WO2023193364A1 - 一种晶体制备装置 - Google Patents

一种晶体制备装置 Download PDF

Info

Publication number
WO2023193364A1
WO2023193364A1 PCT/CN2022/106550 CN2022106550W WO2023193364A1 WO 2023193364 A1 WO2023193364 A1 WO 2023193364A1 CN 2022106550 W CN2022106550 W CN 2022106550W WO 2023193364 A1 WO2023193364 A1 WO 2023193364A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
pressure
crystal preparation
preparation device
heating
Prior art date
Application number
PCT/CN2022/106550
Other languages
English (en)
French (fr)
Inventor
马德江
王善民
赵予生
李拥军
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2023193364A1 publication Critical patent/WO2023193364A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Definitions

  • the present application relates to the technical field of superhard material synthesis, and in particular to a crystal preparation device.
  • the materials required for the synthesis of cubic boron nitride need to be placed in the heating body first, and the heating body is loaded into the cylindrical cavity of the pyrophyllite pressure-transmitting sealing block, and the two ends of the cavity are Place the conductor, and then put the assembled pyrophyllite pressure-transmitting sealing block into the high-pressure working chamber of the six-sided press. Pressure is applied through the six sides, and a large current is passed through to heat the heating body, so that the material is heated under high temperature and high pressure conditions. It is converted into cubic boron nitride and crystal growth is carried out. During this process, the high temperature generated by the heating body will cause pyrophyllite to denature, causing safety hazards and pressure loss, affecting the high-temperature and high-pressure environmental conditions required for crystal preparation, resulting in a reduction in crystal volume and quality.
  • Embodiments of the present application provide a crystal preparation device to solve the problem in the prior art that the high temperature generated by the heating body will cause the degeneration of pyrophyllite, thereby causing safety hazards and pressure loss, and affecting the high temperature and high pressure environmental conditions required for crystal preparation. Problems resulting in reduced crystal volume and quality.
  • a crystal preparation device installed in a large cavity press including:
  • Polyhedral block with a channel running through the two opposite sides of the polyhedral block, and along the axis direction of the channel, the conductive block, the temperature insulation and pressure transmission tube and the conductive block are sequentially arranged in the channel; as well as
  • the heating body has a cavity for accommodating materials, the heating body penetrates the temperature insulation and pressure transmission pipe and is connected to the two conductive blocks respectively.
  • the wall thickness of the temperature-insulating and pressure-transmitting pipe is D, satisfying 7mm ⁇ D ⁇ 2mm.
  • the cross section of the channel, the cross section of the temperature insulation and pressure transmission tube and the cross section of the conductive block have the same shape.
  • the crystal preparation device further includes two temperature insulation and pressure transmission rings and two conductive pillars, and the temperature insulation and pressure transmission rings are in contact between the conductive block and the heating body.
  • the conductive pillar passes through the temperature insulation and pressure transmission ring and is connected between the heating body and the conductive block.
  • the area of one side of the heating body that contacts the conductive column is larger than the area of one side of the conductive column that contacts the heating body.
  • the thickness of the temperature insulation and pressure transmission ring in the axial direction of the channel is smaller than the thickness of the wall of the temperature insulation and pressure transmission tube.
  • the heating body includes a heating barrel and two heating covers, and the two heating covers are respectively covered at both ends of the heating barrel, so that the heating barrel and the two heating The heating covers together form a sealed cavity, and the heating covers are in contact with the conductive pillars.
  • the crystal preparation device further includes a pressure-resistant conductive sheet, and the pressure-resistant conductive sheet is in contact between the conductive pillar and the conductive block.
  • the area of the cross-section of the pressure-resistant conductive sheet perpendicular to the axial direction of the channel is a
  • the area of the cross-section of the conductive pillar perpendicular to the axial direction of the channel is b
  • the area of the cross-section of the conductive block perpendicular to the axial direction of the channel is c, satisfying a ⁇ b>c.
  • the crystal preparation device further includes a filling ring abutting between the conductive block and the polyhedral block.
  • this application proposes a crystal preparation device.
  • the large-cavity press can uniformly pressurize all sides of the polyhedral block, so that the pressure can be transferred to the material from the outside inward.
  • the two conductive blocks are connected to the positive and negative poles of the external power supply respectively, so that the heating body between the conductive blocks is energized to generate high temperature, which in turn causes the material to undergo a chemical reaction under high temperature and high pressure conditions, and finally forms crystals.
  • the temperature-insulating pressure transfer tube can insulate heat and transmit pressure, ensuring that the heating body can maintain a certain temperature and pressure to meet the environmental conditions required for crystal growth, thereby increasing the crystal volume and crystal preparation speed.
  • Figure 1 shows a schematic structural diagram of a crystal preparation device provided by an embodiment of the present application
  • Figure 2 shows a schematic exploded structure diagram of a crystal preparation device provided by an embodiment of the present application
  • Figure 3 shows a schematic cross-sectional structural view of a crystal preparation device provided by an embodiment of the present application.
  • Figure 4 shows a schematic structural diagram of the conductive parts in the crystal preparation device provided by the embodiment of the present application.
  • 100-polyhedral block 110-channel; 200-temperature insulation and pressure transmission tube; 300-conductive block; 400-heating body; 410-cavity; 420-heating cylinder; 430-heating cover; 500-temperature insulation and pressure transmission ring; 600-conductive pillar; 700-pressure-resistant conductive sheet; 800-filled ring.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood broadly.
  • it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the crystal preparation device includes a temperature-insulated pressure transmission tube 200, two conductive blocks 300, a polyhedron Block 100 and heating body 400.
  • a channel 110 runs through the two opposite sides of the polyhedral block 100.
  • a conductive block 300, a temperature insulation and pressure transmitting tube 200 and a conductive block 300 are arranged in the channel 110.
  • the heating body 400 has a cavity 410 for accommodating materials. The heating body 400 penetrates the temperature insulation and pressure transmission pipe 200 and is connected to the two conductive blocks 300 respectively.
  • the large-cavity press can uniformly pressurize all sides of the polyhedral block 100, so that the pressure can be transferred to the material from the outside inward.
  • the two conductive blocks 300 are connected to the positive and negative poles of the external power supply respectively, so that the heating body 400 between the conductive blocks 300 is energized to generate high temperature, thereby causing the material to undergo a chemical reaction under high temperature and high pressure conditions, and finally form crystals.
  • the temperature insulation and pressure transfer tube 200 can insulate heat and transmit pressure, ensuring that the heating body 400 can maintain a certain temperature and pressure to meet the environmental conditions required for crystal growth, thereby improving the crystal volume and crystal preparation. speed.
  • the crystal can be cubic boron nitride.
  • the polyhedral block 100 can be formed from pyrophyllite powder by pressing, high-temperature calcination and precision carving in the center.
  • the pyrophyllite material can show good fluidity under high pressure and is easy to form a sealing body to firmly lock the internal high temperature and communicate with the outside world. high pressure.
  • the polyhedral block 100 is a hexahedral block or an octahedral block, and the hexahedral block can be a cube.
  • the temperature-insulating and pressure-transmitting tube 200 can be pressed and formed from dolomite powder. Since the temperature-insulating and pressure-transmitting tube 200 made of dolomite can increase the pressure of the entire crystal preparation device, the pressure transmission and boosting effects are more obvious. At the same time, when the polyhedral block 100 is made of pyrophyllite material, the temperature-insulating and pressure-transmitting pipe 200 made of dolomite can also avoid safety hazards and pressure losses caused by deformation of pyrophyllite caused by high temperatures.
  • the heating body 400 can be pressed and formed from carbon powder.
  • the conductive block 300 can be cast and pressed by iron.
  • the steel material has stable volume shrinkage under high pressure and also ensures the sealing of the channel 110.
  • this embodiment proposes an arrangement method of the temperature insulation and pressure transmission pipe 200 .
  • the pipe wall thickness of the temperature-insulating and pressure-transmitting pipe 200 is D, which satisfies 7mm ⁇ D ⁇ 2mm.
  • the temperature-insulating and pressure-transmitting tube 200 can increase the pressure of the entire crystal preparation device without affecting the volume of the heating body 400 . capacity, pressure transmission capacity and temperature insulation capacity, so that the materials in the heating body 400 can undergo chemical reactions under better pressure and temperature conditions, thereby improving the volume and quality of the prepared crystals.
  • D when D is 2 mm, the internal space of the temperature insulation and pressure transmission tube 200 is larger, which can increase the capacity of the inner cavity 410 of the heating body 400 .
  • D is 7 mm
  • the temperature-insulating pressure transmission tube 200 has a strong ability to transmit pressure, so that the pressure endured by the cavity 410 can be further increased, and can be close to 6.5GPA under experimental conditions.
  • the cross section of the channel 110 , the cross section of the temperature insulation and pressure transmission tube 200 and the cross section of the conductive block 300 have the same shape.
  • the temperature insulation and pressure transmission tube 200 and the conductive block 300 can fit together with the inner wall surface of the channel 110. , thereby improving space utilization, while avoiding the formation of a gap between the temperature-insulating and pressure-transmitting tube 200 and the conductive block 300 and the channel 110, thereby avoiding the polyhedral block 100 and the insulation under the pressure of the large-cavity press.
  • the temperature and pressure transmitting tube 200 and the conductive block 300 are unevenly stressed, which ultimately leads to non-uniform deformation of the heating cavity and affects the volume and quality of the crystal.
  • this embodiment proposes an arrangement method of the temperature isolation and pressure transmission ring 500 and the conductive pillar 600 based on the first or second embodiment.
  • the crystal preparation device also includes two temperature-isolating and pressure-transmitting rings 500 and two conductive pillars 600.
  • the temperature-insulating and pressure-transmitting rings 500 are abutted between the conductive block 300 and the heating body 400.
  • the conductive pillars 600 pass through the temperature-insulating and pressure-transmitting rings. 500 and connected with the heating body 400 and the conductive block 300.
  • the temperature insulation and pressure transmission ring 500 transmits pressure to the heating body 400 and insulates the heat generated by the heating body 400, thereby increasing the temperature and the pressure limit of the heating body 400.
  • the conductive pillar 600 since the conductive pillar 600 is penetrated through the temperature isolation and pressure transmission ring 500 and connected between the heating body 400 and the conductive block 300, the conductive pillar 600 serves as a conductive medium to conduct current between the heating body 400 and the conductive block 300, and , the resistance value of the conductive pillar 600 can be changed by changing the volume of the conductive pillar 600, thereby changing the heating temperature of the heating body 400.
  • the temperature insulation and pressure transmission ring 500 can be made of the same material as the temperature insulation and pressure transmission pipe 200 .
  • the conductive pillar 600 can be made of the same material as the heating body 400 .
  • the area of the side of the heating body 400 that contacts the conductive pillar 600 is larger than the area of the side of the conductive pillar 600 that contacts the heating body 400 .
  • this arrangement reduces the cross-sectional area of the conductive pillar 600, so that the inner diameter of the temperature insulation and pressure transmission ring 500 can be By further reducing the size, the cross-sectional area of the temperature-insulating and pressure-transmitting ring 500 is increased, thereby improving the heat-insulating and pressurizing effects of the temperature-insulating and pressure-transmitting ring 500 , and ultimately increasing the quality and volume of the crystal.
  • the thickness of the temperature insulation and pressure transmission ring 500 in the axial direction of the channel 110 is smaller than the wall thickness of the temperature insulation and pressure transmission pipe 200 .
  • the conductive blocks 300 can share part of the pressure transmission and boosting functions. Therefore, by making the temperature insulation and pressure transmission ring 500
  • the thickness of the channel 110 in the length direction is less than the wall thickness of the temperature insulation and pressure transmission pipe 200 , so that the temperature insulation and pressure transmission ring 500 can play a certain role in heat insulation and pressure transmission while avoiding occupying too much space in the channel 110 , so that the volume of the heating body 400 can be further increased, which not only increases the capacity of the heating body 400 but also improves the space utilization in the channel 110 .
  • this embodiment proposes an arrangement method of the heating body 400 based on the first to third embodiments.
  • the heating body 400 includes a heating barrel 420 and two heating covers 430.
  • the two heating covers 430 are respectively covered at both ends of the heating barrel 420, so that the heating barrel 420 and the two heating covers 430 together form a sealed cavity 410.
  • the heating cover 430 is in contact with the conductive pillar 600.
  • the heating body 400 is composed of a heating barrel 420 and a heating cover 430.
  • the shapes of the heating barrel 420 and the heating cover 430 are simple, which can reduce the difficulty of processing and facilitate the adjustment of the heating body 400 by changing the specifications of the heating barrel 420 or the heating cover 430. volume.
  • the heating cover 430 and the heating barrel 420 are detachable, making it easy to add materials to the heating body 400 .
  • the crystal preparation device also includes a pressure-resistant conductive sheet 700 , which is abutted between the conductive pillar 600 and the conductive block 300 .
  • the pressure-resistant conductive sheet 700 since the pressure-resistant conductive sheet 700 has a certain structural strength and conductive ability, it can avoid large deformation under the pressure of a large-cavity press, thereby improving the relationship between the pressure-resistant conductive sheet 700 and the conductive block 300 .
  • the stability of the connection and the connection between the pressure-resistant conductive sheet 700 and the conductive pillar 600 ensures that the heating body 400 can maintain stable heating power during the pressure application process.
  • the pressure-resistant conductive sheet 700 can be pressed by metal molybdenum with higher hardness.
  • the area of the cross-section of the pressure-resistant conductive sheet 700 perpendicular to the axis direction of the channel 110 is a
  • the area of the cross-section of the conductive pillar 600 perpendicular to the axis direction of the channel 110 is b
  • the area of the cross-section of the conductive block 300 perpendicular to the axis direction of the channel 110 is c, and satisfies a ⁇ b>c.
  • the area of the pressure-resistant conductive sheet 700 is larger than the cross-sectional area of the conductive pillar 600 and the conductive block 300 respectively, this arrangement increases the contact area between the pressure-resistant conductive sheet 700 and the conductive pillar 600 or the conductive block 300, which avoids During the process of the crystal preparation device being pressed, the conductive pillar 600 or the conductive block 300 deforms, which affects the stability of conduction.
  • the crystal preparation device further includes a filling ring 800 , and the filling ring 800 abuts between the conductive block 300 and the polyhedral block 100 .
  • the filling ring 800 can abut between the conductive block 300 and the polyhedral block 100, thereby filling the gap between the conductive block 300 and the polyhedral block 100, improving the sealing performance of the crystal preparation device, and thereby preventing the crystal preparation device from being exposed in a large area.
  • the material inside the channel 110 leaks from the gap between the conductive block 300 and the polyhedral block 100, ensuring that the experiment can be carried out safely.
  • the filling ring 800 can be made of the same material as the polyhedral block 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种晶体制备装置,属于超硬材料合成技术领域。该晶体制备装置包括隔温传压管、两个导电块、多面体块和加热体。多面体块相背的两面之间贯通有通道,沿通道的轴线方向,通道内依次设有导电块、隔温传压管和导电块。加热体具有容纳物料的腔体,加热体穿设于隔温传压管并分别与两个导电块连接。

Description

一种晶体制备装置
相关申请的交叉引用
本申请要求于2022年04月07日提交中国专利局的申请号为202220800759.8、名称为“一种晶体制备装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及超硬材料合成技术领域,尤其涉及一种晶体制备装置。
背景技术
立方氮化硼合成工艺中,首先需要将合成立方氮化硼所需的物料放置于加热体中,并将加热体装入叶腊石传压密封块的圆柱形腔体中,其腔体两端再放置导电体,再将组装好的叶腊石传压密封块放入六面顶压机的高压工作腔中,通过六面加压,同时通入大电流使得加热体加热,使得物料在高温高压的条件下转化为立方氮化硼并进行晶体生长。在此过程中,加热体产生的高温会导致叶腊石变性,从而带来安全隐患和压力损失,影响制备晶体所需的高温高压环境条件,导致晶体体积减小和质量下降。
发明内容
本申请的实施例提供了一种晶体制备装置,用以解决现有技术中加热体产生的高温会导致叶腊石变性,从而带来安全隐患和压力损失,影响制备晶体所需的高温高压环境条件,导致晶体体积减小和质量下降的问题。
为解决上述问题,本申请的实施例提供了:一种晶体制备装置,安装于大腔体压机中,包括:
隔温传压管;
两个导电块;
多面体块,所述多面体块相背的两面之间贯通有通道,沿所述通道的轴线方向,所述通道内依次设有所述导电块、所述隔温传压管和所述导电块;以及
加热体,所述加热体具有容纳物料的腔体,所述加热体穿设于所述隔温传压管并分别与两个所述导电块连接。
在一种可能的实施方式中,所述隔温传压管的管壁厚度为D,满足7mm≥D≥2mm。
在一种可能的实施方式中,所述通道的横截面、所述隔温传压管的横截面和所述导电块的横截面三者形状相同。
在一种可能的实施方式中,所述晶体制备装置还包括两个隔温传压环和两个导电柱,所述隔温传压环抵接于所述导电块和所述加热体之间,所述导电柱穿设于所述隔温传压环并连接于所述加热体和所述导电块之间。
在一种可能的实施方式中,所述加热体抵接于所述导电柱的一面的面积大于所述导电柱抵接于所述加热体的一面的面积。
在一种可能的实施方式中,所述隔温传压环在所述通道的轴线方向上的厚度小于所述隔温传压管的管壁厚度。
在一种可能的实施方式中,所述加热体包括加热筒和两个加热盖,两个所述加热盖分别盖设于所述加热筒的两端,以使所述加热筒和两个所述加热盖共同围设形成密封的所述腔体,所述加热盖与所述导电柱相抵接。
在一种可能的实施方式中,所述晶体制备装置还包括抗压导电片,所述抗压导电片抵接于所述导电柱与所述导电块之间。
在一种可能的实施方式中,所述抗压导电片垂直于所述通道的轴线方向的截面的面积为a,所述导电柱垂直于所述通道的轴线方向的截面的面积为b,所述导电块垂直于所述通道的轴线方向的截面的面积为c,满足a≥b>c。
在一种可能的实施方式中,所述晶体制备装置还包括填充环,所述填充环抵接于所述导电块与所述多面体块之间。
本申请的有益效果是:本申请提出一种晶体制备装置,在使用时,大腔体压机能够对多面体块的各个面进行均匀地施压,从而使压力能够由外向内传递至物料。同时,两个导电块分别与外部电源的正负极连接,从而使导电块之间的加热体通电产生高温,进而使物料在高温高压的条件下发生化学反应,最终形成晶体。在此过程中,隔温传压管能够起到隔绝热量和传递压力的作用,保证加热体能够维持一定的温度和压力,满足晶体生长所需的环境条件,从而提高晶体体积和晶体制备速度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请的实施例提供的晶体制备装置的结构示意图;
图2示出了本申请的实施例提供的晶体制备装置的爆炸结构示意图;
图3示出了本申请的实施例提供的晶体制备装置的剖视结构示意图;以及
图4示出了本申请的实施例提供的晶体制备装置中参与导电部分的结构示意图。
主要元件符号说明:
100-多面体块;110-通道;200-隔温传压管;300-导电块;400-加热体;410-腔体;420- 加热筒;430-加热盖;500-隔温传压环;600-导电柱;700-抗压导电片;800-填充环。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”和“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”和“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”和“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例一
请参阅图1、图2和图3,本实施例提供了一种晶体制备装置,安装于大腔体压机中,该晶体制备装置包括隔温传压管200、两个导电块300、多面体块100和加热体400。多面体块100相背的两面之间贯通有通道110,沿通道110的轴线方向,通道110内依次设有导电块300、隔温传压管200和导电块300。加热体400具有容纳物料的腔体410,加热体400穿设于隔温传压管200并分别与两个导电块300连接。
本申请的实施例提供的晶体制备装置,在使用时,大腔体压机能够对多面体块100的 各个面进行均匀地施压,从而使压力能够由外向内传递至物料。同时,两个导电块300分别与外部电源的正负极连接,从而使导电块300之间的加热体400通电产生高温,进而使物料在高温高压的条件下发生化学反应,最终形成晶体。在此过程中,隔温传压管200能够起到隔绝热量和传递压力的作用,保证加热体400能够维持一定的温度和压力,满足晶体生长所需的环境条件,从而提高晶体体积和晶体制备速度。
其中,晶体可为立方氮化硼。
其中,多面体块100可由叶腊石粉通过压制、高温煅烧并通过中心精密雕孔成型,叶腊石材料能够在高压下展现较好的流动性,易于形成密封体牢牢锁住内部的高温与外界传达的高压。同时,该多面体块100为六面体块或八面体块,该六面体块可为正方体。
其中,隔温传压管200可由白云石粉压制成型,由于白云石制成的隔温传压管200可以使整个晶体制备装置的压力提高,使传压和增压效果更明显。同时,当多面体块100由叶腊石材料制成时,由白云石制成的隔温传压管200也能够避免高温引起叶腊石变形而带来的安全隐患和压力损失。
其中,加热体400可由碳粉压制成型。
其中,导电块300可由铁浇筑压制而成,钢的材质在高压下体积收缩稳定,也同时保证通道110的密闭性。
实施例二
如图3所示,本实施例在实施例一的基础上,提出了隔温传压管200的一种设置方式。隔温传压管200的管壁厚度为D,满足7mm≥D≥2mm。
具体的,当隔温传压管200的管壁厚度在2毫米至7毫米之间时,隔温传压管200能够在不影响加热体400体积的前提下,提高整个晶体制备装置的承压能力、传压能力和隔温能力,从而使加热体400内的物料能够在更好的压力和温度条件下进行化学反应,进而提高制备出的晶体的体积和质量。其中,当D为2mm时,隔温传压管200的内部空间较大,能够提高加热体400内腔体410的容量。当D为7mm时,隔温传压管200传递压力的能力较强,使得腔体410承受的压力能够进一步提高,在实验条件下可接近6.5GPA。
如图2所示,在上述实施例中,可选的,通道110的横截面、隔温传压管200的横截面和导电块300的横截面三者形状相同。
具体的,由于通道110的壁面的形状分别与隔温传压管200的外壁面和导电块300的形状相同,使得隔温传压管200和导电块300能够与通道110的内壁面相互贴合,从而在提高空间利用率的同时,避免隔温传压管200和导电块300两者与通道110之间形成间隙,从而避免在大腔体压机的施压下,导致多面体块100、隔温传压管200和导电块300三者受力不均匀,最终导致加热腔发生非均匀形变而影响晶体体积和质量的问题。
实施例三
如图2和图3所示,本实施例在实施例一或实施例二的基础上,提出了隔温传压环500和导电柱600的一种设置方式。晶体制备装置还包括两个隔温传压环500和两个导电柱600,隔温传压环500抵接于导电块300和加热体400之间,导电柱600穿设于隔温传压环500并与加热体400和导电块300连接。
具体的,通过在导电块300和加热体400之间设置隔温传压环500,从而使加热体400不被隔温传压管200覆盖的区域能够被隔温传压环500所覆盖,进而通过隔温传压环500传递压力至加热体400并隔绝加热体400产生的热量,提高了加热体400的温度和承受压力的极限。同时,由于导电柱600穿设于隔温传压环500并连接于加热体400和导电块300之间,导电柱600作为导电介质起到加热体400与导电块300进行电流传导的作用,并且,可通过改变导电柱600的体积从而改变导电柱600的电阻值,进而改变加热体400的加热温度。
其中,隔温传压环500可采用与隔温传压管200相同的材质。
其中,导电柱600可采用与加热体400相同的材质。
如图2、图3和图4所示,在上述实施例中,可选的,加热体400抵接于导电柱600的一面的面积大于导电柱600抵接于加热体400的一面的面积。
具体的,由于导电柱600朝向加热体400的一面的面积大于加热体400朝向导电柱600的一面的面积,该设置方式缩小了导电柱600的截面面积,使得隔温传压环500的内径能够进一步缩小,从而提高隔温传压环500的截面面积,进而提高隔温传压环500的隔热和增压效果,最终提高了晶体的质量和体积。
如图2和图3所示,在上述实施例中,可选的,隔温传压环500在通道110的轴线方向上的厚度小于隔温传压管200的管壁厚度。
具体的,由于在通道110内、在加热体400的两相对侧分别设有导电块300,该导电块300能够分担一部分传压、增压的作用,因此,通过使隔温传压环500在通道110的长度方向上的厚度小于隔温传压管200的管壁厚度,使得隔温传压环500能够在起到一定的隔热传压作用的同时,避免占用过多通道110内的空间,从而使加热体400的体积可进一步增大,提高加热体400容量的同时也提高通道110内的空间利用率。
实施例四
如图3和图4所示,本实施例在实施例一至实施例三的基础上,提出了加热体400的一种设置方式。加热体400包括加热筒420和两个加热盖430,两个加热盖430分别盖设于加热筒420的两端,以使加热筒420和两个加热盖430共同围设形成密封的腔体410,加热盖430与导电柱600相抵接。
具体的,加热体400由加热筒420和加热盖430组成,加热筒420和加热盖430的形状简单,能够降低加工难度,也便于通过更换加热筒420或加热盖430的规格调整加热体400的体积。同时,加热盖430与加热筒420之间可拆卸,能够方便在该加热体400中添加物料。
实施例五
如图2和图4所示,本实施例在实施例一至实施例四的基础上,对技术方案进行了进一步的限定。晶体制备装置还包括抗压导电片700,抗压导电片700抵接于导电柱600与导电块300之间。
具体的,由于抗压导电片700具备一定的结构强度和导电能力,能够避免在大腔体压机的施压下发生较大的形变,从而提高抗压导电片700与导电块300之间的连接处以及抗压导电片700和导电柱600之间的连接处的连接稳定性,确保加热体400能够在施压过程中保持稳定的加热功率。
其中,抗压导电片700可由硬度较高的金属钼压制而成。
如图4所示,在上述实施例中,可选的,抗压导电片700垂直于通道110的轴线方向的截面的面积为a,导电柱600垂直于通道110的轴线方向的截面的面积为b,导电块300垂直于通道110的轴线方向的截面的面积为c,满足a≥b>c。
具体的,由于抗压导电片700的面积分别大于导电柱600的截面面积和导电块300的截面面积,该设置方式提高了抗压导电片700与导电柱600或导电块300的接触面积,避免晶体制备装置在受压过程中,由于导电柱600或导电块300发生形变而影响导电的稳定性。
如图1和图3所示,在上述实施例中,可选的,晶体制备装置还包括填充环800,填充环800抵接于导电块300与多面体块100之间。
具体的,填充环800能够抵接在导电块300与多面体块100之间,从而填充导电块300与多面体块100之间的间隙,提高了晶体制备装置的密封性,进而避免晶体制备装置在大腔体压机的施压下,发生通道110内部物质从导电块300与多面体块100之间的间隙泄露的问题,保证实验能够安全进行。
其中,填充环800可采用与多面体块100相同的材质。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任 一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种晶体制备装置,安装于大腔体压机中,其特征在于,包括:
    隔温传压管;
    两个导电块;
    多面体块,所述多面体块相背的两面之间贯通有通道,沿所述通道的轴线方向,所述通道内依次设有所述导电块、所述隔温传压管和所述导电块;以及
    加热体,所述加热体具有容纳物料的腔体,所述加热体穿设于所述隔温传压管并分别与两个所述导电块连接。
  2. 根据权利要求1所述的晶体制备装置,其特征在于,所述隔温传压管的管壁厚度为D,满足7mm≥D≥2mm。
  3. 根据权利要求1所述的晶体制备装置,其特征在于,所述通道的横截面、所述隔温传压管的横截面和所述导电块的横截面三者形状相同。
  4. 根据权利要求1所述的晶体制备装置,其特征在于,所述晶体制备装置还包括两个隔温传压环和两个导电柱,所述隔温传压环抵接于所述导电块和所述加热体之间,所述导电柱穿设于所述隔温传压环并连接于所述加热体和所述导电块之间。
  5. 根据权利要求4所述的晶体制备装置,其特征在于,所述加热体抵接于所述导电柱的一面的面积大于所述导电柱抵接于所述加热体的一面的面积。
  6. 根据权利要求4所述的晶体制备装置,其特征在于,所述隔温传压环在所述通道的轴线方向上的厚度小于所述隔温传压管的管壁厚度。
  7. 根据权利要求4所述的晶体制备装置,其特征在于,所述加热体包括加热筒和两个加热盖,两个所述加热盖分别盖设于所述加热筒的两端,以使所述加热筒和两个所述加热盖共同围设形成密封的所述腔体,所述加热盖与所述导电柱相抵接。
  8. 根据权利要求4所述的晶体制备装置,其特征在于,所述晶体制备装置还包括抗压导电片,所述抗压导电片抵接于所述导电柱与所述导电块之间。
  9. 根据权利要求8所述的晶体制备装置,其特征在于,所述抗压导电片垂直于所述通道的轴线方向的截面的面积为a,所述导电柱垂直于所述通道的轴线方向的截面的面积为b,所述导电块垂直于所述通道的轴线方向的截面的面积为c,满足a≥b>c。
  10. 根据权利要求1所述的晶体制备装置,其特征在于,所述晶体制备装置还包括填充环,所述填充环抵接于所述导电块与所述多面体块之间。
PCT/CN2022/106550 2022-04-07 2022-07-19 一种晶体制备装置 WO2023193364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220800759.8 2022-04-07
CN202220800759.8U CN216972742U (zh) 2022-04-07 2022-04-07 一种晶体制备装置

Publications (1)

Publication Number Publication Date
WO2023193364A1 true WO2023193364A1 (zh) 2023-10-12

Family

ID=82341240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106550 WO2023193364A1 (zh) 2022-04-07 2022-07-19 一种晶体制备装置

Country Status (2)

Country Link
CN (1) CN216972742U (zh)
WO (1) WO2023193364A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216972742U (zh) * 2022-04-07 2022-07-15 南方科技大学 一种晶体制备装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE590205A (fr) * 1959-05-01 1960-08-16 Gen Electric Capuchon d'extremité à deux bornes pour récipients de réaction à température et pression élevees.
WO2005067530A2 (en) * 2004-01-13 2005-07-28 Chien-Min Sung High pressure crystal growth apparatuses and associated methods
CN112403395A (zh) * 2020-11-27 2021-02-26 南方科技大学 一种金属磷化物的制备方法
CN216449047U (zh) * 2022-04-07 2022-05-06 南方科技大学 一种测试装置
CN216972742U (zh) * 2022-04-07 2022-07-15 南方科技大学 一种晶体制备装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE590205A (fr) * 1959-05-01 1960-08-16 Gen Electric Capuchon d'extremité à deux bornes pour récipients de réaction à température et pression élevees.
WO2005067530A2 (en) * 2004-01-13 2005-07-28 Chien-Min Sung High pressure crystal growth apparatuses and associated methods
CN112403395A (zh) * 2020-11-27 2021-02-26 南方科技大学 一种金属磷化物的制备方法
CN216449047U (zh) * 2022-04-07 2022-05-06 南方科技大学 一种测试装置
CN216972742U (zh) * 2022-04-07 2022-07-15 南方科技大学 一种晶体制备装置

Also Published As

Publication number Publication date
CN216972742U (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023193364A1 (zh) 一种晶体制备装置
CN109569435B (zh) 一种高温高压合成腔体
US5236674A (en) High pressure reaction vessel
CN216449047U (zh) 一种测试装置
WO2023193363A1 (zh) 一种硼六氧制备装置
CN111774012A (zh) 一种合成pcbn-pcd材料的组装腔体结构
CN218059190U (zh) 化学气相沉积炉
CN212942824U (zh) 一种合成pcbn-pcd材料的组装腔体结构
CN101011214A (zh) 双层锅及其制造方法
CN207221875U (zh) 一种人造金刚石合成组装块结构
JPS6338885A (ja) 高圧焼結炉
CN201978719U (zh) 一种多元复合型合成块
CN212310851U (zh) 一种聚晶金刚石拉丝模合成块
CN211754767U (zh) Pcbn复合片合成腔体
CN216978900U (zh) 一种测试装置
CN108955239B (zh) 一种回转电热窑炉用炉膛及其制作的回转窑体
CN111672420A (zh) 一种金刚石合成用异形粉压加热管及合成块
CN113813878B (zh) 一种双加热层金刚石合成装置
CN210030956U (zh) 一种宝石级大单晶高效能合成组装结构
CN218339732U (zh) 一种大长径比聚晶复合片合成组装结构
CN215823007U (zh) 一种一次性使用的两面顶超高压高温装置用高压模具
CN221085563U (zh) 一种超硬材料合成用组合式绝缘层及新型组装结构
CN110357620A (zh) 一种高强度铟掺杂锆酸钙陶瓷的制备方法
CN216947289U (zh) 一种晶体制备装置
RU2060811C1 (ru) Контейнер устройства сверхвысокого давления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936294

Country of ref document: EP

Kind code of ref document: A1