WO2023195150A1 - Robot device - Google Patents

Robot device Download PDF

Info

Publication number
WO2023195150A1
WO2023195150A1 PCT/JP2022/017336 JP2022017336W WO2023195150A1 WO 2023195150 A1 WO2023195150 A1 WO 2023195150A1 JP 2022017336 W JP2022017336 W JP 2022017336W WO 2023195150 A1 WO2023195150 A1 WO 2023195150A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
arm
robot device
ultrasound probe
movement range
Prior art date
Application number
PCT/JP2022/017336
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 名桐
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/017336 priority Critical patent/WO2023195150A1/en
Publication of WO2023195150A1 publication Critical patent/WO2023195150A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • This specification discloses a robotic device.
  • Patent Document 1 discloses a robot device that displays an ultrasonic irradiation range on a monitor.
  • a worker may operate the robot arm in order to register the movement trajectory of the ultrasound probe.
  • Such an operation is performed, for example, as follows. That is, the operator sets the robot device so that the object is included in the movement range of the ultrasound probe. Then, the operator registers the movement trajectory of the ultrasound probe so that the object can be diagnosed by ultrasound.
  • the operator often has to grasp the movement range of the ultrasonic probe based on his or her senses before operating the robot arm.
  • Another possibility is to display the movement range of the ultrasound probe on a monitor, but the operator must visually check the monitor to confirm the movement range, and must operate the robot arm while constantly checking the target object. Can not do it.
  • it is desired to improve the work efficiency.
  • the main purpose of the present disclosure is to improve workability when a worker operates an arm.
  • the robot device of the present disclosure includes: A robot device used in an ultrasonic diagnostic system for ultrasonically diagnosing a target object, an arm that holds and moves an ultrasound probe; an irradiation unit capable of irradiating the object with light indicating a movement range of the ultrasound probe;
  • the purpose is to have the following.
  • the irradiation unit irradiates the object within the movement range of the ultrasound probe. Therefore, the operator can grasp the movement range of the ultrasonic probe without relying on his senses, and can operate the arm while constantly visually observing the object. Therefore, the work efficiency when the operator operates the arm is improved.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of an ultrasound diagnostic system 10.
  • FIG. FIG. 2 is a front view of the robot device 20.
  • FIG. FIG. 2 is a side view of the robot device 20.
  • FIG. FIG. 2 is an explanatory diagram showing an example of an ultrasound diagnostic procedure. It is an explanatory view showing how irradiation units 61a and 61b irradiate light La and Lb.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of an ultrasound diagnostic system 10.
  • FIG. 2 is a front view of the robot device 20.
  • FIG. 3 is a side view of the robot device 20. Note that illustration of the cover 60 is omitted in FIG. 3 .
  • the left-right direction is the X-axis direction (in FIG. 3, the direction perpendicular to the paper surface)
  • the front-rear direction is the Y-axis direction (in FIG. 2, the direction perpendicular to the paper surface)
  • the up-down direction is the Z-axis direction.
  • the ultrasound diagnostic system 10 of this embodiment holds an ultrasound probe 101 at the tip of a robot arm 21, and operates the robot device 20 so that the ultrasound probe 101 is pressed against the body surface of the patient P. Obtain a sound wave echo image.
  • This ultrasonic diagnostic system 10 is used for catheter treatment, for example.
  • the operator (operator) who operates the guide wire of the catheter presses the ultrasound probe 101 against the body surface of the patient P, and recognizes the positional relationship between the tip of the guide wire and the blood vessel from the obtained ultrasound echo image. By advancing the guide wire, it is possible to accurately pass the guide wire through the center of the occluded or stenosed region of the blood vessel.
  • the ultrasound diagnostic system 10 includes an ultrasound diagnostic device 100 and a robot device 20.
  • the ultrasound diagnostic device 100 includes an ultrasound probe 101 and an ultrasound diagnostic device main body 110 connected to the ultrasound probe 101 via a cable 102.
  • the ultrasound diagnostic device main body 110 includes an ultrasound diagnostic control section that controls the entire device, an image processing section that processes the received signal from the ultrasound probe 101 to generate an ultrasound echo image, and an ultrasound diagnostic control section that controls the entire device. and an image display section for displaying images.
  • the robot device 20 includes a base 25, a robot arm 21 installed on the base 25, and a height adjustment mechanism 45 that adjusts the height of the robot arm 21 by manual operation.
  • This medical robot includes a cover 60, and irradiation units 61a and 61b.
  • the robot device 20 also includes a control device and the like (not shown).
  • casters 26 with stoppers are attached to the four corners of the back surface of the base 25.
  • the robot device 20 can be freely moved by casters 26.
  • locking portions 28 are provided at multiple locations (for example, three locations) on the back surface of the base 25 to protrude vertically downward by pressing down on the lever 27 to lock (fix) the robot device 20 immovably. .
  • the robot arm 21 includes a first arm 22, a first arm drive device 35, a second arm 23, a second arm drive device 36, a base 24, and a rotating three-axis mechanism 50. , and a posture holding device 37.
  • the base end of the first arm 22 is connected to the base 24 via a first joint shaft 31 that extends in the vertical direction (Z-axis direction).
  • the first arm drive device 35 includes a motor, an encoder, and an amplifier.
  • the rotating shaft of this motor is connected to the first joint shaft 31 via a reduction gear (not shown).
  • the first arm drive device 35 rotates (swivels) the first arm 22 along a horizontal plane (XY plane) using the first joint shaft 31 as a fulcrum by rotationally driving the first joint shaft 31 with a motor.
  • the encoder is configured as a rotary encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor.
  • the amplifier is a drive unit that drives a motor by switching a switching element.
  • the base end of the second arm 23 is connected to the distal end of the first arm 22 via a second joint shaft 32 that extends in the vertical direction.
  • the second arm drive device 36 includes a motor, an encoder, and an amplifier.
  • the rotating shaft of the motor is connected to the second joint shaft 32 via a speed reducer (not shown).
  • the second arm driving device 36 rotates (swivels) the second arm 23 along a horizontal plane about the second joint shaft 32 by rotationally driving the second joint shaft 32 with a motor.
  • the encoder is configured as a rotary encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor.
  • the amplifier is a drive unit that drives a motor by switching a switching element.
  • the base 24 is provided so as to be movable up and down relative to the base 25 by a lifting device 40 installed on the base 25.
  • the lifting device 40 includes a first slider 41 fixed to the base 24, a first guide member 42 extending in the vertical direction and guiding movement of the first slider 41, and a first guide member 42 extending in the vertical direction.
  • a first ball screw shaft 43 (elevating shaft) that is screwed into a ball screw nut (not shown) fixed to the first slider 41 while being extended, a motor that rotationally drives the first ball screw shaft 43, and an encoder. , and an amplifier that drives the motor.
  • the lifting device 40 moves the base 24 fixed to the first slider 41 up and down along the first guide member 42 by rotationally driving the first ball screw shaft 43 using a motor.
  • the encoder is configured as a linear encoder that detects the vertical position (elevating position) of the first slider 41 (base 24).
  • the three-axis rotating mechanism 50 is connected to the tip of the second arm 23 via a posture maintaining shaft 33 that extends in the vertical direction.
  • the three-axis rotating mechanism 50 includes a first rotating shaft 51, a second rotating shaft 52, and a third rotating shaft 53 that are orthogonal to each other, a first rotating device 55 that rotates the first rotating shaft 51, and a second rotating shaft 52.
  • a second rotation device 56 that rotates the third rotation shaft 53 and a third rotation device 57 that rotates the third rotation shaft 53 are provided.
  • the first rotating shaft 51 is supported in a position orthogonal to the position maintaining shaft 33.
  • the second rotating shaft 52 is supported in a position perpendicular to the first rotating shaft 51 .
  • the third rotating shaft 53 is supported in a position orthogonal to the second rotating shaft 52.
  • the first rotating device 55 includes a motor that rotationally drives the first rotating shaft 51, an encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor, and an amplifier that drives the motor.
  • the second rotating device 56 includes a motor that rotationally drives the second rotating shaft 52, an encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor, and an amplifier that drives the motor.
  • the third rotating device 57 includes a motor that rotationally drives the third rotating shaft 53, an encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor, and an amplifier that drives the motor.
  • the third rotating shaft 53 is provided with a holding portion 70 for holding the ultrasound probe 101.
  • the holding part 70 is a part that holds the ultrasound probe 101 so as to be located coaxially with the third rotating shaft 53.
  • the posture holding device 37 maintains the posture of the rotating three-axis mechanism 50 (orientation of the first rotating shaft 51) in a constant direction regardless of the postures of the first arm 22 and the second arm 23.
  • the posture holding device 37 includes a motor, an encoder, and an amplifier.
  • the rotating shaft of the motor is connected to the posture maintaining shaft 33 via a reduction gear (not shown).
  • the posture maintaining device 37 maintains the posture based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotation shaft 51 is always in the left-right direction (X-axis direction).
  • a target rotation angle of the holding shaft 33 is set, and the motor is drive-controlled so that the posture holding shaft 33 reaches the target rotation angle. This makes it possible to independently control translational motion in three directions and rotational motion in three directions, thereby facilitating control.
  • the robot device 20 of the present embodiment can perform translational motion in three directions, that is, the X-axis direction, the Y-axis direction, and the Z-axis direction, by the first arm drive device 35, the second arm drive device 36, and the lifting device 40, and three rotational axes.
  • the ultrasound probe 101 can be moved in any posture and in any direction within the movable range. can be moved to position.
  • the height adjustment mechanism 45 includes a second slider 46 fixed to the first guide member 42 of the lifting device 40, and a second slider 46 fixed to the base 25 and extending in the vertical direction. 46, and a second ball screw shaft 48 (elevating shaft) that extends in the vertical direction and is screwed into a ball screw nut (not shown) fixed to the second slider 46. ) and an operation handle 49 connected to the second ball screw shaft 48 via a power transmission mechanism (bevel gear).
  • the height adjustment mechanism 45 rotates the second ball screw shaft 48 by manually operating the operating handle 49, thereby moving the first guide member 42 of the lifting device 40 fixed to the second slider 46 to the second guide member 47. Move up and down along.
  • the base end of the robot arm 21 is fixed to the base 24, and the base 24 is supported by the first guide member 42, so by moving the first guide member 42 up and down by the height adjustment mechanism 45, The height of the robot arm 21 can be adjusted. Thereby, for example, the height of the robot arm 21 can be adjusted according to the height of the bed B on which the patient P to be diagnosed with ultrasound lies.
  • the cover 60 is a cover member that covers the lifting device 40.
  • the cover 60 is fixed to the base 25 as shown in FIGS. 1 and 2.
  • the cover 60 is arranged in front of the lifting device 40 and the height adjustment mechanism 45.
  • the irradiation units 61a and 61b are units that irradiate the body surface of the patient P with lights La and Lb (see FIG. 5), which indicate the boundaries of the movement range R of the ultrasound probe 101 held by the robot arm 21, respectively.
  • the movement range R is a range set slightly narrower than the movement range of the ultrasound probe 101.
  • the lights La and Lb are linear lights and indicate the boundaries of the movement range R in the left and right direction.
  • the irradiation units 61a and 61b are provided on the front surface of the cover 60. As shown in FIG. 2, the irradiation unit 61a is installed on the right side of the robot arm 21 when the cover 60 is viewed from the front. As shown in FIG. 2, the irradiation unit 61b is installed on the left side of the robot arm 21 when the cover 60 is viewed from the front.
  • the irradiation units 61a and 61b are configured as, for example, a laser module or an LED module.
  • FIG. 4 is an explanatory diagram showing an example of an ultrasound diagnostic procedure.
  • FIG. 5 is an explanatory diagram showing how the irradiation units 61a and 61b irradiate the lights La and Lb. This procedure is performed by an operator. Note that the patient P is lying on the bed B when the operator performs this procedure.
  • step S100 the operator operates a switch (not shown) to irradiate the lights La and Lb from the irradiation units 61a and 61b (step S100).
  • step S110 the operator moves the robot device 20 so that the affected area of the patient P is included between the light La and the light Lb (step S110).
  • step S120 the worker locks the robot device 20 (step S120). Specifically, the operator locks the stopper of the caster 26. The operator then pushes down the lever 27. As a result, the lock portion 28 projects vertically downward from the base 25 and locks the robot device 20 so that it cannot move.
  • step S130 the operator adjusts the height of the robot arm 21 (step S130). Specifically, the operator rotates the operating handle 49 to adjust the robot arm 21 to a height corresponding to the height of the bed B.
  • Direct teaching is a task in which a worker manually operates the robot arm 21 and registers the movement trajectory of the ultrasound probe 101 in the control device of the robot device 20.
  • the irradiation units 61a and 61b irradiate the body surface of the patient P with the lights La and Lb as the boundaries of the movement range R of the ultrasound probe 101. Therefore, when performing direct teaching, the operator can grasp the boundaries of the movement range R of the ultrasound probe 101 without relying on his senses, and can operate the robot arm 21 while constantly visually observing the patient P. can.
  • step S150 the operator starts ultrasonic diagnosis (step S150).
  • the control device of the robot device 20 controls various members so that the ultrasonic probe 101 moves according to the movement locus registered in S150 in accordance with instructions input by the operator.
  • the image processing unit of the ultrasound diagnostic apparatus main body 110 processes the received signal from the ultrasound probe 101 to generate an ultrasound echo image.
  • the ultrasound diagnosis control section of the ultrasound diagnostic apparatus main body 110 controls the image display section so that the ultrasound echo image is displayed.
  • the operator diagnoses the patient P based on the echo image displayed on the image display section. After step S150, the operator ends this procedure.
  • the robot device 20 of this embodiment corresponds to the robot device of the present disclosure
  • the robot arm 21 corresponds to an arm
  • the irradiation units 61a and 61b correspond to an irradiation unit
  • the base 24 corresponds to a base
  • the cover 60 corresponds to a base. corresponds to the cover.
  • the patient P corresponds to the object.
  • the irradiation units 61a and 61b irradiate the patient P within the movement range R of the ultrasound probe 101. Therefore, the operator can grasp the movement range R of the ultrasound probe 101 without relying on his senses, and can operate the robot arm 21 while constantly visually observing the patient P. Therefore, the workability when the operator operates the robot arm 21 is improved.
  • the robot device 20 is a medical robot that works on the patient P, and the irradiation units 61a and 61b emit light La and rays so that the affected area of the patient P is included in the movement range R of the ultrasound probe 101. Irradiate with Lb. Therefore, the operator can easily set the robot device 20 so that the affected area of the patient P is included within the movement range R of the ultrasound probe 101, which is particularly advantageous.
  • the robot device 20 includes a base 24 that supports the robot arm 21 and a cover 60 that covers the base 24, and the irradiation units 61a and 61b are provided on the cover 60. Therefore, the light emitted from the irradiation units 61a and 61b becomes difficult to overlap the robot arm 21.
  • the irradiation units 61a and 61b are installed on both left and right sides of the front surface of the cover 60 with the robot arm 21 in between. Therefore, the boundaries of the movement range R of the ultrasound probe 101 can be displayed at two locations.
  • the irradiation units 61a and 61b on both the left and right sides irradiate the body surface of the patient P with linear lights La and Lb as boundaries of the movement range R.
  • the boundary of the movement range R can be represented as two linear lights, making it easier for the operator to understand the movement range R of the ultrasound probe 101.
  • the robot device 20 is configured as a seven-axis articulated robot capable of translational movement in three directions and rotational movement in three directions.
  • the number of axes may be any number.
  • the robot device 20 may be configured by a so-called vertically articulated robot, horizontally articulated robot, or the like.
  • the robot device 20 has the irradiation units 61a and 61b.
  • the robot device 20 may include only one of the irradiation unit 61a and the irradiation unit 61b.
  • the robot device 20 may have one or two other irradiation units that irradiate linear light in a direction perpendicular to the lights La and Lb.
  • the light emitted by another irradiation unit indicates the boundary of the movement range R in the front-rear direction.
  • another irradiation unit may be held by an irradiation unit holding member provided in front of the robot arm 21.
  • the irradiation unit holding member is provided separately from the robot arm 21 and the cover 60, for example.
  • the irradiation units 61a and 61b irradiate two linear lights that are parallel to each other.
  • the body surface of the patient P may be irradiated with rectangular or elliptical light corresponding to the movement range R of the ultrasound probe 101 using a plurality of laser modules or a plurality of LED modules.
  • the present disclosure can be used in the manufacturing industry of ultrasonic diagnostic equipment and robots, etc.

Abstract

This robot device is used in an ultrasonic diagnosis system for ultrasonically diagnosing an object. The robot device comprises an arm for holding and moving an ultrasonic probe, and an emission unit capable of emitting, at an object, light indicating the range of movement of the ultrasonic probe.

Description

ロボット装置robot equipment
 本明細書は、ロボット装置について開示する。 This specification discloses a robotic device.
 従来、ロボットアームで超音波プローブの姿勢を変化させながら対象物に超音波を照射して、対象物を超音波診断するロボット装置が知られている。例えば、特許文献1には、超音波の照射範囲をモニタに表示するロボット装置が開示されている。 Conventionally, a robot device is known that performs ultrasound diagnosis of a target object by irradiating the target object with ultrasound while changing the posture of an ultrasound probe using a robot arm. For example, Patent Document 1 discloses a robot device that displays an ultrasonic irradiation range on a monitor.
特開2018-42900号公報Japanese Patent Application Publication No. 2018-42900
 このようなロボット装置では、超音波プローブの移動軌跡を登録するために、作業者がロボットアームを操作することがある。このような操作は、例えば以下のように行われる。すなわち、作業者は、超音波プローブの移動範囲に対象物が含まれるようにロボット装置をセットする。そして、作業者は、対象物を超音波診断できるように超音波プローブの移動軌跡を登録する。一連の操作を行なう際に、作業者は、感覚に基づいて超音波プローブの移動範囲を把握した上でロボットアームを操作しなければならない場合が多い。また、超音波プローブの移動範囲をモニタに表示することも考えられるが、作業者は、移動範囲を確認するためにモニタを目視しなければならず、対象物を常時目視しながらロボットアームを操作することができない。このように、作業者がロボットアームを操作する際には、作業性の向上が望まれている。 In such a robot device, a worker may operate the robot arm in order to register the movement trajectory of the ultrasound probe. Such an operation is performed, for example, as follows. That is, the operator sets the robot device so that the object is included in the movement range of the ultrasound probe. Then, the operator registers the movement trajectory of the ultrasound probe so that the object can be diagnosed by ultrasound. When performing a series of operations, the operator often has to grasp the movement range of the ultrasonic probe based on his or her senses before operating the robot arm. Another possibility is to display the movement range of the ultrasound probe on a monitor, but the operator must visually check the monitor to confirm the movement range, and must operate the robot arm while constantly checking the target object. Can not do it. As described above, when a worker operates a robot arm, it is desired to improve the work efficiency.
 本開示は、作業者が、アームを操作する際の作業性を向上させることを主目的とする。 The main purpose of the present disclosure is to improve workability when a worker operates an arm.
 本開示のロボット装置は、
 対象物を超音波診断する超音波診断システムに用いられるロボット装置であって、
 超音波プローブを保持して移動させるアームと、
 前記超音波プローブの移動範囲を示す光を前記対象物に照射可能な照射ユニットと、
 を備えることを要旨とする。
The robot device of the present disclosure includes:
A robot device used in an ultrasonic diagnostic system for ultrasonically diagnosing a target object,
an arm that holds and moves an ultrasound probe;
an irradiation unit capable of irradiating the object with light indicating a movement range of the ultrasound probe;
The purpose is to have the following.
 このロボット装置では、照射ユニットが対象物に対して超音波プローブの移動範囲を照射する。したがって、作業者は、感覚に頼ることなく超音波プローブの移動範囲を把握することができると共に対象物を常時目視しながらアームを操作することができる。よって、作業者がアームを操作する際の作業性が向上する。 In this robot device, the irradiation unit irradiates the object within the movement range of the ultrasound probe. Therefore, the operator can grasp the movement range of the ultrasonic probe without relying on his senses, and can operate the arm while constantly visually observing the object. Therefore, the work efficiency when the operator operates the arm is improved.
超音波診断システム10の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of the configuration of an ultrasound diagnostic system 10. FIG. ロボット装置20の正面図である。FIG. 2 is a front view of the robot device 20. FIG. ロボット装置20の側面図である。FIG. 2 is a side view of the robot device 20. FIG. 超音波診断手順の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of an ultrasound diagnostic procedure. 照射ユニット61a,61bが光La,Lbを照射する様子を示す説明図である。It is an explanatory view showing how irradiation units 61a and 61b irradiate light La and Lb.
 次に、本開示の発明を実施するための形態について図面を参照しながら説明する。 Next, embodiments for carrying out the invention of the present disclosure will be described with reference to the drawings.
 図1は、超音波診断システム10の構成の概略を示す構成図である。図2は、ロボット装置20の正面図である。図3は、ロボット装置20の側面図である。なお、図3ではカバー60の図示を省略した。また、図1~3中、左右方向をX軸方向(図3では紙面垂直方向)とし、前後方向をY軸方向(図2では紙面垂直方向)とし、上下方向をZ軸方向とする。 FIG. 1 is a configuration diagram showing an outline of the configuration of an ultrasound diagnostic system 10. FIG. 2 is a front view of the robot device 20. FIG. 3 is a side view of the robot device 20. Note that illustration of the cover 60 is omitted in FIG. 3 . Further, in FIGS. 1 to 3, the left-right direction is the X-axis direction (in FIG. 3, the direction perpendicular to the paper surface), the front-rear direction is the Y-axis direction (in FIG. 2, the direction perpendicular to the paper surface), and the up-down direction is the Z-axis direction.
 本実施形態の超音波診断システム10は、ロボットアーム21の手先に超音波プローブ101を保持し、超音波プローブ101が患者Pの体表面に押し当てられるようにロボット装置20を動作させることにより超音波エコー画像を取得する。この超音波診断システム10は、例えばカテーテル治療に用いられる。カテーテルのガイドワイヤを操作する作業者(術者)は、超音波プローブ101を患者Pの体表面に押し当て、得られる超音波エコー画像からガイドワイヤの先端と血管との位置関係を認識しながら、ガイドワイヤを進めることで、ガイドワイヤを正確に血管の閉塞部位や狭窄部位の中央を通すことができる。 The ultrasound diagnostic system 10 of this embodiment holds an ultrasound probe 101 at the tip of a robot arm 21, and operates the robot device 20 so that the ultrasound probe 101 is pressed against the body surface of the patient P. Obtain a sound wave echo image. This ultrasonic diagnostic system 10 is used for catheter treatment, for example. The operator (operator) who operates the guide wire of the catheter presses the ultrasound probe 101 against the body surface of the patient P, and recognizes the positional relationship between the tip of the guide wire and the blood vessel from the obtained ultrasound echo image. By advancing the guide wire, it is possible to accurately pass the guide wire through the center of the occluded or stenosed region of the blood vessel.
 超音波診断システム10は、超音波診断装置100と、ロボット装置20とを備える。 The ultrasound diagnostic system 10 includes an ultrasound diagnostic device 100 and a robot device 20.
 超音波診断装置100は、図1に示すように、超音波プローブ101と、超音波プローブ101とケーブル102を介して接続された超音波診断装置本体110と、を備える。超音波診断装置本体110は、装置全体の制御を司る超音波診断制御部と、超音波プローブ101からの受信信号を処理して超音波エコー画像を生成する画像処理部と、超音波エコー画像を表示する画像表示部と、を備える。 As shown in FIG. 1, the ultrasound diagnostic device 100 includes an ultrasound probe 101 and an ultrasound diagnostic device main body 110 connected to the ultrasound probe 101 via a cable 102. The ultrasound diagnostic device main body 110 includes an ultrasound diagnostic control section that controls the entire device, an image processing section that processes the received signal from the ultrasound probe 101 to generate an ultrasound echo image, and an ultrasound diagnostic control section that controls the entire device. and an image display section for displaying images.
 ロボット装置20は、図1~図3に示すように、基台25と、基台25上に設置されたロボットアーム21と、手動操作によりロボットアーム21の高さを調整する高さ調整機構45と、カバー60と、照射ユニット61a,61bとを備えた医療用ロボットである。更に、ロボット装置20は、図示しない制御装置等も備える。 As shown in FIGS. 1 to 3, the robot device 20 includes a base 25, a robot arm 21 installed on the base 25, and a height adjustment mechanism 45 that adjusts the height of the robot arm 21 by manual operation. This medical robot includes a cover 60, and irradiation units 61a and 61b. Furthermore, the robot device 20 also includes a control device and the like (not shown).
 基台25の裏面の四隅には、図1~3に示すように、ストッパ付きのキャスター26が取り付けられている。ロボット装置20は、キャスター26により自由に移動させることが可能である。また、基台25の裏面の複数箇所(例えば3箇所)には、レバー27を押し下げることにより鉛直下方向に突出してロボット装置20を移動不能にロック(固定)するロック部28が設けられている。 As shown in FIGS. 1 to 3, casters 26 with stoppers are attached to the four corners of the back surface of the base 25. The robot device 20 can be freely moved by casters 26. Furthermore, locking portions 28 are provided at multiple locations (for example, three locations) on the back surface of the base 25 to protrude vertically downward by pressing down on the lever 27 to lock (fix) the robot device 20 immovably. .
 ロボットアーム21は、図1に示すように、第1アーム22と、第1アーム駆動装置35と、第2アーム23と、第2アーム駆動装置36と、ベース24と、回転3軸機構50と、姿勢保持装置37とを有する。 As shown in FIG. 1, the robot arm 21 includes a first arm 22, a first arm drive device 35, a second arm 23, a second arm drive device 36, a base 24, and a rotating three-axis mechanism 50. , and a posture holding device 37.
 第1アーム22の基端部は、上下方向(Z軸方向)に延在する第1関節軸31を介してベース24に連結されている。第1アーム駆動装置35は、モータとエンコーダとアンプとを備える。このモータの回転軸は、図示しない減速機を介して第1関節軸31に接続されている。第1アーム駆動装置35は、モータにより第1関節軸31を回転駆動することにより、第1関節軸31を支点に第1アーム22を水平面(XY平面)に沿って回動(旋回)させる。エンコーダは、モータの回転軸に取り付けられ、モータの回転変位量を検出するロータリエンコーダとして構成される。アンプは、スイッチング素子のスイッチングによりモータを駆動するための駆動部である。 The base end of the first arm 22 is connected to the base 24 via a first joint shaft 31 that extends in the vertical direction (Z-axis direction). The first arm drive device 35 includes a motor, an encoder, and an amplifier. The rotating shaft of this motor is connected to the first joint shaft 31 via a reduction gear (not shown). The first arm drive device 35 rotates (swivels) the first arm 22 along a horizontal plane (XY plane) using the first joint shaft 31 as a fulcrum by rotationally driving the first joint shaft 31 with a motor. The encoder is configured as a rotary encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor. The amplifier is a drive unit that drives a motor by switching a switching element.
 第2アーム23の基端部は、上下方向に延在する第2関節軸32を介して第1アーム22の先端部に連結されている。第2アーム駆動装置36は、モータとエンコーダとアンプとを備える。モータの回転軸は、図示しない減速機を介して第2関節軸32に接続されている。第2アーム駆動装置36は、モータにより第2関節軸32を回転駆動することにより、第2関節軸32を支点に第2アーム23を水平面に沿って回動(旋回)させる。エンコーダは、モータの回転軸に取り付けられ、モータの回転変位量を検出するロータリエンコーダとして構成される。アンプは、スイッチング素子のスイッチングによりモータを駆動するための駆動部である。 The base end of the second arm 23 is connected to the distal end of the first arm 22 via a second joint shaft 32 that extends in the vertical direction. The second arm drive device 36 includes a motor, an encoder, and an amplifier. The rotating shaft of the motor is connected to the second joint shaft 32 via a speed reducer (not shown). The second arm driving device 36 rotates (swivels) the second arm 23 along a horizontal plane about the second joint shaft 32 by rotationally driving the second joint shaft 32 with a motor. The encoder is configured as a rotary encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor. The amplifier is a drive unit that drives a motor by switching a switching element.
 ベース24は、基台25上に設置された昇降装置40により、基台25に対して昇降可能に設けられている。昇降装置40は、図3に示すように、ベース24に固定された第1スライダ41と、上下方向に延出して第1スライダ41の移動をガイドする第1ガイド部材42と、上下方向に延出すると共に第1スライダ41に固定されたボールねじナット(図示せず)に螺合される第1ボールねじ軸43(昇降軸)と、第1ボールねじ軸43を回転駆動するモータと、エンコーダ、モータを駆動するアンプと、を備える。昇降装置40は、モータにより第1ボールねじ軸43を回転駆動することにより、第1スライダ41に固定されたベース24を第1ガイド部材42に沿って上下に移動させる。エンコーダは、第1スライダ41(ベース24)の上下方向における位置(昇降位置)を検出するリニアエンコーダとして構成される。 The base 24 is provided so as to be movable up and down relative to the base 25 by a lifting device 40 installed on the base 25. As shown in FIG. 3, the lifting device 40 includes a first slider 41 fixed to the base 24, a first guide member 42 extending in the vertical direction and guiding movement of the first slider 41, and a first guide member 42 extending in the vertical direction. A first ball screw shaft 43 (elevating shaft) that is screwed into a ball screw nut (not shown) fixed to the first slider 41 while being extended, a motor that rotationally drives the first ball screw shaft 43, and an encoder. , and an amplifier that drives the motor. The lifting device 40 moves the base 24 fixed to the first slider 41 up and down along the first guide member 42 by rotationally driving the first ball screw shaft 43 using a motor. The encoder is configured as a linear encoder that detects the vertical position (elevating position) of the first slider 41 (base 24).
 回転3軸機構50は、図3に示すように、上下方向に延在する姿勢保持用軸33を介して第2アーム23の先端部に連結されている。回転3軸機構50は、互いに直交する第1回転軸51,第2回転軸52および第3回転軸53と、第1回転軸51を回転させる第1回転装置55と、第2回転軸52を回転させる第2回転装置56と、第3回転軸53を回転させる第3回転装置57と、を備える。第1回転軸51は、姿勢保持用軸33に対して直交姿勢で支持されている。第2回転軸52は、第1回転軸51に対して直交姿勢で支持されている。第3回転軸53は、第2回転軸52に対して直交姿勢で支持される。第1回転装置55は、第1回転軸51を回転駆動するモータと、モータの回転軸に取り付けられモータの回転変位量を検出するエンコーダと、モータを駆動するアンプと、を有する。第2回転装置56は、第2回転軸52を回転駆動するモータと、モータの回転軸に取り付けられモータの回転変位量を検出するエンコーダと、モータを駆動するアンプと、を有する。第3回転装置57は、第3回転軸53を回転駆動するモータと、モータの回転軸に取り付けられモータの回転変位量を検出するエンコーダと、モータを駆動するアンプと、を有する。また、第3回転軸53には、超音波プローブ101を保持するための保持部70が設けられている。保持部70は、第3回転軸53と同軸上に位置するように超音波プローブ101を保持する部分である。 As shown in FIG. 3, the three-axis rotating mechanism 50 is connected to the tip of the second arm 23 via a posture maintaining shaft 33 that extends in the vertical direction. The three-axis rotating mechanism 50 includes a first rotating shaft 51, a second rotating shaft 52, and a third rotating shaft 53 that are orthogonal to each other, a first rotating device 55 that rotates the first rotating shaft 51, and a second rotating shaft 52. A second rotation device 56 that rotates the third rotation shaft 53 and a third rotation device 57 that rotates the third rotation shaft 53 are provided. The first rotating shaft 51 is supported in a position orthogonal to the position maintaining shaft 33. The second rotating shaft 52 is supported in a position perpendicular to the first rotating shaft 51 . The third rotating shaft 53 is supported in a position orthogonal to the second rotating shaft 52. The first rotating device 55 includes a motor that rotationally drives the first rotating shaft 51, an encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor, and an amplifier that drives the motor. The second rotating device 56 includes a motor that rotationally drives the second rotating shaft 52, an encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor, and an amplifier that drives the motor. The third rotating device 57 includes a motor that rotationally drives the third rotating shaft 53, an encoder that is attached to the rotating shaft of the motor and detects the amount of rotational displacement of the motor, and an amplifier that drives the motor. Further, the third rotating shaft 53 is provided with a holding portion 70 for holding the ultrasound probe 101. The holding part 70 is a part that holds the ultrasound probe 101 so as to be located coaxially with the third rotating shaft 53.
 姿勢保持装置37は、第1アーム22および第2アーム23の姿勢によらず回転3軸機構50の姿勢(第1回転軸51の向き)を一定の向きに保持するものである。姿勢保持装置37は、モータとエンコーダとアンプとを備える。モータの回転軸は、図示しない減速機を介して姿勢保持用軸33に接続されている。姿勢保持装置37は、第1回転軸51の軸方向が常時、左右方向(X軸方向)となるように第1関節軸31の回転角度と第2関節軸32の回転角度とに基づいて姿勢保持用軸33の目標回転角度を設定し、姿勢保持用軸33が目標回転角度となるようにモータを駆動制御する。これにより、3方向の並進運動の制御と3方向の回転運動の制御とをそれぞれ独立して行なうことが可能となり、制御が容易となる。 The posture holding device 37 maintains the posture of the rotating three-axis mechanism 50 (orientation of the first rotating shaft 51) in a constant direction regardless of the postures of the first arm 22 and the second arm 23. The posture holding device 37 includes a motor, an encoder, and an amplifier. The rotating shaft of the motor is connected to the posture maintaining shaft 33 via a reduction gear (not shown). The posture maintaining device 37 maintains the posture based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotation shaft 51 is always in the left-right direction (X-axis direction). A target rotation angle of the holding shaft 33 is set, and the motor is drive-controlled so that the posture holding shaft 33 reaches the target rotation angle. This makes it possible to independently control translational motion in three directions and rotational motion in three directions, thereby facilitating control.
 本実施形態のロボット装置20は、第1アーム駆動装置35と第2アーム駆動装置36と昇降装置40とによるX軸方向,Y軸方向およびZ軸方向の3方向の並進運動と、回転3軸機構50によるX軸回り(ピッチング),Y軸回り(ローリング)およびZ軸回り(ヨーイング)の3方向の回転運動との組み合わせにより、可動範囲内において、超音波プローブ101を任意の姿勢で任意の位置へ移動させることができる。 The robot device 20 of the present embodiment can perform translational motion in three directions, that is, the X-axis direction, the Y-axis direction, and the Z-axis direction, by the first arm drive device 35, the second arm drive device 36, and the lifting device 40, and three rotational axes. In combination with the rotation movement of the mechanism 50 in three directions around the X-axis (pitching), around the Y-axis (rolling), and around the Z-axis (yawing), the ultrasound probe 101 can be moved in any posture and in any direction within the movable range. can be moved to position.
 高さ調整機構45は、図3に示すように、昇降装置40の第1ガイド部材42に固定された第2スライダ46と、基台25に固定されると共に上下方向に延出して第2スライダ46の移動をガイドする第2ガイド部材47と、上下方向に延出すると共に第2スライダ46に固定されたボールねじナット(図示せず)に螺合される第2ボールねじ軸48(昇降軸)と、動力伝達機構(傘歯車)を介して第2ボールねじ軸48に連結された操作ハンドル49と、を備える。高さ調整機構45は、操作ハンドル49の手動操作により第2ボールねじ軸48を回転駆動することにより、第2スライダ46に固定された昇降装置40の第1ガイド部材42を第2ガイド部材47に沿って上下に移動させる。ロボットアーム21の基端は、ベース24に固定され、当該ベース24は、第1ガイド部材42に支持されているから、高さ調整機構45により第1ガイド部材42を上下に移動させることで、ロボットアーム21の高さを調整することができる。これにより、例えば、超音波診断の患者Pが横たわるベッドBの高さに応じてロボットアーム21の高さを調整することができる。 As shown in FIG. 3, the height adjustment mechanism 45 includes a second slider 46 fixed to the first guide member 42 of the lifting device 40, and a second slider 46 fixed to the base 25 and extending in the vertical direction. 46, and a second ball screw shaft 48 (elevating shaft) that extends in the vertical direction and is screwed into a ball screw nut (not shown) fixed to the second slider 46. ) and an operation handle 49 connected to the second ball screw shaft 48 via a power transmission mechanism (bevel gear). The height adjustment mechanism 45 rotates the second ball screw shaft 48 by manually operating the operating handle 49, thereby moving the first guide member 42 of the lifting device 40 fixed to the second slider 46 to the second guide member 47. Move up and down along. The base end of the robot arm 21 is fixed to the base 24, and the base 24 is supported by the first guide member 42, so by moving the first guide member 42 up and down by the height adjustment mechanism 45, The height of the robot arm 21 can be adjusted. Thereby, for example, the height of the robot arm 21 can be adjusted according to the height of the bed B on which the patient P to be diagnosed with ultrasound lies.
 カバー60は、昇降装置40を覆うカバー部材である。カバー60は、図1,2に示すように基台25に固定されている。カバー60は、昇降装置40及び高さ調整機構45の前方に配置されている。 The cover 60 is a cover member that covers the lifting device 40. The cover 60 is fixed to the base 25 as shown in FIGS. 1 and 2. The cover 60 is arranged in front of the lifting device 40 and the height adjustment mechanism 45.
 照射ユニット61a,61bは、それぞれ、ロボットアーム21に保持される超音波プローブ101の移動範囲Rの境界を示す光La,Lb(図5参照)を患者Pの体表面に照射するユニットである。ここで、移動範囲Rは、超音波プローブ101の可動範囲よりも僅かに狭く設定された範囲である。光La,Lbは直線状の光であり、移動範囲Rのうち左右方向の境界を示すものである。照射ユニット61a,61bは、カバー60の前面に設けられている。照射ユニット61a,図2に示すように、カバー60を前方から見たとき、ロボットアーム21の右側に設置されている。照射ユニット61bは、図2に示すように、カバー60を前方から見たとき、ロボットアーム21の左側に設置されている。照射ユニット61a,61bは、例えば、レーザーモジュールや、LEDモジュールとして構成されている。 The irradiation units 61a and 61b are units that irradiate the body surface of the patient P with lights La and Lb (see FIG. 5), which indicate the boundaries of the movement range R of the ultrasound probe 101 held by the robot arm 21, respectively. Here, the movement range R is a range set slightly narrower than the movement range of the ultrasound probe 101. The lights La and Lb are linear lights and indicate the boundaries of the movement range R in the left and right direction. The irradiation units 61a and 61b are provided on the front surface of the cover 60. As shown in FIG. 2, the irradiation unit 61a is installed on the right side of the robot arm 21 when the cover 60 is viewed from the front. As shown in FIG. 2, the irradiation unit 61b is installed on the left side of the robot arm 21 when the cover 60 is viewed from the front. The irradiation units 61a and 61b are configured as, for example, a laser module or an LED module.
 次に、こうして構成されたロボット装置20の使用例について、図4,5を用いて説明する。図4は、超音波診断手順の一例を示す説明図である。図5は、照射ユニット61a,61bが光La,Lbを照射する様子を示す説明図である。この手順は、作業者によって行われる。なお、作業者がこの手順を行なう際に、患者PはベッドBに横たわっている。 Next, an example of the use of the robot device 20 configured in this way will be described using FIGS. 4 and 5. FIG. 4 is an explanatory diagram showing an example of an ultrasound diagnostic procedure. FIG. 5 is an explanatory diagram showing how the irradiation units 61a and 61b irradiate the lights La and Lb. This procedure is performed by an operator. Note that the patient P is lying on the bed B when the operator performs this procedure.
 この手順を開始すると、作業者は、図視しないスイッチを操作して、照射ユニット61a,61bから光La,Lbを照射させる(ステップS100)。次に、作業者は、図5に示すように、光Laと光Lbとの間に患者Pの患部が含まれるように、ロボット装置20を移動させる(ステップS110)。 When this procedure is started, the operator operates a switch (not shown) to irradiate the lights La and Lb from the irradiation units 61a and 61b (step S100). Next, as shown in FIG. 5, the operator moves the robot device 20 so that the affected area of the patient P is included between the light La and the light Lb (step S110).
 続いて、作業者は、ロボット装置20をロックする(ステップS120)。具体的には、作業者は、キャスター26のストッパをロックする。そして、作業者は、レバー27を押し下げる。これにより、ロック部28は、基台25から鉛直下方向に突出してロボット装置20を移動不能にロックする。 Next, the worker locks the robot device 20 (step S120). Specifically, the operator locks the stopper of the caster 26. The operator then pushes down the lever 27. As a result, the lock portion 28 projects vertically downward from the base 25 and locks the robot device 20 so that it cannot move.
 次に、作業者は、ロボットアーム21の高さ調整を行なう(ステップS130)。具体的には、作業者は、操作ハンドル49を回転させて、ロボットアーム21をベッドBの高さに応じた高さに調整する。 Next, the operator adjusts the height of the robot arm 21 (step S130). Specifically, the operator rotates the operating handle 49 to adjust the robot arm 21 to a height corresponding to the height of the bed B.
 次に、作業者は、ダイレクトティーチングを行なう(ステップS140)。ダイレクトティーチングは、作業者が手動でロボットアーム21を操作して、超音波プローブ101の移動軌跡をロボット装置20の制御装置に登録する作業である。このとき、照射ユニット61a,61bは、超音波プローブ101の移動範囲Rの境界として、光La,Lbを患者Pの体表面に照射している。したがって、作業者は、ダイレクトティーチングを行なう際に、感覚に頼ることなく超音波プローブ101の移動範囲Rの境界を把握することができると共に患者Pを常時目視しながらロボットアーム21を操作することができる。 Next, the operator performs direct teaching (step S140). Direct teaching is a task in which a worker manually operates the robot arm 21 and registers the movement trajectory of the ultrasound probe 101 in the control device of the robot device 20. At this time, the irradiation units 61a and 61b irradiate the body surface of the patient P with the lights La and Lb as the boundaries of the movement range R of the ultrasound probe 101. Therefore, when performing direct teaching, the operator can grasp the boundaries of the movement range R of the ultrasound probe 101 without relying on his senses, and can operate the robot arm 21 while constantly visually observing the patient P. can.
 そして、作業者は、超音波診断を開始する(ステップS150)。超音波診断を開始すると、ロボット装置20の制御装置は、作業者から入力される指示に応じて、S150で登録された移動軌跡にしたがって超音波プローブ101が移動するように各種部材を制御する。超音波診断装置本体110の画像処理部は、超音波プローブ101からの受信信号を処理して超音波エコー画像を生成する。超音波診断装置本体110の超音波診断制御部は、超音波エコー画像が表示されるように画像表示部を制御する。作業者は、画像表示部に表示されたエコー画像に基づいて患者Pを診断する。ステップS150の後、作業者は、本手順を終了する。 Then, the operator starts ultrasonic diagnosis (step S150). When ultrasonic diagnosis is started, the control device of the robot device 20 controls various members so that the ultrasonic probe 101 moves according to the movement locus registered in S150 in accordance with instructions input by the operator. The image processing unit of the ultrasound diagnostic apparatus main body 110 processes the received signal from the ultrasound probe 101 to generate an ultrasound echo image. The ultrasound diagnosis control section of the ultrasound diagnostic apparatus main body 110 controls the image display section so that the ultrasound echo image is displayed. The operator diagnoses the patient P based on the echo image displayed on the image display section. After step S150, the operator ends this procedure.
 ここで、実施形態の主要な要素と請求の範囲に記載した本開示の主要な要素との対応関係について説明する。即ち、本実施形態のロボット装置20が本開示のロボット装置に相当し、ロボットアーム21がアームに相当し、照射ユニット61a,61bが照射ユニットに相当し、ベース24がベースに相当し、カバー60がカバーに相当する。また、患者Pが対象物に相当する。 Here, the correspondence between the main elements of the embodiment and the main elements of the present disclosure described in the claims will be explained. That is, the robot device 20 of this embodiment corresponds to the robot device of the present disclosure, the robot arm 21 corresponds to an arm, the irradiation units 61a and 61b correspond to an irradiation unit, the base 24 corresponds to a base, and the cover 60 corresponds to a base. corresponds to the cover. Furthermore, the patient P corresponds to the object.
 以上説明したロボット装置20では、照射ユニット61a,61bが患者Pに対して超音波プローブ101の移動範囲Rを照射する。したがって、作業者は、感覚に頼ることなく超音波プローブ101の移動範囲Rを把握することができると共に患者Pを常時目視しながらロボットアーム21を操作することができる。よって、作業者がロボットアーム21を操作する際の作業性が向上する。 In the robot device 20 described above, the irradiation units 61a and 61b irradiate the patient P within the movement range R of the ultrasound probe 101. Therefore, the operator can grasp the movement range R of the ultrasound probe 101 without relying on his senses, and can operate the robot arm 21 while constantly visually observing the patient P. Therefore, the workability when the operator operates the robot arm 21 is improved.
 また、ロボット装置20は、患者Pに対して作業をする医療用ロボットであり、照射ユニット61a,61bは、患者Pの患部が超音波プローブ101の移動範囲Rに含まれるように、光La,Lbを照射する。そのため、作業者は、超音波プローブ101の移動範囲R内に患者Pの患部が含まれるようにロボット装置20をセットしやすくなり、特に有益である。 Further, the robot device 20 is a medical robot that works on the patient P, and the irradiation units 61a and 61b emit light La and rays so that the affected area of the patient P is included in the movement range R of the ultrasound probe 101. Irradiate with Lb. Therefore, the operator can easily set the robot device 20 so that the affected area of the patient P is included within the movement range R of the ultrasound probe 101, which is particularly advantageous.
 また、ロボット装置20は、ロボットアーム21を支持するベース24と、ベース24を覆うカバー60と、を備えており、照射ユニット61a、61bはカバー60に設けられている。そのため、照射ユニット61a,61bから照射される光が、ロボットアーム21と重なり難くなる。 Further, the robot device 20 includes a base 24 that supports the robot arm 21 and a cover 60 that covers the base 24, and the irradiation units 61a and 61b are provided on the cover 60. Therefore, the light emitted from the irradiation units 61a and 61b becomes difficult to overlap the robot arm 21.
 また、ロボット装置20では、照射ユニット61a,61bは、カバー60の前面にロボットアーム21を挟んで左右両側に設置されている。そのため、超音波プローブ101の移動範囲Rの境界を、2箇所表示することができる。 Furthermore, in the robot device 20, the irradiation units 61a and 61b are installed on both left and right sides of the front surface of the cover 60 with the robot arm 21 in between. Therefore, the boundaries of the movement range R of the ultrasound probe 101 can be displayed at two locations.
 また、左右両側の照射ユニット61a,61bは、移動範囲Rの境界として直線状の光La,Lbを患者Pの体表面に照射する。その場合、移動範囲Rの境界を2本の直線状の光として表すことができるため、作業者は、超音波プローブ101の移動範囲Rをより把握しやすくなる。 Further, the irradiation units 61a and 61b on both the left and right sides irradiate the body surface of the patient P with linear lights La and Lb as boundaries of the movement range R. In that case, the boundary of the movement range R can be represented as two linear lights, making it easier for the operator to understand the movement range R of the ultrasound probe 101.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is not limited to the embodiments described above, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.
 例えば、上述した実施形態では、ロボット装置20は、3方向の並進運動と3方向の回転運動とが可能な7軸の多関節ロボットとして構成されるものとした。しかし、軸の数はいくつであっても構わない。また、ロボット装置20は、いわゆる垂直多関節ロボットや水平多関節ロボットなどにより構成されていてもよい。 For example, in the embodiment described above, the robot device 20 is configured as a seven-axis articulated robot capable of translational movement in three directions and rotational movement in three directions. However, the number of axes may be any number. Further, the robot device 20 may be configured by a so-called vertically articulated robot, horizontally articulated robot, or the like.
 上述した実施形態では、ロボット装置20は、照射ユニット61a,61bを有するものとした。しかし、ロボット装置20は、照射ユニット61a及び照射ユニット61bのうち、いずれか一方のみを有していてもよい。あるいは、ロボット装置20は、光La,Lbに直交する方向に直線状の光を照射する別の照射ユニットを1つ又は2つ有していてもよい。別の照射ユニットが照射する光は、移動範囲Rのうち前後方向の境界を示すものである。この場合、別の照射ユニットは、ロボットアーム21の前方に設けられた照射ユニット保持部材に保持されていてもよい。照射ユニット保持部材は、例えば、ロボットアーム21やカバー60とは別体に設けられるものである。 In the embodiment described above, the robot device 20 has the irradiation units 61a and 61b. However, the robot device 20 may include only one of the irradiation unit 61a and the irradiation unit 61b. Alternatively, the robot device 20 may have one or two other irradiation units that irradiate linear light in a direction perpendicular to the lights La and Lb. The light emitted by another irradiation unit indicates the boundary of the movement range R in the front-rear direction. In this case, another irradiation unit may be held by an irradiation unit holding member provided in front of the robot arm 21. The irradiation unit holding member is provided separately from the robot arm 21 and the cover 60, for example.
 上述した実施形態では、照射ユニット61a,61bで、互いに平行な2つの直線状の光を照射するものとした。しかし、複数のレーザーモジュールや複数のLEDモジュールにより、超音波プローブ101の移動範囲Rに対応した矩形状や楕円状の光を、患者Pの体表面に照射するものとしてもよい。 In the embodiment described above, the irradiation units 61a and 61b irradiate two linear lights that are parallel to each other. However, the body surface of the patient P may be irradiated with rectangular or elliptical light corresponding to the movement range R of the ultrasound probe 101 using a plurality of laser modules or a plurality of LED modules.
 本開示は、超音波診断装置やロボットの製造産業などに利用可能である。 The present disclosure can be used in the manufacturing industry of ultrasonic diagnostic equipment and robots, etc.
 10 超音波診断システム、20 ロボット装置、21 ロボットアーム、22 第1アーム、23 第2アーム、24 ベース、25 基台、26 キャスター、27 レバー、28 ロック部、31 第1関節軸、32 第2関節軸、33 姿勢保持用軸、35 第1アーム駆動装置、36 第2アーム駆動装置、37 姿勢保持装置、40 昇降装置、41 第1スライダ、42 第1ガイド部材、43 第1ボールねじ軸、45 高さ調整機構、46 第2スライダ、47 第2ガイド部材、48 第2ボールねじ軸、49 操作ハンドル、50 回転3軸機構、51 第1回転軸、52 第2回転軸、53 第3回転軸、55 第1回転装置、56 第2回転装置、57 第3回転装置、60 カバー、61a,61b 照射ユニット、70 保持部、100 超音波診断装置、101 超音波プローブ、102 ケーブル、110 超音波診断装置本体、B ベッド、La,Lb 光、P 患者、R 移動範囲。 10 Ultrasonic diagnostic system, 20 Robot device, 21 Robot arm, 22 First arm, 23 Second arm, 24 Base, 25 Base, 26 Caster, 27 Lever, 28 Lock part, 31 First joint axis, 32 Second joint axis, 33 posture holding axis, 35 first arm drive device, 36 second arm drive device, 37 posture holding device, 40 lifting device, 41 first slider, 42 first guide member, 43 first ball screw shaft, 45 height adjustment mechanism, 46 second slider, 47 second guide member, 48 second ball screw shaft, 49 operation handle, 50 three-axis rotation mechanism, 51 first rotation axis, 52 second rotation axis, 53 third rotation Axis, 55 first rotation device, 56 second rotation device, 57 third rotation device, 60 cover, 61a, 61b irradiation unit, 70 holding part, 100 ultrasound diagnostic device, 101 ultrasound probe, 102 cable, 110 ultrasound Diagnostic device main body, B bed, La, Lb light, P patient, R movement range.

Claims (5)

  1.  対象物を超音波診断する超音波診断システムに用いられるロボット装置であって、
     超音波プローブを保持して移動させるアームと、
     前記超音波プローブの移動範囲を示す光を前記対象物に照射可能な照射ユニットと、
     を備えたロボット装置。
    A robot device used in an ultrasonic diagnostic system for ultrasonically diagnosing a target object,
    an arm that holds and moves an ultrasound probe;
    an irradiation unit capable of irradiating the object with light indicating a movement range of the ultrasound probe;
    A robotic device equipped with
  2.  請求項1に記載のロボット装置であって、
     前記ロボット装置は、患者に対して作業をする医療用ロボットであり、
     前記対象物は患者であり、
     前記照射ユニットは、患者の患部が前記超音波プローブの移動範囲に含まれるように、光を照射する、
     ロボット装置。
    The robot device according to claim 1,
    The robot device is a medical robot that works on patients,
    the object is a patient;
    The irradiation unit irradiates light so that the affected area of the patient is included in the movement range of the ultrasound probe.
    robotic equipment.
  3.  請求項1又は2に記載のロボット装置であって、
     前記アームを支持するベースと、
     前記ベースを覆うカバーと、
     を備え、
     前記照射ユニットは前記カバーに設けられている、
     ロボット装置。
    The robot device according to claim 1 or 2,
    a base that supports the arm;
    a cover that covers the base;
    Equipped with
    the irradiation unit is provided on the cover,
    robotic equipment.
  4.  請求項3に記載のロボット装置であって、
     前記照射ユニットは、前記カバーの前面に前記アームを挟んで左右両側に設置されている、
     ロボット装置。
    The robot device according to claim 3,
    The irradiation unit is installed on both left and right sides of the front surface of the cover with the arm sandwiched therebetween.
    robotic equipment.
  5.  請求項4に記載のロボット装置であって、
     左右両側の前記照射ユニットは、前記移動範囲の境界として直線状の光を前記対象物の表面に照射する、
     ロボット装置。
    The robot device according to claim 4,
    The irradiation units on both the left and right sides irradiate the surface of the object with linear light as a boundary of the movement range,
    robotic equipment.
PCT/JP2022/017336 2022-04-08 2022-04-08 Robot device WO2023195150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017336 WO2023195150A1 (en) 2022-04-08 2022-04-08 Robot device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017336 WO2023195150A1 (en) 2022-04-08 2022-04-08 Robot device

Publications (1)

Publication Number Publication Date
WO2023195150A1 true WO2023195150A1 (en) 2023-10-12

Family

ID=88242794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017336 WO2023195150A1 (en) 2022-04-08 2022-04-08 Robot device

Country Status (1)

Country Link
WO (1) WO2023195150A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180344284A1 (en) * 2017-05-31 2018-12-06 Siemens Healthcare Gmbh Moving a robot arm
US20200178936A1 (en) * 2018-12-05 2020-06-11 Verathon Inc. Implant assessment using ultrasound and optical imaging
JP2021186237A (en) * 2020-05-29 2021-12-13 キヤノンメディカルシステムズ株式会社 Medical image diagnostic apparatus and medical image processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180344284A1 (en) * 2017-05-31 2018-12-06 Siemens Healthcare Gmbh Moving a robot arm
US20200178936A1 (en) * 2018-12-05 2020-06-11 Verathon Inc. Implant assessment using ultrasound and optical imaging
JP2021186237A (en) * 2020-05-29 2021-12-13 キヤノンメディカルシステムズ株式会社 Medical image diagnostic apparatus and medical image processing apparatus

Similar Documents

Publication Publication Date Title
US10154822B2 (en) Patient positioner system
CN111084661B (en) Surgical assistance device and recording medium
CN107072729B (en) System and method for integrated surgical table motion
JP5139270B2 (en) Robotic arm for patient positioning assembly
CN108245357B (en) Mechanical operating table and hybrid operating room system
US20180317915A1 (en) Push-pull stapler with two degree of freedom wrist
US11801103B2 (en) Surgical system and method of controlling surgical system
CN108245359B (en) Robot operating table and hybrid operating room
CN110859584A (en) Endoscope adapter, robotic surgery system, and method of mounting endoscope to robot arm
CN108670305B (en) Automatic breast scanning device
US20140135611A1 (en) Robotized system for moving a remotely guided tool
Stoianovici et al. Endocavity ultrasound probe manipulators
WO2023195150A1 (en) Robot device
JP2020065910A (en) Surgery assistance apparatus
US11717366B2 (en) Medical manipulator
CN210784417U (en) Scanning motion system for ultrasonic scanning examination
JP2002159479A (en) X-ray diagnostic apparatus
CN113893036B (en) Interventional robot device under magnetic resonance environment
WO2024089813A1 (en) Robot
WO2022029998A1 (en) Probe operation device
CN217040293U (en) Slave end operating device for surgical robot
WO2023112732A1 (en) Robot system and coordinate registration method
WO2021112228A1 (en) Surgical robot, surgical system, and control method
JP2020116187A (en) X-ray imaging apparatus
US20220323167A1 (en) Surgical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936548

Country of ref document: EP

Kind code of ref document: A1