WO2023191463A1 - Air-conditioning filter system for removing harmful substances - Google Patents

Air-conditioning filter system for removing harmful substances Download PDF

Info

Publication number
WO2023191463A1
WO2023191463A1 PCT/KR2023/004133 KR2023004133W WO2023191463A1 WO 2023191463 A1 WO2023191463 A1 WO 2023191463A1 KR 2023004133 W KR2023004133 W KR 2023004133W WO 2023191463 A1 WO2023191463 A1 WO 2023191463A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning filter
air conditioning
catalyst
filter system
Prior art date
Application number
PCT/KR2023/004133
Other languages
French (fr)
Korean (ko)
Inventor
강신현
임성환
Original Assignee
주식회사 퀀텀캣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230039898A external-priority patent/KR20230139804A/en
Application filed by 주식회사 퀀텀캣 filed Critical 주식회사 퀀텀캣
Publication of WO2023191463A1 publication Critical patent/WO2023191463A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present invention relates to an air conditioning filter system, and more specifically, to continuously remove harmful gases present in an enclosed space through an air conditioning filter unit connected to the enclosed space, and then resupply the purified air to the enclosed space to prevent harmful substances in the enclosed space. It relates to an air conditioning filter system that can be maintained in a virtually non-existent state.
  • Spaces such as food production facilities and clean rooms in semiconductor factories are managed to maintain clean conditions by blocking external air and sealing to prevent external harmful substances or dust from entering.
  • These special facilities maintain a strictly sealed environment, but there are various other closed spaces, and these closed spaces must be equipped with an air conditioning system that can discharge harmful substances generated inside to the outside and bring in clean air.
  • Patent Document 1 KR 10-2021-0129518 A (2021.10.28)
  • Patent Document 2 KR 10-2022-0008415 A (2022.01.21)
  • the purpose of the present invention is to provide an air conditioning filter system that can continuously remove harmful gases present in an enclosed space without supplying energy.
  • Another object of the present invention is to provide an air conditioning filter system that operates at room temperature, is easy to handle, uses the filter semi-permanently, does not require replacement, and maintains catalytic activity for a long period of time, thereby providing high reliability.
  • the present invention includes an air conditioning filter unit for removing harmful gases present in the indoor air of a closed space; an air inlet that communicates with one side of the air conditioning filter unit and allows air to flow in to receive air from the closed space; and an air outlet that communicates with the other side of the air conditioning filter unit and discharges air to supply air from which harmful gases have been removed from the air conditioning filter unit to the enclosed space.
  • the air conditioning filter unit includes a catalytic reaction unit containing a porous composite structure catalyst and a housing accommodating the catalytic reaction unit therein, wherein the porous composite structure catalyst includes a porous substrate and a catalyst coating layer coated on the substrate. It provides an air conditioning filter system, wherein the catalyst coating layer includes a porous support including mesopores and a composite catalyst that is gold nanoparticles embedded in the pores of the porous support.
  • the porous substrate may be a monolithic honeycomb ceramic structure, a metal foam structure, a bead, a pellet, or a HEPA filter.
  • the air conditioning filter system may further include a pump for supplying air to the air conditioning filter unit between the air inlet and the sealed space.
  • the porous support may be a metal oxide or metalloid oxide porous support.
  • the diameter of the nanoparticles may be 1 to 20 nm.
  • the porous composite structure catalyst may be used for an oxidation reaction of carbon monoxide, an aldehyde-based compound, or a hydrocarbon-based compound.
  • the air conditioning filter system may be operated at 0°C to 60°C.
  • the radial distribution function obtained by Fourier transforming the extended X-ray absorption fine structure (EXAFS) spectrum of the catalyst coating layer may satisfy Equation 1 below.
  • DH1 is the height of the peak at the interatomic distance D1
  • DH2 is the peak height at the interatomic distance D2
  • D1 and D2 satisfy the following equations 2 and 3, respectively.
  • D3 refers to the interatomic distance of the Au-Au bond in the bulk phase existing at 2.8 to 3.0 ⁇ .
  • harmful gases present in the indoor air of a closed space may be removed at a removal rate of 90% or more under a space velocity condition of 12,000 hr -1 .
  • the air conditioning filter system according to the present invention can continuously remove harmful gases existing in an enclosed space without supplying energy, operates at room temperature conditions, is easy to handle, and uses the filter semi-permanently, eliminating the need for replacement and providing long-term protection. Catalytic activity is maintained and high reliability can be achieved.
  • Figure 1 shows a schematic diagram of an air conditioning filter system according to the present disclosure.
  • units used without special mention in this specification are based on weight, and as an example, the unit of % or ratio means weight % or weight ratio, and weight % refers to the amount of any one component of the entire composition unless otherwise defined. It refers to the weight percent occupied in the composition.
  • the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • the present inventor believes that in the case of existing air conditioning systems, adsorbents must be replaced periodically to remove harmful substances within a closed space, or must be operated under high temperature conditions while continuously supplying energy, resulting in stress accumulation due to heating and cooling, which causes catalyst damage.
  • the activity of the system decreased over time and deepened our research to solve this problem.
  • the present inventor discovered that the above problem could be solved by combining a porous composite structure catalyst that can operate at room temperature with an air conditioning filter unit, and completed the present invention.
  • An air conditioning filter system includes an air conditioning filter unit for removing harmful gases present in the indoor air of a closed space; an air inlet that communicates with one side of the air conditioning filter unit and allows air to flow in to receive air from the closed space; And an air outlet that communicates with the other side of the air conditioning filter unit and discharges air to supply air from which harmful gases have been removed from the air conditioning filter unit to the enclosed space, wherein the air conditioning filter unit includes a porous composite structure catalyst.
  • the shape of the air conditioning filter unit is not limited to a specific shape, and may have a tubular shape, for example.
  • the air conditioning filter unit is provided with a duct through which air flowing in from the closed space can pass, and the duct is provided with a catalytic reaction unit filled with a porous composite structure catalyst.
  • the catalytic reaction unit is fixed inside the duct and airtightly fills a certain space inside the duct, allowing air flowing in the duct to pass through the catalytic reaction unit.
  • the catalytic reaction unit includes a porous substrate composed of a plurality of fine cells to allow air to pass through, and a catalyst coating layer is formed on the porous substrate, so that the passing air reacts with the catalyst coating layer to remove harmful substances contained in the air. You can. Accordingly, by continuously circulating air containing harmful substances such as carbon monoxide and VOC present in the closed space and passing through the catalyst layer, harmful substances such as carbon monoxide and VOC within the closed space can be quickly removed at room temperature.
  • the composite catalyst may be included in an amount of 1 to 50 parts by weight, specifically 5 to 20 parts by weight, based on 100 parts by weight of the porous substrate to form a catalyst coating layer.
  • the composite catalyst can be coated on the surface of the porous substrate to uniformly form a surface coating layer.
  • the composite catalyst may have an average particle diameter of 0.01 ⁇ m to 10 ⁇ m, specifically 0.05 ⁇ m to 5 ⁇ m, more specifically 0.1 ⁇ m to 5 ⁇ m, but is not limited thereto.
  • the porous substrate may be a monolithic honeycomb ceramic structure, a metal foam structure, a bead, a pellet, or a HEPA filter.
  • the honeycomb ceramic structure may be a structure having a plurality of gas flow channels, and the cross-section of the flow channels may have various shapes such as squares, polygons such as hexagons, and circles, but may be selected without being limited to a specific shape. there is.
  • the honeycomb ceramic structure may be any one or two or more selected from the group consisting of metal oxides, metalloid oxides, metal carbides, and metalloid carbides. Specific examples include, but are not limited to, alumina, silica, and silicon carbide.
  • the metal foam structure may be a structure having open macropores, and metal materials may be used without limitation as long as they do not affect catalytic activity.
  • the porous substrate may have various shapes such as spherical, cylindrical, or polygonal, but may be selected without being limited to a specific shape.
  • a separate air supply device may not be needed, and a rotating unit may optionally be further included inside the duct. Since the rotation unit is rotated by air flowing in from a closed space, no separate power is required to rotate the rotation unit, and the air flow is not interrupted.
  • the rotating unit may be disposed on the inlet side of the air inlet or the outlet side of the air outlet.
  • a pump for supplying air to the air conditioning filter unit may be further included between the air inlet and the sealed space.
  • a pump for supplying air to the air conditioning filter unit may be further included between the air inlet and the sealed space.
  • the space velocity of the air conditioning filter unit may be appropriately selected in consideration of the concentration of harmful gases, the volume of the enclosed space, etc., for example, 5,000 to 100,000 hr -1 , specifically 8,000 to 60,000 hr. -1 , more specifically, it may be 10,000 to 30,000 hr -1 .
  • space velocity is the flow rate of air passing through the catalyst per 1L of catalyst.
  • the air conditioning filter system according to one embodiment can effectively remove harmful gases contained in the air under high flow conditions.
  • the catalyst coating layer includes a metal oxide unit layer in which a plurality of composite catalyst particles are dispersed, and the metal oxide unit layer may be stacked on each other in the thickness direction to have a structure in which a plurality of unit layers are stacked. there is.
  • the thickness of the unit layer may be 100 nm to 100 ⁇ m, but is not limited thereto.
  • the metal oxide may be silica, alumina, or titania.
  • the catalyst coating layer is formed by coating an aqueous slurry containing a composite catalyst powder and at least one binder selected from the group consisting of an inorganic sol binder and a water-soluble polymer binder on a porous substrate to form a coating layer; and baking the porous substrate on which the coating layer is formed.
  • the water-soluble polymer binder may be any one or two or more selected from the group consisting of polyethylene glycol, polyvinyl alcohol, and poly(N-vinyl pyrrolidone).
  • the water-soluble polymer binder may be included in an amount of 1 to 5% by weight in the aqueous slurry.
  • the weight average molecular weight of the water-soluble polymer binder may be 10,000 to 1,000,000 g/mol, but is not limited thereto.
  • the inorganic sol binder may be silica sol, titania sol, or alumina sol, but is not limited thereto.
  • the porous support may be a metal oxide or metalloid oxide porous support.
  • the metal or metalloid of the metal oxide or metalloid oxide may be from Groups 2 to 5, Group 7 to 9, and Group 11 to 14, and is specifically selected from Groups 2 to 4, Group 13, and Group 14. It may be a metal or metalloid, and more specifically, it may be Al, Ti, Zr, or Si.
  • the porous support includes mesopores and may optionally further include micropores.
  • micropore means that the average diameter of internal pores is less than 2 nm
  • mesopore means that the average diameter of internal pores is 2 nm to 50 nm.
  • the gold nanoparticles can be manufactured from methods known in the art or commercially available materials can be used. Specifically, gold nanoparticles can be produced by reducing a gold precursor present in a solution to gold according to a known method (Natan et al., Anal. Chem. 67, 735 (1995)). Examples of gold precursors include gold-containing halides, nitrates, acetates, acetylacetonates, or ammonium salts, but are not limited thereto. Specifically, the gold precursor may be HAuCl 4 or HAuBr 4 , but is not limited thereto.
  • the diameter of the gold nanoparticles may be 1 to 20 nm, specifically 1 to 15 nm, and more specifically 1 to 12 nm.
  • a preferred diameter of gold nanoparticles may be 1 to 10 nm, more preferably 1 to 8 nm.
  • the average diameter of the nanoparticles may be larger than the average diameter of the mesopores of the porous support. Accordingly, it is possible to create a deformation of the crystal lattice of the gold nanoparticles incorporated into the mesopores of the porous support, and to improve catalytic activity in the room temperature range.
  • the nanoparticles may be incorporated into all of the mesopores of the porous support or may be incorporated into a portion of the mesopores of the porous support, and specifically, may be incorporated into a portion of the mesopores of the porous support. there is. More specifically, the nanoparticles may be irregularly incorporated into some of the mesopores of the porous support.
  • the structure embedded in all of the mesopores of the porous support refers to a superlattice structure, and specifically refers to a highly ordered superlattice structure with face-centered cubic (FCC) symmetry. do.
  • the shape in which nanoparticles are irregularly embedded in a portion of the mesopores has the advantage of allowing gas to diffuse more effectively compared to the superlattice structure.
  • the nanoparticles may be incorporated into some of the mesopores of the porous support, and the mesopores not incorporated into the nanoparticles may be connected to each other through open pores.
  • the composite catalyst nanoparticles are incorporated into only a portion of the pores of the porous support, so that harmful gases can be diffused more effectively through pores that are not incorporated by nanoparticles connected to each other through open pores. Accordingly, even if the gas is supplied at a high flow rate at room temperature, substantially all of the reactant gas contained in the gas can be quickly converted into product gas.
  • the gold nanoparticles may be included in 0.1 to 10% by weight of the total weight of the catalyst coating layer, specifically 0.5 to 7% by weight, and more specifically 1 to 5% by weight. It may be.
  • the gold nanoparticles may be included in 0.005 to 3.5% by weight of the total weight of the porous composite structure catalyst, specifically 0.01 to 3% by weight, more specifically 0.05 to 2.5% by weight, or It may be included in 0.1 to 1.8 weight%.
  • the catalyst coating layer includes a porous support including mesopores and gold nanoparticles incorporated into the pores of the porous support, and the diameter obtained by Fourier transforming the EXAFS (Extended X-ray absorption fine structure) spectrum.
  • the radial distribution function may satisfy Equation 1 below.
  • DH1 is the height of the peak at the interatomic distance D1
  • DH2 is the height of the peak at the interatomic distance D2
  • D1 and D2 are expressed in the following equations 2 and 3, respectively. Satisfies.
  • D1 and D2 are the interatomic distances of the maximum peak found in a range that satisfies the following Equations 2 and 3, respectively.
  • D3 refers to the interatomic distance of the Au-Au bond in the bulk phase that exists at 2.8 to 3.0 ⁇ , and may specifically exist at 2.88 to 2.98 ⁇ , and more specifically, the standard of 2.90 ⁇ . It may mean the distance between atoms.
  • D3 refers to the interatomic distance of the Au-Au bond in the bulk at 2.8 to 3.0 ⁇ , obtained through peak deconvolution when the peak appears as a single peak with asymmetry or has a bimodal peak. can do.
  • the asymmetry means that although the peak has the shape of a single peak (unimodal peak), the left and right sides have asymmetry based on the center of the peak as two peaks overlap.
  • Equation 2 may be 0.85 to 0.92
  • Equation 3 may be 0.63 to 0.66.
  • DH1 refers to the height of the peak at an interatomic distance of 2.57 ⁇ 0.2 ⁇
  • DH2 may refer to the height of the peak at an interatomic distance of 1.85 ⁇ 0.2 ⁇ .
  • DH1 may refer to the peak height of an interatomic distance of 2.57 ⁇ 0.1 ⁇
  • DH2 may refer to the peak height of an interatomic distance of 1.85 ⁇ 0.1 ⁇ .
  • the composite catalyst satisfies the height ratio of the peak at the interatomic distance D1 and the peak at the interatomic distance D2 of less than 0.3, the catalytic activity can be significantly improved.
  • EXAFS stands for extended X-ray absorption fine structure, and can analyze the diameter distribution or coordination number of gold nanoparticles. For example, when high-energy X-rays are irradiated to gold atoms, the gold atoms contained in the gold nanoparticles emit electrons. Accordingly, radial scattered waves are generated centered on the gold atom that absorbed the X-rays, and when the electrons emitted from the gold atom that absorbed the Electrons are emitted. At this time, radial scattered waves are generated centered on other adjacent atoms.
  • a standing wave is obtained depending on the distance between the gold atom that absorbed the X-rays and another atom (gold or oxygen atom) adjacent to the gold atom.
  • the standing wave is Fourier transformed, a radius distribution having a peak depending on the distance between a gold atom and another atom (gold or oxygen atom) adjacent to the gold atom is obtained.
  • (DH2/DH1) in Equation 1 may be 0.25 or less, more specifically 0.24 or less, and may be non-limitingly 0 or more.
  • (DH2/DH1) in Equation 1 may be 0.2 or less, and more preferably 0.15 or less.
  • the radial distribution function of the catalyst coating layer obtained by Fourier transforming an extended X-ray absorption fine structure (EXAFS) spectrum may satisfy Equation 4 below.
  • DA1 is the area of the peak at the interatomic distance D1
  • DA2 is the area of the peak at the interatomic distance D2
  • D1 and D2 satisfy Equation 2 and Equation 3 above, respectively.
  • DA1 is the area of the peak with an interatomic distance of 2.57 ⁇ 0.2 ⁇
  • DA2 may mean the area of the peak with an interatomic distance of 1.85 ⁇ 0.2 ⁇ .
  • DA1 may refer to the area of the peak with an interatomic distance of 2.57 ⁇ 0.1 ⁇
  • DA2 may refer to the area of the peak with an interatomic distance of 1.85 ⁇ 0.1 ⁇ .
  • the composite catalyst satisfies the area ratio of the peak at the interatomic distance D1 and the peak at the interatomic distance D2 of less than 0.25, the catalytic activity can be significantly improved.
  • (DA2/DA1) in Equation 4 may be 0.2 or less, specifically 0.18 or less, more specifically 0.15 or less, and may be indefinitely 0 or more.
  • (DA2/DA1) in Equation 4 may be 0.1 or less, and more preferably 0.08 or less.
  • the 2.2 to 3.0 ⁇ interatomic distance section may be a section where the distance between gold (Au) atoms is located, and refers to the distribution of the interatomic distance of Au-Au in the crystal lattice.
  • typical gold nanoparticles can exhibit a single peak, and having a single peak means that the distance between gold (Au)-gold (Au) atoms in the crystal lattice of the nanoparticle is It means that it is constant.
  • having a bimodal peak may mean that different distances between gold (Au) and gold (Au) atoms exist in the crystal lattice. Although it has not been clearly identified, it may be related to the deformation of the crystal lattice due to compressive stress. It is inferred that two different distances between gold (Au) and gold (Au) atoms were created.
  • the porous composite structure catalyst may be used for the oxidation reaction of carbon monoxide, aldehyde-based compounds, or hydrocarbon-based compounds. Accordingly, the porous composite structure catalyst according to the present disclosure can be preferably used as a solid-phase oxidizing agent for carbon monoxide, aldehyde-based compounds, or hydrocarbon-based compounds.
  • the aldehyde-based compound may be acetaldehyde or formaldehyde, but is not limited thereto.
  • the hydrocarbon-based compound may be an aliphatic or aromatic compound or a volatile organic compound (VOC), and examples include, but are not limited to, methane, ethane, propane, butane, benzene, toluene, or xylene.
  • VOC volatile organic compound
  • the air conditioning filter system may be operated at 0°C to 60°C, specifically at 10°C to 50°C, and more specifically at 15°C to 30°C, but is necessarily limited thereto. It doesn't work. By operating at a temperature in the above-mentioned range, it is possible to quickly remove harmful substances by solving problems arising from operating under high-temperature conditions while continuously supplying energy as described above.
  • the air conditioning filter system can remove harmful gases present in the indoor air of a closed space with a removal rate of 90% or more under space velocity conditions of 12,000 hr -1 or 24,000 hr -1 , preferably It can be removed with a removal rate of over 95%.
  • the harmful gas can be removed at a removal rate within the above-described temperature range and within the above-described range.
  • the harmful gas may be carbon monoxide, and specifically, it may be carbon monoxide present in indoor air at a concentration of 0.1% or more.
  • carbon monoxide present at a concentration of 1% in the indoor air of a closed space can be removed at a removal rate of 70% or more under a space velocity condition of 12,000 hr -1 , preferably 80% or more, more preferably 80% or more. can be removed with a removal rate of over 90%.
  • the harmful gas can be removed at a removal rate within the above-described temperature range and within the above-described range.
  • the enclosed space to which the air conditioning filter system is applied may have a volume of 0.1 to 100 m3 or 1 to 40 m3, but is not limited thereto.
  • Step 1-1 Gold nanoparticles stabilized with oleylamine are synthesized according to the following procedure.
  • olein amine was selected as a stabilizer, and a solution consisting of 60 ml of tetralin, 60 ml of oleinamine, and 0.6 g of HAuCl ⁇ H 2 O was prepared by stirring at room temperature for 10 minutes. 6 mmol of TBAB (tetrabutylammonium bromide), 6 ml of tetralin, and 6 ml of oleyl amine were mixed by ultrasonic pulverization and quickly added to the solution. Then, the solution was stirred at room temperature for another hour, ethanol was added, and then centrifuged to precipitate gold nanoparticles.
  • TBAB tetrabutylammonium bromide
  • the gold nanoparticle precipitate was redispersed with hexane, ethanol was added, and centrifuged.
  • the produced gold nanoparticles had an average particle diameter of 4 nm, and the produced gold nanoparticles were dispersed as-formed in 100 ml toluene.
  • Step 1-2 The surface of the gold nanoparticle is functionalized with thiolated PEG using the following method.
  • step 1-1 the gold nanoparticles dispersed in toluene were diluted by adding an additional 100 ml of tetrahydrofuran, and a thiolated polymer was selected for functionalization by binding the polymer to the surface of the gold nanoparticles, and 1 g of the terminal was added.
  • Monofunctional polyethylene glycol (aSH-PEG, weight average molecular weight: 1 kDa) substituted with this thiol group was added.
  • hexane was added and centrifuged to precipitate gold nanoparticles (4-Au-PEG) functionalized with PEG. 4-Au-PEG obtained by precipitation was dried and then dispersed in water.
  • Step 2 Preparation of porous silica entrapped with PEG-functionalized gold nanoparticles
  • the red precipitate prepared in the previous step was washed with water, dried, and then calcined in stages for 3 hours at 250°C, 2 hours at 400°C, and 2 hours at 500°C to remove PEG and Pluronic F127 polymers, thereby producing gold nanoparticles.
  • a captured porous silica composite catalyst was prepared.
  • Composite catalyst 2 was prepared by performing steps 1 and 3 in the same manner, except that step 2 of Preparation Example 1 was performed as follows.
  • step 2 For the preparation of porous alumina containing PEG-functionalized gold nanoparticles in step 2, first prepare 0.15 g of PEG-functionalized gold nanoparticles (4-Au-PEG) and 0.675 g of Pluronic F127, and dissolve them in nitric acid (68% ) After uniformly dispersing in a mixed solution of 0.8 ml and 40 ml of ethanol, 0.81 g of aluminum ethoxide was added to the dispersion. The dispersion of the mixture was stirred for 3 hours, maintained at room temperature for 24 hours without stirring, and then dried at 60°C for 3 hours to prepare a red solid. Thereafter, step 3 of Preparation Example 1 was performed in the same manner to prepare porous alumina composite catalyst 2 containing gold nanoparticles.
  • Composite catalyst 3 was prepared by performing steps 1 and 3 in the same manner, except that step 2 of Preparation Example 1 was performed as follows.
  • step 2 For the preparation of porous titania containing PEG-functionalized gold nanoparticles in step 2, first prepare 0.10 g of PEG-functionalized gold nanoparticles (4-Au-PEG) and 0.44 g of Pluronic F127 and dissolve them in 37% hydrochloric acid. After uniformly dispersing in a mixed solution of 0.68 ml and 17.05 ml of ethanol, 2.28 g of titanium tetraisopropoxide was added to the dispersion. The dispersion of the mixture was stirred for 3 hours, maintained at room temperature for 24 hours without stirring, and then dried at 60°C for 3 hours to prepare a red solid. Thereafter, step 3 of Preparation Example 1 was performed in the same manner to prepare porous titania composite catalyst 3 in which gold nanoparticles were captured.
  • a dispersion was prepared by mixing the composite catalyst 1 prepared in Preparation Example 1 in an aqueous solution to 10% by weight and milling.
  • the average particle diameter of the milled composite catalyst powder was 0.8 ⁇ m.
  • Acetic acid was added to the dispersion to adjust the pH to 4, and an inorganic binder silica sol with an average particle diameter of 32 nm was mixed to make up 1% by weight of the dispersion.
  • poly(N-vinyl pyrrolidone), an organic binder was mixed with the dispersion to make 2% by weight of the dispersion to prepare a slurry for coating.
  • Step 1-1 of Preparation Example 1 The same steps 1 and 2 were performed as in Step 1-1 of Preparation Example 1, except that gold nanoparticles with an average particle diameter of 12 nm were prepared by adjusting the molar ratio of oleinamine and HAuCl ⁇ H 2 O.
  • step 3 the red precipitate prepared in the previous step was washed with water, dried, and then calcined at 450°C to remove PEG and Pluronic F127 polymer to prepare a porous silica composite catalyst with trapped gold nanoparticles.
  • Preparation Example 4 was performed in the same manner to prepare porous composite structure catalyst 3.
  • a porous composite structure catalyst 4 was prepared in the same manner as Preparation Example 4, except that Composite Catalyst 2 of Preparation Example 2 was used instead of Composite Catalyst 1 of Preparation Example 1.
  • Porous composite structure catalyst 5 was prepared in the same manner as Preparation Example 4, except that composite catalyst 3 of Preparation Example 3 was used instead of composite catalyst 1 of Preparation Example 1.
  • the porous composite structure catalyst 1 prepared in Preparation Example 4 is airtightly filled in the tubular air conditioning filter unit, and the air inlet and air outlet are each connected to a sealed space as shown in the schematic diagram of FIG. 1, and then a pump is installed in front of the air conditioning filter unit. was installed to force air circulation.
  • Example 1 The same procedure as Example 1 was carried out, except that the porous composite structure catalyst 2 of Preparation Example 5 was used instead of the porous composite structure catalyst 1 of Preparation Example 4.
  • Example 1 The same procedure as Example 1 was carried out, except that the porous composite structure catalyst 3 of Preparation Example 6 was used instead of the porous composite structure catalyst 1 of Preparation Example 4.
  • EXAFS Extended X-ray absorption fine structure
  • D1 and D2 are the interatomic distances of the maximum peak found in a range that satisfies the following equations 2 and 3, respectively, and the positions of D1, D2, and D3 are shown in Table 1.
  • the ratio of the height (DH1) and area (DA1) of the peak at the interatomic distance D1 and the height (DH2) and area (DA2) of the peak at the interatomic distance D2 were calculated and shown in Table 1.
  • Production example 4 Production example 5
  • Production example 6 Production example 7
  • Production example 8 DH2/DH1 0 0.227 0.335 0 0 DA2/DA1 0 0.129 0.227 0 0
  • D1 2.5522 ⁇ 2.5893 ⁇ 2.567 ⁇ 2.5607 ⁇ 2.5939 ⁇ D2 - 1.8471 ⁇ 1.848 ⁇ - - D3 2.906 ⁇ 2.8967 ⁇ 2.8177 ⁇ 2.9601 ⁇ 2.9526 ⁇ D1/D3 0.8783 0.894 0.911 0.8651 0.8785 D2/D3 - 0.638 0.656 - -
  • Example 1 100% 97% 90%
  • Example 2 100% 92% 68%
  • Example 3 100% 80% 55%
  • Examples 1 to 3 all showed a 100% removal rate under the conditions of a carbon monoxide concentration of 0.1% and a space velocity of 12,000 hr -1 , showing that carbon monoxide was removed even though air was simply circulated through a pump at room temperature. has been completely removed.
  • Example 1 showed removal rates of 97% and 92%, respectively, effectively removing carbon monoxide compared to Example 3.
  • Example 1 showed a removal rate of 90% under conditions of higher concentration of carbon monoxide.
  • the air conditioning filter system can effectively remove harmful gases contained in the air even when air containing harmful substances is supplied at a high flow rate at room temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to an air-conditioning filter system and, specifically, to an air-conditioning filter system, which continuously removes harmful gas present in a closed space through an air-conditioning filter part connected to the closed space, and then re-supplies purified air to the closed space so that a state in which harmful substances are not substantially present can be maintained.

Description

유해물질 제거용 공조필터 시스템Air conditioning filter system for removing hazardous substances
본 발명은 공조필터 시스템에 관한 것으로, 상세하게는, 밀폐 공간과 연결된 공조필터부를 통해 밀폐 공간 내에 존재하는 유해 가스를 연속적으로 제거한 후 정화된 공기를 밀폐 공간으로 재공급하여 밀폐 공간 내에 유해 물질이 실질적으로 존재하지 않는 상태로 유지할 수 있는 공조필터 시스템에 관한 것이다.The present invention relates to an air conditioning filter system, and more specifically, to continuously remove harmful gases present in an enclosed space through an air conditioning filter unit connected to the enclosed space, and then resupply the purified air to the enclosed space to prevent harmful substances in the enclosed space. It relates to an air conditioning filter system that can be maintained in a virtually non-existent state.
식품 생산 시설, 반도체 공장의 클린 룸 등의 공간은 외부의 공기와 차단되어 외부의 유해 물질이나 먼지가 유입되지 않도록 밀폐되어 청정 조건을 유지하도록 관리되고 있다. 이러한 특수 시설은 엄격한 밀폐 환경을 유지하지만, 이외에도 다양한 밀폐 공간들이 존재하며, 이러한 밀폐 공간들은 공통적으로 내부에서 발생하는 유해물질을 외부로 배출하고 청정한 공기를 유입할 수 있는 공조 시스템이 구비되어야 한다.Spaces such as food production facilities and clean rooms in semiconductor factories are managed to maintain clean conditions by blocking external air and sealing to prevent external harmful substances or dust from entering. These special facilities maintain a strictly sealed environment, but there are various other closed spaces, and these closed spaces must be equipped with an air conditioning system that can discharge harmful substances generated inside to the outside and bring in clean air.
특히 밀폐 공간내에 근무하는 작업자의 경우 밀폐 공간에서 발생하는 유해물질에 장시간 노출될 경우 인명 사고로 이어지므로 밀폐 공간 내 공기의 청정도의 유지는 매우 중요하다. 공기의 청정도 유지를 위해 공조시스템 내에 필터박스를 설치하고 필터박스내에 구비된 필터를 통해 수동적으로 유해물질을 흡착하는 기술이 공지된 바 있다.In particular, for workers working in confined spaces, long-term exposure to hazardous substances generated in confined spaces can lead to fatal accidents, so maintaining the cleanliness of air in confined spaces is very important. In order to maintain air purity, a technology has been known to install a filter box in an air conditioning system and passively adsorb harmful substances through a filter provided in the filter box.
필터박스 내에 수동적으로 유해물질을 흡착하는 시스템은 등온 흡착 원리를 따르기 때문에 흡착제의 용량 이상으로 유해물질을 제거하는 것이 불가능하므로 주기적으로 흡착제를 교체하여야 하는 문제가 있다. 한편 필터박스내에 유해물질을 분해할 수 있는 촉매시스템을 수용하여 유해물질을 연속적으로 제거하는 기술을 고려할 수 있지만, 광촉매의 경우 광을 연속적으로 조사하여야 할 뿐만 아니라 촉매 활성이 매우 낮아 유해물질의 농도를 빠르게 저감시키기 어렵고 광원을 구동하기 위해 에너지를 계속 공급하여야 하는 문제가 있다. 고온 조건에서 작동하는 촉매시스템을 운전하여 유해물질을 연속적으로 제거하는 기술이 공지되어 있지만, 마찬가지로 고온 조건에서 구동하여야 하므로 에너지를 계속 공급하여야 할 뿐만 아니라, 가열 및 냉각을 반복함에 따라 필터박스 내에 존재하는 촉매시스템이 응력에 의해 탈리되어 촉매 활성이 감소되거나 밀폐 공간으로 유입되는 문제가 있다.Since the system that passively adsorbs harmful substances in the filter box follows the principle of isothermal adsorption, it is impossible to remove harmful substances beyond the capacity of the adsorbent, so there is a problem in that the adsorbent must be replaced periodically. Meanwhile, a technology that continuously removes harmful substances by housing a catalyst system that can decompose harmful substances in the filter box can be considered. However, in the case of photocatalysts, not only does it require continuous irradiation of light, but the catalyst activity is very low, so the concentration of harmful substances is low. It is difficult to quickly reduce and there is a problem in that energy must be continuously supplied to drive the light source. There is a known technology to continuously remove harmful substances by operating a catalyst system that operates under high temperature conditions. However, since it must be operated under high temperature conditions, not only does it require continuous supply of energy, but it also remains in the filter box as heating and cooling are repeated. There is a problem that the catalyst system is detached due to stress, reducing catalytic activity or flowing into a closed space.
따라서 에너지를 공급하지 않고서도 밀폐공간 내에 존재하는 유해 가스를 연속적으로 제거할 수 있으며, 필터의 교체가 필요 없고 장기간 촉매 활성이 유지되어 높은 신뢰성을 가지는 공조필터 시스템의 개발이 필요한 실정이다.Therefore, there is a need to develop a highly reliable air conditioning filter system that can continuously remove harmful gases present in a closed space without supplying energy, does not require replacement of filters, and maintains catalytic activity for a long period of time.
(선행기술문헌)(Prior art literature)
(특허 문헌 1) KR 10-2021-0129518 A (2021.10.28)(Patent Document 1) KR 10-2021-0129518 A (2021.10.28)
(특허 문헌 2) KR 10-2022-0008415 A (2022.01.21)(Patent Document 2) KR 10-2022-0008415 A (2022.01.21)
본 발명의 목적은 에너지를 공급하지 않고서도 밀폐공간 내에 존재하는 유해 가스를 연속적으로 제거할 수 있는 공조필터 시스템을 제공하는 것이다.The purpose of the present invention is to provide an air conditioning filter system that can continuously remove harmful gases present in an enclosed space without supplying energy.
본 발명의 다른 목적은 상온 조건에서 운전하여 취급이 용이하며, 필터를 반영구적으로 사용하여 교체가 필요 없고 장기간 촉매 활성이 유지되어 높은 신뢰성을 가지는 공조필터 시스템을 제공하는 것이다.Another object of the present invention is to provide an air conditioning filter system that operates at room temperature, is easy to handle, uses the filter semi-permanently, does not require replacement, and maintains catalytic activity for a long period of time, thereby providing high reliability.
본 발명은 상술한 바와 같은 과제를 해결하기 위하여, 밀폐 공간의 실내 공기 중에 존재하는 유해 가스의 제거를 위한 공조필터부; 상기 밀폐 공간으로부터 공기를 공급받기 위해 상기 공조필터부의 일 측부와 연통되어 공기가 유입되는 공기 유입구; 및 상기 공조필터부로부터 유해 가스가 제거된 공기를 상기 밀폐 공간으로 공급하기 위해 상기 공조필터부의 타 측부와 연통되어 공기가 배출되는 공기 배출구; 를 포함하고, 상기 공조필터부는 다공성 복합 구조체 촉매를 포함하는 촉매반응부 및 상기 촉매반응부를 내부에 수용하는 하우징을 포함하되, 상기 다공성 복합 구조체 촉매는 다공성 기재 및 상기 기재상에 코팅된 촉매 코팅층을 포함하고, 상기 촉매 코팅층은 메조 기공을 포함하는 다공성 지지체 및 상기 다공성 지지체의 기공 내에 함입된 금 나노입자인 복합체 촉매를 포함하는 것을 특징으로 하는, 공조필터 시스템을 제공한다.In order to solve the problems described above, the present invention includes an air conditioning filter unit for removing harmful gases present in the indoor air of a closed space; an air inlet that communicates with one side of the air conditioning filter unit and allows air to flow in to receive air from the closed space; and an air outlet that communicates with the other side of the air conditioning filter unit and discharges air to supply air from which harmful gases have been removed from the air conditioning filter unit to the enclosed space. The air conditioning filter unit includes a catalytic reaction unit containing a porous composite structure catalyst and a housing accommodating the catalytic reaction unit therein, wherein the porous composite structure catalyst includes a porous substrate and a catalyst coating layer coated on the substrate. It provides an air conditioning filter system, wherein the catalyst coating layer includes a porous support including mesopores and a composite catalyst that is gold nanoparticles embedded in the pores of the porous support.
일 구체예에 있어서, 상기 다공성 기재는 모노리틱(monolithic) 허니콤 세라믹 구조체, 금속 폼 구조체, 비드, 펠렛 또는 헤파필터일 수 있다.In one embodiment, the porous substrate may be a monolithic honeycomb ceramic structure, a metal foam structure, a bead, a pellet, or a HEPA filter.
일 구체예에 있어서, 상기 공조필터 시스템은 공기 유입구와 밀폐 공간 사이에 공기를 공조필터부로 공급하기 위한 펌프를 더 포함할 수 있다.In one embodiment, the air conditioning filter system may further include a pump for supplying air to the air conditioning filter unit between the air inlet and the sealed space.
일 구체예에 있어서, 상기 다공성 지지체는 금속 산화물 또는 준금속 산화물 다공성 지지체일 수 있다.In one embodiment, the porous support may be a metal oxide or metalloid oxide porous support.
일 구체예에 있어서, 상기 나노입자의 직경은 1 내지 20nm일 수 있다.In one embodiment, the diameter of the nanoparticles may be 1 to 20 nm.
일 구체예에 있어서, 상기 다공성 복합 구조체 촉매는 일산화탄소, 알데히드계 화합물 또는 탄화수소계 화합물의 산화반응용일 수 있다.In one embodiment, the porous composite structure catalyst may be used for an oxidation reaction of carbon monoxide, an aldehyde-based compound, or a hydrocarbon-based compound.
일 구체예에 있어서, 상기 공조필터 시스템은 0 ℃ 내지 60 ℃에서 운전되는 것일 수 있다.In one embodiment, the air conditioning filter system may be operated at 0°C to 60°C.
일 구체예에 있어서, 상기 촉매 코팅층의 EXAFS(Extended X-ray absorption fine structure) 스펙트럼을 푸리에 변환하여 얻어진 동경 분포 함수(radial distribution function)는 하기 식 1을 만족하는 것일 수 있다.In one embodiment, the radial distribution function obtained by Fourier transforming the extended X-ray absorption fine structure (EXAFS) spectrum of the catalyst coating layer may satisfy Equation 1 below.
[식 1][Equation 1]
(DH2/DH1) < 0.25(DH2/DH1) < 0.25
상기 식 1에서 DH1은 원자간 거리 D1에서의 피크의 높이이며, DH2는 원자간 거리 D2에서의 피크의 높이이고, D1 및 D2는 각각 하기 식 2 및 식 3을 만족한다.In the above equation 1, DH1 is the height of the peak at the interatomic distance D1, DH2 is the peak height at the interatomic distance D2, and D1 and D2 satisfy the following equations 2 and 3, respectively.
[식 2][Equation 2]
0.8≤(D1/D3)≤0.950.8≤(D1/D3)≤0.95
[식 3][Equation 3]
0.6≤(D2/D3)≤0.70.6≤(D2/D3)≤0.7
상기 식 2 및 식 3에서 D3는 2.8 내지 3.0 Å에서 존재하는 벌크상의 Au-Au 결합의 원자간 거리를 의미한다.In Equations 2 and 3 above, D3 refers to the interatomic distance of the Au-Au bond in the bulk phase existing at 2.8 to 3.0 Å.
일 구체예에 있어서, 밀폐 공간의 실내 공기 중 존재하는 유해가스를 12,000 hr-1의 공간 속도 조건에서 90% 이상의 제거율로 제거하는 것일 수 있다.In one embodiment, harmful gases present in the indoor air of a closed space may be removed at a removal rate of 90% or more under a space velocity condition of 12,000 hr -1 .
본 발명에 따른 공조필터 시스템은 에너지를 공급하지 않고서도 밀폐공간 내에 존재하는 유해 가스를 연속적으로 제거할 수 있으며, 상온 조건에서 운전하여 취급이 용이하며, 필터를 반영구적으로 사용하여 교체가 필요 없고 장기간 촉매 활성이 유지되어 높은 신뢰성을 가질 수 있다.The air conditioning filter system according to the present invention can continuously remove harmful gases existing in an enclosed space without supplying energy, operates at room temperature conditions, is easy to handle, and uses the filter semi-permanently, eliminating the need for replacement and providing long-term protection. Catalytic activity is maintained and high reliability can be achieved.
도 1은 본 개시에 따른 공조필터 시스템의 모식도를 도시한 것이다.Figure 1 shows a schematic diagram of an air conditioning filter system according to the present disclosure.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Unless otherwise defined, the technical and scientific terms used in this specification have the meanings commonly understood by those skilled in the art to which this invention pertains, and the gist of the present invention is summarized in the following description and accompanying drawings. Descriptions of known functions and configurations that may unnecessarily obscure are omitted.
또한, 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Additionally, as used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly dictates otherwise.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.In addition, units used without special mention in this specification are based on weight, and as an example, the unit of % or ratio means weight % or weight ratio, and weight % refers to the amount of any one component of the entire composition unless otherwise defined. It refers to the weight percent occupied in the composition.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.In addition, the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.The term 'comprise' in this specification is an open description with the same meaning as expressions such as 'comprising', 'contains', 'has' or 'characterized by', and includes elements that are not additionally listed, Does not exclude materials or processes.
본 발명자는 기존의 공조시스템의 경우 밀폐 공간 내에서 유해 물질을 제거하기 위해 주기적으로 흡착제를 교체하여야 하거나, 에너지를 계속 공급하면서 고온 조건에서 구동하여야 함에 따라 가열 및 냉각에 의한 응력 축적이 발생하여 촉매시스템의 활성이 시간에 따라 감소하는 것을 주목하고 이를 해결하기 위한 연구를 심화하였다. 본 발명자는 상온에서 운전할 수 있는 다공성 복합 구조체 촉매를 공조필터부와 결합함으로써 상기 문제점을 해결할 수 있음을 발견하고, 본 발명을 완성하였다.The present inventor believes that in the case of existing air conditioning systems, adsorbents must be replaced periodically to remove harmful substances within a closed space, or must be operated under high temperature conditions while continuously supplying energy, resulting in stress accumulation due to heating and cooling, which causes catalyst damage. We noted that the activity of the system decreased over time and deepened our research to solve this problem. The present inventor discovered that the above problem could be solved by combining a porous composite structure catalyst that can operate at room temperature with an air conditioning filter unit, and completed the present invention.
본 개시에 따른 공조필터 시스템은, 밀폐 공간의 실내 공기 중에 존재하는 유해 가스의 제거를 위한 공조필터부; 상기 밀폐 공간으로부터 공기를 공급받기 위해 상기 공조필터부의 일 측부와 연통되어 공기가 유입되는 공기 유입구; 및 상기 공조필터부로부터 유해 가스가 제거된 공기를 상기 밀폐 공간으로 공급하기 위해 상기 공조필터부의 타 측부와 연통되어 공기가 배출되는 공기 배출구;를 포함하고, 상기 공조필터부는 다공성 복합 구조체 촉매를 포함하는 촉매반응부 및 상기 촉매반응부를 내부에 수용하는 하우징을 포함하되, 상기 다공성 복합 구조체 촉매는 다공성 기재 및 상기 기재상에 코팅된 촉매 코팅층을 포함하고, 상기 촉매 코팅층은 메조 기공을 포함하는 다공성 지지체 및 상기 다공성 지지체의 기공 내에 함입된 금 나노입자인 복합체 촉매를 포함하는 것을 특징으로 한다.An air conditioning filter system according to the present disclosure includes an air conditioning filter unit for removing harmful gases present in the indoor air of a closed space; an air inlet that communicates with one side of the air conditioning filter unit and allows air to flow in to receive air from the closed space; And an air outlet that communicates with the other side of the air conditioning filter unit and discharges air to supply air from which harmful gases have been removed from the air conditioning filter unit to the enclosed space, wherein the air conditioning filter unit includes a porous composite structure catalyst. A catalytic reaction unit and a housing for accommodating the catalytic reaction unit therein, wherein the porous composite structure catalyst includes a porous substrate and a catalyst coating layer coated on the substrate, and the catalyst coating layer is a porous support including mesopores. and a composite catalyst that is gold nanoparticles incorporated into the pores of the porous support.
상기 공조필터부의 형태는 특정한 형태로 제한되지 아니하며, 예를 들어 관형의 형태를 가질 수 있다. 공조필터부에는 밀폐 공간으로부터 유입되는 공기가 통과할 수 있는 덕트가 구비되고, 상기 덕트에는 다공성 복합 구조체 촉매가 충진되어 있는 촉매반응부가 구비되어 있다. 상기 촉매반응부는 덕트 내부에 고정되며 덕트 내부의 일정 공간을 기밀하게 채움에 따라 덕트에 유동되는 공기가 촉매반응부를 통과하게 된다. 상기 촉매반응부는 공기가 통과되도록 미세한 셀이 복수개로 구성된 다공성 기재가 포함되어 있고, 상기 다공성 기재 상에 촉매 코팅층이 형성되어, 통과되는 공기가 촉매 코팅층과 반응하여 공기 내에 함유된 유해물질이 제거될 수 있다. 이에 따라 밀폐 공간 내에 존재하는 일산화탄소 및 VOC 등의 유해 물질을 포함한 공기를 지속적으로 순환시키며 촉매 층을 통과하게 함으로써 밀폐 공간 내의 일산화탄소 및 VOC 등의 유해 물질을 상온에서 빠르게 제거할 수 있다.The shape of the air conditioning filter unit is not limited to a specific shape, and may have a tubular shape, for example. The air conditioning filter unit is provided with a duct through which air flowing in from the closed space can pass, and the duct is provided with a catalytic reaction unit filled with a porous composite structure catalyst. The catalytic reaction unit is fixed inside the duct and airtightly fills a certain space inside the duct, allowing air flowing in the duct to pass through the catalytic reaction unit. The catalytic reaction unit includes a porous substrate composed of a plurality of fine cells to allow air to pass through, and a catalyst coating layer is formed on the porous substrate, so that the passing air reacts with the catalyst coating layer to remove harmful substances contained in the air. You can. Accordingly, by continuously circulating air containing harmful substances such as carbon monoxide and VOC present in the closed space and passing through the catalyst layer, harmful substances such as carbon monoxide and VOC within the closed space can be quickly removed at room temperature.
상기 다공성 기재 100 중량부에 대하여 상기 복합체 촉매는 1 내지 50 중량부, 구체적으로 5 내지 20 중량부로 포함되어 촉매 코팅층을 형성할 수 있다. 상기 복합체 촉매는 상기 다공성 기재의 표면 상에 코팅되어 표면 코팅층을 균일하게 형성할 수 있다.The composite catalyst may be included in an amount of 1 to 50 parts by weight, specifically 5 to 20 parts by weight, based on 100 parts by weight of the porous substrate to form a catalyst coating layer. The composite catalyst can be coated on the surface of the porous substrate to uniformly form a surface coating layer.
상기 복합체 촉매는 평균 입경이 0.01 ㎛ 내지 10 ㎛, 구체적으로는 0.05 ㎛ 내지 5 ㎛, 보다 구체적으로는 0.1 ㎛ 내지 5 ㎛일 수 있으나 이에 제한되지 않는다.The composite catalyst may have an average particle diameter of 0.01 ㎛ to 10 ㎛, specifically 0.05 ㎛ to 5 ㎛, more specifically 0.1 ㎛ to 5 ㎛, but is not limited thereto.
일 구체예에 따르면, 상기 다공성 기재는 모노리틱(monolithic) 허니콤 세라믹 구조체, 금속 폼 구조체, 비드, 펠렛 또는 헤파필터일 수 있다.According to one embodiment, the porous substrate may be a monolithic honeycomb ceramic structure, a metal foam structure, a bead, a pellet, or a HEPA filter.
상기 허니콤 세라믹 구조체는 복수의 기체 유동 채널을 가지는 구조체일 수 있으며, 상기 유동 채널의 단면은 사각형, 육각형 등의 다각형, 원형 등의 다양한 형상을 가질 수 있으나, 특정 형상에 제한되지 않고 선택될 수 있다.The honeycomb ceramic structure may be a structure having a plurality of gas flow channels, and the cross-section of the flow channels may have various shapes such as squares, polygons such as hexagons, and circles, but may be selected without being limited to a specific shape. there is.
상기 허니콤 세라믹 구조체는 금속 산화물, 준금속 산화물, 금속 카바이드 및 준금속 카바이드로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상일 수 있다. 구체적인 예로, 알루미나, 실리카, 실리콘 카바이드 등이 예시될 수 있으나 이에 제한받지 않는다.The honeycomb ceramic structure may be any one or two or more selected from the group consisting of metal oxides, metalloid oxides, metal carbides, and metalloid carbides. Specific examples include, but are not limited to, alumina, silica, and silicon carbide.
상기 금속 폼 구조체는 열린 거대 기공을 가지는 구조체일 수 있으며, 금속의 재질로는 촉매 활성에 영향을 미치지 않는 범위에서 제한없이 사용될 수 있다.The metal foam structure may be a structure having open macropores, and metal materials may be used without limitation as long as they do not affect catalytic activity.
상기 다공성 기재는 구형, 실린더형 또는 다각형 등의 다양한 형상을 가질 수 있으나, 특정 형상에 제한되지 않고 선택될 수 있다.The porous substrate may have various shapes such as spherical, cylindrical, or polygonal, but may be selected without being limited to a specific shape.
일 구체예에 따르면, 공조필터부로 공기가 공급되기 위해 밀폐 공간으로부터 강제로 공기가 공급될 경우 별도의 공기 공급 장치가 필요하지 않을 수 있으며, 선택적으로 상기 덕트 내부에 회전유닛이 더 포함될 수 있다. 상기 회전유닛은 밀폐 공간으로부터 유입되는 공기에 의해 회전이 수행되기 때문에 회전유닛을 회전시키기 위한 별도의 전력이 요구되지 않으며, 공기의 흐름을 방해하지 않는다. 상기 회전 유닛은 공기 유입구의 입구 측 또는 공기 배출구의 출구 측에 배치될 수 있다.According to one embodiment, when air is forcibly supplied from an enclosed space to supply air to the air conditioning filter unit, a separate air supply device may not be needed, and a rotating unit may optionally be further included inside the duct. Since the rotation unit is rotated by air flowing in from a closed space, no separate power is required to rotate the rotation unit, and the air flow is not interrupted. The rotating unit may be disposed on the inlet side of the air inlet or the outlet side of the air outlet.
일 구체예에 따르면, 상기 공기 유입구와 밀폐 공간 사이에 공기를 공조필터부로 공급하기 위한 펌프를 더 포함할 수 있다. 밀폐 공간으로부터 강제로 공기가 공급되지 않을 경우, 밀폐 공간의 공기를 강제 순환시켜야 하므로 공조필터부의 공기 유입구의 앞에 펌프를 배치하여 공기를 공조필터부로 공급하고, 공기가 순환되도록 할 수 있다.According to one embodiment, a pump for supplying air to the air conditioning filter unit may be further included between the air inlet and the sealed space. When air is not forcibly supplied from the closed space, the air in the closed space must be forcibly circulated, so a pump can be placed in front of the air inlet of the air conditioning filter unit to supply air to the air conditioning filter unit and allow the air to circulate.
일 구체예에 따르면, 상기 공조필터부의 공간 속도는 유해가스의 농도, 밀폐공간의 부피 등을 고려하여 적절히 선택될 수 있으며, 예를 들면, 5,000 내지 100,000 hr-1, 구체적으로는 8,000 내지 60,000 hr-1, 보다 구체적으로는 10,000 내지 30,000 hr-1일 수 있다. 이때 공간 속도는 촉매 1L 당 촉매를 통과하는 공기의 유량이다. 일 구체예에 따른 공조필터 시스템을 통해 빠른 유량 조건 하에서 공기에 함유된 유해가스를 효과적으로 제거할 수 있다.According to one embodiment, the space velocity of the air conditioning filter unit may be appropriately selected in consideration of the concentration of harmful gases, the volume of the enclosed space, etc., for example, 5,000 to 100,000 hr -1 , specifically 8,000 to 60,000 hr. -1 , more specifically, it may be 10,000 to 30,000 hr -1 . At this time, space velocity is the flow rate of air passing through the catalyst per 1L of catalyst. The air conditioning filter system according to one embodiment can effectively remove harmful gases contained in the air under high flow conditions.
일 구체예에 따르면, 상기 촉매 코팅층은 복수의 복합체 촉매 입자가 분산된 금속 산화물 단위층을 포함하고, 상기 금속 산화물 단위층은 두께 방향으로 서로 적층되어 복수개의 단위층이 적층된 구조를 가지는 것일 수 있다. 상기 단위층의 두께는 100nm 내지 100㎛일 수 있으나 이에 제한받지는 않는다. 상기 금속 산화물로는 실리카, 알루미나 또는 티타니아일 수 있다. According to one embodiment, the catalyst coating layer includes a metal oxide unit layer in which a plurality of composite catalyst particles are dispersed, and the metal oxide unit layer may be stacked on each other in the thickness direction to have a structure in which a plurality of unit layers are stacked. there is. The thickness of the unit layer may be 100 nm to 100 μm, but is not limited thereto. The metal oxide may be silica, alumina, or titania.
일 구체예에 따르면, 상기 촉매 코팅층은, 무기 졸 바인더 및 수용성 고분자 바인더로 이루어지는 군에서 선택되는 하나 이상의 바인더 및 복합체 촉매 분말을 포함하는 수성 슬러리를 다공성 기재 상에 코팅하여 코팅층을 형성하는 단계; 및 상기 코팅층이 형성된 다공성 기재를 소성하는 단계;로부터 제조되는 것일 수 있다.According to one embodiment, the catalyst coating layer is formed by coating an aqueous slurry containing a composite catalyst powder and at least one binder selected from the group consisting of an inorganic sol binder and a water-soluble polymer binder on a porous substrate to form a coating layer; and baking the porous substrate on which the coating layer is formed.
일 구체예에 따르면, 상기 수용성 고분자 바인더는 폴리에틸렌글리콜, 폴리비닐알코올 및 폴리(N-비닐 피롤리돈)으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상일 수 있다. 상기 수용성 고분자 바인더는 수성 슬러리에서 1 내지 5 중량%로 포함될 수 있다. 상기 수용성 고분자 바인더의 중량평균분자량은 10,000 내지 1,000,000 g/mol일 수 있으나 이에 제한되지는 않는다.According to one embodiment, the water-soluble polymer binder may be any one or two or more selected from the group consisting of polyethylene glycol, polyvinyl alcohol, and poly(N-vinyl pyrrolidone). The water-soluble polymer binder may be included in an amount of 1 to 5% by weight in the aqueous slurry. The weight average molecular weight of the water-soluble polymer binder may be 10,000 to 1,000,000 g/mol, but is not limited thereto.
일 구체예에 따르면, 상기 무기 졸 바인더는, 실리카 졸, 티타니아 졸 또는 알루미나 졸일 수 있으나 이에 제한되지는 않는다.According to one embodiment, the inorganic sol binder may be silica sol, titania sol, or alumina sol, but is not limited thereto.
일 구체예에 따르면, 상기 다공성 지지체는 금속 산화물 또는 준금속 산화물 다공성 지지체일 수 있다. 상기 금속 산화물 또는 준금속 산화물의 금속 또는 준금속으로는 2족 내지 5족, 7족 내지 9족, 및 11족 내지 14족일 수 있고, 구체적으로 2족 내지 4족, 13족 및 14족으로부터 선택되는 금속 또는 준금속일 수 있으며, 보다 구체적으로, Al, Ti, Zr 또는 Si일 수 있다.According to one embodiment, the porous support may be a metal oxide or metalloid oxide porous support. The metal or metalloid of the metal oxide or metalloid oxide may be from Groups 2 to 5, Group 7 to 9, and Group 11 to 14, and is specifically selected from Groups 2 to 4, Group 13, and Group 14. It may be a metal or metalloid, and more specifically, it may be Al, Ti, Zr, or Si.
상기 다공성 지지체는 메조기공을 포함하며, 선택적으로 미세기공을 더 포함할 수 있다. 본 개시에서 미세기공(Micropore)은 내부 기공의 평균 직경이 2 ㎚ 미만인 것을 의미하며, 메조기공(Mesopore)은 내부 기공의 평균 직경이 2 ㎚ 내지 50 ㎚인 것을 의미한다.The porous support includes mesopores and may optionally further include micropores. In the present disclosure, micropore means that the average diameter of internal pores is less than 2 ㎚, and mesopore (Mesopore) means that the average diameter of internal pores is 2 ㎚ to 50 ㎚.
상기 금 나노입자는 본 기술 분야에서 공지된 방법으로부터 제조할 수 있거나 시판되는 물질을 사용할 수 있다. 구체적으로, 금 나노입자는 공지된 방법(Natan et al., Anal. Chem. 67, 735 (1995))에 따라 용액 내에 존재하는 금 전구체를 금으로 환원시켜 제조할 수 있다. 금 전구체로는 금을 함유하는 할로겐화물, 질산염, 아세테이트, 아세틸아세토네이트 또는 암모늄염 등이 예시될 수 있으나, 이에 제한되지는 않는다. 구체적으로, 상기 금 전구체는 HAuCl4 또는 HAuBr4일 수 있으며, 이에 제한되지는 않는다.The gold nanoparticles can be manufactured from methods known in the art or commercially available materials can be used. Specifically, gold nanoparticles can be produced by reducing a gold precursor present in a solution to gold according to a known method (Natan et al., Anal. Chem. 67, 735 (1995)). Examples of gold precursors include gold-containing halides, nitrates, acetates, acetylacetonates, or ammonium salts, but are not limited thereto. Specifically, the gold precursor may be HAuCl 4 or HAuBr 4 , but is not limited thereto.
상기 금 나노입자의 직경은 1 내지 20nm일 수 있고, 구체적으로 1 내지 15nm, 보다 구체적으로 1 내지 12nm일 수 있다. 바람직한 금 나노입자의 직경으로는 1 내지 10nm, 보다 바람직하게는 1 내지 8 nm일 수 있다.The diameter of the gold nanoparticles may be 1 to 20 nm, specifically 1 to 15 nm, and more specifically 1 to 12 nm. A preferred diameter of gold nanoparticles may be 1 to 10 nm, more preferably 1 to 8 nm.
일 구체예에 따르면, 상기 다공성 지지체의 메조 기공의 평균 직경보다 상기 나노입자의 평균 직경이 더 클 수 있다. 이에 따라, 다공성 지지체의 메조기공 내에 함입되는 금 나노입자의 결정 격자의 변형을 생성할 수 있으며, 상온 영역에서 촉매 활성의 개선을 유도할 수 있다.According to one embodiment, the average diameter of the nanoparticles may be larger than the average diameter of the mesopores of the porous support. Accordingly, it is possible to create a deformation of the crystal lattice of the gold nanoparticles incorporated into the mesopores of the porous support, and to improve catalytic activity in the room temperature range.
일 구체예에 따르면, 상기 나노입자는 상기 다공성 지지체의 메조 기공의 전부에 함입되거나 상기 다공성 지지체의 메조 기공의 일부에 함입될 수 있으며, 구체적으로는 상기 다공성 지지체의 메조 기공의 일부에 함입될 수 있다. 보다 구체적으로는, 상기 나노입자는 상기 다공성 지지체의 메조 기공의 일부에 불규칙적으로 함입될 수 있다. 이때, 상기 다공성 지지체의 메조 기공의 전부에 함입된 구조는 초격자(superlattice) 구조를 의미하며, 구체적으로는 면심입방구조(face-centered cubic, FCC) 대칭을 갖는 고도로 정렬된 초격자 구조를 의미한다. 나노입자가 상기 메조 기공의 일부에 불규칙적으로 함입된 형태는 상기 초격자 구조에 비해 기체의 확산이 보다 효과적으로 이루어질 수 있다는 장점을 가진다.According to one embodiment, the nanoparticles may be incorporated into all of the mesopores of the porous support or may be incorporated into a portion of the mesopores of the porous support, and specifically, may be incorporated into a portion of the mesopores of the porous support. there is. More specifically, the nanoparticles may be irregularly incorporated into some of the mesopores of the porous support. At this time, the structure embedded in all of the mesopores of the porous support refers to a superlattice structure, and specifically refers to a highly ordered superlattice structure with face-centered cubic (FCC) symmetry. do. The shape in which nanoparticles are irregularly embedded in a portion of the mesopores has the advantage of allowing gas to diffuse more effectively compared to the superlattice structure.
일 구체예에 따르면, 상기 나노입자는 상기 다공성 지지체의 메조 기공의 일부에 함입되고, 나노입자가 함입되지 않은 메조 기공은 열린 기공으로 서로 연결된 것일 수 있다. 상기 복합체 촉매는 나노입자가 다공성 지지체의 기공의 일부에만 함입됨으로써, 열린 기공으로 서로 연결된 나노입자가 함입되지 않은 기공을 통하여 유해가스의 확산이 보다 효과적으로 이루어질 수 있다. 이에 따라, 상온에서 빠른 유속으로 가스를 공급하더라도 가스 내에 포함되어 있는 반응물 가스를 실질적으로 생성물 가스로 빠르게 모두 전환할 수 있다.According to one embodiment, the nanoparticles may be incorporated into some of the mesopores of the porous support, and the mesopores not incorporated into the nanoparticles may be connected to each other through open pores. In the composite catalyst, nanoparticles are incorporated into only a portion of the pores of the porous support, so that harmful gases can be diffused more effectively through pores that are not incorporated by nanoparticles connected to each other through open pores. Accordingly, even if the gas is supplied at a high flow rate at room temperature, substantially all of the reactant gas contained in the gas can be quickly converted into product gas.
일 구체예에 따르면, 상기 금 나노입자는 촉매 코팅층의 전체 중량 중 0.1 내지 10 중량%로 포함되는 것일 수 있으며, 구체적으로는 0.5 내지 7 중량%, 보다 구체적으로는 1 내지 5 중량%로 포함되는 것일 수 있다.According to one embodiment, the gold nanoparticles may be included in 0.1 to 10% by weight of the total weight of the catalyst coating layer, specifically 0.5 to 7% by weight, and more specifically 1 to 5% by weight. It may be.
일 구체예에 따르면, 상기 금 나노입자는 다공성 복합 구조체 촉매의 전체 중량 중 0.005 내지 3.5 중량%로 포함되는 것일 수 있으며, 구체적으로는 0.01 내지 3 중량%, 보다 구체적으로는 0.05 내지 2.5 중량% 또는 0.1 내지 1.8 중량%로 포함되는 것일 수 있다.According to one embodiment, the gold nanoparticles may be included in 0.005 to 3.5% by weight of the total weight of the porous composite structure catalyst, specifically 0.01 to 3% by weight, more specifically 0.05 to 2.5% by weight, or It may be included in 0.1 to 1.8 weight%.
일 구체예에 따르면, 상기 촉매 코팅층은 메조 기공을 포함하는 다공성 지지체 및 상기 다공성 지지체의 기공 내에 함입된 금 나노입자를 포함하며, EXAFS(Extended X-ray absorption fine structure) 스펙트럼을 푸리에 변환하여 얻어진 동경 분포 함수(radial distribution function)는 하기 식 1을 만족할 수 있다.According to one embodiment, the catalyst coating layer includes a porous support including mesopores and gold nanoparticles incorporated into the pores of the porous support, and the diameter obtained by Fourier transforming the EXAFS (Extended X-ray absorption fine structure) spectrum. The radial distribution function may satisfy Equation 1 below.
[식 1][Equation 1]
(DH2/DH1) < 0.3(DH2/DH1) < 0.3
상기 식 1에서 DH1은 원자간 거리(interatomic distance) D1에서의 피크의 높이이며, DH2는 원자간 거리(interatomic distance) D2에서의 피크의 높이이고, D1 및 D2는 각각 하기 식 2 및 식 3을 만족한다. 구체적으로, 상기 D1 및 D2는 각각 하기 식 2 및 식 3을 만족하는 범위에서 발견되는 최대 피크의 원자간 거리이다.In equation 1, DH1 is the height of the peak at the interatomic distance D1, DH2 is the height of the peak at the interatomic distance D2, and D1 and D2 are expressed in the following equations 2 and 3, respectively. Satisfies. Specifically, D1 and D2 are the interatomic distances of the maximum peak found in a range that satisfies the following Equations 2 and 3, respectively.
[식 2][Equation 2]
0.8≤(D1/D3)≤0.950.8≤(D1/D3)≤0.95
[식 3][Equation 3]
0.6≤(D2/D3)≤0.70.6≤(D2/D3)≤0.7
상기 식 2 및 식 3에서 D3는 2.8 내지 3.0 Å에서 존재하는 벌크상의 Au-Au 결합의 원자간 거리를 의미하며, 구체적으로 2.88 내지 2.98 Å에서 존재하는 것일 수 있고, 보다 구체적으로 2.90Å의 표준 원자간 거리를 의미할 수 있다. 구체적으로 D3는 피크가 비대칭성을 가지는 하나의 피크로 나타나거나 양봉 피크를 가질 경우, 피크 분리(deconvolution)를 통해 얻어진, 2.8 내지 3.0 Å에서 존재하는 벌크상의 Au-Au 결합의 원자간 거리를 의미할 수 있다. 상기 비대칭성은 피크가 비록 하나의 피크(unimodal peak)의 형상을 가지지만 2개의 피크가 중첩됨에 따라 피크의 중심을 기준으로 좌우가 비대칭성을 가지는 것을 의미한다.In Equations 2 and 3 above, D3 refers to the interatomic distance of the Au-Au bond in the bulk phase that exists at 2.8 to 3.0 Å, and may specifically exist at 2.88 to 2.98 Å, and more specifically, the standard of 2.90 Å. It may mean the distance between atoms. Specifically, D3 refers to the interatomic distance of the Au-Au bond in the bulk at 2.8 to 3.0 Å, obtained through peak deconvolution when the peak appears as a single peak with asymmetry or has a bimodal peak. can do. The asymmetry means that although the peak has the shape of a single peak (unimodal peak), the left and right sides have asymmetry based on the center of the peak as two peaks overlap.
구체적으로 상기 식 2의 (D1/D3)는 0.85 내지 0.92일 수 있으며, 상기 식 3의 (D2/D3)는 0.63 내지 0.66일 수 있다.Specifically, (D1/D3) in Equation 2 may be 0.85 to 0.92, and (D2/D3) in Equation 3 may be 0.63 to 0.66.
일 구체예에 따르면, 상기 식 1에서 DH1은 원자간 거리(interatomic distance) 2.57±0.2Å의 피크의 높이이며, DH2는 원자간 거리(interatomic distance) 1.85±0.2Å의 피크의 높이를 의미할 수 있다. 구체적으로 DH1은 원자간 거리(interatomic distance) 2.57±0.1Å의 피크의 높이이며, DH2는 원자간 거리(interatomic distance) 1.85±0.1Å의 피크의 높이를 의미할 수 있다.According to one specific example, in Equation 1, DH1 refers to the height of the peak at an interatomic distance of 2.57 ± 0.2 Å, and DH2 may refer to the height of the peak at an interatomic distance of 1.85 ± 0.2 Å. there is. Specifically, DH1 may refer to the peak height of an interatomic distance of 2.57 ± 0.1 Å, and DH2 may refer to the peak height of an interatomic distance of 1.85 ± 0.1 Å.
상기 복합체 촉매가 원자간 거리 D1에서의 피크와 원자간 거리 D2에서의 피크의 높이 비율이 0.3 미만을 만족함에 따라 촉매 활성이 상당한 정도로 개선될 수 있다.As the composite catalyst satisfies the height ratio of the peak at the interatomic distance D1 and the peak at the interatomic distance D2 of less than 0.3, the catalytic activity can be significantly improved.
EXAFS는 확장 X선 흡수 미세 구조를 의미하며, 금 나노입자의 동경 분포나 배위 수를 분석할 수 있다. 예를 들어, 고에너지의 X선을 금 원자에 조사하면, 금 나노입자에 포함되는 금 원자는 전자를 방출하게 된다. 이에 따라, X선을 흡수한 금 원자를 중심으로 방사상의 산란파가 발생하며, X선을 흡수한 금 원자로부터 방출된 전자가 인접하는 다른 원자(금 또는 산소 원자)에 도달하면 인접하는 다른 원자로부터 전자가 방출된다. 이때, 인접하는 다른 원자를 중심으로 방사상의 산란파가 발생한다.EXAFS stands for extended X-ray absorption fine structure, and can analyze the diameter distribution or coordination number of gold nanoparticles. For example, when high-energy X-rays are irradiated to gold atoms, the gold atoms contained in the gold nanoparticles emit electrons. Accordingly, radial scattered waves are generated centered on the gold atom that absorbed the X-rays, and when the electrons emitted from the gold atom that absorbed the Electrons are emitted. At this time, radial scattered waves are generated centered on other adjacent atoms.
X선을 흡수한 금 원자를 중심으로 발생한 산란파와 인접하는 다른 원자(금 또는 산소 원자)를 중심으로 발생한 산란파는 간섭한다. 이때, X선을 흡수한 금 원자와 상기 금 원자에 인접하는 다른 원자(금 또는 산소 원자)의 거리에 따른 정상파가 얻어진다. 상기 정상파를 푸리에 변환하면, 금 원자와 상기 금 원자에 인접하는 다른 원자(금 또는 산소 원자)의 거리에 따른 피크를 갖는 동경 분포가 얻어진다. 즉, 금(Au) 원자와 금(Au) 원자 사이의 거리에 따른 피크뿐만 아니라 금(Au) 원자가 산소 원자와 결합을 가질 경우 Au-O 결합을 가지는 금(Au) 원자-산소 원자 사이의 거리에 따른 피크를 갖는 동경 분포를 얻을 수 있다.The scattered waves generated around the gold atom that absorbed the X-rays and the scattered waves generated around other adjacent atoms (gold or oxygen atoms) interfere. At this time, a standing wave is obtained depending on the distance between the gold atom that absorbed the X-rays and another atom (gold or oxygen atom) adjacent to the gold atom. When the standing wave is Fourier transformed, a radius distribution having a peak depending on the distance between a gold atom and another atom (gold or oxygen atom) adjacent to the gold atom is obtained. That is, not only the peak according to the distance between the gold (Au) atom and the gold (Au) atom, but also the distance between the gold (Au) atom with the Au-O bond and the oxygen atom when the gold (Au) atom has a bond with the oxygen atom. A diameter distribution with a peak according to can be obtained.
일 구체예에 따르면, 상기 식 1의 (DH2/DH1)는 0.25 이하일 수 있고, 보다 구체적으로 0.24 이하일 수 있으며 비한정적으로 0 이상일 수 있다. 바람직하게는 상기 식 1의 (DH2/DH1)는 0.2 이하일 수 있으며, 보다 바람직하게는 0.15 이하일 수 있다. 상기 수치범위를 가짐에 따라 다공성 복합 구조체 촉매의 촉매 활성은 현저히 개선되어 가스 스트림 내에 포함되어 있는 반응물 가스를 실질적으로 생성물 가스로 현저하게 빠르게 모두 전환할 수 있는 점에서 바람직하다.According to one specific example, (DH2/DH1) in Equation 1 may be 0.25 or less, more specifically 0.24 or less, and may be non-limitingly 0 or more. Preferably, (DH2/DH1) in Equation 1 may be 0.2 or less, and more preferably 0.15 or less. With the above numerical range, the catalytic activity of the porous composite structure catalyst is significantly improved, which is desirable in that substantially all of the reactant gas contained in the gas stream can be converted to product gas remarkably quickly.
일 구체예에 따르면, 상기 촉매 코팅층은 EXAFS(Extended X-ray absorption fine structure) 스펙트럼을 푸리에 변환하여 얻어진 동경 분포 함수(radial distribution function)가 하기 식 4를 만족할 수 있다.According to one embodiment, the radial distribution function of the catalyst coating layer obtained by Fourier transforming an extended X-ray absorption fine structure (EXAFS) spectrum may satisfy Equation 4 below.
[식 4][Equation 4]
(DA2/DA1) < 0.25(DA2/DA1) < 0.25
상기 식 4에서 DA1은 원자간 거리 D1에서의 피크의 면적이며, DA2는 원자간 거리 D2에서의 피크의 면적이고, D1 및 D2는 각각 상기 식 2 및 식 3을 만족한다.In Equation 4, DA1 is the area of the peak at the interatomic distance D1, DA2 is the area of the peak at the interatomic distance D2, and D1 and D2 satisfy Equation 2 and Equation 3 above, respectively.
일 구체예에 따르면, 상기 식 4에서 DA1은 원자간 거리(interatomic distance) 2.57±0.2Å의 피크의 면적이며, DA2는 원자간 거리(interatomic distance) 1.85±0.2Å의 피크의 면적을 의미할 수 있다. 구체적으로 DA1은 원자간 거리(interatomic distance) 2.57±0.1Å의 피크의 면적이며, DA2는 원자간 거리(interatomic distance) 1.85±0.1Å의 피크의 면적을 의미할 수 있다.According to one specific example, in Equation 4, DA1 is the area of the peak with an interatomic distance of 2.57 ± 0.2 Å, and DA2 may mean the area of the peak with an interatomic distance of 1.85 ± 0.2 Å. there is. Specifically, DA1 may refer to the area of the peak with an interatomic distance of 2.57 ± 0.1 Å, and DA2 may refer to the area of the peak with an interatomic distance of 1.85 ± 0.1 Å.
상기 복합체 촉매가 원자간 거리 D1에서의 피크와 원자간 거리 D2에서의 피크의 면적 비율이 0.25 미만을 만족함에 따라 촉매 활성이 상당한 정도로 개선될 수 있다. As the composite catalyst satisfies the area ratio of the peak at the interatomic distance D1 and the peak at the interatomic distance D2 of less than 0.25, the catalytic activity can be significantly improved.
일 구체예에 따르면, 상기 식 4의 (DA2/DA1)는 0.2 이하일 수 있고, 구체적으로 0.18 이하, 보다 구체적으로 0.15 이하일 수 있으며 비한정적으로 0 이상일 수 있다. 바람직하게는 상기 식 4의 (DA2/DA1)는 0.1 이하일 수 있으며, 보다 바람직하게는 0.08 이하일 수 있다. 상기 수치범위를 가짐에 따라 다공성 복합 구조체 촉매의 촉매 활성은 현저히 개선되어 가스 스트림 내에 포함되어 있는 반응물 가스를 실질적으로 생성물 가스로 현저하게 빠르게 모두 전환할 수 있는 점에서 바람직하다.According to one embodiment, (DA2/DA1) in Equation 4 may be 0.2 or less, specifically 0.18 or less, more specifically 0.15 or less, and may be indefinitely 0 or more. Preferably, (DA2/DA1) in Equation 4 may be 0.1 or less, and more preferably 0.08 or less. With the above numerical range, the catalytic activity of the porous composite structure catalyst is significantly improved, which is desirable in that substantially all of the reactant gas contained in the gas stream can be converted to product gas remarkably quickly.
일 구체예에 따르면, 상기 EXAFS(Extended X-ray absorption fine structure) 스펙트럼을 푸리에 변환하여 얻어진 동경 분포 함수의 원자간 거리 2.2 내지 3.0Å 구간에서 양봉 피크를 가지는 것일 수 있으며, 상기 양봉 피크는 금(Au)-금(Au) 원자간 결합에 의해 나타난다. 구체적으로, 상기 원자간 거리 2.2 내지 3.0Å 구간은 금(Au) 원자와 금(Au) 원자간의 거리가 위치하는 구간일 수 있으며, 결정 격자에서 Au-Au의 원자간 거리의 분포를 의미한다.According to one embodiment, the diameter distribution function obtained by Fourier transforming the EXAFS (Extended Au) - Appears by bonds between gold (Au) atoms. Specifically, the 2.2 to 3.0 Å interatomic distance section may be a section where the distance between gold (Au) atoms is located, and refers to the distribution of the interatomic distance of Au-Au in the crystal lattice.
상기 원자간 거리 2.2 내지 3.0Å 구간에서 통상적인 금 나노입자는 단일 피크를 나타낼 수 있으며, 단일 피크를 가진다는 점은 나노입자의 결정 격자 내에서 금(Au)-금(Au) 원자간 거리가 일정하다는 점을 의미한다. 그러나 양봉 피크를 가진다는 점은 결정 격자내에 서로 다른 금(Au)-금(Au) 원자간 거리가 존재한다는 점을 의미할 수 있으며, 명확하게 규명되지는 않았으나 압축 응력에 의한 결정 격자의 변형에 의하여 2개의 서로 다른 금(Au)-금(Au) 원자간 거리가 생성된 것으로 유추된다. 상기 원자간 거리 2.2 내지 3.0Å 구간에서 양봉 피크를 가짐에 따라 저온 영역에서도 매우 우수한 촉매 활성을 나타낼 수 있으며, 높은 유속의 가스 스트림 내에 포함되어 있는 반응물 가스를 실질적으로 생성물 가스로 매우 빠르게 모두 전환할 수 있는 점에서 바람직하다.In the range of 2.2 to 3.0 Å between atoms, typical gold nanoparticles can exhibit a single peak, and having a single peak means that the distance between gold (Au)-gold (Au) atoms in the crystal lattice of the nanoparticle is It means that it is constant. However, having a bimodal peak may mean that different distances between gold (Au) and gold (Au) atoms exist in the crystal lattice. Although it has not been clearly identified, it may be related to the deformation of the crystal lattice due to compressive stress. It is inferred that two different distances between gold (Au) and gold (Au) atoms were created. As it has a bimodal peak in the interatomic distance range of 2.2 to 3.0 Å, it can exhibit very excellent catalytic activity even in low temperature ranges, and can convert substantially all of the reactant gas contained in the gas stream at high flow rate into product gas very quickly. It is desirable in that it can be done.
일 구체예에 따르면, 상기 다공성 복합 구조체 촉매는 일산화탄소, 알데히드계 화합물 또는 탄화수소계 화합물의 산화반응의 용도를 가질 수 있다. 이에 따라 본 개시에 따른 다공성 복합 구조체 촉매는 일산화탄소, 알데히드계 화합물 또는 탄화수소계 화합물의 고체상 산화제로 바람직하게 활용될 수 있다. 상기 알데히드계 화합물로는 아세트알데히드 또는 포름알데히드일 수 있으나 이에 제한받지 않는다. 상기 탄화수소계 화합물로는 지방족 또는 방향족 화합물 또는 휘발성 유기화합물(VOC)일 수 있으며, 예시적으로 메탄, 에탄, 프로판, 부탄, 벤젠, 톨루엔 또는 자일렌이 예시될 수 있으나 이에 제한받지 않는다.According to one embodiment, the porous composite structure catalyst may be used for the oxidation reaction of carbon monoxide, aldehyde-based compounds, or hydrocarbon-based compounds. Accordingly, the porous composite structure catalyst according to the present disclosure can be preferably used as a solid-phase oxidizing agent for carbon monoxide, aldehyde-based compounds, or hydrocarbon-based compounds. The aldehyde-based compound may be acetaldehyde or formaldehyde, but is not limited thereto. The hydrocarbon-based compound may be an aliphatic or aromatic compound or a volatile organic compound (VOC), and examples include, but are not limited to, methane, ethane, propane, butane, benzene, toluene, or xylene.
일 구체예에 따르면, 상기 공조필터 시스템은 0 ℃ 내지 60 ℃에서 운전되는 것일 수 있으며, 구체적으로는 10 ℃ 내지 50 ℃, 보다 구체적으로는 15 ℃ 내지 30 ℃에서 운전될 수 있으나, 반드시 이에 제한되는 것은 아니다. 상술한 범위의 온도에서 운전됨에 따라 상술한 바와 같이 에너지를 계속 공급하면서 고온 조건에서 구동하여야 함에 따라 발생하는 문제를 해결하여 유해물질을 빠르게 제거할 수 있다.According to one embodiment, the air conditioning filter system may be operated at 0°C to 60°C, specifically at 10°C to 50°C, and more specifically at 15°C to 30°C, but is necessarily limited thereto. It doesn't work. By operating at a temperature in the above-mentioned range, it is possible to quickly remove harmful substances by solving problems arising from operating under high-temperature conditions while continuously supplying energy as described above.
일 구체예에 따르면, 상기 공조필터 시스템을 통해 밀폐 공간의 실내 공기 중 존재하는 유해가스를 12,000 hr-1 또는 24,000 hr-1의 공간 속도 조건에서 90% 이상의 제거율로 제거할 수 있으며, 바람직하게는 95% 이상의 제거율로 제거할 수 있다. 구체적으로, 상기 유해 가스는 상술한 온도 범위에서 상술한 범위의 제거율로 제거될 수 있다. 이때, 유해가스는 일산화탄소일 수 있으며, 구체적으로는 실내 공기 중 0.1% 이상의 농도로 존재하는 일산화탄소일 수 있다.According to one embodiment, the air conditioning filter system can remove harmful gases present in the indoor air of a closed space with a removal rate of 90% or more under space velocity conditions of 12,000 hr -1 or 24,000 hr -1 , preferably It can be removed with a removal rate of over 95%. Specifically, the harmful gas can be removed at a removal rate within the above-described temperature range and within the above-described range. At this time, the harmful gas may be carbon monoxide, and specifically, it may be carbon monoxide present in indoor air at a concentration of 0.1% or more.
상기 공조필터 시스템을 통해 밀폐 공간의 실내 공기 중 1%의 농도로 존재하는 일산화탄소를 12,000 hr-1의 공간 속도 조건에서 70% 이상의 제거율로 제거할 수 있으며, 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 제거율로 제거할 수 있다. 구체적으로, 상기 유해 가스는 상술한 온도 범위에서 상술한 범위의 제거율로 제거될 수 있다.Through the air conditioning filter system, carbon monoxide present at a concentration of 1% in the indoor air of a closed space can be removed at a removal rate of 70% or more under a space velocity condition of 12,000 hr -1 , preferably 80% or more, more preferably 80% or more. can be removed with a removal rate of over 90%. Specifically, the harmful gas can be removed at a removal rate within the above-described temperature range and within the above-described range.
예를 들면, 상기 공조필터 시스템이 적용되는 밀폐 공간은 0.1 내지 100 ㎥ 또는 1 내지 40 ㎥의 부피를 가질 수 있으나, 이에 한정되는 것은 아니다.For example, the enclosed space to which the air conditioning filter system is applied may have a volume of 0.1 to 100 m3 or 1 to 40 m3, but is not limited thereto.
이하, 본 개시에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present disclosure will be described in more detail using examples. However, the following examples are merely illustrative to aid understanding of the present application, and the content of the present application is not limited to the following examples.
(제조예 1) 복합체 촉매 1의 제조(Preparation Example 1) Preparation of composite catalyst 1
[단계 1]: 중합체로 기능화된 금 나노입자의 제조[Step 1]: Preparation of polymer-functionalized gold nanoparticles
[단계 1-1]: 올레일아민로 안정화된 금 나노입자를 다음과 같은 절차에 따라 합성한다.[Step 1-1]: Gold nanoparticles stabilized with oleylamine are synthesized according to the following procedure.
먼저, 안정제로서 올레인 아민을 선택하여, 60ml의 테트랄린, 60ml의 올레인아민, 0.6g의 HAuCl·H2O로 구성된 용액을 상온에서 10분간 교반하여 준비했다. 6mmol의 TBAB(테트라부틸암모늄브로마이드), 6ml의 테트랄린, 6ml의 올레일 아민을 초음파 분쇄하여 혼합하고 상기 용액에 신속히 투입했다. 그리고 상기 용액을 상온에서 1시간 더 교반하고, 에탄올을 첨가한 뒤 원심분리하여 금 나노입자를 침전시켰다. 금 나노입자 침전물을 헥세인에 의해 재분산시키고, 에탄올을 추가하여 원심분리했다. 제조된 금 나노입자는 4nm의 평균입경을 나타내었고, 제조된 금 나노입자들은 형성된 그대로 100ml 톨루엔에 분산시켰다.First, olein amine was selected as a stabilizer, and a solution consisting of 60 ml of tetralin, 60 ml of oleinamine, and 0.6 g of HAuCl·H 2 O was prepared by stirring at room temperature for 10 minutes. 6 mmol of TBAB (tetrabutylammonium bromide), 6 ml of tetralin, and 6 ml of oleyl amine were mixed by ultrasonic pulverization and quickly added to the solution. Then, the solution was stirred at room temperature for another hour, ethanol was added, and then centrifuged to precipitate gold nanoparticles. The gold nanoparticle precipitate was redispersed with hexane, ethanol was added, and centrifuged. The produced gold nanoparticles had an average particle diameter of 4 nm, and the produced gold nanoparticles were dispersed as-formed in 100 ml toluene.
[단계 1-2]: 금 나노입자의 표면을 티올화된 PEG로 다음과 같은 방법을 통해 기능화시킨다.[Step 1-2]: The surface of the gold nanoparticle is functionalized with thiolated PEG using the following method.
상기 단계 1-1에서 톨루엔에 분산된 금 나노입자에 대하여 추가로 100ml의 테트라하이드로퓨란을 가하여 희석하고, 금 나노입자의 표면에 중합체를 결합시켜 기능화하기 위하여 티올화된 중합체를 선택하였으며 1g의 말단이 티올기로 치환된 단관능성 폴리에틸렌글리콜(aSH-PEG, 중량평균분자량: 1kDa)를 첨가했다. 이를 교반한 뒤, 헥세인을 추가하고 원심분리하여 PEG로 기능화된 금 나노입자(4-Au-PEG)를 침전시켰다. 침전으로 얻은 4-Au-PEG를 건조한 뒤 물에 분산했다.In step 1-1, the gold nanoparticles dispersed in toluene were diluted by adding an additional 100 ml of tetrahydrofuran, and a thiolated polymer was selected for functionalization by binding the polymer to the surface of the gold nanoparticles, and 1 g of the terminal was added. Monofunctional polyethylene glycol (aSH-PEG, weight average molecular weight: 1 kDa) substituted with this thiol group was added. After stirring, hexane was added and centrifuged to precipitate gold nanoparticles (4-Au-PEG) functionalized with PEG. 4-Au-PEG obtained by precipitation was dried and then dispersed in water.
[단계 2]: PEG-기능화된 금 나노입자가 포집된 다공성 실리카의 제조[Step 2]: Preparation of porous silica entrapped with PEG-functionalized gold nanoparticles
상기 1-2단계에서 제조한 4-Au-PEG의 0.088g을 활성제인 0.396g의 Pluronic F127과 혼합하여 10ml의 1.6M HCl 수용액에 균일하게 분산한 후, 상기 분산액에 1.49g의 테트라에틸오소실리케이트(TEOS)를 가했다. 그리고 상기 혼합물의 분산액을 15분 동안 교반하고, 실온에서 40시간 동안 교반없이 유지하여 붉은색 침전물을 제조했다. 이렇게 형성된 상기 붉은색 침전물이 PEG-기능화된 금 나노입자가 포집된 다공성 실리카에 해당한다.0.088g of 4-Au-PEG prepared in steps 1-2 above was mixed with 0.396g of Pluronic F127 as an activator and dispersed uniformly in 10ml of 1.6M HCl aqueous solution, and then 1.49g of tetraethylorthosilicate was added to the dispersion. (TEOS) was applied. Then, the dispersion of the mixture was stirred for 15 minutes and maintained without stirring at room temperature for 40 hours to prepare a red precipitate. The red precipitate thus formed corresponds to porous silica containing PEG-functionalized gold nanoparticles.
[단계 3]: 복합체 촉매의 제조[Step 3]: Preparation of composite catalyst
앞선 단계에서 제조된 붉은색 침전물을 물로 세척하고 건조한 후, 250℃에서 3시간, 400℃에서 2시간 및 500℃에서 2시간 동안 단계적으로 소성하여 PEG 및 Pluronic F127 고분자를 제거함으로써, 금 나노입자가 포집된 다공성 실리카인 복합체 촉매를 제조했다.The red precipitate prepared in the previous step was washed with water, dried, and then calcined in stages for 3 hours at 250°C, 2 hours at 400°C, and 2 hours at 500°C to remove PEG and Pluronic F127 polymers, thereby producing gold nanoparticles. A captured porous silica composite catalyst was prepared.
(제조예 2) 복합체 촉매 2의 제조(Preparation Example 2) Preparation of composite catalyst 2
상기 제조예 1의 단계 2를 하기와 같이 실시한 점만 제외하고 단계 1과 3을 동일하게 실시하여 복합체 촉매 2를 제조했다.Composite catalyst 2 was prepared by performing steps 1 and 3 in the same manner, except that step 2 of Preparation Example 1 was performed as follows.
단계 2의 PEG-기능화된 금 나노입자가 포집된 다공성 알루미나의 제조를 위해, 먼저 PEG로 기능화된 금 나노입자(4-Au-PEG) 0.15 g과 Pluronic F127 0.675 g을 준비하여, 질산(68%) 0.8㎖과 에탄올 40㎖의 혼합용액에 균일하게 분산한 후, 상기 분산액에 0.81 g의 알루미늄에톡시드(Aluminum ethoxide)를 투입했다. 그리고 상기 혼합물의 분산액을 3시간 동안 교반하고, 실온에서 24시간 동안 교반없이 유지한 후, 60℃ 온도에서 3시간 동안 건조하여 붉은색 고체를 제조했다. 이후, 제조예 1의 단계 3을 동일하게 실시하여 금 나노입자가 포집된 다공성 알루미나인 복합체 촉매 2를 제조했다.For the preparation of porous alumina containing PEG-functionalized gold nanoparticles in step 2, first prepare 0.15 g of PEG-functionalized gold nanoparticles (4-Au-PEG) and 0.675 g of Pluronic F127, and dissolve them in nitric acid (68% ) After uniformly dispersing in a mixed solution of 0.8 ml and 40 ml of ethanol, 0.81 g of aluminum ethoxide was added to the dispersion. The dispersion of the mixture was stirred for 3 hours, maintained at room temperature for 24 hours without stirring, and then dried at 60°C for 3 hours to prepare a red solid. Thereafter, step 3 of Preparation Example 1 was performed in the same manner to prepare porous alumina composite catalyst 2 containing gold nanoparticles.
(제조예 3) 복합체 촉매 3의 제조(Preparation Example 3) Preparation of composite catalyst 3
상기 제조예 1의 단계 2를 하기와 같이 실시한 점만 제외하고 단계 1과 3을 동일하게 실시하여 복합체 촉매 3을 제조했다.Composite catalyst 3 was prepared by performing steps 1 and 3 in the same manner, except that step 2 of Preparation Example 1 was performed as follows.
단계 2의 PEG-기능화된 금 나노입자가 포집된 다공성 티타니아의 제조를 위해, 먼저 PEG로 기능화된 금 나노입자(4-Au-PEG) 0.10 g과 Pluronic F127 0.44 g을 준비하여, 37%의 염산 0.68㎖과 에탄올 17.05㎖의 혼합용액에 균일하게 분산한 후, 상기 분산액에 2.28g의 타이타늄 테트라아이소프로폭사이드 (titanium tetraisopropoxide)를 투입했다. 그리고 상기 혼합물의 분산액을 3시간 동안 교반하고, 실온에서 24시간 동안 교반없이 유지한 후, 60℃ 온도에서 3시간 동안 건조하여 붉은색 고체를 제조했다. 이후, 제조예 1의 단계 3을 동일하게 실시하여 금 나노입자가 포집된 다공성 티타니아인 복합체 촉매 3을 제조했다.For the preparation of porous titania containing PEG-functionalized gold nanoparticles in step 2, first prepare 0.10 g of PEG-functionalized gold nanoparticles (4-Au-PEG) and 0.44 g of Pluronic F127 and dissolve them in 37% hydrochloric acid. After uniformly dispersing in a mixed solution of 0.68 ml and 17.05 ml of ethanol, 2.28 g of titanium tetraisopropoxide was added to the dispersion. The dispersion of the mixture was stirred for 3 hours, maintained at room temperature for 24 hours without stirring, and then dried at 60°C for 3 hours to prepare a red solid. Thereafter, step 3 of Preparation Example 1 was performed in the same manner to prepare porous titania composite catalyst 3 in which gold nanoparticles were captured.
(제조예 4) 다공성 복합 구조체 촉매 1의 제조(Preparation Example 4) Preparation of porous composite structure catalyst 1
상기 제조예 1에서 제조된 복합체 촉매 1을 10 중량%가 되도록 수용액에 혼합하고 밀링하여 분산액을 제조하였다. 밀링된 복합체 촉매 분말의 평균 입경은 0.8㎛를 나타내었다. 상기 분산액에 아세트산을 가하여 pH가 4가 되도록 조절한 평균 입경 32nm의 무기 바인더 실리카 졸을 상기 분산액 중 1 중량%가 되도록 혼합하였다. 그리고 분산액에 유기 바인더인 폴리(N-비닐 피롤리돈)을 분산액 중 2 중량%가 되도록 혼합하여 코팅용 슬러리를 제조하였다.A dispersion was prepared by mixing the composite catalyst 1 prepared in Preparation Example 1 in an aqueous solution to 10% by weight and milling. The average particle diameter of the milled composite catalyst powder was 0.8㎛. Acetic acid was added to the dispersion to adjust the pH to 4, and an inorganic binder silica sol with an average particle diameter of 32 nm was mixed to make up 1% by weight of the dispersion. Then, poly(N-vinyl pyrrolidone), an organic binder, was mixed with the dispersion to make 2% by weight of the dispersion to prepare a slurry for coating.
상기 코팅용 슬러리에 10cm x 10cm x 10cm의 니켈 폼을 1분간 침지한 후 빼내어 과도하게 묻은 슬러리는 공기를 불어넣어 제거한 후 충분히 건조하였다. 침지 및 건조 과정을 10회 반복하여 코팅이 완료된 니켈 폼을 고온 퍼니스에 장입한 후 450℃에서 4시간 소성하여 최종적으로 다공성 복합 구조체 촉매 1을 제조하였다.10cm x 10cm x 10cm of the coating slurry The nickel foam was immersed for 1 minute and then removed. The excess slurry was removed by blowing air and dried sufficiently. The immersion and drying process was repeated 10 times, the coated nickel foam was charged into a high temperature furnace, and then fired at 450°C for 4 hours to finally prepare the porous composite structure Catalyst 1.
(제조예 5) 다공성 복합 구조체 촉매 2의 제조(Preparation Example 5) Preparation of porous composite structure catalyst 2
상기 제조예 1의 단계 1-1에서 올레인아민 및 HAuCl·H2O의 몰비를 조절하여 10nm 평균입경을 가지는 금 나노입자를 제조한 점을 제외하고 동일한 단계들을 실시하고, 제조예 4를 동일하게 실시하여, 다공성 복합 구조체 촉매 2를 제조하였다.The same steps were performed except that gold nanoparticles with an average particle diameter of 10 nm were prepared by adjusting the molar ratio of oleinamine and HAuCl·H 2 O in step 1-1 of Preparation Example 1, and Preparation Example 4 was the same. By carrying out this procedure, porous composite structure catalyst 2 was prepared.
(제조예 6) 다공성 복합 구조체 촉매 3의 제조(Preparation Example 6) Preparation of porous composite structure catalyst 3
상기 제조예 1의 단계 1-1에서 올레인아민 및 HAuCl·H2O의 몰비를 조절하여 12nm 평균입경을 가지는 금 나노입자를 제조한 점을 제외하고 동일한 단계 1 및 2를 실시하였다. 단계 3에서, 앞선 단계에서 제조된 붉은색 침전물을 물로 세척하고 건조한 후, 450℃에서 소성하여 PEG 및 Pluronic F127 고분자를 제거함으로써, 금 나노입자가 포집된 다공성 실리카인 복합체 촉매를 제조했다. 이어서 제조예 4를 동일하게 실시하여, 다공성 복합 구조체 촉매 3를 제조하였다.The same steps 1 and 2 were performed as in Step 1-1 of Preparation Example 1, except that gold nanoparticles with an average particle diameter of 12 nm were prepared by adjusting the molar ratio of oleinamine and HAuCl·H 2 O. In step 3, the red precipitate prepared in the previous step was washed with water, dried, and then calcined at 450°C to remove PEG and Pluronic F127 polymer to prepare a porous silica composite catalyst with trapped gold nanoparticles. Then, Preparation Example 4 was performed in the same manner to prepare porous composite structure catalyst 3.
(제조예 7) 다공성 복합 구조체 촉매 4의 제조(Preparation Example 7) Preparation of porous composite structure catalyst 4
제조예 1의 복합체 촉매 1 대신에 제조예 2의 복합체 촉매 2를 사용한 점을 제외하고는 제조예 4와 동일하게 실시하여, 다공성 복합 구조체 촉매 4를 제조하였다.A porous composite structure catalyst 4 was prepared in the same manner as Preparation Example 4, except that Composite Catalyst 2 of Preparation Example 2 was used instead of Composite Catalyst 1 of Preparation Example 1.
(제조예 8) 다공성 복합 구조체 촉매 5의 제조(Preparation Example 8) Preparation of porous composite structure catalyst 5
제조예 1의 복합체 촉매 1 대신에 제조예 3의 복합체 촉매 3을 사용한 점을 제외하고는 제조예 4와 동일하게 실시하여, 다공성 복합 구조체 촉매 5를 제조하였다.Porous composite structure catalyst 5 was prepared in the same manner as Preparation Example 4, except that composite catalyst 3 of Preparation Example 3 was used instead of composite catalyst 1 of Preparation Example 1.
(실시예 1)(Example 1)
상기 제조예 4에서 제조된 다공성 복합 구조체 촉매 1을 관형의 공조필터부에 기밀하게 충진하고, 도 1의 모식도와 같이 공기 유입구와 공기 배출구가 각각 밀폐 공간과 연결되도록 한 후, 공조필터부의 앞에 펌프를 설치하여 강제로 공기가 순환되도록 하였다.The porous composite structure catalyst 1 prepared in Preparation Example 4 is airtightly filled in the tubular air conditioning filter unit, and the air inlet and air outlet are each connected to a sealed space as shown in the schematic diagram of FIG. 1, and then a pump is installed in front of the air conditioning filter unit. was installed to force air circulation.
(실시예 2)(Example 2)
제조예 4의 다공성 복합 구조체 촉매 1 대신에 제조예 5의 다공성 복합 구조체 촉매 2를 사용한 점을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as Example 1 was carried out, except that the porous composite structure catalyst 2 of Preparation Example 5 was used instead of the porous composite structure catalyst 1 of Preparation Example 4.
(실시예 3)(Example 3)
제조예 4의 다공성 복합 구조체 촉매 1 대신에 제조예 6의 다공성 복합 구조체 촉매 3을 사용한 점을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as Example 1 was carried out, except that the porous composite structure catalyst 3 of Preparation Example 6 was used instead of the porous composite structure catalyst 1 of Preparation Example 4.
(실험예 1) EXAFS(Extended X-ray absorption fine structure) 분석(Experimental Example 1) EXAFS (Extended X-ray absorption fine structure) analysis
EXAFS(Extended X-ray absorption fine structure) 측정은 포항 가속기(PLS-II)의 4C 및 10C 빔라인을 이용하여 수행하였다. EXAFS 스펙트럼은 푸리에 변환하여 동경 분포 함수(radial distribution function)를 얻었다.EXAFS (Extended X-ray absorption fine structure) measurements were performed using the 4C and 10C beamlines of the Pohang Accelerator (PLS-II). The EXAFS spectrum was Fourier transformed to obtain a radial distribution function.
제조예 4 내지 제조예 8에 따른 다공성 복합 구조체 촉매에 포함되는 촉매 코팅층의 동경 분포 함수를 분석 결과, 모두에서 1.4 내지 1.7Å 구간에서 Au-O 결합에 의한 피크가 관찰되었다. 이로부터 금 나노입자의 표면과 이를 포집하는 다공성 지지체 사이의 근접성이 금 나노입자와 다공성 지지체 사이의 계면에서 안정한 Au-O 결합을 형성하는 조건을 제공하여 Au-O-Si, Au-O-Al 또는 Au-O-Ti를 형성하는 것을 확인할 수 있다.As a result of analyzing the diameter distribution function of the catalyst coating layer included in the porous composite structure catalyst according to Preparation Examples 4 to 8, a peak due to Au-O bond was observed in the range of 1.4 to 1.7 Å in all cases. From this, the proximity between the surface of the gold nanoparticles and the porous support that captures them provides conditions for forming stable Au-O bonds at the interface between the gold nanoparticles and the porous support, resulting in Au-O-Si, Au-O-Al Alternatively, it can be confirmed that Au-O-Ti is formed.
또한, 제조예 4 내지 제조예 8 모두에서 2.8 내지 3.0 Å 구간에서 bulk Au-Au 결합에 의한 피크가 관찰되었으며, 이러한 피크의 원자간 거리를 D3라고 할 때, D3를 기준으로 동경 분포 함수의 피크를 정의하였다. 구체적으로, D1 및 D2는 각각 하기 식 2 및 식 3을 만족하는 범위에서 발견되는 최대 피크의 원자간 거리이며, D1, D2 및 D3의 위치를 표 1에 나타내었다. 또한, 원자간 거리 D1의 피크의 높이(DH1) 및 면적(DA1)과 원자간 거리 D2의 피크의 높이(DH2)와 면적(DA2)의 비율을 계산하여 표 1에 나타내었다.In addition, in all of Preparation Examples 4 to 8, a peak due to bulk Au-Au bond was observed in the range of 2.8 to 3.0 Å, and when the interatomic distance of this peak is called D3, the peak of the diameter distribution function based on D3 defined. Specifically, D1 and D2 are the interatomic distances of the maximum peak found in a range that satisfies the following equations 2 and 3, respectively, and the positions of D1, D2, and D3 are shown in Table 1. In addition, the ratio of the height (DH1) and area (DA1) of the peak at the interatomic distance D1 and the height (DH2) and area (DA2) of the peak at the interatomic distance D2 were calculated and shown in Table 1.
[식 2][Equation 2]
0.8≤(D1/D3)≤0.950.8≤(D1/D3)≤0.95
[식 3][Equation 3]
0.6≤(D2/D3)≤0.70.6≤(D2/D3)≤0.7
제조예 4Production example 4 제조예 5Production example 5 제조예 6Production example 6 제조예 7Production example 7 제조예 8Production example 8
DH2/DH1DH2/DH1 00 0.2270.227 0.3350.335 00 00
DA2/DA1DA2/DA1 00 0.1290.129 0.2270.227 00 00
D1D1 2.5522Å2.5522Å 2.5893Å2.5893Å 2.567Å2.567Å 2.5607Å2.5607Å 2.5939Å2.5939Å
D2D2 -- 1.8471Å1.8471Å 1.848Å1.848Å -- --
D3D3 2.906Å2.906Å 2.8967Å2.8967Å 2.8177Å2.8177Å 2.9601Å2.9601Å 2.9526Å2.9526Å
D1/D3D1/D3 0.87830.8783 0.8940.894 0.9110.911 0.86510.8651 0.87850.8785
D2/D3D2/D3 -- 0.6380.638 0.6560.656 -- --
(실험예 2) 밀폐 공간 내 일산화탄소 제거율 실험(Experimental Example 2) Carbon monoxide removal rate experiment in a closed space
실시예 1 내지 실시예 3에 따른 공조필터 시스템의 일산화탄소 제거율 실험을 수행하였다. 1 ㎥의 밀폐 공간 내에 일산화탄소를 일정 농도로 투입하고, 상온(20℃)에서 공조필터부에 공급되는 공기의 유량을 조절하면서, 일산화탄소의 투입 30분 후에 밀폐 공간 내부의 일산화탄소의 평균 농도를 측정했다. 구체적으로, 일산화탄소 농도는 적외선 측정방식의 연속식 가스분석기(Siemens, ULTRAMAT 23)로 측정했다. 투입한 일산화탄소의 농도와 공간속도(=촉매 1L 당 공급 유량)에 따른 일산화탄소 제거율을 표 2에 나타내었다.An experiment on the carbon monoxide removal rate of the air conditioning filter system according to Examples 1 to 3 was performed. Carbon monoxide was introduced at a certain concentration into a 1 ㎥ enclosed space, and the flow rate of air supplied to the air conditioning filter unit was adjusted at room temperature (20°C), and the average concentration of carbon monoxide inside the enclosed space was measured 30 minutes after the introduction of carbon monoxide. . Specifically, carbon monoxide concentration was measured using an infrared continuous gas analyzer (Siemens, ULTRAMAT 23). Table 2 shows the carbon monoxide removal rate according to the concentration and space velocity of the introduced carbon monoxide (=supplied flow rate per 1L of catalyst).
CO 0.1%, 12,000 hr-1 CO 0.1%, 12,000 hr -1 CO 0.1%, 24,000 hr-1 CO 0.1%, 24,000 hr -1 CO 1%, 12,000 hr-1 CO 1%, 12,000 hr -1
실시예 1Example 1 100%100% 97%97% 90%90%
실시예 2Example 2 100%100% 92%92% 68%68%
실시예 3Example 3 100%100% 80%80% 55%55%
표 2를 참조하면, 실시예 1 내지 실시예 3 모두 0.1%의 일산화탄소 농도 및 12,000 hr-1의 공간 속도 조건 하에서 100%의 제거율이 나타나 상온에서 단순히 펌프를 통해 공기를 순환시켰음에도 불구하고 일산화탄소가 완전히 제거되었다.Referring to Table 2, Examples 1 to 3 all showed a 100% removal rate under the conditions of a carbon monoxide concentration of 0.1% and a space velocity of 12,000 hr -1 , showing that carbon monoxide was removed even though air was simply circulated through a pump at room temperature. has been completely removed.
한편, 24,000 hr-1의 더 높은 공간 속도 조건에서 실시예 1 및 실시예 2는 각각 97% 및 92%의 제거율을 보여 실시예 3에 비해 일산화탄소를 효과적으로 제거하였다. 특히, 실시예 1은 보다 고농도의 일산화탄소 조건에서 90%의 제거율을 보였다.Meanwhile, at a higher space velocity of 24,000 hr -1 , Examples 1 and 2 showed removal rates of 97% and 92%, respectively, effectively removing carbon monoxide compared to Example 3. In particular, Example 1 showed a removal rate of 90% under conditions of higher concentration of carbon monoxide.
일 구현예에 따른 공조필터 시스템은 상온에서 빠른 유속으로 유해물질 함유 공기를 공급하더라도 공기 내에 포함되어 있는 유해가스를 효과적으로 제거할 수 있음을 알 수 있다.It can be seen that the air conditioning filter system according to one embodiment can effectively remove harmful gases contained in the air even when air containing harmful substances is supplied at a high flow rate at room temperature.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details, limited embodiments, and drawings, but these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention Anyone skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .
(부호의 설명)(Explanation of symbols)
11: 촉매반응부11: Catalytic reaction section
13: 하우징13: Housing
20: 공기 유입구20: air inlet
30: 공기 배출구30: air outlet
50: 밀폐 공간50: confined space
60: 펌프60: pump

Claims (9)

  1. 밀폐 공간의 실내 공기 중에 존재하는 유해 가스의 제거를 위한 공조필터부;An air conditioning filter unit for removing harmful gases present in the indoor air of a closed space;
    상기 밀폐 공간으로부터 공기를 공급받기 위해 상기 공조필터부의 일 측부와 연통되어 공기가 유입되는 공기 유입구; 및an air inlet that communicates with one side of the air conditioning filter unit and allows air to flow in to receive air from the closed space; and
    상기 공조필터부로부터 유해 가스가 제거된 공기를 상기 밀폐 공간으로 공급하기 위해 상기 공조필터부의 타 측부와 연통되어 공기가 배출되는 공기 배출구;an air outlet that communicates with the other side of the air conditioning filter unit and discharges air to supply air from which harmful gases have been removed from the air conditioning filter unit to the enclosed space;
    를 포함하고,Including,
    상기 공조필터부는 다공성 복합 구조체 촉매를 포함하는 촉매반응부 및 상기 촉매반응부를 내부에 수용하는 하우징을 포함하되,The air conditioning filter unit includes a catalytic reaction unit containing a porous composite structure catalyst and a housing accommodating the catalytic reaction unit therein,
    상기 다공성 복합 구조체 촉매는 다공성 기재 및 상기 기재상에 코팅된 촉매 코팅층을 포함하고, 상기 촉매 코팅층은 메조 기공을 포함하는 다공성 지지체 및 상기 다공성 지지체의 기공 내에 함입된 금 나노입자인 복합체 촉매를 포함하는 것을 특징으로 하는, 공조필터 시스템.The porous composite structure catalyst includes a porous substrate and a catalyst coating layer coated on the substrate, and the catalyst coating layer includes a porous support including mesopores and a composite catalyst that is gold nanoparticles embedded in the pores of the porous support. An air conditioning filter system, characterized in that.
  2. 제1항에 있어서,According to paragraph 1,
    상기 다공성 기재는 모노리틱(monolithic) 허니콤 세라믹 구조체, 금속 폼 구조체, 비드, 펠렛 또는 헤파필터인, 공조필터 시스템.An air conditioning filter system, wherein the porous substrate is a monolithic honeycomb ceramic structure, a metal foam structure, a bead, a pellet, or a HEPA filter.
  3. 제1항에 있어서,According to paragraph 1,
    상기 공기 유입구와 밀폐 공간 사이에 공기를 공조필터부로 공급하기 위한 펌프를 더 포함하는, 공조필터 시스템.An air conditioning filter system further comprising a pump for supplying air to the air conditioning filter unit between the air inlet and the sealed space.
  4. 제1항에 있어서,According to paragraph 1,
    상기 다공성 지지체는 금속 산화물 또는 준금속 산화물 다공성 지지체인, 공조필터 시스템.The air conditioning filter system wherein the porous support is a metal oxide or metalloid oxide porous support.
  5. 제1항에 있어서,According to paragraph 1,
    상기 나노입자의 직경은 1 내지 20nm인, 공조필터 시스템.An air conditioning filter system wherein the nanoparticles have a diameter of 1 to 20 nm.
  6. 제1항에 있어서,According to paragraph 1,
    상기 다공성 복합 구조체 촉매는 일산화탄소, 알데히드계 화합물 또는 탄화수소계 화합물의 산화반응용인, 공조필터 시스템.The porous composite structure catalyst is an air conditioning filter system for the oxidation reaction of carbon monoxide, aldehyde-based compounds, or hydrocarbon-based compounds.
  7. 제1항에 있어서,According to paragraph 1,
    상기 공조필터 시스템은 0 ℃ 내지 60 ℃에서 운전되는 것인, 공조필터 시스템.The air conditioning filter system is operated at 0 ℃ to 60 ℃.
  8. 제1항에 있어서,According to paragraph 1,
    상기 촉매 코팅층의 EXAFS(Extended X-ray absorption fine structure) 스펙트럼을 푸리에 변환하여 얻어진 동경 분포 함수(radial distribution function)는 하기 식 1을 만족하는 것인, 공조필터 시스템:An air conditioning filter system in which the radial distribution function obtained by Fourier transforming the extended X-ray absorption fine structure (EXAFS) spectrum of the catalyst coating layer satisfies the following equation 1:
    [식 1][Equation 1]
    (DH2/DH1) < 0.25(DH2/DH1) < 0.25
    상기 식 1에서 DH1은 원자간 거리 D1에서의 피크의 높이이며, DH2는 원자간 거리 D2에서의 피크의 높이이고, D1 및 D2는 각각 하기 식 2 및 식 3을 만족한다:In the above equation 1, DH1 is the height of the peak at the interatomic distance D1, DH2 is the peak height at the interatomic distance D2, and D1 and D2 satisfy the following equations 2 and 3, respectively:
    [식 2][Equation 2]
    0.8≤(D1/D3)≤0.950.8≤(D1/D3)≤0.95
    [식 3][Equation 3]
    0.6≤(D2/D3)≤0.70.6≤(D2/D3)≤0.7
    상기 식 2 및 식 3에서 D3는 2.8 내지 3.0 Å에서 존재하는 벌크상의 Au-Au 결합의 원자간 거리를 의미한다.In Equations 2 and 3 above, D3 refers to the interatomic distance of the Au-Au bond in the bulk phase existing at 2.8 to 3.0 Å.
  9. 제8항에 있어서,According to clause 8,
    밀폐 공간의 실내 공기 중 존재하는 유해가스를 12,000 hr-1의 공간 속도 조건에서 90% 이상의 제거율로 제거하는 것인, 공조필터 시스템.An air conditioning filter system that removes harmful gases present in the indoor air of a closed space with a removal rate of more than 90% under a space velocity condition of 12,000 hr -1 .
PCT/KR2023/004133 2022-03-28 2023-03-28 Air-conditioning filter system for removing harmful substances WO2023191463A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0038332 2022-03-28
KR20220038332 2022-03-28
KR10-2023-0039898 2023-03-27
KR1020230039898A KR20230139804A (en) 2022-03-28 2023-03-27 Air conditioner system for eliminating harmful substances

Publications (1)

Publication Number Publication Date
WO2023191463A1 true WO2023191463A1 (en) 2023-10-05

Family

ID=88202725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004133 WO2023191463A1 (en) 2022-03-28 2023-03-28 Air-conditioning filter system for removing harmful substances

Country Status (1)

Country Link
WO (1) WO2023191463A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004418U (en) * 2014-05-29 2015-12-10 주식회사 제이텍 Air Cleaner provided with catalyst decomposing formaldehyde and carbon monoxide
JP2020098038A (en) * 2018-12-17 2020-06-25 大成建設株式会社 Clean room purification system
KR102195108B1 (en) * 2020-03-18 2020-12-24 삼우시스템 (주) Fine dust free zone system
KR20210124485A (en) * 2019-03-22 2021-10-14 주식회사 퀀텀캣 Catalyst of metallic nanoparticles entrapped on a porous oxide support with high activity even at low temperatures
WO2021215721A1 (en) * 2020-04-23 2021-10-28 주식회사 칸필터 Air purification apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004418U (en) * 2014-05-29 2015-12-10 주식회사 제이텍 Air Cleaner provided with catalyst decomposing formaldehyde and carbon monoxide
JP2020098038A (en) * 2018-12-17 2020-06-25 大成建設株式会社 Clean room purification system
KR20210124485A (en) * 2019-03-22 2021-10-14 주식회사 퀀텀캣 Catalyst of metallic nanoparticles entrapped on a porous oxide support with high activity even at low temperatures
KR102195108B1 (en) * 2020-03-18 2020-12-24 삼우시스템 (주) Fine dust free zone system
WO2021215721A1 (en) * 2020-04-23 2021-10-28 주식회사 칸필터 Air purification apparatus

Similar Documents

Publication Publication Date Title
WO2018062646A2 (en) Gold nanoparticle superlattice embedded in porous silica and method for manufacturing same
WO2020197200A1 (en) Metallic nanoparticle catalysts embedded in porous oxide support, which show high catalytic activity even at low temperatures
US11571683B2 (en) Honeycomb-structured catalyst for organic substance decomposition and organic substance decomposing apparatus
WO2017010775A1 (en) Scr catalyst for removing nitrogen oxides and method for producing same
WO2014158009A1 (en) Nanocatalyst filter and production method for same
KR20000068417A (en) Air cleaning filter and a method for manufacturing the same, and a high performance cleaning apparatus
WO2020075920A1 (en) Composite ternary catalyst composed of composite oxide support and single atom, and preparation method therefor
WO2023191463A1 (en) Air-conditioning filter system for removing harmful substances
WO2016048009A1 (en) Visible light active photocatalyst tile
WO2022102809A1 (en) Air-cleaning device and air-cleaning method
CN113351155A (en) Adsorbing material and preparation method and application thereof
PT2072118T (en) Ceramic mould with a photo-catalytic active, air purifying, transparent surface coating and method of manufacturing same
WO2013105780A1 (en) Method for manufacturing homogenous support catalyst for carbon nanotubes
WO2023191442A1 (en) Porous composite structure catalyst comprising catalyst coating layer of gold nanoparticles impregnated into porous support
WO2018066751A1 (en) Solid raw material for carbon dioxide absorbent, carbon dioxide absorbent composition comprising same, and carbon dioxide absorbent prepared using same
WO2019093660A2 (en) Method for manufacture of maghemite
WO2020040372A1 (en) Catalyst for purifying exhaust gas
WO2023191257A1 (en) Composite catalyst comprising gold nanoparticles impregnated in porous support
KR20230139804A (en) Air conditioner system for eliminating harmful substances
WO2020130460A1 (en) Method for manufacturing ruthenium oxide-supported catalyst for preparing chlorine and catalyst manufactured thereby
WO2024043417A1 (en) Core-shell-structured composite particles and preparation method therefor
WO2013047951A1 (en) Bulk-type oxide-based nanoporous body, and method for manufacturing same
WO2022255748A1 (en) Hydrogen oxidation catalyst and method for producing same
WO2024053969A1 (en) Method for manufacturing composite photocatalyst filter activated by oxygen vacancy and air purification filter according thereto
WO2020004766A1 (en) High-strength pellet composition including catalyst for removal of harmful gas, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781318

Country of ref document: EP

Kind code of ref document: A1