WO2023193218A1 - 船舶辅助停泊控制方法以及相关设备 - Google Patents
船舶辅助停泊控制方法以及相关设备 Download PDFInfo
- Publication number
- WO2023193218A1 WO2023193218A1 PCT/CN2022/085719 CN2022085719W WO2023193218A1 WO 2023193218 A1 WO2023193218 A1 WO 2023193218A1 CN 2022085719 W CN2022085719 W CN 2022085719W WO 2023193218 A1 WO2023193218 A1 WO 2023193218A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- vector
- target
- current position
- formation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 157
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000013598 vector Substances 0.000 claims description 196
- 238000004891 communication Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000002085 persistent effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/56—Towing or pushing equipment
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the embodiments of the present application relate to the field of ship auxiliary berthing control, and more specifically, a ship auxiliary berthing control method, a ship auxiliary berthing control device, and a computer-readable storage medium.
- a common ship auxiliary berthing control method is to berth the target ship to a preset berth through two or more tugboats. Specifically, the traction and traction force of the two or more tugboats towing the target ship are allocated according to the traction control method. Angle, based on the position of the target navigation point and the position of the tugboat, manually predict the speed and direction that the tugboat should move, and manually control the speed and direction of the tugboat movement. The position of the target navigation point can be the initial position of the target ship or a preset The location of the berth.
- the embodiments of this application provide a ship auxiliary berthing control method, ship auxiliary berthing control equipment and a computer-readable storage medium, which can ensure that the berthing control process of the target ship is more accurate and requires less labor cost. Control the berthing of the target ship.
- embodiments of the present application provide a ship auxiliary berthing control method, including:
- the target movement trend information is used to control each robot to move from the current position of each robot to the initial position of the target ship, In order to enable each robot to act on the target ship, the target movement trend information is also used to control each robot to move from the initial position to the preset berth, so that each robot moves the target The ship berths at the preset berth.
- determining the target movement trend information of each robot based on the current position of the robot formation, the position of the target navigation point and the current position of each robot includes:
- the target movement trend vector is determined based on the navigation movement trend unit vector and the team movement trend unit vector.
- determining the navigation movement trend unit vector of each robot based on the current position vector of the robot formation and the position vector of the target navigation point includes:
- the navigation movement trend vector is compared with the module of the navigation movement trend vector to obtain the navigation movement trend unit vector.
- determining the team movement trend unit vector of each robot based on the current position vector of the robot formation and the current position vector of each robot includes:
- the team movement trend unit vector is obtained by comparing the team movement trend vector with the module of the team movement trend vector.
- the preset formation is a regular polygon corresponding to the number of each robot in the robot formation, and the formation information includes the number of sides of the regular polygon and the side length of the regular polygon,
- the position vector of the robot formation is the position vector of the center point of the regular polygon,
- Calculating the formation position vector of each robot according to the current position vector of the robot formation and the formation information of the preset formation including:
- determining the target movement trend vector based on the navigation movement trend unit vector and the team movement trend unit vector includes:
- the target movement trend vector is determined based on the target movement trend unit vector.
- determining the current position of the robot formation based on the current position of each robot includes:
- the ratio of the current position vector of each robot to the number of each robot is used as the current position vector of the robot formation.
- a robot which is characterized in that it includes: a cylindrical outer shell, a chassis, a controller, a plurality of propellers, and a communication module.
- the controller is located on the upper part of the chassis, and the plurality of propellers Connected to the chassis, the propellers are located at the lower part of the chassis;
- the communication module is used to send the current position of each robot to the ship auxiliary berthing control device, so that the ship auxiliary berthing control device determines the current position of the robot formation according to the current position of each robot; determines the Whether the current position of the robot formation meets the position conditions of the target navigation point, which is the position point included in the preset movement route of the target ship from the initial position to the preset berth; if not, then according to the Determine the current position of the robot formation, the position of the target navigation point and the current position of each robot, and determine the target movement trend information of each robot;
- the controller is configured to receive the target movement trend information of each robot sent by the ship auxiliary berthing control device, wherein the target movement trend information is used to control the movement of each robot from the current position of each robot. to the initial position of the target ship, so that each robot acts on the target ship, and the target movement trend information is also used to control each robot to move from the initial position to the preset berth, so as to The robots are caused to berth the target ship to the preset berth.
- a ship auxiliary berthing control device which is characterized in that it includes: a central processor, a memory and a communication device;
- the memory is a short-term storage memory or a persistent storage memory
- the central processor is configured to communicate with the memory and execute instruction operations in the memory to perform the aforementioned ship auxiliary berthing control method.
- inventions of the present application provide a computer-readable storage medium.
- the computer-readable storage medium includes instructions. When the instructions are run on a computer, they cause the computer to execute the aforementioned ship auxiliary berthing control method.
- embodiments of the present application provide a computer program product containing instructions.
- the computer program product When the computer program product is run on a computer, it causes the computer to execute the aforementioned ship auxiliary berthing control method.
- the embodiments of the present application have the following advantages: the current position of each robot in the robot formation in the water can be obtained, the current position of the robot formation is determined based on the current position of each robot, and the current position of the robot formation is determined. Meet the location conditions of the target navigation point.
- the target navigation point is the position point included in the preset movement route of the target ship from the initial position to the preset berth. If not, then based on the current position of the robot formation, the position of the target navigation point and each The current position of the robot determines the target movement trend information of each robot, and sends the target movement trend information of each robot to each robot respectively.
- the target movement trend information is used to control each robot to move from the current position of each robot to the target ship.
- the initial position is used to enable each robot to act on the target ship.
- the target movement trend information is also used to control each robot to move from the initial position to the preset berth, so that each robot can berth the target ship to the preset berth, and calculate the target movement trend information. Higher accuracy makes the berthing control process of the target ship more precise and requires less labor cost.
- Figure 1 is a schematic structural diagram of a ship auxiliary berthing control system disclosed in the embodiment of the present application
- Figure 2 is a schematic flow chart of a ship auxiliary berthing control method disclosed in the embodiment of the present application
- Figure 3 is a schematic flow chart of another ship auxiliary berthing control method disclosed in the embodiment of the present application.
- Figure 4 is a schematic diagram of an actual scene in which the formation of a robot formation is a line segment disclosed in the embodiment of the present application;
- Figure 5 is a schematic diagram of the operating trajectory of a robot and a target ship disclosed in the embodiment of the present application;
- Figure 6 is a schematic structural diagram of a robot disclosed in an embodiment of the present application.
- the embodiments of this application provide a ship auxiliary berthing control method, ship auxiliary berthing control equipment and a computer-readable storage medium, which can ensure that the berthing control process of the target ship is more accurate and requires less labor cost. Control the berthing of the target ship.
- the architecture of the ship auxiliary berthing control system in the embodiment of the present application includes: a ship auxiliary berthing control device 101 and a robot 102.
- the ship auxiliary berthing control device 101 can be connected to the robots 102 that form the robot formation.
- the ship auxiliary berthing control device 101 can obtain the current position of each robot sent by each robot 102.
- the ship auxiliary berthing control device 101 can perform a series of data processing according to the current position of each robot to obtain the target movement trend information of each robot.
- each robot's target movement trend information can be sent to each robot 102, and each robot 102 can act on the target ship according to its respective target movement trend information, and berth the target ship at a preset berth.
- Figure 2 is a schematic flow chart of a ship auxiliary berthing control method disclosed in an embodiment of the present application. The method includes:
- the robots in the water area are connected through connectors.
- Each robot is equipped with its own communication module.
- the ship auxiliary berthing control device is equipped with a communication device.
- Each robot and the ship auxiliary berthing control device can communicate through
- the protocol is used to send and receive information.
- the ship auxiliary berthing control equipment can obtain the current position of each robot in the robot formation in the water area.
- the communication protocol may be a Bluetooth protocol, a user datagram protocol, or other communication protocols, which are not limited here.
- the current position of the robot formation can be determined based on the current position of each robot. It can be understood that the robot formation has a certain regular formation, so the current position of each robot has certain significance in determining the current position of the robot formation.
- the target navigation point is the position point included in the preset movement route of the target ship from the initial position to the preset berth.
- the target navigation point is the position point included in the preset movement route of the target ship from the initial position to the preset berth. If the robot If the current position of the robot formation does not meet the position conditions of the target navigation point, steps 204 and 205 will be executed. If the current position of the robot formation meets the position conditions of the target navigation point, no steps will be executed.
- the position of the target navigation point is preset, and it can be a target navigation point determined manually, or it can be a target navigation point determined through machine calculation, or it can also be determined through other methods.
- the target navigation point is specifically determined.
- the method of determining the points is not limited.
- the target navigation point can be one position point, for example, it can be the initial position of the target ship or the preset berth, or it can be two position points, for example, it can be the initial position of the target ship and the preset berth, or it can be multiple
- These position points are the position points included in the preset movement route of the target ship from the initial position to the preset berth.
- the number of specific target navigation points is not limited.
- the current position of the robot formation meets the position conditions of the target navigation point. For example, it can be to determine whether the current position of the robot formation is equal to the position of the target navigation point, or to determine whether the robot formation is equal to the position of the target navigation point. Whether the current position is approximately equal to the position of the target navigation point, or other judgment methods that can determine whether the robot formation has reached the target navigation point, the details are not limited here.
- the target movement trend information of each robot can be determined based on the current position of the robot formation, the position of the target navigation point and the current position of each robot.
- each robot can maintain the formation of the robot formation in the water, and can also move from the current position of each robot to the initial position of the target ship, and can also move from the initial position to the preset berth, and according to the current position of the robot formation and the current position of each robot have certain significance for each robot to maintain the formation of the robot formation.
- the current position of each robot can be moved to the initial position of the target ship and can be moved from the initial position. Moving to the preset berth has a certain meaning. Therefore, it is meaningful to determine the target movement trend information of each robot based on the current position of the robot formation, the position of the target navigation point and the current position of each robot.
- each robot's target movement trend information is used to control each robot to move from the current position of each robot to the initial position of the target ship, so that each robot acts on the target ship, and the target
- the movement trend information is also used to control each robot to move from the initial position to the preset berth, so that each robot can berth the target ship to the preset berth.
- the target movement trend information of each robot can be sent to each robot respectively through the communication protocol, where the target movement trend information is used to control each robot to move from the current position of each robot to the target ship.
- the initial position is used to enable each robot to act on the target ship.
- the target movement trend information is also used to control each robot to move from the initial position to the preset berth, so that each robot can berth the target ship to the preset berth. It can be understood that the target movement trend information represents the direction and speed of the robot.
- the current position of each robot in the robot formation in the water area can be obtained, the current position of the robot formation is determined based on the current position of each robot, and it is judged whether the current position of the robot formation meets the position conditions of the target navigation point, and the target navigation
- the points are the position points included in the preset movement route of the target ship from the initial position to the preset berth. If not, determine the respective position of each robot based on the current position of the robot formation, the position of the target navigation point and the current position of each robot.
- Target movement trend information is sent to each robot respectively. The target movement trend information is used to control each robot to move from the current position of each robot to the initial position of the target ship, so that each robot can act on the target.
- Ships and target movement trend information are also used to control each robot to move from the initial position to the preset berth, so that each robot can berth the target ship to the preset berth.
- the accuracy of calculating the target movement trend information is higher, which enables the berthing control of the target ship.
- the process is more precise and requires less labor cost.
- the current position of each robot in the robot formation in the water can be obtained.
- the current position of the robot formation can be determined based on the current position of each robot. It can be judged whether the current position of the robot formation meets the position conditions of the target navigation point.
- the target The navigation point is a position point included in the preset movement route of the target ship from the initial position to the preset berth.
- the above steps in this embodiment are similar to step 201, step 202 and step 203 in the embodiment shown in Figure 2. Specifically, No further details will be given here.
- the current position vector of each robot in the robot formation in the water can be obtained.
- each robot in the robot formation can be connected through a connecting object.
- the connecting object can be a rope.
- Each robot can drag the target ship to a preset berth through the rope.
- the connecting object can also be a net, and each robot can drag the target ship to a preset berth.
- the connecting object can also be a net. The net is opened, so that the target ship can be surrounded and towed to the preset berth.
- the connecting object can also be other objects that can tow the target ship to the preset berth. The specifics are not limited here.
- n can be an integer greater than or equal to 1
- the position vector of the preset target navigation point is j represents the number of the target navigation point, which can be judged Is it approximately equal to
- Figure 3 is a schematic flow chart of determining the target movement trend information of each robot disclosed in an embodiment of the present application. The method includes:
- the navigation movement trend unit vector of each robot can be determined based on the current position vector of the robot formation and the position vector of the target navigation point. Specifically, the position vector of the target navigation point can be subtracted from the current position vector of the robot formation to obtain the navigation movement trend vector of each robot. Then the navigation movement trend vector is compared with the module of the navigation movement trend vector to obtain the navigation movement trend unit. Vector. Following the example given in this embodiment, calculate the navigation movement trend unit vector The formula can be
- 302. Determine the movement trend unit vector of each robot according to the current position vector of the robot formation and the current position vector of each robot.
- the team movement trend unit vector of each robot can be determined based on the current position vector of the robot formation and the current position vector of each robot. Specifically, the team position vector of each robot can be calculated based on the current position vector of the robot formation and the formation information of the preset formation. For each robot, the team position vector is subtracted from the current position vector corresponding to each robot. Obtain the team movement trend vector, compare the team movement trend vector with the module of the team movement trend vector, and obtain the team movement trend unit vector. It can also be other based on the current position vector of the robot formation and the current position vector of each robot. The method of determining the unit vector of each robot's team movement trend is not limited here.
- the position vector of each robot can be calculated based on the current position vector of the center point of the regular polygon, the number of sides of the regular polygon, and the side length of the regular polygon.
- the formation is preset. It is a regular polygon corresponding to the number of each robot in the robot formation.
- the formation information includes the number of sides and the side length of the regular polygon.
- the position vector of the robot formation is the position vector of the center point of the regular polygon.
- the number of each robot, the position vector of the robot formation, and the side length of the regular polygon can be entered into the formula , the team position vector of each robot is obtained, where i represents the number of the robot.
- the principle involved in the formula can be to divide the regular n-gon into n equal parts through the center point of the regular n-gon. For each congruent triangle, according to the cosine theorem and the position vector of the center point of the regular n-gon, the team position vector of each robot can be determined. It can be understood that in addition to this implementation method, there can also be other ways to determine the position vector of each robot's team based on the number of each robot, the position vector of the robot formation, and the side length of the regular polygon. The details are not mentioned here. Make limitations.
- the current position vector of the center point of the line segment can be determined to be the current position vector of the robot formation.
- the center point can be determined and the line segment can be divided into two small line segments at equal intervals. The number is 2.
- the team position vector of each robot is obtained, where i represents the number of the robot.
- the principle involved in the formula can be that for small line segments, according to the distance formula and the current position vector of the center point of the line segment, the team of each robot can be determined position vector.
- Figure 4 is a schematic diagram of an actual scene in which the formation of a robot formation is a line segment disclosed in an embodiment of the present application. The two robots in the figure are connected through connectors and maintain the formation. The center of the connector The position vector of the point is the position vector of the center point of the robot formation.
- the team position vector of each robot and the obtained current position vector of each robot can be input into the formula , get the team movement trend unit vector of each robot
- the target movement trend vector can be determined for each robot based on the navigation movement trend unit vector and the team movement trend unit vector. Specifically, the navigation movement trend unit vector and the team movement trend unit vector can be weighted to obtain the target movement trend unit vector.
- the target movement trend unit vector can be determined based on the target movement trend unit vector.
- the target movement trend unit vector can be used as the target movement.
- the trend vector can also be the product of the target movement trend unit vector and an adjustable constant as the target movement trend vector, or other methods of determining the target movement trend vector based on the target movement trend unit vector, which are not limited here.
- the navigation movement trend unit vector and the team movement trend unit vector can be input into the formula , the target movement trend vector is obtained.
- Figure 5 shows the operating trajectories of a robot and a target ship disclosed in the embodiment of the present application. The longer two lines among the six small figures in Figure 5 are the operating trajectories of the two robots. The shorter line segment is the trajectory of the target ship.
- the target navigation point when the position of the robot formation matches the position of the target navigation point
- the target navigation point can be updated so that the robot can go to the next target navigation point.
- the position vector of the robot formation can be approximately equal to the initial position vector of the target ship.
- the robot formation can surround the target ship, and the next target navigation point can be updated so that each robot moves from the initial position of the target ship to Preset berth to berth the target ship at the preset berth.
- the target ship can be an unmanned ship, a damaged ship, or other ships, and there is no specific limit here.
- the current position of each robot in the robot formation in the water can be obtained, the current position of the robot formation is determined based on the current position of each robot, and it is judged whether the current position of the robot formation meets the position conditions of the target navigation point, and the target navigation point It is the position point included in the preset movement route of the target ship from the initial position to the preset berth. If not, determine the respective goals of each robot based on the current position of the robot formation, the position of the target navigation point and the current position of each robot. Movement trend information is sent to each robot respectively. The target movement trend information of each robot is used to control each robot to move from the current position of each robot to the initial position of the target ship, so that each robot can act on the target ship.
- the target movement trend information is also used to control each robot to move from the initial position to the preset berth, so that each robot can berth the target ship to the preset berth.
- the higher accuracy in calculating the target movement trend information makes the berthing control process of the target ship more accurate and requires less labor cost.
- the ship auxiliary berthing control method in the embodiment of the present application is described above.
- the robot in the embodiment of the present application is described below. Please refer to Figure 6.
- One embodiment of the robot in the embodiment of the present application includes:
- a cylindrical outer shell, a chassis, a controller, a plurality of propellers and a communication module located on the upper part of the chassis.
- the propellers are connected to the chassis.
- the propellers are located on the lower part of the chassis;
- the communication module is used to send the current position of each robot to the ship auxiliary berthing control device, so that the ship auxiliary berthing control device determines the current position of the robot formation according to the current position of each robot; determines the Whether the current position of the robot formation meets the position conditions of the target navigation point, which is the position point included in the preset movement route of the target ship from the initial position to the preset berth; if not, then according to the Determine the current position of the robot formation, the position of the target navigation point and the current position of each robot, and determine the target movement trend information of each robot;
- the controller is configured to receive the target movement trend information of each robot sent by the ship auxiliary berthing control device, wherein the target movement trend information is used to control the movement of each robot from the current position of each robot. to the initial position of the target ship, so that each robot acts on the target ship, and the target movement trend information is also used to control each robot to move from the initial position to the preset berth, so as to The robots are caused to berth the target ship to the preset berth.
- the current position of each robot in the robot formation in the water area can be obtained, the current position of the robot formation is determined based on the current position of each robot, and it is judged whether the current position of the robot formation meets the position conditions of the target navigation point, and the target navigation
- the points are the position points included in the preset movement route of the target ship from the initial position to the preset berth. If not, determine the respective position of each robot based on the current position of the robot formation, the position of the target navigation point and the current position of each robot.
- Target movement trend information is sent to each robot respectively. The target movement trend information is used to control each robot to move from the current position of each robot to the initial position of the target ship, so that each robot can act on the target.
- Ships and target movement trend information are also used to control each robot to move from the initial position to the preset berth, so that each robot can berth the target ship to the preset berth.
- the accuracy of calculating the target movement trend information is higher, which enables the berthing control of the target ship.
- the process is more precise and requires less labor cost.
- the design of the robot using a cylindrical outer shell can make the resistance of the robot to water isotropic, thereby reducing the difficulty of controlling the speed and direction of the robot.
- omnidirectional movement of the robot can be achieved.
- the number of propellers can be three, two or more than three. The specific number of propellers is not limited. If the number of propellers is three, the three propellers can be at an angle of 120 degrees to each other. Three propellers working together can allow the robot to change its position without changing its heading angle, which increases the robot's flexibility, and three propellers are a cost-effective quantity.
- modular production of robots improves the efficiency of robot production.
- each module in the robot can be the position described above, or it can be other assembly positions, and the details are not limited here.
- the embodiment of the present application also provides a computer-readable storage medium.
- the ship auxiliary berthing control device includes:
- the memory is a short-term storage memory or a persistent storage memory
- the central processing unit is configured to communicate with the memory and execute instruction operations in the memory to perform the aforementioned methods in the embodiments shown in FIGS. 2 and 3 .
- Embodiments of the present application also provide a computer-readable storage medium.
- the computer-readable storage medium includes instructions. When the instructions are run on a computer, they cause the computer to execute the method in the embodiments shown in FIG. 2 and FIG. 3 .
- Embodiments of the present application also provide a computer program product containing instructions.
- the computer program product When the computer program product is run on a computer, it causes the computer to execute the method in the embodiments shown in FIG. 2 and FIG. 3 .
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the above integrated units can be implemented in the form of hardware or software functional units.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种船舶辅助停泊控制方法以及相关设备,该方法包括:获取水域中机器人编队的各机器人的当前位置,根据各机器人的当前位置,确定机器人编队的当前位置,判断机器人编队的当前位置是否符合目标导航点的位置条件,若否,则根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息,分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,还用于控制各机器人从初始位置移动至预设泊位。该方法使得停泊控制精准,人力成本小。
Description
本申请实施例涉及船舶辅助停泊控制领域,更具体的,是船舶辅助停泊控制方法、船舶辅助停泊控制设备以及计算机可读存储介质。
常见的船舶辅助停泊控制方法是,通过两个或两个以上的拖船将目标船舶停泊至预设泊位,具体地,根据牵引力控制方法分配两个或两个以上的拖船牵引目标船舶的牵引力和牵引力角度,根据目标导航点的位置和拖船的位置人工预判拖船应该移动的速度和方向,并通过人工控制拖船移动的速度和方向,该目标导航点的位置可以为目标船舶的初始位置或预设泊位的位置。
但是上述控制方法中,人工预判拖船的速度和方向精确度较低使得目标船舶的停泊控制过程不够精准,且需要耗费较大的人力成本。
发明内容
本申请实施例提供了一种船舶辅助停泊控制方法、船舶辅助停泊控制设备以及计算机可读存储介质,能够在保证目标船舶的停泊控制过程较精准,且需要耗费的人力成本较小的情况下,控制目标船舶的停泊。
第一方面,本申请实施例提供了一种船舶辅助停泊控制方法,包括:
获取所述水域中所述机器人编队的各机器人的当前位置;
根据所述各机器人的当前位置,确定所述机器人编队的当前位置;
判断所述机器人编队的当前位置是否符合目标导航点的位置条件,所述目标导航点为所述目标船舶从初始位置至所述预设泊位的预设运动路线所包括的位置点;
若否,则根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息;
分别向所述各机器人发送所述各机器人各自的目标移动趋势信息,其中所述目标移动趋势信息用于控制所述各机器人从所述各机器人的当前位置移动至所述目标船舶的初始位置,以使所述各机器人作用至所述目标船舶,所述目标移动趋势信息还用于控制所述各机器人从所述初始位置移动至所述预设泊位,以使所述各机器人将所述目标船舶停泊至所述预设泊位。
可选的,所述根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息,包括:
根据所述机器人编队的当前位置矢量和所述目标导航点的位置矢量确定所述各机器人的导航移动趋势单位矢量;
根据所述机器人编队的当前位置矢量和所述各机器人的当前位置矢量确定所述各机器人各自的组队移动趋势单位矢量;
针对所述各机器人,根据所述导航移动趋势单位矢量和所述组队移动趋势单位矢量确定所述目标移动趋势矢量。
可选的,所述根据所述机器人编队的当前位置矢量和所述目标导航点的位置矢量确定 所述各机器人的导航移动趋势单位矢量,包括:
将所述目标导航点的位置矢量减去所述机器人编队的当前位置矢量,得到所述各机器人的导航移动趋势矢量;
将所述导航移动趋势矢量与所述导航移动趋势矢量的模相比,得到所述导航移动趋势单位矢量。
可选的,所述根据所述机器人编队的当前位置矢量和所述各机器人的当前位置矢量确定所述各机器人各自的组队移动趋势单位矢量,包括:
根据所述机器人编队的当前位置矢量与预设编队队形的队形信息计算所述各机器人各自的组队位置矢量;
针对所述各机器人,将所述组队位置矢量减去所述各机器人对应的当前位置矢量,得到组队移动趋势矢量;
将所述组队移动趋势矢量与所述组队移动趋势矢量的模相比,得到所述组队移动趋势单位矢量。
可选的,所述预设编队队形为与所述机器人编队中各机器人的个数对应的正多边形,所述队形信息包含所述正多边形的边数和所述正多边形的边长,所述机器人编队的位置矢量为所述正多边形中心点的位置矢量,
根据所述机器人编队的当前位置矢量与预设编队队形的队形信息计算所述各机器人各自的组队位置矢量,包括:
根据所述正多边形中心点的当前位置矢量、所述正多边形的边数和所述正多边形的边长计算所述各机器人各自的组队位置矢量。
可选的,所述根据所述导航移动趋势单位矢量和所述组队移动趋势单位矢量确定所述目标移动趋势矢量,包括:
将所述导航移动趋势单位矢量和所述组队移动趋势单位矢量进行加权计算,得到所述目标移动趋势单位矢量;
根据所述目标移动趋势单位矢量确定所述目标移动趋势矢量。
可选的,所述根据所述各机器人的当前位置,确定所述机器人编队的当前位置,包括:
将所述各机器人的当前位置矢量与所述各机器人的个数的比值,作为所述机器人编队的当前位置矢量。
第二方面,本申请实施例提供了一种机器人,其特征在于,包括:圆柱形外壳体、底盘、控制器、若干螺旋桨和通信模块,所述控制器位于所述底盘上部,所述若干螺旋桨与所述底盘连结,所述若干螺旋桨位于所述的底盘下部;
所述通信模块,用于向船舶辅助停泊控制设备发送各机器人的当前位置,以供所述船舶辅助停泊控制设备根据所述各机器人的当前位置,确定所述机器人编队的当前位置;判断所述机器人编队的当前位置是否符合目标导航点的位置条件,所述目标导航点为所述目标船舶从初始位置至所述预设泊位的预设运动路线所包括的位置点;若否,则根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息;
所述控制器,用于接收所述船舶辅助停泊控制设备发送的所述各机器人的目标移动趋 势信息,其中所述目标移动趋势信息用于控制所述各机器人从所述各机器人的当前位置移动至所述目标船舶的初始位置,以使所述各机器人作用至所述目标船舶,所述目标移动趋势信息还用于控制所述各机器人从所述初始位置移动至所述预设泊位,以使所述各机器人将所述目标船舶停泊至所述预设泊位。
第三方面,本申请实施例提供了一种船舶辅助停泊控制设备,其特征在于,包括:中央处理器、存储器及通信设备;
所述存储器为短暂存储存储器或持久存储存储器;
所述中央处理器配置为与所述存储器通信,并执行所述存储器中的指令操作以执行前述船舶辅助停泊控制方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质包括指令,当指令在计算机上运行时,使得计算机执行前述船舶辅助停泊控制方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行前述船舶辅助停泊控制方法。
从以上技术方案可以看出,本申请实施例具有以下优点:可以获取水域中机器人编队的各机器人的当前位置,根据各机器人的当前位置,确定机器人编队的当前位置,判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,若否,则根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息,分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,以使各机器人作用至目标船舶,目标移动趋势信息还用于控制各机器人从初始位置移动至预设泊位,以使各机器人将目标船舶停泊至预设泊位,计算目标移动趋势信息的准确度较高使得目标船舶的停泊控制过程较精准,且需要耗费的人力成本较小。
图1为本申请实施例公开的一种船舶辅助停泊控制系统的架构示意图;
图2为本申请实施例公开的一种船舶辅助停泊控制方法的流程示意图;
图3为本申请实施例公开的另一种船舶辅助停泊控制方法的流程示意图;
图4为本申请实施例公开的一种机器人编队的队形为一条线段的实际场景示意图;
图5为本申请实施例公开的一种机器人和目标船舶的运行轨迹示意图;
图6为本申请实施例公开的一种机器人的结构示意图。
本申请实施例提供了一种船舶辅助停泊控制方法、船舶辅助停泊控制设备以及计算机可读存储介质,能够在保证目标船舶的停泊控制过程较精准,且需要耗费的人力成本较小的情况下,控制目标船舶的停泊。
请参阅图1,本申请实施例中船舶辅助停泊控制系统的架构包括:船舶辅助停泊控制设备101以及机器人102。
在目标船舶的停泊控制过程中,船舶辅助停泊控制设备101可以和组成机器人编队的机器人102连接。船舶辅助停泊控制设备101可以获取各个机器人102发送的各机器人各 自的当前位置,船舶辅助停泊控制设备101可以根据各机器人各自的当前位置进行一系列的数据处理,得到各机器人各自的目标移动趋势信息,可以将各机器人各自的目标移动趋势信息发送至各机器人102,各机器人102可以根据各自的目标移动趋势信息作用至目标船舶,将目标船舶停泊至预设泊位。
基于图1所示的船舶辅助停泊控制系统,请参阅图2,图2为本申请实施例公开的一种船舶辅助停泊控制方法的流程示意图,方法包括:
201、获取水域中机器人编队的各机器人的当前位置。
本实施例中,水域中的各机器人之间通过连结物进行连结,各机器人设置有各自的通信模块,船舶辅助停泊控制设备设置有通信设备,各机器人与船舶辅助停泊控制设备之间可以通过通信协议进行信息的发送和接收,在目标船舶的停泊控制过程中,船舶辅助停泊控制设备可以获取水域中机器人编队的各机器人的当前位置。其中,通信协议可以是蓝牙协议,还可以是用户数据报协议,还可以是其他通信协议,具体此处不做限定。
202、根据各机器人的当前位置,确定机器人编队的当前位置。
获取水域中机器人编队的各机器人的当前位置之后,可以根据各机器人的当前位置,确定机器人编队的当前位置。可以理解的是,机器人编队具有一定规则的队形,因此各机器人的当前位置对机器人编队的当前位置的确定具有一定的意义。
203、判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点。
确定机器人编队的当前位置之后,可以判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,若机器人编队的当前位置不符合目标导航点的位置条件,则执行步骤204和步骤205,若机器人编队的当前位置符合目标导航点的位置条件,则不执行任何步骤。
需要理解的是,目标导航点的位置为预先设置的,可以是通过人工确定的目标导航点,还可以是通过机器计算确定的目标导航点,还可以是通过其他方式确定的,具体确定目标导航点的确定方式不做限定。其次,目标导航点可以是一个位置点,比如可以是目标船舶的初始位置或者是预设泊位,还可以是两个位置点,比如可以是目标船舶的初始位置和预设泊位,还可以是多个位置点,这些位置点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,具体目标导航点的个数不做限定。可以理解的是,判断机器人编队的当前位置是否符合目标导航点的位置条件的方式可以有多种,比如,可以是判断机器人编队的当前位置是否等于目标导航点的位置,还可以是判断机器人编队的当前位置是否近似等于目标导航点的位置,还可以是其他可以确定机器人编队达到目标导航点的其他判断方式,具体此处不做限定。
204、根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息。
可以根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息。
具体的,各机器人在水域中可以保持机器人编队的队形,还可以从各机器人的当前位置移动至目标船舶的初始位置,还可以从初始位置移动至预设泊位,而根据机器人编队的 当前位置和各机器人的当前位置对各机器人保持机器人编队的队形有一定的意义,根据机器人编队的当前位置和目标导航点的位置对各机器人的当前位置移动至目标船舶的初始位置及可以从初始位置移动至预设泊位有一定的意义,因此,根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置来确定各机器人各自的目标移动趋势信息具有一定的意义。
205、分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,以使各机器人作用至目标船舶,目标移动趋势信息还用于控制各机器人从初始位置移动至预设泊位,以使各机器人将目标船舶停泊至预设泊位。
确定各机器人各自的目标移动趋势信息之后,可以通过通信协议分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,以使各机器人作用至目标船舶,目标移动趋势信息还用于控制各机器人从初始位置移动至预设泊位,以使各机器人将目标船舶停泊至预设泊位。可以理解的是,目标移动趋势信息代表了机器人的方向和速度。
本申请实施例中,可以获取水域中机器人编队的各机器人的当前位置,根据各机器人的当前位置,确定机器人编队的当前位置,判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,若否,则根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息,分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,以使各机器人作用至目标船舶,目标移动趋势信息还用于控制各机器人从初始位置移动至预设泊位,以使各机器人将目标船舶停泊至预设泊位,计算目标移动趋势信息的准确度较高使得目标船舶的停泊控制过程较精准,且需要耗费的人力成本较小。
本申请实施例中,根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息的方式可以有多种,基于图2所示的船舶辅助停泊控制方法,下面对其中的一种方式的实施例进行描述:
本实施例中,可以获取水域中机器人编队的各机器人的当前位置,可以根据各机器人的当前位置,确定机器人编队的当前位置,可以判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,本实施例中的上述步骤与图2所示实施例中的步骤201、步骤202和步骤203类似,具体此处不再赘述。具体的,可以获取水域中机器人编队的各机器人的当前位置矢量,可以将各机器人的当前位置矢量与各机器人的个数的比值,作为机器人编队的当前位置矢量,可以判断机器人编队的当前位置矢量是否近似等于目标导航点的位置矢量。值得一提的是,机器人编队的各机器人可以通过连结物进行连结,连结物可以是绳子,各机器人通过绳子将目标船舶拖至预设泊位,连结物还可以是一张网,各机器人可以将网张开,从而可以将目标船舶包围,并拖至预设泊位,连结物还可以是其他可以将目标船舶拖至预设泊位的物体,具体此处不做限定。
举个例子,可以获取水域中机器人编队的各机器人通过通信协议发送的各机器人的当 前位置矢量
其中i代表机器人的编号,各机器人的当前位置矢量
代表在世界坐标系O
WX
WY
W下各机器人的当前位置,将各机器人的当前位置矢量
与各机器人的个数n的比值作为机器人编队的当前位置矢量
具体的公式可以是
其中,n可以为大于或等于1的整数,预先设置的目标导航点的位置矢量为
j代表目标导航点的编号,可以判断
是否近似等于
若机器人编队的当前位置不符合目标导航点的位置条件则请参阅图3,图3为本申请实施例公开的一种确定各机器人各自的目标移动趋势信息的流程示意图,方法包括:
301、根据机器人编队的当前位置矢量和目标导航点的位置矢量确定各机器人的导航移动趋势单位矢量。
获取水域中机器人编队的各机器人的当前位置矢量之后,可以根据机器人编队的当前位置矢量和目标导航点的位置矢量确定各机器人的导航移动趋势单位矢量。具体的,可以将目标导航点的位置矢量减去机器人编队的当前位置矢量,得到各机器人的导航移动趋势矢量,再将导航移动趋势矢量与导航移动趋势矢量的模相比,得到导航移动趋势单位矢量。接本实施例举的例子,计算导航移动趋势单位矢量
的公式可以为
可以理解的是,除了上述根据机器人编队的当前位置矢量和目标导航点的位置矢量确定各机器人的导航移动趋势单位矢量之外,还可以是其他根据机器人编队的当前位置矢量和目标导航点的位置矢量确定各机器人的导航移动趋势单位矢量的方式,具体此处不做限定。
302、根据机器人编队的当前位置矢量和各机器人的当前位置矢量确定各机器人各自的组队移动趋势单位矢量。
获取水域中机器人编队的各机器人的当前位置矢量之后,可以根据机器人编队的当前位置矢量和各机器人的当前位置矢量确定各机器人各自的组队移动趋势单位矢量。具体的,可以根据机器人编队的当前位置矢量与预设编队队形的队形信息计算各机器人各自的组队位置矢量,针对各机器人,将组队位置矢量减去各机器人对应的当前位置矢量,得到组队移动趋势矢量,将组队移动趋势矢量与组队移动趋势矢量的模相比,得到组队移动趋势单位矢量,还可以是其他根据机器人编队的当前位置矢量和各机器人的当前位置矢量确定各机器人各自的组队移动趋势单位矢量的方式,具体此处不做限定。
更具体的,根据机器人编队的当前位置矢量与预设编队队形的队形信息计算各机器人各自的组队位置矢量的方式有多种,下面分别进行描述:
A:若机器人编队的队形为多边形,则可以是根据正多边形中心点的当前位置矢量、正多边形的边数和正多边形的边长计算各机器人各自的组队位置矢量,其中预设编队队形为与机器人编队中各机器人的个数对应的正多边形,队形信息包含正多边形的边数和正多边形的边长,机器人编队的位置矢量为正多边形中心点的位置矢量。在实际操作过程中,可以将各机器人的个数、机器人编队的位置矢量和正多边形的边长输入公式
中,得到各机器人各自的组队位置矢量,其中i代表机器人的编号,公式涉及的原理可以是针对正n边形,经过正n边形的中心点,将正n边形等分成n个全 等的三角形,针对每一个全等三角形,根据余弦定理和正n边形的中心点的位置矢量,可以确定各机器人各自的组队位置矢量。可以理解的是,除了这种实现方式之外,还可以是其他根据各机器人的个数、机器人编队的位置矢量和正多边形的边长确定各机器人各自的组队位置矢量的方式,具体此处不做限定。
B:若机器人编队的队形为一条线段,则可以确定线段的中心点的当前位置矢量为机器人编队的当前位置矢量,可以确定中心点将线段等间距划分为两个小线段,小线段的个数为2。可以根据线段的中心点的当前位置矢量,小线段的个数2及小线段的边长输入公式
中,得到各机器人各自的组队位置矢量,其中i代表机器人的编号,公式涉及的原理可以是针对小线段,根据距离公式和线段的中心点的当前位置矢量,可以确定各机器人各自的组队位置矢量。可以理解的是,除了这种实现方式之外,还可以是其他根据各机器人的个数、机器人编队的位置矢量和正多边形的边长确定各机器人各自的组队位置矢量的方式,具体此处不做限定。请参阅图4,图4为本申请实施例公开的一种机器人编队的队形为一条线段的实际场景示意图,图中的两个机器人通过连结物进行连结,并保持队形,连结物的中心点的位置矢量即为机器人编队的中心点的位置矢量。
可以理解的是,除了上述根据机器人编队的当前位置矢量和各机器人的当前位置矢量确定各机器人各自的组队移动趋势单位矢量的方式之外,还可以是其他根据机器人编队的当前位置矢量和各机器人的当前位置矢量确定各机器人各自的组队移动趋势单位矢量的方式,具体此处不做限定。
303、针对各机器人,根据导航移动趋势单位矢量和组队移动趋势单位矢量确定目标移动趋势矢量。
确定各机器人的导航移动趋势单位矢量和各机器人各自的组队移动趋势单位矢量之后,可以针对各机器人,根据导航移动趋势单位矢量和组队移动趋势单位矢量确定目标移动趋势矢量。具体的,可以将导航移动趋势单位矢量和组队移动趋势单位矢量进行加权计算,得到目标移动趋势单位矢量,根据目标移动趋势单位矢量确定目标移动趋势矢量,可以将目标移动趋势单位矢量作为目标移动趋势矢量,也可以将目标移动趋势单位矢量与可调节的常数的乘积作为目标移动趋势矢量,还可以是其他根据目标移动趋势单位矢量确定目标移动趋势矢量的方式,具体此处不做限定。接本实施例举的例子,可以将导航移动趋势单位矢量和组队移动趋势单位矢量输入公式
中,得到目标移动趋势矢量。可以理解的是,除了上述实现方式之外,还可以是其他根据导航移动趋势单位矢量和组队移动趋势单位矢量确定目标移动趋势矢量的方式,具体此处不做限定。请结合图4参阅图5,图5为本申请实施例公开的一种机器人和目标船舶的运行轨迹,图5中的六个小图中较长的两条线为两个机器人的运行轨迹,较短的一条线段为目标船舶的运行轨迹。
值得一提的是,本实施例中,当机器人编队的位置符合目标导航点的位置
条件时,可以更新目标导航点,使得机器人可以前往下一目标导航点
具体的,可以是机器人编队的位置矢量近似等于目标船舶的初始位置矢量,这时,机器人编队可以包围目标船舶,则可以更新下一目标导航点,以使各机器人从目标船舶的初始位置移动至预设泊位,以将 目标船舶停泊至预设泊位。可以理解的是,上述只是一个例子,还可以是其他更新目标导航点,使得机器人可以前往下一目标导航点的情况,具体此处不做限定。其中,目标船舶可以是无人船,还可以是受损的船只,还可以是其他船只,具体此处不做限定。
本实施例中,可以获取水域中机器人编队的各机器人的当前位置,根据各机器人的当前位置,确定机器人编队的当前位置,判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,若否,则根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息,分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,以使各机器人作用至目标船舶,目标移动趋势信息还用于控制各机器人从初始位置移动至预设泊位,以使各机器人将目标船舶停泊至预设泊位。计算目标移动趋势信息的准确度较高使得目标船舶的停泊控制过程较精准,且需要耗费的人力成本较小。其次,通过判断机器人编队的当前位置是否符合目标导航点的位置条件来确定机器人编队是否到达目标导航点,提升了将目标船舶停泊至预设泊位的效率。
上面对本申请实施例中的船舶辅助停泊控制方法进行了描述,下面对本申请实施例中的机器人进行描述,请参阅图6,本申请实施例中的机器人一个实施例包括:
圆柱形外壳体、底盘、控制器、若干螺旋桨和通信模块,所述控制器位于所述底盘上部,所述若干螺旋桨与所述底盘连结,所述若干螺旋桨位于所述的底盘下部;
所述通信模块,用于向船舶辅助停泊控制设备发送各机器人的当前位置,以供所述船舶辅助停泊控制设备根据所述各机器人的当前位置,确定所述机器人编队的当前位置;判断所述机器人编队的当前位置是否符合目标导航点的位置条件,所述目标导航点为所述目标船舶从初始位置至所述预设泊位的预设运动路线所包括的位置点;若否,则根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息;
所述控制器,用于接收所述船舶辅助停泊控制设备发送的所述各机器人的目标移动趋势信息,其中所述目标移动趋势信息用于控制所述各机器人从所述各机器人的当前位置移动至所述目标船舶的初始位置,以使所述各机器人作用至所述目标船舶,所述目标移动趋势信息还用于控制所述各机器人从所述初始位置移动至所述预设泊位,以使所述各机器人将所述目标船舶停泊至所述预设泊位。
本申请实施例中,可以获取水域中机器人编队的各机器人的当前位置,根据各机器人的当前位置,确定机器人编队的当前位置,判断机器人编队的当前位置是否符合目标导航点的位置条件,目标导航点为目标船舶从初始位置至预设泊位的预设运动路线所包括的位置点,若否,则根据机器人编队的当前位置、目标导航点的位置及各机器人的当前位置,确定各机器人各自的目标移动趋势信息,分别向各机器人发送各机器人各自的目标移动趋势信息,其中目标移动趋势信息用于控制各机器人从各机器人的当前位置移动至目标船舶的初始位置,以使各机器人作用至目标船舶,目标移动趋势信息还用于控制各机器人从初始位置移动至预设泊位,以使各机器人将目标船舶停泊至预设泊位,计算目标移动趋势信息的准确度较高使得目标船舶的停泊控制过程较精准,且需要耗费的人力成本较小。
值得一提的是,机器人使用圆柱形外壳体的设计可以使得机器人受到水的阻力的性质 为各向同性,从而可以减小机器人控制速度和方向的难度。其次,可以实现机器人的全向移动。其次,螺旋桨的个数可以是三个、还可以是两个或大于三个,具体螺旋桨的个数不做限定,若螺旋桨的个数为三个,这三个螺旋桨可以互为120度角,三个螺旋桨一起工作可以使得机器人在不改变自身航向角的前提下,改变自身位置,增加了机器人的灵活性,且三个是性价比较高的数量。其次,将机器人进行模块化生产,提高了生产机器人的效率。再者,除了使用圆柱形外壳体外,还可以是半球形外壳体,还可以是任何各向对称的设计,具体此处不做限定。机器人中的各个模块的装配位置可以是上述描述的位置,还可以是其他装配位置,具体此处不做限定。
本申请实施例还提供了一种计算机可读存储介质,船舶辅助停泊控制设备包括:
中央处理器、存储器及通信设备;
所述存储器为短暂存储存储器或持久存储存储器;
所述中央处理器配置为与所述存储器通信,并执行所述存储器中的指令操作以执行前述图2和图3所示实施例中的方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质包括指令,当指令在计算机上运行时,使得计算机执行前述图2和图3所示实施例中的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行前述图2和图3所示实施例中的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码 的介质。
Claims (10)
- 一种船舶辅助停泊控制方法,其特征在于,用于控制机器人编队以将水域中的目标船舶停泊至预设泊位,所述方法包括:获取所述水域中所述机器人编队的各机器人的当前位置;根据所述各机器人的当前位置,确定所述机器人编队的当前位置;判断所述机器人编队的当前位置是否符合目标导航点的位置条件,所述目标导航点为所述目标船舶从初始位置至所述预设泊位的预设运动路线所包括的位置点;若否,则根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息;分别向所述各机器人发送所述各机器人各自的目标移动趋势信息,其中所述目标移动趋势信息用于控制所述各机器人从所述各机器人的当前位置移动至所述目标船舶的初始位置,以使所述各机器人作用至所述目标船舶,所述目标移动趋势信息还用于控制所述各机器人从所述初始位置移动至所述预设泊位,以使所述各机器人将所述目标船舶停泊至所述预设泊位。
- 根据权利要求1所述的船舶辅助停泊控制方法,其特征在于,所述根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息,包括:根据所述机器人编队的当前位置矢量和所述目标导航点的位置矢量确定所述各机器人的导航移动趋势单位矢量;根据所述机器人编队的当前位置矢量和所述各机器人的当前位置矢量确定所述各机器人各自的组队移动趋势单位矢量;针对所述各机器人,根据所述导航移动趋势单位矢量和所述组队移动趋势单位矢量确定所述目标移动趋势矢量。
- 根据权利要求2所述的船舶辅助停泊控制方法,其特征在于,所述根据所述机器人编队的当前位置矢量和所述目标导航点的位置矢量确定所述各机器人的导航移动趋势单位矢量,包括:将所述目标导航点的位置矢量减去所述机器人编队的当前位置矢量,得到所述各机器人的导航移动趋势矢量;将所述导航移动趋势矢量与所述导航移动趋势矢量的模相比,得到所述导航移动趋势单位矢量。
- 根据权利要求2所述的船舶辅助停泊控制方法,其特征在于,所述根据所述机器人编队的当前位置矢量和所述各机器人的当前位置矢量确定所述各机器人各自的组队移动趋势单位矢量,包括:根据所述机器人编队的当前位置矢量与预设编队队形的队形信息计算所述各机器人各自的组队位置矢量;针对所述各机器人,将所述组队位置矢量减去所述各机器人对应的当前位置矢量,得到组队移动趋势矢量;将所述组队移动趋势矢量与所述组队移动趋势矢量的模相比,得到所述组队移动趋势 单位矢量。
- 根据权利要求4所述的船舶辅助停泊控制方法,其特征在于,所述预设编队队形为与所述机器人编队中各机器人的个数对应的正多边形,所述队形信息包含所述正多边形的边数和所述正多边形的边长,所述机器人编队的位置矢量为所述正多边形中心点的位置矢量;所述根据所述机器人编队的当前位置矢量与预设编队队形的队形信息计算所述各机器人各自的组队位置矢量,包括:根据所述正多边形中心点的当前位置矢量、所述正多边形的边数和所述正多边形的边长计算所述各机器人各自的组队位置矢量。
- 根据权利要求2至5中任一项所述的船舶辅助停泊控制方法,其特征在于,所述根据所述导航移动趋势单位矢量和所述组队移动趋势单位矢量确定所述目标移动趋势矢量,包括:将所述导航移动趋势单位矢量和所述组队移动趋势单位矢量进行加权计算,得到所述目标移动趋势单位矢量;根据所述目标移动趋势单位矢量确定所述目标移动趋势矢量。
- 根据权利要求2至5中任一项所述的船舶辅助停泊控制方法,其特征在于,所述根据所述各机器人的当前位置,确定所述机器人编队的当前位置,包括:将所述各机器人的当前位置矢量与所述各机器人的个数的比值,作为所述机器人编队的当前位置矢量。
- 一种机器人,其特征在于,包括:圆柱形外壳体、底盘、控制器、若干螺旋桨和通信模块,所述控制器位于所述底盘上部,所述若干螺旋桨与所述底盘连结,所述若干螺旋桨位于所述的底盘下部;所述通信模块,用于向船舶辅助停泊控制设备发送各机器人的当前位置,以供所述船舶辅助停泊控制设备根据所述各机器人的当前位置,确定所述机器人编队的当前位置;判断所述机器人编队的当前位置是否符合目标导航点的位置条件,所述目标导航点为所述目标船舶从初始位置至所述预设泊位的预设运动路线所包括的位置点;若否,则根据所述机器人编队的当前位置、所述目标导航点的位置及所述各机器人的当前位置,确定所述各机器人各自的目标移动趋势信息;所述控制器,用于接收所述船舶辅助停泊控制设备发送的所述各机器人的目标移动趋势信息,其中所述目标移动趋势信息用于控制所述各机器人从所述各机器人的当前位置移动至所述目标船舶的初始位置,以使所述各机器人作用至所述目标船舶,所述目标移动趋势信息还用于控制所述各机器人从所述初始位置移动至所述预设泊位,以使所述各机器人将所述目标船舶停泊至所述预设泊位。
- 一种船舶辅助停泊控制设备,其特征在于,包括:中央处理器、存储器及通信设备;所述存储器为短暂存储存储器或持久存储存储器;所述中央处理器配置为与所述存储器通信,并执行所述存储器中的指令操作以执行权利要求1至7中任意一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所 述指令在计算机上运行时,使得计算机执行如权利要求1至7中任意一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/085719 WO2023193218A1 (zh) | 2022-04-08 | 2022-04-08 | 船舶辅助停泊控制方法以及相关设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/085719 WO2023193218A1 (zh) | 2022-04-08 | 2022-04-08 | 船舶辅助停泊控制方法以及相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023193218A1 true WO2023193218A1 (zh) | 2023-10-12 |
Family
ID=88243770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/085719 WO2023193218A1 (zh) | 2022-04-08 | 2022-04-08 | 船舶辅助停泊控制方法以及相关设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023193218A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110059206A (ko) * | 2009-11-27 | 2011-06-02 | 김영복 | 터그보트를 이용한 접안선박 유도시스템 |
CN106896815A (zh) * | 2017-03-16 | 2017-06-27 | 南京信息工程大学 | 一种无人船自动停泊系统及方法 |
CN109153433A (zh) * | 2016-03-31 | 2019-01-04 | A.P.莫勒-马斯克公司 | 用于操作一艘或更多艘拖船的方法和系统 |
CN109683608A (zh) * | 2018-12-05 | 2019-04-26 | 广州海荣实业有限公司 | 控制船舶停泊的方法、装置、系统和计算机设备 |
CN110716555A (zh) * | 2019-11-13 | 2020-01-21 | 武汉理工大学 | 一种智能泊船机器人集成系统及泊船方法 |
CN111221336A (zh) * | 2020-01-19 | 2020-06-02 | 智慧航海(青岛)科技有限公司 | 一种船端辅助靠离泊系统 |
CN111966106A (zh) * | 2020-08-26 | 2020-11-20 | 智慧航海(青岛)科技有限公司 | 一种基于船-船协同的智能船舶编队靠泊的方法 |
CN112509378A (zh) * | 2020-11-16 | 2021-03-16 | 安徽科微智能科技有限公司 | 一种无人船智能停泊系统及其控制方法 |
CN112711262A (zh) * | 2021-01-07 | 2021-04-27 | 上海索尼克游艇码头有限公司 | 一种水上度假村房艇自动停泊方法及系统 |
-
2022
- 2022-04-08 WO PCT/CN2022/085719 patent/WO2023193218A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110059206A (ko) * | 2009-11-27 | 2011-06-02 | 김영복 | 터그보트를 이용한 접안선박 유도시스템 |
CN109153433A (zh) * | 2016-03-31 | 2019-01-04 | A.P.莫勒-马斯克公司 | 用于操作一艘或更多艘拖船的方法和系统 |
CN106896815A (zh) * | 2017-03-16 | 2017-06-27 | 南京信息工程大学 | 一种无人船自动停泊系统及方法 |
CN109683608A (zh) * | 2018-12-05 | 2019-04-26 | 广州海荣实业有限公司 | 控制船舶停泊的方法、装置、系统和计算机设备 |
CN110716555A (zh) * | 2019-11-13 | 2020-01-21 | 武汉理工大学 | 一种智能泊船机器人集成系统及泊船方法 |
CN111221336A (zh) * | 2020-01-19 | 2020-06-02 | 智慧航海(青岛)科技有限公司 | 一种船端辅助靠离泊系统 |
CN111966106A (zh) * | 2020-08-26 | 2020-11-20 | 智慧航海(青岛)科技有限公司 | 一种基于船-船协同的智能船舶编队靠泊的方法 |
CN112509378A (zh) * | 2020-11-16 | 2021-03-16 | 安徽科微智能科技有限公司 | 一种无人船智能停泊系统及其控制方法 |
CN112711262A (zh) * | 2021-01-07 | 2021-04-27 | 上海索尼克游艇码头有限公司 | 一种水上度假村房艇自动停泊方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3553622B1 (en) | Control device, control method, and program recording medium | |
CN111971726B (zh) | 船舶航行支援装置 | |
CN113618739B (zh) | 一种机器人动态避障方法、装置和机器人 | |
CN113110521B (zh) | 移动机器人路径规划控制方法及其控制装置、存储介质 | |
CN110262492A (zh) | 一种无人艇的实时避碰和目标跟踪方法 | |
JP7044061B2 (ja) | 移動体、移動体制御システム、移動体制御方法、インターフェース装置、およびプログラム | |
CN110488843A (zh) | 避障方法、移动机器人及计算机可读存储介质 | |
WO2023221963A1 (zh) | 跟随误差确定方法、装置、设备及存储介质 | |
WO2022247203A1 (zh) | 自动驾驶车辆的控制方法、装置、设备以及存储介质 | |
WO2021037071A1 (zh) | 一种飞行控制方法及相关装置 | |
WO2024041036A1 (zh) | 三向叉车的控制方法、装置、设备以及存储介质 | |
WO2023193218A1 (zh) | 船舶辅助停泊控制方法以及相关设备 | |
WO2022174545A1 (zh) | 路径优化方法、水下航行器以及计算机可读存储介质 | |
CN111045433A (zh) | 一种机器人的避障方法、机器人及计算机可读存储介质 | |
CN113295159B (zh) | 端云融合的定位方法、装置和计算机可读存储介质 | |
JP7014289B2 (ja) | 移動体制御装置、移動体、移動体制御システム、移動体制御方法および移動体制御プログラム | |
CN117406749A (zh) | 一种无人船自主避障分场景决策规划方法 | |
WO2023241556A1 (zh) | 泊车控制方法、装置、设备和存储介质 | |
JP2019074918A (ja) | 制御装置、移動体、及び移動体の分散制御プログラム | |
CN115407785B (zh) | 一种船舶避碰控制方法、装置、设备及存储介质 | |
CN111881742A (zh) | 一种基于深度强化学习的自动寻路方法及寻路小车设备 | |
CN115981313A (zh) | 机器人路径规划方法、系统、电子设备及存储介质 | |
CN110253575B (zh) | 一种机器人抓取的方法、终端及计算机可读存储介质 | |
WO2021196983A1 (zh) | 一种自运动估计的方法及装置 | |
CN113885490B (zh) | 基于柔性物理连接的双无人艇编队控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22936160 Country of ref document: EP Kind code of ref document: A1 |