WO2023191609A1 - Process for producing zif-8, the chitosan@zif-8 composite thereof, and the use of zif-8 and of the chitosan@zif-8 composite thereof - Google Patents

Process for producing zif-8, the chitosan@zif-8 composite thereof, and the use of zif-8 and of the chitosan@zif-8 composite thereof Download PDF

Info

Publication number
WO2023191609A1
WO2023191609A1 PCT/MA2023/050003 MA2023050003W WO2023191609A1 WO 2023191609 A1 WO2023191609 A1 WO 2023191609A1 MA 2023050003 W MA2023050003 W MA 2023050003W WO 2023191609 A1 WO2023191609 A1 WO 2023191609A1
Authority
WO
WIPO (PCT)
Prior art keywords
zif
chitosan
composite
acetic acid
zinc oxide
Prior art date
Application number
PCT/MA2023/050003
Other languages
French (fr)
Inventor
Elhankari SAMIR
Moutanassim LAHBIB
Original Assignee
Universite Mohammed VI Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Mohammed VI Polytechnique filed Critical Universite Mohammed VI Polytechnique
Publication of WO2023191609A1 publication Critical patent/WO2023191609A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • the invention firstly relates to a process for producing ZIF-8 in a single step, from ZnO and in the presence of acetic acid.
  • the invention also relates to a process for producing the chitosan@ZIF-8 composite in a single step, from ZnO and in the presence of acetic acid, leading in particular to obtaining said composite in the form of beads.
  • the invention further relates to the use of the above-mentioned products in the treatment of industrial effluents, in particular effluents loaded with toxic products or phosphates.
  • the invention will be defined further in the claims and other characteristics and advantages thereof will appear on reading the detailed description which follows.
  • Figure 1 is a schematic representation of an in-situ synthesis of ZIF-8 and its composite CS@ZIF-8 using ZnO and acetic acid as additive, as well as their use in the adsorption of phosphates.
  • Figure 2 represents the ray diffractograms of different materials in the form of powder and beads obtained in water and methanol (MeOH)
  • Figure 3 represents the FT-IR spectra of different materials in the form of powder and beads obtained under different conditions
  • Figure 4 represents the SEM images of the ZIF-8 materials in the form of powder (a and b) and of the CS@ZIF-8 composite in the form of beads (c and d) obtained in MeOH.
  • Figure 5 presents the rate of phosphate removal by ZIF-8 and CS@ZIF-8 (water) and CS@ZIF-8 (methanol) and the kinetics of phosphate adsorption by the CS@ZIF- composite. 8 in the form of balls (b).
  • the process according to the invention first comprises the synthesis of ZIF-8 in powder form (route a) by a complete conversion of zinc oxide (ZnO) into ZIF-8, in presence of a small amount of acetic acid to completely dissociate the zinc ions
  • SUBSTITUTE SHEET (RULE 26) (Zr>2+) which then transform into ZIF-8, in a single step, after the addition of 2-methylimidazole in the presence of water and methanol, under mild temperatures.
  • chitosan@ZIF-8 beads (path b) were synthesized using chitosan, still using ZnO as a metal precursor in the presence of acetic acid, which plays a dual role in dissociating both chitosan and ZnO.
  • the obtained materials were then used in the adsorption of phosphates from an aqueous solution and the bead shaping facilitated the material recovery process, while maintaining its high adsorption capacity (path c).
  • Example 1 ZIF-8 nanoparticle synthesis conditions.
  • Example lb Methanol as solvent ⁇ ZIF-8 methanol ⁇
  • the solution was poured dropwise into 1 M NaOH. After 20 min, the CS/Zn2+ microspheres were removed and washed 3 times with deionized water to remove excess NaOH, and then they were soaked in 0.0243 mole (2 g) of 2-methylimidazole dissolved in 24 ml of water for 24 h at 120 °C to form the chitosan@ZIF-8 composite. Then the balls
  • the X-ray diffractograms (XRD) of different solids synthesized: ZIF-8 (water); ZIF-8 (methanol) synthesized in water and MeOH respectively, include the characteristic peaks of the simulated ZIF-8 material reported in the literature and absence of the ZnO peaks. Indeed, the patterns generated by the ordered structure of ZIF-8 particles between 5° and 40° can be easily observed. The relative intensities of the prominent peaks including 011, 002, 112, 022, 013 and 222 correspond to the positions of the angle of incidence, respectively.
  • the bands at 678 and 742 cm were attributed to the out-of-plane mixing of 2-methylhlimidazole rings while the specific modes in the range of 850 cm-i and 996 cm-i and 1302 cm -i due to deformation in the imidazole plane.
  • the absence of a broad and strong band in the interval 2200-3250 cm-i (hydrogen bond N-H ••• N) and at 1843 cm-i (resonance between the out-of-plane deformation of N-H--N and the stretching vibration of N-H) proves that the imidazole is indeed deprotonated (2-mlm) in the ZIF-8 spectra.
  • the stretching vibration of the coordination bung of Zn-N appeared at 424 cm-i. Therefore, these results imply that Znz+ and 2-mlm- were involved in the ZIF-8 particle network.
  • the SEM images presented in Figure 4 (c and d) of the CS@ZI F-8 composite synthesized in MeOH show interfacial interactions between pure CS and ZIF-8 in the CS@ZIF8 composite as well as the size of the spherical beads. formed which is of the order of 2mm.
  • the surface of pure Chitosan material shows a smooth pattern, however after hybridization with ZIF-8 the surface becomes rough due to the attachment of numerous ZIF-8 nanoparticles with dodecahedral morphology and SOD-like crystal structure. of ZIF-8 which are clearly visible on the surface and in the cracks created during the formation of the composite.
  • the device according to the invention is particularly intended for the treatment of industrial effluents such as the adsorption of phosphates and other nutritional or toxic elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention describes a process which makes it possible to synthesise the compound ZIF-8 and the chitosan@ZIF-8 composite thereof, in particular in bead form, from zinc oxide and in the presence of acetic acid. The present invention also relates to the industrial use of the compound ZIF-8 and the chitosan@ZIF-8 composite thereof. This process comprises the following steps: • dissolving ZnO in the presence of a small amount of acetic acid • adding 2-methylimidazole in the presence of water and/or methanol at mild temperatures, and recovering ZIF-8 at this stage, or • forming chitosan@ZIF-8 beads from chitosan, still using ZnO as a metal precursor of ZIF-8, in the presence of acetic acid.

Description

Description Description
Procédé de production de zif-8, de son composite chitosan@zif-8 et leur application Process for producing zif-8, its composite chitosan@zif-8 and their application
BREVE DESCRIPTION DE L'INVENTION BRIEF DESCRIPTION OF THE INVENTION
L'invention a premièrement pour objet un procédé de production de ZIF-8 en une seule étape, à partir de ZnO et en présence d'acide acétique. The invention firstly relates to a process for producing ZIF-8 in a single step, from ZnO and in the presence of acetic acid.
L'invention a également pour objet un procédé de production du composite chitosan@ZIF-8 en une seule étape, à partir de ZnO et en présence d'acide acétique, conduisant notamment à l'obtention dudit composite sous forme de billes. The invention also relates to a process for producing the chitosan@ZIF-8 composite in a single step, from ZnO and in the presence of acetic acid, leading in particular to obtaining said composite in the form of beads.
L'invention a en outre pour objet l'utilisation des produits susnommés dans le traitement d'effluents industriels, notamment des effluents chargés en produits toxiques ou en phosphates. L'invention sera définie plus avant dans les revendications et d'autres caractéristiques et avantages de celle-ci apparaîtront à la lecture de la description détaillée qui suit. The invention further relates to the use of the above-mentioned products in the treatment of industrial effluents, in particular effluents loaded with toxic products or phosphates. The invention will be defined further in the claims and other characteristics and advantages thereof will appear on reading the detailed description which follows.
BREVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
Pour la bonne compréhension de l'invention on se reportera aux dessins annexés dans lesquels : For a good understanding of the invention, reference will be made to the appended drawings in which:
La figure 1 est une représentation schématique d'une synthèse in-situ de ZIF-8 et de son composite CS@ZIF-8 utilisant ZnO et l'acide acétique, comme additif, ainsi que leur utilisation dans l'adsorption des phosphates Figure 1 is a schematic representation of an in-situ synthesis of ZIF-8 and its composite CS@ZIF-8 using ZnO and acetic acid as additive, as well as their use in the adsorption of phosphates.
La figure 2 représente les diffractogrammes des rayons de différents matériaux sous forme de poudre et de billes obtenus dans l'eau et le méthanol (MeOH) Figure 2 represents the ray diffractograms of different materials in the form of powder and beads obtained in water and methanol (MeOH)
La figure 3 représente les spectres FT-IR de différents matériaux sous forme de poudre et de billes obtenus dans différentes conditions Figure 3 represents the FT-IR spectra of different materials in the form of powder and beads obtained under different conditions
La figure 4 représente les images MEB des matériaux ZIF-8 sous forme de poudre (a et b) et de composite CS@ZIF-8 sous forme de billes (c et d) obtenues dans MeOH. Figure 4 represents the SEM images of the ZIF-8 materials in the form of powder (a and b) and of the CS@ZIF-8 composite in the form of beads (c and d) obtained in MeOH.
La figure 5 présente le taux d'élimination de phosphate par le ZIF-8 et le CS@ZIF-8 (water) et CS@ZIF-8 (méthanol) et la cinétique d'adsorption des phosphates par le composite CS@ZIF-8 sous forme de billes (b). Figure 5 presents the rate of phosphate removal by ZIF-8 and CS@ZIF-8 (water) and CS@ZIF-8 (methanol) and the kinetics of phosphate adsorption by the CS@ZIF- composite. 8 in the form of balls (b).
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
En référence à la figure 1, le procédé conforme à l'invention comprend d'abord la synthèse de ZIF- 8 sous forme de poudre (voie a) par une conversion complète d'oxyde de zinc (ZnO) en ZIF-8, en présence d'une faible quantité d'acide acétique pour dissocier complètement les ions de zinc With reference to Figure 1, the process according to the invention first comprises the synthesis of ZIF-8 in powder form (route a) by a complete conversion of zinc oxide (ZnO) into ZIF-8, in presence of a small amount of acetic acid to completely dissociate the zinc ions
1 1
FEUILLE DE REMPLACEMENT (REGLE 26) (Zr>2+) qui se transforment ensuite en ZIF-8, en une seule étape, après l'addition de 2- méthylimidazole en présence d'eau et de méthanol, sous des températures douces. SUBSTITUTE SHEET (RULE 26) (Zr>2+) which then transform into ZIF-8, in a single step, after the addition of 2-methylimidazole in the presence of water and methanol, under mild temperatures.
Ensuite, des billes de chitosan@ZIF-8 (voie b) ont été synthétisées à l'aide de chitosan, en utilisant toujours ZnO comme précurseur métallique en présence d'acide acétique, qui joue un double rôle en dissociant à la fois le chitosan et ZnO. Next, chitosan@ZIF-8 beads (path b) were synthesized using chitosan, still using ZnO as a metal precursor in the presence of acetic acid, which plays a dual role in dissociating both chitosan and ZnO.
Les matériaux obtenus ont été ensuite utilisés dans l'adsorption des phosphates à partir d'une solution aqueuse et la mise en forme en bille a facilité le processus de récupération du matériau, tout en maintenant sa capacité d'adsorption élevée (voie c). The obtained materials were then used in the adsorption of phosphates from an aqueous solution and the bead shaping facilitated the material recovery process, while maintaining its high adsorption capacity (path c).
Les exemples ci-dessous illustrent certaines des mises en oeuvre de l'invention, sans pour autant la restreindre aux conditions techniques exposées. The examples below illustrate some of the implementations of the invention, without restricting it to the technical conditions set out.
EXEMPLES EXAMPLES
Exemple 1 - Les conditions de synthèse nanoparticules de ZIF-8. Example 1 - ZIF-8 nanoparticle synthesis conditions.
Exemple la : H2O en tant que solvant {ZIF-8 eau} Example: H2O as solvent {ZIF-8 water}
0,004 mole (0,333 g) d'oxyde de zinc (ZnO) ont été dissous dans 0,114 mole (2,05 ml) de HzO et 0,0085 mole (0,487 ml) d'acide acétique jusqu'à la dissolution totale de ZnO et obtention d'une solution transparente. 0.004 mole (0.333 g) of zinc oxide (ZnO) was dissolved in 0.114 mole (2.05 ml) of HzO and 0.0085 mole (0.487 ml) of acetic acid until ZnO was completely dissolved and obtaining a transparent solution.
0,064 mole (5,254 g) de 2-méthylimidazole a été dissoute dans 8,9 ml de la triéthylamine (TEA) et 20 ml H2O. Ensuite les deux solutions ont été mélangées et agitées durant 30 min à température ambiante. Le solide obtenu est séparé du mélange réactionnel par centrifugeuse, puis lavé 3 fois avec 15 ml de l'eau distillée et séché à 60 °C pendant 12h. 0.064 mole (5.254 g) of 2-methylimidazole was dissolved in 8.9 ml of triethylamine (TEA) and 20 ml H2O. Then the two solutions were mixed and stirred for 30 min at room temperature. The solid obtained is separated from the reaction mixture by centrifuge, then washed 3 times with 15 ml of distilled water and dried at 60°C for 12 hours.
Exemple lb : Méthanol en tant que solvant {ZIF-8 méthanol} Example lb: Methanol as solvent {ZIF-8 methanol}
0,004 mole (0,333 g) d'oxyde de zinc (ZnO) a été dissoute dans 0,114 mole (2,05 ml) de H2O et 0,0085 mole (0,487 ml) d'acide acétique jusqu'à la dissolution total de ZnO et obtention d'une solution transparente. 0.004 mole (0.333 g) of zinc oxide (ZnO) was dissolved in 0.114 mole (2.05 ml) of H2O and 0.0085 mole (0.487 ml) of acetic acid until the total dissolution of ZnO and obtaining a transparent solution.
0,016 mole (1,313 g) de 2-méthylimidazole a été dissoute dans 40 ml de méthanol pour générer une autre solution claire. Ensuite, les deux solutions ont été mélangées et agitées pendant 5 min. La solution a été mise en repos à température ambiante pendant 24 heures. Après cela, le solide obtenu est séparé du mélange réactionnel par centrifugeuse, puis lavé 3 fois avec 15 ml du méthanol et séché à 60 °C pendant 12h. 0.016 mole (1.313 g) of 2-methylimidazole was dissolved in 40 ml of methanol to generate another clear solution. Then, the two solutions were mixed and stirred for 5 min. The solution was allowed to stand at room temperature for 24 hours. After that, the solid obtained is separated from the reaction mixture by centrifuge, then washed 3 times with 15 ml of methanol and dried at 60 °C for 12 h.
Exemple 2 - Les conditions de préparation de CS@ZIF-8 Example 2 - Conditions for preparing CS@ZIF-8
0,00001 mole (0,6 g) de chitosan a été dissoute dans une solution composée de 0,5 ml d'acide acétique et 24 ml H2O. 0.00001 mole (0.6 g) of chitosan was dissolved in a solution consisting of 0.5 ml acetic acid and 24 ml H2O.
De son côté, 0,004 mole (0,333 g) d'oxyde de zinc (ZnO) a été dissoute dans une solution composée de 0,0087 mole (0,5 ml) d'acide acétique et 2,05 ml de H2O sous agitation, puis les deux solutions ont été mélangées et maintenues sous agitation pendant encore 30 min pour former une solution homogène. For its part, 0.004 mole (0.333 g) of zinc oxide (ZnO) was dissolved in a solution composed of 0.0087 mole (0.5 ml) of acetic acid and 2.05 ml of H2O with stirring, then the two solutions were mixed and kept stirring for another 30 min to form a homogeneous solution.
Ensuite, la solution a été versée goutte à goutte dans NaOH 1 M. Après 20 min, les microsphères de CS/Zn2+ ont été retirées et lavées 3 fois avec de l'eau déionisée pour éliminer l'excès de NaOH, puis elles ont été trempées dans 0,0243 mole (2 g) de 2-méthylimidazole dissoute dans 24 ml d'eau pendant 24h à 120 °C pour former le composite chitosane@ZIF-8. Ensuite, les billes Then, the solution was poured dropwise into 1 M NaOH. After 20 min, the CS/Zn2+ microspheres were removed and washed 3 times with deionized water to remove excess NaOH, and then they were soaked in 0.0243 mole (2 g) of 2-methylimidazole dissolved in 24 ml of water for 24 h at 120 °C to form the chitosan@ZIF-8 composite. Then the balls
2 2
FEUILLE DE REMPLACEMENT (REGLE 26) composites CS@ZIF-8 obtenues ont été lavées 3 fois avec de l'eau désionisée, puis lyophilisées pendant 2 jours pour obtenir des billes composites CS@ZIF-8. SUBSTITUTE SHEET (RULE 26) CS@ZIF-8 composite beads obtained were washed 3 times with deionized water, then freeze-dried for 2 days to obtain CS@ZIF-8 composite beads.
La même stratégie opérationnelle a été suivie pour la synthèse du composite CS@ZIF-8 dans le méthanol dans les conditions suivantes : 1,32 g (0,0161 mole) de 2-méthylimidazole ; 40 ml de méthanol ; température ambiante ; 24h. The same operational strategy was followed for the synthesis of the CS@ZIF-8 composite in methanol under the following conditions: 1.32 g (0.0161 mole) of 2-methylimidazole; 40 ml of methanol; ambient temperature ; 24h.
RESULTATS ANALYTIQUES ET OBSERVATIONS Y RELATIVES ANALYTICAL RESULTS AND RELATED OBSERVATIONS
Tel que représenté sur la figure 2, les diffractogrammes des rayons X (DRX) de différents solides synthétisés : ZIF-8 (water) ; ZIF-8 (méthanol) synthétisés dans l'eau et MeOH respectivement, comprennent les pics caractéristiques du matériau ZIF-8 simulé reporté dans la littérature et absence des pics de ZnO. En effet, les motifs générés par la structure ordonnée des particules de ZIF-8 entre 5° et 40° peuvent être facilement observés. Les intensités relatives des pics proéminents, notamment 011, 002, 112, 022, 013 et 222 correspondent respectivement aux positions de l'angle d'incidence As shown in Figure 2, the X-ray diffractograms (XRD) of different solids synthesized: ZIF-8 (water); ZIF-8 (methanol) synthesized in water and MeOH respectively, include the characteristic peaks of the simulated ZIF-8 material reported in the literature and absence of the ZnO peaks. Indeed, the patterns generated by the ordered structure of ZIF-8 particles between 5° and 40° can be easily observed. The relative intensities of the prominent peaks including 011, 002, 112, 022, 013 and 222 correspond to the positions of the angle of incidence, respectively.
2 thêta 7,3° ; 10,35° ; 12,7° ; 14,8° ; 16,4° ; 18° qui sont en bon accord avec celles trouvées dans la littérature. Ceci confirme la structure sodalite (SOD), qui est la structure typique du ZIF-8. De plus, les pics intenses des deux matériaux indiquent un haut degré de cristallinité des particules. D'autre part, les pics attribués au ZnO ont totalement disparu, indiquant une conversion complète de l'oxyde de Zinc et la formation d'une phase pure de ZIF-8. 2 theta 7.3°; 10.35°; 12.7°; 14.8°; 16.4°; 18° which are in good agreement with those found in the literature. This confirms the sodalite (SOD) structure, which is the typical structure of ZIF-8. Furthermore, the intense peaks of both materials indicate a high degree of crystallinity of the particles. On the other hand, the peaks attributed to ZnO completely disappeared, indicating a complete conversion of Zinc oxide and the formation of a pure phase of ZIF-8.
Concernant la synthèse des composites CS@ZIF-8 préparés dans le méthanol et l'eau, les DRX de ces matériaux obtenus comparés avec celui de ZIF-8 simulé montrent la présence des intensités relatives des pics aux mêmes positions et en bon accord avec celui de ZIF-8 en plus de la disparition des phases de ZnO et qu'aucune impureté n'a été détectée, expliquant ainsi la formation des phases ZIF-8 dans les deux conditions. L'élargissement des pics de ces matériaux peut être due à la dispersion des particules de MOFs dans la matrice du biopolymère. Concerning the synthesis of CS@ZIF-8 composites prepared in methanol and water, the XRD of these materials obtained compared with that of simulated ZIF-8 show the presence of the relative intensities of the peaks at the same positions and in good agreement with that of ZIF-8 in addition to the disappearance of the ZnO phases and that no impurities were detected, thus explaining the formation of the ZIF-8 phases in both conditions. The broadening of the peaks of these materials may be due to the dispersion of the MOFs particles in the biopolymer matrix.
Dans le mode de fonctionnement des spectres FT-IR de différents matériaux présentés dans la figure 3, les spectres {(ZIF-8 (water) ; ZIF-8 (méthanol)} comparés à celui de 2-méthylimidazole (figure 3a) démontrent que tous les modes caractéristiques de la structure chimique d'imidazole de ZIF-8 sont présents. Cela inclut le mode observé à 3133 cm-i (vibration d'élongation du C-H aromatique), 2930 cm-i (vibration d'élongation du C-H aliphatique) et 1568 cm-i (vibration d'élongation du C=N).i3 En outre, trois vibrations individuelles 1422 cm-i, 1141 cm-i et 996 cm-i, qui sont tous associées à la vibration d'élongation C-N, ont également été trouvées. En outre, les bandes à 678 et 742 cm lont été attribuées au mélange hors du plan des cycles 2-métyhlimidazole tandis que les modes spécifiques dans la gamme de 850 cm-i et 996 cm-i et 1302 cm-i dus à la déformation dans le plan d'imidazole. is Cependant l'absence d'une bande large et forte dans l'intervalle 2200-3250 cm-i (liaison hydrogène N-H ••• N) et à 1843 cm-i (résonance entre la déformation hors du plan de N-H--N et la vibration d'élongation de N-H) prouve que l'imidazole est effectivement déprotoné (2-mlm ) dans les spectres de ZIF-8. De plus, la vibration d'élongation de la bonde de coordination de Zn-N est apparue à 424 cm-i. Par conséquence, ces résultats impliquent que le Znz+ et le 2-mlm- ont été impliqué dans le réseau des particules de ZIF-8. In the mode of operation of the FT-IR spectra of different materials shown in Figure 3, the spectra {(ZIF-8 (water); ZIF-8 (methanol)} compared to that of 2-methylimidazole (Figure 3a) demonstrate that All modes characteristic of the imidazole chemical structure of ZIF-8 are present. This includes the mode observed at 3133 cm-i (stretching vibration of aromatic C-H), 2930 cm-i (stretching vibration of aliphatic C-H ) and 1568 cm-i (elongation vibration of C=N).i3 In addition, three individual vibrations 1422 cm-i, 1141 cm-i and 996 cm-i, all of which are associated with the C-N elongation vibration , were also found. Furthermore, the bands at 678 and 742 cm were attributed to the out-of-plane mixing of 2-methylhlimidazole rings while the specific modes in the range of 850 cm-i and 996 cm-i and 1302 cm -i due to deformation in the imidazole plane. However, the absence of a broad and strong band in the interval 2200-3250 cm-i (hydrogen bond N-H ••• N) and at 1843 cm-i (resonance between the out-of-plane deformation of N-H--N and the stretching vibration of N-H) proves that the imidazole is indeed deprotonated (2-mlm) in the ZIF-8 spectra. In addition, the stretching vibration of the coordination bung of Zn-N appeared at 424 cm-i. Therefore, these results imply that Znz+ and 2-mlm- were involved in the ZIF-8 particle network.
Les spectres FT-IR des composites CS@ZIF-8 sont présentés dans la figure 3b Concernant les fonctions caractéristiques de CS, les groupes OH- vibrent sur une large bande de 3 433 cm-i qui se superpose à la vibration d'élongation NH-, tandis que le mode vibrationnel caractéristique à 1660 The FT-IR spectra of the CS@ZIF-8 composites are shown in Figure 3b Concerning the characteristic functions of CS, the OH- groups vibrate over a broad band of 3433 cm-i which is superimposed on the NH stretching vibration -, while the characteristic vibrational mode at 1660
3 3
FEUILLE DE REMPLACEMENT (REGLE 26) cm-i correspond aux vibrations du groupe NH2-.21 Autrement, le mode d'absorption à 2 929 cm-i est attribué à la vibration d'élongation de la liaison C-H de 2-méthylimidazole du ZIF-8. Le pic d'absorption à 1584 cm-i appartient aux vibrations C=N, cependant que, les pics à 1146 et 990 cm- i sont associés à la vibration d'élongation C-N. De plus, la vibration d'élongation de la liaison Zn-N est apparue à 424 cm-i. Ces résultats ont prouvé que le réseau Zn-lmidazole dans le composite CS@ZIF-8 est bien formé avec succès. SUBSTITUTE SHEET (RULE 26) cm-i corresponds to the vibrations of the NH2- group.21 Otherwise, the absorption mode at 2929 cm-i is attributed to the stretching vibration of the CH bond of 2-methylimidazole of ZIF-8. The absorption peak at 1584 cm-i belongs to the C=N vibrations, while the peaks at 1146 and 990 cm-i are associated with the CN elongation vibration. In addition, the stretching vibration of the Zn-N bond appeared at 424 cm-i. These results proved that the Zn-lmidazole network in the CS@ZIF-8 composite is well formed successfully.
Les images MEB de la figure 4 (a et b), concernant la morphologie de ZIF-8 préparé en MeOH sous forme de poudre montrent des particules uniformes en dodécaèdre rhombique, typique pour ZIF- 8 et une taille moyenne de cristaux de 300 ±70 nm. Les images MEB présentées dans la figure 4 (c et d) du composite CS@ZI F-8 synthétisé en MeOH montrent des interactions interfaciales entre le CS pure et le ZIF-8 dans le composite CS@ZIF8 ainsi que la taille des billes sphériques formés qui est de l'ordre de 2mm. La surface du matériau Chitosan pur présente un motif lisse, cependant après l'hybridation avec le ZIF-8 la surface devient rugueuse en raison de la l'attachement de nombreuses nanoparticules de ZIF-8 avec une morphologie dodécaédrique et une structure cristalline de type SOD de ZIF-8 qui sont clairement visibles à la surface et dans les fissures crées lors de la formation du composite. The SEM images in Figure 4 (a and b), concerning the morphology of ZIF-8 prepared in MeOH in powder form, show uniform particles in rhombic dodecahedron, typical for ZIF-8 and an average crystal size of 300 ±70 nm. The SEM images presented in Figure 4 (c and d) of the CS@ZI F-8 composite synthesized in MeOH show interfacial interactions between pure CS and ZIF-8 in the CS@ZIF8 composite as well as the size of the spherical beads. formed which is of the order of 2mm. The surface of pure Chitosan material shows a smooth pattern, however after hybridization with ZIF-8 the surface becomes rough due to the attachment of numerous ZIF-8 nanoparticles with dodecahedral morphology and SOD-like crystal structure. of ZIF-8 which are clearly visible on the surface and in the cracks created during the formation of the composite.
APPLICATION INDUSTRIELLE INDUSTRIAL APPLICATION
Le dispositif selon l'invention est particulièrement destiné à un traitement des effluents industriels tel que l'adsorption des phosphates et d'autres éléments nutritionnels ou toxiques. The device according to the invention is particularly intended for the treatment of industrial effluents such as the adsorption of phosphates and other nutritional or toxic elements.
Ainsi, des tests préliminaires ont été effectués sur l'adsorption de phosphate avec différents matériaux. Les conditions suivantes ont été appliquées : 5 ml de solution contenant 1 mg/l de phosphore est mise en contact avec les adsorbants (20 mg pour les composites CS@ZIF-8 et 5 mg pour le ZIF-8 poudre) à température ambiante pendant 6h. Les résultats illustrés dans le graphe de la figure 5a, montrent que le ZIF-8 poudre ainsi que les composites CS@ZI F-8 (water) et CS@ZIF- 8 (méthanol) sous forme de billes présentent une meilleure capacité d'adsorption, avec un taux d'élimination de phosphore qui atteint 96,05 %, 95,7 % et 94,98 respectivement. Thus, preliminary tests were carried out on the adsorption of phosphate with different materials. The following conditions were applied: 5 ml of solution containing 1 mg/l of phosphorus is brought into contact with the adsorbents (20 mg for the CS@ZIF-8 composites and 5 mg for the ZIF-8 powder) at room temperature for 6am. The results illustrated in the graph in Figure 5a show that the ZIF-8 powder as well as the composites CS@ZI F-8 (water) and CS@ZIF-8 (methanol) in the form of beads have a better capacity to adsorption, with a phosphorus removal rate reaching 96.05%, 95.7% and 94.98 respectively.
Par la suite, nous avons réalisé l'étude cinétique d'adsorption des phosphates par CS@ZIF-8. Comme le montre la figure 5b qui représente l'évolution d'adsorption en fonction du temps de contact dans la solution de phosphate contenant lmg/1 en P, il y a une évolution rapide de la courbe pendant les premières minutes, qui peut être expliquée par le fait qu'au début de l'adsorption il y a plus de sites actifs d'adsorption sur la phase solide, qui se saturent de plus en plus pendant les premières 100 minutes, avec un maximum d'extraction après un temps de contact de 120 minutes. Subsequently, we carried out the kinetic study of phosphate adsorption by CS@ZIF-8. As shown in Figure 5b which represents the evolution of adsorption as a function of contact time in the phosphate solution containing lmg/1 in P, there is a rapid evolution of the curve during the first minutes, which can be explained by the fact that at the start of adsorption there are more active adsorption sites on the solid phase, which become more and more saturated during the first 100 minutes, with maximum extraction after a contact time of 120 minutes.
REFERENCES
Figure imgf000006_0001
REFERENCES
Figure imgf000006_0001
2. CN 109433032 A - Preparation method of ZIF-8 membrane The Lens - Free & Open Patent and Scholarly Search. The Lens - Free & Open Patent and Scholarly Search https://www.lens.org/lens. 2. CN 109433032 A - Preparation method of ZIF-8 membrane The Lens - Free & Open Patent and Scholarly Search. The Lens - Free & Open Patent and Scholarly Search https://www.lens.org/lens.
4 4
FEUILLE DE REMPLACEMENT (REGLE 26) 3. US 2013/0313193 Al - Metal-Organic Framework Supported on Porous Polymer - The Lens - Free & Open Patent and Scholarly Search, https://www.lens.org/lens/patent/174-470-825-320- 778/frontpage. SUBSTITUTE SHEET (RULE 26) 3. US 2013/0313193 Al - Metal-Organic Framework Supported on Porous Polymer - The Lens - Free & Open Patent and Scholarly Search, https://www.lens.org/lens/patent/174-470-825-320- 778/frontpage.
4. Zhan, G. & Zeng, H. C. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. Chem. Commun. 53, 72-81 (2017). 4. Zhan, G. & Zeng, H. C. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. Chem. Common. 53, 72-81 (2017).
5 5
FEUILLE DE REMPLACEMENT (REGLE 26) SUBSTITUTE SHEET (RULE 26)

Claims

REVENDICATIONS
1. Procédé de production de ZIF-8, caractérisé en ce qu'il comprend : 1. Process for producing ZIF-8, characterized in that it comprises:
1) dissolution complète d'oxide de zinc dans l'acide acétique aqueux ; 1) complete dissolution of zinc oxide in aqueous acetic acid;
2) addition à la solution obtenue selon étape 1 de 2-méthyl-imidazole, en milieu aqueux et/ou alcoolique ; et 2) addition to the solution obtained according to step 1 of 2-methyl-imidazole, in an aqueous and/or alcoholic medium; And
3) récupération du ZIF-8 par filtration du mélange réactionnel obtenu selon étape 2.3) recovery of ZIF-8 by filtration of the reaction mixture obtained according to step 2.
2. Procédé de production d'un composite chitosan@ZIF-8, caractérisé en ce qu'il comprend : 2. Process for producing a chitosan@ZIF-8 composite, characterized in that it comprises:
1) dissolution complète d'un mélange d'oxide de zinc et de chitosan dans l'acide acétique1) complete dissolution of a mixture of zinc oxide and chitosan in acetic acid
2) addition à la solution obtenue selon étape 1 de 2-méthyl-imidazole, en milieu aqueux et/ou alcoolique ; et 2) addition to the solution obtained according to step 1 of 2-methyl-imidazole, in an aqueous and/or alcoholic medium; And
3) récupération du composite chitosan@ZIF-8 par filtration du mélange réactionnel obtenu selon étape 2. 3) recovery of the chitosan@ZIF-8 composite by filtration of the reaction mixture obtained according to step 2.
3. Procédé selon l'une au moins des revendications 1 et 2, caractérisé en ce l'oxide de zinc et l'acide acétique sont en rapport molaire environ 1 : 2. 3. Method according to at least one of claims 1 and 2, characterized in that the zinc oxide and the acetic acid have a molar ratio of approximately 1:2.
4. Procédé selon l'une au moins des revendications 2 et 3, caractérisé en ce l'oxide de zinc et le chitosan sont en rapport molaire environ 400 :1. 4. Method according to at least one of claims 2 and 3, characterized in that the zinc oxide and chitosan have a molar ratio of approximately 400:1.
5. Procédé selon l'une au moins des revendications 1 à 4, caractérisé en ce que l'étape 2 s'effectue en présence d'eau, de méthanol ou d'un mélange des deux. 5. Method according to at least one of claims 1 to 4, characterized in that step 2 is carried out in the presence of water, methanol or a mixture of the two.
6. Procédé selon l'une au moins des revendications 1 à 5, caractérisé en ce que l'addition de 2- méthyl-imidazole à la solution obtenue selon étape 1 est réalisée à température ambiante et à 120°C dans le MeOH et l'eau respectivement. 6. Method according to at least one of claims 1 to 5, characterized in that the addition of 2-methyl-imidazole to the solution obtained according to step 1 is carried out at room temperature and at 120°C in MeOH and l water respectively.
7. Procédé selon l'une au moins des revendications 2 à 6, caractérisé en ce que le composite chitosan@ZIF-8 est obtenu sous forme de billes de taille millimétrique. 7. Method according to at least one of claims 2 to 6, characterized in that the chitosan@ZIF-8 composite is obtained in the form of millimeter-sized beads.
8. Utilisation de ZIFD-8, respectivement du composite chitosan@ZIF-8 tels qu'obtenus au moyen du procédé selon l'une au moins des revendications 1 à 7 dans le traitement des effluents industriels. 8. Use of ZIFD-8, respectively of the chitosan@ZIF-8 composite as obtained by means of the process according to at least one of claims 1 to 7 in the treatment of industrial effluents.
9. Utilisation selon la revendication 8 dans le traitement d'effluents industriels chargés en phosphates 9. Use according to claim 8 in the treatment of industrial effluents loaded with phosphates
PCT/MA2023/050003 2022-03-29 2023-03-29 Process for producing zif-8, the chitosan@zif-8 composite thereof, and the use of zif-8 and of the chitosan@zif-8 composite thereof WO2023191609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA56279A MA56279A1 (en) 2022-03-29 2022-03-29 PROCESS FOR PRODUCING ZIF-8, ITS COMPOSITE CHITOSAN@ZIF-8 AND THEIR APPLICATION
MAMA56279 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023191609A1 true WO2023191609A1 (en) 2023-10-05

Family

ID=88203219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2023/050003 WO2023191609A1 (en) 2022-03-29 2023-03-29 Process for producing zif-8, the chitosan@zif-8 composite thereof, and the use of zif-8 and of the chitosan@zif-8 composite thereof

Country Status (2)

Country Link
MA (1) MA56279A1 (en)
WO (1) WO2023191609A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117467152A (en) * 2023-12-28 2024-01-30 苏州大学 Method for preparing ZIF-8 material in large quantity by colloid mill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107715843A (en) * 2017-09-30 2018-02-23 华南理工大学 A kind of method of the materials of micro-diplopore ZIF 8 in Fast back-projection algorithm at normal temperatures
CN113019332A (en) * 2021-03-01 2021-06-25 齐鲁工业大学 Chitosan/ZIF-8 composite material and preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107715843A (en) * 2017-09-30 2018-02-23 华南理工大学 A kind of method of the materials of micro-diplopore ZIF 8 in Fast back-projection algorithm at normal temperatures
CN113019332A (en) * 2021-03-01 2021-06-25 齐鲁工业大学 Chitosan/ZIF-8 composite material and preparation method and application thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BAZZI LOUBNA ET AL: "Ultrasound and microwave assisted-synthesis of ZIF-8 from zinc oxide for the adsorption of phosphate", RESULTS IN ENGINEERING, vol. 13, 1 March 2022 (2022-03-01), pages 100378, XP093079487, ISSN: 2590-1230, DOI: 10.1016/j.rineng.2022.100378 *
BRIAN R. PIMENTEL ET AL: "Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations", CHEMSUSCHEM, vol. 7, no. 12, 31 December 2014 (2014-12-31), DE, pages 3202 - 3240, XP055337971, ISSN: 1864-5631, DOI: 10.1002/cssc.201402647 *
LIU LIJUAN ET AL: "In situ Preparation of Chitosan/ZIF-8 Composite Beads for Highly Efficient Removal of U(VI)", FRONTIERS IN CHEMISTRY, vol. 7, 6 September 2019 (2019-09-06), XP093079486, DOI: 10.3389/fchem.2019.00607 *
SCHEJN ALEKSANDRA ET AL: "Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations", CRYSTENGCOMM, vol. 16, no. 21, 13 March 2014 (2014-03-13), pages 4493 - 4500, XP093080346, Retrieved from the Internet <URL:https://pubs.rsc.org/en/content/articlepdf/2014/ce/c3ce42485e> [retrieved on 20230908], DOI: 10.1039/C3CE42485E *
SHAMS MAHMOUD ET AL: "Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: Modeling, mechanical agitation versus sonication", JOURNAL OF MOLECULAR LIQUIDS, vol. 224, 1 December 2016 (2016-12-01), NL, pages 151 - 157, XP093080166, ISSN: 0167-7322, DOI: 10.1016/j.molliq.2016.09.059 *
YUE YANFENG ET AL: "Nanostructured Zeolitic Imidazolate Frameworks Derived from Nanosized Zinc Oxide Precursors", CRYSTAL GROWTH & DESIGN, ASC WASHINGTON DC, US, vol. 13, no. 3, 6 March 2013 (2013-03-06), pages 1002 - 1005, XP008165015, ISSN: 1528-7483, [retrieved on 20130212], DOI: 10.1021/CG4002362 *
YUE YANFENG ET AL: "Supporting Information- Nanostructured Zeolitic Imidazolate Frameworks Derived from Nanosized Zinc Oxide Precursors", CRYSTAL GROWTH & DESIGN, vol. 13, no. 3, 6 March 2013 (2013-03-06), US, pages 1 - 10, XP093079483, ISSN: 1528-7483, DOI: 10.1021/cg4002362 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117467152A (en) * 2023-12-28 2024-01-30 苏州大学 Method for preparing ZIF-8 material in large quantity by colloid mill
CN117467152B (en) * 2023-12-28 2024-04-12 苏州大学 Method for preparing ZIF-8 material in large quantity by colloid mill

Also Published As

Publication number Publication date
MA56279A1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
Liu et al. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols
CN109763333B (en) Method for preparing metal organic framework through modified carrier
US9289746B2 (en) Amine grafted chitosan nanofiber, method for preparation thereof and its use in heavy metal adsorption
HUE028683T2 (en) Method for the preparation of metal organic frameworks
WO2023191609A1 (en) Process for producing zif-8, the chitosan@zif-8 composite thereof, and the use of zif-8 and of the chitosan@zif-8 composite thereof
EP3086874B1 (en) Method of preparing an adsorbent material shaped in the absence of binder and method of extracting lithium from saline solutions using said material
CN110505906A (en) The uninanned platform of the acid mediated conjugation porous polymer network of methylsulphur
CN112316745B (en) Metal-organic molecule cage complex mixed matrix membrane and preparation method and application thereof
CN106987018B (en) Phenolic resin-graphene aerogel and preparation and application thereof
EP3464181B1 (en) Process for preparing an adsorbent material and process for extracting lithium using said material
CN102361848B (en) Solvent-free production of magnesium formate based porous metal-organic frame material
CN101259385B (en) Quaterisation chitosan penetrating and evaporating film, preparation and application thereof
CN114642975B (en) Metal-organic framework mixed matrix membrane and preparation method and application thereof
CN114602336B (en) Mixed matrix membrane, steam-induced in-situ synthesis method and method for synthesizing mixed matrix membrane in H 2 /CO 2 Use in separations
Yin et al. Amino-acid-substituted polyacetylene-based chiral core–shell microspheres: Helix structure induction and application for chiral resolution and adsorption
CN115894955A (en) Zirconium-based metal organic framework material, and synthesis method and application thereof
BE1000129A3 (en) Catalyst components for catalyst polymerization of alpha-olefins and method of making.
CN113877543A (en) Chiral metal organic framework functionalized composite material and preparation method and application thereof
CN109174189B (en) PCN-222(Co) @ TpPa-1-based porous crystalline core-shell hybrid material and preparation method and application thereof
JP4965013B2 (en) Method for producing spray granules containing riboflavin
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
CN115501769B (en) Separation membrane for mixture of propylene and nitrogen and preparation method thereof
CN114797984B (en) Heterogeneous chiral bifunctional catalyst and preparation method and application thereof
CN113817161B (en) Process for the preparation of amide-linked covalent organic frameworks
CN115318254B (en) Sodium lignin sulfonate/chitosan @ ZIF-8 composite material and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23718069

Country of ref document: EP

Kind code of ref document: A1