WO2023195160A1 - Organic waste treatment system and organic waste treatment method - Google Patents

Organic waste treatment system and organic waste treatment method Download PDF

Info

Publication number
WO2023195160A1
WO2023195160A1 PCT/JP2022/017366 JP2022017366W WO2023195160A1 WO 2023195160 A1 WO2023195160 A1 WO 2023195160A1 JP 2022017366 W JP2022017366 W JP 2022017366W WO 2023195160 A1 WO2023195160 A1 WO 2023195160A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
organic waste
treated water
liquid
methane fermentation
Prior art date
Application number
PCT/JP2022/017366
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 明田川
典亮 勝又
パトム アッタウィリヤヌパープ
義規 島田
満 片山
章博 大西
Original Assignee
三菱電機株式会社
学校法人東京農業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 学校法人東京農業大学 filed Critical 三菱電機株式会社
Priority to JP2022564572A priority Critical patent/JP7292535B1/en
Priority to PCT/JP2022/017366 priority patent/WO2023195160A1/en
Publication of WO2023195160A1 publication Critical patent/WO2023195160A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/60Biochemical treatment, e.g. by using enzymes
    • B09B3/65Anaerobic treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present disclosure relates to an organic waste treatment system and an organic waste treatment method.
  • organic waste containing solid organic matter such as sewage sludge, human waste, and food residue is fermented using microorganisms to produce methane gas or hydrogen gas, which is then converted into electrical energy using a generator.
  • Efforts are being made to make effective use of it by converting it into heat or converting it into thermal energy using a heat exchanger.
  • the method of fermentation treatment of organic waste using microorganisms involves solubilizing organic waste, producing an organic acid or an acid such as acetic acid from the solubilized organic waste, and directly or hydrogen oxidation from the produced acid. It consists of a process that generates methane gas via gas.
  • Patent Document 1 discloses that the microorganisms that perform solubilization, acid production, and methane fermentation are separated and arranged to become the dominant species in each treatment tank, and sequence processing is performed. A high load and high speed methane fermentation system is disclosed.
  • Patent Document 1 since the system disclosed in Patent Document 1 is composed of a plurality of processing tanks, a large number of pipes connecting the processing tanks or liquid feeding devices between the processing tanks are required, making the system complicated. Therefore, depending on the nature of the organic waste to be treated or the location where the system is applied, the system may become larger due to the influence of piping connecting each treatment tank or liquid delivery equipment between treatment tanks, resulting in increased equipment costs and operation management costs. There is a risk that it will become larger.
  • the present disclosure has been made to solve the above-mentioned problems, and provides an organic waste treatment system and organic waste treatment in which a high-load and high-speed methane fermentation system is constructed in a single treatment tank.
  • the purpose is to provide a method.
  • An organic waste treatment system includes a single treatment tank for treating organic waste using microorganisms, and a return means for returning the liquid inside the treatment tank,
  • the tank includes a solubilizing section that solubilizes the organic waste by the microorganisms to produce a first treated water, and a solubilizing section that generates an acid from the first treated water generated in the solubilizing section and a second treated water.
  • an acid generation section that generates water
  • a solid-liquid separation section that separates the second treated water generated in the acid generation section into a solid content and a separated liquid; and the separated liquid separated in the solid-liquid separation section.
  • the return means returns the separated liquid separated in the solid-liquid separation section to the It has a first return means for returning it to the solubilization section.
  • the organic waste treatment method is a treatment method using the organic waste treatment system described above, in which the organic waste is solubilized by microorganisms to generate first treated water.
  • a solubilization step an acid generation step of generating an acid from the first treated water to generate second treated water, a solid-liquid separation step of separating the second treated water into a solid content and a separated liquid, and a solid-liquid separation step of separating the second treated water into solids and a separated liquid;
  • a separated liquid return step of returning a predetermined amount of the separated liquid to the solubilization section out of the separated liquid separated in the liquid separation step, and a separation liquid returning step in which the separated liquid that is not returned to the solubilization section is treated with methane fermentation bacteria.
  • the method includes a methane fermentation step in which methane is fermented and converted into third treated water and gas.
  • a high-load and high-speed methane fermentation system can be constructed with a single processing tank.
  • FIG. 1 is a schematic diagram showing the configuration of an organic waste treatment system according to Embodiment 1.
  • FIG. 1 is a flowchart showing a method for treating organic waste according to Embodiment 1.
  • FIG. 2 is a schematic diagram showing the configuration of an organic waste treatment system according to a second embodiment.
  • 3 is a schematic diagram showing the configuration of an organic waste treatment system according to Embodiment 3.
  • FIG. 7 is a flowchart showing a method for treating organic waste according to Embodiment 3.
  • FIG. 1 is a schematic diagram showing the configuration of an organic waste treatment system according to Embodiment 1.
  • FIG. 1 is a flowchart showing a method for treating organic waste according to Embodiment 1.
  • FIG. 2 is a schematic diagram showing the configuration of an organic waste treatment system according to a second embodiment.
  • 3 is a schematic diagram showing the configuration of an organic waste treatment system according to Embodiment 3.
  • FIG. 7 is a flowchart showing a method for treating organic waste according to Embodiment 3.
  • FIG. 1 is a schematic diagram showing the configuration of an organic waste 7 treatment system 100 according to the first embodiment.
  • a treatment system 100 for organic waste 7 according to the first embodiment includes a single treatment tank 1 that processes organic waste 7 using microorganisms, and an interior of the treatment tank 1. and a first return means 2 for returning the liquid.
  • the processing tank 1 has a solubilization section 3, an acid generation section 4, a solid-liquid separation section 5, and a methane fermentation section 6 inside.
  • the organic waste 7 is solubilized by microorganisms to generate first treated water 30.
  • the acid generating section 4 generates an acid from the first treated water 30 generated in the solubilizing section 3 to generate second treated water 40 .
  • the second treated water 40 generated in the acid generation section 4 is separated into a solid content 50 and a separated liquid 51.
  • the methane fermentation section 6 the separated liquid 51 separated in the solid-liquid separation section 5 is subjected to methane fermentation using methane-fermenting bacteria, and converted into third treated water 62 and gas 63.
  • the methane fermentation section 6 includes a first transfer section 60 to which the separated liquid 51 separated by the solid-liquid separation section 5 is transferred, and a first storage section 61 in which methane fermentation bacteria are stored.
  • the solubilizing section 3 and the acid generating section 4 are separated by a first separation wall 10 that rises upward from the inner bottom surface of the processing tank 1.
  • the solubilizing section 3 and the acid generating section 4 communicate above the first separation wall 10.
  • the acid generation section 4 and the solid-liquid separation section 5 are separated by a second separation wall 11 that rises upward from the inner bottom surface of the processing tank 1 .
  • the acid generation section 4 and the solid-liquid separation section 5 communicate with each other above the second separation wall 11.
  • the solid-liquid separation section 5 and the first transfer section 60 are separated by a third separation wall 12 that rises upward from the inner bottom surface of the processing tank 1 .
  • the solid-liquid separation section 5 and the first transfer section 60 communicate with each other above the third separation wall 12.
  • the first transfer section 60 and the first storage section 61 are separated by a fourth separation wall 13 that protrudes downward from the top surface of the processing tank 1 .
  • the first transfer section 60 and the first storage section 61 communicate with each other below the fourth separation wall 13.
  • the organic waste 7 to be treated is input, and the organic waste 7 is hydrolyzed by microorganisms to dissolve a portion of the solid content, thereby forming the first treated water 30.
  • the microorganism is a hydrolyzing bacterium that hydrolyzes the organic waste 7.
  • the first treated water 30 is mainly composed of hydrolyzing bacteria, solid content of the undecomposed organic waste 7, and solubilized components of the decomposed organic waste 7.
  • the solubilizing section 3 is provided with a first stirring mechanism 31 that stirs the first treated water 30. Thereby, solubilization in the solubilizing section 3 can be performed efficiently.
  • the first stirring mechanism 31 is, for example, a stirrer, but may have any other configuration as long as it can stir the liquid.
  • the first treated water 30 flows over the first separation wall 10 and flows in, and is treated mainly by acid-producing bacteria that generate organic acids or acids such as acetic acid from the solubilized components of the organic waste 7.
  • second treated water 40 is formed.
  • the second treated water 40 is mainly composed of acid-producing bacteria, solid content of the organic waste 7 that has not been decomposed, and acid, and also contains hydrolytic bacteria and the possible organic waste 7. Also includes solubilized components.
  • the solubilized components of the organic waste 7 are components that have not been converted into acid in the acid generating section 4.
  • the acid generating section 4 is provided with a second stirring mechanism 41 that stirs the second treated water 40. Thereby, acid generation in the acid generation section 4 can be performed efficiently.
  • the second stirring mechanism 41 is, for example, a stirrer, but may have any other configuration as long as it can stir the liquid.
  • the second treated water 40 flows over the second separation wall 11 and is separated into a solid content 50 and a separated liquid 51. Separation in the solid-liquid separation section 5 is performed in such a way that the solid content 50 is formed in the lower part and the separated liquid 51 is formed in the supernatant by using gravity sedimentation of the solid content 50 from the viewpoint of reducing the number of liquid feeding equipment. It is desirable to do so. Note that the solid-liquid separation unit 5 only needs to be able to separate the second treated water 40 into the solid content 50 and the separated liquid 51, and other separation methods may be used.
  • a filtration membrane which is a known technology, is used as the solid-liquid separation section 5, and the second treated water 40 is passed through the filtration membrane using a liquid feeding device to separate it into solid content 50 and separated liquid 51.
  • the solid content 50 is mainly composed of acid-producing bacteria and the solid content of the undecomposed organic waste 7, and also includes hydrolytic bacteria.
  • the separation liquid 51 is mainly composed of acid, and also contains solubilized components of the organic waste 7.
  • the solubilized components of the organic waste 7 are components that have not been converted into acid in the acid generating section 4.
  • the separated liquid 51 that has flowed over the third separation wall 12 and flowed into the first transfer section 60 flows from the lower part of the first transfer section 60 to the lower part of the first storage section 61 .
  • the separated liquid 51 is mainly treated by methane-fermenting bacteria that generate gas such as methane gas from acid, and is converted into third treated water 62 and gas 63.
  • the third treated water 62 is discharged from the upper part of the first storage section 61 to the outside of the treatment tank 1 (arrow A in FIG. 1).
  • the gas 63 is discharged from the upper part of the first storage section 61 to the outside of the processing tank 1 (arrow B in FIG.
  • the organic waste 7 treatment system 100 can reduce the size of the methane fermentation section 6, thereby suppressing the enlargement of the entire system.
  • the methane fermentation section 6 is provided with a third stirring mechanism 64 that stirs the third treated water 62. This is to efficiently perform methane fermentation in the first storage section 61.
  • the third stirring mechanism 64 connects the upper and lower parts of the first storage section 61, and includes a circulation piping section 64a through which the third treated water 62 flows, and a circulation piping section 64a that supplies the third treated water 62 to the first storage section through the circulation piping section 64a. It has a pump 64b that draws out the third treated water 62 from above the first storage section 61 and returns the third treated water 62 to the bottom of the first storage section 61.
  • the third stirring mechanism 64 is provided outside the processing tank 1 .
  • the third stirring mechanism 64 is configured to stir the third treated water 62 in the first storage section 61 by circulating the third treated water 62 via the circulation piping section 64a.
  • the circulation piping section 64a may be configured to connect the upper part of the first storage section 61 and the first transfer section 60.
  • the third stirring mechanism 64 is not limited to the illustrated configuration, and may have any other configuration as long as it can stir the liquid.
  • the first return means 2 is for returning the separated liquid 51 separated from the second treated water 40 in the solid-liquid separation section 5 to the solubilization section 3.
  • the first return means 2 connects the solid-liquid separation section 5 and the solubilization section 3, and includes a first return piping section 20 through which the separated liquid 51 flows, and extracts the separated liquid 51 through the first return piping section 20.
  • the pump 21 includes a pump 21 that returns a predetermined amount of the separated liquid 51 to the solubilizing section 3.
  • the organic waste 7 is solubilized by hydrolysis of microorganisms, which are hydrolyzing bacteria, and the first treated water 30 is formed.
  • the first treated water 30 is mainly composed of hydrolyzing bacteria, solid content of the undecomposed organic waste 7, and solubilized components of the decomposed organic waste 7.
  • the solubilized components are a wide variety of soluble organic substances depending on the type of hydrolyzing bacteria, and include, for example, proteins, sugars, and lipids. Soluble organic matter is a low molecular weight organic matter.
  • the efficiency of this hydrolysis of the organic waste 7 into solubilized components decreases as the concentration of the solubilized components contained in the first treated water 30 increases, and the decomposition of the organic waste 7 by the hydrolytic bacteria decreases. It becomes difficult to progress. Therefore, in the organic waste 7 treatment system 100 according to the first embodiment, by returning a predetermined amount of the separated liquid 51 from the solid-liquid separation unit 5 to the solubilization unit 3, The concentration of solubilized components is adjusted.
  • the separation liquid 51 is mainly composed of the acid generated in the acid generation section 4. That is, in the organic waste 7 treatment system 100 according to the first embodiment, by returning the separated liquid 51 to the solubilization section 3, the solubilized components in the first treated water 30 are diluted with acid. It can be flushed into the generation section 4, and the concentration of the solubilized components in the first treated water 30 can be adjusted to suppress a decrease in the efficiency of hydrolyzing the organic waste 7 into the solubilized components.
  • piping connecting each processing tank or liquid feeding equipment between the processing tanks can be installed.
  • the liquid feeding device is, for example, a pump or the like.
  • the liquid feeding device is, for example, a liquid feeding device capable of adding clean water or treated water to the solubilization tank, and a liquid feeding device from the solubilization tank to the acid generation tank.
  • the amount of liquid such as clean water or treated water sent to the solubilization tank is adjusted by adjusting the power input to the liquid delivery device.
  • the concentration of the solubilized component in the solubilization tank can be adjusted by setting a margin for the volume of the solubilization tank.
  • the separated liquid 51 of the solid-liquid separation section 5 is returned to the solubilization section 3, so that the solubilization section 3, the acid generation section 4, and The liquid is circulated in the solid-liquid separation section 5, and the increase or decrease in the amount of the separated liquid 51 is not directly affected by the treatment time to the solubilization section 3 and acid generation section 4.
  • the separated liquid 51 is mainly composed of acid, but also partially contains solubilized components of the organic waste 7 that have not been converted into acid in the acid generating section 4.
  • the separated liquid 51 is less effective in suppressing a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components, compared to clean water or treated water that does not contain the solubilized components.
  • the concentration of the solubilized components is adjusted by returning the separated liquid 51 to the solubilization section 3, so that the efficiency of hydrolysis can be sufficiently improved. The reduction can be suppressed, and a system including a single processing tank 1 can be established.
  • the first return means 2 is located at a position immediately before the separated liquid 51 flows into the first transfer section 60, and is configured to pull out the separated liquid 51 from above the solid-liquid separation section 5 and return it to the solubilization section 3. It is desirable to do so.
  • the solid-liquid separation section 5 a part of the solubilized components of the organic waste 7 that have not been converted into acids in the acid generation section 4 are converted into acids. Therefore, by withdrawing the separated liquid 51 from the end of the solid-liquid separation section 5, that is, from the position immediately before the separated liquid 51 flows into the first transfer section 60, it is possible to prevent the separated liquid 51 from becoming an acid in the acid generating section 4.
  • the amount of the solubilized components of the organic waste 7 can be reduced, and the effect of suppressing a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components can be easily obtained.
  • the reason why the solid content 50 should be drawn from above the solid-liquid separation part 5 is that if it is not above the solid-liquid separation part 5, the solid content 50 may flow into the first return piping part 20, and the first return piping part 20 This is because there is a risk of blockage within 50 minutes.
  • the amount of organic waste 7 to be input into the treatment tank 1 is determined by the weight of the organic waste 7 per effective volume of the solubilization section 3 or the COD (which is an index of the amount of organic matter in the organic waste 7). It is desirable to set the amount using the chemical oxygen demand) amount.
  • the amount of organic waste 7 to be input into the treatment tank 1 is determined by the type of organic waste 7 and is not particularly limited, but if the weight of organic waste 7 is 20 kg/m 3 days or more.
  • the weight of the organic waste 7 is smaller than the above range, there is a risk that the system will become excessively large compared to the amount of organic waste 7 to be input.
  • the weight of the organic waste 7 is larger than the above range, the organic waste 7 cannot be properly treated in the treatment tank 1, and the third treated water 62 discharged outside the treatment tank 1 is left untreated. There is a risk that the amount of solid content 50 will increase as the solubilizing component or acid of decomposition is included.
  • the COD amount is preferably 5 kg/m 3 ⁇ day or more and 40 kg/m 3 ⁇ day or less, and more specifically, 12.5 kg/m 3 ⁇ day or more and 25 kg/m 3 ⁇ day or more. More preferably, it is less than m 3 days.
  • the concentration of the solubilized component in the first treated water 30 that is adjusted in the solubilization section 3 can be set as appropriate depending on the type of organic waste 7 or the type of hydrolyzing bacteria. However, it is desirable to understand and set the concentration during the acclimatization of the microorganisms, which is carried out at the time of starting up the system.
  • the specific details of setting the concentration of the solubilized component by acclimatization are as follows.
  • the methane-fermenting bacteria in the methane-fermenting section 6 cannot proliferate without the acid produced by the acid-producing bacteria in the acid-producing section 4. Furthermore, acid-producing bacteria cannot proliferate without solubilized components produced from organic waste 7 by hydrolyzing bacteria in solubilizing section 3 . Therefore, start by acclimating the hydrolytic bacteria.
  • hydrolytic bacteria prepared by culturing in advance in laboratory equipment is introduced into the solubilization section 3, and organic waste 7 is introduced into the solubilization section 3 in an amount smaller than the prescribed input amount. .
  • the degree of hydrolysis progress is determined by changing the input amount of organic waste 7 and the first treated water 30.
  • the concentration of the solubilized component in the first treated water 30 is determined by the weight of the solid content of the organic waste 7 that remains without being decomposed. Thereby, it is possible to grasp the concentration of the solubilized component in the first treated water 30 at which hydrolysis proceeds efficiently.
  • the concentration of the solubilized component at this time may be determined by directly measuring a specific substance such as protein or sugar. It should be noted that evaluation using COD is preferable because it is possible to integrate a wide variety of soluble organic substances depending on the type of hydrolyzing bacteria and use it as an index of the concentration of the solubilized component. By doing so, the amount of the separated liquid 51 returned to the solubilization section 3 can be adjusted so that the concentration of the solubilized component in the first treated water 30 becomes the set value.
  • the concentration of the solubilized components in the first treated water 30 is actually set by adjusting the amount of separated liquid 51 returned to the solubilization section 3, and controlling the degree of progress of hydrolysis by adjusting the amount of organic waste. It is also possible to do this indirectly by determining the input amount of the organic waste 7 and the weight of "the solid content of the organic waste 7 that remains without being decomposed" in the first treated water 30.
  • the operation of the first return means 2 may be carried out continuously or intermittently in accordance with the timing of increase in the concentration of the solubilized component in the first treated water 30 according to the progress of hydrolysis by the hydrolyzing bacteria. It may be carried out separately.
  • the type of microorganism is not particularly limited, but for example, a dominant microorganism may be used.
  • the dominant microorganism is a microorganism species that can use the organic waste 7 as a substrate depending on the type of organic waste 7 during the habituation of the microorganism.
  • hydrolytic bacteria that can use the organic waste 7 as a substrate proliferate and become the dominant species.
  • acid generation section 4 depending on the type of organic waste 7, acid-producing bacteria that can use the solubilized components generated from the organic waste 7 as a substrate are the dominant species.
  • methane fermentation section 6 depending on the type of organic waste 7, methane-fermenting bacteria, which can use as a substrate the acid produced by the acid-producing bacteria from the solubilized components, become the dominant species.
  • FIG. 2 is a flowchart showing a method for treating organic waste 7 according to the first embodiment.
  • the method for treating organic waste 7 according to the first embodiment uses the treatment system 100 described above.
  • the method for treating organic waste 7 includes a solubilization step (step S1), an acid generation step (step S2), a solid-liquid separation step (step S3), a separated liquid return step (step S4), and a methane fermentation step. step (step S5).
  • the organic waste 7 to be treated which has been input into the solubilization section 3, is solubilized by microorganisms to generate the first treated water 30.
  • the first treated water 30 is formed by hydrolyzing the organic waste 7 by the hydrolyzing bacteria in the solubilizing section 3 and dissolving a part of the solid content in the organic waste 7. .
  • the first treated water 30 is mainly composed of hydrolyzing bacteria, solid content of the undecomposed organic waste 7, and solubilized components of the decomposed organic waste 7.
  • the second treated water 40 is mainly formed by acid-producing bacteria that produce organic acids or acids such as acetic acid from the solubilized components of the organic waste 7 .
  • the second treated water 40 is mainly composed of acid-producing bacteria, the solid content of the organic waste 7 that has not been decomposed, and acids, and also contains hydrolytic bacteria and solubilized components of the organic waste 7. included.
  • the solubilized component is a component that did not become an acid in the acid generating section 4.
  • the second treated water 40 that has flown over the second separation wall 11 and flowed into the solid-liquid separation section 5 is separated into solid content 50 and separated liquid 51.
  • the solid content 50 is mainly composed of acid-producing bacteria and the solid content of the organic waste 7 that has not been decomposed, and also includes hydrolytic bacteria.
  • the separation liquid 51 is mainly composed of acid, and also contains solubilized components of the organic waste 7.
  • step S4 a predetermined amount of the separated liquid 51 of the separated liquid 51 separated in the solid-liquid separation step is returned to the solubilization section 3.
  • the concentration of the solubilized components in the first treated water 30 can be adjusted, and a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components can be suppressed.
  • the methane fermentation step (step S5) is performed in parallel with the separated liquid return step (step S4).
  • the separated liquid 51 that has overflowed the third separation wall 12 and flowed into the first storage section 61 of the methane fermentation section 6 is used as a source of methane fermentation bacteria that mainly produces gas such as methane gas from acid.
  • the third treated water 62 and gas 63 are converted into third treated water 62 and gas 63.
  • the organic waste 7 treatment system 100 includes a single treatment tank 1 that processes the organic waste 7 using microorganisms, and a liquid inside the treatment tank 1. and a first return means 2 for returning the.
  • the treatment tank 1 includes a solubilization unit 3 that solubilizes organic waste 7 with microorganisms to generate a first treated water 30, and generates acid from the first treated water 30 generated in the solubilization unit 3.
  • An acid generation section 4 that generates second treated water 40, a solid-liquid separation section 5 that separates the second treated water 40 generated in the acid generation section 4 into a solid content 50 and a separated liquid 51, and a solid-liquid separation section.
  • the first return means 2 is configured to return the separated liquid 51 separated by the solid-liquid separation section 5 to the solubilization section 3.
  • the separated liquid 51 of the solid-liquid separation section 5 is returned to the solubilization section 3, so that the solubilization section 3, the acid generation section 4, and Since the liquid is circulated in the solid-liquid separation section 5, the increase or decrease in the amount of the separated liquid 51 is not directly affected by the processing time of the solubilization section 3 and the acid generation section 4. Since the concentration of the solubilized component can be adjusted using the separated liquid 51 returned to the solubilization section 3, a decrease in the efficiency of hydrolysis can be suppressed.
  • a high-load and high-speed methane fermentation system that had to be configured with a plurality of treatment tanks can be constructed with a single treatment tank 1. , the entire system can be downsized, and equipment costs and operation management costs can be suppressed.
  • FIG. 3 is a schematic diagram showing the configuration of a processing system 101 for organic waste 7 according to the second embodiment. Note that the same components as those of the organic waste 7 treatment system 100 described in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted as appropriate.
  • the solubilization unit 3 includes a second storage unit 32 in which hydrolysis bacteria, which are microorganisms, are stored, and a first treated water that is disposed below the second storage unit 32 and that is generated by solubilizing in the second storage unit 32. 30.
  • the holding member 35 is provided between the second storage section 32 and the second transfer section 33, holds the deposit 34, and partitions the second storage section 32 and the second transfer section 33.
  • the solubilizing section 3 and the acid generating section 4 are separated by a fifth separation wall 14 that protrudes downward from the top surface of the processing tank 1.
  • the second transfer section 33 and the acid generation section 4 communicate with each other below the fifth separation wall 14 .
  • the other points have the same configuration as the organic waste 7 treatment system 100 of the first embodiment.
  • the hydrolyzing bacteria of the deposit 34 hydrate the organic waste 7. Disassemble.
  • the first stirring mechanism 31 is installed so as to be able to stir the inside of the second storage section 32.
  • the deposit 34 is held inside the second storage section 32 by a holding member 35 .
  • the organic waste 7 is hydrolyzed by hydrolyzing bacteria, a part of the solid content is dissolved, and the first treated water 30 is formed.
  • the holding member 35 is configured to have a property of not allowing solid components to pass therethrough, but allowing liquefied solubilized components to pass therethrough. Therefore, the first treated water 30 is mainly composed of the solubilized components of the decomposed organic waste 7 and flows into the second transfer section 33 by the holding member 35 . That is, in the organic waste 7 treatment system 101 according to the second embodiment, unlike the configuration of the first embodiment, the deposit 34 to which hydrolytic bacteria have adhered and the organic waste 7 that has not been decomposed are removed. The solid content remains in the second storage section 32 by the holding member 35. Note that the first treated water 30 that has flowed into the second transfer section 33 flows into the acid generation section 4 .
  • the first treated water 30 flows in from the second transfer section 33, and is treated with the second treatment water by acid-producing bacteria that mainly generate organic acids or acids such as acetic acid from the solubilized components of the organic waste 7.
  • Treated water 40 is formed.
  • the second treated water 40 in the second embodiment differs from the first embodiment in that it is mainly composed of acid-producing bacteria and acids, and also contains solubilized components of the organic waste 7.
  • the solubilized component is a component that did not become an acid in the acid generating section 4.
  • the second treated water 40 flows over the second separation wall 11 and is separated into solid content 50 and separated liquid 51.
  • the solid content 50 in the second embodiment is mainly composed of acid-producing bacteria.
  • the separation liquid 51 is mainly composed of acid, and also contains a solubilized component of the organic waste 7.
  • the solubilized component is a component that did not become an acid in the acid generating section 4.
  • the separated liquid 51 flows over the third separation wall 12 and is treated by methane fermentation bacteria in the methane fermentation section 6, and converted into third treated water 62 and gas 63.
  • the organic waste 7 treatment system 101 according to the second embodiment since the deposit 34 to which the hydrolytic bacteria have adhered is held inside the second storage section 32 by the holding member 35, the hydrolytic bacteria are 1 can be prevented from being contained in the treated water 30 and flowing out from the solubilizing section 3. Therefore, the organic waste 7 treatment system 101 according to the second embodiment can easily maintain a stable amount of hydrolyzing bacteria, can proceed with hydrolysis more efficiently, and can Since there is no need to consider the amount of bacteria, the solubilizing section 3 can be made smaller in size compared to the configuration of the first embodiment.
  • a predetermined amount of the separated liquid 51 is returned to the second storage section 32 by the first return means 2, and the separated liquid 51 is solubilized in the first treated water 30.
  • the concentration of the ingredients is adjusted.
  • the return amount of the separated liquid 51 can be set as appropriate depending on the type of organic waste 7 or the type of hydrolyzing bacteria. Note that it is desirable to determine and set the return amount of the separated liquid 51 during the acclimatization of microorganisms, which is performed at the time of starting up the system.
  • the degree of progress of hydrolysis is determined based on the input amount of the organic waste 7 and the organic waste remaining in the second storage section 32 without being decomposed.
  • the concentration of the solubilized component in the first treated water 30 is determined based on the weight of the solid content of the waste 7. Thereby, it is possible to grasp the concentration of the solubilized component in the first treated water 30 at which hydrolysis proceeds efficiently.
  • the concentration of the solubilized component at this time may be determined by directly measuring a specific substance such as protein or sugar.
  • COD a wide variety of soluble organic substances depending on the type of hydrolyzing bacteria can be integrated and used as an indicator of the concentration of solubilized components, so it is desirable to evaluate using COD.
  • the amount of the separated liquid 51 to be returned is adjusted so that the concentration of the solubilized component in the first treated water 30 becomes the set value. can be adjusted.
  • the concentration of the solubilized components in the first treated water 30 is determined by controlling the degree of progress of hydrolysis while adjusting the amount of separated liquid 51 returned to the solubilization section 3. It is also possible to set it indirectly by determining the input amount and the weight of "the solid content of the organic waste 7 remaining in the second storage section 32 without being decomposed.”
  • the first return means 2 includes a spraying means 22 for spraying the separated liquid 51 onto the deposits 34.
  • the spraying means 22 is, for example, a water nozzle. Thereby, the solubilized component adsorbed on the surface of the deposit 34 can be efficiently flowed to the second transfer section 33, and a decrease in the efficiency of hydrolysis caused by the hydrolysis bacteria attached to the deposit 34 can be suppressed.
  • the holding member 35 allows the first treated water 30 to flow into the second transfer section 33 and allows the deposits 34 and the solid content of the undecomposed organic waste 7 to remain in the second storage section 32. It's fine as long as it's possible.
  • a commercially available filter or mesh can be used for the holding member 35.
  • the pore diameter it is preferably 0.5 mm or more and 5 mm or less, and more preferably 1 mm or more and 3 mm or less. If the holding member 35 has a hole diameter smaller than this range, clogging with the organic waste 7 and the deposits 34 will easily occur. On the other hand, if the pore diameter of the holding member 35 is larger than this range, there is a high risk that the solid content of the organic waste 7 that has not been solubilized will flow out to the second transfer section 33.
  • the deposit 34 only needs to be able to retain hydrolytic bacteria, which are microorganisms.
  • a known material capable of retaining microorganisms such as a carrier or a straw, can be used.
  • it is desirable for the deposit 34 to have a large surface property capable of retaining microorganisms it is desirable to use a material with a three-dimensional structure such as a porous material.
  • the size of the deposit 34 may be smaller than the hole diameter of the holding member 35 depending on the hole diameter of the holding member 35 .
  • the method for treating organic waste 7 according to the second embodiment uses the treatment system 101 described above.
  • the method for treating organic waste 7 according to the second embodiment includes the solubilization step (step S1), the acid generation step (step S2), and the solid-liquid separation step (same as the structure of the first embodiment).
  • Step S3 a separated liquid return step (Step S4), and a methane fermentation step (Step S5).
  • the organic waste 7 to be treated that has been input into the solubilization section 3 is solubilized by the microorganisms attached to the deposits 34, and the first treated water 30 is generated.
  • the organic waste 7 is hydrolyzed by the hydrolyzing bacteria attached to the deposit 34 to dissolve a part of the solid content in the organic waste 7, thereby converting the first treated water 30 into the first treated water 30.
  • the deposit 34 to which the hydrolytic bacteria have adhered is held inside the second storage section 32 by the holding member 35 . Therefore, hydrolysis bacteria can be prevented from being contained in the first treated water 30 and flowing out from the solubilizing section 3.
  • the first treated water 30 is mainly composed of solubilized components of the decomposed organic waste 7.
  • step S2 acid is generated from the first treated water 30 that has flowed over the first separation wall 10 and flowed into the acid generation section 4, and the second treated water 40 is generated.
  • the second treated water 40 is mainly formed by acid-producing bacteria that produce organic acids or acids such as acetic acid from the solubilized components of the organic waste 7 .
  • the second treated water 40 is mainly composed of acid-producing bacteria and acids, and also contains solubilized components of the organic waste 7.
  • the solubilized component is a component that did not become an acid in the acid generating section 4.
  • the second treated water 40 that has flown over the second separation wall 11 and flowed into the solid-liquid separation section 5 is separated into solid content 50 and separated liquid 51.
  • the solid content 50 is mainly composed of acid-producing bacteria.
  • the separation liquid 51 is mainly composed of acid, and also contains solubilized components of the organic waste 7.
  • the separated liquid return step (step S4), a predetermined amount of the separated liquid 51 of the separated liquid 51 separated in the solid-liquid separation step is returned to the solubilization section 3.
  • the concentration of the solubilized components in the first treated water 30 can be adjusted, and a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components can be suppressed.
  • the separated liquid return step (step S4), when the separated liquid 51 is returned to the solubilization section 3, the separated liquid 51 is sprayed onto the deposit 34 using the spraying means 22. Thereby, the solubilized component adsorbed on the surface of the deposit 34 can be efficiently flowed to the second transfer section 33, and a decrease in the efficiency of hydrolysis caused by the hydrolysis bacteria attached to the deposit 34 can be suppressed.
  • the methane fermentation step (step S5) is performed in parallel with the separated liquid return step (step S4).
  • the separated liquid 51 that has not been returned to the solubilization section 3 and has flowed over the third separation wall 12 and into the first storage section 61 of the methane fermentation section 6 is mainly treated with methane-fermenting bacteria that generate gas such as methane gas from acid, and converted into third treated water 62 and gas 63.
  • FIG. 4 is a schematic diagram showing the configuration of the organic waste 7 treatment system 102 according to the third embodiment. Note that the same components as those of the organic waste 7 treatment systems 100 and 101 described in Embodiments 1 and 2 are given the same reference numerals, and the description thereof will be omitted as appropriate.
  • a methane fermentation unit 6 It is characterized by having a second return means 8 for returning the third treated water 62 to the acid generation section 4.
  • the second return means 8 includes a second return pipe section 80 branched from the circulation pipe section 64a and connected below the acid generating section 4, and a solenoid valve 81 and a flow rate control valve provided in the second return pipe section 80. 82.
  • the second return piping section 80 is connected to the circulation piping section 64a via a branch section 64c provided in the circulation piping section 64a.
  • a timer 83 is connected to the solenoid valve 81 .
  • the other points have the same configuration as the organic waste 7 treatment system 101 of the second embodiment.
  • the second return means 2 in parallel with the first return means 2 returning the separated liquid 51 of the solid-liquid separation section 5 to the solubilization section 3, the second return means 2 returns the separated liquid 51 to the solubilization section 3.
  • the means 8 returns the third treated water 62 of the methane fermentation section 6 to the acid generation section 4.
  • the third treated water 62 is returned from the methane fermentation section 6 to the acid generation section 4 through the second return piping section 80 using the third stirring mechanism 64 . Therefore, there is no need to provide additional liquid feeding equipment.
  • the means for returning the third treated water 62 of the methane fermentation section 6 to the acid generation section 4 is not limited to the configuration using the third stirring mechanism 64, and may be of other forms.
  • the third stirring mechanism 64 basically operates continuously and stirs the third treated water 62 of the methane fermentation section 6. Therefore, the return time and return timing of the third treated water 62 are controlled by the time when the solenoid valve 81 is opened and the timing when the solenoid valve 81 is opened and closed, which is controlled by the timer 83. Further, the return flow rate of the third treated water 62 is adjusted by a flow rate adjustment valve 82.
  • a single treatment tank 1 is used, and the inside of the treatment tank 1 includes a solubilization section 3, an acid generation section 4, a solid-liquid separation section 5, and a methane fermentation section. It is divided into 6. Therefore, the processing time of the separated liquid 51 in the methane fermentation section 6 is determined by the amount of solubilized components of the organic waste 7 in the first treated water 30 generated in the solubilization section 3. That is, the amount of organic waste 7 input into the solubilization section 3 and the processing time of the separated liquid 51 in the methane fermentation section 6 have a relationship, and cannot be managed independently.
  • the processing time of the separated liquid 51 in the methane fermentation section 6 By adjusting the processing time of the separated liquid 51 in the methane fermentation section 6 to an appropriate value, methane fermentation can proceed efficiently.
  • the processing time of the separated liquid 51 in the methane fermentation section 6 may vary depending on the operational circumstances of the system installation site, such as when the input amount of organic waste 7 varies greatly. If the amount of processing time increases or decreases, there is a risk that it will not be possible to secure an appropriate processing time.
  • the organic waste 7 treatment system 102 in parallel with returning the separated liquid 51 of the solid-liquid separation section 5 to the solubilization section 3 by the first return means 2, It is possible to return the third treated water 62 of the methane fermentation section 6 to the acid generation section 4 by the second return means 8. Further, the acid generation section 4, the solid-liquid separation section 5, and the methane fermentation section 6 are in communication. Thereby, the amount of the third treated water 62 returned to the acid generating section 4 can be adjusted, so the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted. Therefore, the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted to an appropriate value independently of the input amount of organic waste 7, allowing the methane fermentation to proceed more efficiently and improving system operation. can be stabilized.
  • the processing time of the separated liquid 51 in the methane fermentation section 6 is appropriately set depending on the type of organic waste 7 and the type of separated liquid 51. Note that the processing time is not particularly limited, but is preferably, for example, one day or more and ten days or less, and more preferably three days or more and six days or less. If the treatment time is shorter than the above range, the separated liquid 51 will not undergo sufficient methane fermentation, the amount of gas 63 will decrease, and the gas 63 may be contained in the third treated water 62 discharged to the outside of the treatment tank 1. There is a risk that ingredients may be included.
  • the return flow rate of the third treated water 62 adjusted by the flow rate adjustment valve 82 is appropriately set according to the pipe diameter of the second return pipe section 80.
  • the return flow rate is not particularly limited, it is generally desirable to set it so that the flow velocity in the pipe of the second return pipe section 80 is 1 or more and 3 m/s or less.
  • the opening time of the electromagnetic valve 81 controlled by the timer 83 may be determined according to the return flow rate of the third treated water 62 so that the processing time of the separated liquid 51 in the methane fermentation section 6 falls within the above range. good.
  • the timing of opening and closing is appropriately set, such as once every hour.
  • the means for returning the third treated water 62 of the methane fermentation section 6 to the acid generation section 4 utilizes the third treated water 62 above the methane fermentation section 6.
  • the concentration of methane fermenting bacteria decreases from the bottom to the top. Therefore, if the methane fermenting bacteria are not the upper methane fermenting bacteria, there is a high risk that the methane fermenting bacteria will flow into the acid generating section 4 via the second return piping section 80 and the methane fermenting bacteria will die.
  • the methane fermentation section 6 is provided with a bacteria blocking mechanism 65 such as a baffle or a mesh. By providing the bacteria blocking mechanism 65, it is possible to suppress methane-fermenting bacteria from flowing into the acid generating section 4 via the second return piping section 80.
  • the germ blocking mechanism 65 does not necessarily need to be provided and may be omitted.
  • FIG. 5 is a flowchart showing a method for treating organic waste 7 according to the third embodiment.
  • the method for treating organic waste 7 according to the third embodiment uses the above-described treatment system 102.
  • the method for treating organic waste 7 according to Embodiment 3 is the same as the method for treating organic waste 7 according to Embodiment 2 described above, except that it includes a solution return step (step S6). be. Therefore, the solubilization step (step S1), the acid generation step (step S2), the solid-liquid separation step (step S3), and the separated liquid return step (step S4) and the methane fermentation step (step S5) will not be described.
  • the solution return process (step S6) is performed in parallel with the separated liquid return process (step S4) after converting the separated liquid 51 into the third treated water 62 and gas 63 in the methane fermentation process (step S5). .
  • the third treated water 62 produced in the methane fermentation process (step S5) is returned to the acid generation section 4.
  • the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted, so that the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted to an appropriate value independently of the input amount of organic waste 7. This allows methane fermentation to proceed more efficiently and stabilizes system operation.
  • the second return means 8 which is a feature of the organic waste 7 treatment system 102 and the organic waste 7 treatment method according to the third embodiment, is the same as that of the first embodiment. It may be applied to the configuration of
  • the organic waste 7 treatment system (100 to 102) and the organic waste 7 treatment method have been described above based on the embodiments, they are not limited to the configurations of the embodiments described above.
  • the organic waste 7 treatment system (100 to 102) is not limited to the configuration shown, and some components may be omitted or other components may be included.
  • the organic waste 7 treatment system (100 to 102) and the organic waste 7 treatment method are within the range of design changes and application variations that would normally be made by a person skilled in the art without departing from the technical concept thereof. This includes:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

This organic waste treatment system includes: a single treatment tank for treating organic waste using microorganisms; and a return means for returning liquid inside the treatment tank. The treatment tank includes: a solubilizing section for solubilizing organic waste by microorganisms and generating a first treated water; an acid generation section for generating an acid from the first treated water generated by the solubilization section and generating a second treated water; a solid-liquid separation section for separating the second treated water generated by the acid generation section into a solid component and a separation liquid; and a methane fermentation section for carrying out methane fermentation of the separation liquid separated by the solid-liquid separation section by methanogenic bacteria to convert the separation liquid into a third treated water and a gas. The return means has a first return means for returning the separation liquid separated by the solid-liquid separation section to the solubilization section.

Description

有機性廃棄物の処理システム及び有機性廃棄物の処理方法Organic waste treatment system and organic waste treatment method
 本開示は、有機性廃棄物の処理システム及び有機性廃棄物の処理方法に関するものである。 The present disclosure relates to an organic waste treatment system and an organic waste treatment method.
 従来、下水汚泥、し尿、食品残渣等の固形有機物を含む有機性廃棄物を、微生物を用いて発酵処理することで、メタンガス又は水素ガス等を生成し、それらを、発電機を用いて電気エネルギーに転換したり、熱交換器を用いて熱エネルギーに転換したりして、有効活用する取り組みが行われている。 Conventionally, organic waste containing solid organic matter such as sewage sludge, human waste, and food residue is fermented using microorganisms to produce methane gas or hydrogen gas, which is then converted into electrical energy using a generator. Efforts are being made to make effective use of it by converting it into heat or converting it into thermal energy using a heat exchanger.
 微生物を用いて有機性廃棄物を発酵処理する方法は、有機性廃棄物を可溶化し、可溶化した有機性廃棄物から有機酸又は酢酸等の酸を生成し、生成した酸から直接又は水素ガスを経由してメタンガスを生成する工程から成り立っている。例えば特許文献1には、複数の処理槽で構成され、各処理槽に、可溶化処理、酸生成、メタン発酵を行う微生物をそれぞれ分離して優占種となるように配置し、シーケンス処理を行う高負荷及び高速メタン発酵システムが開示されている。 The method of fermentation treatment of organic waste using microorganisms involves solubilizing organic waste, producing an organic acid or an acid such as acetic acid from the solubilized organic waste, and directly or hydrogen oxidation from the produced acid. It consists of a process that generates methane gas via gas. For example, Patent Document 1 discloses that the microorganisms that perform solubilization, acid production, and methane fermentation are separated and arranged to become the dominant species in each treatment tank, and sequence processing is performed. A high load and high speed methane fermentation system is disclosed.
特開2003-183908号公報JP2003-183908A
 しかしながら、上記特許文献1開示されたシステムでは、複数の処理槽で構成しているので、各処理槽を接続する配管又は処理槽間の送液機器が多く必要となり、システムが複雑となる。そのため、処理する有機性廃棄物の性状又はシステムを適用する場所によっては、各処理槽を接続する配管又は処理槽間の送液機器の影響で、システムが大型化し、設備費及び運転管理費が大きくなるおそれがある。 However, since the system disclosed in Patent Document 1 is composed of a plurality of processing tanks, a large number of pipes connecting the processing tanks or liquid feeding devices between the processing tanks are required, making the system complicated. Therefore, depending on the nature of the organic waste to be treated or the location where the system is applied, the system may become larger due to the influence of piping connecting each treatment tank or liquid delivery equipment between treatment tanks, resulting in increased equipment costs and operation management costs. There is a risk that it will become larger.
 本開示は、上記のような課題を解決するためになされたものであり、高負荷及び高速メタン発酵システムを単一の処理槽で構築した有機性廃棄物の処理システム及び有機性廃棄物の処理方法を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and provides an organic waste treatment system and organic waste treatment in which a high-load and high-speed methane fermentation system is constructed in a single treatment tank. The purpose is to provide a method.
 本開示に係る有機性廃棄物の処理システムは、微生物を用いて有機性廃棄物を処理する単一の処理槽と、前記処理槽の内部の液体を返送させる返送手段と、を備え、前記処理槽は、前記有機性廃棄物を前記微生物によって可溶化し、第1処理水を生成する可溶化部と、前記可溶化部で生成された前記第1処理水から酸を生成し、第2処理水を生成する酸生成部と、前記酸生成部で生成された前記第2処理水を固形分と分離液とに分離する固液分離部と、前記固液分離部で分離された前記分離液をメタン発酵菌でメタン発酵させて、第3処理水とガスとに転換させるメタン発酵部と、を有しており、前記返送手段は、前記固液分離部で分離された前記分離液を前記可溶化部に返送する第1返送手段を有するものである。 An organic waste treatment system according to the present disclosure includes a single treatment tank for treating organic waste using microorganisms, and a return means for returning the liquid inside the treatment tank, The tank includes a solubilizing section that solubilizes the organic waste by the microorganisms to produce a first treated water, and a solubilizing section that generates an acid from the first treated water generated in the solubilizing section and a second treated water. an acid generation section that generates water; a solid-liquid separation section that separates the second treated water generated in the acid generation section into a solid content and a separated liquid; and the separated liquid separated in the solid-liquid separation section. and a methane fermentation section that performs methane fermentation using methane fermentation bacteria and converts it into third treated water and gas, and the return means returns the separated liquid separated in the solid-liquid separation section to the It has a first return means for returning it to the solubilization section.
 本開示に係る有機性廃棄物の処理方法は、上記有機性廃棄物の処理システムを用いた処理方法であって、前記有機性廃棄物を微生物によって可溶化し、第1処理水を生成する可溶化工程と、前記第1処理水から酸を生成し、第2処理水を生成する酸生成工程と、前記第2処理水を固形分と分離液とに分離する固液分離工程と、前記固液分離工程で分離された前記分離液のうち、所定量の前記分離液を前記可溶化部に返送する分離液返送工程と、前記可溶化部に返送されていない前記分離液をメタン発酵菌でメタン発酵させて、第3処理水とガスとに転換させるメタン発酵工程と、を備えている。 The organic waste treatment method according to the present disclosure is a treatment method using the organic waste treatment system described above, in which the organic waste is solubilized by microorganisms to generate first treated water. a solubilization step, an acid generation step of generating an acid from the first treated water to generate second treated water, a solid-liquid separation step of separating the second treated water into a solid content and a separated liquid, and a solid-liquid separation step of separating the second treated water into solids and a separated liquid; A separated liquid return step of returning a predetermined amount of the separated liquid to the solubilization section out of the separated liquid separated in the liquid separation step, and a separation liquid returning step in which the separated liquid that is not returned to the solubilization section is treated with methane fermentation bacteria. The method includes a methane fermentation step in which methane is fermented and converted into third treated water and gas.
 本開示によれば、固液分離部で分離された分離液を可溶化部に返送する返送手段を備えているので、高負荷及び高速メタン発酵システムを単一の処理槽で構築することができる。 According to the present disclosure, since a return means is provided for returning the separated liquid separated in the solid-liquid separation section to the solubilization section, a high-load and high-speed methane fermentation system can be constructed with a single processing tank. .
実施の形態1に係る有機性廃棄物の処理システムの構成を示した模式図である。1 is a schematic diagram showing the configuration of an organic waste treatment system according to Embodiment 1. FIG. 実施の形態1に係る有機性廃棄物の処理方法を示したフローチャートである。1 is a flowchart showing a method for treating organic waste according to Embodiment 1. FIG. 実施の形態2に係る有機性廃棄物の処理システムの構成を示した模式図である。FIG. 2 is a schematic diagram showing the configuration of an organic waste treatment system according to a second embodiment. 実施の形態3に係る有機性廃棄物の処理システムの構成を示した模式図である。3 is a schematic diagram showing the configuration of an organic waste treatment system according to Embodiment 3. FIG. 実施の形態3に係る有機性廃棄物の処理方法を示したフローチャートである。7 is a flowchart showing a method for treating organic waste according to Embodiment 3. FIG.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、適宜変更することができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. Furthermore, the shape, size, arrangement, etc. of the configurations shown in each figure can be changed as appropriate.
 実施の形態1.
 図1は、本実施の形態1に係る有機性廃棄物7の処理システム100の構成を示した模式図である。本実施の形態1に係る有機性廃棄物7の処理システム100は、図1に示すように、微生物を用いて有機性廃棄物7を処理する単一の処理槽1と、処理槽1の内部の液体を返送させる第1返送手段2と、を備えている。
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of an organic waste 7 treatment system 100 according to the first embodiment. As shown in FIG. 1, a treatment system 100 for organic waste 7 according to the first embodiment includes a single treatment tank 1 that processes organic waste 7 using microorganisms, and an interior of the treatment tank 1. and a first return means 2 for returning the liquid.
 処理槽1は、可溶化部3と、酸生成部4と、固液分離部5と、メタン発酵部6と、を内部に有している。可溶化部3では、有機性廃棄物7を微生物によって可溶化し、第1処理水30を生成する。酸生成部4では、可溶化部3で生成された第1処理水30から酸を生成し、第2処理水40を生成する。固液分離部5では、酸生成部4で生成された第2処理水40を固形分50と分離液51とに分離する。メタン発酵部6では、固液分離部5で分離された分離液51をメタン発酵菌でメタン発酵させて、第3処理水62とガス63とに転換させる。このメタン発酵部6は、固液分離部5で分離された分離液51が移送される第1移送部60と、メタン発酵菌が貯留された第1貯留部61と、を有している。 The processing tank 1 has a solubilization section 3, an acid generation section 4, a solid-liquid separation section 5, and a methane fermentation section 6 inside. In the solubilization section 3, the organic waste 7 is solubilized by microorganisms to generate first treated water 30. The acid generating section 4 generates an acid from the first treated water 30 generated in the solubilizing section 3 to generate second treated water 40 . In the solid-liquid separation section 5, the second treated water 40 generated in the acid generation section 4 is separated into a solid content 50 and a separated liquid 51. In the methane fermentation section 6, the separated liquid 51 separated in the solid-liquid separation section 5 is subjected to methane fermentation using methane-fermenting bacteria, and converted into third treated water 62 and gas 63. The methane fermentation section 6 includes a first transfer section 60 to which the separated liquid 51 separated by the solid-liquid separation section 5 is transferred, and a first storage section 61 in which methane fermentation bacteria are stored.
 可溶化部3と酸生成部4は、処理槽1の内底面から上方に向かって立ち上がる第1分離壁10によって区画されている。可溶化部3と酸生成部4は、第1分離壁10の上方で連通している。酸生成部4と固液分離部5は、処理槽1の内底面から上方に向かって立ち上がる第2分離壁11によって区画されている。酸生成部4と固液分離部5は、第2分離壁11の上方で連通している。固液分離部5と第1移送部60は、処理槽1の内底面から上方に向かって立ち上がる第3分離壁12によって区画されている。固液分離部5と第1移送部60とは、第3分離壁12の上方で連通している。第1移送部60と第1貯留部61は、処理槽1の天面から下方に向かって突き出す第4分離壁13によって区画されている。第1移送部60と第1貯留部61とは、第4分離壁13の下方で連通している。 The solubilizing section 3 and the acid generating section 4 are separated by a first separation wall 10 that rises upward from the inner bottom surface of the processing tank 1. The solubilizing section 3 and the acid generating section 4 communicate above the first separation wall 10. The acid generation section 4 and the solid-liquid separation section 5 are separated by a second separation wall 11 that rises upward from the inner bottom surface of the processing tank 1 . The acid generation section 4 and the solid-liquid separation section 5 communicate with each other above the second separation wall 11. The solid-liquid separation section 5 and the first transfer section 60 are separated by a third separation wall 12 that rises upward from the inner bottom surface of the processing tank 1 . The solid-liquid separation section 5 and the first transfer section 60 communicate with each other above the third separation wall 12. The first transfer section 60 and the first storage section 61 are separated by a fourth separation wall 13 that protrudes downward from the top surface of the processing tank 1 . The first transfer section 60 and the first storage section 61 communicate with each other below the fourth separation wall 13.
 可溶化部3では、処理すべき有機性廃棄物7が投入され、該有機性廃棄物7が微生物により加水分解されて固形分の一部が溶解し、第1処理水30が形成される。微生物とは、有機性廃棄物7を加水分解する加水分解菌である。第1処理水30は、主に、加水分解菌、分解されなかった有機性廃棄物7の固形分、及び分解された有機性廃棄物7の可溶化成分で構成される。なお、可溶化部3では、第1処理水30を撹拌する第1撹拌機構31が設けられている。これにより、可溶化部3での可溶化を効率的に行うことができる。第1撹拌機構31は、一例として撹拌機であるが、液体を撹拌できるものであれば他の構成でもよい。 In the solubilization section 3, the organic waste 7 to be treated is input, and the organic waste 7 is hydrolyzed by microorganisms to dissolve a portion of the solid content, thereby forming the first treated water 30. The microorganism is a hydrolyzing bacterium that hydrolyzes the organic waste 7. The first treated water 30 is mainly composed of hydrolyzing bacteria, solid content of the undecomposed organic waste 7, and solubilized components of the decomposed organic waste 7. Note that the solubilizing section 3 is provided with a first stirring mechanism 31 that stirs the first treated water 30. Thereby, solubilization in the solubilizing section 3 can be performed efficiently. The first stirring mechanism 31 is, for example, a stirrer, but may have any other configuration as long as it can stir the liquid.
 酸生成部4では、第1処理水30が第1分離壁10を越流して流入し、主に有機性廃棄物7の可溶化成分から有機酸又は酢酸などの酸を生成する酸生成菌により、第2処理水40が形成される。第2処理水40は、主に、酸生成菌、分解されなかった有機性廃棄物7の固形分、及び酸で構成されており、その他に、加水分解菌、及び有機性廃棄物7の可溶化成分も含まれる。有機性廃棄物7の可溶化成分とは、酸生成部4で酸にならなかった成分である。なお、酸生成部4では、第2処理水40を撹拌する第2撹拌機構41が設けられている。これにより、酸生成部4での酸生成を効率的に行うことができる。第2撹拌機構41は、一例として撹拌機であるが、液体を撹拌できるものであれば他の構成でもよい。 In the acid generation section 4, the first treated water 30 flows over the first separation wall 10 and flows in, and is treated mainly by acid-producing bacteria that generate organic acids or acids such as acetic acid from the solubilized components of the organic waste 7. , second treated water 40 is formed. The second treated water 40 is mainly composed of acid-producing bacteria, solid content of the organic waste 7 that has not been decomposed, and acid, and also contains hydrolytic bacteria and the possible organic waste 7. Also includes solubilized components. The solubilized components of the organic waste 7 are components that have not been converted into acid in the acid generating section 4. Note that the acid generating section 4 is provided with a second stirring mechanism 41 that stirs the second treated water 40. Thereby, acid generation in the acid generation section 4 can be performed efficiently. The second stirring mechanism 41 is, for example, a stirrer, but may have any other configuration as long as it can stir the liquid.
 固液分離部5では、第2処理水40が第2分離壁11を越流して流入し、固形分50と分離液51とに分離される。固液分離部5での分離は、送液機器の削減の観点から、固形分50の重力沈降を利用して、下部に固形分50が形成され、上澄みに分離液51が形成されるようにすることが望ましい。なお、固液分離部5では、第2処理水40を固形分50と分離液51とに分離できればよく、他の分離方法を用いてもよい。例えば、固液分離部5として公知技術となっているろ過膜を使用し、送液機器を用いて第2処理水40をろ過膜に通水して固形分50と分離液51に分離してもよい。固形分50は、主に、酸生成菌、分解されなかった有機性廃棄物7の固形分から構成されており、その他に、加水分解菌も含まれる。分離液51は、主に酸から構成され、その他に、有機性廃棄物7の可溶化成分も含まれる。有機性廃棄物7の可溶化成分とは、酸生成部4で酸にならなかった成分である。 In the solid-liquid separation section 5, the second treated water 40 flows over the second separation wall 11 and is separated into a solid content 50 and a separated liquid 51. Separation in the solid-liquid separation section 5 is performed in such a way that the solid content 50 is formed in the lower part and the separated liquid 51 is formed in the supernatant by using gravity sedimentation of the solid content 50 from the viewpoint of reducing the number of liquid feeding equipment. It is desirable to do so. Note that the solid-liquid separation unit 5 only needs to be able to separate the second treated water 40 into the solid content 50 and the separated liquid 51, and other separation methods may be used. For example, a filtration membrane, which is a known technology, is used as the solid-liquid separation section 5, and the second treated water 40 is passed through the filtration membrane using a liquid feeding device to separate it into solid content 50 and separated liquid 51. Good too. The solid content 50 is mainly composed of acid-producing bacteria and the solid content of the undecomposed organic waste 7, and also includes hydrolytic bacteria. The separation liquid 51 is mainly composed of acid, and also contains solubilized components of the organic waste 7. The solubilized components of the organic waste 7 are components that have not been converted into acid in the acid generating section 4.
 メタン発酵部6では、第3分離壁12を越流して第1移送部60に流入した分離液51が、第1移送部60の下部から第1貯留部61の下部に流入する。分離液51は、主に酸からメタンガス等のガスを生成するメタン発酵菌により処理されて、第3処理水62とガス63とに転換される。第3処理水62は、第1貯留部61の上部から処理槽1の外部に排出される(図1の矢印A)。ガス63は、第1貯留部61の上部から処理槽1の外部に排出され(図1の矢印B)、図示省略のガス貯留部に貯留されて発電又は熱源として利用される。なお、メタン発酵菌は、自己造粒物であるグラニュールを利用することが望ましい。有機性廃棄物7の処理システム100は、メタン発酵菌としてグラニュールを利用することで、メタン発酵部6のサイズを小さくすることができ、システム全体の大型化を抑制できる。 In the methane fermentation section 6 , the separated liquid 51 that has flowed over the third separation wall 12 and flowed into the first transfer section 60 flows from the lower part of the first transfer section 60 to the lower part of the first storage section 61 . The separated liquid 51 is mainly treated by methane-fermenting bacteria that generate gas such as methane gas from acid, and is converted into third treated water 62 and gas 63. The third treated water 62 is discharged from the upper part of the first storage section 61 to the outside of the treatment tank 1 (arrow A in FIG. 1). The gas 63 is discharged from the upper part of the first storage section 61 to the outside of the processing tank 1 (arrow B in FIG. 1), is stored in a gas storage section (not shown), and is used for power generation or as a heat source. Note that it is desirable to use granules, which are self-granulated products, as the methane-fermenting bacteria. By using granules as methane fermenting bacteria, the organic waste 7 treatment system 100 can reduce the size of the methane fermentation section 6, thereby suppressing the enlargement of the entire system.
 メタン発酵部6では、第3処理水62を撹拌する第3撹拌機構64が設けられている。第1貯留部61でメタン発酵を効率的に行うためである。第3撹拌機構64は、第1貯留部61の上方と下方とを繋ぎ、第3処理水62が流通する循環配管部64aと、該循環配管部64aを通じて第3処理水62を第1貯留部61の上方から引き抜き、引き抜いた第3処理水62を第1貯留部61の下方に返送させるポンプ64bと、を有している。第3撹拌機構64は、処理槽1の外部に設けられている。つまり、第3撹拌機構64は、循環配管部64aを介して第3処理水62を循環させることで、第1貯留部61の第3処理水62を撹拌させる構成である。なお、循環配管部64aは、第1貯留部61の上方と、第1移送部60とを繋ぐ構成でもよい。また、第3撹拌機構64は、図示した構成に限定されず、液体を撹拌できるものであれば他の構成でもよい。 The methane fermentation section 6 is provided with a third stirring mechanism 64 that stirs the third treated water 62. This is to efficiently perform methane fermentation in the first storage section 61. The third stirring mechanism 64 connects the upper and lower parts of the first storage section 61, and includes a circulation piping section 64a through which the third treated water 62 flows, and a circulation piping section 64a that supplies the third treated water 62 to the first storage section through the circulation piping section 64a. It has a pump 64b that draws out the third treated water 62 from above the first storage section 61 and returns the third treated water 62 to the bottom of the first storage section 61. The third stirring mechanism 64 is provided outside the processing tank 1 . That is, the third stirring mechanism 64 is configured to stir the third treated water 62 in the first storage section 61 by circulating the third treated water 62 via the circulation piping section 64a. Note that the circulation piping section 64a may be configured to connect the upper part of the first storage section 61 and the first transfer section 60. Further, the third stirring mechanism 64 is not limited to the illustrated configuration, and may have any other configuration as long as it can stir the liquid.
 第1返送手段2は、固液分離部5で第2処理水40から分離した分離液51を可溶化部3に返送するものである。第1返送手段2は、固液分離部5と可溶化部3とを繋ぎ、分離液51が流通する第1返送配管部20と、該第1返送配管部20を通じて分離液51を引き抜き、引き抜いた分離液51を可溶化部3に所定の量だけ返送するポンプ21と、を有している。 The first return means 2 is for returning the separated liquid 51 separated from the second treated water 40 in the solid-liquid separation section 5 to the solubilization section 3. The first return means 2 connects the solid-liquid separation section 5 and the solubilization section 3, and includes a first return piping section 20 through which the separated liquid 51 flows, and extracts the separated liquid 51 through the first return piping section 20. The pump 21 includes a pump 21 that returns a predetermined amount of the separated liquid 51 to the solubilizing section 3.
 上記したように、可溶化部3では、加水分解菌である微生物の加水分解により、有機性廃棄物7が可溶化されて、第1処理水30が形成される。第1処理水30は、主に、加水分解菌、分解されなかった有機性廃棄物7の固形分、及び分解された有機性廃棄物7の可溶化成分で構成される。可溶化成分は、加水分解菌の種類に依存した多種多様な溶解性有機物であり、例えば、タンパク質、糖、脂質などが含まれる。溶解性有機物は、低分子量の有機物である。この有機性廃棄物7から可溶化成分への加水分解は、第1処理水30中に含まれる可溶化成分の濃度が高くなると効率が低下し、加水分解菌による有機性廃棄物7の分解が進行しにくくなる。そのため、本実施の形態1に係る有機性廃棄物7の処理システム100では、固液分離部5から可溶化部3に所定量の分離液51を返送することで第1処理水30中の可溶化成分の濃度を調整することとしている。上述したように、分離液51は、主に、酸生成部4において生成された酸で構成されている。つまり、本実施の形態1に係る有機性廃棄物7の処理システム100では、分離液51を可溶化部3に返送することで、希釈する形で第1処理水30中の可溶化成分を酸生成部4に押し流すことができ、第1処理水30中の可溶化成分の濃度を調整して、有機性廃棄物7から可溶化成分へ加水分解する効率の低下を抑制できる。 As described above, in the solubilizing section 3, the organic waste 7 is solubilized by hydrolysis of microorganisms, which are hydrolyzing bacteria, and the first treated water 30 is formed. The first treated water 30 is mainly composed of hydrolyzing bacteria, solid content of the undecomposed organic waste 7, and solubilized components of the decomposed organic waste 7. The solubilized components are a wide variety of soluble organic substances depending on the type of hydrolyzing bacteria, and include, for example, proteins, sugars, and lipids. Soluble organic matter is a low molecular weight organic matter. The efficiency of this hydrolysis of the organic waste 7 into solubilized components decreases as the concentration of the solubilized components contained in the first treated water 30 increases, and the decomposition of the organic waste 7 by the hydrolytic bacteria decreases. It becomes difficult to progress. Therefore, in the organic waste 7 treatment system 100 according to the first embodiment, by returning a predetermined amount of the separated liquid 51 from the solid-liquid separation unit 5 to the solubilization unit 3, The concentration of solubilized components is adjusted. As described above, the separation liquid 51 is mainly composed of the acid generated in the acid generation section 4. That is, in the organic waste 7 treatment system 100 according to the first embodiment, by returning the separated liquid 51 to the solubilization section 3, the solubilized components in the first treated water 30 are diluted with acid. It can be flushed into the generation section 4, and the concentration of the solubilized components in the first treated water 30 can be adjusted to suppress a decrease in the efficiency of hydrolyzing the organic waste 7 into the solubilized components.
 従来技術のように、複数の処理槽で構成した処理システムでは、各処理槽を接続する配管又は処理槽間の送液機器を設置できる。送液機器とは、例えばポンプ等である。送液機器は、例えば、可溶化槽へ上水又は処理水などを加えることができる送液機器と、可溶化槽から酸生成槽への送液機器である。この従来のシステムでは、送液機器への投入電力を調整することにより、可溶化槽へ送られる上水又は処理水などの送液量を、可溶化槽から酸生成槽へ送液する送液量よりも大きくすることで、可溶化槽の容積に裕度を設けておけば可溶化槽における可溶化成分の濃度を調整可能である。 In a processing system configured with a plurality of processing tanks as in the prior art, piping connecting each processing tank or liquid feeding equipment between the processing tanks can be installed. The liquid feeding device is, for example, a pump or the like. The liquid feeding device is, for example, a liquid feeding device capable of adding clean water or treated water to the solubilization tank, and a liquid feeding device from the solubilization tank to the acid generation tank. In this conventional system, the amount of liquid such as clean water or treated water sent to the solubilization tank is adjusted by adjusting the power input to the liquid delivery device. The concentration of the solubilized component in the solubilization tank can be adjusted by setting a margin for the volume of the solubilization tank.
 しかしながら、単一の処理槽で構成した処理システムでは、従来技術のように、各処理槽を接続する配管又は処理槽間の送液機器が存在しない。そのため、このシステムでは、可溶化部3へ上水又は処理水などを加えると、その加えた容積分だけ、上水又は処理水が可溶化部3と連通している酸生成部4、固液分離部5、及びメタン発酵部6まで連続して流れていき、可溶化部3、酸生成部4、及びメタン発酵部6の各区間における処理時間に影響を及ぼすことになる。つまり、可溶化成分の濃度調整と各区画の処理時間は、相互に影響し合う。よって、このシステムでは、可溶化成分の濃度調整と有機性廃棄物7の処理時間の確保を両立することができず、有機性廃棄物7の処理が破綻するおそれがある。 However, in a processing system configured with a single processing tank, unlike the conventional technology, there is no piping connecting each processing tank or liquid feeding equipment between the processing tanks. Therefore, in this system, when clean water or treated water is added to the solubilizing section 3, the added volume is filled with the acid generating section 4, which communicates with the solubilizing section 3, and the solid-liquid. It flows continuously to the separation section 5 and the methane fermentation section 6, and affects the processing time in each section of the solubilization section 3, acid generation section 4, and methane fermentation section 6. In other words, the concentration adjustment of the solubilized component and the processing time of each compartment influence each other. Therefore, in this system, it is not possible to both adjust the concentration of the solubilized component and secure processing time for the organic waste 7, and there is a risk that the processing of the organic waste 7 will fail.
 一方、本実施の形態1に係る有機性廃棄物7の処理システム100では、固液分離部5の分離液51を可溶化部3へ返送するので、可溶化部3、酸生成部4、及び固液分離部5での循環となり、分離液51の量の増減が、可溶化部3、及び酸生成部4への処理時間に直接的に影響されない。なお、分離液51は、主に酸で構成されるが、一部、酸生成部4で酸にならなかった有機性廃棄物7の可溶化成分も含まれる。そのため、分離液51では、可溶化成分を含まない上水又は処理水などと比べると、有機性廃棄物7から可溶化成分への加水分解の効率の低下を抑制する効果が小さくなる。しかし、本実施の形態1に係る有機性廃棄物7の処理システム100では、分離液51を可溶化部3へ返送することで可溶化成分の濃度を調整するので、十分に加水分解の効率の低下を抑制でき、単一の処理槽1を構成したシステムの確立を実現し得る。 On the other hand, in the organic waste 7 treatment system 100 according to the first embodiment, the separated liquid 51 of the solid-liquid separation section 5 is returned to the solubilization section 3, so that the solubilization section 3, the acid generation section 4, and The liquid is circulated in the solid-liquid separation section 5, and the increase or decrease in the amount of the separated liquid 51 is not directly affected by the treatment time to the solubilization section 3 and acid generation section 4. Note that the separated liquid 51 is mainly composed of acid, but also partially contains solubilized components of the organic waste 7 that have not been converted into acid in the acid generating section 4. Therefore, the separated liquid 51 is less effective in suppressing a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components, compared to clean water or treated water that does not contain the solubilized components. However, in the organic waste 7 treatment system 100 according to the first embodiment, the concentration of the solubilized components is adjusted by returning the separated liquid 51 to the solubilization section 3, so that the efficiency of hydrolysis can be sufficiently improved. The reduction can be suppressed, and a system including a single processing tank 1 can be established.
 なお、第1返送手段2は、分離液51が第1移送部60へ流入する直前の位置であり、かつ固液分離部5の上方から分離液51を引き抜いて可溶化部3へ返送する構成とすることが望ましい。固液分離部5では、酸生成部4で酸にならなかった有機性廃棄物7の可溶化成分の一部が酸に変換される。そのため、固液分離部5の末端、すなわち、分離液51が第1移送部60へ流入する直前の位置から分離液51を引き抜くことで、分離液51中における酸生成部4で酸にならなかった有機性廃棄物7の可溶化成分の量を減らすことができ、有機性廃棄物7から可溶化成分への加水分解の効率の低下を抑制する効果が得られやすくなる。また、固液分離部5の上方から引き抜くべき理由は、固液分離部5の上方でないと固形分50が第1返送配管部20に流入する可能性があり、第1返送配管部20が固形分50により閉塞するおそれがあるためである。 The first return means 2 is located at a position immediately before the separated liquid 51 flows into the first transfer section 60, and is configured to pull out the separated liquid 51 from above the solid-liquid separation section 5 and return it to the solubilization section 3. It is desirable to do so. In the solid-liquid separation section 5, a part of the solubilized components of the organic waste 7 that have not been converted into acids in the acid generation section 4 are converted into acids. Therefore, by withdrawing the separated liquid 51 from the end of the solid-liquid separation section 5, that is, from the position immediately before the separated liquid 51 flows into the first transfer section 60, it is possible to prevent the separated liquid 51 from becoming an acid in the acid generating section 4. The amount of the solubilized components of the organic waste 7 can be reduced, and the effect of suppressing a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components can be easily obtained. Moreover, the reason why the solid content 50 should be drawn from above the solid-liquid separation part 5 is that if it is not above the solid-liquid separation part 5, the solid content 50 may flow into the first return piping part 20, and the first return piping part 20 This is because there is a risk of blockage within 50 minutes.
 また、第1処理水30、第2処理水40、及び第3処理水62の生成において、第1処理水30の生成が最も律速となることが分かっている。そのため、処理槽1に投入する有機性廃棄物7の量は、可溶化部3の有効容積当たりの有機性廃棄物7の重量、又は有機性廃棄物7中の有機物量の指標であるCOD(Chemical Oxygen Demand)量で設定することが望ましい。処理槽1に投入する有機性廃棄物7の量は、有機性廃棄物7の種類によって決まるため、特に限定はされないが、有機性廃棄物7の重量であれば20kg/m・日以上で、且つ200kg/m・日以下が好ましく、更に言えば50kg/m・日以上で、且つ100kg/m・日以下が、より望ましい。上記の範囲よりも有機性廃棄物7の重量が小さいと、投入する有機性廃棄物7の量に対し、システムが過剰に大型化するおそれがある。一方、上記の範囲よりも有機性廃棄物7の重量が大きいと、処理槽1で有機性廃棄物7を適切に処理できず、処理槽1の外部に排出される第3処理水62に未分解の可溶化成分又は酸が含まれるとともに、固形分50の量が増加するおそれがある。また、COD量の場合も、同様の理由により、5kg/m・日以上で、且つ40kg/m・日以下が好ましく、更に言うと12.5kg/m・日以上で、且つ25kg/m・日以下が、より望ましい。 Moreover, in the generation of the first treated water 30, the second treated water 40, and the third treated water 62, it is known that the generation of the first treated water 30 is the most rate-limiting. Therefore, the amount of organic waste 7 to be input into the treatment tank 1 is determined by the weight of the organic waste 7 per effective volume of the solubilization section 3 or the COD (which is an index of the amount of organic matter in the organic waste 7). It is desirable to set the amount using the chemical oxygen demand) amount. The amount of organic waste 7 to be input into the treatment tank 1 is determined by the type of organic waste 7 and is not particularly limited, but if the weight of organic waste 7 is 20 kg/m 3 days or more. , and 200 kg/m 3 ·day or less, more preferably 50 kg/m 3 ·day or more and 100 kg/m 3 ·day or less. If the weight of the organic waste 7 is smaller than the above range, there is a risk that the system will become excessively large compared to the amount of organic waste 7 to be input. On the other hand, if the weight of the organic waste 7 is larger than the above range, the organic waste 7 cannot be properly treated in the treatment tank 1, and the third treated water 62 discharged outside the treatment tank 1 is left untreated. There is a risk that the amount of solid content 50 will increase as the solubilizing component or acid of decomposition is included. Furthermore, for the same reason, the COD amount is preferably 5 kg/m 3 ·day or more and 40 kg/m 3 ·day or less, and more specifically, 12.5 kg/m 3·day or more and 25 kg/m 3 ·day or more. More preferably, it is less than m 3 days.
 可溶化部3において調整する第1処理水30中の可溶化成分の濃度は、有機性廃棄物7の種類又は加水分解菌の種類に応じて、適宜、設定することができる。但し、当該濃度は、システムの立ち上げ時などに実施する微生物の馴養において把握し、設定することが望ましい。馴養による可溶化成分の濃度設定の具体的な内容は、下記の通りである。 The concentration of the solubilized component in the first treated water 30 that is adjusted in the solubilization section 3 can be set as appropriate depending on the type of organic waste 7 or the type of hydrolyzing bacteria. However, it is desirable to understand and set the concentration during the acclimatization of the microorganisms, which is carried out at the time of starting up the system. The specific details of setting the concentration of the solubilized component by acclimatization are as follows.
 メタン発酵部6のメタン発酵菌は、酸生成部4において酸生成菌により生成される酸がないと増殖できない。また、酸生成菌は、可溶化部3において加水分解菌により有機性廃棄物7から生成される可溶化成分がないと増殖できない。そのため、加水分解菌の馴養から開始する。先ずは、ラボの設備で予め培養する等の対応により用意した加水分解菌を可溶化部3に投入し、有機性廃棄物7を規定の投入量よりも小さい量で可溶化部3に投入する。有機性廃棄物7の投入量を規定の投入量に向けて徐々に増加させていく過程で、加水分解の進行程度を、有機性廃棄物7の投入量、及び第1処理水30中における「分解されずに残存した有機性廃棄物7の固形分」の重量で把握し、第1処理水30中の可溶化成分の濃度を測定する。これにより、加水分解が効率的に進行する第1処理水30中の可溶化成分の濃度を把握することができる。このときの可溶化成分の濃度は、タンパク質又は糖などの特定の物質を直接、測定しても良い。なお、CODであれば、加水分解菌の種類に依存した多種多様な溶解性有機物を統合して、可溶化成分の濃度の指標として利用することができるため、CODでの評価が望ましい。このようにすることで、第1処理水30中の可溶化成分の濃度が設定値となるように、可溶化部3へ返送される分離液51の返送量を調整することができる。 The methane-fermenting bacteria in the methane-fermenting section 6 cannot proliferate without the acid produced by the acid-producing bacteria in the acid-producing section 4. Furthermore, acid-producing bacteria cannot proliferate without solubilized components produced from organic waste 7 by hydrolyzing bacteria in solubilizing section 3 . Therefore, start by acclimating the hydrolytic bacteria. First, hydrolytic bacteria prepared by culturing in advance in laboratory equipment is introduced into the solubilization section 3, and organic waste 7 is introduced into the solubilization section 3 in an amount smaller than the prescribed input amount. . In the process of gradually increasing the input amount of organic waste 7 toward the specified input amount, the degree of hydrolysis progress is determined by changing the input amount of organic waste 7 and the first treated water 30. The concentration of the solubilized component in the first treated water 30 is determined by the weight of the solid content of the organic waste 7 that remains without being decomposed. Thereby, it is possible to grasp the concentration of the solubilized component in the first treated water 30 at which hydrolysis proceeds efficiently. The concentration of the solubilized component at this time may be determined by directly measuring a specific substance such as protein or sugar. It should be noted that evaluation using COD is preferable because it is possible to integrate a wide variety of soluble organic substances depending on the type of hydrolyzing bacteria and use it as an index of the concentration of the solubilized component. By doing so, the amount of the separated liquid 51 returned to the solubilization section 3 can be adjusted so that the concentration of the solubilized component in the first treated water 30 becomes the set value.
 なお、第1処理水30中の可溶化成分の濃度の設定は、実際に、可溶化部3へ返送される分離液51の返送量を調整しながら、加水分解の進行程度を、有機性廃棄物7の投入量、及び第1処理水30中の「分解されずに残存した有機性廃棄物7の固形分」の重量で把握することで間接的に行うことも可能である。第1返送手段2の稼働は、連続的に実施してもよいし、加水分解菌による加水分解の進行に応じた第1処理水30中の可溶化成分の濃度の増加タイミングに合わせて、間欠的に実施してもよい。 The concentration of the solubilized components in the first treated water 30 is actually set by adjusting the amount of separated liquid 51 returned to the solubilization section 3, and controlling the degree of progress of hydrolysis by adjusting the amount of organic waste. It is also possible to do this indirectly by determining the input amount of the organic waste 7 and the weight of "the solid content of the organic waste 7 that remains without being decomposed" in the first treated water 30. The operation of the first return means 2 may be carried out continuously or intermittently in accordance with the timing of increase in the concentration of the solubilized component in the first treated water 30 according to the progress of hydrolysis by the hydrolyzing bacteria. It may be carried out separately.
 また、微生物の種類は、特に限定されないが、例えば優占種となる微生物を利用すれば良い。優占種となる微生物は、微生物の馴養において、有機性廃棄物7の種類に応じて、その有機性廃棄物7を基質とすることができる微生物種だからである。具体的には、可溶化部3では、有機性廃棄物7の種類に応じて、その有機性廃棄物7を基質とすることができる加水分解菌が増殖し優占種となる。続いて、酸生成部4では、有機性廃棄物7の種類に応じて、加水分解菌が有機性廃棄物7から生成する可溶化成分を基質とすることができる酸生成菌が優占種となる。メタン発酵部6では、有機性廃棄物7の種類に応じて、酸生成菌が可溶化成分から生成する酸を基質とすることができるメタン発酵菌が優占種となる。 Furthermore, the type of microorganism is not particularly limited, but for example, a dominant microorganism may be used. This is because the dominant microorganism is a microorganism species that can use the organic waste 7 as a substrate depending on the type of organic waste 7 during the habituation of the microorganism. Specifically, in the solubilization section 3, depending on the type of organic waste 7, hydrolytic bacteria that can use the organic waste 7 as a substrate proliferate and become the dominant species. Subsequently, in the acid generation section 4, depending on the type of organic waste 7, acid-producing bacteria that can use the solubilized components generated from the organic waste 7 as a substrate are the dominant species. Become. In the methane fermentation section 6, depending on the type of organic waste 7, methane-fermenting bacteria, which can use as a substrate the acid produced by the acid-producing bacteria from the solubilized components, become the dominant species.
 図2は、実施の形態1に係る有機性廃棄物7の処理方法を示したフローチャートである。本実施の形態1に係る有機性廃棄物7の処理方法は、上記した処理システム100を用いたものである。有機性廃棄物7の処理方法は、可溶化工程(ステップS1)と、酸生成工程(ステップS2)と、固液分離工程(ステップS3)と、分離液返送工程(ステップS4)と、メタン発酵工程(ステップS5)と、を備えている。 FIG. 2 is a flowchart showing a method for treating organic waste 7 according to the first embodiment. The method for treating organic waste 7 according to the first embodiment uses the treatment system 100 described above. The method for treating organic waste 7 includes a solubilization step (step S1), an acid generation step (step S2), a solid-liquid separation step (step S3), a separated liquid return step (step S4), and a methane fermentation step. step (step S5).
 可溶化工程(ステップS1)では、可溶化部3に投入した処理すべき有機性廃棄物7を微生物によって可溶化し、第1処理水30を生成する。具体的には、可溶化部3の加水分解菌により有機性廃棄物7を加水分解して有機性廃棄物7中の固形分の一部を溶解させることで、第1処理水30を形成する。第1処理水30は、主に、加水分解菌、分解されなかった有機性廃棄物7の固形分、及び分解された有機性廃棄物7の可溶化成分から構成される。 In the solubilization step (step S1), the organic waste 7 to be treated, which has been input into the solubilization section 3, is solubilized by microorganisms to generate the first treated water 30. Specifically, the first treated water 30 is formed by hydrolyzing the organic waste 7 by the hydrolyzing bacteria in the solubilizing section 3 and dissolving a part of the solid content in the organic waste 7. . The first treated water 30 is mainly composed of hydrolyzing bacteria, solid content of the undecomposed organic waste 7, and solubilized components of the decomposed organic waste 7.
 次に、酸生成工程(ステップS2)では、第1分離壁10を越流して酸生成部4に流入した第1処理水30から酸を生成し、第2処理水40を生成する。具体的には、主に有機性廃棄物7の可溶化成分から有機酸又は酢酸などの酸を生成する酸生成菌により、第2処理水40が形成される。第2処理水40は、主に、酸生成菌、分解されなかった有機性廃棄物7の固形分、及び酸から構成され、その他、加水分解菌、及び有機性廃棄物7の可溶化成分も含まれる。可溶化成分は、酸生成部4で酸にならなかった成分である。 Next, in the acid generation step (step S2), acid is generated from the first treated water 30 that has flowed over the first separation wall 10 and flowed into the acid generation section 4, and the second treated water 40 is generated. Specifically, the second treated water 40 is mainly formed by acid-producing bacteria that produce organic acids or acids such as acetic acid from the solubilized components of the organic waste 7 . The second treated water 40 is mainly composed of acid-producing bacteria, the solid content of the organic waste 7 that has not been decomposed, and acids, and also contains hydrolytic bacteria and solubilized components of the organic waste 7. included. The solubilized component is a component that did not become an acid in the acid generating section 4.
 次に、固液分離工程(ステップS3)では、第2分離壁11を越流して固液分離部5に流入した第2処理水40を、固形分50と分離液51に分離する。固形分50は、主に酸生成菌、及び分解されなかった有機性廃棄物7の固形分から構成され、その他、加水分解菌も含まれる。分離液51は、主に酸から構成され、その他、有機性廃棄物7の可溶化成分も含まれる。 Next, in the solid-liquid separation step (step S3), the second treated water 40 that has flown over the second separation wall 11 and flowed into the solid-liquid separation section 5 is separated into solid content 50 and separated liquid 51. The solid content 50 is mainly composed of acid-producing bacteria and the solid content of the organic waste 7 that has not been decomposed, and also includes hydrolytic bacteria. The separation liquid 51 is mainly composed of acid, and also contains solubilized components of the organic waste 7.
 次に、分離液返送工程(ステップS4)では、固液分離工程で分離された分離液51のうち所定量の分離液51を可溶化部3に返送する。これにより、第1処理水30中の可溶化成分の濃度を調整することができ、有機性廃棄物7から可溶化成分への加水分解の効率の低下を抑制できる。 Next, in the separated liquid return step (step S4), a predetermined amount of the separated liquid 51 of the separated liquid 51 separated in the solid-liquid separation step is returned to the solubilization section 3. Thereby, the concentration of the solubilized components in the first treated water 30 can be adjusted, and a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components can be suppressed.
 メタン発酵工程(ステップS5)は、分離液返送工程(ステップS4)と並行して行われる。メタン発酵工程(ステップS5)では、第3分離壁12を越流してメタン発酵部6の第1貯留部61に流入した分離液51を、主に酸からメタンガス等のガスを生成するメタン発酵菌により処理させて、第3処理水62とガス63とに転換させる。 The methane fermentation step (step S5) is performed in parallel with the separated liquid return step (step S4). In the methane fermentation step (step S5), the separated liquid 51 that has overflowed the third separation wall 12 and flowed into the first storage section 61 of the methane fermentation section 6 is used as a source of methane fermentation bacteria that mainly produces gas such as methane gas from acid. The third treated water 62 and gas 63 are converted into third treated water 62 and gas 63.
 以上のように、本実施の形態1に係る有機性廃棄物7の処理システム100では、微生物を用いて有機性廃棄物7を処理する単一の処理槽1と、処理槽1の内部の液体を返送させる第1返送手段2と、を備えている。処理槽1は、有機性廃棄物7を微生物によって可溶化し、第1処理水30を生成する可溶化部3と、可溶化部3で生成された第1処理水30から酸を生成し、第2処理水40を生成する酸生成部4と、酸生成部4で生成された第2処理水40を固形分50と分離液51とに分離する固液分離部5と、固液分離部5で分離された分離液51をメタン発酵菌でメタン発酵させて、第3処理水62とガス63とに転換させるメタン発酵部6と、を有している。第1返送手段2は、固液分離部5で分離された分離液51を可溶化部3に返送する構成である。 As described above, the organic waste 7 treatment system 100 according to the first embodiment includes a single treatment tank 1 that processes the organic waste 7 using microorganisms, and a liquid inside the treatment tank 1. and a first return means 2 for returning the. The treatment tank 1 includes a solubilization unit 3 that solubilizes organic waste 7 with microorganisms to generate a first treated water 30, and generates acid from the first treated water 30 generated in the solubilization unit 3. An acid generation section 4 that generates second treated water 40, a solid-liquid separation section 5 that separates the second treated water 40 generated in the acid generation section 4 into a solid content 50 and a separated liquid 51, and a solid-liquid separation section. It has a methane fermentation section 6 which performs methane fermentation on the separated liquid 51 separated in step 5 using methane fermentation bacteria and converts it into third treated water 62 and gas 63. The first return means 2 is configured to return the separated liquid 51 separated by the solid-liquid separation section 5 to the solubilization section 3.
 つまり、本実施の形態1に係る有機性廃棄物7の処理システム100では、固液分離部5の分離液51を可溶化部3へ返送するので、可溶化部3、酸生成部4、及び固液分離部5での循環となり、分離液51の量の増減が、可溶化部3及び酸生成部4の処理時間に直接的に影響されることがない。そして、可溶化部3へ返送した分離液51で、可溶化成分の濃度を調整することができるので、加水分解の効率の低下を抑制できる。よって、本実施の形態1に係る有機性廃棄物7の処理システム100では、複数の処理槽で構成する必要があった高負荷及び高速メタン発酵システムを、単一の処理槽1で構築できるので、システム全体を小型化でき、設備費及び運転管理費を抑制できる。 That is, in the organic waste 7 treatment system 100 according to the first embodiment, the separated liquid 51 of the solid-liquid separation section 5 is returned to the solubilization section 3, so that the solubilization section 3, the acid generation section 4, and Since the liquid is circulated in the solid-liquid separation section 5, the increase or decrease in the amount of the separated liquid 51 is not directly affected by the processing time of the solubilization section 3 and the acid generation section 4. Since the concentration of the solubilized component can be adjusted using the separated liquid 51 returned to the solubilization section 3, a decrease in the efficiency of hydrolysis can be suppressed. Therefore, in the organic waste 7 treatment system 100 according to the first embodiment, a high-load and high-speed methane fermentation system that had to be configured with a plurality of treatment tanks can be constructed with a single treatment tank 1. , the entire system can be downsized, and equipment costs and operation management costs can be suppressed.
 実施の形態2.
 次に、図3を参照して、本実施の形態2に係る有機性廃棄物7の処理システム101を説明する。図3は、本実施の形態2に係る有機性廃棄物7の処理システム101の構成を示した模式図である。なお、実施の形態1で説明した有機性廃棄物7の処理システム100と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
Embodiment 2.
Next, with reference to FIG. 3, an organic waste 7 treatment system 101 according to the second embodiment will be described. FIG. 3 is a schematic diagram showing the configuration of a processing system 101 for organic waste 7 according to the second embodiment. Note that the same components as those of the organic waste 7 treatment system 100 described in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted as appropriate.
 本実施の形態2に係る有機性廃棄物7の処理システム101では、図3に示すように、可溶化部3の内部に、微生物である加水分解菌を付着させた付着物34と、付着物34を保持する保持部材35と、が設けられている。可溶化部3は、微生物である加水分解菌が貯留された第2貯留部32と、第2貯留部32の下方に配置され、第2貯留部32で可溶化して生成した第1処理水30を移送する第2移送部33と、を有している。保持部材35は、第2貯留部32と第2移送部33との間に設けられており、付着物34を保持すると共に、第2貯留部32と第2移送部33とを区画する。可溶化部3と酸生成部4とは、処理槽1の天面から下方に向かって突き出す第5分離壁14によって区画されている。第2移送部33と酸生成部4は、第5分離壁14の下方で連通している。その他の点については、上記実施の形態1の有機性廃棄物7の処理システム100と同じ構成である。 In the organic waste 7 treatment system 101 according to the second embodiment, as shown in FIG. A holding member 35 for holding 34 is provided. The solubilization unit 3 includes a second storage unit 32 in which hydrolysis bacteria, which are microorganisms, are stored, and a first treated water that is disposed below the second storage unit 32 and that is generated by solubilizing in the second storage unit 32. 30. The holding member 35 is provided between the second storage section 32 and the second transfer section 33, holds the deposit 34, and partitions the second storage section 32 and the second transfer section 33. The solubilizing section 3 and the acid generating section 4 are separated by a fifth separation wall 14 that protrudes downward from the top surface of the processing tank 1. The second transfer section 33 and the acid generation section 4 communicate with each other below the fifth separation wall 14 . The other points have the same configuration as the organic waste 7 treatment system 100 of the first embodiment.
 本実施の形態2に係る有機性廃棄物7の処理システム101では、有機性廃棄物7を第2貯留部32に投入することで、付着物34の加水分解菌が有機性廃棄物7を加水分解する。第1撹拌機構31は、第2貯留部32の内部を撹拌できるように設置されている。付着物34は、保持部材35によって第2貯留部32の内部で保持されている。 In the organic waste 7 treatment system 101 according to the second embodiment, by putting the organic waste 7 into the second storage section 32, the hydrolyzing bacteria of the deposit 34 hydrate the organic waste 7. Disassemble. The first stirring mechanism 31 is installed so as to be able to stir the inside of the second storage section 32. The deposit 34 is held inside the second storage section 32 by a holding member 35 .
 第2貯留部32では、加水分解菌により有機性廃棄物7が加水分解されて固形分の一部が溶解し、第1処理水30が形成される。保持部材35は、固形成分を透過させないが、液状化した可溶化成分を透過させる性質を持つ構成とする。そのため、第1処理水30は、保持部材35により、主に、分解された有機性廃棄物7の可溶化成分から構成されて、第2移送部33に流入する。つまり、本実施の形態2に係る有機性廃棄物7の処理システム101では、実施の形態1の構成と異なり、加水分解菌が付着した付着物34、及び分解されなかった有機性廃棄物7の固形分が、保持部材35により第2貯留部32に残留する。なお、第2移送部33に流入した第1処理水30は、酸生成部4へ流入する。 In the second storage section 32, the organic waste 7 is hydrolyzed by hydrolyzing bacteria, a part of the solid content is dissolved, and the first treated water 30 is formed. The holding member 35 is configured to have a property of not allowing solid components to pass therethrough, but allowing liquefied solubilized components to pass therethrough. Therefore, the first treated water 30 is mainly composed of the solubilized components of the decomposed organic waste 7 and flows into the second transfer section 33 by the holding member 35 . That is, in the organic waste 7 treatment system 101 according to the second embodiment, unlike the configuration of the first embodiment, the deposit 34 to which hydrolytic bacteria have adhered and the organic waste 7 that has not been decomposed are removed. The solid content remains in the second storage section 32 by the holding member 35. Note that the first treated water 30 that has flowed into the second transfer section 33 flows into the acid generation section 4 .
 酸生成部4では、第2移送部33から第1処理水30が流入し、主に有機性廃棄物7の可溶化成分から有機酸又は酢酸などの酸を生成する酸生成菌により、第2処理水40が形成される。本実施の形態2における第2処理水40は、実施の形態1と異なり、主に、酸生成菌及び酸から構成され、その他、有機性廃棄物7の可溶化成分も含まれる。可溶化成分は、酸生成部4で酸にならなかった成分である。 In the acid generation section 4, the first treated water 30 flows in from the second transfer section 33, and is treated with the second treatment water by acid-producing bacteria that mainly generate organic acids or acids such as acetic acid from the solubilized components of the organic waste 7. Treated water 40 is formed. The second treated water 40 in the second embodiment differs from the first embodiment in that it is mainly composed of acid-producing bacteria and acids, and also contains solubilized components of the organic waste 7. The solubilized component is a component that did not become an acid in the acid generating section 4.
 固液分離部5では、第2処理水40が第2分離壁11を越流して流入し、固形分50と分離液51に分離される。本実施の形態2における固形分50は、実施の形態1と異なり、主に酸生成菌で構成される。また、分離液51は、主に酸から構成され、その他、有機性廃棄物7の可溶化成分も含まれる。可溶化成分は、酸生成部4で酸にならなかった成分である。分離液51は、第3分離壁12を越流し、メタン発酵部6にてメタン発酵菌により処理されて、第3処理水62とガス63とに転換される。 In the solid-liquid separation section 5, the second treated water 40 flows over the second separation wall 11 and is separated into solid content 50 and separated liquid 51. Unlike the first embodiment, the solid content 50 in the second embodiment is mainly composed of acid-producing bacteria. Further, the separation liquid 51 is mainly composed of acid, and also contains a solubilized component of the organic waste 7. The solubilized component is a component that did not become an acid in the acid generating section 4. The separated liquid 51 flows over the third separation wall 12 and is treated by methane fermentation bacteria in the methane fermentation section 6, and converted into third treated water 62 and gas 63.
 本実施の形態2に係る有機性廃棄物7の処理システム101では、加水分解菌が付着した付着物34が保持部材35によって第2貯留部32の内部で保持されるため、加水分解菌が第1処理水30に含まれて可溶化部3から流出することを防ぐことができる。したがって、本実施の形態2に係る有機性廃棄物7の処理システム101は、安定した加水分解菌量を維持しやすく、より効率的に加水分解を進行させることができ、更に、流出する加水分解菌量を考慮する必要がないことから、実施の形態1の構成に比べて可溶化部3を小型化できる。 In the organic waste 7 treatment system 101 according to the second embodiment, since the deposit 34 to which the hydrolytic bacteria have adhered is held inside the second storage section 32 by the holding member 35, the hydrolytic bacteria are 1 can be prevented from being contained in the treated water 30 and flowing out from the solubilizing section 3. Therefore, the organic waste 7 treatment system 101 according to the second embodiment can easily maintain a stable amount of hydrolyzing bacteria, can proceed with hydrolysis more efficiently, and can Since there is no need to consider the amount of bacteria, the solubilizing section 3 can be made smaller in size compared to the configuration of the first embodiment.
 本実施の形態2に係る有機性廃棄物7の処理システム101では、分離液51が第1返送手段2により第2貯留部32に所定の量だけ返送され、第1処理水30中の可溶化成分の濃度が調整される。分離液51の返送量の設定に関しては、実施の形態1と同様に、有機性廃棄物7の種類又は加水分解菌の種類に応じて、適宜、設定することができる。なお、分離液51の返送量の設定は、システムの立ち上げ時などに実施する微生物の馴養において把握し、設定することが望ましい。 In the organic waste 7 treatment system 101 according to the second embodiment, a predetermined amount of the separated liquid 51 is returned to the second storage section 32 by the first return means 2, and the separated liquid 51 is solubilized in the first treated water 30. The concentration of the ingredients is adjusted. As with the first embodiment, the return amount of the separated liquid 51 can be set as appropriate depending on the type of organic waste 7 or the type of hydrolyzing bacteria. Note that it is desirable to determine and set the return amount of the separated liquid 51 during the acclimatization of microorganisms, which is performed at the time of starting up the system.
 本実施の形態2に係る有機性廃棄物7の処理システム101では、加水分解の進行程度を、有機性廃棄物7の投入量、及び「分解されずに第2貯留部32に残存した有機性廃棄物7の固形分」の重量で把握し、第1処理水30中の可溶化成分の濃度を測定する。これにより、加水分解が効率的に進行する第1処理水30中の可溶化成分の濃度を把握することができる。このときの可溶化成分の濃度は、タンパク質又は糖などの特定の物質を、直接測定しても良い。但し、CODであれば、加水分解菌の種類に依存した多種多様な溶解性有機物を統合して、可溶化成分の濃度の指標として利用することができるため、CODでの評価が望ましい。 In the organic waste 7 treatment system 101 according to the second embodiment, the degree of progress of hydrolysis is determined based on the input amount of the organic waste 7 and the organic waste remaining in the second storage section 32 without being decomposed. The concentration of the solubilized component in the first treated water 30 is determined based on the weight of the solid content of the waste 7. Thereby, it is possible to grasp the concentration of the solubilized component in the first treated water 30 at which hydrolysis proceeds efficiently. The concentration of the solubilized component at this time may be determined by directly measuring a specific substance such as protein or sugar. However, if COD is used, a wide variety of soluble organic substances depending on the type of hydrolyzing bacteria can be integrated and used as an indicator of the concentration of solubilized components, so it is desirable to evaluate using COD.
 このようにすることで、本実施の形態2に係る有機性廃棄物7の処理システム101では、第1処理水30中の可溶化成分の濃度が設定値となるように分離液51の返送量を調整することができる。なお、第1処理水30中の可溶化成分の濃度は、実際に、可溶化部3へ返送される分離液51の返送量を調整しながら、加水分解の進行程度を、有機性廃棄物7の投入量、及び「分解されずに第2貯留部32に残存した有機性廃棄物7の固形分」の重量で把握することで間接的に設定することも可能である。 By doing so, in the organic waste 7 treatment system 101 according to the second embodiment, the amount of the separated liquid 51 to be returned is adjusted so that the concentration of the solubilized component in the first treated water 30 becomes the set value. can be adjusted. Note that the concentration of the solubilized components in the first treated water 30 is determined by controlling the degree of progress of hydrolysis while adjusting the amount of separated liquid 51 returned to the solubilization section 3. It is also possible to set it indirectly by determining the input amount and the weight of "the solid content of the organic waste 7 remaining in the second storage section 32 without being decomposed."
 なお、第1返送手段2は、分離液51を付着物34に散布する散布手段22を備えていることが望ましい。散布手段22は、例えば散水ノズルである。これにより、付着物34の表面に吸着する可溶化成分を第2移送部33へ効率的に流すことができ、付着物34に付着した加水分解菌による加水分解の効率の低下を抑制できる。 Note that it is preferable that the first return means 2 includes a spraying means 22 for spraying the separated liquid 51 onto the deposits 34. The spraying means 22 is, for example, a water nozzle. Thereby, the solubilized component adsorbed on the surface of the deposit 34 can be efficiently flowed to the second transfer section 33, and a decrease in the efficiency of hydrolysis caused by the hydrolysis bacteria attached to the deposit 34 can be suppressed.
 保持部材35は、第1処理水30を第2移送部33に流入させ、且つ、付着物34及び分解されなかった有機性廃棄物7の固形分を、第2貯留部32に残留させることができるものであればよい。保持部材35は、例えば市販のフィルタ又はメッシュを用いることができる。孔径に関しては、0.5mm以上で、5mm以下が好ましく、1mm以上で3mm以下であればより望ましい。保持部材35は、孔径が当該範囲よりも小さいと有機性廃棄物7及び付着物34による目詰まりが発生しやすくなる。一方、保持部材35は、孔径が当該範囲よりも大きいと可溶化していない有機性廃棄物7の固形分が第2移送部33に流出するリスクが高くなる。 The holding member 35 allows the first treated water 30 to flow into the second transfer section 33 and allows the deposits 34 and the solid content of the undecomposed organic waste 7 to remain in the second storage section 32. It's fine as long as it's possible. For the holding member 35, for example, a commercially available filter or mesh can be used. Regarding the pore diameter, it is preferably 0.5 mm or more and 5 mm or less, and more preferably 1 mm or more and 3 mm or less. If the holding member 35 has a hole diameter smaller than this range, clogging with the organic waste 7 and the deposits 34 will easily occur. On the other hand, if the pore diameter of the holding member 35 is larger than this range, there is a high risk that the solid content of the organic waste 7 that has not been solubilized will flow out to the second transfer section 33.
 付着物34は、微生物である加水分解菌を保持できればよい。付着物34は、担体又はストローなど、微生物の保持が可能な公知の材料を用いることができる。但し、付着物34は、微生物を保持できる表面性を大きくとることが望ましいため、例えば多孔質材料等の三次元構造材料であることが望ましい。付着物34のサイズは、保持部材35の孔径に応じて、保持部材35の孔径よりも小さいサイズの物を利用すれば良い。 The deposit 34 only needs to be able to retain hydrolytic bacteria, which are microorganisms. For the attachment 34, a known material capable of retaining microorganisms, such as a carrier or a straw, can be used. However, since it is desirable for the deposit 34 to have a large surface property capable of retaining microorganisms, it is desirable to use a material with a three-dimensional structure such as a porous material. The size of the deposit 34 may be smaller than the hole diameter of the holding member 35 depending on the hole diameter of the holding member 35 .
 次に、図2を参照して、本実施の形態2に係る有機性廃棄物7の処理方法を説明する。本実施の形態2に係る有機性廃棄物7の処理方法は、上記した処理システム101を用いたものである。本実施の形態2に係る有機性廃棄物7の処理方法は、上記実施の形態1の構成と同様、可溶化工程(ステップS1)と、酸生成工程(ステップS2)と、固液分離工程(ステップS3)と、分離液返送工程(ステップS4)と、メタン発酵工程(ステップS5)と、を備えている。 Next, a method for treating organic waste 7 according to the second embodiment will be described with reference to FIG. 2. The method for treating organic waste 7 according to the second embodiment uses the treatment system 101 described above. The method for treating organic waste 7 according to the second embodiment includes the solubilization step (step S1), the acid generation step (step S2), and the solid-liquid separation step (same as the structure of the first embodiment). Step S3), a separated liquid return step (Step S4), and a methane fermentation step (Step S5).
 可溶化工程(ステップS1)では、可溶化部3に投入した処理すべき有機性廃棄物7を付着物34に付着させた微生物によって可溶化し、第1処理水30を生成する。具体的には、付着物34に付着させた加水分解菌により有機性廃棄物7を加水分解して有機性廃棄物7中の固形分の一部を溶解させることで、第1処理水30を形成する。加水分解菌が付着した付着物34は、保持部材35によって第2貯留部32の内部で保持される。そのため、加水分解菌が第1処理水30に含まれて可溶化部3から流出することを防ぐことができる。第1処理水30は、主に、分解された有機性廃棄物7の可溶化成分から構成される。 In the solubilization step (step S1), the organic waste 7 to be treated that has been input into the solubilization section 3 is solubilized by the microorganisms attached to the deposits 34, and the first treated water 30 is generated. Specifically, the organic waste 7 is hydrolyzed by the hydrolyzing bacteria attached to the deposit 34 to dissolve a part of the solid content in the organic waste 7, thereby converting the first treated water 30 into the first treated water 30. Form. The deposit 34 to which the hydrolytic bacteria have adhered is held inside the second storage section 32 by the holding member 35 . Therefore, hydrolysis bacteria can be prevented from being contained in the first treated water 30 and flowing out from the solubilizing section 3. The first treated water 30 is mainly composed of solubilized components of the decomposed organic waste 7.
 次に、酸生成工程(ステップS2)では、第1分離壁10を越流して酸生成部4に流入した第1処理水30から酸を生成し、第2処理水40を生成する。具体的には、主に有機性廃棄物7の可溶化成分から有機酸又は酢酸などの酸を生成する酸生成菌により、第2処理水40が形成される。第2処理水40は、主に、酸生成菌及び酸から構成され、その他、有機性廃棄物7の可溶化成分も含まれる。可溶化成分は、酸生成部4で酸にならなかった成分である。 Next, in the acid generation step (step S2), acid is generated from the first treated water 30 that has flowed over the first separation wall 10 and flowed into the acid generation section 4, and the second treated water 40 is generated. Specifically, the second treated water 40 is mainly formed by acid-producing bacteria that produce organic acids or acids such as acetic acid from the solubilized components of the organic waste 7 . The second treated water 40 is mainly composed of acid-producing bacteria and acids, and also contains solubilized components of the organic waste 7. The solubilized component is a component that did not become an acid in the acid generating section 4.
 次に、固液分離工程(ステップS3)では、第2分離壁11を越流して固液分離部5に流入した第2処理水40を、固形分50と分離液51に分離する。固形分50は、主に酸生成菌で構成される。分離液51は、主に酸から構成され、その他、有機性廃棄物7の可溶化成分も含まれる。 Next, in the solid-liquid separation step (step S3), the second treated water 40 that has flown over the second separation wall 11 and flowed into the solid-liquid separation section 5 is separated into solid content 50 and separated liquid 51. The solid content 50 is mainly composed of acid-producing bacteria. The separation liquid 51 is mainly composed of acid, and also contains solubilized components of the organic waste 7.
 次に、分離液返送工程(ステップS4)では、固液分離工程で分離された分離液51のうち、所定量の分離液51を可溶化部3に返送する。これにより、第1処理水30中の可溶化成分の濃度を調整することができ、有機性廃棄物7から可溶化成分への加水分解の効率の低下を抑制できる。また、分離液返送工程(ステップS4)では、分離液51を可溶化部3に返送する際に、散布手段22を用いて、分離液51を付着物34に散布させる。これにより、付着物34の表面に吸着する可溶化成分を第2移送部33へ効率的に流すことができ、付着物34に付着した加水分解菌による加水分解の効率の低下を抑制できる。 Next, in the separated liquid return step (step S4), a predetermined amount of the separated liquid 51 of the separated liquid 51 separated in the solid-liquid separation step is returned to the solubilization section 3. Thereby, the concentration of the solubilized components in the first treated water 30 can be adjusted, and a decrease in the efficiency of hydrolysis from the organic waste 7 to the solubilized components can be suppressed. Further, in the separated liquid return step (step S4), when the separated liquid 51 is returned to the solubilization section 3, the separated liquid 51 is sprayed onto the deposit 34 using the spraying means 22. Thereby, the solubilized component adsorbed on the surface of the deposit 34 can be efficiently flowed to the second transfer section 33, and a decrease in the efficiency of hydrolysis caused by the hydrolysis bacteria attached to the deposit 34 can be suppressed.
 メタン発酵工程(ステップS5)は、分離液返送工程(ステップS4)と並行して行われる。メタン発酵工程(ステップS5)では、可溶化部3に返送されていない分離液51であって、第3分離壁12を越流してメタン発酵部6の第1貯留部61に流入した分離液51を、主に酸からメタンガス等のガスを生成するメタン発酵菌により処理させて、第3処理水62とガス63とに転換させる。 The methane fermentation step (step S5) is performed in parallel with the separated liquid return step (step S4). In the methane fermentation step (step S5), the separated liquid 51 that has not been returned to the solubilization section 3 and has flowed over the third separation wall 12 and into the first storage section 61 of the methane fermentation section 6 is mainly treated with methane-fermenting bacteria that generate gas such as methane gas from acid, and converted into third treated water 62 and gas 63.
 実施の形態3.
 次に、図4を参照して、本実施の形態3に係る有機性廃棄物7の処理システム102を説明する。図4は、本実施の形態3に係る有機性廃棄物7の処理システム102の構成を示した模式図である。なお、実施の形態1及び2で説明した有機性廃棄物7の処理システム100及び101と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
Embodiment 3.
Next, with reference to FIG. 4, a processing system 102 for organic waste 7 according to the third embodiment will be described. FIG. 4 is a schematic diagram showing the configuration of the organic waste 7 treatment system 102 according to the third embodiment. Note that the same components as those of the organic waste 7 treatment systems 100 and 101 described in Embodiments 1 and 2 are given the same reference numerals, and the description thereof will be omitted as appropriate.
 本実施の形態3に係る有機性廃棄物7の処理システム102では、図4に示すように、上記実施の形態2の有機性廃棄物7の処理システム101の構成に加えて、メタン発酵部6の第3処理水62を酸生成部4に返送する第2返送手段8を有することを特徴としている。第2返送手段8は、循環配管部64aから分岐し、酸生成部4の下方に接続された第2返送配管部80と、第2返送配管部80に設けられた電磁弁81及び流量調節弁82と、を有している。第2返送配管部80は、循環配管部64aに設けられた分岐部64cを介して、循環配管部64aに接続されている。電磁弁81には、タイマー83が接続されている。その他の点については、上記実施の形態2の有機性廃棄物7の処理システム101と同じ構成である。 As shown in FIG. 4, in the organic waste 7 treatment system 102 according to the third embodiment, in addition to the configuration of the organic waste 7 treatment system 101 of the second embodiment, a methane fermentation unit 6 It is characterized by having a second return means 8 for returning the third treated water 62 to the acid generation section 4. The second return means 8 includes a second return pipe section 80 branched from the circulation pipe section 64a and connected below the acid generating section 4, and a solenoid valve 81 and a flow rate control valve provided in the second return pipe section 80. 82. The second return piping section 80 is connected to the circulation piping section 64a via a branch section 64c provided in the circulation piping section 64a. A timer 83 is connected to the solenoid valve 81 . The other points have the same configuration as the organic waste 7 treatment system 101 of the second embodiment.
 本実施の形態3に係る有機性廃棄物7の処理システム102では、第1返送手段2によって固液分離部5の分離液51を可溶化部3へ返送することに並行して、第2返送手段8によってメタン発酵部6の第3処理水62を酸生成部4へ返送する。第3処理水62は、第3撹拌機構64を利用し、第2返送配管部80を通じてメタン発酵部6から酸生成部4へ返送される。そのため、追加で送液機器を設ける必要がない。なお、メタン発酵部6の第3処理水62を酸生成部4へ返送する手段は、第3撹拌機構64を利用した構成に限定されず、他の形態でもよい。 In the organic waste 7 treatment system 102 according to the third embodiment, in parallel with the first return means 2 returning the separated liquid 51 of the solid-liquid separation section 5 to the solubilization section 3, the second return means 2 returns the separated liquid 51 to the solubilization section 3. The means 8 returns the third treated water 62 of the methane fermentation section 6 to the acid generation section 4. The third treated water 62 is returned from the methane fermentation section 6 to the acid generation section 4 through the second return piping section 80 using the third stirring mechanism 64 . Therefore, there is no need to provide additional liquid feeding equipment. Note that the means for returning the third treated water 62 of the methane fermentation section 6 to the acid generation section 4 is not limited to the configuration using the third stirring mechanism 64, and may be of other forms.
 第3撹拌機構64は、基本的には連続的に稼働し、メタン発酵部6の第3処理水62を撹拌している。そのため、第3処理水62の返送時間及び返送タイミングは、タイマー83により制御された電磁弁81が開く時間、及び開閉のタイミングで制御される。また、第3処理水62の返送流量は、流量調節弁82で調整される。 The third stirring mechanism 64 basically operates continuously and stirs the third treated water 62 of the methane fermentation section 6. Therefore, the return time and return timing of the third treated water 62 are controlled by the time when the solenoid valve 81 is opened and the timing when the solenoid valve 81 is opened and closed, which is controlled by the timer 83. Further, the return flow rate of the third treated water 62 is adjusted by a flow rate adjustment valve 82.
 ところで、実施の形態1及び実施の形態2では、単一の処理槽1を用いており、処理槽1の内部が可溶化部3、酸生成部4、固液分離部5、及びメタン発酵部6に区画されている。そのため、メタン発酵部6における分離液51の処理時間は、可溶化部3で生成する第1処理水30中の有機性廃棄物7の可溶化成分の量で決まる。つまり、可溶化部3へ投入される有機性廃棄物7の投入量と、メタン発酵部6における分離液51の処理時間とが関係性を有し、それぞれを独立して管理することはできない。 By the way, in Embodiment 1 and Embodiment 2, a single treatment tank 1 is used, and the inside of the treatment tank 1 includes a solubilization section 3, an acid generation section 4, a solid-liquid separation section 5, and a methane fermentation section. It is divided into 6. Therefore, the processing time of the separated liquid 51 in the methane fermentation section 6 is determined by the amount of solubilized components of the organic waste 7 in the first treated water 30 generated in the solubilization section 3. That is, the amount of organic waste 7 input into the solubilization section 3 and the processing time of the separated liquid 51 in the methane fermentation section 6 have a relationship, and cannot be managed independently.
 メタン発酵部6における分離液51の処理時間は、適切な値に調整することで、メタン発酵が効率的に進行する。しかし、上記したように、可溶化部3へ投入される有機性廃棄物7の投入量と、メタン発酵部6における分離液51の処理時間とは、関係性を有している。この場合、有機性廃棄物7の投入量の増減が大きい場合などシステム導入先の運用事情によっては、有機性廃棄物7の投入量の増減に応じてメタン発酵部6における分離液51の処理時間も増減することで、適切な処理時間を確保できなくなるおそれがある。 By adjusting the processing time of the separated liquid 51 in the methane fermentation section 6 to an appropriate value, methane fermentation can proceed efficiently. However, as described above, there is a relationship between the amount of organic waste 7 input into the solubilization section 3 and the processing time of the separated liquid 51 in the methane fermentation section 6. In this case, the processing time of the separated liquid 51 in the methane fermentation section 6 may vary depending on the operational circumstances of the system installation site, such as when the input amount of organic waste 7 varies greatly. If the amount of processing time increases or decreases, there is a risk that it will not be possible to secure an appropriate processing time.
 一方、本実施の形態3に係る有機性廃棄物7の処理システム102では、第1返送手段2によって固液分離部5の分離液51を可溶化部3へ返送することに並行して、第2返送手段8によってメタン発酵部6の第3処理水62を酸生成部4へ返送することが可能である。また、酸生成部4、固液分離部5、及びメタン発酵部6が連通している。これにより、酸生成部4へ返送される第3処理水62の返送量を調整することができるので、メタン発酵部6における分離液51の処理時間を調整することができる。よって、有機性廃棄物7の投入量と独立して、メタン発酵部6における分離液51の処理時間を適切な値に調整することができ、メタン発酵をさらに効率的に進行させ、システムの運転を安定化させることができる。 On the other hand, in the organic waste 7 treatment system 102 according to the third embodiment, in parallel with returning the separated liquid 51 of the solid-liquid separation section 5 to the solubilization section 3 by the first return means 2, It is possible to return the third treated water 62 of the methane fermentation section 6 to the acid generation section 4 by the second return means 8. Further, the acid generation section 4, the solid-liquid separation section 5, and the methane fermentation section 6 are in communication. Thereby, the amount of the third treated water 62 returned to the acid generating section 4 can be adjusted, so the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted. Therefore, the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted to an appropriate value independently of the input amount of organic waste 7, allowing the methane fermentation to proceed more efficiently and improving system operation. can be stabilized.
 メタン発酵部6における分離液51の処理時間は、有機性廃棄物7の種類、及び分離液51の種類に応じて、適宜、設定される。なお、当該処理時間は、特に限定されないが、例えば1日以上で、且つ10日以下が好ましく、3日以上で、且つ6日以下がより望ましい。上記の範囲よりも処理時間が小さいと、分離液51が十分にメタン発酵されず、ガス63の量が減少し、処理槽1の外部に排出される第3処理水62にガス63になり得る成分が含まれてしまうおそれがある。一方、上記の範囲よりも処理時間が大きいと、メタン発酵菌の増殖が不十分となり、分離液51が十分にメタン発酵されず、ガス63の量が減少し、処理槽1の外部に排出される第3処理水62にガス63になり得る成分が含まれてしまうおそれがある。 The processing time of the separated liquid 51 in the methane fermentation section 6 is appropriately set depending on the type of organic waste 7 and the type of separated liquid 51. Note that the processing time is not particularly limited, but is preferably, for example, one day or more and ten days or less, and more preferably three days or more and six days or less. If the treatment time is shorter than the above range, the separated liquid 51 will not undergo sufficient methane fermentation, the amount of gas 63 will decrease, and the gas 63 may be contained in the third treated water 62 discharged to the outside of the treatment tank 1. There is a risk that ingredients may be included. On the other hand, if the processing time is longer than the above range, the growth of methane-fermenting bacteria will be insufficient, the separated liquid 51 will not be sufficiently methane-fermented, the amount of gas 63 will decrease, and it will be discharged to the outside of the processing tank 1. There is a possibility that components that can become gas 63 may be contained in the third treated water 62.
 流量調節弁82で調整する第3処理水62の返送流量は、第2返送配管部80の配管径に応じて、適宜、設定される。当該返送流量は、特に限定されないが、一般的に、第2返送配管部80の配管内の流速が1以上3m/s以下になるように設定することが望ましい。また、タイマー83により制御する電磁弁81が開く時間も、第3処理水62の返送流量に応じて、メタン発酵部6における分離液51の処理時間が上記の範囲になるように、決定すればよい。開閉のタイミングは、均等に1時間に1回など適宜、設定される。 The return flow rate of the third treated water 62 adjusted by the flow rate adjustment valve 82 is appropriately set according to the pipe diameter of the second return pipe section 80. Although the return flow rate is not particularly limited, it is generally desirable to set it so that the flow velocity in the pipe of the second return pipe section 80 is 1 or more and 3 m/s or less. Further, the opening time of the electromagnetic valve 81 controlled by the timer 83 may be determined according to the return flow rate of the third treated water 62 so that the processing time of the separated liquid 51 in the methane fermentation section 6 falls within the above range. good. The timing of opening and closing is appropriately set, such as once every hour.
 なお、メタン発酵部6の第3処理水62を酸生成部4へ返送する手段は、メタン発酵部6の上方の第3処理水62を利用することが望ましい。メタン発酵部6では、下方から上方にかけてメタン発酵菌の濃度が低下する。そのため、上方のメタン発酵菌でないと、メタン発酵菌が第2返送配管部80を介して酸生成部4へ流入し、メタン発酵菌が死滅するリスクが高くなる。また、メタン発酵部6には、バッフルやメッシュ等の菌遮断機構65を設けることが望ましい。菌遮断機構65を設けることにより、メタン発酵菌が第2返送配管部80を介して酸生成部4へ流入することを抑制できる。但し、菌遮断機構65は、必ずしも設ける必要はなく、省略してもよい。 Note that it is desirable that the means for returning the third treated water 62 of the methane fermentation section 6 to the acid generation section 4 utilizes the third treated water 62 above the methane fermentation section 6. In the methane fermentation section 6, the concentration of methane fermenting bacteria decreases from the bottom to the top. Therefore, if the methane fermenting bacteria are not the upper methane fermenting bacteria, there is a high risk that the methane fermenting bacteria will flow into the acid generating section 4 via the second return piping section 80 and the methane fermenting bacteria will die. Further, it is desirable that the methane fermentation section 6 is provided with a bacteria blocking mechanism 65 such as a baffle or a mesh. By providing the bacteria blocking mechanism 65, it is possible to suppress methane-fermenting bacteria from flowing into the acid generating section 4 via the second return piping section 80. However, the germ blocking mechanism 65 does not necessarily need to be provided and may be omitted.
 図5は、実施の形態3に係る有機性廃棄物7の処理方法を示したフローチャートである。本実施の形態3に係る有機性廃棄物7の処理方法は、上記した処理システム102を用いたものである。実施の形態3に係る有機性廃棄物7の処理方法は、溶液返送工程(ステップS6)を備えている点に以外、上記した実施の形態2に係る有機性廃棄物7の処理方法と同じである。そのため、実施の形態2に係る有機性廃棄物7の処理方法で説明した可溶化工程(ステップS1)、酸生成工程(ステップS2)、固液分離工程(ステップS3)、分離液返送工程(ステップS4)、メタン発酵工程(ステップS5)の説明は、省略する。 FIG. 5 is a flowchart showing a method for treating organic waste 7 according to the third embodiment. The method for treating organic waste 7 according to the third embodiment uses the above-described treatment system 102. The method for treating organic waste 7 according to Embodiment 3 is the same as the method for treating organic waste 7 according to Embodiment 2 described above, except that it includes a solution return step (step S6). be. Therefore, the solubilization step (step S1), the acid generation step (step S2), the solid-liquid separation step (step S3), and the separated liquid return step (step S4) and the methane fermentation step (step S5) will not be described.
 溶液返送工程(ステップS6)では、メタン発酵工程(ステップS5)で分離液51を第3処理水62とガス63とに転換させた後、分離液返送工程(ステップS4)と並行して行われる。溶液返送工程(ステップS6)では、メタン発酵工程(ステップS5)で生成した第3処理水62を酸生成部4へ返送する。これにより、メタン発酵部6における分離液51の処理時間を調整することができるので、有機性廃棄物7の投入量と独立して、メタン発酵部6における分離液51の処理時間を適切な値に調整することができ、メタン発酵をさらに効率的に進行させ、システムの運転を安定化させることができる。 The solution return process (step S6) is performed in parallel with the separated liquid return process (step S4) after converting the separated liquid 51 into the third treated water 62 and gas 63 in the methane fermentation process (step S5). . In the solution return process (step S6), the third treated water 62 produced in the methane fermentation process (step S5) is returned to the acid generation section 4. As a result, the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted, so that the processing time of the separated liquid 51 in the methane fermentation section 6 can be adjusted to an appropriate value independently of the input amount of organic waste 7. This allows methane fermentation to proceed more efficiently and stabilizes system operation.
 なお、図示することは省略したが、本実施の形態3に係る有機性廃棄物7の処理システム102及び有機性廃棄物7の処理方法の特徴である第2返送手段8は、実施の形態1の構成に適用してもよい。 Although not shown in the drawings, the second return means 8, which is a feature of the organic waste 7 treatment system 102 and the organic waste 7 treatment method according to the third embodiment, is the same as that of the first embodiment. It may be applied to the configuration of
 以上、有機性廃棄物7の処理システム(100~102)及び有機性廃棄物7の処理方法を実施の形態に基づいて説明したが、上述した実施の形態の構成に限定されるものではない。例えば有機性廃棄物7の処理システム(100~102)は、図示した構成に限定されるものではなく、構成要素を一部省略してもよいし、他の構成要素を含んでもよい。要するに、有機性廃棄物7の処理システム(100~102)及び有機性廃棄物7の処理方法は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 Although the organic waste 7 treatment system (100 to 102) and the organic waste 7 treatment method have been described above based on the embodiments, they are not limited to the configurations of the embodiments described above. For example, the organic waste 7 treatment system (100 to 102) is not limited to the configuration shown, and some components may be omitted or other components may be included. In short, the organic waste 7 treatment system (100 to 102) and the organic waste 7 treatment method are within the range of design changes and application variations that would normally be made by a person skilled in the art without departing from the technical concept thereof. This includes:
 1 処理槽、2 第1返送手段、3 可溶化部、4 酸生成部、5 固液分離部、6 メタン発酵部、7 有機性廃棄物、8 第2返送手段、10 第1分離壁、11 第2分離壁、12 第3分離壁、13 第4分離壁、14 第5分離壁、20 第1返送配管部、21 ポンプ、22 散布手段、30 第1処理水、31 第1撹拌機構、32 第2貯留部、33 第2移送部、34 付着物、35 保持部材、40 第2処理水、41 第2撹拌機構、50 固形分、51 分離液、60 第1移送部、61 第1貯留部、62 第3処理水、63 ガス、64 第3撹拌機構、64a 循環配管部、64b ポンプ、64c 分岐部、65 菌遮断機構、80 第2返送配管部、81 電磁弁、82 流量調節弁、83 タイマー、100、101、102 処理システム。 1 treatment tank, 2 first return means, 3 solubilization section, 4 acid generation section, 5 solid-liquid separation section, 6 methane fermentation section, 7 organic waste, 8 second return means, 10 first separation wall, 11 Second separation wall, 12 Third separation wall, 13 Fourth separation wall, 14 Fifth separation wall, 20 First return piping section, 21 Pump, 22 Spreading means, 30 First treated water, 31 First stirring mechanism, 32 2nd storage section, 33 2nd transfer section, 34 deposits, 35 holding member, 40 2nd treated water, 41 2nd stirring mechanism, 50 solid content, 51 separated liquid, 60 1st transfer section, 61 1st storage section , 62 Third treated water, 63 Gas, 64 Third stirring mechanism, 64a Circulation piping section, 64b Pump, 64c Branch section, 65 Bacteria isolation mechanism, 80 Second return piping section, 81 Solenoid valve, 82 Flow rate control valve, 83 Timer, 100, 101, 102 processing system.

Claims (13)

  1.  微生物を用いて有機性廃棄物を処理する単一の処理槽と、
     前記処理槽の内部の液体を返送させる返送手段と、を備え、
     前記処理槽は、
     前記有機性廃棄物を前記微生物によって可溶化し、第1処理水を生成する可溶化部と、
     前記可溶化部で生成された前記第1処理水から酸を生成し、第2処理水を生成する酸生成部と、
     前記酸生成部で生成された前記第2処理水を固形分と分離液とに分離する固液分離部と、
     前記固液分離部で分離された前記分離液をメタン発酵菌でメタン発酵させて、第3処理水とガスとに転換させるメタン発酵部と、を有しており、
     前記返送手段は、前記固液分離部で分離された前記分離液を前記可溶化部に返送する第1返送手段を有する、有機性廃棄物の処理システム。
    a single treatment tank that processes organic waste using microorganisms;
    A return means for returning the liquid inside the processing tank,
    The processing tank is
    a solubilizing unit that solubilizes the organic waste with the microorganism to generate first treated water;
    an acid generation unit that generates an acid from the first treated water generated in the solubilization unit and generates second treated water;
    a solid-liquid separation unit that separates the second treated water generated in the acid generation unit into a solid content and a separated liquid;
    It has a methane fermentation section that performs methane fermentation on the separated liquid separated by the solid-liquid separation section using methane fermentation bacteria and converts it into third treated water and gas,
    An organic waste treatment system, wherein the return means includes a first return means for returning the separated liquid separated in the solid-liquid separation section to the solubilization section.
  2.  前記可溶化部の内部には、前記微生物を付着させた付着物と、前記付着物を保持する保持部材と、が設けられている、請求項1に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to claim 1, wherein the solubilizing section is provided with a deposit to which the microorganism is attached and a holding member that holds the deposit.
  3.  前記メタン発酵部は、前記固液分離部で分離された前記分離液が移送される第1移送部と、前記メタン発酵菌が貯留された第1貯留部と、を有し、
     前記可溶化部は、前記微生物が貯留された第2貯留部と、前記第2貯留部の下方に配置され、前記第2貯留部で可溶化して生成した前記第1処理水を移送する第2移送部と、を有し、
     前記保持部材は、前記第2貯留部と前記第2移送部との間に設けられており、
     前記第2移送部の下方と前記酸生成部の下方とが連通しており、
     前記酸生成部の上方と、前記固液分離部の上方とが連通しており、
     前記固液分離部の上方と、前記第1移送部の上方とが連通しており、
     前記第1移送部の下方と、前記第1貯留部の下方とが連通している、請求項2に記載の有機性廃棄物の処理システム。
    The methane fermentation section includes a first transfer section to which the separated liquid separated by the solid-liquid separation section is transferred, and a first storage section in which the methane fermentation bacteria are stored,
    The solubilization section includes a second storage section in which the microorganisms are stored, and a second storage section that is arranged below the second storage section and that transfers the first treated water produced by solubilization in the second storage section. 2 transfer parts;
    The holding member is provided between the second storage section and the second transfer section,
    A lower part of the second transfer part and a lower part of the acid generating part are in communication with each other,
    The upper part of the acid generation part and the upper part of the solid-liquid separation part communicate with each other,
    The upper part of the solid-liquid separation part and the upper part of the first transfer part communicate with each other,
    The organic waste treatment system according to claim 2, wherein a lower part of the first transfer part and a lower part of the first storage part are in communication with each other.
  4.  前記第1返送手段は、前記分離液を前記付着物に散布する散布手段を備えている、請求項2又は3に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to claim 2 or 3, wherein the first return means includes a spraying means for spraying the separated liquid onto the deposits.
  5.  前記付着物は、三次元構造材料である、請求項2~4のいずれか一項に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to any one of claims 2 to 4, wherein the deposit is a three-dimensional structural material.
  6.  前記第1返送手段は、前記メタン発酵部へ流入する直前の前記分離液を、前記固液分離部の上方から引き抜いて、前記可溶化部に返送する構成である、請求項1~5のいずれか一項に記載の有機性廃棄物の処理システム。 Any one of claims 1 to 5, wherein the first return means is configured to pull out the separated liquid from above the solid-liquid separation unit and return it to the solubilization unit, just before it flows into the methane fermentation unit. The organic waste treatment system according to item (1).
  7.  前記メタン発酵菌は、前記微生物の自己造粒物である、請求項1~6のいずれか一項に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to any one of claims 1 to 6, wherein the methane-fermenting bacteria are self-granulated products of the microorganism.
  8.  前記返送手段は、前記メタン発酵部の前記第3処理水を前記酸生成部に返送する第2返送手段を有する、請求項1~7のいずれか一項に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to any one of claims 1 to 7, wherein the return means includes a second return means for returning the third treated water of the methane fermentation section to the acid generation section. .
  9.  前記第2返送手段は、前記メタン発酵部の上方に位置する前記第3処理水を前記酸生成部に返送する構成である、請求項8に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to claim 8, wherein the second return means is configured to return the third treated water located above the methane fermentation section to the acid generation section.
  10.  前記メタン発酵部には、該メタン発酵部の上方へ移動しようとする前記メタン発酵菌の移動を遮る菌遮断機構が設けられており、
     前記第2返送手段は、前記菌遮断機構よりも上方に位置する前記第3処理水を前記酸生成部に返送する構成である、請求項9に記載の有機性廃棄物の処理システム。
    The methane fermentation section is provided with a bacteria blocking mechanism that blocks the movement of the methane fermentation bacteria attempting to move above the methane fermentation section,
    10. The organic waste treatment system according to claim 9, wherein the second return means is configured to return the third treated water located above the bacteria blocking mechanism to the acid generation section.
  11.  請求項1~10のいずれか一項に記載した有機性廃棄物の処理システムを用いた処理方法であって、
     前記有機性廃棄物を微生物によって可溶化し、第1処理水を生成する可溶化工程と、
     前記第1処理水から酸を生成し、第2処理水を生成する酸生成工程と、
     前記第2処理水を固形分と分離液とに分離する固液分離工程と、
     前記固液分離工程で分離された前記分離液のうち、所定量の前記分離液を前記可溶化部に返送する分離液返送工程と、
     前記可溶化部に返送されていない前記分離液をメタン発酵菌でメタン発酵させて、第3処理水とガスとに転換させるメタン発酵工程と、を備えている、有機性廃棄物の処理方法。
    A treatment method using the organic waste treatment system according to any one of claims 1 to 10,
    a solubilization step of solubilizing the organic waste with microorganisms to generate first treated water;
    an acid generation step of generating an acid from the first treated water to generate second treated water;
    a solid-liquid separation step of separating the second treated water into a solid content and a separated liquid;
    A separated liquid return step of returning a predetermined amount of the separated liquid to the solubilization section out of the separated liquid separated in the solid-liquid separation step;
    A method for treating organic waste, comprising a methane fermentation step in which the separated liquid that has not been returned to the solubilization section is subjected to methane fermentation using methane-fermenting bacteria to be converted into third treated water and gas.
  12.  前記可溶化工程では、前記有機性廃棄物を付着物に付着させた前記微生物によって可溶化して前記第1処理水を生成し、
     前記分離液返送工程では、前記分離液を前記可溶化部に返送する際に、該分離液を前記付着物に散布させる、請求項11に記載の有機性廃棄物の処理方法。
    In the solubilization step, the organic waste is solubilized by the microorganism attached to the deposit to generate the first treated water,
    12. The organic waste treatment method according to claim 11, wherein in the separated liquid returning step, the separated liquid is sprayed onto the deposits when the separated liquid is returned to the solubilization section.
  13.  前記メタン発酵工程で生成した第3処理水を、酸生成部に返送する溶液返送工程を更に備えている、請求項11又は12に記載の有機性廃棄物の処理方法。 The organic waste treatment method according to claim 11 or 12, further comprising a solution return step of returning the third treated water produced in the methane fermentation step to the acid generation section.
PCT/JP2022/017366 2022-04-08 2022-04-08 Organic waste treatment system and organic waste treatment method WO2023195160A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022564572A JP7292535B1 (en) 2022-04-08 2022-04-08 ORGANIC WASTE TREATMENT SYSTEM AND ORGANIC WASTE TREATMENT METHOD
PCT/JP2022/017366 WO2023195160A1 (en) 2022-04-08 2022-04-08 Organic waste treatment system and organic waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017366 WO2023195160A1 (en) 2022-04-08 2022-04-08 Organic waste treatment system and organic waste treatment method

Publications (1)

Publication Number Publication Date
WO2023195160A1 true WO2023195160A1 (en) 2023-10-12

Family

ID=86729218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017366 WO2023195160A1 (en) 2022-04-08 2022-04-08 Organic waste treatment system and organic waste treatment method

Country Status (2)

Country Link
JP (1) JP7292535B1 (en)
WO (1) WO2023195160A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202798A (en) * 1984-03-27 1985-10-14 Agency Of Ind Science & Technol Methane fermentation apparatus utilizing composite local recirculation
JPH09168798A (en) * 1996-12-04 1997-06-30 Valorga Preparation of biogas
JP2002307098A (en) * 2001-04-13 2002-10-22 Mitsubishi Heavy Ind Ltd Method and equipment for anaerobic digestion of organic sludge
JP2002361293A (en) * 2001-06-08 2002-12-17 Ebara Corp Method and apparatus for reducing volume of organic sludge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108593A (en) * 1980-01-31 1981-08-28 Matsushita Electric Works Ltd Methane fermentation apparatus
JP2004313929A (en) * 2003-04-16 2004-11-11 Ebara Corp Methane fermentation treatment method and apparatus therefor
FR2994441B1 (en) * 2012-08-13 2017-02-10 Michel Bonhomme MAINLY ANAEROBIC, CONTINUOUS, MULTI-PHASE, POLYSUBTRAT, FERMENTATION PROCESS AND PLANT IN THICK MATERIAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202798A (en) * 1984-03-27 1985-10-14 Agency Of Ind Science & Technol Methane fermentation apparatus utilizing composite local recirculation
JPH09168798A (en) * 1996-12-04 1997-06-30 Valorga Preparation of biogas
JP2002307098A (en) * 2001-04-13 2002-10-22 Mitsubishi Heavy Ind Ltd Method and equipment for anaerobic digestion of organic sludge
JP2002361293A (en) * 2001-06-08 2002-12-17 Ebara Corp Method and apparatus for reducing volume of organic sludge

Also Published As

Publication number Publication date
JP7292535B1 (en) 2023-06-16
JPWO2023195160A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
KR100646076B1 (en) Two-phase type methane fermentation reactor
JP3617528B1 (en) Biomass processing method
JP5017725B2 (en) Anaerobic treatment method and apparatus
US7879237B2 (en) Method for biological disposal of organic wastewater and biological disposal apparatus
CN101918530A (en) Bioreactor for mesophilic and/or thermophilic fermentation
CN104986857B (en) A kind of low ratio of carbon to ammonium city domestic sewage denitrogenation dephosphorizing joint excess sludge installation for fermenting and method
CN101132993A (en) Organic wastewater treatment method and apparatus
KR20100095994A (en) Procedure for concentration of microorganisms in aqueous substrates
CN106219765A (en) A kind of helotism system processing biogas slurry and application thereof
CN216853464U (en) Hydrogen-rich hanging water aquaculture device
CN105948255B (en) A kind of processing method and system handling high-concentration sulfuric acid polymyxin fermentation waste water
WO2023195160A1 (en) Organic waste treatment system and organic waste treatment method
JP6442856B2 (en) Biological treatment method and apparatus for organic wastewater
JP2000218288A (en) Batch anaerobic treatment and device therefor
CN109205785B (en) System and method for strengthening urban domestic sewage denitrification and dephosphorization by excess sludge decrement treatment
CN106938879A (en) A kind of scale milk cow production environment-friendly disposal system
CN208038239U (en) A kind of landfill leachate biochemical treatment system
JP4501432B2 (en) Anaerobic treatment method and apparatus
JP3275636B2 (en) Anaerobic treatment of high-concentration organic wastewater
JP2024509263A (en) Method and system for growing microbial masses
CN113548781A (en) Quick excrement recycling device for carrying out hydrothermal carbonization by using ship waste heat in cascade mode
JPH06154785A (en) High temperature anaerobic processing method and device
JPH0254160B2 (en)
CN205398374U (en) Factory sewage's processing system
CN215855709U (en) Quick excrement recycling device for carrying out hydrothermal carbonization by using ship waste heat in cascade mode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022564572

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936557

Country of ref document: EP

Kind code of ref document: A1