WO2023194617A1 - Automated device for measuring tubular pipe thickness using ultrasound - Google Patents

Automated device for measuring tubular pipe thickness using ultrasound Download PDF

Info

Publication number
WO2023194617A1
WO2023194617A1 PCT/EP2023/059340 EP2023059340W WO2023194617A1 WO 2023194617 A1 WO2023194617 A1 WO 2023194617A1 EP 2023059340 W EP2023059340 W EP 2023059340W WO 2023194617 A1 WO2023194617 A1 WO 2023194617A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
axis
tubular wall
annular body
pipe
Prior art date
Application number
PCT/EP2023/059340
Other languages
French (fr)
Inventor
Wilmar ANGULO PINA
Gladys ANGULO PINA
Original Assignee
Iprexys Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iprexys Technologies filed Critical Iprexys Technologies
Publication of WO2023194617A1 publication Critical patent/WO2023194617A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the present invention generally relates to the problem of measuring the thickness of tubular pipes intended for the transport of fluids.
  • tubular metal pipes constituting the pipelines of certain industrial installations tend to corrode and/or erode at their internal surface due to the continuous circulation of liquids or gases inside them for long periods of time.
  • Ultrasounds are mechanical waves that propagate in elastic media. When these waves encounter an interface between two environments of different natures, there is reflection of all or part of the incident wave.
  • Such an ultrasonic probe comprises an ultrasonic transmitter coupled to an ultrasonic receiver.
  • the transmitter emits an ultrasonic wave from the accessible external face of the tubular wall of the pipe which is partially reflected on its internal face so as to return to impact the receiver.
  • the thickness of the tubular wall can then be determined by multiplying the known propagation speed of the ultrasonic wave in the material (this being for example of the order of 5920 m/s in steel) by the delay separating the emission of this wave from the reception of its reflected echo.
  • the air has an acoustic impedance very different from that of the probe wear plate and the constituent material of the pipe being inspected, so the presence of even a very A thin air gap between the probe and the external face of the wall of the pipe can prevent the effective transmission of the sound energy of the wave emitted in the wall of this pipe.
  • These coupling fluids generally come in the form of non-toxic, moderately viscous liquids, gels, or pastes.
  • the present invention therefore aims to improve the situation.
  • an automated device for measuring the thickness of tubular pipes using ultrasound characterized in that it comprises: - a frame comprising support elements capable of supporting said pipe; - a measuring head mounted movable to slide in a motorized manner with respect to said frame along the tubular wall of said pipe and comprising an annular body capable of surrounding said tubular wall, this measuring head further comprising at least a measuring device mounted movable to slide on said annular body, each said measuring device comprising an ultrasonic probe capable of measuring the thickness of said tubular wall at the level of a measuring zone located in contact with it, as well as an injector equipped with a nozzle capable of ejecting a coupling fluid on said tubular wall at each said measuring zone before it comes into contact with said probe.
  • the device according to the invention thus makes it possible to measure in an automated manner and with great reliability the thickness of the tubular wall of a pipe in numerous zones distributed over the length of this wall.
  • FIG. 1 represents a three-quarter perspective view of an automated device according to the invention for measuring the thickness of tubular pipes by ultrasound;
  • FIG. 1 is a perspective view of one of the measuring devices included in the measuring head of the ;
  • the measuring device 1 consists of a frame 100 intended to accommodate a tubular pipe 2 to be inspected and on which a measuring head 200 is movably mounted.
  • an orthogonal reference frame XYZ comprising three perpendicular axes in pairs, namely: - an X axis, defining a longitudinal, horizontal direction, - a Y axis, defining a transverse, horizontal direction, which with the X axis defines a horizontal XY plane, and - a Z axis, defining a vertical direction, perpendicular to the horizontal XY plane.
  • the support frame 100 comprises a metal frame 110 made by mechanical welding and equipped with four feet 111 through which it rests on the ground.
  • This support frame 100 also comprises two support elements 120, 130 arranged opposite each other and intended to support the two ends of the tubular wall 3 of a pipe 2 extending longitudinally between two connectors 4, here of the union type of hammer.
  • Each support element 120, 130 comprises a rectangular plate 121, 131 extending along a vertical transverse plane and provided in its upper part with a semicircular receiving notch 122, 132 whose diameter is advantageously chosen to allow the reception of a wide range of pipes having tubular walls of different diameters.
  • the first support element 120 is fixedly mounted on the chassis 110, while the second support element 130 is mounted movably with longitudinal sliding on this same chassis, so as to allow their longitudinal spacing to be adjusted to the length of the tubular wall 3 of conduct 2.
  • the support frame 100 further comprises means 140 for measuring the length of this tubular wall 3, these means consisting in this case of a laser-type distance sensor installed on the plate 121 of the first fixed support element 120.
  • the distance sensor 140 is able to send a laser beam oriented longitudinally towards the plate 131 of the second mobile support element 130 which will reflect part of it towards this sensor.
  • Measuring the delay separating the emission of the ray from the reception of its reflected part makes it possible to determine the distance between the sensor 120 and this plate 122, and thereby the length of the tubular wall 3 of the pipe 2.
  • the distance sensor used may be of a different type, for example ultrasonic.
  • the measuring head 200 is mounted to slide in a motorized manner with respect to the support frame 100 along the longitudinal axis movable to slide in a motorized manner with respect to this support frame 100 along the transverse Y and vertical Z axes.
  • this measuring head 200 is fixed on a lifting plate 150 (visible on the ) movable vertically in a motorized manner with respect to a housing 160 mounted sliding in a motorized manner on a transverse rail 170, the two ends of which are mounted sliding on two longitudinal rails 180.
  • the measuring head 200 comprises an annular metal body 210 extending along a vertical and planned transverse mean plane, as illustrated in Figures 1 and 2, to surround the tubular wall 3 of the pipe 2.
  • the annular body 210 consists of a main C-shaped part 211 fixedly mounted on the lifting plate 150, and a curved closing branch 212 mounted pivotally articulated along a longitudinal axis by its upper end on the end upper part of the main part 211, between a raised position not shown in which this branch 212 extends above the main part 211 so as to allow the latter to envelop the tubular wall 3 of the pipe 2 via a transverse movement of the measuring head 200, and a lowered position illustrated by Figures 1 to 3 and where this branch 212 closes at least partially this annular body 210.
  • An electric cylinder 213 connecting the top of the main part 211 and the curved closing branch 212 also ensures the retention of this branch 212 in the raised position against the force of gravity.
  • the measuring head 200 also includes four identical upper 230, lower 231, and side 232, 233 measuring devices, arranged on the annular body 210 being distributed angularly in a regular manner (at 90° from each other) around the axis of this body 210.
  • the upper 230 and lower 231 measuring devices are mounted movable to slide along this vertical axis via respective linear actuators 240, 241 secured to the main part 211 of the annular body 210, between a retracted position illustrated on Figures 2 and 3, and a maximum advanced position not shown in which they project inside this annular body 210.
  • the lateral measuring devices 232 and 233 are mounted movable to slide along this horizontal axis via respective linear actuators 242, 243 secured respectively to the main part 211 and the branch 212 of the annular body 210, between a rearward position illustrated in Figures 2 and 3, and a maximum advanced position not shown in which they project inside this annular body 210.
  • each measuring device 230, 231, 232, 233 comprises a hollow housing 234 housing an ultrasonic probe 235 capable of measuring the thickness of the tubular wall 3 of the pipe 2 at the level of the zone contact with said probe.
  • the probe 235 Powered by an electrical cable not shown which connects to the two connectors 235A, 235B, the probe 235 comprises a pellet 235C projecting out of the housing 234 and is designed to come into contact with the tubular wall 3 of the pipe 2.
  • the probe 235 is advantageously mounted movable to slide with respect to the housing 234 along an axis parallel to the sliding axis of this last, between a retracted position and a protruding position, being urged towards its protruding position by a compression spring 236.
  • each device measurement 230, 231, 232, 233 comprises an injector 237 also housed in the housing 234 and being equipped with a nozzle 237A capable of ejecting a coupling fluid on this external face of the wall 3 at the level of the measurement zone of the corresponding probe 235 before coming into contact with this wall 3.
  • the coupling fluid is sucked up by a pump connected by a pipe not shown connecting to the orifice 238 to a reservoir also not shown.
  • the injector 237 is thus capable of ejecting under pressure a determined quantity of this fluid via the nozzle 237A and thanks to a valve 237B electrically controlled by a cable 239.
  • the upper 230 and lower 231 measuring devices are arranged so that their ultrasonic probes 235 are aligned along a first vertical axis V 1 crossing the axis A of the annular body 210, and so that their injectors 237 are also aligned along a second vertical axis V 2 offset transversely by a predetermined spacing e with respect to this first vertical axis V 1 .
  • the lateral measuring devices 232 and 233 are arranged so that their ultrasonic probes 235 are aligned along a first horizontal axis H 1 crossing the axis A of the annular body 210, and so that their injectors 237 are also aligned along a second horizontal axis H 2 offset vertically by this same predetermined spacing e with respect to this first horizontal axis H 1 .
  • the measuring head 200 finally comprises three distance sensors 250, 251, 252 arranged on the annular body 210 being advantageously distributed angularly in a regular manner (at 120° from each other) around the axis of this body 210 and capable each to measure the distance separating it from the tubular wall 3 of the pipe 2, so as to enable the centering of this tubular wall 3 on the axis of the annular body 210.
  • the measuring head In its rest configuration, the measuring head is arranged at a first end of the transverse rail 170 and occupies its most rearward longitudinal position located just in front of the fixed support element 120.
  • the opening of the main C-shaped part 211 of its annular body 210 is turned towards the second end of this transverse rail 170, with the closing branch 212 which occupies its raised position.
  • the movable support element 130 is moved so that its longitudinal spacing from the fixed support element 120 corresponds to the length of the tubular wall 3 of the pipe 2.
  • the distance sensor 140 can therefore measure the length of this tubular wall 3 and determine from this length the longitudinal movement step of the head 200 which will be applied between two thickness measurement operations carried out on pipe 2.
  • the measuring head 200 is then moved transversely towards the pipe 2 so as to surround its tubular wall 3.
  • the branch 212 can then be lowered so as to at least partially close the annular body 210.
  • the measuring head 200 is moved vertically into a centering position in which the respective axes of the annular body 210 and of the tubular wall 3 are combined so that all of the probes 235 extend along radial axes to that of this tubular wall 3.
  • the measuring head 200 is then moved vertically by the value of the predetermined spacing e so that the injectors 237 of the lateral measuring devices 232, 233 are aligned along the horizontal diametric axis of this tubular wall 3 of the pipe 2.
  • This measuring head 200 is then moved transversely by the value of the predetermined spacing e so that the injectors 237 of the upper 230 and lower 231 measuring devices are aligned along the vertical diametric axis of this tubular wall 3 of the pipe 2 .
  • the upper 230, lower 231 and lateral 232, 233 measuring devices then slide simultaneously respectively vertically and horizontally until the pellets 235C of their respective probes 235 come to rest, under elastic stress of the springs 236, against the tubular wall 3 at the level of the four measuring zones previously covered with coupling fluid.
  • the four probes 232 then simultaneously measure the thickness of the tubular wall 3 at these four measuring zones, then the four measuring devices 230, 240, 250, 260 return to their original position.
  • the measuring head 200 then advances longitudinally at the previously defined step.
  • the measuring head can also be mounted movable to rotate in a motorized manner on itself so as to allow it to follow the profile of the curved tubular wall of a pipe to inspect.
  • the number and arrangement of the measuring devices and/or distance sensors arranged on the annular body of the measuring head may also differ.
  • the ultrasonic probe and the injector of each measuring device can, for example, be spaced apart longitudinally rather than transversely or vertically.
  • Such a design has the advantage of limiting the movements of the measuring head to eject the coupling fluid on the four measuring zones. The head is then simply moved longitudinally by the value of this spacing, all of the measuring devices then slide simultaneously so that the injector nozzles are positioned close to the tubular wall of the pipe, and the four injectors simultaneously eject coupling fluid on the four measuring zones.
  • the measuring device can also comprise an electronic label reader capable of reading information mentioned on a label affixed to the pipe and making it possible, for example, to detect the reference and/or certain parameters of the pipe (length, diameter, profile, etc.) in order to adapt the measurement strategy accordingly;
  • the pipe support elements are adjustable in height while the measuring head is fixed vertically; and or - the distance sensors making it possible to center the tubular wall of the pipe on the axis of the annular body of the measuring head are arranged on the support frame and not on the measuring head.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

The invention relates to an automated device (1) for measuring the thickness of tubular pipes (2) using ultrasound, comprising: - a frame (100) comprising support elements (120, 130) capable of supporting a pipe (2); - a measurement head (200) mounted to slide in a motorised manner relative to said frame along the tubular wall and comprising an annular body (210) capable of surrounding this wall, the measurement head further including at least one measuring apparatus mounted to slide on said annular body, each apparatus comprising an ultrasonic probe capable of measuring the thickness of said tubular wall in a measurement area in contact therewith, and an injector fitted with a nozzle capable of ejecting a coupling fluid onto said tubular wall in each measurement area before each measurement area is brought into contact with the probe.

Description

Dispositif automatisé de mesure d’épaisseur de conduites tubulaires par ultrasonsAutomated device for measuring the thickness of tubular pipes using ultrasound
La présente invention concerne d’une manière générale la problématique de la mesure de l’épaisseur de conduites tubulaires destinées au transport de fluides.The present invention generally relates to the problem of measuring the thickness of tubular pipes intended for the transport of fluids.
Les conduites tubulaires métalliques constitutives des pipelines de certains installations industrielles ont tendance à se corroder et/ou à s’éroder au niveau de leur surface interne du fait à la circulation en continu de liquides ou de gaz à l’intérieur de ces dernières durant de longues périodes de temps.The tubular metal pipes constituting the pipelines of certain industrial installations tend to corrode and/or erode at their internal surface due to the continuous circulation of liquids or gases inside them for long periods of time.
Cette perte de matière due à la corrosion et/ou l’érosion entraine une réduction de l’épaisseur de la paroi tubulaire de ces conduites pouvant générer à terme des fuites ponctuelles de fluide et/ou leur détérioration.This loss of material due to corrosion and/or erosion leads to a reduction in the thickness of the tubular wall of these pipes which can ultimately generate occasional fluid leaks and/or their deterioration.
Afin de garantir l’intégrité de ces conduites, la réglementation impose de procéder régulièrement à des inspections au cours desquelles leur épaisseur doit être mesurée en de nombreux points de contrôle.In order to guarantee the integrity of these pipes, regulations require regular inspections during which their thickness must be measured at numerous control points.
Ces mesures régulières qui permettent notamment de déterminer précisément leur amincissement et d’estimer leur durée de vie restante, doivent être réalisées par des méthodes non destructives afin de ne pas endommager les conduites.These regular measurements, which make it possible in particular to precisely determine their thinning and estimate their remaining lifespan, must be carried out using non-destructive methods so as not to damage the pipes.
On utilise ainsi généralement des sondes à ultrasons opérées manuellement par un ou plusieurs opérateurs.We generally use ultrasound probes operated manually by one or more operators.
Les ultrasons sont des ondes mécaniques qui se propagent dans les milieux élastiques. Lorsque ces ondes rencontrent une interface entre deux milieux de natures différentes, il y a réflexion de tout ou partie de l’onde incidente.Ultrasounds are mechanical waves that propagate in elastic media. When these waves encounter an interface between two environments of different natures, there is reflection of all or part of the incident wave.
Une telle sonde à ultrasons comprend un émetteur ultrasonique couplé à un récepteur ultrasonique. L’émetteur émet une onde ultrasonore à partir de la face externe accessible de la paroi tubulaire de la conduite qui se réfléchit partiellement sur sa face interne de sorte à revenir impacter le récepteur.Such an ultrasonic probe comprises an ultrasonic transmitter coupled to an ultrasonic receiver. The transmitter emits an ultrasonic wave from the accessible external face of the tubular wall of the pipe which is partially reflected on its internal face so as to return to impact the receiver.
L’épaisseur de la paroi tubulaire peut alors être déterminée en multipliant la vitesse de propagation connue de l’onde ultrasonore dans la matière (celle-ci étant par exemple de l’ordre de 5920 m/s dans l’acier) par le délai séparant l’émission de cette onde de la réception de son écho réfléchi.The thickness of the tubular wall can then be determined by multiplying the known propagation speed of the ultrasonic wave in the material (this being for example of the order of 5920 m/s in steel) by the delay separating the emission of this wave from the reception of its reflected echo.
Malheureusement, les ondes ultrasonores émises pour réaliser ces mesures d’épaisseur sont très sensibles à la présence de lames d’air intercalées entre la sonde et la face externe de la paroi de la conduite.Unfortunately, the ultrasonic waves emitted to carry out these thickness measurements are very sensitive to the presence of air spaces interposed between the probe and the external face of the pipe wall.
Outre les effets d’atténuation, l’air présente une impédance acoustique très différente de celle de la plaque d’usure de la sonde et du matériau constitutif de la conduite inspectée, de sorte que la présence ne serait-ce que d’une très fine lame d’air entre la sonde et la face externe de la paroi de la conduite peut empêcher la transmission efficace de l’énergie sonore de l’onde émise dans la paroi de cette conduite.In addition to the attenuation effects, the air has an acoustic impedance very different from that of the probe wear plate and the constituent material of the pipe being inspected, so the presence of even a very A thin air gap between the probe and the external face of the wall of the pipe can prevent the effective transmission of the sound energy of the wave emitted in the wall of this pipe.
C’est pourquoi il est indispensable d’apposer sur la zone de mesure, préalablement à au positionnement de la sonde, un fluide de couplage permettant d’éviter la présence de telles lames d’air intercalées, de sorte à optimiser la transmission de l’énergie sonore de l’onde ultrasonore entre la sonde et la paroi tubulaire de la conduite.This is why it is essential to apply a coupling fluid to the measurement zone, prior to positioning the probe, to avoid the presence of such interspersed air blades, so as to optimize the transmission of the sound energy of the ultrasonic wave between the probe and the tubular wall of the pipe.
Ces fluides de couplage se présentent généralement sous la forme de liquides, de gels ou de pâtes non toxiques et moyennement visqueux.These coupling fluids generally come in the form of non-toxic, moderately viscous liquids, gels, or pastes.
Cette multiplicité d’opérations manuelles à répéter par l’opérateur pour chaque mesure d’épaisseur à réaliser sur une conduite rend ces phases de contrôle particulièrement consommatrices en temps et donc couteuses.This multiplicity of manual operations to be repeated by the operator for each thickness measurement to be carried out on a pipe makes these control phases particularly time-consuming and therefore costly.
La présente invention vise donc à améliorer la situation.The present invention therefore aims to improve the situation.
Elle propose à cet effet un dispositif automatisé de mesure d’épaisseur de conduites tubulaires par ultrasons caractérisé en ce qu’il comporte :
- un bâti comprenant des éléments de support aptes à supporter une dite conduite ;
- une tête de mesure montée mobile à coulissement de manière motorisée vis-à-vis dudit bâti le long de la paroi tubulaire de ladite conduite et comprenant un corps annulaire apte à venir entourer ladite paroi tubulaire, cette tête de mesure comportant en outre au moins un appareil de mesure monté mobile à coulissement sur ledit corps annulaire,
chaque dit appareil de mesure comprenant une sonde à ultrasons apte à mesurer l’épaisseur de ladite paroi tubulaire au niveau d’une zone de mesure se trouvant à son contact, ainsi qu’un injecteur équipé d’une buse apte à éjecter un fluide couplant sur ladite paroi tubulaire au niveau de chaque dite zone de mesure avant sa mise en contact avec ladite sonde.
For this purpose, it offers an automated device for measuring the thickness of tubular pipes using ultrasound, characterized in that it comprises:
- a frame comprising support elements capable of supporting said pipe;
- a measuring head mounted movable to slide in a motorized manner with respect to said frame along the tubular wall of said pipe and comprising an annular body capable of surrounding said tubular wall, this measuring head further comprising at least a measuring device mounted movable to slide on said annular body,
each said measuring device comprising an ultrasonic probe capable of measuring the thickness of said tubular wall at the level of a measuring zone located in contact with it, as well as an injector equipped with a nozzle capable of ejecting a coupling fluid on said tubular wall at each said measuring zone before it comes into contact with said probe.
Le dispositif selon l’invention permet ainsi de mesurer de manière automatisée et avec une grande fiabilité l’épaisseur de la paroi tubulaire d’une conduite en de nombreuses zones réparties sur la longueur de cette paroi.The device according to the invention thus makes it possible to measure in an automated manner and with great reliability the thickness of the tubular wall of a pipe in numerous zones distributed over the length of this wall.
Selon des caractéristiques préférées dudit dispositif automatisé de mesure d’épaisseur selon l’invention :
- ladite tête de mesure comporte plusieurs dits appareils de mesure agencés sur ledit corps annulaire en étant répartis angulairement de manière régulière autour de l’axe de ce corps ;
- ladite tête de mesure comporte deux premiers dits appareils de mesure alignés selon un premier axe de coulissement ;
- lesdits deux premiers appareils de mesure sont agencés de sorte que leurs sondes soient alignées suivant un premier axe vertical traversant l’axe dudit corps annulaire, et de sorte que leurs injecteurs soient également alignés suivant un second axe vertical décalé d’un écartement prédéterminé vis-à-vis de ce premier axe vertical ;
- ladite tête de mesure comporte deux seconds dits appareils de mesure alignés selon un second axe de coulissement ;
- lesdits deux seconds appareils de mesure sont agencés de sorte que leurs sondes soient alignées suivant un premier axe horizontal traversant l’axe dudit corps annulaire, et de sorte que leurs injecteurs soient également alignés suivant un second axe horizontal décalé d’un écartement prédéterminé vis-à-vis de ce premier axe horizontal ;
- ladite tête de mesure est également montée mobile à coulissement de manière motorisée selon des directions transversale et verticale ;
- ledit dispositif comporte des capteurs de distance aptes chacun à mesurer la distance le séparant de ladite paroi tubulaire de la conduite de sorte à permettre de réaliser le centrage de cette paroi tubulaire sur l’axe dudit corps annulaire ;
- lesdits capteurs de distance sont agencés sur ledit corps annulaire en étant répartis angulairement de manière régulière autour de l’axe de ce corps ; et/ou
- ledit dispositif comporte des moyens de mesure de la longueur de ladite paroi tubulaire de la conduite.
According to preferred characteristics of said automated thickness measuring device according to the invention:
- said measuring head comprises several said measuring devices arranged on said annular body being distributed angularly in a regular manner around the axis of this body;
- said measuring head comprises two first said measuring devices aligned along a first sliding axis;
- said two first measuring devices are arranged so that their probes are aligned along a first vertical axis crossing the axis of said annular body, and so that their injectors are also aligned along a second vertical axis offset by a predetermined spacing screw -vis this first vertical axis;
- said measuring head comprises two second so-called measuring devices aligned along a second sliding axis;
- said two second measuring devices are arranged so that their probes are aligned along a first horizontal axis crossing the axis of said annular body, and so that their injectors are also aligned along a second horizontal axis offset by a predetermined screw spacing - opposite this first horizontal axis;
- said measuring head is also mounted to slide in a motorized manner in transverse and vertical directions;
- said device comprises distance sensors each capable of measuring the distance separating it from said tubular wall of the pipe so as to enable the centering of this tubular wall on the axis of said annular body;
- said distance sensors are arranged on said annular body being distributed angularly in a regular manner around the axis of this body; and or
- said device comprises means for measuring the length of said tubular wall of the pipe.
L’exposé de l’invention sera maintenant poursuivi par la description détaillée d’un exemple de réalisation, donnée ci-après à titre illustratif mais non limitatif, en référence aux dessins annexés, sur lesquels :The presentation of the invention will now be continued by the detailed description of an exemplary embodiment, given below by way of illustration but not limitation, with reference to the appended drawings, in which:
 représente une vue en perspective de trois quart d’un dispositif automatisé selon l’invention de mesure d’épaisseur de conduites tubulaires par ultrasons ; represents a three-quarter perspective view of an automated device according to the invention for measuring the thickness of tubular pipes by ultrasound;
 est un agrandissement sous un autre angle d’une partie du dispositif de la  ; is an enlargement from another angle of part of the device of the ;
représente une vue en perspective de la tête de mesure du dispositif de la  ; represents a perspective view of the measuring head of the device of the ;
 est une vue en perspective de l’un des appareils de mesure que comporte la tête de mesure de la  ; et is a perspective view of one of the measuring devices included in the measuring head of the ; And
représente une vue en perspective sous un autre angle de l’appareil de mesure de la . represents a perspective view from another angle of the measuring device of the .
La représente un dispositif automatisé selon l’invention 1 de mesure d’épaisseur de conduites tubulaires par ultrasons.There represents an automated device according to the invention 1 for measuring the thickness of tubular pipes by ultrasound.
Tel qu’illustré sur cette , le dispositif de mesure 1 se compose d’un bâti 100 destiné à accueillir une conduite tubulaire 2 à inspecter et sur lequel est monté mobile une tête de mesure 200.As shown on this , the measuring device 1 consists of a frame 100 intended to accommodate a tubular pipe 2 to be inspected and on which a measuring head 200 is movably mounted.
On définit par rapport à ce dispositif de mesure 1 un repère orthogonal XYZ comprenant trois axes perpendiculaires deux à deux, à savoir :
- un axe X, définissant une direction longitudinale, horizontale,
- un axe Y, définissant une direction transversale, horizontale, qui avec l'axe X définit un plan XY horizontal, et
- un axe Z, définissant une direction verticale, perpendiculaire au plan XY horizontal.
We define in relation to this measuring device 1 an orthogonal reference frame XYZ comprising three perpendicular axes in pairs, namely:
- an X axis, defining a longitudinal, horizontal direction,
- a Y axis, defining a transverse, horizontal direction, which with the X axis defines a horizontal XY plane, and
- a Z axis, defining a vertical direction, perpendicular to the horizontal XY plane.
Dans la suite de la description et en référence au repère défini ci-dessus, les termes « longitudinal » ou « longitudinalement » feront référence à une direction parallèle à l’axe X, les termes « transversal » ou « transversalement » feront référence à une direction parallèle à l’axe Y, et les termes « vertical » ou « verticalement » feront référence à une direction parallèle à l’axe Z.In the remainder of the description and with reference to the reference defined above, the terms "longitudinal" or "longitudinally" will refer to a direction parallel to the axis direction parallel to the Y axis, and the terms "vertical" or "vertically" will refer to a direction parallel to the Z axis.
Le bâti support 100 comporte un châssis métallique 110 réalisé par mécano-soudage et doté de quatre pieds 111 par l’intermédiaire desquels il repose sur le sol.The support frame 100 comprises a metal frame 110 made by mechanical welding and equipped with four feet 111 through which it rests on the ground.
Ce bâti support 100 comprend également deux éléments de support 120, 130 agencés en vis-à-vis et prévus pour supporter les deux extrémités de la paroi tubulaire 3 d’une conduite 2 s’étendant longitudinalement entre deux raccords 4, ici de type union de marteau.This support frame 100 also comprises two support elements 120, 130 arranged opposite each other and intended to support the two ends of the tubular wall 3 of a pipe 2 extending longitudinally between two connectors 4, here of the union type of hammer.
Chaque élément de support 120, 130 comprend une plaque rectangulaire 121, 131 s’étendant suivant un plan transversal vertical et pourvue dans sa partie supérieure d’une échancrure hémicirculaire de réception 122, 132 dont le diamètre est avantageusement choisi pour permettre l’accueil d’une plage étendue de conduites présentant des parois tubulaires de diamètres différents.Each support element 120, 130 comprises a rectangular plate 121, 131 extending along a vertical transverse plane and provided in its upper part with a semicircular receiving notch 122, 132 whose diameter is advantageously chosen to allow the reception of a wide range of pipes having tubular walls of different diameters.
Le premier élément de support 120 est monté fixement sur le châssis 110, tandis que second élément de support 130 est monté mobile à coulissement longitudinal sur ce même châssis, de sorte à permettre d’ajuster leur écartement longitudinal à la longueur de la paroi tubulaire 3 de la conduite 2.The first support element 120 is fixedly mounted on the chassis 110, while the second support element 130 is mounted movably with longitudinal sliding on this same chassis, so as to allow their longitudinal spacing to be adjusted to the length of the tubular wall 3 of conduct 2.
Le bâti support 100 comporte en outre des moyens de mesure 140 de la longueur de cette paroi tubulaire 3, ces moyens consistant en l’espèce en un capteur de distance de type laser implanté sur la plaque 121 du premier élément de support fixe 120.The support frame 100 further comprises means 140 for measuring the length of this tubular wall 3, these means consisting in this case of a laser-type distance sensor installed on the plate 121 of the first fixed support element 120.
Le capteur de distance 140 est apte à envoyer un rayon laser orienté longitudinalement en direction de la plaque 131 du second élément de support mobile 130 qui va en réfléchir une partie vers ce capteur.The distance sensor 140 is able to send a laser beam oriented longitudinally towards the plate 131 of the second mobile support element 130 which will reflect part of it towards this sensor.
La mesure du délai séparant l’émission de rayon de la réception de sa partie réfléchie permet de déterminer la distance entre le capteur 120 et cette plaque 122, et par la même la longueur de la paroi tubulaire 3 de la conduite 2.Measuring the delay separating the emission of the ray from the reception of its reflected part makes it possible to determine the distance between the sensor 120 and this plate 122, and thereby the length of the tubular wall 3 of the pipe 2.
En variante, le capteur de distance utilisé peut être de type différent, par exemple à ultrasons.Alternatively, the distance sensor used may be of a different type, for example ultrasonic.
La tête de mesure 200 est montée mobile à coulissement de manière motorisée vis-à-vis du bâti support 100 suivant l’axe longitudinal X de sorte à pouvoir se déplacer le long de la paroi tubulaire 3 de la conduite 2. Elle est également montée mobile à coulissement de manière motorisée vis-à-vis de ce bâti support 100 suivant les axes transversal Y et vertical Z.The measuring head 200 is mounted to slide in a motorized manner with respect to the support frame 100 along the longitudinal axis movable to slide in a motorized manner with respect to this support frame 100 along the transverse Y and vertical Z axes.
Pour ce faire, cette tête de mesure 200 est fixée sur une platine de levage 150 (visible sur la ) mobile verticalement de manière motorisée vis-à-vis d’un boîtier 160 monté coulissant de manière motorisée sur un rail transversal 170 dont les deux extrémités sont montées coulissantes sur deux rails longitudinaux 180.To do this, this measuring head 200 is fixed on a lifting plate 150 (visible on the ) movable vertically in a motorized manner with respect to a housing 160 mounted sliding in a motorized manner on a transverse rail 170, the two ends of which are mounted sliding on two longitudinal rails 180.
La tête de mesure 200 comporte un corps métallique annulaire 210 s’étendant suivant un plan moyen transversal vertical et prévu, tel qu’illustré sur les figures 1 et 2, pour venir entourer la paroi tubulaire 3 de la conduite 2.The measuring head 200 comprises an annular metal body 210 extending along a vertical and planned transverse mean plane, as illustrated in Figures 1 and 2, to surround the tubular wall 3 of the pipe 2.
Le corps annulaire 210 se compose d’une partie principale en forme de C 211 montée fixement sur la platine de levage 150, et d’une branche de fermeture incurvée 212 montée articulée à pivotement selon un axe longitudinal par son extrémité supérieure sur l’extrémité supérieure de la partie principale 211, entre une position relevée non représentée dans laquelle cette branche 212 s’étend au dessus de la partie principale 211 de sorte à permettre à cette dernière de venir envelopper la paroi tubulaire 3 de la conduite 2 via un déplacement transversal de la tête de mesure 200, et une position abaissée illustrée par les figures 1 à 3 et où cette branche 212 referme au moins partiellement ce corps annulaire 210.The annular body 210 consists of a main C-shaped part 211 fixedly mounted on the lifting plate 150, and a curved closing branch 212 mounted pivotally articulated along a longitudinal axis by its upper end on the end upper part of the main part 211, between a raised position not shown in which this branch 212 extends above the main part 211 so as to allow the latter to envelop the tubular wall 3 of the pipe 2 via a transverse movement of the measuring head 200, and a lowered position illustrated by Figures 1 to 3 and where this branch 212 closes at least partially this annular body 210.
Un vérin électrique 213 reliant le dessus de la partie principale 211 et la branche de fermeture incurvée 212 permet en outre d’assurer la retenue de cette branche 212 en position relevée à l’encontre de la force de gravité.An electric cylinder 213 connecting the top of the main part 211 and the curved closing branch 212 also ensures the retention of this branch 212 in the raised position against the force of gravity.
La tête de mesure 200 comporte également quatre appareils de mesure supérieur 230, inférieur 231, et latéraux 232, 233 identiques, agencés sur le corps annulaire 210 en étant répartis angulairement de manière régulière (à 90° les uns des autres) autour de l’axe de ce corps 210.The measuring head 200 also includes four identical upper 230, lower 231, and side 232, 233 measuring devices, arranged on the annular body 210 being distributed angularly in a regular manner (at 90° from each other) around the axis of this body 210.
Alignés selon un même axe vertical, les appareils de mesure supérieur 230 et inférieur 231 sont montés mobiles à coulissement selon cet axe vertical via des actionneurs linéaires respectifs 240, 241 solidaires de la partie principale 211 du corps annulaire 210, entre une position rétractée illustrée sur les figures 2 et 3, et une position avancée maximale non représentée dans laquelle ils saillent à l’intérieur de ce corps annulaire 210. Aligned along the same vertical axis, the upper 230 and lower 231 measuring devices are mounted movable to slide along this vertical axis via respective linear actuators 240, 241 secured to the main part 211 of the annular body 210, between a retracted position illustrated on Figures 2 and 3, and a maximum advanced position not shown in which they project inside this annular body 210.
Alignés selon un même axe horizontal, les appareils de mesure latéraux 232 et 233 sont montés mobiles à coulissement selon cet axe horizontal via des actionneurs linéaires respectifs 242, 243 solidaires respectivement de la partie principale 211 et de la branche 212 du corps annulaire 210, entre une position reculée illustrée sur les figures 2 et 3, et une position avancée maximale non représentée dans laquelle ils saillent à l’intérieur de ce corps annulaire 210. Aligned along the same horizontal axis, the lateral measuring devices 232 and 233 are mounted movable to slide along this horizontal axis via respective linear actuators 242, 243 secured respectively to the main part 211 and the branch 212 of the annular body 210, between a rearward position illustrated in Figures 2 and 3, and a maximum advanced position not shown in which they project inside this annular body 210.
En référence aux figures 4 et 5, chaque appareil de mesure 230, 231, 232, 233 comprend un boîtier creux 234 logeant une sonde à ultrasons 235 apte à mesurer l’épaisseur de la paroi tubulaire 3 de la conduite 2 au niveau de la zone de contact avec ladite sonde.With reference to Figures 4 and 5, each measuring device 230, 231, 232, 233 comprises a hollow housing 234 housing an ultrasonic probe 235 capable of measuring the thickness of the tubular wall 3 of the pipe 2 at the level of the zone contact with said probe.
Alimentée par un câble électrique non représenté venant se brancher sur les deux connecteurs 235A, 235B, la sonde 235 comprend une pastille 235C saillant hors du boîtier 234 est prévue pour venir au contact de la paroi tubulaire 3 de la conduite 2.Powered by an electrical cable not shown which connects to the two connectors 235A, 235B, the probe 235 comprises a pellet 235C projecting out of the housing 234 and is designed to come into contact with the tubular wall 3 of the pipe 2.
Tel qu’illustré par transparence sur la et afin d’optimiser le contact de cette pastille 235C avec cette paroi tubulaire 3 de la conduite 2, la sonde 235 est avantageusement montée mobile à coulissement vis-à-vis du boîtier 234 suivant un axe parallèle à l’axe de coulissement de ce dernier, entre une position rétractée et une position saillante, en étant sollicité vers sa position saillante par un ressort de compression 236.As illustrated by transparency on the and in order to optimize the contact of this pellet 235C with this tubular wall 3 of the pipe 2, the probe 235 is advantageously mounted movable to slide with respect to the housing 234 along an axis parallel to the sliding axis of this last, between a retracted position and a protruding position, being urged towards its protruding position by a compression spring 236.
Par ailleurs et afin d’éviter la présence de lames d’air entre la pastille 235C de sonde 235 et la face externe de la paroi 3 de la conduite 2 qui perturberaient la bonne propagation des ondes ultrasonores au travers de cette paroi 3, chaque appareil de mesure 230, 231, 232, 233 comprend un injecteur 237 logé également dans le boîtier 234 et étant équipé d’une buse 237A apte à éjecter un fluide couplant sur cette face externe de la paroi 3 au niveau de la zone de mesure de la sonde correspondante 235 avant sa mise en contact avec cette paroi 3.Furthermore and in order to avoid the presence of air blades between the pellet 235C of probe 235 and the external face of the wall 3 of the pipe 2 which would disrupt the proper propagation of the ultrasonic waves through this wall 3, each device measurement 230, 231, 232, 233 comprises an injector 237 also housed in the housing 234 and being equipped with a nozzle 237A capable of ejecting a coupling fluid on this external face of the wall 3 at the level of the measurement zone of the corresponding probe 235 before coming into contact with this wall 3.
Se présentant classiquement sous forme d’un liquide, d’un gel ou d’une pâte non toxique, le fluide couplant est aspiré par une pompe reliée par une conduite non représentée se branchant sur l’orifice 238 à un réservoir également non représenté. L’injecteur 237 est ainsi apte à éjecter sous pression une quantité déterminée de ce fluide via la buse 237A et grâce à une vanne 237B commandée électriquement par un câble 239.Conventionally presented in the form of a liquid, a gel or a non-toxic paste, the coupling fluid is sucked up by a pump connected by a pipe not shown connecting to the orifice 238 to a reservoir also not shown. The injector 237 is thus capable of ejecting under pressure a determined quantity of this fluid via the nozzle 237A and thanks to a valve 237B electrically controlled by a cable 239.
Tel qu’illustré par les figures 3 et 4, les appareils de mesure supérieur 230 et inférieur 231 sont agencés de sorte que leurs sondes à ultrasons 235 soient alignées suivant un premier axe vertical V1 traversant l’axe A du corps annulaire 210, et de sorte que leurs injecteurs 237 soient également alignés suivant un second axe vertical V2 décalé transversalement d’un écartement prédéterminé e vis-à-vis de ce premier axe vertical V1.As illustrated by Figures 3 and 4, the upper 230 and lower 231 measuring devices are arranged so that their ultrasonic probes 235 are aligned along a first vertical axis V 1 crossing the axis A of the annular body 210, and so that their injectors 237 are also aligned along a second vertical axis V 2 offset transversely by a predetermined spacing e with respect to this first vertical axis V 1 .
De la même manière, les appareils de mesure latéraux 232 et 233 sont agencés de sorte que leurs sondes à ultrasons 235 soient alignées suivant un premier axe horizontal H1 traversant l’axe A du corps annulaire 210, et de sorte que leurs injecteurs 237 soient également alignés suivant un second axe horizontal H2 décalé verticalement de ce même écartement prédéterminé e vis-à-vis de ce premier axe horizontal H1.In the same way, the lateral measuring devices 232 and 233 are arranged so that their ultrasonic probes 235 are aligned along a first horizontal axis H 1 crossing the axis A of the annular body 210, and so that their injectors 237 are also aligned along a second horizontal axis H 2 offset vertically by this same predetermined spacing e with respect to this first horizontal axis H 1 .
La tête de mesure 200 comporte enfin trois capteurs de distance 250, 251, 252 agencés sur le corps annulaire 210 en étant avantageusement répartis angulairement de manière régulière (à 120° les uns des autres) autour de l’axe de ce corps 210 et aptes chacun à mesurer la distance le séparant de la paroi tubulaire 3 de la conduite 2, de sorte à permettre de réaliser le centrage de cette paroi tubulaire 3 sur l’axe du corps annulaire 210.The measuring head 200 finally comprises three distance sensors 250, 251, 252 arranged on the annular body 210 being advantageously distributed angularly in a regular manner (at 120° from each other) around the axis of this body 210 and capable each to measure the distance separating it from the tubular wall 3 of the pipe 2, so as to enable the centering of this tubular wall 3 on the axis of the annular body 210.
On va maintenant décrire en détail le fonctionnement du dispositif de mesure 1 selon l’invention.We will now describe in detail the operation of the measuring device 1 according to the invention.
Dans sa configuration de repos, la tête de mesure est disposée à une première extrémité du rail transversal 170 et occupe sa position longitudinale la plus reculée située juste au devant de l’élément de support fixe 120.In its rest configuration, the measuring head is arranged at a first end of the transverse rail 170 and occupies its most rearward longitudinal position located just in front of the fixed support element 120.
L’ouverture de la partie principale en forme de C 211 de son corps annulaire 210 est tournée en direction de la seconde extrémité de ce rail transversal 170, avec la branche de fermeture 212 qui occupe sa position relevée.The opening of the main C-shaped part 211 of its annular body 210 is turned towards the second end of this transverse rail 170, with the closing branch 212 which occupies its raised position.
En premier lieu, l’élément de support mobile 130 est déplacé de sorte que son écartement longitudinal d’avec l’élément de support fixe 120 corresponde à la longueur de la paroi tubulaire 3 de la conduite 2.Firstly, the movable support element 130 is moved so that its longitudinal spacing from the fixed support element 120 corresponds to the length of the tubular wall 3 of the pipe 2.
On vient ensuite positionner la conduite 2 sur le bâti support 100 de sorte que les deux extrémités de sa paroi tubulaire 3 viennent reposer sur les éléments de support 120 et 130.We then position the pipe 2 on the support frame 100 so that the two ends of its tubular wall 3 come to rest on the support elements 120 and 130.
Le capteur de distance 140 peut dès lors mesurer la longueur de cette paroi tubulaire 3 et déterminer à partir de cette longueur le pas longitudinal de déplacement de la tête 200 qui sera appliqué entre deux opérations de mesure d’épaisseur réalisées sur la conduite 2.The distance sensor 140 can therefore measure the length of this tubular wall 3 and determine from this length the longitudinal movement step of the head 200 which will be applied between two thickness measurement operations carried out on pipe 2.
La tête de mesure 200 est ensuite déplacée transversalement en direction de la conduite 2 de sorte à vernir entourer sa paroi tubulaire 3.The measuring head 200 is then moved transversely towards the pipe 2 so as to surround its tubular wall 3.
La branche 212 peut alors être abaissée de sorte à fermer au moins partiellement le corps annulaire 210.The branch 212 can then be lowered so as to at least partially close the annular body 210.
A partir des mesures de distance à la paroi tubulaire 3 de la conduite 2 effectuées par les capteurs de distance 250, 251, 252, la tête de mesure 200 est déplacée verticalement dans une position de centrage dans laquelle les axes respectifs du corps annulaire 210 et de la paroi tubulaire 3 sont confondus afin que l’ensemble des sondes 235 s’étendent suivant des axes radiaux à celui de cette paroi tubulaire 3.From the distance measurements to the tubular wall 3 of the pipe 2 carried out by the distance sensors 250, 251, 252, the measuring head 200 is moved vertically into a centering position in which the respective axes of the annular body 210 and of the tubular wall 3 are combined so that all of the probes 235 extend along radial axes to that of this tubular wall 3.
La tête de mesure 200 est ensuite déplacée verticalement de la valeur de l’écartement prédéterminé e de sorte que les injecteurs 237 des appareils de mesure latéraux 232, 233 soient alignés suivant l’axe diamétral horizontal de cette paroi tubulaire 3 de la conduite 2.The measuring head 200 is then moved vertically by the value of the predetermined spacing e so that the injectors 237 of the lateral measuring devices 232, 233 are aligned along the horizontal diametric axis of this tubular wall 3 of the pipe 2.
Ces appareils de mesure latéraux 232, 233 coulissent alors transversalement jusqu’à ce que les buses 237A de leurs injecteurs 237 se positionnent à proximité de cette paroi tubulaire 3, puis du fluide couplant est éjecté depuis ces buses 237A sur la face externe de la paroi tubulaire 3.These lateral measuring devices 232, 233 then slide transversely until the nozzles 237A of their injectors 237 are positioned near this tubular wall 3, then coupling fluid is ejected from these nozzles 237A on the external face of the wall tubular 3.
Ces deux appareils de mesure latéraux 232, 233 retournent ensuite dans leur position d’origine puis la tête de mesure 200 reprend sa position de centrage.These two lateral measuring devices 232, 233 then return to their original position and then the measuring head 200 returns to its centering position.
Cette tête de mesure 200 est ensuite déplacée transversalement de la valeur de l’écartement prédéterminé e de sorte que les injecteurs 237 des appareils de mesure supérieur 230 et inférieur 231 soient alignées suivant l’axe diamétral vertical de cette paroi tubulaire 3 de la conduite 2.This measuring head 200 is then moved transversely by the value of the predetermined spacing e so that the injectors 237 of the upper 230 and lower 231 measuring devices are aligned along the vertical diametric axis of this tubular wall 3 of the pipe 2 .
Ces appareils de mesure supérieur 230 et inférieur 231 coulissent alors verticalement jusqu’à ce que les buses 237A de leurs injecteurs 237 se positionnent à proximité de cette paroi tubulaire 3, puis du fluide couplant est éjecté depuis ces buses 237 sur la paroi 3.These upper 230 and lower 231 measuring devices then slide vertically until the nozzles 237A of their injectors 237 are positioned near this tubular wall 3, then coupling fluid is ejected from these nozzles 237 on the wall 3.
Ces deux appareils de mesure supérieur 230 et inférieur 231 retournent ensuite dans leur position d’origine puis la tête de mesure 200 reprend sa position de centrage.These two upper 230 and lower 231 measuring devices then return to their original position and then the measuring head 200 returns to its centering position.
Les appareils de mesure supérieur 230, inférieur 231 et latéraux 232, 233 coulissent ensuite simultanément respectivement verticalement et horizontalement jusqu’à ce que les pastilles 235C de leurs sondes respectives 235 viennent reposer en appui, sous contrainte élastique des ressorts 236, contre la paroi tubulaire 3 au niveau des quatre zones de mesure préalablement recouvertes de fluide couplant.The upper 230, lower 231 and lateral 232, 233 measuring devices then slide simultaneously respectively vertically and horizontally until the pellets 235C of their respective probes 235 come to rest, under elastic stress of the springs 236, against the tubular wall 3 at the level of the four measuring zones previously covered with coupling fluid.
Les quatre sondes 232 effectuent alors simultanément une mesure d’épaisseur de la paroi tubulaire 3 au niveau de ces quatre zones de mesure, puis les quatre appareils de mesure 230, 240, 250, 260 retournent dans leur position d’origine.The four probes 232 then simultaneously measure the thickness of the tubular wall 3 at these four measuring zones, then the four measuring devices 230, 240, 250, 260 return to their original position.
La tête de mesure 200 avance ensuite longitudinalement du pas préalablement défini.The measuring head 200 then advances longitudinally at the previously defined step.
Les étapes décrites dans les paragraphes [62] à [69] sont alors reproduites de sorte à obtenir quatre nouvelles mesures d’épaisseur de la paroi tubulaire 3 de la conduite 2 au niveau d’une deuxième zone longitudinale de cette paroi 3, puis la tête de mesure 200 avance de nouveau longitudinalement du pas préalablement défini jusqu’à une troisième zone longitudinale de la paroi 3 et ainsi de suite jusqu’à la seconde extrémité de cette dernière.The steps described in paragraphs [62] to [69] are then reproduced so as to obtain four new thickness measurements of the tubular wall 3 of the pipe 2 at the level of a second longitudinal zone of this wall 3, then the measuring head 200 advances again longitudinally at the previously defined pitch to a third longitudinal zone of the wall 3 and so on to the second end of the latter.
Selon des variantes de réalisation non représentées du dispositif selon l’invention, la tête de mesure peut être également montée mobile à rotation de manière motorisée sur elle-même de sorte à lui permettre de suivre le profil de la paroi tubulaire incurvée d’une conduite à inspecter.According to alternative embodiments not shown of the device according to the invention, the measuring head can also be mounted movable to rotate in a motorized manner on itself so as to allow it to follow the profile of the curved tubular wall of a pipe to inspect.
Selon d’autres variantes de réalisation non représentées, le nombre et l’agencement des appareils de mesure et/ou des capteurs de distance agencés sur le corps annulaire de la tête de mesure peut également différer.According to other embodiment variants not shown, the number and arrangement of the measuring devices and/or distance sensors arranged on the annular body of the measuring head may also differ.
La sonde à ultrasons et l’injecteur de chaque appareil de mesure peuvent par exemple être écartés longitudinalement plutôt que transversalement ou verticalement. Une telle conception présente pour avantage de limiter les mouvements de la tête de mesure pour procéder à l’éjection du fluide couplant sur les quatre zones de mesure. La tête est alors en effet simplement déplacée longitudinalement de la valeur de cet écartement, l’ensemble des appareils de mesure coulissent ensuite simultanément de sorte que les buses des injecteurs viennent se positionner à proximité de la paroi tubulaire de la conduite, et les quatre injecteurs éjectent simultanément du fluide couplant sur les quatre zones de mesure.The ultrasonic probe and the injector of each measuring device can, for example, be spaced apart longitudinally rather than transversely or vertically. Such a design has the advantage of limiting the movements of the measuring head to eject the coupling fluid on the four measuring zones. The head is then simply moved longitudinally by the value of this spacing, all of the measuring devices then slide simultaneously so that the injector nozzles are positioned close to the tubular wall of the pipe, and the four injectors simultaneously eject coupling fluid on the four measuring zones.
Toutefois, cette conception a pour inconvénient de provoquer la mise en contact des pastilles des sondes à ultrasons contre des zones de la paroi tubulaire dépourvues de fluide couplant lors du positionnement des buses des injecteurs à proximité de la paroi tubulaire de la conduite, ce qui a tendance à entrainer une usure prématurée des sondes. However, this design has the disadvantage of causing the pellets of the ultrasonic probes to come into contact with areas of the tubular wall devoid of coupling fluid when positioning the nozzles of the injectors close to the tubular wall of the pipe, which has tends to lead to premature wear of the probes.
Selon encore d’autres variantes de réalisation non représentées :
- le dispositif de mesure selon l’invention peut également comprendre un lecteur d’étiquette électronique apte à lire des informations mentionnées sur une étiquette apposée sur la conduite et permettant par exemple de détecter la référence et/ou certains paramètres de la conduite (longueur, diamètre, profil, etc..) afin d’adapter la stratégie de mesure en conséquence ;
- les éléments de support de la conduite sont réglables en hauteur tandis que la tête de mesure est fixe verticalement ; et/ou
- les capteurs de distance permettant de réaliser le centrage de la paroi tubulaire de la conduite sur l’axe du corps annulaire de la tête de mesure sont agencés sur le bâti support et non pas sur la tête de mesure.
According to yet other embodiment variants not shown:
- the measuring device according to the invention can also comprise an electronic label reader capable of reading information mentioned on a label affixed to the pipe and making it possible, for example, to detect the reference and/or certain parameters of the pipe (length, diameter, profile, etc.) in order to adapt the measurement strategy accordingly;
- the pipe support elements are adjustable in height while the measuring head is fixed vertically; and or
- the distance sensors making it possible to center the tubular wall of the pipe on the axis of the annular body of the measuring head are arranged on the support frame and not on the measuring head.
D’une manière générale, on rappelle que la présente invention ne se limite pas aux formes de réalisation décrites et représentées, mais qu’elle englobe toute variante d’exécution à la portée de l’homme du métier.In general, it is recalled that the present invention is not limited to the embodiments described and represented, but that it encompasses any variant of execution within the reach of those skilled in the art.

Claims (10)

  1. Dispositif automatisé de mesure d’épaisseur (1) de conduites tubulaires (2) par ultrasons caractérisé en ce qu’il comporte :
    - un bâti (100) comprenant des éléments de support (120, 130) aptes à supporter une dite conduite (2) ;
    - une tête de mesure (200) montée mobile à coulissement de manière motorisée vis-à-vis dudit bâti (100) le long de la paroi tubulaire (3) de ladite conduite (2) et comprenant un corps annulaire (210) apte à venir entourer ladite paroi tubulaire (3), cette tête de mesure (200) comportant en outre au moins un appareil de mesure (230, 231, 232, 233) monté mobile à coulissement sur ledit corps annulaire (210),
    chaque dit appareil de mesure (230, 231, 232, 233) comprenant une sonde à ultrasons (235) apte à mesurer l’épaisseur de ladite paroi tubulaire (3) au niveau d’une zone de mesure se trouvant à son contact, ainsi qu’un injecteur (237) équipé d’une buse (237A) apte à éjecter un fluide couplant sur ladite paroi tubulaire (3) au niveau de chaque dite zone de mesure avant sa mise en contact avec ladite sonde (235).
    Automated device for measuring the thickness (1) of tubular pipes (2) by ultrasound, characterized in that it comprises:
    - a frame (100) comprising support elements (120, 130) capable of supporting said pipe (2);
    - a measuring head (200) mounted movable to slide in a motorized manner vis-à-vis said frame (100) along the tubular wall (3) of said pipe (2) and comprising an annular body (210) capable of come to surround said tubular wall (3), this measuring head (200) further comprising at least one measuring device (230, 231, 232, 233) mounted movable to slide on said annular body (210),
    each said measuring device (230, 231, 232, 233) comprising an ultrasonic probe (235) capable of measuring the thickness of said tubular wall (3) at the level of a measuring zone located in contact with it, as well that an injector (237) equipped with a nozzle (237A) capable of ejecting a coupling fluid on said tubular wall (3) at each said measuring zone before it comes into contact with said probe (235).
  2. Dispositif automatisé de mesure d’épaisseur (1) selon la revendication 1, caractérisé en ce que ladite tête de mesure (200) comporte plusieurs dits appareils de mesure (230, 231, 232, 233) agencés sur ledit corps annulaire (210) en étant répartis angulairement de manière régulière autour de l’axe de ce corps (210).Automated thickness measuring device (1) according to claim 1, characterized in that said measuring head (200) comprises several said measuring devices (230, 231, 232, 233) arranged on said annular body (210) in being distributed angularly in a regular manner around the axis of this body (210).
  3. Dispositif automatisé de mesure d’épaisseur (1) selon la revendication 2, caractérisé en ce que ladite tête de mesure (200) comporte deux premiers dits appareils de mesure (230, 231) alignés selon un premier axe de coulissement. Automated thickness measuring device (1) according to claim 2, characterized in that said measuring head (200) comprises two first said measuring devices (230, 231) aligned along a first sliding axis.
  4. Dispositif automatisé de mesure d’épaisseur (1) selon la revendication 3, caractérisé en ce que lesdits deux premiers appareils de mesure (230, 231) sont agencés de sorte que leurs sondes (235) soient alignées suivant un premier axe vertical (V1) traversant l’axe (A) dudit corps annulaire (210), et de sorte que leurs injecteurs (237) soient également alignés suivant un second axe vertical (V2) décalé d’un écartement prédéterminé (e) vis-à-vis de ce premier axe vertical (V1).Automated thickness measuring device (1) according to claim 3, characterized in that said two first measuring devices (230, 231) are arranged so that their probes (235) are aligned along a first vertical axis (V 1 ) crossing the axis (A) of said annular body (210), and so that their injectors (237) are also aligned along a second vertical axis (V 2 ) offset by a predetermined spacing (e) opposite of this first vertical axis (V 1 ).
  5. Dispositif automatisé de mesure d’épaisseur (1) selon l’une des revendications 3 ou 4, caractérisé en ce que ladite tête de mesure (200) comporte deux seconds dits appareils de mesure (232, 233) alignés selon un second axe de coulissement.Automated thickness measuring device (1) according to one of claims 3 or 4, characterized in that said measuring head (200) comprises two second said measuring devices (232, 233) aligned along a second sliding axis .
  6. Dispositif automatisé de mesure d’épaisseur (1) selon la revendication 5, caractérisé en ce que lesdits deux seconds appareils de mesure (232, 233) sont agencés de sorte que leurs sondes (235) soient alignées suivant un premier axe horizontal (H1) traversant l’axe (A) dudit corps annulaire (210), et de sorte que leurs injecteurs (237) soient également alignés suivant un second axe horizontal (H2) décalé d’un écartement prédéterminé (e) vis-à-vis de ce premier axe horizontal (H1).Automated thickness measuring device (1) according to claim 5, characterized in that said two second measuring devices (232, 233) are arranged so that their probes (235) are aligned along a first horizontal axis (H 1 ) crossing the axis (A) of said annular body (210), and so that their injectors (237) are also aligned along a second horizontal axis (H 2 ) offset by a predetermined spacing (e) opposite of this first horizontal axis (H 1 ).
  7. Dispositif automatisé de mesure d’épaisseur (1) selon l’une des revendications 1 à 6, caractérisé en ce que ladite tête de mesure (200) est également montée mobile à coulissement de manière motorisée selon des directions transversale et verticale.Automated thickness measuring device (1) according to one of claims 1 to 6, characterized in that said measuring head (200) is also mounted to slide in a motorized manner in transverse and vertical directions.
  8. Dispositif automatisé de mesure d’épaisseur (1) selon l’une des revendications 1 à 7, caractérisé en ce qu’il comporte des capteurs de distance (250, 251, 252) aptes chacun à mesurer la distance le séparant de ladite paroi tubulaire (3) de la conduite (2) de sorte à permettre de réaliser le centrage de cette paroi tubulaire (3) sur l’axe dudit corps annulaire (210).Automated thickness measuring device (1) according to one of claims 1 to 7, characterized in that it comprises distance sensors (250, 251, 252) each capable of measuring the distance separating it from said tubular wall (3) of the pipe (2) so as to enable the centering of this tubular wall (3) on the axis of said annular body (210).
  9. Dispositif automatisé de mesure d’épaisseur (1) selon la revendication 8, caractérisé en ce que lesdits capteurs de distance (250, 251, 252) sont agencés sur ledit corps annulaire (210) en étant répartis angulairement de manière régulière autour de l’axe de ce corps.Automated thickness measuring device (1) according to claim 8, characterized in that said distance sensors (250, 251, 252) are arranged on said annular body (210) being distributed angularly in a regular manner around the axis of this body.
  10. Dispositif automatisé de mesure d’épaisseur (1) selon l’une des revendications 1 à 9, caractérisé en ce qu’il comporte des moyens de mesure (140) de la longueur de ladite paroi tubulaire (3) de la conduite (2).Automated thickness measuring device (1) according to one of claims 1 to 9, characterized in that it comprises means (140) for measuring the length of said tubular wall (3) of the pipe (2) .
PCT/EP2023/059340 2022-04-08 2023-04-07 Automated device for measuring tubular pipe thickness using ultrasound WO2023194617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203252 2022-04-08
FR2203252A FR3134453B1 (en) 2022-04-08 2022-04-08 Automated device for measuring the thickness of tubular pipes using ultrasound

Publications (1)

Publication Number Publication Date
WO2023194617A1 true WO2023194617A1 (en) 2023-10-12

Family

ID=81928125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/059340 WO2023194617A1 (en) 2022-04-08 2023-04-07 Automated device for measuring tubular pipe thickness using ultrasound

Country Status (2)

Country Link
FR (1) FR3134453B1 (en)
WO (1) WO2023194617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516431A (en) * 2023-11-16 2024-02-06 武汉万维物联科技有限公司 Detection auxiliary device for manufacturing equipment of Internet of things

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007291A (en) * 1989-10-05 1991-04-16 Scan Systems, Inc. Ultrasonic inspection apparatus with centering means for tubular members
US5969255A (en) * 1996-10-08 1999-10-19 Mclean; Ted System and method of ultrasonic inspection of tubular members
US6497159B1 (en) * 2000-06-12 2002-12-24 Hydro-Quebec Bracelet for moving ultrasonic sensors along a pipe
US20110138920A1 (en) * 2009-12-04 2011-06-16 Sms Meer Gmbh Contact-free pipe wall thickness measurement device and pipe wall thickness measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007291A (en) * 1989-10-05 1991-04-16 Scan Systems, Inc. Ultrasonic inspection apparatus with centering means for tubular members
US5969255A (en) * 1996-10-08 1999-10-19 Mclean; Ted System and method of ultrasonic inspection of tubular members
US6497159B1 (en) * 2000-06-12 2002-12-24 Hydro-Quebec Bracelet for moving ultrasonic sensors along a pipe
US20110138920A1 (en) * 2009-12-04 2011-06-16 Sms Meer Gmbh Contact-free pipe wall thickness measurement device and pipe wall thickness measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516431A (en) * 2023-11-16 2024-02-06 武汉万维物联科技有限公司 Detection auxiliary device for manufacturing equipment of Internet of things
CN117516431B (en) * 2023-11-16 2024-06-04 武汉万维物联科技有限公司 Detection auxiliary device for manufacturing equipment of Internet of things

Also Published As

Publication number Publication date
FR3134453A1 (en) 2023-10-13
FR3134453B1 (en) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2023194617A1 (en) Automated device for measuring tubular pipe thickness using ultrasound
EP1899721B1 (en) Method and device for the inspection of a pipe connection welding by an ultrasonic probe
KR102011778B1 (en) Probe attachment device for pahsed array ultrasonic test
EP0172067B1 (en) Apparatus for the ultrasonic testing of locally immersed constituents
FR3080683A1 (en) MEANS OF MEASURING FLUID
FR2868970A1 (en) ACOUSTIC DEVICE, LIQUID GAUGE PROBE EQUIPPED WITH SUCH A DEVICE, AND LIQUID GAUGE SYSTEM PROVIDED WITH SUCH A PROBE
EP2406625B1 (en) Device and method for the nondestructive monitoring of complex structures using ultrasonic waves
EP0522922B1 (en) Method and apparatus for ultrasonic examination of the condition of a bore surface
FR2530342A1 (en) METHOD AND DEVICE FOR ULTRASONIC ECHOGRAPHY
FR2473169A1 (en) PROBE DEVICE FOR MEASURING SURFACE ROUGHNESS
WO2018234678A1 (en) Non-destructive inspection for tubular product with complex shape
EP1705483B1 (en) Determination of the expanse of a lateral shadow area in a method of ultrasound testing
WO2008043888A1 (en) Device for the ultrasound control of a part
CA2780329A1 (en) System including a non-destructive wheel sensor measurement device, related wheel-sensor and inspection method
EP2381251B1 (en) Device for and method of non-destructively detecting thickness anomalies of a tube wall
WO2008043887A1 (en) Local immersion ultrasound control device
EP1691193A1 (en) Method for ultrasonic testing of a shadow area of an object in immersion
FR2570502A1 (en) INSTALLATION FOR ULTRASONIC CHECKING OF WORKPIECES, AND DEVICE FOR SCANNING A SURFACE OF THE WORKPIECE TO BE TESTED
EP3066463B1 (en) Item of ultrasonic non-destructive control equipment
FR2891910A1 (en) Ultrasonic piece e.g. concrete plate, inspecting device for e.g. naval field, has guiding element with body to form thin film of couplant on surface of piece, and membrane mounted on body and maintaining constant thickness of film
FR2891909A1 (en) Immersed ultrasonic piece e.g. concrete plate, inspecting device for e.g. naval field, has measuring apparatus with liquid chamber delimited by tube and shoe fitted against tube, where shape of shoe depends on shape of piece surface
FR2675263A1 (en) METHOD AND DEVICE FOR NON-DESTRUCTIVE ULTRASONIC INSPECTION OF PARTS OF REFRACTORY MATERIAL.
EP0588732A1 (en) Method of ultrasonic testing of a metal piece
EP0056554B1 (en) Device for in-service checking of the integrity of welds in off-shore structures
WO1999045378A1 (en) Method and device for non-destructive control by ultrasounds of a weld junction between two parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23720239

Country of ref document: EP

Kind code of ref document: A1