WO2023195177A1 - ロボット制御装置及び制御方法 - Google Patents

ロボット制御装置及び制御方法 Download PDF

Info

Publication number
WO2023195177A1
WO2023195177A1 PCT/JP2022/017421 JP2022017421W WO2023195177A1 WO 2023195177 A1 WO2023195177 A1 WO 2023195177A1 JP 2022017421 W JP2022017421 W JP 2022017421W WO 2023195177 A1 WO2023195177 A1 WO 2023195177A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
external force
speed
operating
control device
Prior art date
Application number
PCT/JP2022/017421
Other languages
English (en)
French (fr)
Inventor
洋 勝久
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/017421 priority Critical patent/WO2023195177A1/ja
Priority to TW112108481A priority patent/TW202406700A/zh
Publication of WO2023195177A1 publication Critical patent/WO2023195177A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present invention relates to a robot control device and a control method.
  • Collaborative robot systems are known in which humans and robots share a work space without safety fences. In such collaborative robot systems, safety is generally ensured by the robot detecting contact with a person and stopping the robot.
  • Patent Document 1 relates to so-called direct teaching and states, ⁇ In the robot system 11, when the operator 60 applies a force (external force) to the tip 58 of the robot 50, the robot control device 10 controls the force measuring unit 21 to measure the force (external force).
  • the actuators that move each axis of the robot 50 are controlled based on the force acting on the tip 58 of the robot 50, the set data, the position data of the robot 50, etc., and the positions of the axes that make up the robot 50 are controlled. (Paragraph 0019).
  • Patent Document 2 relates to a simulation device for a collaborative robot, and describes a “simulation device 50 for simulating collaborative work performed by a collaborative robot and a person, which simulates collaborative work.
  • An image in which a head-mounted display device 80 worn by an operator, a detection unit 70 that detects the position of the operator in real space, and a robot system model including a collaborative robot model are arranged in a three-dimensional virtual space. is displayed in a three-dimensional virtual space based on the three-dimensional model display unit 502 that displays on a head-mounted display device, the operation program of the collaborative robot that executes the collaborative work, and the detected position of the operator. and a simulation execution unit 503 that causes a collaborative robot model to operate in a simulated manner.'' (Summary).
  • Patent Document 3 relates to direct teaching of a robot, and states, ⁇ The robot arm (100) is provided with a grip part (103) that has a structure separate from the hand effect part (102) attached to the robot arm. 103) is held and moved by a person, the robot arm (100) follows the gripping part (103) and moves.
  • the gripping part (103) is equipped with a contact sensor (105), and the contact sensor ( The method of follow-up control is switched according to the detection result of step 105)" (abstract).
  • ⁇ A human collaborative robot system (1) includes a first detection section (S1) that detects an external force acting on the robot, and a first detection section (S1) that detects an external force acting on the robot, and a robot that is operated manually by a human. If the external force detected by the second detection unit (S2) that detects only the operating force acting on it and the first detection unit is larger than a predetermined threshold, the robot is moved in a direction that reduces the external force or the robot is moved. and a safety ensuring operation command unit (21) that instructs the safety ensuring operation to stop.''
  • One aspect of the present disclosure is a robot control device that controls a robot, wherein when the robot is operating according to a control program, when it is detected that a predetermined external force is applied to the robot, , a robot control device including a speed control unit that changes the operating speed of the robot.
  • Another aspect of the present disclosure is a control method for controlling a robot by a robot control device, wherein when the robot is operating according to a control program, it is detected that a predetermined external force is applied to the robot.
  • the operating speed of the robot is changed depending on the robot's operating speed.
  • FIG. 1 is a diagram showing the equipment configuration of a robot system according to an embodiment. It is a diagram showing an example of the hardware configuration of a robot control device and a teaching pendant.
  • FIG. 2 is a functional block diagram of a robot control device.
  • FIG. 3 is a diagram for explaining the operation contents of speed control according to the first embodiment.
  • FIG. 7 is a diagram for explaining the operation details of speed control according to the second embodiment.
  • 3 is a flowchart showing a robot speed control process by the robot control device according to an embodiment.
  • FIG. 1 is a diagram showing the equipment configuration of a robot system 100 according to an embodiment.
  • the robot system 100 includes a robot 10, a robot control device 50 that controls the robot 10, and a teaching pendant 30 connected to the robot control device 50.
  • the robot 10 is configured as a collaborative robot that performs tasks in cooperation with humans.
  • the robot control device 50 causes the robot 10 to perform a predetermined task according to a control program loaded into the robot control device 50.
  • the robot control device 50 provides a function of changing the speed of the robot 10 operating according to a control program by an intuitive and convenient operation of applying force to the robot 10.
  • the base 11 of the robot 10 is fixed to the installation floor.
  • the robot 10 can perform desired tasks using an end effector attached to the wrist at the tip of the arm.
  • the end effector is an external device that can be replaced depending on the application, and is, for example, a hand, a welding gun, a tool, or the like.
  • FIG. 1 shows an example in which a hand 60 is used as an example of an end effector.
  • the robot 10 is a vertical articulated robot in this embodiment, other types of robots may be used.
  • the robot control device 50 controls the operation of the robot 10 according to a control program or instructions from the teaching pendant 30.
  • a force sensor 71 is arranged below the base 11 of the robot 10.
  • the force sensor 71 is, for example, a six-axis force sensor.
  • the robot control device 50 can determine the external force (contact force) acting on the robot 10 based on the detected value of the force sensor 71, and can detect that a person or an object has contacted the robot 10. Note that the external force (contact force) acting on the robot 10 may be detected using a torque sensor placed on each joint axis (or at least one joint axis) of the robot 10.
  • the teaching operation panel 30 is used to perform various operations related to teaching, such as setting various settings related to teaching the robot 10, creating programs, and jogging the robot 10.
  • an information processing device such as a tablet terminal or a PC (personal computer) having a teaching function may be used.
  • FIG. 2 shows an example of the hardware configuration of the robot control device 50 and the teaching pendant 30.
  • the robot control device 50 is a general robot controller in which a processor 51 is connected to a memory 52 (ROM, RAM, non-volatile memory, etc.), various input/output interfaces 53, an operation section 54 including various operation switches, etc. via a bus. It may have a configuration as a computer.
  • the teaching pendant 30 provides a processor 31 with a memory 32 (ROM, RAM, non-volatile memory, etc.), a display section 33, an operation section 34 comprised of input devices such as a keyboard (or software keys), and various input/outputs. It may have a general computer configuration in which the interface 35 and the like are connected via a bus.
  • FIG. 3 is a functional block diagram of the robot control device 50.
  • the robot control device 50 includes a motion control section 151, an external force detection section 152, a stop control section 153, and a speed control section 154.
  • the motion control unit 151 generates a trajectory plan for predetermined movable parts of the robot 10 (TCP (tool center point), etc.) according to the control program 150 loaded into the robot control device 50, and moves the robot by kinematic calculation. Generate commands for each of the 10 axes.
  • the robot control device 50 can move a predetermined control part of the robot 10 according to a planned trajectory by executing servo control for each axis according to the commands for each axis. Further, the operation control unit 151 controls the hand 60 according to the control program 150.
  • the external force detection unit 152 calculates the external force (contact force) can be detected. Note that the external force detection unit 152 can also be expressed as an external force acquisition unit that acquires external force based on the detected value of an external force detector such as the force sensor 71.
  • the stop control unit 153 stops the robot 10 to ensure safety when the external force (contact force) detected by the external force detection unit 152 exceeds a reference value.
  • This reference value is defined as a threshold value TH1. This configuration ensures safety in collaborative work between humans and the robot 10.
  • the speed control unit 154 changes the operating speed of the robot 10 in response to detecting that a predetermined external force is applied to the robot 10 when the robot 10 is operating according to the control program.
  • the speed control unit 154 controls the speed control unit 154 so that the operator intends to change the speed of the robot 10 when the external force (contact force) detected by the external force detection unit 152 is less than or equal to the threshold value TH1. It is determined that the arm of the robot 10 is being operated by the robot 10, and the speed of the robot 10 is changed.
  • a worker who desires to change the speed of the robot 10 that is operating at a speed specified by the control program 150 can use the external force used to determine whether or not to stop the robot 10.
  • the arm of the robot 10 may be operated with a relatively weak force equal to or less than the threshold value TH1, that is, with a light force. Since the worker can change the speed of the robot 10 by operating the arm with a light force, functions useful to the worker can be used with convenient and simple operations. Therefore, the configuration in which the speed of the robot 10 is changed when an external force equal to or less than the threshold TH1 is detected makes it possible to reliably grasp the intention of the worker who desires to temporarily change the speed of the robot 10. .
  • the speed control unit 154 controls the robot 10 to reduce its speed when the following conditions (A1) and (A2) are satisfied.
  • A1 When the external force detected by the external force detection unit 152 is less than the threshold value TH1
  • A2) When the direction of the external force applied by the worker can be considered to be opposite to the direction of movement of the robot 10
  • FIG. 4 shows the robot 10 viewed from above.
  • the robot 10 is moving along the arrow D, and at the illustrated position, the operator is operating the robot 10 to push it back with an external force F1 that is less than or equal to the threshold value TH1.
  • the relationship between the motion direction D1 of the robot 10 and the external force F1 at the illustrated position is shown within the broken line circle at the bottom right of FIG.
  • the following criterion (B1) or (B2) may be used.
  • the difference (angle ⁇ in FIG. 4) between the movement direction D1 of the robot 10 and the direction of the force (external force) F1 applied by a person to the robot 10 is within the range of 180 degrees ⁇ a predetermined value (here, a predetermined values are less than 90 degrees).
  • the force F1 that the person applies to the robot 10 includes a component in the opposite direction to the robot's motion direction D1. Both of these can be considered to be states in which the worker is applying force to the robot 10 in a direction that can be considered to be opposite to the direction of movement of the robot 10.
  • the speed control unit 154 reduces the speed of the robot 10 on the condition that it is detected that the worker has applied a force equal to or less than a threshold value TH1 to the robot 10 in a direction that can be considered to be opposite to the direction of movement of the robot 10.
  • a threshold value TH1 a threshold value that can be considered to be opposite to the direction of movement of the robot 10.
  • the following operation (C1) or (C2) may be possible.
  • C1 When an external force equal to or less than a threshold value TH1 is detected in a direction that can be considered to be opposite to the robot's operating direction, the operating speed of the robot 10 is reduced to a constant speed that is less than the speed specified in the control program.
  • the operator applies a force equal to or less than the reference value TH1 to the robot that is operating according to the control program in a direction that can be considered to be opposite to the operating direction.
  • the robot's operating speed can be reduced. Therefore, the worker can perform collaborative work with the robot even more efficiently depending on various situations.
  • the robot 10 is moving along the arrow E, and the operator at the illustrated position is operating the robot 10 in a direction that can be considered to be the same as the operating direction of the robot 10 with an external force F2 that is less than a threshold value TH1.
  • the relationship between the operating direction E1 of the robot 10 and the external force F2 at the illustrated position is shown within the broken line circle at the lower right of FIG.
  • the following criterion (B11) or (B12) may be used.
  • the difference (angle ⁇ 2 in FIG. 5) between the movement direction E1 of the robot 10 and the direction of the force (external force) F2 applied by a person to the robot 10 is within a predetermined value (here, the predetermined value is 90 degrees). ).
  • the force F2 that the person applies to the robot 10 includes a component in the same direction as the robot's motion direction E1
  • Both of these can be considered to be states in which the worker is applying force to the robot 10 in a direction that can be considered to be the same as the direction of movement of the robot 10.
  • the speed control unit 154 increases the speed of the robot 10 on the condition that it is detected that the worker has applied a force equal to or less than a threshold value TH1 to the robot 10 in a direction that can be considered to be the same as the movement direction of the robot 10. .
  • a threshold value TH1 As an example of control to increase the speed, the following operation (C11) or (C12) may be possible.
  • C11 When an external force equal to or less than the threshold value TH1 is detected in a direction that can be considered to be the same as the movement direction of the robot 10, the speed of the robot 10 is restored to the speed specified by the control program 150.
  • the operator applies a force equal to or less than the reference value TH1 to the robot whose speed has temporarily decreased in a direction that can be regarded as the same direction as the operating direction.
  • the operating speed of the robot can be increased or restored. Therefore, the worker can perform collaborative work with the robot even more efficiently depending on various situations.
  • FIG. 6 shows a flowchart illustrating the above-described control method (speed control processing) by the robot control device 50.
  • This speed control process is executed under the control of the processor 51 of the robot control device 50.
  • This speed control process may be executed periodically while the robot 10 is operating.
  • the external force detection unit 152 detects whether an external force (contact force) is applied to the robot 10 (step S1). Taking into consideration the noise level of the output value of the force sensor 71, the external force detection unit 152 detects an external force (contact force) when the output value of the force sensor 71 is equal to or higher than a certain value (however, smaller than TH1). It may also be possible to appropriately detect whether an external force (contact force) has been applied to the robot 10 by determining that an external force (contact force) has been applied. In step S1, the process is repeated until an external force is detected (S1: NO).
  • step S2 If it is detected that an external force (contact force) is applied to the robot 10 (S1: YES), the magnitude of the external force (F) is determined (step S2). When the magnitude of the external force (F) exceeds a predetermined reference value (threshold value TH1) (S2: F>TH1), the robot 10 is stopped by the stop control unit 153 to ensure safety (step S3).
  • a predetermined reference value threshold value TH1
  • Step S4 If the magnitude of the external force (F) is less than or equal to a predetermined reference value (threshold TH1) (S2: F ⁇ TH1), the speed control unit 154 changes the operating speed of the robot 10 (Step S4).
  • the speed control unit 154 changes the operating speed of the robot 10 according to the direction of the external force based on the operating direction of the robot 10. can do.
  • a threshold value (first threshold value) for detecting an external force applied in the opposite direction to the robot's operating direction in the first embodiment and a threshold value for detecting an external force applied in the same direction as the robot's operating direction in the second embodiment.
  • the threshold value (second threshold value) for detecting such external force is the same value (threshold value TH1), the first threshold value and the second threshold value may be different values.
  • the functional blocks of the robot control device 50 shown in FIG. ) etc. may be realized by a configuration mainly based on hardware.
  • Programs that execute various processes such as the speed control process (FIG. 6) in the embodiment described above are stored in various computer-readable recording media (for example, ROM, EEPROM, semiconductor memory such as flash memory, magnetic recording medium, CD - Optical discs such as ROM, DVD-ROM, etc.) can be recorded.
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • semiconductor memory such as flash memory
  • magnetic recording medium CD - Optical discs such as ROM, DVD-ROM, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

ロボット(10)を制御するロボット制御装置(50)であって、ロボット(10)が制御プログラムにしたがって動作している場合に、ロボット(10)に所定の外力がかかったことが検出されることに応じて、ロボット(10)の動作速度を変更する速度制御部(154)を備える、ロボット制御装置(50)である。

Description

ロボット制御装置及び制御方法
 本発明は、ロボット制御装置及び制御方法に関する。
 安全柵無しで人とロボットが作業空間を共にする協働ロボットシステムが知られている。このような協働ロボットシステムでは、一般に、人との接触をロボットが検知してロボットが停止することで安全を確保している。
 特許文献1は、いわゆるダイレクトティーチングに関し、「ロボットシステム11では、操作者60がロボット50の先端部58に力(外力)を作用させたとき、ロボット制御装置10は、力計測部21が計測したロボット50の先端部58に作用する力、設定されたデータ、およびロボット50の位置データなどにもとづいて、ロボット50の各軸を移動させるアクチュエータを制御して、ロボット50を構成する軸の位置を変え、ロボット50を移動させる。」ことを記載する(段落0019)。
 特許文献2は、協働ロボットのシミュレーション装置に関し、「協働ロボットと人とが協働して行う協働的作業のシミュレーションのためのシミュレーション装置50であって、協働的作業を模擬的に遂行する操作者に装着される頭部装着型表示装置80と、操作者の実空間における位置を検出する検出部70と、協働ロボットモデルを含むロボットシステムモデルを三次元仮想空間に配置した画像を、頭部装着型表示装置に表示させる三次元モデル表示部502と、協働的作業を実行する協働ロボットの動作プログラムと、検出された操作者の位置とに基づいて、三次元仮想空間で協働ロボットモデルを模擬的に動作させるシミュレーション実行部503と、を具備する。」ことを記載する(要約書)。
 特許文献3は、ロボットのダイレクトティーチングに関し、「ロボットアーム(100)に、ロボットアームに取り付けられた手先効果部(102)と分離した構造をしている把持部(103)を設け、把持部(103)を人が把持して移動させることで、ロボットアーム(100)を把持部(103)に追従して移動させる。また、把持部(103)に接触センサ(105)を備え、接触センサ(105)の検出結果に応じて追従制御の方法を切り替える。」ことを記載する(要約書)。
 特許文献4は、協働ロボットに関し、「人間協働ロボットシステム(1)は、ロボットに作用する外力を検出する第一検出部(S1)と、人間がロボットを手動で操作するときのロボットに作用する操作力のみを検出する第二検出部(S2)と、第一検出部により検出された外力が所定の閾値よりも大きい場合には、外力を小さく方向にロボットを移動させるかまたはロボットを停止させる安全確保動作を指令する安全確保動作指令部(21)とを含む。」ことを記載する(要約書)。
特開2015-202534号公報 特開2019-188531号公報 国際公開第2012/101956号 特開2018-111174号公報
 協働ロボットの教示の段階ではなく、協働ロボットが制御プログラムを実行して所定の作業を作業者と協働して実行する実稼働時の場面を考慮する。このような協働ロボットを用いたシステムの実稼働時において、協働ロボットと共に作業を行っている作業者がロボットの速度を一時的に低下させたい場合、一般には、作業者は、それまでの作業を止めて、教示操作盤を操作しロボットの動作速度の設定を行う必要がある。また、作業者は、低下させたロボットの速度を元の速度に戻すためには、再度、教示操作盤を操作する必要がある。このような操作は、作業者にとって煩わしい操作であると共に、作業効率を低下させる。作業を停止して教示操作盤を操作するといったような必要をなくし、実稼働中の協働ロボットの速度を作業者の意図するように変更することのできるロボット制御装置および制御方法が望まれる。
 本開示の一態様は、ロボットを制御するロボット制御装置であって、前記ロボットが制御プログラムにしたがって動作している場合に、前記ロボットに所定の外力がかかったことが検出されることに応じて、前記ロボットの動作速度を変更する速度制御部を備える、ロボット制御装置である。
 本開示の別の態様は、ロボット制御装置によりロボットを制御するための制御方法であって、前記ロボットが制御プログラムにしたがって動作している場合に、前記ロボットに所定の外力がかかったことが検出されることに応じて、前記ロボットの動作速度を変更する、制御方法である。
 上記構成によれば、制御プログラムにしたがって動作しているロボットの動作速度を、ロボットに力を加えるという直感的で且つ作業者にとって都合のよい操作により変更することが可能となる。
 添付図面に示される本発明の典型的な実施形態の詳細な説明から、本発明のこれらの目的、特徴および利点ならびに他の目的、特徴および利点がさらに明確になるであろう。
一実施形態に係るロボットシステムの機器構成を示す図である。 ロボット制御装置及び教示操作盤のハードウェア構成例を示す図である。 ロボット制御装置の機能ブロック図である。 第1実施例に係る速度制御の動作内容を説明するための図である。 第2実施例に係る速度制御の動作内容を説明するための図である。 一実施形態に係るロボット制御装置によるロボットの速度制御処理を表すフローチャートである。
 次に、本開示の実施形態について図面を参照して説明する。参照する図面において、同様の構成部分または機能部分には同様の参照符号が付けられている。理解を容易にするために、これらの図面は縮尺を適宜変更している。また、図面に示される形態は本発明を実施するための一つの例であり、本発明は図示された形態に限定されるものではない。
 図1は一実施形態に係るロボットシステム100の機器構成を示す図である。ロボットシステム100は、ロボット10と、ロボット10を制御するロボット制御装置50と、ロボット制御装置50に接続された教示操作盤30とを含む。ロボット10は、人と協働して作業を実行する協働ロボットとして構成されている。ロボットシステム100の実稼働時には、ロボット制御装置50は、当該ロボット制御装置50内にローディングされた制御プログラムにしたがって、ロボット10に所定の作業を実行させる。
 協働ロボットシステムにおいてロボットと協働して作業を行っている作業者は、作業上の様々な要因から、制御プログラムにしたがって動作しているロボットの速度を一時的に変更したいと望む場合がある。本実施形態に係るロボット制御装置50は、制御プログラムにしたがって動作しているロボット10の速度を、ロボット10に力を加えるという直感的且つ都合の良い操作により変更する機能を提供する。
 ロボット10は、基部11が設置フロアに固定されている。ロボット10は、アーム先端の手首部に取り付けられたエンドエフェクタによって所望の作業を実行することができる。エンドエフェクタは、用途に応じて交換可能な外部装置であり、例えば、ハンド、溶接ガン、工具等である。図1では、エンドエフェクタの一例としてのハンド60が用いられている例を示す。ロボット10は、本実施形態では垂直多関節ロボットであるが、他の種類のロボットが用いられても良い。
 ロボット制御装置50は、制御プログラム或いは教示操作盤30からの指令にしたがってロボット10の動作を制御する。
 ロボット10の基部11の下方には力センサ71が配置されている。力センサ71は、例えば、6軸力センサである。ロボット制御装置50は、力センサ71の検出値に基づきロボット10に作用する外力(接触力)を求め、ロボット10に対して人或いは物体が接触したことを検出することができる。なお、ロボット10に作用する外力(接触力)を、ロボット10の各関節軸(或いは、少なくとも一つの関節軸)に配置したトルクセンサを用いて検出する構成とすることもできる。
 教示操作盤30は、ロボット10の教示に係わる各種設定、プログラム作成、ロボット10のジョグ操作等の教示に係わる各種操作を行うために用いられる。なお、教示操作盤に代えて、教示機能を備えたタブレット端末、PC(パーソナルコンピュータ)等の情報処理装置を用いても良い。
 図2に、ロボット制御装置50及び教示操作盤30のハードウェア構成例を示す。ロボット制御装置50は、プロセッサ51に対してメモリ52(ROM、RAM、不揮発性メモリ等)、各種入出力インタフェース53、各種操作スイッチを含む操作部54等がバスを介して接続された、一般的なコンピュータとしての構成を有していても良い。教示操作盤30は、プロセッサ31に対して、メモリ32(ROM、RAM、不揮発性メモリ等)、表示部33、キーボード(或いはソフトウェアキー)等の入力装置により構成される操作部34、各種入出力インタフェース35等がバスを介して接続された、一般的なコンピュータとしての構成を有していても良い。
 図3は、ロボット制御装置50の機能ブロック図である。ロボット制御装置50は、動作制御部151と、外力検出部152と、停止制御部153と、速度制御部154とを備える。
 動作制御部151は、ロボット制御装置50内にロードされた制御プログラム150にしたがって、ロボット10の所定に可動部位(TCP(ツールセンターポイント)等)の軌道計画を生成し運動学的な計算によりロボット10の各軸の指令を生成する。そして、ロボット制御装置50は、各軸の指令にしたがって各軸に対するサーボ制御を実行することで、ロボット10の所定の制御部位を計画された軌道に従って移動させることができる。また、動作制御部151は、制御プログラム150にしたがってハンド60の制御を行う。
 外力検出部152は、力センサ71が出力する検出値から、ロボット10が把持するワークの重量、及びロボット10が動作することにより生じる慣性力を減算することで、ロボット10に作用する外力(接触力)を検出することができる。なお、外力検出部152は、力センサ71等の外力検出器の検出値に基づいて外力を取得する外力取得部と表すこともできる。
 停止制御部153は、外力検出部152により検出される外力(接触力)が基準値を超える場合に、安全確保のため、ロボット10を停止させる。この基準値を閾値TH1とする。この構成により、人とロボット10との協働した作業における安全性が確保される。
 速度制御部154は、ロボット10が制御プログラムにしたがって動作している場合に、ロボット10に所定の外力がかかったことが検出されることに応じて、ロボット10の動作速度を変更する。本実施形態では、例示として、速度制御部154は、外力検出部152により検出される外力(接触力)が閾値TH1以下である場合に、作業者がロボット10の速度を変更することを意図してロボット10のアームを操作していると判断して、ロボット10の速度を変更する。
 上記構成によれば、制御プログラム150で指定された速度で動作しているロボット10の速度を変更することを望む作業者は、ロボット10を停止させるか否かを判定するために用いられる外力の閾値TH1以下の比較的弱い力で、すなわち、軽い力でロボット10のアームを操作すればよい。作業者は、軽い力でアームを操作することでロボット10の速度を変更することができるので、作業者にとって有益な機能が作業者にとって都合の良い簡便な操作で利用できることとなる。したがって、閾値TH1以下の外力が検出された場合にロボット10の速度を変更するという構成は、ロボット10の速度を一時的に変更することを望む作業者の意図を確実に捉えることを可能とする。
 以下、閾値TH1以下の外力が検出された場合における速度制御部154による速度制御の具体例を2例説明する。以下で説明する2つの実施例は、ロボット10に閾値TH1以下の外力がかかったことが検出された場合に、ロボット10の動作方向を基準とした外力の方向に応じて前記ロボット10の速度を変更する動作に相当する。
(第1実施例)
 第1実施例は、制御プログラム150にしたがって動作しているロボット10の動作方向と逆向きとみなせる方向に作業者がロボット10に対して一定値(閾値TH1)以下の力を加えた場合に、ロボット10の速度を低下させる動作例である。すなわち、速度制御部154は、次の条件(A1)及び(A2)が満たされるとき、ロボット10の速度を低下させるように制御する。

(A1)外力検出部152により検出される外力が閾値TH1以下であるとき
(A2)作業者が加える外力の向きがロボット10の動作方向と逆向きとみなせるとき
 図4を参照して本第1実施例の動作を説明する。図4は、ロボット10を上方から見た状態を表す。図4において、ロボット10は矢印Dに沿って動作しており、図示の位置で作業者が、閾値TH1以下の外力F1でロボット10を押し戻すよう操作している。図示の位置でのロボット10の動作方向D1と外力F1の関係を図4中の右下の破線の円内に示す。
 上記条件(A2)が満たされていると判定するための基準として、例えば、以下の判定基準(B1)或いは(B2)を用いても良い。

(B1)ロボット10の動作方向D1と、人がロボット10に加える力(外力)F1の方向との差(図4中の角度θ)が180度±所定値の範囲以内である(ここで所定値は、90度未満の値である)。
(B2)人がロボット10に加える力F1に、ロボットの動作方向D1と逆向きの成分が含まれている。

これらは、いずれも、作業者が、ロボット10の動作方向と逆向きとみなせる向きにロボット10に力を加えている状態とみなすことができる。
 速度制御部154は、ロボット10の動作方向と逆向きとみなせる方向に作業者がロボット10に対して閾値TH1以下の力を加えたことが検出されることを条件として、ロボット10の速度を低下させる。速度を低下させる制御の例としては、以下のような動作(C1)或いは(C2)が有り得る。

(C1)ロボットの動作方向と逆向きとみなせる方向に閾値TH1以下の外力が検出された場合に、ロボット10の動作速度を制御プログラムで指定されている速度未満の一定の速度まで下げる。
(C2)ロボットの動作方向と逆向きとみなせる方向に閾値TH1以下の外力が検出された場合に、当該外力が作用する時間を計測し、当該外力が作用する時間が長いほど、速度の低下度合いが大きくなるように制御する。この場合、作業者は、ロボット10に力を加えている状態を長くするほど、速度の低下度合いを大きくすることができる。
 以上説明したように、第1実施例によれば、作業者は、制御プログラムにしたがって動作しているロボットに対して、動作方向と逆方向とみなせる方向に、基準値TH1以下の大きさの力を加えるという直感的で且つ都合の良い操作を行うことにより、ロボットの動作速度を低下させることができる。したがって、作業者は、様々な状況に応じて、ロボットとの協働作業をよりいっそう効率的に進めることが可能となる。
(第2実施例)
 第2実施例は、ロボット10の動作速度が、制御プログラム150で指定されている速度よりも一時的に低下している場合に、ロボット10の動作方向と同じ方向とみなせる方向に作業者がロボット10に対して一定値(閾値TH1)以下の力を加えたときに、ロボット10の動作速度を増加させる動作例である。すなわち、速度制御部154は、次の条件(A11)及び(A12)が満たされるときに、ロボット10の速度を増加させる。

(A11)外力検出部152により検出される外力が閾値TH1以下であるとき
(A12)作業者が加える外力の向きがロボット10の動作方向と同一とみなせるとき
 図5を参照して本第2実施例の動作を説明する。図5において、ロボット10は矢印Eに沿って動作しており、図示の位置で作業者が、閾値TH1以下の外力F2でロボット10の動作方向と同じとみなせる方向にロボット10を操作している。図示の位置でのロボット10の動作方向E1と外力F2の関係を図5中の右下の破線の円内に示す。
 上記条件(A12)が満たされていると判定するための判定基準として、例えば、以下の判定基準(B11)或いは(B12)を用いても良い。

(B11)ロボット10の動作方向E1と、人がロボット10に加える力(外力)F2の方向との差(図5中の角度θ2)が所定値以内である(ここで所定値は、90度未満の値である)。
(B12)人がロボット10に加える力F2に、ロボットの動作方向E1と同じ向きの成分が含まれているとき、

これらは、いずれも、作業者が、ロボット10の動作方向と同じとみなせる向きにロボット10に力を加えている状態とみなすことができる。
 速度制御部154は、ロボット10の動作方向と同じとみなせる向きに作業者がロボット10に対して閾値TH1以下の力を加えたことが検出されることを条件として、ロボット10の速度を増加させる。速度を増加させる制御の例としては、以下のような動作(C11)或いは(C12)が有り得る。

(C11)ロボット10の動作方向と同じとみなせる向きに閾値TH1以下の外力が検出された場合に、ロボット10の速度を制御プログラム150で指定されている速度に回復させる。
(C12)ロボット10の動作方向と同じとみなせる向きに閾値TH1以下の外力が検出された場合に、当該外力が作用する時間を計測し、当該外力が作用する時間が長いほど、速度の増加度合いが大きくなるように制御する。この場合、作業者は、ロボット10に力を加えている状態を長くするほど、速度の増加度合いを大きくすることができる。
 以上説明したように、第2実施例によれば、作業者は、一時的に速度が低下しているロボットに対して動作方向と同一方向とみなせる方向に、基準値TH1以下の大きさの力を加えるという直感的で且つ都合の良い操作を行うことにより、ロボットの動作速度を増加或いは回復させることができる。したがって、作業者は、様々な状況に応じて、ロボットとの協働作業をよりいっそう効率的に進めることが可能となる。
 なお、第2実施例による上述の動作は、ロボット10の動作速度を制御プログラムで指定されている速度よりも一時的に増加させるための動作としても適用することができる。
 図6に、ロボット制御装置50による上述の制御方法(速度制御処理)をフローチャートとして表した図を示す。この速度制御処理は、ロボット制御装置50のプロセッサ51による制御の下で実行される。この速度制御処理は、ロボット10の動作中、周期的に実行されても良い。
 図6に示すように、ロボット10が制御プログラムにしたがって動作している場合において、外力検出部152により、ロボット10に外力(接触力)が作用したか否かが検出される(ステップS1)。外力検出部152は、力センサ71の出力値のノイズレベル等を考慮して、例えば、力センサ71の出力値がある一定値以上(但し、TH1よりも小さい)の場合に外力(接触力)が作用したと判定すること等により、ロボット10に外力(接触力)が作用したか否かを適切に検出するようにしても良い。ステップS1では、外力が検出されるまで処理が繰り返される(S1:NO)。
 ロボット10に外力(接触力)が作用したことが検出された場合(S1:YES)、外力(F)の大きさが判断される(ステップS2)。外力(F)の大きさが所定の基準値(閾値TH1)を超える場合(S2:F>TH1)、停止制御部153により安全確保のためロボット10が停止される(ステップS3)。
 外力(F)の大きさが所定の基準値(閾値TH1)以下である場合(S2:F≦TH1)、速度制御部154は、ロボット10の動作速度を変更する(ステップS4)。ステップS4では、上述の第1実施例或いは第2実施例で説明したように、速度制御部154は、ロボット10の動作方向を基準とする当該外力の方向に応じてロボット10の動作速度を変更することができる。
 以上説明したように、本実施形態によれば、制御プログラムにしたがって動作しているロボットの動作速度を、ロボットに力を加えるという直感的で且つ作業者にとって都合のよい操作により変更することが可能となる。
 以上、典型的な実施形態を用いて本発明を説明したが、当業者であれば、本発明の範囲から逸脱することなしに、上述の各実施形態に変更及び種々の他の変更、省略、追加を行うことができるのを理解できるであろう。
 例えば、上述の実施形態では、第1実施例においてロボットの動作方向と逆方向にかかる外力を検出するための閾値(第1の閾値)と、第2実施例においてロボットの動作方向と同一方向にかかる外力を検出するための閾値(第2の閾値)とを同じ値(閾値TH1)としているが、第1の閾値と第2の閾値が異なる値であっても良い。
 図3に示したロボット制御装置50の機能ブロックは、ロボット制御装置50のプロセッサ51が、記憶装置に格納された各種ソフトウェアを実行することで実現されても良く、或いは、ASIC(Application Specific Integrated Circuit)等のハードウェアを主体とした構成により実現されても良い。
 上述した実施形態における速度制御処理(図6)等の各種の処理を実行するプログラムは、コンピュータに読み取り可能な各種記録媒体(例えば、ROM、EEPROM、フラッシュメモリ等の半導体メモリ、磁気記録媒体、CD-ROM、DVD-ROM等の光ディスク)に記録することができる。
 10  ロボット
 30  教示操作盤
 31  プロセッサ
 32  メモリ
 33  表示部
 34  操作部
 35  入出力インタフェース
 50  ロボット制御装置
 51  プロセッサ
 52  メモリ
 53  入出力インタフェース
 54  操作部
 60  ハンド
 71  力センサ
 100  ロボットシステム
 150  制御プログラム
 151  動作制御部
 152  外力検出部
 153  停止制御部
 154  速度制御部

Claims (15)

  1.  ロボットを制御するロボット制御装置であって、
     前記ロボットが制御プログラムにしたがって動作している場合に、前記ロボットに所定の外力がかかったことが検出されることに応じて、前記ロボットの動作速度を変更する速度制御部を備える、ロボット制御装置。
  2.  前記速度制御部は、前記所定の外力として所定の基準値以下の外力が検出されることに応じて、前記ロボットの動作速度を変更する、請求項1に記載のロボット制御装置。
  3.  前記ロボットにかかる外力が前記所定の基準値を超えることに応じて前記ロボットを停止させる停止制御部を更に備える、請求項2に記載のロボット制御装置。
  4.  前記速度制御部は、前記ロボットが前記制御プログラムにしたがって動作している場合に、前記ロボットに前記所定の外力がかかったことが検出されたときに、前記ロボットの動作方向を基準とする前記所定の外力の方向に応じて前記ロボットの動作速度を変更する、請求項1から3のいずれか一項に記載のロボット制御装置。
  5.  前記速度制御部は、前記所定の外力が前記ロボットにかかる時間の長さに応じて、前記動作速度を変更する度合いを設定する、請求項1から4のいずれか一項に記載のロボット制御装置。
  6.  前記速度制御部は、前記ロボットが前記制御プログラムにしたがって動作している場合に前記ロボットにかかる前記所定の外力の方向が、前記ロボットの動作方向と逆方向であるとみなせる場合に、前記ロボットの動作速度を低下させる、請求項1から5のいずれか一項に記載のロボット制御装置。
  7.  前記速度制御部は、前記所定の外力として第1の閾値以下の外力が検出される場合で、且つ、前記外力の方向が前記ロボットの動作方向と逆方向であるとみなせる場合に、前記ロボットの動作速度を低下させる、請求項6に記載のロボット制御装置。
  8.  前記速度制御部は、前記ロボットが前記制御プログラムにしたがって動作している場合に前記ロボットにかかる前記所定の外力の方向が、前記ロボットの動作方向と同一方向であるとみなせる場合に、前記ロボットの動作速度を増加させる、請求項1から5のいずれか一項に記載のロボット制御装置。
  9.  前記速度制御部は、前記所定の外力として第2の閾値以下の外力が検出される場合で、且つ、前記外力の方向が前記ロボットの動作方向と同一方向であるとみなせる場合に、前記ロボットの動作速度を増加させる、請求項8に記載のロボット制御装置。
  10.  前記速度制御部は、前記ロボットが前記制御プログラムで指定された速度よりも速度を低下させている場合において、前記ロボットに前記所定の外力であって前記ロボットの動作方向と同一方向であるとみなせる外力がかかったことが検出されることに応じて、前記ロボットの速度を前記制御プログラムで指定された速度に回復させる、請求項8又は9に記載のロボット制御装置。
  11.  ロボット制御装置によりロボットを制御するための制御方法であって、
     前記ロボットが制御プログラムにしたがって動作している場合に、前記ロボットに所定の外力がかかったことが検出されることに応じて、前記ロボットの動作速度を変更する、制御方法。
  12.  前記所定の外力として所定の基準値以下の外力が検出されることに応じて、前記ロボットの動作速度を変更する、請求項11に記載の制御方法。
  13.  前記ロボットにかかる外力が前記所定の基準値を超えることに応じて前記ロボットを停止させることを更に含む、請求項12に記載の制御方法。
  14.  前記ロボットが前記制御プログラムにしたがって動作している場合に、前記所定の外力として第1の閾値以下の外力が検出され、且つ、前記外力の方向が前記ロボットの動作方向と逆方向であるとみなせる場合に、前記ロボットの動作速度を低下させる、請求項11から13のいずれか一項に記載の制御方法。
  15.  前記ロボットが前記制御プログラムにしたがって動作している場合に、前記所定の外力として第2の閾値以下の外力が検出され、且つ、前記外力の方向が前記ロボットの動作方向と同一方向であるとみなせる場合に、前記ロボットの動作速度を増加させる、請求項11から13のいずれか一項に記載の制御方法。
PCT/JP2022/017421 2022-04-08 2022-04-08 ロボット制御装置及び制御方法 WO2023195177A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/017421 WO2023195177A1 (ja) 2022-04-08 2022-04-08 ロボット制御装置及び制御方法
TW112108481A TW202406700A (zh) 2022-04-08 2023-03-08 機器人控制裝置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017421 WO2023195177A1 (ja) 2022-04-08 2022-04-08 ロボット制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2023195177A1 true WO2023195177A1 (ja) 2023-10-12

Family

ID=88242599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017421 WO2023195177A1 (ja) 2022-04-08 2022-04-08 ロボット制御装置及び制御方法

Country Status (2)

Country Link
TW (1) TW202406700A (ja)
WO (1) WO2023195177A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316909B1 (ja) * 2016-11-10 2018-04-25 ファナック株式会社 協働動作領域を有するロボットシステム
JP2018111174A (ja) * 2017-01-13 2018-07-19 ファナック株式会社 ロボットの安全確保動作機能を備えた人間協働ロボットシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316909B1 (ja) * 2016-11-10 2018-04-25 ファナック株式会社 協働動作領域を有するロボットシステム
JP2018111174A (ja) * 2017-01-13 2018-07-19 ファナック株式会社 ロボットの安全確保動作機能を備えた人間協働ロボットシステム

Also Published As

Publication number Publication date
TW202406700A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US11548153B2 (en) Robot comprising safety system ensuring stopping time and distance
US10252415B2 (en) Human collaborative robot system having safety assurance operation function for robot
US10766140B2 (en) Teach mode collision avoidance system and method for industrial robotic manipulators
US10751874B2 (en) Method of teaching robot and robotic arm control device
JP5893665B2 (ja) 作用された力に応じて移動されるロボットを制御するロボット制御装置
CN106003101B (zh) 机器人控制装置以及机器人系统
JP2011206886A (ja) ロボットの制御装置及び方法
WO2019013067A1 (ja) 力制御装置、力制御方法及び力制御プログラム
US10507585B2 (en) Robot system that displays speed
KR20220137735A (ko) 로봇 조작기의 충돌의 상황에서의 힘 제한
JP2021030364A (ja) ロボット制御装置
JP2003245881A (ja) ロボットの制御装置および制御方法
WO2023195177A1 (ja) ロボット制御装置及び制御方法
JP4134812B2 (ja) ロボット制御装置
Chu et al. Enhancement of virtual simulator for marine crane operations via haptic device with force feedback
WO2023157261A1 (ja) ロボット制御装置
Rebelo et al. Performance analysis of time-delay bilateral teleoperation using impedance-controlled slaves
JP7311732B1 (ja) 数値制御装置及び数値制御システム
RU2725930C1 (ru) Комплекс копирующего управления манипуляторами антропоморфного робота
JPH05200686A (ja) ロボット装置
Safeea et al. Task execution combined with in-contact obstacle navigation by exploiting torque feedback of sensitive robots
JP2022188627A (ja) 制御方法、制御装置、情報処理方法、情報処理装置、ロボット装置、物品の製造方法、プログラムおよび記録媒体
KR101969727B1 (ko) 다관절 로봇을 조작하기 위한 장치 및 그 방법
US20220063095A1 (en) Robot system and method of controlling the robot system
Sabater et al. A novel parallel haptic interface for telerobotic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936574

Country of ref document: EP

Kind code of ref document: A1