WO2023193508A1 - 唤醒信号wus的接收方法和发送方法 - Google Patents

唤醒信号wus的接收方法和发送方法 Download PDF

Info

Publication number
WO2023193508A1
WO2023193508A1 PCT/CN2023/071979 CN2023071979W WO2023193508A1 WO 2023193508 A1 WO2023193508 A1 WO 2023193508A1 CN 2023071979 W CN2023071979 W CN 2023071979W WO 2023193508 A1 WO2023193508 A1 WO 2023193508A1
Authority
WO
WIPO (PCT)
Prior art keywords
wus
time domain
information
detection window
domain position
Prior art date
Application number
PCT/CN2023/071979
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
陈梦竹
刘锟
胡有军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023193508A1 publication Critical patent/WO2023193508A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a receiving method, a sending method, a terminal, a network node and a computer-readable storage medium for a wake-up signal WUS.
  • a low-power wake-up mechanism that is, the terminal uses a separate receiver to receive a low-power wake-up signal, and uses the wake-up signal to wake up the main receiver for data transmission and data reception.
  • the main receiver When the terminal When the low-power wake-up signal is not detected, the main receiver is in a deep sleep state. In this way, the power consumption of the terminal can be reduced.
  • the related technology does not provide a specific method for the network node side to send the wake-up signal and a specific method for the terminal side to receive the wake-up signal.
  • Embodiments of the present application aim to solve at least one of the above technical problems and provide a receiving method, a sending method, a terminal, a network node and a computer-readable storage medium for a wake-up signal WUS.
  • embodiments of the present application provide a method for receiving a wake-up signal WUS, which is applied to a terminal.
  • the method includes: determining a detection window corresponding to the first WUS; and detecting the first WUS sent by a network node within the detection window.
  • embodiments of the present application provide a method for sending a wake-up signal WUS, which is applied to a network node.
  • the method includes: determining a detection window corresponding to the first WUS; and sending the first WUS to the terminal within the detection window.
  • inventions of the present application provide a terminal.
  • the terminal includes: a first determination module, used to determine a detection window corresponding to the first WUS; and a detection module, used to detect the detection window sent by the network node within the detection window.
  • the first WUS used to determine a detection window corresponding to the first WUS.
  • inventions of the present application provide a network node.
  • the network node includes: a second determination module, used to determine the detection window corresponding to the first WUS; and a sending module, used to send the first WUS to the terminal within the detection window.
  • a second determination module used to determine the detection window corresponding to the first WUS
  • a sending module used to send the first WUS to the terminal within the detection window.
  • embodiments of the present application provide a terminal, including: a processor and a memory; program instructions are stored on the memory, and when executed by the processor, the program instructions cause the processor to execute the first step as above The method for receiving the wake-up signal WUS described in this aspect.
  • embodiments of the present application provide a network node, including: a processor and a memory; program instructions are stored on the memory, and when executed by the processor, the program instructions cause the processor to execute the above The method for sending the wake-up signal WUS described in the second aspect.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions.
  • the program instructions When the program instructions are executed by a computer, the wake-up signal WUS as described in the first aspect is realized.
  • the embodiment of this application provides a specific sending method and receiving method of WUS. After determining the detection window corresponding to the first WUS, the network node sends the first WUS to the terminal within the detection window; correspondingly, the terminal determines the detection window corresponding to the first WUS. After the window, the first WUS from the network node is detected within the detection window.
  • the embodiment of this application provides a method suitable for low-power WUS reception and transmission, which further reduces the power consumption of the terminal.
  • FIG. 1 is a schematic flowchart of a WUS receiving method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a WUS sending method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the sending and receiving process of WUS provided by a specific example of the embodiment of this application;
  • FIG. 4 is a schematic diagram of the sending and receiving process of WUS provided by another specific example of the embodiment of this application.
  • FIG. 5 is a schematic diagram of the sending and receiving process of WUS provided by another specific example of the embodiment of this application.
  • FIG. 6 is a schematic diagram of the sending and receiving process of WUS provided by another specific example of the embodiment of this application.
  • FIG. 7 is a schematic diagram of the sending and receiving process of WUS provided by another specific example of the embodiment of this application.
  • Figure 8 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network node provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a network node provided by an embodiment of the present application.
  • At least one of the following and similar expressions refers to any group of these items, including any group of singular or plural items.
  • at least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c, or, a and b and c, where a, b, c can be a single , or multiple.
  • the network can send paging messages to terminals (User Equipment, UE) in idle state and connected state.
  • the paging process can be triggered by the core network to notify a UE to receive a paging request, or it can be triggered by an evolutionary base station (Evolutional Node B, eNB) to notify system information updates.
  • the paging message is scheduled using the Physical Downlink Control Channel (PDCCH) scrambled by the Radio Network Temporary Identifier (RNTI) and transmitted on the Physical Downlink Shared Channel (PDSCH).
  • the terminal detects the corresponding PDCCH at the Paging Occasion (PO) to determine whether the PDSCH indicated by the PDCCH carries the paging message.
  • PDCCH Physical Downlink Control Channel
  • RNTI Radio Network Temporary Identifier
  • PDSCH Physical Downlink Shared Channel
  • the terminal does not detect the corresponding PDCCH at the PO, it means that there is no paging at this PO. message, the terminal is in sleep state at this time and does not receive data until the next PO is detected.
  • This mode is called Discontinuous Reception (DRX). That is to say, the terminal needs to perform blind detection of PDCCH at each PO, so the power consumption of the terminal is relatively large.
  • DRX Discontinuous Reception
  • the wake-up signal (Wake Up Signal, WUS) is introduced.
  • the base station sends a signal in front of each PO to indicate whether to perform PDCCH detection.
  • the terminal first detects WUS and determines whether to detect the corresponding PDCCH based on the WUS detection result: when WUS is detected, the terminal detects the PDCCH corresponding to the WUS; otherwise, the terminal does not detect the PDCCH.
  • the introduction of the WUS signal reduces the number of times the terminal detects PDCCH, thereby saving the terminal's power consumption.
  • the terminal uses a separate receiver to receive the low-power wake-up signal.
  • the wake-up signal is used to wake up the main receiver for data transmission and data reception.
  • the terminal does not detect the low-power wake-up signal, , the main receiver is in deep sleep state, in this way the power consumption of the terminal can be further reduced.
  • the relevant technology does not provide a specific implementation method for how to send and receive WUS suitable for a separate receiver.
  • Embodiments of the present application provide a method for receiving and sending a wake-up signal WUS, a terminal, a network node and a computer-readable storage medium.
  • the terminal By introducing a detection window, the terminal only needs to detect WUS within the detection window, further reducing the terminal's power. Consumption.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications System
  • HSPA High Speed Packet Access
  • LTE Long Term Evolution
  • 5G fifth generation
  • communication equipment In the communication system, communication equipment is included, and the communication equipment can use air interface resources to conduct wireless communication.
  • communication equipment includes network nodes and terminals.
  • Wireless communication between communication devices includes: wireless communication between network nodes and terminals.
  • the network node described in the embodiments of this application may also be called a network device or a network-side device.
  • a network device may be a base station (Base Transceiver Station, referred to as BTS) in GSM or CDMA, or it may be a base station (NodeB) in W-CDMA.
  • BTS Base Transceiver Station
  • NodeB base station
  • NB base station
  • eNB evolved base station
  • AP access point
  • relay station in the LTE network
  • gNB 5G New Radio
  • Base station (gNB), etc. are not limited here.
  • the terminal described in the embodiments of this application can also be called terminal equipment, user equipment, or terminal-side equipment. It is a device with wireless transceiver functions and can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed On the water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal may be a user equipment (User Equipment, UE), where the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with wireless communication functions.
  • the UE may be a mobile phone, a tablet, or a computer with wireless transceiver functions.
  • the terminal can also be a Virtual Reality (VR) terminal device, an Augmented Reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, Wireless terminals in smart grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR Virtual Reality
  • AR Augmented Reality
  • wireless terminal in industrial control a wireless terminal in driverless driving
  • wireless terminal in telemedicine Wireless terminals in smart grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • FIG. 1 it is a schematic flow chart of a WUS receiving method provided by an embodiment of the present application.
  • the receiving method is applied to the terminal.
  • the implementation process of the receiving method includes but is not limited to the following steps S110 and S120. Each step is introduced in sequence below:
  • Step S110 Determine the detection window corresponding to the first WUS.
  • the position of the detection window corresponding to the first WUS is determined by any of the following methods.
  • Method 1 Determine the position of the detection window corresponding to the first WUS according to the detection window information indicated by signaling, wherein the detection window information includes at least one of the following: the period of the detection window, the time domain offset of the detection window, The time domain length of the detection window.
  • the signaling indication is signaling sent by the network node to the terminal and carries detection window information.
  • the period of the detection window represents the period of repetition of the detection window in the time domain;
  • the time domain offset of the detection window represents the time domain offset of a certain detection window relative to the previous detection window;
  • the time domain length of the detection window represents the time domain of a single detection window length occupied by it.
  • Method 2 Determine the position of the detection window corresponding to the first WUS according to the agreement with the network node. It can be understood that the position of the detection window corresponding to the first WUS can be pre-agreed by the network node and the terminal, and the terminal detects the first WUS according to the pre-agreed position of the detection window.
  • Method 3 Determine the position of the detection window corresponding to the first WUS based on the predefined time domain position and the position where the first WUS is detected. It can be understood that M time domain positions are predefined, where any one of the M time domain positions is the starting position of the detection window, and the position where the first WUS is detected is used as the end position of the detection window.
  • Step S120 Detect the first WUS sent by the network node within the detection window.
  • detecting the first WUS sent by the network node within the detection window includes: detecting the first WUS at each time domain position of the detection window.
  • detecting the first WUS sent by the network node within the detection window includes: based on the predetermined correspondence between the first preset index and the first time domain resource location, in Determine a target time domain position corresponding to the first preset index within the detection window, and detect the first WUS at the target time domain position.
  • the first preset index here is the index corresponding to the terminal in the embodiment of the present application.
  • a corresponding first preset index can be configured in advance for each terminal, or the terminal can determine according to the SSB index.
  • the first preset index, or the first preset index is determined based on the receiving beam direction/transmitting beam direction, and then the corresponding first time domain resource location is searched according to the first preset index corresponding to the terminal, thereby determining the target time domain location.
  • the first WUS is detected at the corresponding target time domain resource location.
  • the embodiment of the present application also determines whether to detect the second WUS based on the detection result of the first WUS.
  • the method in the embodiment of this application also includes the following step S130.
  • Step S130 It is determined according to the preset rules that the second WUS needs to be detected, and the second WUS sent by the network node is detected.
  • the preset rules may include any one or more of the following:
  • the second WUS needs to be detected, where the first type of information includes any of the following information: wake-up indication information, second WUS location information;
  • the second WUS when the detected first WUS indicates the second type of information, the second WUS is not detected, wherein the second type of information includes any of the following information: full wake-up indication information, system message change Instruction information, measurement instruction information;
  • the second WUS needs to be detected
  • the fifth method is to detect the second WUS when receiving a signaling indicating to detect the second WUS.
  • detection of the second WUS sent by the network node is performed, wherein detecting the second WUS sent by the network node specifically includes the following steps S131 and S132 :
  • Step S131 Determine the second time domain position
  • Step S132 Detect the second WUS sent by the network node at the second time domain position.
  • determining the second time domain position can be achieved by any of the following methods:
  • Method 1 Determine the second time domain position according to the first time domain position and the first time domain offset
  • Method 2 Determine the second time domain position according to the first time domain position, the first time domain offset and the second group number;
  • Method 3 Determine the second time domain position according to the first time domain position, the first time domain offset and the time domain position index
  • Method 4 Determine the second time domain location based on the second WUS location information carried by the first WUS; wherein the second time domain location is the time domain location where the second WUS is located, or the second time domain location.
  • the first time domain position may be determined according to at least one of the following:
  • the first time domain position is the time domain position where the first WUS is detected
  • the first time domain position is the starting position of the detection window corresponding to the first WUS;
  • the first time domain position is the end position of the detection window corresponding to the first WUS;
  • the first time domain position is the time domain position of the first WUS among the plurality of WUS corresponding to the first WUS;
  • the first time domain position is the time domain position where the last WUS among the plurality of WUS corresponding to the first WUS is located.
  • the first time domain offset is determined based on at least one of the following: signaling indication information, preset offset information, terminal capability information, and subcarrier spacing information.
  • the time domain location index is determined based on the second group of indexes where the terminal is located, or based on the correspondence between a preset time domain location index and the time domain resource location.
  • detecting the second WUS sent by the network node at the second time domain location includes at least one of the following steps S1321 and S1322:
  • Step S1321 Determine the second target frequency domain position corresponding to the second WUS according to the second information
  • Step S1322 Determine the second sequence corresponding to the second WUS according to the second information
  • the second information is determined by at least one of the following: a terminal index, a second group of indexes corresponding to the terminal, a second group number, and a signaling indication.
  • detecting the first WUS sent by a network node within the detection window also includes at least one of the following:
  • the first information includes at least one of the following information: a terminal index, a first group of indexes corresponding to the terminal, a second preset index, a first parameter, and a first group of numbers.
  • the receiving method of the embodiment of the present application further includes: when the first WUS is detected, ending the detection within the detection window, and using the position where the first WUS is detected as the position of the detection window. end position.
  • the receiving method provided by the embodiment of this application may also include one of the following:
  • the PDCCH is not detected.
  • detect PDCCH wherein the second type information is used to characterize at least one of full wake-up indication information, system message change indication information and measurement indication information;
  • the PDCCH is not detected.
  • the embodiment of the present application determines whether to detect the PDCCH based on the detection result of the first WUS, or the detection results of the first WUS and the second WUS.
  • the receiving method provided by the embodiment of the present application further includes: searching for a paging message corresponding to the detected PDCCH on the PDSCH corresponding to the detected PDCCH; when no paging message corresponding to the detected PDCCH is found.
  • Paging message perform channel measurement, and determine whether to fall back to the traditional paging detection process based on the measurement results, or determine whether to continue WUS detection based on the measurement results.
  • the receiving method provided by the embodiment of the present application also includes: when the detected first WUS indicates the third type of information, the terminal falls back to the traditional paging detection process, wherein the third type of information Is one of the following: fallback indication, measurement indication.
  • FIG. 2 it is a schematic flow chart of a method for sending a wake-up signal WUS provided by an embodiment of the present application.
  • the sending method is applied to network nodes.
  • the implementation process of the sending method includes but is not limited to the following steps S210 and S220. Each step is introduced in sequence below:
  • Step S210 Determine the detection window corresponding to the first WUS.
  • the position of the detection window corresponding to the first WUS is determined by any of the following methods:
  • Method 1 Determine the position of the detection window corresponding to the first WUS according to the detection window information indicated by signaling, wherein the detection window information includes at least one of the following: the period of the detection window, the time domain offset of the detection window, The time domain length of the detection window.
  • the signaling indication is signaling sent by the network node to the terminal and carries detection window information.
  • the period of the detection window represents the period in which the detection window repeats in the time domain. period; the time domain offset of the detection window represents the time domain offset of a certain detection window relative to the previous detection window; the time domain length of the detection window represents the length of a single detection window in the time domain.
  • Method 2 Determine the position of the detection window corresponding to the first WUS according to the agreement with the terminal. It can be understood that the position of the detection window corresponding to the first WUS can be pre-agreed by the network node and the terminal, and the terminal detects the first WUS according to the pre-agreed position of the detection window.
  • Method 3 Determine the position of the detection window corresponding to the first WUS based on the predefined position and the position where the first WUS is sent. It can be understood that the time domain position of the detection window can be predefined on the network node side, where the time domain position of the detection window refers to the starting position of the detection window, and the position where the first WUS is sent is regarded as the end position of the detection window.
  • Step S220 Send the first WUS to the terminal within the detection window.
  • sending the first WUS to the terminal within the detection window includes: according to a predetermined correspondence between the first preset index and the first time domain resource location, in the detection window Determine the target time domain position corresponding to the first preset index, and send the first WUS at the target time domain position.
  • the first preset index here refers to the index corresponding to the terminal currently to be sent.
  • a corresponding first preset index can be configured in advance for each terminal, or the first preset index can be determined based on the SSB index.
  • Preset index or determine the first preset index according to the transmitted beam direction, and then search the corresponding first time domain resource location according to the first preset index corresponding to the terminal to determine the target time domain resource location, so that the target time domain resource
  • the first WUS is sent at the location.
  • the embodiment of the present application also determines whether to send the second WUS based on the sending situation of the first WUS.
  • the method in the embodiment of this application also includes the following step S230:
  • Step S230 Determine the sending of the second WUS according to preset rules.
  • the preset rules may include any one or more of the following:
  • the second WUS needs to be sent, wherein the first type of information includes any of the following information: wake-up indication information, second WUS location information;
  • the second WUS when the first WUS sent to the terminal indicates the second type of information, the second WUS is not sent, wherein the second type of information includes any of the following information: all Wake-up indication information, system message change indication information, measurement indication information;
  • the second WUS needs to be sent.
  • the second WUS is sent to the terminal, where the sending of the second WUS specifically includes the following steps S231 and S232:
  • Step S231 Determine the second time domain position
  • Step S232 Send a second WUS to the terminal at the second time domain location.
  • the second time domain position can be determined by any of the following methods:
  • Method 1 Determine the second time domain position according to the first time domain position and the first time domain offset
  • Method 2 Determine the second time domain position according to the first time domain position, the first time domain offset and the second group number;
  • Method 3 Determine the second time domain position according to the first time domain position, the first time domain offset and the time domain position index
  • Method 4 Determine the second time domain location based on the second WUS location information carried by the first WUS; wherein the second time domain location is the time domain location where the second WUS is located, or the second time domain location.
  • the first time domain position may be determined according to at least one of the following:
  • the first time domain location is the time domain location where the first WUS is sent
  • the first time domain position is the starting position of the detection window corresponding to the first WUS;
  • the first time domain position is the end position of the detection window corresponding to the first WUS;
  • the first time domain position is the time domain position of the first WUS among the plurality of WUS corresponding to the first WUS;
  • the first time domain position is the time domain position where the last WUS among the plurality of WUS corresponding to the first WUS is located.
  • the first time domain offset may be determined based on at least one of the following: signaling indication information, preset offset information, terminal capability information, and subcarrier spacing information.
  • the time domain location index may be determined based on the second group of indexes where the terminal is located, or based on the correspondence between a preset time domain location index and the time domain resource location.
  • sending the second WUS to the terminal at the second time domain location includes at least one of the following steps S2321 and S2322:
  • Step S2321 Determine the second target frequency domain position corresponding to the second WUS according to the second information.
  • Step S2322 Determine the second sequence corresponding to the second WUS according to the second information.
  • the second information is determined by at least one of the following: a terminal index, a second group of indexes corresponding to the terminal, a second group number, and a signaling indication.
  • sending the first WUS to the terminal within the detection window also includes at least one of the following:
  • the first information includes at least one of the following information: a terminal index, a first group of indexes corresponding to the terminal, a preset index, a first parameter, and a first group number.
  • the sending method provided by the embodiment of the present application also includes: when the first WUS indicates the third type of information, the network node falls back to the traditional paging sending process, wherein the third type of information Is one of the following: fallback indication, measurement indication.
  • the network node will take the base station as an example, and the terminal will take the UE as an example.
  • the base station configures the period and length of the detection window through signaling; the sequence corresponding to the first WUS sent by the base station is sequence A, and the sequence corresponding to the second WUS is sequence B; the base station sends the first WUS within the detection window, The second WUS is sent at a second time domain location.
  • the second time domain location is determined based on the first time domain location of the first WUS and the first offset, where the first offset is configured through signaling, and the first time domain location is The location of the first WUS is sent; the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the sequence corresponding to the first WUS based on the terminal index and the first parameter.
  • An example is: the UE determines the sequence corresponding to the first WUS based on floor(UE_ID/N) mod Ns, where UE_ID represents the terminal index. , N and Ns both belong to the first parameter.
  • the UE determines the sequence corresponding to the first WUS based on the terminal index, the first parameter and the first group number.
  • An example is: the UE determines sequence A based on (floor(UE_ID/N)mod Ns)mod F, where , UE_ID represents the terminal index, N and Ns both belong to the first parameter, and F is the preset first group number.
  • the UE determines the sequence corresponding to the first WUS based on the terminal index and the first group number.
  • An example is: the UE determines sequence A based on UE_ID mod F, where UE_ID represents the terminal index and F is the preset first Number of groups.
  • the UE determines the sequence A corresponding to the first WUS according to the first set of indexes, where the first set of indexes corresponds to the UE.
  • the UE determines the sequence B corresponding to the second WUS according to the second set of indexes, where the second set of indexes corresponds to the UE.
  • the UE determines the sequence corresponding to the second WUS based on the terminal index corresponding to the terminal and the second group number.
  • An example is: the UE determines sequence B based on UE_ID mod M, where UE_ID represents the terminal index and M is the default the second set of numbers.
  • the UE determines the detection window position according to the configured signaling, and uses sequence A at each time domain resource position starting from the detection window to perform the first WUS detection. If sequence A is detected within the detection window (that is, the first WUS is detected), the UE stops. For detection within the detection window, the UE uses sequence B to detect the second WUS to determine the second time domain position, where the second time domain position is obtained after the first offset from the first time domain position, and the first time domain position To detect the location of the first WUS; when sequence B is detected (that is, the second WUS is detected), the UE detects the PDCCH.
  • the base station configures the periodic position, period, time domain offset and time domain length of the detection window.
  • the sequence corresponding to the first WUS sent by the base station is sequence A, and the sequence corresponding to the second WUS sent by the base station is sequence B; the sequence corresponding to the first WUS sent by the base station
  • the frequency domain position of is f1, and the frequency domain position corresponding to the second WUS is also f1; the second time domain position of sending the second WUS is determined according to the start position of the detection window and the first offset, where the first offset is determined by the terminal capability and the offset set of the signaling configuration; the first time domain location is the location where the first WUS is sent.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the frequency domain location corresponding to the first WUS/second WUS based on the first information; or, the UE determines the frequency domain location corresponding to the first WUS/second WUS based on the first parameter, where the first parameter is signaling configured by the base station; Alternatively, the UE determines the frequency domain location corresponding to the first WUS/second WUS based on the terminal index and the first group number; or the UE determines the frequency domain location corresponding to the first WUS/second WUS based on the corresponding first group index.
  • the UE determines the detection window position according to the signaling.
  • sequence A is used to detect the first WUS at each time domain resource position starting from the detection window. If the first WUS is detected, the UE stops the detection window Detection within; at the predetermined frequency domain position f1, the UE uses sequence B to detect the second WUS at the second time domain position, where the second time domain position is the detection of the first WUS The starting position of the window is obtained after the first offset. If the second WUS is detected, the UE detects the PDCCH.
  • the base station configures the period position, period, time domain offset and time domain length of the detection window.
  • the sequence corresponding to the first WUS sent by the base station is sequence A, and the sequence corresponding to the second WUS is sequence B; the sequence sent by the base station is sequence A.
  • the frequency domain position corresponding to one WUS is f1, the frequency domain position corresponding to the second WUS is f2, and the second time domain position of sending the second WUS is determined according to the start position of the detection window and the first offset, where the first offset is determined by the UE Determined based on terminal capabilities.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines that the frequency domain position corresponding to the first WUS is f1 based on the first information, and the UE determines that the frequency domain position corresponding to the second WUS is f2 based on the second information.
  • the UE determines the detection window position according to the signaling.
  • sequence A is used to detect the first WUS at each time domain resource position starting from the detection window. If the first WUS is detected, the UE stops the detection window Detection within; at the predetermined frequency domain position f2, use sequence B to detect the second WUS at the second time domain position, where the second time domain position is the passage of the starting position of the detection window where the first WUS is located Obtained after the first offset, if the second WUS is detected, the UE detects the PDCCH.
  • the base station configures the period and length of the detection window through signaling.
  • the sequence corresponding to the first WUS sent by the base station is sequence A.
  • the first WUS sent by the base station corresponds to x (x>1) WUS.
  • Each WUS Corresponds to one beam direction;
  • the sequence corresponding to the second WUS is sequence B, the second WUS corresponds to y (y>1) WUS, each WUS corresponds to a beam direction;
  • the base station sends the first WUS within the detection window, and at the second time
  • the second WUS is sent to the domain location, where the second time domain location is determined based on the first time domain location of the first WUS and the first offset.
  • the first offset is configured through signaling.
  • the first time domain location can be defined as multiple The location of the first WUS among the first WUS, and the second time domain location is the location of the first WUS among the plurality of second WUS.
  • the UE determines the position of the detection window according to the configured signaling. Starting from the detection window, sequence A is used at each time domain resource position to perform the first WUS detection. If the first WUS is detected within the detection window, the UE stops detection within the detection window. ; The UE starts to detect the second WUS using sequence B at the determined second time domain position. If the second WUS is detected, the UE detects the corresponding PDCCH.
  • the second time domain position is the position of the first WUS among the plurality of WUS corresponding to the second WUS, and the second time domain position is determined based on the first time domain position and the first offset.
  • the base station configures the period, time domain offset and time domain length of the detection window position.
  • the sequence corresponding to the first WUS sent by the base station is sequence A1.
  • the UE determines that the sequence corresponding to the first WUS is sequence A and sequence A1 according to the first information.
  • the base station and the terminal agree in advance that the sequence corresponding to the full wake-up signal is sequence A1; or the base station and the terminal agree in advance that the sequence corresponding to the system change instruction is sequence A1; or the base station and the terminal agree in advance that the sequence corresponding to the measurement instruction information is sequence A1 .
  • the UE determines the position of the detection window according to the signaling. Starting from the detection window, sequence A and sequence A1 are used at each time domain resource position to perform the first WUS detection. After detecting the first WUS, the UE stops detection within the detection window because the UE It is detected that the sequence corresponding to the first WUS is A1, so the UE does not detect the second WUS and directly detects the PDCCH.
  • the base station configures the detection window position, configures the time domain period, time domain offset and time domain length of the detection window, and the base station sends the first WUS at f1.
  • the UE determines that the frequency domain positions corresponding to the first WUS are f1 and f2 according to the first information.
  • the base station and the terminal agree in advance that the frequency domain position corresponding to the full wake-up signal is f1; or the base station and the terminal agree in advance that the frequency domain position corresponding to the system change indication is f1; or the base station and the terminal agree in advance that the frequency domain position corresponding to the measurement instruction information is f1.
  • the domain location is f1.
  • the UE determines the detection window position according to the signaling, and performs the first WUS detection at f1 and f2 at each time domain resource position starting from the detection window; the UE detects the first WUS at f1, and the UE stops detection within the detection window because it detects The frequency domain position corresponding to the first WUS is f1, so the UE does not detect the second WUS and directly detects the PDCCH.
  • the base station configures the period, time domain offset and time domain length of the detection window.
  • the sequence corresponding to the first WUS sent by the base station is sequence A2, and the sequence corresponding to the second WUS is sequence B; the second time domain position is based on the starting position of the detection window. and the first offset is determined, the terminal determines the first offset according to signaling, and the second time domain position is the position of the second WUS.
  • the terminal determines that the sequence corresponding to the first WUS is sequence A and sequence A2 based on the first information, and the terminal determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the base station and the terminal agree in advance that the sequence corresponding to the wake-up indication information is sequence A2.
  • the UE determines the detection window position according to the signaling, and uses sequence A and sequence A2 to perform the first WUS at each time domain resource position starting from the detection window. Detection, if the first WUS is detected, the UE stops detection within the detection window. Because the wake-up indication information is detected, the UE uses sequence B to detect the second WUS at the second time domain position. If the second WUS is detected, the terminal The PDCCH is detected, where the second time domain position is determined by the UE according to the detection window start position and the first offset.
  • the base station and the terminal agree on the position of the detection window in advance; the base station sends the first WUS within the detection window, and the corresponding sequence when sending is sequence A; the base station sends the sequence corresponding to the second WUS as sequence B; the base station sends the second sequence corresponding to the second WUS.
  • the domain position is determined based on the detection window end position and the first offset, where the first offset is determined based on signaling; the second time domain position is the location of the second WUS.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE uses sequence A to detect the first WUS at each time domain resource position starting from the detection window.
  • the UE stops detection within the detection window, and the UE starts from the second time domain position.
  • the terminal detects the corresponding PDCCH.
  • the second time domain position is determined based on the end position of the detection window and the first offset.
  • the base station configures the period of the detection window to be T and the time domain length to be L; the sequence corresponding to the first WUS sent by the base station is sequence A, and the sequence corresponding to the second WUS is sequence B; the second time domain position corresponding to the second WUS is based on the detection
  • the window end position, the first offset and the second group number are determined, wherein the first offset is configured through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information; the UE determines the detection window position based on the signaling, and starts each time domain resource from the detection window.
  • the first WUS is detected using sequence A at the position.
  • the UE stops detection within the detection window.
  • the UE starts to detect the second WUS using sequence B from the second time domain position.
  • the terminal detects PDCCH.
  • the UE determines the second time domain position according to the detection window end position, the first offset and the second group number.
  • the sequence corresponding to the first WUS sent by the base station within the detection window is sequence A, and the sequence corresponding to the second WUS is sequence B; the second time domain position corresponding to the second WUS sent by the base station is based on the end position of the detection window, the first offset and the Two sets of numbers are determined, in which the first offset is configured through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling when the base station configures the DRX cycle. On in the DRX cycle corresponds to the detection window position. Starting from the detection window, sequence A is used to perform the first WUS detection at each time domain resource position. When the first WUS detection is detected, WUS, the UE stops detection within the detection window; the UE starts to detect the second WUS using sequence B at the second time domain position. After detecting the second WUS, the terminal detects the PDCCH. Wherein, the UE determines the second time domain position according to the detection window starting position, the first offset and the second group number.
  • the sequence corresponding to the first WUS sent by the base station within the detection window is sequence A, and the sequence corresponding to the second WUS is sequence B; the second time domain position is determined based on the end position of the detection window, the first offset and the second group number, The first offset is configured through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling when the base station configures the DRX cycle, where on within the DRX cycle is the detection window position. Starting from the detection window, sequence A is used to perform the first WUS detection at each time domain resource position, and the first WUS is detected. , the UE stops detection within the detection window, and starts detecting the second WUS using sequence B at the second time domain position. After detecting the second WUS, the terminal detects the PDCCH. The UE determines the second time domain position according to the detection window end position, the first offset and the second group number.
  • the base station configures the detection window position.
  • the sequence corresponding to the first WUS sent by the base station is sequence A
  • the sequence corresponding to the second WUS is sequence B.
  • the frequency domain position corresponding to the first WUS sent by the base station is f1
  • the frequency domain position corresponding to the second WUS sent by the base station. is f1, where the second time domain position is determined based on the end position of the detection window and the first offset, and the first offset is configured through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines that the frequency domain position corresponding to the first WUS is f1 based on the first information, and the UE determines that the frequency domain position corresponding to the second WUS is f2 based on the second information.
  • the UE determines the detection window position according to the signaling.
  • sequence A is used to detect the first WUS at each time domain resource position starting from the detection window.
  • the UE stops detection within the detection window;
  • the UE is at the frequency domain position f2, does not detect the second WUS at the second time domain position, and does not detect the PDCCH.
  • the UE determines the second time domain position according to the detection window end position and the first offset.
  • the base station configures the detection window position through signaling.
  • the sequence corresponding to the first WUS sent by the base station is sequence A
  • the sequence corresponding to the second WUS is sequence B.
  • the second time domain position is determined based on the end position of the detection window and the first offset. , the first offset is configured through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B1 based on the second information.
  • the UE determines the detection window position according to the signaling, and uses sequence A to detect the first WUS at each time domain resource position starting from the detection window.
  • the UE stops detection within the detection window; the UE is in the second time domain position
  • the sequence B1 is used to perform the second WUS detection.
  • the second WUS is not detected, and the PDCCH is not detected.
  • the UE determines the second time domain position according to the detection window end position and the first offset.
  • the base station configures the detection window position through signaling, and the sequence corresponding to the first WUS sent by the base station is sequence A.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling, and uses sequence A to detect the first WUS at each time domain resource position starting from the detection window.
  • the UE stops detection within the detection window, and the UE is at the second time domain position.
  • sequence B for the second WUS detection, where the end position of the second time domain location detection window starts after the second offset, where the second offset is determined at least according to the second group number and signaling, and the UE is in the second time domain location
  • the second WUS is not detected, and the PDCCH is not detected.
  • the base station configures the detection window period to be T and the length to be L through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling, and uses sequence A to detect the first WUS at each time domain resource position starting from the detection window. If the first WUS is not detected until the end of the detection window, then the UE does not detect the second WUS. Detect PDCCH.
  • the base station configures the period and length of the detection window through signaling.
  • the sequence corresponding to the first WUS sent by the base station is sequence A.
  • the first WUS sent by the base station corresponds to x WUS, and each WUS corresponds to a beam direction.
  • the sequence corresponding to the second WUS is sequence B.
  • the second WUS corresponds to y WUS.
  • Each WUS corresponds to a beam direction.
  • the base station sends the first WUS within the detection window and the second WUS at the second time domain position.
  • the domain location is determined based on the first time domain location of the first WUS and the first offset, where the first offset is configured through signaling. It is assumed that the first time domain location is the location of the first WUS among multiple WUSs.
  • the second time domain position is the position of the first WUS among the multiple WUSs.
  • the UE determines the detection window position according to the configured signaling, and the UE determines the time domain resource position detected within the detection window according to the first preset index. Specifically, the UE determines the time domain resource position detected within the detection window according to the first preset index and the first preset index and the first time domain
  • the resource location determines the target time domain resource location within the detection window; use sequence A to detect the first WUS at the target time domain resource location. If the first WUS is detected within the detection window, the UE stops detection within the detection window; the UE After determining the second time domain position, sequence B is used to detect the second WUS. After detecting the second WUS, the terminal detects the corresponding PDCCH.
  • the second time domain position is the position of the first WUS among the plurality of WUS corresponding to the second WUS, and the second time domain position is determined based on the first time domain position and the first offset.
  • the first preset index is determined based on the SSB index.
  • the base station configures the detection window period to be T and the time domain length to be L.
  • the first WUS sent by the base station is in sequence form, corresponding to sequence A; the second WUS is in the form of control information, that is, in the form of an X bit sequence, where each bit corresponds to
  • the wake-up information of the group means: when the value is 1, it means waking up; when the value is 0, it means not waking up; the second time domain position is determined based on the end position of the detection window, the first offset and the second group number, and the first offset
  • the migration is configured through signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines the x-th one of the X bit sequences corresponding to the second WUS based on the second information.
  • the UE determines the detection window position according to the signaling, and uses sequence A to detect the first WUS at each time domain resource position starting from the detection window.
  • the UE stops detection within the detection window, and the UE is at the second time domain position.
  • Start to solve the second WUS get the value corresponding to the second WUS to be 1, and the terminal detects the corresponding PDCCH.
  • the UE determines the second time domain position according to the detection window end position, the first offset and the second group number.
  • the base station configures the detection window period as T and the time domain length as L through signaling.
  • the signaling is based on the terminal, that is, the base station configures the detection window period and time domain length for each terminal.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling, and uses sequence A to perform the first WUS detection at each time domain resource position starting from the detection window.
  • the first WUS cannot be detected, and the UE does not detect the PDCCH.
  • the base station configures the detection window period to be T and the length to be L through signaling; the signaling is based on terminal configuration, that is, the base station configures the detection window period and length for each terminal.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling. Starting from the detection window, sequence A is used to perform the first WUS detection at each time domain resource position. When the first WUS is detected, the UE detects the second WUS detection. When the second WUS is detected, the UE detects PDCCH.
  • the base station configures the detection window period as T and the time domain length as L through signaling; the signaling is based on cell configuration, the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines the second sequence based on the second information.
  • the sequence corresponding to WUS is sequence B.
  • the UE determines the detection window position according to the signaling. Starting from the detection window, sequence A is used to perform the first WUS detection at each time domain resource position. When the first WUS is detected, the UE detects the second WUS detection. When the second WUS is detected, the UE detects PDCCH.
  • the base station configures the detection window period to be T and the length to be L through signaling; the signaling is configured based on the third value, that is, UEs corresponding to the same third value have the same detection window.
  • the UE determines the third value through at least one of a terminal index, a preset value, and signaling.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position according to the signaling. Starting from the detection window, sequence A is used to perform the first WUS detection at each time domain resource position. When the first WUS is detected, the UE detects the second WUS detection. When the second WUS is detected, the UE detects PDCCH.
  • the base station determines the starting position of the detection window based on the predefined time domain position, and the position where the first WUS is sent is the end position of the detection window; the sequence corresponding to the first WUS sent by the base station is sequence A, and the sequence corresponding to the second WUS sent by the base station For sequence B, the second time domain position is determined based on the first position of the first WUS and the first offset, where the first offset is configured through signaling. It is assumed that the first position is the end position of the detection window, that is, the first WUS location.
  • the UE determines that the sequence corresponding to the first WUS is sequence A based on the first information, and the UE determines that the sequence corresponding to the second WUS is sequence B based on the second information.
  • the UE determines the detection window position based on the predefined time domain position, uses sequence A to detect the first WUS at each time domain resource position starting from the detection window, detects the first WUS, and determines the position of the first WUS as the end of the detection window. position, the UE determines the second time domain position corresponding to the second WUS based on the end position of the detection window and the first offset. The UE detects the second WUS. When the second WUS is detected, the UE detects the PDCCH.
  • the paging message corresponding to the detected PDCCH is searched on the PDSCH corresponding to the detected PDCCH.
  • the terminal When no paging message corresponding to the detected PDCCH is found, the terminal performs channel measurement and determines whether to fall back to the traditional paging detection process based on the measurement results, or determines whether to continue the WUS detection based on the measurement results.
  • the traditional paging detection process is one of the following: the terminal does not determine the detection of the PDCCH corresponding to the paging based on the WUS detection result, the terminal directly detects the PDCCH corresponding to the paging, and the terminal's host is always on for a preset time period.
  • the first WUS detected by the terminal indicates the third type of information, and the terminal falls back to the traditional paging detection process, where the third type of information is one of the following: fallback indication, measurement indication.
  • the traditional paging detection process is one of the following: the terminal does not determine the detection of the PDCCH corresponding to the paging based on the WUS detection result, the terminal directly detects the PDCCH corresponding to the paging, and the terminal's host is always on for a preset time period.
  • the terminal 600 includes:
  • the first determination module 610 is used to determine the detection window corresponding to the first WUS;
  • the detection module 620 is configured to detect the first WUS sent by the network node within the detection window.
  • the network node 700 includes:
  • the second determination module 710 is used to determine the detection window corresponding to the first WUS
  • the sending module 720 is configured to send the first WUS to the terminal within the detection window.
  • the terminal 800 includes but is not limited to:
  • the memory 820 stores program instructions, which when executed by the processor 810 cause the processor 810 to perform the WUS receiving method described in any of the above embodiments.
  • processor 810 and memory 820 may be connected through a bus or other means.
  • the processor 810 can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor 810 uses one or more integrated circuits to execute relevant programs to implement the technical solutions provided by the embodiments of this application.
  • the memory 820 can be used to store non-transitory software programs and non-transitory computer executable programs, such as the WUS receiving method described in any embodiment of this application.
  • the processor 810 implements the above-mentioned WUS receiving method by running non-transient software programs and instructions stored in the memory 820 .
  • the memory 820 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required for at least one function; the storage data area may store a receiving method for executing the above-mentioned WUS or a training method for a spectrum sensing model. .
  • memory 820 may include high-speed random access memory, and may also include non-transitory memory, such as at least one disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 820 optionally includes memory located remotely relative to the processor 810, and these remote memories may be connected to the processor 810 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transitory software programs and instructions required to implement the above-mentioned WUS receiving method are stored in the memory 820.
  • the WUS receiving method provided by any embodiment of the present application is executed.
  • the network node 900 includes but is not limited to:
  • the memory 920 stores program instructions, which when executed by the processor 910 cause the processor 910 to perform the WUS sending method described in any of the above embodiments.
  • processor 910 and memory 920 may be connected through a bus or other means.
  • the processor 910 can be a central processing unit (Central Processing Unit, CPU).
  • the processor can also be other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor 910 uses one or more integrated circuits to execute relevant programs to implement the technical solutions provided by the embodiments of this application.
  • the memory 920 can be used to store non-transitory software programs and non-transitory computer executable programs, such as the WUS sending method described in any embodiment of this application.
  • the processor 910 implements the above WUS sending method by running non-transient software programs and instructions stored in the memory 920 .
  • the memory 920 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required for at least one function; the storage data area may store a transmission method for executing the above-mentioned WUS or a training method for a spectrum sensing model. .
  • memory 920 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 920 optionally includes memory located remotely relative to the processor 910, and these remote memories may be connected to the processor 910 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transitory software programs and instructions required to implement the above-mentioned WUS sending method are stored in the memory 920.
  • the WUS sending method provided by any embodiment of the present application is executed.
  • Embodiments of the present application also provide a computer-readable storage medium that stores program instructions.
  • the program instructions When the program instructions are executed by a computer, the WUS sending method described in any of the above embodiments is implemented.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections having one or more conductors, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including, but not limited to, wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional Procedural programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through the Internet). connect).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as an Internet service provider through the Internet. connect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种唤醒信号WUS的接收方法和发送方法,其中WUS的接收方法包括:确定第一WUS对应的检测窗;在所述检测窗内检测网络节点发送的所述第一WUS。WUS的发送方法包括:确定第一WUS对应的检测窗;在所述检测窗内向终端发送第一WUS。本申请实施例,网络节点在确定第一WUS对应的检测窗后,在检测窗内向终端发送第一WUS;对应的,终端在确定第一WUS对应的检测窗后,在检测窗内检测来自网络节点的第一WUS。

Description

唤醒信号WUS的接收方法和发送方法
相关申请的交叉引用
本申请基于申请号为202210368113.1、申请日为2022年4月8日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,特别是涉及一种唤醒信号WUS的接收方法、发送方法、终端、网络节点和计算机可读存储介质。
背景技术
为了满足终端续航时间的要求,相关技术提出引入低功耗唤醒机制,即终端使用单独的接收器来接收低功耗唤醒信号,通过唤醒信号来唤醒主接收机进行数据传输和数据接收,当终端没有检测到低功耗唤醒信号时,主接收机处于深度睡眠状态,通过这种方式可降低终端的功耗。然而,相关技术并未给出网络节点侧发送唤醒信号的具体方法,以及终端侧接收唤醒信号的具体方法。
发明内容
本申请实施例旨在解决上述至少一个技术问题,提供了一种唤醒信号WUS的接收方法、发送方法、终端、网络节点和计算机可读存储介质。
第一方面,本申请实施例提供一种唤醒信号WUS的接收方法,应用于终端,所述方法包括:确定第一WUS对应的检测窗;在所述检测窗内检测网络节点发送的所述第一WUS。
第二方面,本申请实施例提供一种唤醒信号WUS的发送方法,应用于网络节点,所述方法包括:确定第一WUS对应的检测窗;在所述检测窗内向终端发送第一WUS。
第三方面,本申请实施例提供一种终端,所述终端包括:第一确定模块,用于确定第一WUS对应的检测窗;检测模块,用于在所述检测窗内检测网络节点发送的所述第一WUS。
第四方面,本申请实施例提供一种网络节点,所述网络节点包括:第二确定模块,用于确定第一WUS对应的检测窗;发送模块,用于在所述检测窗内向终端发送第一WUS。
第五方面,本申请实施例提供一种终端,包括:处理器和存储器;所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行如上第一方面所述的唤醒信号WUS的接收方法。
第六方面,本申请实施例提供一种网络节点,包括:处理器和存储器;所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行如上第二方面所述的唤醒信号WUS的发送方法。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有程序指令,所述程序指令被计算机执行时,实现:如上第一方面所述的唤醒信号WUS的接收方法;或者,如上第二方面所述的唤醒信号WUS的发送方法。
本申请实施例提供了WUS的具体发送方式和接收方式,网络节点在确定第一WUS对应的检测窗后,在检测窗内向终端发送第一WUS;对应的,终端在确定第一WUS对应的检测窗后,在检测窗内检测来自网络节点的第一WUS。本申请实施例给出一种适合低功耗WUS接收和发送的方法,实现了进一步降低终端的功耗。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例提供的一种WUS的接收方法的流程示意图的流程示意图;
图2是本申请实施例提供的一种WUS的发送方法的流程示意图;
图3是本申请实施例的一个具体示例提供的WUS的发送和接收过程示意图;
图4是本申请实施例的另一个具体示例提供的WUS的发送和接收过程示意图;
图5是本申请实施例的另一个具体示例提供的WUS的发送和接收过程示意图;
图6是本申请实施例的另一个具体示例提供的WUS的发送和接收过程示意图;
图7是本申请实施例的另一个具体示例提供的WUS的发送和接收过程示意图;
图8是本申请实施例提供的一种终端的结构示意图;
图9是本申请实施例提供的一种网络节点的结构示意图;
图10是本申请实施例提供的一种终端的结构示意图;
图11是本申请实施例提供的一种网络节点的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组,包括单项或复数项的任意组。例如,a、b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c,或者,a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
网络可以向空闲态和连接态的终端(User Equipment,UE)发送寻呼消息。寻呼过程可以由核心网触发,用于通知某个UE接收寻呼请求,也可以由演进型基站(Evolutional Node B,eNB)触发,用于通知系统信息的更新。寻呼消息采用无线网络临时标示(Radio Network Temporary Identifier,RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度,在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输。终端在寻呼时刻(Paging Occasion,PO)检测对应的PDCCH,从而确定所述PDCCH指示的PDSCH是否承载寻呼消息,如果终端在该PO没有检测到对应的PDCCH,就表示在这个PO没有寻呼消息,此时终端进行睡眠状态,不接收数据,直到下一个PO再进行检测。该模式称为非连续接收(Discontinuous Reception,DRX)。也就是终端需要在每个PO都进行PDCCH的盲检测,那么终端功率消耗较大。
为了减少终端的功耗,引入唤醒信号(Wake Up Signal,WUS),基站在每个PO前发送一种指示是否进行PDCCH检测的信号。终端先检测WUS,根据WUS的检测结果确定是否检测对应的PDCCH:当检测到WUS时,那么终端检测所述WUS对应的PDCCH,否则,终端不检测PDCCH。WUS信号的引入,降低了终端检测PDCCH的次数,从而节省终端的功耗。为了进一步降低终端的功耗,终端使用单独的接收器来接收低功耗唤醒信号被提出,通过唤醒信号来唤醒主接收机进行数据传输和数据接收,当终端没有检测到低功耗唤醒信号时,主接收机处于深度睡眠状态,通过这种方式可以进一步降低终端的功耗。但是,对于如何发送和接收适合单独接收器的WUS,相关技术并未给出具体的实现方式。
本申请实施例提供了一种唤醒信号WUS的接收方法、发送方法、终端、网络节点和计算机可读存储介质,通过引入检测窗,使得终端只需在检测窗内检测WUS,进一步降低终端的功耗。
本申请描述的实施例可以被实现在通信系统中,诸如在以下系统的至少一个中:全球移动通信系统(GSM)或任何其他第二代蜂窝通信系统、基于基本的宽带码分多址(W-CDMA)的通用移动电信系统(UMTS,3G)、高速分组接入(HSPA)、长期演进(LTE)、高级LTE、基于IEEE 802.11规范的系统、基于IEEE 802.15规范的系统和/或第五代(5G)移动或蜂窝通信系统;以及未来的移动通信系统。然而,实施例不限于上述示例给出的系统,而是本领域技术人员可以将解决方案应用于具有必要属性的其他通信系统。
在通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备包括网络节点和终端。通信设备间的无线通信包括:网络节点和终端间的无线通信。
本申请实施例描述的网络节点,也可以称为网络设备、网络侧设备,具体可以是GSM或CDMA中的基站(Base Transceiver Station,简称BTS)中,也可以是W-CDMA中的基站(NodeB,简称NB),还可以是LTE网络中的演进型基站(evolved NodeB,简称eNB)、接入点(Access Point,AP)或者中继站,还可以是5G新空口(New Radio,NR)网络中的基站(gNB)等,在此不作限定。
本申请实施例描述的终端,也可以称为终端设备、用户设备、终端侧设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是用户设备(User Equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。在一些实施方式中,UE可以是手机(Mobile Phone)、平板电脑或带无线收发功能的电脑。终端还可以是虚拟现实(Virtual Reality,简称VR)终端设备、增强现实(Augmented Reality,简称AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
如图1所示,为本申请实施例提供的WUS的接收方法的流程示意图。该接收方法应用于终端,该接收方法的实现过程包括但不限于如下步骤S110和S120,下面对各个步骤依次进行介绍:
步骤S110:确定第一WUS对应的检测窗。
在一些实施例中,该第一WUS对应的检测窗的位置通过以下任一种方式确定。
方式1:根据信令指示的检测窗信息确定所述第一WUS对应的检测窗的位置,其中,所述检测窗信息包括以下至少之一:检测窗的周期,检测窗的时域偏移,检测窗的时域长度。可以理解的是,信令指示为网络节点向终端发送的携带有检测窗信息的信令。检测窗的周期表征时域上检测窗重复的周期;检测窗的时域偏移表征某个检测窗相对上一个检测窗的时域偏移;检测窗的时域长度表征单个检测窗在时间域上所占的长度。
方式2:根据和所述网络节点的约定确定所述第一WUS对应的检测窗的位置。可以理解的是,第一WUS对应的检测窗的位置可以由网络节点和终端预先约定好,终端根据预先约定好的检测窗的位置进行第一WUS的检测。
方式3:根据预定义的时域位置和检测到第一WUS的位置确定所述第一WUS对应的检测窗的位置。可以理解的是,预先定义M个时域位置,这里M个时域位置中的任意一个为检测窗的起始位置,并将检测到第一WUS的位置作为检测窗的结束位置。
步骤S120:在所述检测窗内检测网络节点发送的所述第一WUS。
在一种可能的实现方式中,所述在所述检测窗内检测网络节点发送的第一WUS,包括:在所述检测窗的每个时域位置上检测所述第一WUS。
在另一种可能的实现方式中,所述在所述检测窗内检测网络节点发送的第一WUS,包括:根据预先确定的第一预设索引与第一时域资源位置的对应关系,在所述检测窗内确定与所述第一预设索引对应的目标时域位置,并在所述目标时域位置上检测所述第一WUS。需说明的是,这里的第一预设索引为本申请实施例的终端对应的索引,具体实现时,可以预先为每个终端分别配置一个对应的第一预设索引,或者终端根据SSB索引确定第一预设索引,或者根据接收波束方向/发送波束方向确定第一预设索引,然后根据终端对应的第一预设索引查找对应的第一时域资源位置,从而确定目标时域位置,在对应的目标时域资源位置上进行第一WUS的检测。
可以理解的是,本申请实施例还根据第一WUS的检测结果确定是否检测第二WUS。本申请实施例的方法还包括如下步骤S130。
步骤S130:根据预设规则确定需检测第二WUS,检测网络节点发送的第二WUS。
作为示例,所述预设规则可以包括以下任意一种或者多种:
第一种,当检测到的所述第一WUS指示第一类型信息,需检测第二WUS,其中,所述第一类型信息包括以下信息中的任一种:唤醒指示信息,第二WUS位置信息;
第二种,当检测到的所述第一WUS指示第二类型信息,不检测第二WUS,其中,所述第二类型信息包括以下信息中的任一种:全唤醒指示信息,系统消息变更指示信息,测量指示信息;
第三种,当检测到所述第一WUS,需检测所述第二WUS;
第四种,当没有检测到所述第一WUS,不检测所述第二WUS;
第五种,当接收到指示检测所述第二WUS的信令,需检测所述第二WUS。
可以理解的是,在根据预设规则确定需检测第二WUS后,执行检测所述网络节点发送的第二WUS,其中,检测所述网络节点发送的第二WUS,具体包括如下步骤S131和S132:
步骤S131:确定第二时域位置;
步骤S132:在所述第二时域位置上检测所述网络节点发送的第二WUS。
其中,确定第二时域位置可以通过以下任一种方式实现:
方式1:根据第一时域位置和第一时域偏移确定所述第二时域位置;
方式2:根据所述第一时域位置、所述第一时域偏移和第二组数确定所述第二时域位置;
方式3:根据所述第一时域位置、所述第一时域偏移和时域位置索引确定所述第二时域位置;
方式4:根据所述第一WUS携带的第二WUS位置信息确定所述第二时域位置;其中,所述第二时域位置为所述第二WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的第一个WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的最后一个WUS所在的时域位置。
在一些实施例中,所述第一时域位置可以根据以下至少之一确定:
所述第一时域位置为检测到所述第一WUS所在的时域位置;
所述第一时域位置为所述第一WUS对应的检测窗的起始位置;
所述第一时域位置为所述第一WUS对应的检测窗的结束位置;
所述第一时域位置为所述第一WUS对应的多个WUS中的第一个WUS所在的时域位置;
所述第一时域位置为所述第一WUS对应的多个WUS中的最后一个WUS所在的时域位置。
在一些实施例中,所述第一时域偏移根据以下至少之一确定:信令指示信息,预设偏移信息,终端能力信息,子载波间隔信息。
在一些实施例中,所述时域位置索引根据终端所在第二组索引确定,或者根据预设的时域位置索引与时域资源位置的对应关系确定。
在一些实施例中,所述在所述第二时域位置上检测所述网络节点发送的第二WUS,包括如下步骤S1321和步骤S1322中的至少一项:
步骤S1321:根据第二信息确定所述第二WUS对应的第二目标频域位置;
步骤S1322:根据所述第二信息确定所述第二WUS对应的第二序列;
其中,所述第二信息通过以下至少之一确定:终端索引,终端对应的第二组索引,第二组数,信令指示。
在一些实施例中,所述检测窗内检测网络节点发送的所述第一WUS,还包括以下至少之一:
根据第一信息确定所述第一WUS对应的第一目标频域位置;
根据所述第一信息确定所述第一WUS对应的第一序列;
其中,所述第一信息包括以下信息中的至少之一:终端索引,终端对应的第一组索引,第二预设索引,第一参数,第一组数。
在一些可能的实施方式中,本申请实施例的接收方法还包括:当检测到所述第一WUS,结束检测窗内的检测,将检测到所述第一WUS的位置作为所述检测窗的结束位置。
在一些实施例中,本申请实施例提供的接收方法还可以包括以下之一:
当检测到所述第一WUS且检测到所述第二WUS,检测PDCCH;
当没有检测到所述第二WUS,不检测所述PDCCH。
当检测到的所述第一WUS指示第二类型信息,检测PDCCH,其中,所述第二类型信息用于表征全唤醒指示信息、系统消息变更指示信息和测量指示信息中的至少一项;
当没有检测到第一WUS,不检测所述PDCCH。
可以理解的是,本申请实施例根据第一WUS的检测结果,或者,第一WUS和第二WUS的检测结果,确定是否检测PDCCH。
在一些实施例中,本申请实施例提供的接收方法还包括:在与检测到的PDCCH对应的PDSCH上查找与检测到的PDCCH对应的寻呼消息;当没有查找到与检测到的PDCCH对应的寻呼消息,进行信道测量,根据测量的结果确定是否回退到传统寻呼检测过程,或者,根据测量的结果确定是否继续进行WUS检测。
在一些实施例中,本申请实施例提供的接收方法还包括:当检测到的所述第一WUS指示第三类型信息,终端回退到传统寻呼检测过程,其中,所述第三类信息为以下之一:回退指示,测量指示。
如图2所示,为本申请实施例提供的唤醒信号WUS的发送方法的流程示意图。该发送方法应用于网络节点,该发送方法的实现过程包括但不限于如下步骤S210和S220,下面对各个步骤依次进行介绍:
步骤S210:确定第一WUS对应的检测窗。
在一些实施例中,该第一WUS对应的检测窗的位置通过以下任一种方式确定:
方式1:根据信令指示的检测窗信息确定所述第一WUS对应的检测窗的位置,其中,所述检测窗信息包括以下至少之一:检测窗的周期,检测窗的时域偏移,检测窗的时域长度。可以理解的是,信令指示为网络节点向终端发送的携带有检测窗信息的信令。检测窗的周期表征时域上检测窗重复的周 期;检测窗的时域偏移表征某个检测窗相对上一个检测窗的时域偏移;检测窗的时域长度表征单个检测窗在时间域上所占的长度。
方式2:根据和所述终端的约定,确定所述第一WUS对应的检测窗的位置。可以理解的是,第一WUS对应的检测窗的位置可以由网络节点和终端预先约定好,终端根据预先约定好的检测窗的位置进行第一WUS的检测。
方式3:根据预定义的位置和发送第一WUS的位置确定所述第一WUS对应的检测窗的位置。可以理解的是,检测窗的时域位置可以在网络节点侧预先定义,这里检测窗的时域位置指检测窗的起始位置,并将发送第一WUS的位置作为检测窗的结束位置。
步骤S220:在所述检测窗内向终端发送第一WUS。
在一种可能的实现方式中,所述在所述检测窗内向终端发送第一WUS,包括:根据预先确定的第一预设索引与第一时域资源位置的对应关系,在所述检测窗内确定与所述第一预设索引对应的目标时域位置,并在所述目标时域位置上发送所述第一WUS。需说明的是,这里的第一预设索引指当前待发送终端对应的索引,具体实现时,可以为预先为每个终端分别配置一个对应的第一预设索引,或者根据SSB索引确定第一预设索引,或者根据发送的波束方向确定第一预设索引,然后根据终端对应的第一预设索引查找对应的第一时域资源位置,确定目标时域资源位置,从而在目标时域资源位置上进行第一WUS的发送。
可以理解的是,本申请实施例还根据第一WUS的发送情况确定是否发送第二WUS。本申请实施例的方法还包括如下步骤S230:
步骤S230:根据预设规则确定第二WUS的发送。
作为示例,所述预设规则可以包括以下任意一种或者多种:
第一种,当所述第一WUS指示第一类型信息,需发送第二WUS,其中,所述第一类型信息包括以下信息中的任一种:唤醒指示信息,第二WUS位置信息;
第二种,当向终端发送的所述第一WUS指示第二类型信息,不发送第二WUS,其中,所述第二类型信息所述第二类型信息包括以下信息中的任一种:全唤醒指示信息,系统消息变更指示信息,测量指示信息;
第三种,根据信令确定需要发送第二WUS时,需发送所述第二WUS;
第四种,在向终端发送所述第一WUS之后,需发送所述第二WUS。
可以理解的是,在根据预设规则确定需检测第二WUS后,执行向终端发送第二WUS,其中,第二WUS的发送,具体包括如下步骤S231和S232:
步骤S231:确定第二时域位置;
步骤S232:在所述第二时域位置上向终端发送第二WUS。
其中,第二时域位置可通过以下任一种方式确定:
方式1:根据第一时域位置和第一时域偏移确定所述第二时域位置;
方式2:根据所述第一时域位置、所述第一时域偏移和第二组数确定所述第二时域位置;
方式3:根据所述第一时域位置、所述第一时域偏移和时域位置索引确定所述第二时域位置;
方式4:根据所述第一WUS携带的第二WUS位置信息确定所述第二时域位置;其中,所述第二时域位置为所述第二WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的第一个WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的最后一个WUS所在的时域位置。
在一些实施例中,所述第一时域位置可以根据以下至少之一确定:
所述第一时域位置为发送所述第一WUS的时域位置;
所述第一时域位置为所述第一WUS对应的检测窗的起始位置;
所述第一时域位置为所述第一WUS对应的检测窗的结束位置;
所述第一时域位置为所述第一WUS对应的多个WUS中的第一个WUS所在的时域位置;
所述第一时域位置为所述第一WUS对应的多个WUS中的最后一个WUS所在的时域位置。
在一些实施例中,所述第一时域偏移可以根据以下至少之一确定:信令指示信息、预设偏移信息、终端能力信息、子载波间隔信息。
在一些实施例中,所述时域位置索引可以根据终端所在第二组索引确定,或者根据预设的时域位置索引与时域资源位置的对应关系确定。
在一些实施例中,所述在所述第二时域位置上向终端发送第二WUS,包括如下步骤S2321和步骤S2322中的至少一项:
步骤S2321:根据第二信息确定所述第二WUS对应的第二目标频域位置。
步骤S2322:根据所述第二信息确定所述第二WUS对应的第二序列。
其中,所述第二信息通过以下至少之一确定:终端索引,终端对应的第二组索引,第二组数,信令指示。
在一些实施例中,所述检测窗内向终端发送第一WUS,还包括以下至少之一:
根据第一信息确定所述第一WUS对应的第一目标频域位置;
根据所述第一信息确定所述第一WUS对应的第一序列;
其中,所述第一信息包括以下信息中的至少之一:终端索引,终端对应的第一组索引,预设索引,第一参数,第一组数。
在一些实施例中,本申请实施例提供的发送方法还包括:当所述第一WUS指示第三类型信息,所述网络节点回退到传统寻呼发送过程,其中,所述第三类信息为以下之一:回退指示,测量指示。
下面结合具体示例对本申请实施例的方案进行详细说明。需说明的是,以下具体示例中,网络节点将以基站为例、终端将以UE为例进行说明。
示例一:
如图3所示,为本申请实施例提供的一种WUS的发送和检测示意图。在本示例中,基站通过信令配置检测窗的周期和长度;基站发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B;基站在检测窗内发送第一WUS,在第二时域位置发送第二WUS,第二时域位置根据第一WUS所在的第一时域位置和第一偏移确定,其中第一偏移通过信令配置,第一时域位置为发送第一WUS所在的位置;UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
在一些实施例中,UE根据终端索引和第一参数确定第一WUS对应的序列,一个例子为:UE根据floor(UE_ID/N)mod Ns确定第一WUS对应的序列,其中,UE_ID表征终端索引,N和Ns均属于第一参数。
在一些实施例中,UE根据终端索引、第一参数和第一组数确定第一WUS对应的序列,一个例子为:UE根据(floor(UE_ID/N)mod Ns)mod F确定序列A,其中,UE_ID表示终端索引,N和Ns均属于第一参数,F为预设的第一组数。
在一些实施例中,UE根据终端索引和第一组数确定第一WUS对应的序列,一个例子为:UE根据UE_ID mod F确定序列A,其中,UE_ID表示终端索引,F为预设的第一组数。
在一些实施例中,UE根据第一组索引确定第一WUS对应的序列A,这里第一组索引与UE对应。
在一些实施例中,UE根据第二组索引确定第二WUS对应的序列B,这里第二组索引与UE对应。
在一些实施例中,UE根据终端对应的终端索引和第二组数确定第二WUS对应的序列,一个例子为:UE根据UE_ID mod M确定序列B,其中,UE_ID表示终端索引,M为预设的第二组数。
UE根据配置的信令确定检测窗位置,从检测窗开始每个时域资源位置上使用序列A进行第一WUS检测,在检测窗内检测到序列A(即检测到第一WUS),UE停止检测窗内的检测,UE在确定第二时域位置上用序列B检测第二WUS,其中第二时域位置为从第一时域位置经过第一偏移后得到,且第一时域位置为检测到第一WUS的位置;当检测到序列B(即检测到第二WUS),UE检测PDCCH。
示例二:
基站配置检测窗的周期位置、周期、时域偏移和时域长度,基站发送的第一WUS对应的序列为序列A,基站发送的第二WUS对应的序列为序列B;发送第一WUS对应的频域位置为f1,第二WUS对应的频域位置也为f1;发送第二WUS的第二时域位置根据检测窗开始位置和第一偏移确定,其中,第一偏移通过终端能力和信令配置的偏移集确定;第一时域位置为发送第一WUS所在的位置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据第一信息确定第一WUS/第二WUS对应的频域位置;或者,UE根据第一参数确定第一WUS/第二WUS对应的频域位置,第一参数为基站配置的信令;或者,UE根据终端索引和第一组数确定第一WUS/第二WUS对应的频域位置;或者,UE根据对应的第一组索引确定第一WUS/第二WUS对应的频域位置。
UE根据信令确定检测窗位置,在预先确定的频域位置f1上,从检测窗开始每个时域资源位置上使用序列A进行第一WUS检测,若检测到第一WUS,UE停止检测窗内的检测;在预先确定的频域位置f1上,UE在第二时域位置上使用序列B检测第二WUS,其中,第二时域位置为对第一WUS所在的检测 窗的起始位置经过第一个偏移后得到,若检测到第二WUS,UE检测PDCCH。
示例三:
如图4所示,基站配置检测窗的周期位置、周期、时域偏移和时域长度,基站发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B;发送第一WUS对应的频域位置为f1,第二WUS对应的频域位置为f2,发送第二WUS的第二时域位置根据检测窗开始位置和第一偏移确定,其中第一偏移由UE根据终端能力确定。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据第一信息确定第一WUS对应的频域位置为f1,UE根据第二信息确定第二WUS对应的频域位置为f2。
UE根据信令确定检测窗位置,在预先确定的频域位置f1上,从检测窗开始每个时域资源位置上使用序列A进行第一WUS检测,若检测到第一WUS,UE停止检测窗内的检测;在预先确定的频域位置f2上,在第二时域位置上使用序列B检测第二WUS,其中,第二时域位置为对第一WUS所在的检测窗的起始位置经过第一个偏移后得到,若检测到第二WUS,UE检测PDCCH。
示例四:
如下图5所示,基站通过信令配置检测窗的周期和长度,基站发送的第一WUS对应的序列为序列A,基站发送的第一WUS对应x(x>1)个WUS,每个WUS对应一个波束方向;第二WUS对应的序列为序列B,第二WUS对应y(y>1)个WUS,每个WUS对应一个波束方向;基站在检测窗内发送第一WUS,在第二时域位置发送第二WUS,其中,第二时域位置根据第一WUS所在的第一时域位置和第一偏移确定,第一偏移通过信令配置,可以定义第一时域位置为多个第一WUS中的第一个WUS所在的位置,第二时域位置为多个第二WUS中的第一个WUS所在的位置。
UE根据配置的信令确定检测窗的位置,从检测窗开始每个时域资源位置上使用序列A进行第一WUS检测,若在检测窗内检测到第一WUS,UE停止检测窗内的检测;UE在确定的第二时域位置开始用序列B检测第二WUS,若检测到第二WUS,UE检测对应的PDCCH。这里,第二时域位置为第二WUS对应的多个WUS中第一个WUS的位置,第二时域位置根据第一时域位置和第一偏移确定。
示例五:
基站配置检测窗位置的周期,时域偏移和时域长度,基站发送的第一WUS对应的序列为序列A1。
UE根据第一信息确定第一WUS对应的序列为序列A、序列A1。
其中,基站和终端预先约定全唤醒信号对应的序列为序列A1;或者,基站和终端预先约定系统变更指示对应的序列为序列A1;或者,基站和终端预先约定测量指示信息对应的序列为序列A1。
UE根据信令确定检测窗的位置,从检测窗开始每个时域资源位置上使用序列A和序列A1进行第一WUS检测,检测到第一WUS后,UE停止检测窗内的检测,因为UE检测到第一WUS对应的序列为A1,所以UE不检测第二WUS,直接检测PDCCH。
示例六:
如图6所示,基站配置检测窗位置,配置检测窗的时域周期,时域偏移和时域长度,基站在f1发送第一WUS。
UE根据第一信息确定第一WUS对应的频域位置为f1和f2。
具体的,基站和终端预先约定全唤醒信号对应的频域位置为f1;或者,基站和终端预先约定系统变更指示对应的频域位置为f1;或者,基站和终端预先约定测量指示信息对应的频域位置为f1。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上在f1和f2进行第一WUS检测;UE在f1检测到第一WUS,UE停止检测窗内的检测,因为检测到第一WUS对应的频域位置为f1,所以UE不检测第二WUS,直接检测PDCCH。
示例七:
基站配置检测窗的周期、时域偏移和时域长度,基站发送的第一WUS对应的序列为序列A2,第二WUS对应的序列为序列B;第二时域位置根据检测窗起始位置和第一偏移确定,终端根据信令确定第一偏移,第二时域位置为第二WUS所在的位置。
终端根据第一信息确定第一WUS对应的序列为序列A和序列A2,终端根据第二信息确定第二WUS对应的序列为序列B,
在一些实施例中,基站和终端预先约定唤醒指示信息对应的序列为序列A2。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A和序列A2进行第一WUS 的检测,若检测到第一WUS,UE停止检测窗内的检测,因为检测到唤醒指示信息,所以UE在第二时域位置上用序列B检测第二WUS,若检测到第二WUS,终端检测PDCCH,其中,第二时域位置由UE根据检测窗开始位置和第一偏移确定。
示例八:
基站和终端预先约定检测窗的位置;基站在检测窗内发送第一WUS,发送时对应的序列为序列A;基站发送第二WUS对应的序列为序列B;发送第二WUS对应的第二时域位置根据检测窗结束位置和第一偏移确定,其中,第一偏移根据信令确定;第二时域位置为第二WUS所在的位置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。UE在预先约定的检测窗内,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测,UE从第二时域位置开始用序列B检测第二WUS,检测到第二WUS后,终端检测对应的PDCCH。其中,第二时域位置根据检测窗结束位置和第一偏移确定。
示例九:
基站配置检测窗的周期为T,时域长度为L;基站发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B;第二WUS对应的第二时域位置根据检测窗结束位置、第一偏移和第二组数确定,其中,第一偏移通过信令配置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B;UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测,UE从第二时域位置开始用序列B检测第二WUS,检测到第二WUS后,终端检测PDCCH。其中UE根据检测窗结束位置、第一偏移和第二组数确定第二时域位置。
示例十:
基站在检测窗内发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B;发送第二WUS对应的第二时域位置根据检测窗结束位置、第一偏移和第二组数确定,其中,第一偏移通过信令配置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据基站配置DRX循环时的信令确定检测窗位置,其中DRX循环内on对应为检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测;UE在第二时域位置开始用序列B检测第二WUS,检测到第二WUS后,终端检测PDCCH。其中,UE根据检测窗起始位置、第一偏移和第二组数确定第二时域位置。
示例十一:
基站在检测窗内发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B;第二时域位置根据检测窗的结束位置、第一偏移和第二组数确定,其中第一偏移通过信令配置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据基站配置DRX循环时的信令确定检测窗位置,其中DRX循环内on为检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测,UE在第二时域位置开始用序列B检测第二WUS,检测到第二WUS后,终端检测PDCCH。其中UE根据检测窗结束位置、第一偏移和第二组数确定第二时域位置。
示例十二
基站配置检测窗位置,基站发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B;发送第一WUS对应的频域位置为f1,发送第二WUS对应的频域位置为f1,其中,第二时域位置根据检测窗结束位置和第一偏移确定,第一偏移通过信令配置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据第一信息确定第一WUS对应的频域位置为f1,UE根据第二信息确定第二WUS对应的频域位置为f2。
UE根据信令确定检测窗位置,在频域位置f1上,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测;UE在频域位置f2上,在第二时域位置上没有检测到第二WUS,不检测PDCCH。其中,UE根据检测窗结束位置和第一偏移确定第二时域位置。
示例十三
基站通过信令配置检测窗位置,基站发送的第一WUS对应的序列为序列A,第二WUS对应的序列为序列B,其中,第二时域位置根据检测窗结束位置和第一偏移确定,第一偏移通过信令配置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B1。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测;UE在第二时域位置开始使用序列B1进行第二WUS检测,没有检测到第二WUS,不检测PDCCH。其中,UE根据检测窗结束位置和第一偏移确定第二时域位置。
示例十四
基站通过信令配置检测窗位置,基站发送的第一WUS对应的序列为序列A。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测,UE在第二时域位置开始使用序列B进行第二WUS检测,其中第二时域位置检测窗结束位置开始第二偏移后,其中第二偏移至少根据第二组数和信令确定,UE在第二时域位置没有检测到第二WUS,不检测PDCCH。
示例十五
基站通过信令配置检测窗周期为T,长度为L。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,直到检测窗结束都没有检测到第一WUS,那么UE不检测第二WUS,不检测PDCCH。
示例十六
如下图7所示,基站通过信令配置检测窗的周期和长度,基站发送的第一WUS对应的序列为序列A,基站发送的第一WUS对应x个WUS,每个WUS对应一个波束方向,第二WUS对应的序列为序列B,第二WUS对应y个WUS,每个WUS对应一个波束方向,基站在检测窗内发送第一WUS,在第二时域位置发送第二WUS,第二时域位置根据第一WUS所在的第一时域位置和第一偏移确定,其中第一偏移通过信令配置,假设第一时域位置为多个WUS中的第一个WUS所在的位置,第二时域位置为多个WUS中的第一个WUS所在的位置。
UE根据配置的信令确定检测窗位置,UE根据第一预设索引确定检测窗内检测的时域资源位置,具体为,UE根据第一预设索引和第一预设索引与第一时域资源位置确定检测窗内的目标时域资源位置;在目标时域资源位置上用序列A进行第一WUS检测,若在检测窗内检测到第一WUS,UE停止检测窗内的检测;UE在确定第二时域位置开始用序列B检测第二WUS,检测到第二WUS后,终端检测对应的PDCCH。其中第二时域位置为第二WUS对应的多个WUS中第一个WUS的位置,第二时域位置根据第一时域位置和第一偏移确定。第一预设索引根据SSB索引确定。
示例十七
基站配置检测窗周期为T,时域长度为L,基站发送的第一WUS为序列形式,对应序列A;第二WUS为控制信息形式,即为X比特序列的形式,其中每个比特对应一个组的唤醒信息,含义为:值为1时,代表唤醒,值为0时,代表不唤醒;第二时域位置根据检测窗结束位置、第一偏移和第二组数确定,第一偏移通过信令配置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的X比特序列中的第x个。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE停止检测窗内的检测,UE在第二时域位置开始解第二WUS,得到第二WUS对应的值为1,终端检测对应的PDCCH。其中UE根据检测窗结束位置、第一偏移和第二组数确定第二时域位置。
示例十八
基站通过信令配置检测窗周期为T、时域长度为L,其中信令是基于终端的,即基站为每个终端配置检测窗周期和时域长度。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检 测不到第一WUS,UE不检测PDCCH。
示例十九
基站通过信令配置检测窗周期为T,长度为L;其中信令是基于终端配置的,即基站为每个终端配置检测窗周期和长度。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE检测第二WUS检测,检测到第二WUS,UE检测PDCCH。
示例二十
基站通过信令配置检测窗周期为T、时域长度为L;其中信令是基于小区配置的,UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE检测第二WUS检测,检测到第二WUS,UE检测PDCCH。
示例二十一
基站通过信令配置检测窗周期为T,长度为L;其中信令是基于第三值配置的,即对应第三值相同的UE对应的检测窗相同。UE通过终端索引,预设值,信令中至少之一确定第三值。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据信令确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,UE检测第二WUS检测,检测到第二WUS,UE检测PDCCH。
示例二十二
基站根据预定义的时域位置确定检测窗的起始位置,发送第一WUS的位置为检测窗的结束位置;基站发送的第一WUS对应的序列为序列A,发送的第二WUS对应的序列为序列B,第二时域位置根据第一WUS所在的第一位置和第一偏移确定,其中第一偏移通过信令配置,假设第一位置为检测窗的结束位置,即第一WUS所在的位置。
UE根据第一信息确定第一WUS对应的序列为序列A,UE根据第二信息确定第二WUS对应的序列为序列B。
UE根据预定义的时域位置确定检测窗位置,从检测窗开始每个时域资源位置上用序列A进行第一WUS检测,检测到第一WUS,确定第一WUS的位置为检测窗的结束位置,UE根据检测窗的结束位置和第一偏移确定第二WUS对应的第二时域位置,UE检测第二WUS,检测到第二WUS,UE检测PDCCH。
示例二十三
在检测到PDCCH之后,在与检测到的PDCCH对应的PDSCH上查找与检测到的PDCCH对应的寻呼消息。
当没有查找到与检测到的PDCCH对应的寻呼消息,终端进行信道测量,根据测量的结果确定是否回退到传统寻呼检测过程,或者,根据测量的结果确定是否继续进行所述WUS检测。其中传统寻呼检测过程为以下之一:终端不根据WUS的检测结果确定寻呼对应的PDCCH的检测,终端直接检测寻呼对应的PDCCH,终端的主机在预设时长内一直处于打开状态。
示例二十四
以上示例中,终端检测到的所述第一WUS指示第三类型信息,终端回退到传统寻呼检测过程,其中,所述第三类信息为以下之一:回退指示,测量指示。其中传统寻呼检测过程为以下之一:终端不根据WUS的检测结果确定寻呼对应的PDCCH的检测,终端直接检测寻呼对应的PDCCH,终端的主机在预设时长内一直处于打开状态。
如图8所示,本申请实施例还提供了一种终端600,所述终端600包括:
第一确定模块610,用于确定第一WUS对应的检测窗;
检测模块620,用于在所述检测窗内检测网络节点发送的所述第一WUS。
如图9所示,本申请实施例提供一种网络节点700,所述网络节点700包括:
第二确定模块710,用于确定第一WUS对应的检测窗;
发送模块720,用于在所述检测窗内向终端发送第一WUS。
本申请实施例还提供了一种终端,如图10所示,该终端800包括但不限于:
处理器810和存储器820;
所述存储器820上存储有程序指令,所述程序指令当被所述处理器810执行时使得所述处理器810执行如上任意实施例描述的WUS的接收方法。
上述处理器810和存储器820可以通过总线或者其他方式连接。
应能理解的是,该处理器810可以采用中央处理单元(Central Processing Unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门矩阵(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器810采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器820作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的WUS的接收方法。处理器810通过运行存储在存储器820中的非暂态软件程序以及指令,从而实现上述的WUS的接收方法。
存储器820可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的WUS的接收方法或者频谱感知模型的训练方法。此外,存储器820可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器820可选包括相对于处理器810远程设置的存储器,这些远程存储器可以通过网络连接至该处理器810。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的WUS的接收方法所需的非暂态软件程序以及指令存储在存储器820中,当被一个或者多个处理器810执行时,执行本申请任意实施例提供的WUS的接收方法。
本申请实施例还提供了一种网络节点,如图16所示,该网络节点900包括但不限于:
处理器910和存储器920;
所述存储器920上存储有程序指令,所述程序指令当被所述处理器910执行时使得所述处理器910执行如上任意实施例描述的WUS的发送方法。
上述处理器910和存储器920可以通过总线或者其他方式连接。
应能理解的是,该处理器910可以采用中央处理单元(Central Processing Unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门矩阵(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器910采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器920作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的WUS的发送方法。处理器910通过运行存储在存储器920中的非暂态软件程序以及指令,从而实现上述的WUS的发送方法。
存储器920可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的WUS的发送方法或者频谱感知模型的训练方法。此外,存储器920可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器920可选包括相对于处理器910远程设置的存储器,这些远程存储器可以通过网络连接至该处理器910。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的WUS的发送方法所需的非暂态软件程序以及指令存储在存储器920中,当被一个或者多个处理器910执行时,执行本申请任意实施例提供的WUS的发送方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序指令,所述程序指令被计算机执行时,实现如上任意实施例描述的WUS的发送方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本 文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括、但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
需说明的是,本申请实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
另外,在本申请实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的。共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (35)

  1. 一种唤醒信号WUS的接收方法,应用于终端,所述方法包括:
    确定第一WUS对应的检测窗;
    在所述检测窗内检测网络节点发送的所述第一WUS。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据预设规则确定需检测第二WUS,检测网络节点发送的第二WUS。
  3. 根据权利要求2所述的方法,其中,所述预设规则包括以下至少之一:
    当检测到的所述第一WUS指示第一类型信息,需检测第二WUS,其中,所述第一类型信息包括以下信息中的任一种:唤醒指示信息,第二WUS位置信息;
    当检测到的所述第一WUS指示第二类型信息,不检测第二WUS,其中,所述第二类型信息包括以下信息中的任一种:全唤醒指示信息,系统消息变更指示信息,测量指示信息;
    当检测到所述第一WUS,需检测所述第二WUS;
    当没有检测到所述第一WUS,不检测所述第二WUS;
    当接收到指示检测所述第二WUS的信令,需检测所述第二WUS。
  4. 根据权利要求2所述的方法,其中,所述检测所述网络节点发送的第二WUS,包括:
    确定第二时域位置;
    在所述第二时域位置上检测所述网络节点发送的第二WUS。
  5. 根据权利要求4所述的方法,其中,所述确定第二时域位置,包括以下之一:
    根据第一时域位置和第一时域偏移确定所述第二时域位置;
    根据所述第一时域位置、所述第一时域偏移和第二组数确定所述第二时域位置;
    根据所述第一时域位置、所述第一时域偏移和时域位置索引确定所述第二时域位置;
    根据所述第一WUS携带的第二WUS位置信息确定所述第二时域位置;
    其中,所述第二时域位置为所述第二WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的第一个WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的最后一个WUS所在的时域位置。
  6. 根据权利要求5所述的方法,其中,所述第一时域位置根据以下至少之一确定:
    所述第一时域位置为检测到所述第一WUS所在的时域位置;
    所述第一时域位置为所述第一WUS对应的检测窗的起始位置;
    所述第一时域位置为所述第一WUS对应的检测窗的结束位置;
    所述第一时域位置为所述第一WUS对应的多个WUS中的第一个WUS所在的时域位置;
    所述第一时域位置为所述第一WUS对应的多个WUS中的最后一个WUS所在的时域位置。
  7. 根据权利要求5所述的方法,其中,所述第一时域偏移根据以下至少之一确定:信令指示信息,预设偏移信息,终端能力信息,子载波间隔信息。
  8. 根据权利要求5所述的方法,其中,所述时域位置索引根据终端所在第二组索引确定,或者根据预设的时域位置索引与时域资源位置的对应关系确定。
  9. 根据权利要求4所述的方法,其中,所述在所述第二时域位置上检测所述网络节点发送的第二WUS,包括:
    根据第二信息确定所述第二WUS对应的第二目标频域位置;
    根据所述第二信息确定所述第二WUS对应的第二序列;
    其中,所述第二信息通过以下至少之一确定:终端索引,终端对应的第二组索引,第二组数,信令指示。
  10. 根据权利要求1所述的方法,其中,所述第一WUS对应的检测窗的位置通过以下之一确定:
    根据信令指示的检测窗信息确定所述第一WUS对应的检测窗的位置,其中,所述检测窗信息包括以下至少之一:检测窗的周期,检测窗的时域偏移,检测窗的时域长度;
    根据和所述网络节点的约定确定所述第一WUS对应的检测窗的位置;
    根据预定义的时域位置和检测到第一WUS的位置确定所述第一WUS对应的检测窗的位置。
  11. 根据权利要求1所述的方法,其中,所述在所述检测窗内检测网络节点发送的第一WUS,包括以下之一:
    在所述检测窗的每个时域位置上检测所述第一WUS;
    根据预先确定的第一预设索引与第一时域资源位置的对应关系,在所述检测窗内确定与所述第一预设索引对应的目标时域位置,并在所述目标时域位置上检测所述第一WUS。
  12. 根据权利要求1所述的方法,其中,在所述检测窗内检测网络节点发送的所述第一WUS,还包括以下至少之一:
    根据第一信息确定所述第一WUS对应的第一目标频域位置;
    根据所述第一信息确定所述第一WUS对应的第一序列;
    其中,所述第一信息包括以下信息中的至少之一:终端索引,终端对应的第一组索引,第二预设索引,第一参数,第一组数。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    当检测到所述第一WUS,结束检测窗内的检测,将检测到所述第一WUS的位置作为所述检测窗的结束位置。
  14. 根据权利要求2所述的方法,其中,所述方法还包括以下之一:
    当检测到所述第一WUS且检测到所述第二WUS,检测PDCCH;
    当没有检测到所述第二WUS,不检测所述PDCCH。
  15. 根据权利要求1所述的方法,其中,所述方法还包括以下之一:
    当检测到的所述第一WUS指示第二类型信息,检测物理下行控制信道PDCCH,其中,所述第二类型信息用于表征全唤醒指示信息、系统消息变更指示信息和测量指示信息中的至少一项;
    当没有检测到第一WUS,不检测所述PDCCH。
  16. 根据权利要求14或15所述的方法,其中,所述方法还包括:
    在与检测到的PDCCH对应的物理下行共享信道PDSCH上查找与检测到的PDCCH对应的寻呼消息;
    当没有查找到与检测到的PDCCH对应的寻呼消息,进行信道测量,根据测量的结果确定是否回退到传统寻呼检测过程,或者,根据测量的结果确定是否继续进行所述WUS检测。
  17. 根据权利要求1所述的方法,其中,所述方法还包括:
    当检测到的所述第一WUS指示第三类型信息,终端回退到传统寻呼检测过程,其中,所述第三类信息为以下之一:回退指示,测量指示。
  18. 一种唤醒信号WUS的发送方法,应用于网络节点,所述方法包括:
    确定第一WUS对应的检测窗;
    在所述检测窗内向终端发送第一WUS。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    根据预设规则确定第二WUS的发送。
  20. 根据权利要求19所述的方法,其中,所述预设规则包括以下至少之一:
    当所述第一WUS指示第一类型信息,需发送第二WUS,其中,所述第一类型信息包括以下信息中的任一种:唤醒指示信息,第二WUS位置信息;
    当向终端发送的所述第一WUS指示第二类型信息,不发送第二WUS,其中,所述第二类型信息所述第二类型信息包括以下信息中的任一种:全唤醒指示信息,系统消息变更指示信息,测量指示信息;
    根据信令确定需要发送第二WUS时,需发送所述第二WUS;
    在向终端发送所述第一WUS之后,需发送所述第二WUS。
  21. 根据权利要求19所述的方法,其中,所述第二WUS的发送,包括:
    确定第二时域位置;
    在所述第二时域位置上向终端发送第二WUS。
  22. 根据权利要求21所述的方法,其中,所述确定第二时域位置,包括以下之一:
    根据第一时域位置和第一时域偏移确定所述第二时域位置;
    根据所述第一时域位置、所述第一时域偏移和第二组数确定所述第二时域位置;
    根据所述第一时域位置、所述第一时域偏移和时域位置索引确定所述第二时域位置;
    根据所述第一WUS携带的第二WUS位置信息确定所述第二时域位置;
    其中,所述第二时域位置为所述第二WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的第一个WUS所在的时域位置,或者为所述第二WUS对应的多个WUS中的最后一个WUS所在的时域位置。
  23. 根据权利要求22所述的方法,其中,所述第一时域位置根据以下至少之一确定:
    所述第一时域位置为发送所述第一WUS的时域位置;
    所述第一时域位置为所述第一WUS对应的检测窗的起始位置;
    所述第一时域位置为所述第一WUS对应的检测窗的结束位置;
    所述第一时域位置为所述第一WUS对应的多个WUS中的第一个WUS所在的时域位置;
    所述第一时域位置为所述第一WUS对应的多个WUS中的最后一个WUS所在的时域位置。
  24. 根据权利要求22所述的方法,其中,所述第一时域偏移根据以下至少之一确定:信令指示信息、预设偏移信息、终端能力信息、子载波间隔信息。
  25. 根据权利要求22所述的方法,其中,所述时域位置索引根据终端所在第二组索引确定,或者根据预设的时域位置索引与时域资源位置的对应关系确定。
  26. 根据权利要求21所述的方法,其中,所述在所述第二时域位置上向终端发送第二WUS,还包括以下至少之一:
    根据第二信息确定所述第二WUS对应的第二目标频域位置;
    根据所述第二信息确定所述第二WUS对应的第二序列;
    其中,所述第二信息通过以下至少之一确定:终端索引,终端对应的第二组索引,第二组数,信令指示。
  27. 根据权利要求18所述的方法,其中,所述第一WUS对应的检测窗的位置通过以下之一确定:
    根据信令指示的检测窗信息确定所述第一WUS对应的检测窗的位置,其中,所述检测窗信息包括以下至少之一:检测窗的周期,检测窗的时域偏移,检测窗的时域长度;
    根据和所述终端的约定,确定所述第一WUS对应的检测窗的位置;
    根据预定义的位置和发送第一WUS的位置确定所述第一WUS对应的检测窗的位置。
  28. 根据权利要求18所述的方法,其中,所述在所述检测窗内向终端发送第一WUS,包括:
    根据预先确定的第一预设索引与第一时域资源位置的对应关系,在所述检测窗内确定与所述第一预设索引对应的目标时域位置,并在所述目标时域位置上发送所述第一WUS。
  29. 根据权利要求18所述的方法,其中,在所述检测窗内向终端发送第一WUS,还包括以下至少之一:
    根据第一信息确定所述第一WUS对应的第一目标频域位置;
    根据所述第一信息确定所述第一WUS对应的第一序列;
    其中,所述第一信息包括以下信息中的至少之一:终端索引,终端对应的第一组索引,预设索引,第一参数,第一组数。
  30. 根据权利要求18所述的方法,其中,所述方法还包括:
    当所述第一WUS指示第三类型信息,所述网络节点回退到传统寻呼发送过程,其中,所述第三类信息为以下之一:回退指示,测量指示。
  31. 一种终端,包括:
    第一确定模块,用于确定第一WUS对应的检测窗;
    检测模块,用于在所述检测窗内检测网络节点发送的所述第一WUS。
  32. 一种网络节点,包括:
    第二确定模块,用于确定第一WUS对应的检测窗;
    发送模块,用于在所述检测窗内向终端发送第一WUS。
  33. 一种终端,包括:
    处理器和存储器;
    所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行权利要求1-17任一项所述的唤醒信号WUS的接收方法。
  34. 一种网络节点,包括:
    处理器和存储器;
    所述存储器上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行权利要求18-30任一项所述的唤醒信号WUS的发送方法。
  35. 一种计算机可读存储介质,存储有程序指令,其中,所述程序指令被计算机执行时,实现:
    权利要求1-17任一项所述的唤醒信号WUS的接收方法;或者,
    权利要求18-30任一项所述的唤醒信号WUS的发送方法。
PCT/CN2023/071979 2022-04-08 2023-01-12 唤醒信号wus的接收方法和发送方法 WO2023193508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210368113.1 2022-04-08
CN202210368113.1A CN115835343A (zh) 2022-04-08 2022-04-08 唤醒信号wus的接收方法和发送方法

Publications (1)

Publication Number Publication Date
WO2023193508A1 true WO2023193508A1 (zh) 2023-10-12

Family

ID=85522528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071979 WO2023193508A1 (zh) 2022-04-08 2023-01-12 唤醒信号wus的接收方法和发送方法

Country Status (2)

Country Link
CN (1) CN115835343A (zh)
WO (1) WO2023193508A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835343A (zh) * 2022-04-08 2023-03-21 中兴通讯股份有限公司 唤醒信号wus的接收方法和发送方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958672A (zh) * 2018-09-27 2020-04-03 北京三星通信技术研究有限公司 唤醒信号的传输方法、用户设备、基站及可读存储介质
WO2021062792A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种唤醒信号的检测方法及装置
US20210153127A1 (en) * 2019-11-19 2021-05-20 Qualcomm Incorporated Wakeup signal monitoring window
CN115835343A (zh) * 2022-04-08 2023-03-21 中兴通讯股份有限公司 唤醒信号wus的接收方法和发送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958672A (zh) * 2018-09-27 2020-04-03 北京三星通信技术研究有限公司 唤醒信号的传输方法、用户设备、基站及可读存储介质
WO2021062792A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种唤醒信号的检测方法及装置
US20210153127A1 (en) * 2019-11-19 2021-05-20 Qualcomm Incorporated Wakeup signal monitoring window
CN115835343A (zh) * 2022-04-08 2023-03-21 中兴通讯股份有限公司 唤醒信号wus的接收方法和发送方法

Also Published As

Publication number Publication date
CN115835343A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
TWI617167B (zh) 增強之傳呼方案及連接狀態非連續接收模式
TWI795555B (zh) 信號傳輸方法及裝置
WO2018040039A1 (zh) 一种小数据的传输方法、相关设备及系统
EP3664520B1 (en) Method for indicating and determining terminal state, base station and terminal
WO2020063928A1 (zh) 一种寻呼指示信息的传输方法和通信装置
WO2020143789A1 (zh) 分组唤醒信号的发送方法及装置
WO2014161503A1 (zh) 监视寻呼信号的方法及装置
KR102480135B1 (ko) 웨이크업 신호 송신, 수신 방법, 장치, 기지국, 단말 및 저장매체
WO2021027769A1 (zh) 唤醒信号的传输方法、装置和存储介质
CN107040977A (zh) 一种系统信息传输方法及相关设备
US20210400641A1 (en) Device-to-device (d2d) communication method and d2d device
WO2023193508A1 (zh) 唤醒信号wus的接收方法和发送方法
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
CN114731580A (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2021239113A1 (zh) 数据传输方法及装置
WO2018233646A1 (zh) 唤醒方法、接入点和站点
EP4132089A1 (en) Method for determining drx mode and communication apparatus
CN113875292B (zh) 发送和接收信号的方法和装置
WO2018177266A1 (zh) 数据传输的方法和装置
CN113905440A (zh) 信道监听、传输方法、装置、终端及网络侧设备
WO2024012114A1 (zh) 通信方法及通信装置
CN114287114B (zh) 信号接收的方法及装置
WO2024017322A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023151619A1 (zh) 一种监控方法、装置、芯片及模组设备
CN113966636B (zh) 通信方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784072

Country of ref document: EP

Kind code of ref document: A1