further improved. Furthermore, the upper limit of the pH of the aqueous solution is also not particularly limited, but is preferably 5 or less. If the pH is 5 or less, it is possible to prevent a large amount of precipitation from occurring in the aqueous solution, and to improve continuous productivity.
 なお、pHの調整や電解効率の向上を目的として、前記水溶液に、例えば、硝酸、アンモニア水などを添加してもよい。 In addition, for the purpose of adjusting the pH and improving the electrolysis efficiency, for example, nitric acid, ammonia water, etc. may be added to the aqueous solution.
 陰極電解する際の電流密度の下限はとくに限定されないが、例えば、0.05A/dm以上とすることが好ましく、1A/dm以上とすることがより好ましい。電流密度が0.05A/dm以上であれば、Zr酸化物あるいはTi酸化物の生成効率が向上する。その結果、より安定的なZr酸化物あるいはTi酸化物を含有する皮膜層の生成が可能となり、BPAフリー塗料との密着性をさらに向上させることができる。また、陰極電解する際の電流密度の上限についてもとくに限定されないが、例えば、50A/dm以下とすることが好ましく、10A/dm以下とすることがより好ましい。電流密度が50A/dm以下であれば、Zr酸化物あるいはTi酸化物の生成効率を適度にすることができ、粗大かつ密着性に劣るZr酸化物あるいはTi酸化物の生成を抑制することができる。 The lower limit of the current density during cathodic electrolysis is not particularly limited, but is preferably 0.05 A/dm 2 or more, and more preferably 1 A/dm 2 or more. If the current density is 0.05 A/dm 2 or more, the production efficiency of Zr oxide or Ti oxide is improved. As a result, a coating layer containing more stable Zr oxide or Ti oxide can be produced, and the adhesion with the BPA-free paint can be further improved. In addition, the upper limit of the current density during cathodic electrolysis is not particularly limited, but is preferably 50 A/dm 2 or less, and more preferably 10 A/dm 2 or less. If the current density is 50 A/dm 2 or less, the production efficiency of Zr oxide or Ti oxide can be moderated, and the production of coarse and poorly adhesive Zr oxide or Ti oxide can be suppressed.
 なお、上記陰極電解処理における電解時間はとくに限定されず、上述したZr付着量とTi付着量が得られるよう、電流密度に応じて適宜調整すればよい。 The electrolysis time in the above-mentioned cathodic electrolysis treatment is not particularly limited, and can be adjusted appropriately according to the current density so that the above-mentioned Zr and Ti deposition amounts are obtained.
 上記陰極電解処理における通電パターンは、連続通電であっても断続通電であってもよい。また、上記陰極電解を行う際の、水溶液と鋼板との関係はとくに限定されず、相対的に静止していてもよく移動していてもよいが、反応の促進および均一性向上の観点からは、鋼板と水溶液とを相対的に移動させながら陰極電解を行うことが好ましい。例えば、鋼板を、ZrイオンあるいはTiイオンの少なくとも一方を含有する水溶液が収められた処理槽中を通過させながら連続的に陰極電解を行うことにより、鋼板と水溶液とを相対的に移動させることができる。 The current pattern in the above cathodic electrolysis treatment may be continuous or intermittent current. Furthermore, the relationship between the aqueous solution and the steel sheet when performing the above cathodic electrolysis is not particularly limited, and they may be relatively stationary or moving, but from the standpoint of promoting the reaction and improving uniformity, it is preferable to perform cathodic electrolysis while moving the steel sheet and the aqueous solution relative to each other. For example, the steel sheet and the aqueous solution can be moved relative to each other by continuously performing cathodic electrolysis while passing the steel sheet through a treatment tank containing an aqueous solution containing at least one of Zr ions or Ti ions.
 鋼板と水溶液とを相対的に移動させながら陰極電解を行う場合、水溶液と鋼板の相対流速を50m/min以上とすることが好ましい。相対流速が50m/min以上であれば、通電に伴って水素が発生する鋼板表面のpHをさらに均一とし、粗大なZr酸化物あるいはTi酸化物の生成を効果的に抑制できる。なお、相対流速の上限はとくに限定されない。 When performing cathodic electrolysis while moving the steel sheet and the aqueous solution relative to one another, it is preferable to set the relative flow velocity between the aqueous solution and the steel sheet to 50 m/min or more. If the relative flow velocity is 50 m/min or more, the pH of the steel sheet surface where hydrogen is generated as a result of the passage of electricity can be made more uniform, and the generation of coarse Zr oxides or Ti oxides can be effectively suppressed. There is no particular upper limit to the relative flow velocity.
[表面調整工程]
 次に、前記皮膜形成工程で得られた皮膜層に対して、表面調整を行う。具体的には、前記皮膜層の表面に前記水溶液が1.0~30.0g/m以下存在する状態で、0.1~20.0秒保持する。前記条件で表面調整を行うことにより、前記皮膜層を、エチレングリコールに対する親和性が高い状態で定着させることができる。
[Surface conditioning process]
Next, the coating layer obtained in the coating formation step is subjected to surface conditioning. Specifically, the aqueous solution is held on the surface of the coating layer in an amount of 1.0 to 30.0 g/ m2 or less for 0.1 to 20.0 seconds. By performing surface conditioning under the above conditions, the coating layer can be fixed in a state with high affinity for ethylene glycol.
 前記表面調整工程によって、前記皮膜層をエチレングリコールに対する親和性が高い状態で定着させることができるメカニズムは明らかではないが、次のように考えられる。すなわち、前記皮膜層を前記水溶液と接触させることにより、該皮膜層の表面がわずかにエッチングされ、皮膜層の表面に微細な凹凸が形成される。この微細な凹凸の作用により、皮膜層のエチレングリコールに対する親和性が向上する。この親和性は、OH基などの親水性官能基の存在に起因する親和性とは異なり、表面の粗さという物理的な構造に起因するものであるため、熱に対する安定性にも優れている。 The mechanism by which the surface conditioning process allows the coating layer to be fixed in a state with high affinity for ethylene glycol is not clear, but it is thought to be as follows. That is, by bringing the coating layer into contact with the aqueous solution, the surface of the coating layer is slightly etched, and fine irregularities are formed on the surface of the coating layer. The effect of these fine irregularities improves the affinity of the coating layer for ethylene glycol. This affinity differs from the affinity caused by the presence of hydrophilic functional groups such as OH groups, and is caused by the physical structure of the surface roughness, and therefore has excellent thermal stability.
 なお、前記皮膜層の表面における前記水溶液の存在状態は特に限定されないが、エッチングを均一に進行させるという観点からは、液膜状であることが好ましい。 The state of the aqueous solution on the surface of the coating layer is not particularly limited, but from the viewpoint of uniformly progressing etching, it is preferable for the aqueous solution to be in the form of a liquid film.
・水溶液の量:1.0~30.0g/m
 表面調整を行う際の水溶液の量が1.0g/m以下であると、エッチングが十分に進行せず、その結果、エチレングリコールの接触角が50°より大きくなる。そのため、前記水溶液の量は、1.0g/m以上、好ましくは2.0g/m以上、より好ましくは3.0g/m以上とする。一方、前記水溶液の量が30.0g/mより多いと、かえってエチレングリコールに対する親和性が低下し、その結果、エチレングリコールの接触角が50°より大きくなる。そのため、前記水溶液の量を、30.0g/m以下、好ましくは28.0g/m以下、より好ましくは25.0g/m以下とする。
Amount of aqueous solution: 1.0 to 30.0 g/ m2
If the amount of the aqueous solution used in the surface preparation is 1.0 g/ m2 or less, etching does not proceed sufficiently, and as a result, the contact angle of ethylene glycol becomes larger than 50°. Therefore, the amount of the aqueous solution is 1.0 g/ m2 or more, preferably 2.0 g/ m2 or more, and more preferably 3.0 g/ m2 or more. On the other hand, if the amount of the aqueous solution is more than 30.0 g/ m2 , the affinity to ethylene glycol decreases, and as a result, the contact angle of ethylene glycol becomes larger than 50°. Therefore, the amount of the aqueous solution is 30.0 g/ m2 or less, preferably 28.0 g/ m2 or less, and more preferably 25.0 g/ m2 or less.
・保持時間:0.1~20.0秒
 また、前記表面調整において、保持時間が0.1秒未満であるとエッチングが十分に進行せず、その結果、エチレングリコールの接触角が50°より大きくなる。そのため、前記保持時間を、0.1秒以上、好ましくは0.2秒以上、より好ましくは0.3秒以上とする。一方、前記保持時間が20.0秒を超える場合にも、エチレングリコールの接触角が50°より大きくなる。これは、エッチングが過度に進行し、エチレングリコールに対する親和性の発現に適した表面状態から外れるためだと考えられる。そのため、前記保持時間を、20.0秒以下、好ましくは18.0秒以下、より好ましくは15.0秒以下とする。
Holding time: 0.1 to 20.0 seconds In the surface preparation, if the holding time is less than 0.1 seconds, etching does not proceed sufficiently, and as a result, the contact angle of ethylene glycol becomes larger than 50°. Therefore, the holding time is set to 0.1 seconds or more, preferably 0.2 seconds or more, and more preferably 0.3 seconds or more. On the other hand, if the holding time exceeds 20.0 seconds, the contact angle of ethylene glycol also becomes larger than 50°. This is considered to be because etching proceeds excessively, and the surface state is not suitable for expressing affinity for ethylene glycol. Therefore, the holding time is set to 20.0 seconds or less, preferably 18.0 seconds or less, and more preferably 15.0 seconds or less.
 なお、上記水溶液の量は、フィルター式赤外吸収法による水分計で測定することができる。具体的には、フィルター式赤外吸収法による水分計により表面における吸光度を測定し、予め求めておいた検量線を用いて前記吸光度から水溶液の量を求める。なお、前記検量線は、以下の手順で作成することができる。まず、電子天秤上に前記皮膜層を有する鋼板を設置する。前記皮膜層を有する鋼板上に水溶液をピペットで滴下して前記皮膜層を有する鋼板表面全体に液膜を形成する。水溶液を滴下する前の前記皮膜層を有する鋼板重量と、水溶液を滴下した後の前記皮膜層を有する鋼板重量から、前記皮膜層を有する鋼板上に存在する水溶液の重量を求める。得られた水溶液の重量を、前記皮膜層を有する鋼板の面積で割ることにより、単位面積あたりの水溶液の量を求める。同時に、フィルター式赤外吸収法による水分計により前記皮膜層を有する鋼板表面における吸光度を測定する。以上の測定を、水溶液の量を変化させながら複数回実施し、水溶液の量と吸光度の相関を表す検量線を作成する。前記検量線としては、水溶液の量と吸光度の相関を線形近似したものを用いることができる。 The amount of the aqueous solution can be measured with a moisture meter using a filter type infrared absorption method. Specifically, the absorbance on the surface is measured with a moisture meter using a filter type infrared absorption method, and the amount of the aqueous solution is calculated from the absorbance using a calibration curve that has been obtained in advance. The calibration curve can be created by the following procedure. First, the steel plate having the coating layer is placed on an electronic balance. The aqueous solution is dropped onto the steel plate having the coating layer with a pipette to form a liquid film on the entire surface of the steel plate having the coating layer. The weight of the aqueous solution present on the steel plate having the coating layer is calculated from the weight of the steel plate having the coating layer before the aqueous solution is dropped and the weight of the steel plate having the coating layer after the aqueous solution is dropped. The amount of the aqueous solution per unit area is calculated by dividing the weight of the aqueous solution obtained by the area of the steel plate having the coating layer. At the same time, the absorbance on the surface of the steel plate having the coating layer is measured with a moisture meter using a filter type infrared absorption method. The above measurements are performed multiple times while changing the amount of aqueous solution, and a calibration curve showing the correlation between the amount of aqueous solution and the absorbance is created. The calibration curve can be a linear approximation of the correlation between the amount of aqueous solution and the absorbance.
 前記皮膜層の表面に存在する水溶液の量を調整する方法は特に限定されず、任意の方法を用いることができる。例えば、リンガーロールで液を絞る方法や、ワイピングなどの方法により、前記鋼板の表面の前記水溶液の量を調整すればよい。 The method for adjusting the amount of aqueous solution present on the surface of the coating layer is not particularly limited, and any method can be used. For example, the amount of the aqueous solution on the surface of the steel sheet can be adjusted by squeezing the liquid with a wringer roll or by wiping.
 なお、前記皮膜形成工程に先だって、Snめっき層を有する鋼板に対して任意に前処理を施すことができる。前処理を行うことにより、例えば、Snめっき層の表面に存在する自然酸化膜を除去することができる。自然酸化膜を除去することにより、Sn酸化物の量を調整することができ、また、表面を活性化させることができる。 Before the film formation process, the steel sheet having the Sn-plated layer can be pretreated as desired. By carrying out the pretreatment, for example, it is possible to remove the natural oxide film present on the surface of the Sn-plated layer. By removing the natural oxide film, it is possible to adjust the amount of Sn oxide and also to activate the surface.
 前記前処理の方法は特に限定されず、任意の方法を用いることができるが、前記前処理として、アルカリ性水溶液中での電解処理およびアルカリ性水溶液中での浸漬処理の一方または両方を行うことが好ましい。前記電解処理としては、陰極電解処理および陽極電解処理の一方または両方を用いることができる。前記前処理として、下記(1)~(4)のいずれかの処理を行うことが好ましい。
(1)アルカリ性水溶液中での陰極電解処理
(2)アルカリ性水溶液中での浸漬処理
(3)アルカリ性水溶液中での陰極電解処理およびそれに続くアルカリ性水溶液中での陽極電解処理
(4)アルカリ性水溶液中での陽極電解処理
The method of the pretreatment is not particularly limited and any method can be used, but it is preferable to perform one or both of electrolysis in an alkaline aqueous solution and immersion treatment in an alkaline aqueous solution as the pretreatment. One or both of cathodic electrolysis and anodic electrolysis can be used as the electrolysis. It is preferable to perform any of the following treatments (1) to (4) as the pretreatment.
(1) Cathodic electrolysis in an alkaline aqueous solution; (2) Immersion treatment in an alkaline aqueous solution; (3) Cathodic electrolysis in an alkaline aqueous solution followed by anodic electrolysis in an alkaline aqueous solution; (4) Anodic electrolysis in an alkaline aqueous solution.
 前記アルカリ性水溶液は、1または2以上の任意の電解質を含むことができる。電解質としては、特に限定されることなく任意のものを用いることができる。電解質としては、例えば炭酸塩を用いることが好ましく、炭酸水素ナトリウムを用いることがより好ましい。アルカリ性水溶液の濃度の下限は特に限定されないが、1g/L以上とすることが好ましく、5g/L以上とすることがより好ましい。また、アルカリ性水溶液の濃度の上限についても特に限定されないが、30g/L以下とすることが好ましく、20g/L以下とすることがより好ましい。 The alkaline aqueous solution may contain one or more electrolytes. The electrolyte is not particularly limited and any electrolyte may be used. For example, carbonate is preferably used as the electrolyte, and sodium bicarbonate is more preferably used. There is no particular limit to the lower limit of the concentration of the alkaline aqueous solution, but it is preferably 1 g/L or more, and more preferably 5 g/L or more. There is also no particular limit to the upper limit of the concentration of the alkaline aqueous solution, but it is preferably 30 g/L or less, and more preferably 20 g/L or less.
 前記アルカリ性水溶液の温度の下限は特に限定されないが、10℃以上とすることが好ましく、15℃以上とすることがより好ましい。また、前記アルカリ性水溶液の温度の上限についても特に限定されないが、70℃以下とすることが好ましく、60℃以下とすることがより好ましい。 The lower limit of the temperature of the alkaline aqueous solution is not particularly limited, but is preferably 10°C or higher, and more preferably 15°C or higher. The upper limit of the temperature of the alkaline aqueous solution is also not particularly limited, but is preferably 70°C or lower, and more preferably 60°C or lower.
 また、前記前処理として陰極電解処理を行う場合、該陰極電解処理における電気量密度の下限は特に限定されないが、0.5C/dm以上とすることが好ましく、1.0C/dm以上とすることがより好ましい。一方、陰極電解処理の電気量密度の上限についても特に限定されないが、過度に高くしても前処理の効果が飽和するため、電気量密度は10.0C/dm以下とすることが好ましい。 In addition, when cathodic electrolysis is performed as the pretreatment, the lower limit of the electricity density in the cathodic electrolysis is not particularly limited, but is preferably 0.5 C/ dm2 or more, and more preferably 1.0 C/ dm2 or more. On the other hand, the upper limit of the electricity density in the cathodic electrolysis is not particularly limited, but if it is too high, the effect of the pretreatment will be saturated, so the electricity density is preferably 10.0 C/ dm2 or less.
 前記前処理として浸漬処理を行う場合、該浸漬処理における浸漬時間の下限は特に限定されないが、0.1秒以上とすることが好ましく、0.5秒以上とすることがより好ましい。一方、浸漬時間の上限についても特に限定されないが、過度に長くしても前処理の効果が飽和するため、浸漬時間は10秒以下とすることが好ましい。 When immersion treatment is performed as the pretreatment, the lower limit of the immersion time in the immersion treatment is not particularly limited, but it is preferably 0.1 seconds or more, and more preferably 0.5 seconds or more. On the other hand, the upper limit of the immersion time is also not particularly limited, but since the effect of the pretreatment is saturated if it is too long, the immersion time is preferably 10 seconds or less.
 前記前処理として、陽極電解処理する場合、該陽極電解処理における電気量密度の下限は特に限定されないが、0.5C/dm以上とすることが好ましく、1.0C/dm以上とすることがよりに好ましい。一方、前記陽極電解処理における電気量密度の上限についても特に限定されないが、過度に高くしても前処理の効果が飽和するため、前記電気量密度は10.0C/dm以下とすることが好ましい。 When anodizing is performed as the pretreatment, the lower limit of the electricity density in the anodic electrolysis is not particularly limited, but is preferably 0.5 C/ dm2 or more, and more preferably 1.0 C/ dm2 or more. On the other hand, the upper limit of the electricity density in the anodic electrolysis is not particularly limited, but if it is too high, the effect of the pretreatment will be saturated, so the electricity density is preferably 10.0 C/ dm2 or less.
 前記前処理を行った後には、表面に付着した前処理液を除去する観点で水洗することが好ましい。 After carrying out the pretreatment, it is preferable to wash the surface with water to remove any pretreatment liquid adhering to the surface.
 また、下地鋼板の表面にSnめっき層を形成する際には、下地鋼板に対して前処理を施すことが好ましい。前記前処理としては、任意の処理を行うことができるが、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。 In addition, when forming a Sn plating layer on the surface of the base steel sheet, it is preferable to perform a pretreatment on the base steel sheet. Any pretreatment can be performed, but it is preferable to perform at least one of degreasing, pickling, and water washing.
 脱脂を行うことにより、鋼板に付着した圧延油や防錆油等を除去することができる。前記脱脂は、特に限定されず任意の方法で行うことができる。脱脂後は鋼板表面に付着した脱脂処理液を除去するために水洗を行うことが好ましい。 By degreasing, rolling oil, rust-preventive oil, etc. adhering to the steel plate can be removed. The degreasing can be carried out by any method without any particular restrictions. After degreasing, it is preferable to wash the steel plate with water to remove the degreasing solution adhering to the surface of the steel plate.
 また、酸洗を行うことにより、鋼板の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記酸洗は、特に限定されず任意の方法で行うことができる。酸洗後は鋼板表面に付着した酸洗処理液を除去するために水洗することが好ましい。 In addition, pickling can remove the natural oxide film present on the surface of the steel sheet and activate the surface. There are no particular limitations on the pickling method, and any method can be used. After pickling, it is preferable to rinse the steel sheet with water to remove the pickling solution adhering to the surface.
[水洗工程]
 次に、上記表面調整工程後の鋼板を少なくとも1回水洗する。水洗を行うことにより、鋼板の表面に残留している水溶液を除去することができる。前記水洗は、特に限定されることなく任意の方法で行うことができる。例えば、皮膜形成を行うための槽の下流に水洗タンクを設け、皮膜形成工程後の鋼板を連続的に水に浸漬することができる。また、皮膜形成工程後の鋼板にスプレーで水を吹き付けることによって水洗を行ってもよい。
[Water washing process]
Next, the steel sheet after the surface conditioning step is washed with water at least once. By washing with water, the aqueous solution remaining on the surface of the steel sheet can be removed. The washing with water can be carried out by any method without any particular limitation. For example, a washing tank can be provided downstream of a tank for film formation, and the steel sheet after the film formation step can be continuously immersed in water. Alternatively, washing with water can be carried out by spraying water onto the steel sheet after the film formation step.
 水洗を行う回数は特に限定されず、1回でも、2回以上でもよい。しかし、水洗タンクの数が過剰に多くなることを避けるため、水洗の回数は5回以下とすることが好ましい。また、水洗処理を2回以上行う場合、各水洗は、同じ方法で行ってもよく、異なる方法で行ってもよい。 The number of times that the washing is performed is not particularly limited, and may be one or more than two times. However, in order to avoid an excessive number of washing tanks, it is preferable to limit the number of washings to five or less. Furthermore, when washing is performed two or more times, each washing may be performed using the same method or different methods.
 本発明においては、前記水洗処理工程の少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用することが重要である。これにより、表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量を低減し、その結果として密着性を向上させることができる。電気伝導度100μS/m以下の水は、任意の方法で製造することができる。前記電気伝導度100μS/m以下の水は、例えば、逆浸透膜水、イオン交換水、蒸留水であってよい。水洗に使用する水の電気伝導度は、導電率計を用いて測定することができる。 In the present invention, it is important to use water with an electrical conductivity of 100 μS/m or less in at least the final wash in the water washing process. This reduces the amount of K, Na, Mg, and Ca adsorbed to the surface of the coated steel sheet, thereby improving adhesion. Water with an electrical conductivity of 100 μS/m or less can be produced by any method. The water with an electrical conductivity of 100 μS/m or less may be, for example, reverse osmosis water, ion-exchanged water, or distilled water. The electrical conductivity of the water used for washing can be measured using a conductivity meter.
 なお、前記水洗処理工程において2回以上の水洗を行う場合、最後の水洗に電気伝導度100μS/m以下の水を使用すれば上述した効果が得られるため、最後の水洗以外の水洗には、任意の水を用いることができる。最後の水洗以外の水洗にも電気伝導度100μS/m以下の水を用いてもよい。しかし、コストを低減するという観点からは、最後の水洗にのみ電気伝導度100μS/m以下の水を使用し、最後の水洗以外の水洗には、水道水、工業用水など、通常の水を使用することが好ましい。 When washing with water two or more times in the washing process, the above-mentioned effect can be obtained by using water with an electrical conductivity of 100 μS/m or less for the final wash, so any water can be used for the washes other than the final wash. Water with an electrical conductivity of 100 μS/m or less may also be used for the washes other than the final wash. However, from the viewpoint of reducing costs, it is preferable to use water with an electrical conductivity of 100 μS/m or less only for the final wash, and to use ordinary water such as tap water or industrial water for the washes other than the final wash.
 表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量をさらに低減するという観点からは、最後の水洗に使用する水の電気伝導度は50μS/m以下とすることが好ましく、30μS/m以下とすることがより好ましい。一方、前記電気伝導度の下限は特に限定されず、0μS/mであってよい。しかし、コストを低減するという観点からは、前記電気伝導度を1μS/m以上とすることが好ましい。 From the viewpoint of further reducing the amount of K, Na, Mg, and Ca adsorbed on the surface of the coated steel sheet, the electrical conductivity of the water used in the final water wash is preferably 50 μS/m or less, and more preferably 30 μS/m or less. On the other hand, the lower limit of the electrical conductivity is not particularly limited and may be 0 μS/m. However, from the viewpoint of reducing costs, it is preferable that the electrical conductivity is 1 μS/m or more.
 水洗処理に用いる水の温度は、特に限定されず、任意の温度であってよい。しかし、過度に温度が高いと水洗設備に過剰な負担がかかるため、水洗に使用する水の温度は95℃以下とすることが好ましい。一方、水洗に使用する水の温度の下限も特に限定されないが、0℃以上であることが好ましい。前記水洗に使用する水の温度は室温であってもよい。 The temperature of the water used in the washing process is not particularly limited and may be any temperature. However, an excessively high temperature places an excessive burden on the washing equipment, so the temperature of the water used in washing is preferably 95°C or less. On the other hand, the lower limit of the temperature of the water used in washing is not particularly limited, but it is preferably 0°C or higher. The temperature of the water used in the washing may be room temperature.
 水洗処理1回あたりの水洗時間は、特に限定されないが、水洗処理の効果を高めるという観点からは0.1秒以上が好ましく、0.2秒以上がさらに好ましい。また、水洗処理の1回あたりの水洗時間の上限も、特に限定されないが、連続ラインで製造を行う場合は、ラインスピードが下がって生産性が低下するという理由から、10秒以下が好ましく、8秒以下がさらに好ましい。 The washing time per washing process is not particularly limited, but from the viewpoint of enhancing the effect of the washing process, it is preferably 0.1 seconds or more, and more preferably 0.2 seconds or more. In addition, the upper limit of the washing time per washing process is also not particularly limited, but when manufacturing on a continuous line, the line speed is reduced, and therefore, productivity is reduced, so it is preferably 10 seconds or less, and more preferably 8 seconds or less.
 上記水洗処理工程の後には、任意に乾燥を行ってもよい。乾燥の方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、表面処理皮膜の変質を抑制できる。なお、下限は特に限定されないが、通常、室温程度である。 After the water washing process, drying may be performed as desired. There are no particular limitations on the drying method, and for example, a normal dryer or electric oven drying method can be used. The temperature during the drying process is preferably 100°C or lower. If the temperature is within the above range, deterioration of the surface treatment film can be suppressed. The lower limit is not particularly limited, but is usually around room temperature.
 本発明の表面処理鋼板の用途は特に限定されないが、例えば、食缶、飲料缶、ペール缶、18リットル缶など種々の容器の製造に使用される容器用表面処理鋼板として特に好適である。 The uses of the surface-treated steel sheet of the present invention are not particularly limited, but it is particularly suitable as a surface-treated steel sheet for containers used in the manufacture of various containers such as food cans, beverage cans, pail cans, and 18-liter cans.
 本発明の効果を確認するために、以下に述べる手順で表面処理鋼板を製造し、その特性を評価した。ただし、本発明はこれらに限定されるものではない。 In order to confirm the effects of the present invention, surface-treated steel sheets were manufactured using the procedures described below, and their properties were evaluated. However, the present invention is not limited to these.
(Snめっき)
 まず、鋼板に電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施したのち、フェノールスルホン酸浴を用いた電気Snめっきを施して、前記鋼板の両面にSnめっき層を形成した。その際、通電時間を変えることにより前記Snめっき層のSn付着量を表2、3に示す値とした。また、一部の実施例においては、前記電気Snめっきに先立ち、鋼板にワット浴を用いた電気Niめっきを施して、前記鋼板の両面にNi含有層としてのNiめっき層を形成した。その際、通電時間と電流密度を変えることにより前記Niめっき層のNi付着量を表2、3に示す値とした。前記Snめっき層のSn付着量は、JIS G 3303に定められた電解剥離法によって測定した。また、前記Niめっき層のNi付着量は、上述した蛍光X線による検量線法で測定した。
(Sn plating)
First, the steel sheet was electrolytically degreased, washed with water, pickled by immersion in dilute sulfuric acid, and washed with water in sequence, and then electroplated with Sn using a phenolsulfonic acid bath to form a Sn plating layer on both sides of the steel sheet. At that time, the electric current time was changed to obtain the Sn adhesion amount of the Sn plating layer as shown in Tables 2 and 3. In some examples, prior to the electroplating with Sn, the steel sheet was electroplated with Ni using a Watts bath to form a Ni plating layer as a Ni-containing layer on both sides of the steel sheet. At that time, the electric current time and the current density were changed to obtain the Ni adhesion amount of the Ni plating layer as shown in Tables 2 and 3. The Sn adhesion amount of the Sn plating layer was measured by the electrolytic stripping method specified in JIS G 3303. The Ni adhesion amount of the Ni plating layer was measured by the above-mentioned fluorescent X-ray calibration curve method.
 さらに、一部の実施例においては、前記Snめっき層を形成した後、リフロー処理を施した。前記リフロー処理においては、直接通電加熱方式により50℃/secの加熱速度で5秒間加熱し、その後、水中に導入し急冷した。 Furthermore, in some examples, after the Sn plating layer was formed, a reflow treatment was performed. In the reflow treatment, the sample was heated for 5 seconds at a heating rate of 50°C/sec using a direct current heating method, and then immersed in water and quenched.
 前記鋼板としては、板厚が0.17mmである缶用鋼板(T4原板)を使用した。 The steel plate used was a can steel plate (T4 base plate) with a thickness of 0.17 mm.
(Snめっき鋼板に対する前処理)
 その後、得られたSnめっき鋼板に対して、表2、3に示した前処理を施した。「C」は陰極電解処理、「A」は陽極電解処理、「D」は浸漬処理、「C→A」は陰極電解処理を行った後、さらに陽極電解処理を行ったことを表す。前記前処理における陰極電解処理、陽極電解処理、および浸漬処理には、いずれも濃度10g/Lの炭酸水素ナトリウム水溶液を使用し、前記炭酸水素ナトリウム水溶液の温度は室温とした。陰極電解処理の際の電気量密度は2.0C/dm、陽極電解処理の際の電気量密度は4.0C/dmとした。浸漬処理における浸漬時間は1秒とした。なお、比較のために一部の実施例においては前処理を行わなかった。
(Pretreatment for Sn-plated steel sheet)
Thereafter, the obtained Sn-plated steel sheet was subjected to the pretreatment shown in Tables 2 and 3. "C" indicates cathodic electrolysis, "A" indicates anodic electrolysis, "D" indicates immersion, and "C→A" indicates cathodic electrolysis followed by anodic electrolysis. In the cathodic electrolysis, anodic electrolysis, and immersion treatments in the pretreatments, an aqueous sodium bicarbonate solution with a concentration of 10 g/L was used, and the temperature of the aqueous sodium bicarbonate solution was room temperature. The electric charge density in the cathodic electrolysis was 2.0 C/dm 2 , and the electric charge density in the anodic electrolysis was 4.0 C/dm 2 . The immersion time in the immersion treatment was 1 second. For comparison, no pretreatment was performed in some examples.
(皮膜形成工程)
 次いで、前記Snめっき鋼板の表面を水溶液で処理することにより、前記Snめっき層上に皮膜層を形成した。具体的には、前記水溶液として表1に示す組成の水溶液を使用し、該水溶液中で陰極電解処理を行うことで皮膜層を形成した。前記水溶液の温度は35℃とし、pHは3以上5以下となるように調整した。電気量密度を調整することによりZr付着量およびTi付着量を制御した。なお、Zr含有化合物としてはフッ化ジルコニウム(ZrF)を用い、Ti含有化合物としてはフッ化チタン(TiF)を用いた。そして、前記水溶液は、表1に示す組成を有するように、Zr含有化合物及びTi含有化合物以外の化合物をさらに用いて各イオンの濃度を調整することにより作成した。
(Film forming process)
Next, the surface of the Sn-plated steel sheet was treated with an aqueous solution to form a coating layer on the Sn-plated layer. Specifically, an aqueous solution having the composition shown in Table 1 was used as the aqueous solution, and a cathodic electrolysis treatment was performed in the aqueous solution to form a coating layer. The temperature of the aqueous solution was set to 35° C., and the pH was adjusted to 3 to 5. The Zr deposition amount and the Ti deposition amount were controlled by adjusting the electric charge density. Zirconium fluoride (ZrF 4 ) was used as the Zr-containing compound, and titanium fluoride (TiF 4 ) was used as the Ti-containing compound. The aqueous solution was prepared by further using compounds other than the Zr-containing compound and the Ti-containing compound to adjust the concentration of each ion so as to have the composition shown in Table 1.
(表面調整工程)
 上記皮膜形成工程の後、表2、3に示した条件で表面調整を行った。具体的には、皮膜形成工程が終了した時点の、表面に水溶液が付着した状態の鋼板をリンガーロールで絞ることにより、皮膜層の表面に存在する水溶液の量を表2、3に記載の量に調整した。前記水溶液の量は、先に述べたとおりフィルター式赤外吸収法による水分計で測定した。その後、表2、3に示した保持時間の間、保持した。すなわち、表面調整工程で使用した水溶液は、上記皮膜形成工程で使用した水溶液と同じである。
(Surface adjustment process)
After the above-mentioned film-forming step, surface conditioning was carried out under the conditions shown in Tables 2 and 3. Specifically, at the time when the film-forming step was completed, the steel sheet with the aqueous solution adhering to its surface was squeezed with a wringer roll to adjust the amount of aqueous solution present on the surface of the coating layer to the amount shown in Tables 2 and 3. The amount of the aqueous solution was measured with a moisture meter using the filter-type infrared absorption method as described above. Thereafter, the solution was held for the holding time shown in Tables 2 and 3. In other words, the aqueous solution used in the surface conditioning step was the same as the aqueous solution used in the above-mentioned film-forming step.
(水洗工程)
 次いで、上記表面調整工程後の鋼板に水洗処理を施した。前記水洗処理は、表2、3に示した条件で1~5回行った。各回の水洗の方法と、使用した水の電気伝導度は表2、3に示したとおりとした。なお、水洗の方法を「浸漬」とした回では、鋼板を水に浸漬して水洗を行った。一方、水洗の方法を「スプレー」とした回では、鋼板にスプレーで水を吹き付けることによって水洗を行った。また、電気伝導度は導電率計を用いて測定した。
(Water washing process)
Next, the steel sheet after the surface conditioning step was subjected to a water rinsing treatment. The water rinsing treatment was performed 1 to 5 times under the conditions shown in Tables 2 and 3. The water rinsing method and the electrical conductivity of the water used for each treatment were as shown in Tables 2 and 3. In the treatment where the water rinsing method was "immersion", the steel sheet was immersed in water for water rinsing. On the other hand, in the treatment where the water rinsing method was "spraying", the steel sheet was rinsed by spraying water onto it. The electrical conductivity was measured using a conductivity meter.
 得られた表面処理鋼板のそれぞれについて、皮膜層中におけるZr酸化物の付着量、Ti酸化物の付着量、P付着量、およびMn付着量を測定した。前記測定は、上述した蛍光X線による検量線法により実施した。測定結果を表4、5に示す。なお、表4、5においては、Zr酸化物およびTi酸化物の付着量を、それぞれ金属Zr量および金属Ti量として記載した。 The amount of Zr oxide, Ti oxide, P, and Mn attached in the coating layer of each of the obtained surface-treated steel sheets was measured. The measurements were performed using the fluorescent X-ray calibration curve method described above. The measurement results are shown in Tables 4 and 5. In Tables 4 and 5, the amount of Zr oxide and Ti oxide attached is shown as the amount of metallic Zr and the amount of metallic Ti, respectively.
 得られた表面処理鋼板のそれぞれについて、以下の手順でエチレングリコールの接触角、吸着元素の原子比率を測定した。測定結果は表4、5に示す。 The contact angle of ethylene glycol and the atomic ratio of the adsorbed elements were measured for each of the surface-treated steel sheets obtained using the following procedure. The measurement results are shown in Tables 4 and 5.
(エチレングリコールの接触角)
 得られた表面処理鋼板のエチレングリコールの接触角は、協和界面科学社製の自動接触角計CA-VP型を用いて測定した。表面処理鋼板の表面温度を20℃±1℃とし、エチレングリコールは20±1℃の富士フイルム和光純薬株式会社の試薬特級のエチレングリコールを使用した。2μlの液滴量でエチレングリコールを表面処理鋼板の表面に滴下し、1秒後にθ/2法によって接触角を測定し、5滴分の接触角の相加平均値をエチレングリコールの接触角とした。
(Contact angle of ethylene glycol)
The contact angle of ethylene glycol on the obtained surface-treated steel sheet was measured using an automatic contact angle meter CA-VP type manufactured by Kyowa Interface Science Co., Ltd. The surface temperature of the surface-treated steel sheet was set to 20°C ± 1°C, and ethylene glycol used was 20 ± 1°C, special reagent grade ethylene glycol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Ethylene glycol was dropped onto the surface of the surface-treated steel sheet in a droplet amount of 2 μl, and the contact angle was measured one second later by the θ/2 method, and the arithmetic mean value of the contact angles of five drops was taken as the contact angle of ethylene glycol.
 なお、熱による接触角の変化を確認するため、表面処理鋼板に200℃、10分間の熱処理を施した後の接触角も測定した。測定条件は上記と同様とした。その結果、本発明の条件を満たす表面処理鋼板では、熱処理前後で接触角の値が実質的に同じであった。それに対し、本発明の条件を満たさない表面処理鋼板では、熱処理により接触角の値が大きく変化するものがあった。 In addition, to confirm the change in contact angle due to heat, the contact angle was also measured after the surface-treated steel sheet was subjected to heat treatment at 200°C for 10 minutes. The measurement conditions were the same as above. As a result, for surface-treated steel sheets that met the conditions of the present invention, the contact angle values were essentially the same before and after the heat treatment. In contrast, for surface-treated steel sheets that did not meet the conditions of the present invention, the contact angle values changed significantly due to the heat treatment.
(吸着元素の原子比率)
 表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの全元素に対する原子比率の合計を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のK2p、Na1s、Ca2p、Mg1sのナロースペクトルの積分強度から、相対感度係数法により検出された全元素に対する原子比率を定量化し、(K原子比率+Na原子比率+Ca原子比率+Mg原子比率)を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
(Atomic ratio of adsorbed elements)
The total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to all elements was measured by XPS. No sputtering was performed in the measurement. The atomic ratio to all elements detected by the relative sensitivity coefficient method was quantified from the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, and Mg1s on the outermost surface of the sample, and (K atomic ratio + Na atomic ratio + Ca atomic ratio + Mg atomic ratio) was calculated. For the XPS measurement, a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, and the X-ray source was a monochrome AlKα ray, the voltage was 15 kV, the beam diameter was 100 μmφ, and the take-off angle was 45°.
 さらに、得られた表面処理鋼板について、以下の方法でBPAフリー塗料との密着性を評価した。評価結果を表4、5に示す。 Furthermore, the adhesion of the obtained surface-treated steel sheets to BPA-free paint was evaluated using the following method. The evaluation results are shown in Tables 4 and 5.
(サンプルの作製)
 BPAフリー塗料との密着性の評価に使用するサンプルとしてのBPAフリー塗装鋼板を、以下の手順で作製した。
(Preparation of Samples)
A BPA-free painted steel sheet as a sample to be used for evaluating adhesion to a BPA-free paint was prepared by the following procedure.
 得られた表面処理鋼板の表面に、缶内面用ポリエステル系塗料(BPAフリー塗料)を塗布し、180℃で10分間の焼付を行ってBPAフリー塗装鋼板を作製した。塗装の付着量は60mg/dmとした。 A polyester-based paint for the inner surface of a can (BPA-free paint) was applied to the surface of the obtained surface-treated steel sheet, and baked at 180° C. for 10 minutes to produce a BPA-free painted steel sheet. The coating weight of the paint was 60 mg/ dm2 .
(BPAフリー塗料との密着性)
 同じ条件で作製したBPAフリー塗装鋼板2枚を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×10Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片は、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、168時間浸漬した。浸漬後、洗浄および乾燥をした後、分割した試験片の2枚の鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。3つの試験片の平均値を下記の4水準で評価した。実用上、結果が1~3であれば、BPAフリー塗料との密着性に優れるものとして評価できる。
 1:2.5kgf以上
 2:2.0kgf以上2.5kgf未満
 3:1.5kgf以上2.0kgf未満
 4:1.5kgf未満
(Adhesion with BPA-free paint)
Two BPA-free painted steel sheets prepared under the same conditions were laminated with the painted surfaces facing each other with a nylon adhesive film sandwiched therebetween, and then bonded together under pressure conditions of 2.94 x 105 Pa, 190°C temperature, and 30 seconds of pressure bonding time. This was then divided into test pieces with a width of 5 mm. The divided test pieces were immersed for 168 hours in a test liquid at 55°C consisting of a mixed aqueous solution containing 1.5% by mass of citric acid and 1.5% by mass of salt. After immersion, washing and drying, the two steel sheets of the divided test pieces were peeled off with a tensile tester, and the tensile strength when peeled off was measured. The average value of the three test pieces was evaluated according to the following four levels. In practical terms, if the results are 1 to 3, it can be evaluated as having excellent adhesion to the BPA-free paint.
1: 2.5 kgf or more 2: 2.0 kgf or more but less than 2.5 kgf 3: 1.5 kgf or more but less than 2.0 kgf 4: Less than 1.5 kgf
 表4、5に示した結果から明らかなように、本発明の条件を満たす表面処理鋼板は、いずれも6価クロムを用いずに製造したにもかかわらず、優れたBPAフリー塗料との密着性を有していた。 As is clear from the results shown in Tables 4 and 5, all of the surface-treated steel sheets that met the conditions of the present invention had excellent adhesion to BPA-free paint, even though they were manufactured without using hexavalent chromium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (9)

  1.  鋼板の少なくとも一方の面に、
     Snめっき層と、
     前記Snめっき層上に配置された、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板であって、
     エチレングリコールの接触角が50°以下であり、
     表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計が、5.0%以下である、表面処理鋼板。
    At least one surface of the steel plate is
    A Sn plating layer;
    A surface-treated steel sheet having a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn plating layer,
    The contact angle of ethylene glycol is 50° or less,
    A surface-treated steel sheet having a total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to all elements of 5.0% or less.
  2.  前記Snめっき層は、Sn付着量が前記鋼板の片面当たり0.1~20.0g/mである、請求項1に記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1, wherein the Sn plating layer has a Sn coating weight of 0.1 to 20.0 g/ m2 per one side of the steel sheet.
  3.  前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計が、金属Zr量と金属Ti量で前記鋼板の片面当たり0.3~50.0mg/mである、請求項1または2に記載の表面処理鋼板。 3. The surface-treated steel sheet according to claim 1, wherein the total amount of deposited Zr oxide and Ti oxide in the coating layer is 0.3 to 50.0 mg/ m2 per side of the steel sheet in terms of the amount of metallic Zr and the amount of metallic Ti.
  4.  前記皮膜層は、さらにPを含有し、P付着量が前記鋼板の片面当たり50.0mg/m以下である、請求項1~3のいずれか一項に記載の表面処理鋼板。 The surface-treated steel sheet according to any one of claims 1 to 3, wherein the coating layer further contains P, and the P coating amount is 50.0 mg/ m2 or less per one side of the steel sheet.
  5.  前記皮膜層は、さらにMnを含有し、Mn付着量が前記鋼板の片面当たり50.0mg/m以下である、請求項1~4のいずれか一項に記載の表面処理鋼板。 The surface-treated steel sheet according to any one of claims 1 to 4, wherein the coating layer further contains Mn, and the Mn coating amount is 50.0 mg/ m2 or less per one side of the steel sheet.
  6.  前記表面処理鋼板が、前記Snめっき層の下に配置されたNi含有層をさらに有する、請求項1~5のいずれか一項に記載の表面処理鋼板。 The surface-treated steel sheet according to any one of claims 1 to 5, further comprising a Ni-containing layer disposed below the Sn-plated layer.
  7.  前記Ni含有層は、Ni付着量が前記鋼板の片面当たり、2mg/m~2000mg/m以下である、請求項6に記載の表面処理鋼板。 The surface-treated steel sheet according to claim 6, wherein the Ni-containing layer has a Ni deposition amount of 2 mg/m 2 to 2000 mg/m 2 per one side of the steel sheet.
  8.  鋼板の少なくとも一方の面に、Snめっき層と、前記Snめっき層上に配置されたZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板の製造方法であって、
     少なくとも一方の面にSnめっき層を有する鋼板の表面を、ZrイオンおよびTiイオンの少なくとも一方を含有する水溶液で処理して、前記Snめっき層上に前記皮膜層を形成する皮膜形成工程と、
     前記皮膜層の表面に前記水溶液が1.0~30.0g/m存在する状態で、0.1~20.0秒保持する表面調整工程と、
     前記表面調整工程後の前記鋼板を少なくとも1回水洗する水洗工程とを含み、
     前記水洗工程では、
      少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
    A method for producing a surface-treated steel sheet having a Sn-plated layer on at least one surface of a steel sheet, and a coating layer containing at least one of Zr oxide and Ti oxide disposed on the Sn-plated layer, comprising:
    a coating formation step of treating a surface of a steel sheet having a Sn plating layer on at least one surface thereof with an aqueous solution containing at least one of Zr ions and Ti ions to form the coating layer on the Sn plating layer;
    a surface conditioning step of maintaining the aqueous solution at 1.0 to 30.0 g/ m2 on the surface of the coating layer for 0.1 to 20.0 seconds;
    and a water washing step of washing the steel sheet after the surface conditioning step at least once with water,
    In the water washing step,
    A method for producing a surface-treated steel sheet, comprising using water having an electrical conductivity of 100 μS/m or less in at least the final water washing.
  9.  前記表面処理鋼板が、前記Snめっき層の下に配置されたNi含有層をさらに有する、請求項8に記載の表面処理鋼板の製造方法。
     
     
     
    The method for producing a surface-treated steel sheet according to claim 8 , wherein the surface-treated steel sheet further comprises a Ni-containing layer disposed under the Sn-plated layer.


PCT/JP2023/025345 2022-11-24 2023-07-07 Surface-treated steel sheet and method for producing same WO2024111157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023561105A JP7401039B1 (en) 2022-11-24 2023-07-07 Surface treated steel sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022187787 2022-11-24
JP2022-187787 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024111157A1 true WO2024111157A1 (en) 2024-05-30

Family

ID=91195950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025345 WO2024111157A1 (en) 2022-11-24 2023-07-07 Surface-treated steel sheet and method for producing same

Country Status (2)

Country Link
TW (1) TW202421847A (en)
WO (1) WO2024111157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174190A1 (en) * 2014-05-15 2015-11-19 Jfeスチール株式会社 Steel plate for container
JP2018135569A (en) * 2017-02-22 2018-08-30 新日鐵住金株式会社 Sn PLATED STEEL SHEET AND PRODUCTION METHOD THEREOF
WO2018190412A1 (en) * 2017-04-13 2018-10-18 新日鐵住金株式会社 Sn-PLATED STEEL SHEET AND METHOD FOR MANUFACTURING Sn-PLATED STEEL SHEET
WO2022138006A1 (en) * 2020-12-21 2022-06-30 Jfeスチール株式会社 Surface-treated steel sheet and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174190A1 (en) * 2014-05-15 2015-11-19 Jfeスチール株式会社 Steel plate for container
JP2018135569A (en) * 2017-02-22 2018-08-30 新日鐵住金株式会社 Sn PLATED STEEL SHEET AND PRODUCTION METHOD THEREOF
WO2018190412A1 (en) * 2017-04-13 2018-10-18 新日鐵住金株式会社 Sn-PLATED STEEL SHEET AND METHOD FOR MANUFACTURING Sn-PLATED STEEL SHEET
WO2022138006A1 (en) * 2020-12-21 2022-06-30 Jfeスチール株式会社 Surface-treated steel sheet and production method therefor

Also Published As

Publication number Publication date
TW202421847A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
EP2551377B1 (en) Method for producing a steel sheet for a container
JP5884947B2 (en) Ni-plated steel sheet and method for producing Ni-plated steel sheet
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
US8133594B2 (en) Steel sheet for container use
JP2012062518A (en) Method for production of steel sheet for container
TWI792744B (en) Surface-treated steel sheet and manufacturing method thereof
JP7070823B1 (en) Surface-treated steel sheet and its manufacturing method
US6129995A (en) Zinciferous coated steel sheet and method for producing the same
JP5186817B2 (en) Steel plate for containers
WO2009139480A1 (en) Process for production of tin-plated steel sheets, tin-plated steel sheets and chemical conversion treatment fluid
JP7401039B1 (en) Surface treated steel sheet and its manufacturing method
JP7460035B1 (en) Surface-treated steel sheet and its manufacturing method
WO2024111157A1 (en) Surface-treated steel sheet and method for producing same
JP7435924B1 (en) Surface treated steel sheet and its manufacturing method
JP7435925B1 (en) Surface treated steel sheet and its manufacturing method
WO2024111159A1 (en) Surface-treated steel sheet and method for producing same
WO2016125911A1 (en) Tin-plated steel sheet, chemical conversion treated steel sheet and manufacturing method therefor
WO2024111156A1 (en) Surface-treated steel sheet and production method therefor
WO2024111158A1 (en) Surface-treated steel sheet and method for producing same
JP7327719B1 (en) Surface-treated steel sheet and manufacturing method thereof
JP7327718B1 (en) Surface-treated steel sheet and manufacturing method thereof
TWI840140B (en) Surface treated steel plate and manufacturing method thereof
JP7239020B2 (en) Sn-based plated steel sheet
JP2010013706A (en) Process for producing tin-plated steel plate, and tin-plated steel plate
JP2010133014A (en) Method for producing tinned steel sheet, and the tinned steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894173

Country of ref document: EP

Kind code of ref document: A1