WO2023191409A1 - Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 6000 series aluminum alloy without pre-patterning process - Google Patents

Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 6000 series aluminum alloy without pre-patterning process Download PDF

Info

Publication number
WO2023191409A1
WO2023191409A1 PCT/KR2023/004010 KR2023004010W WO2023191409A1 WO 2023191409 A1 WO2023191409 A1 WO 2023191409A1 KR 2023004010 W KR2023004010 W KR 2023004010W WO 2023191409 A1 WO2023191409 A1 WO 2023191409A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
minutes
series aluminum
anodized film
manufacturing
Prior art date
Application number
PCT/KR2023/004010
Other languages
French (fr)
Korean (ko)
Inventor
정찬영
Original Assignee
동의대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동의대학교 산학협력단 filed Critical 동의대학교 산학협력단
Publication of WO2023191409A1 publication Critical patent/WO2023191409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment

Definitions

  • the present invention relates to an optimal anodization film manufacturing method for generating uniform POP nanostructures on aluminum 6000 series alloy without the pre-patterning process.
  • the anodization treatment condition data obtained in the present invention can be used for machine learning.
  • Aluminum oxide films with nano-sized pores arranged in a regular hexagonal structure were first studied and reported in 1995, and with the recent expansion of their application range, they have been used in nanotechnology such as carbon nanotubes and nanowires using the aluminum anodic oxidation process. In addition, various nanotechnology research is actively underway.
  • the pore diameter ( DP ) and the interpore distance (D int ) of the aluminum anodized film are important factors in photovoltaic devices such as solar cells and LEDs and nanotechnology such as metal nanowires. It has a direct impact on performance in related applications and devices.
  • Electrochemical anodizing processes have been used for surface treatment of metallic materials for more than 70 years. Nanostructures produced through an anodization process can be implemented with less budget and time than expensive electronic lithography or semiconductor etching processes using silicon. However, this anodized film has a two-dimensional porous arrangement in which only the lateral dimensions can be controlled.
  • the pillar-on-pore (POP) structure which is a structure in which sharp pillars are formed in a single or bundle form at the top of the pore, has a higher density than the existing planar hexagonal porous surface. It has a low contact angle and low contact angle hysteresis, and thus has excellent superhydrophobic properties.
  • the pillar-on-pore structure has properties such as hydrodynamic drag reduction, anticorrosion, antibiofouling, and anti-icing, making it possible to create surfaces for smartphones, home appliances, etc. It can play a big role in doing this.
  • Patent Publication No. 10-2086933 discloses a method of forming an anodized film with a pillar-on-pore structure on a 5000 series aluminum alloy, but as shown in claim 1 of the registration, a pre-patterning step is used. Since it is required, there was a problem in that the manufacturing cost increased.
  • the present inventor varied the treatment conditions of primary anodization - pore expansion - secondary anodization. It was confirmed that an anodized film with a pillar-on-pore structure was formed even without pre-patterning under specific processing conditions, and the present invention was completed.
  • the purpose of the present invention is to provide a method for manufacturing a superhydrophilic anodized film on 6000 series aluminum alloy omitting the pre-patterning step.
  • Another object of the present invention is to provide a 6000 series aluminum alloy with a superhydrophilic anodized film produced by the above manufacturing method.
  • the present invention includes the steps of primary anodizing a 6000 series aluminum alloy at 35-45V for 1-10 minutes (step 1);
  • step 3 A secondary anodizing step (step 3) at 35-45V for 1-10 minutes,
  • a method for manufacturing a superhydrophilic anodized film on 6000 series aluminum alloy is provided.
  • the present invention provides a 6000 series aluminum alloy with a superhydrophilic anodized film produced by a manufacturing method.
  • the method for manufacturing a superhydrophilic anodized film on a 6000 series aluminum alloy according to the present invention not only reduces manufacturing costs by manufacturing a uniform anodized film without the pre-patterning step. It has the effect of forming a superhydrophilic anodized film.
  • Figure 1 is an image taken with a field emission scanning electron microscope (FE-SEM) of the top view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
  • FE-SEM field emission scanning electron microscope
  • Figure 2 is an image taken with a field emission scanning electron microscope (FE-SEM) of a cross view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
  • FE-SEM field emission scanning electron microscope
  • Figure 3 is a top view image of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 4 is an image of a cross view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6 taken with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 5 is an image of a tilted view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 6 is an image of a top view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 7 is an image of a cross view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 8 is an image taken with a field emission scanning electron microscope (FE-SEM) of a tilted view of a specimen that was completely processed from Examples 1-1 to 1-6 to secondary anodization (step 3).
  • FE-SEM field emission scanning electron microscope
  • Figure 9 is a graph showing the results of measuring the contact angle for water (purified water) and oil (cooking oil) of specimens treated from Examples 1-1 to 1-6 to secondary anodization (step 3).
  • the present invention includes the steps of primary anodizing a 6000 series aluminum alloy at 35-45V for 1-10 minutes (step 1);
  • step 3 A secondary anodizing step (step 3) at 35-45V for 1-10 minutes,
  • a method for manufacturing a superhydrophilic anodized film on 6000 series aluminum alloy is provided.
  • the 6000 series aluminum alloys include Al 6061, Al 6060, Al 6063, Al 6005, Al 6005A, Al 6262, and Al 6020.
  • the anodized film exhibits hydrophilicity, and the anodized film with a pillar-on-pore microstructure in which pillars are formed on the pore structure according to an embodiment of the present invention has a contact angle of 10. It can exhibit super-hydrophilicity of ° or less.
  • the pre-patterning process is a process in which a 6000 series aluminum alloy is anodized and then etched to remove the anodized film, thereby leaving a microstructure pattern on the surface of the 6000 series aluminum alloy.
  • the general method of forming an anodized film on the surface of a metal substrate through a conventional anodizing treatment is to form a microstructure pattern on the surface of the metal substrate through a pre-patterning process and then proceed with the anodizing treatment. . This is to ensure that the anodized film formed by post-process anodization treatment can be uniformly formed along the microstructure pattern of the surface of the metal substrate formed by the pre-patterning process.
  • the purpose of this invention is to provide a method of uniformly forming an anodized film even while omitting the pre-patterning process, and omitting the pre-patterning process has a significant advantage in reducing manufacturing costs.
  • step 1 Primary anodizing of the 6000 series aluminum alloy at 38-42V for 4-8 minutes (step 1);
  • step 1 Primary anodizing of the 6000 series aluminum alloy at 39-41V for 5-7 minutes (step 1);
  • an anode is placed in an oxidation treatment tank containing an electrolyte at -5 to 30°C using the 6000 series aluminum alloy to be anodized as a working electrode, and then a platinum (Pt) or carbon electrode is used as the counter electrode.
  • a platinum (Pt) or carbon electrode is used as the counter electrode.
  • the distance between the working electrode and the counter electrode may be 1-15 cm, preferably 3-12 cm, more preferably 4-10 cm, even more preferably 4.5-8 cm, especially preferably 4.75-5.25 cm. It can be cm.
  • Electrolytes for the first and second anodic oxidation treatments include sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), oxalic acid (C 2 H2O 4 ), and chromic acid, respectively.
  • Chromic acid, hydrofluoric acid, dipotassium phosphate (K 2 HPO 4 ), etc. can be used alone or in a mixture of two or more.
  • the electrolyte solution may use 0.1-0.5M oxalic acid at -5 to 25°C, more preferably 0.27-0.33M oxalic acid at 15 to 25°C, and particularly preferably 19 to 21°C. 0.285-0.315M oxalic acid can be used.
  • the present invention provides a 6000 series aluminum alloy with a superhydrophilic anodized film produced by a manufacturing method.
  • the general method of forming an anodized film on the surface of a metal substrate through a conventional anodizing treatment is to form a microstructure pattern on the surface of the metal substrate through a pre-patterning process and then proceed with the anodizing treatment.
  • the pre-patterning process is a process in which a metal substrate is anodized to form an anodized film and then etched to remove the formed oxide film, leaving only a microstructure pattern on the surface of the substrate.
  • the microstructure of the substrate surface formed by the pre-patterning process This is to ensure that the anodized film formed through post-process anodization treatment can be formed uniformly along the pattern.
  • the purpose of this invention is to provide a method of uniformly forming an anodized film even while omitting the pre-patterning process, and omitting the pre-patterning process has a significant advantage in reducing manufacturing costs.
  • this invention forms an anodized film based on aluminum 6061 alloy while omitting the pre-patterning process, and bundle-shaped pillars are formed on the pore structure of the anodized film.
  • 'POP' an anodized film having a pillar-on-pore
  • the component information of the aluminum 6061 alloy (Al 6061, size 20 ⁇ 30 mm, manufacturer: Alcoa INC, USA) is as follows.
  • Step 1 Primary anodization
  • the electropolished aluminum 6061 alloy (thickness 1 mm, size 20 Secondary anodization was performed.
  • the first anodization was performed using 0.3M oxalic acid as an electrolyte, and using a double beaker while maintaining the electrolyte temperature constant at 20°C.
  • the mixture was stirred at a constant speed, and a voltage of 40V was applied for 1-10 minutes using a constant voltage method to perform the first anodization process to grow an alumina layer.
  • the alumina layer grown through primary anodization was subjected to a pore widening (PW) process by immersing it in a 0.1M phosphoric acid solution at 30°C for 10 to 60 minutes before performing secondary anodization.
  • PW pore widening
  • the second anodization process was performed in the same manner as the first anodization, but the voltage application time was fixed to 6 minutes to further grow the alumina layer.
  • step 1 The primary anodization (step 1), pore expansion (step 2), and secondary anodization (step 3) processes were performed under the conditions shown in Table 1 below to produce a microstructured anodized film on the surface of aluminum 6061 alloy. did.
  • Preparation Examples 1-1 to 1-10 of Table 1 are specimens that have undergone only the first anodization treatment (step 1), and their surfaces (top view) and cross sections (cross views) are examined using a field emission scanning electron microscope (Observations were made using a FE-SEM) system (AURIGA® small dual-bean FIB-SEM, Zeiss).
  • each aluminum alloy anodized film specimen was cut into small pieces, fixed on a stage with carbon tape, coated with gold (Au) by sputtering for 15 seconds, and then analyzed using a field emission scanning electron microscope (SEM). Imaging was performed. At this time, the film specimen was bent at 90° to create parallel cracks and the surface and cross-sectional structure of the aluminum alloy anodized film were observed.
  • SEM field emission scanning electron microscope
  • Figure 1 is an image taken with a field emission scanning electron microscope (FE-SEM) of the top view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
  • FE-SEM field emission scanning electron microscope
  • Figure 2 is an image taken with a field emission scanning electron microscope (FE-SEM) of a cross view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
  • FE-SEM field emission scanning electron microscope
  • the surface (top view) image shows that white (light gray) anodized oxide is formed next to the black pores, confirming that a porous anodized film is formed on the surface.
  • the lower part that appears smooth in the cross-view image is aluminum 6061 alloy, and the upper part is an anodized film formed through primary anodization, and a porous column shape can be seen. It can be seen that the longer the primary anodization time, the thicker the anodization film formed.
  • the thickness of the anodized film becomes thicker, and when pore expansion is performed, the pore diameter widens and at the same time, part of the upper part of the film is chipped away, which tends to reduce the thickness somewhat.
  • the thickness of the anodization film in the final specimen through primary anodization, pore expansion, and secondary anodization, the thickness of the anodization film must be at least 500-700 nm to ensure durability and superhydrophilicity due to the microstructure, It was judged most appropriate to set the first anodization time to 6 minutes to secure a thickness of approximately 400-500 nm.
  • Figure 3 is a top view image of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 4 is an image of a cross view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6 taken with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 5 is an image of a tilted view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • FIG. 5 shows similar results to Figures 3 and 4.
  • Figure 6 is an image of a top view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 7 is an image of a cross view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Figure 8 is an image taken with a field emission scanning electron microscope (FE-SEM) of a tilted view of a specimen that was completely processed from Examples 1-1 to 1-6 to secondary anodization (step 3).
  • FE-SEM field emission scanning electron microscope
  • the surface (top view) image appears similar to Figure 3, and the secondary anodization treatment does not have any significant effect on the microstructure of the upper part of the anodization film formed according to the primary anodization and pore expansion treatment. You can check that it is not.
  • the bottom part that appears smooth in the cross-view image of the specimen treated with pore expansion for 40 min is aluminum 6061 alloy, and the thickness indicated by the yellow arrow is a porous film due to secondary anodization. It has a pillar shape, and the upper part has a pillar shape as a result of the first anodization and pore expansion treatment. Looking at Figure 7, it appears that the POP microstructure appears well in the specimen treated with pore expansion for 40 min.
  • FIG. 8 shows similar results to Figures 6 and 7.
  • Example 1-1 10 23.51 ⁇ 1.71 25.15 ⁇ 1.04
  • Example 1-2 20 20.64 ⁇ 2.00 23.23 ⁇ 2.30
  • Example 1-3 30 11.97 ⁇ 1.62 11.57 ⁇ 2.97
  • Example 1-4 40 None None Examples 1-5 50 17.17 ⁇ 2.33 14.95 ⁇ 2.00
  • Example 1-6 60 16.89 ⁇ 2.23 15.76 ⁇ 3.39
  • Figure 9 is a graph showing the results of measuring the contact angle for water (purified water) and oil (cooking oil) of specimens treated from Examples 1-1 to 1-6 to secondary anodization (step 3).
  • the method for manufacturing a superhydrophilic anodized film on a 6000 series aluminum alloy according to the present invention not only reduces manufacturing costs by manufacturing a uniform anodized film without the pre-patterning step.
  • a superhydrophilic anodized film can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

The present invention relates to a method for producing an optimal anodic oxide film for creating a uniform POP nanostructure on a 6000 series aluminum alloy without a pre-patterning process. The method can produce a uniform anodic oxide film even without a pre-patterning step, thereby reducing manufacturing costs and having the effect of forming a super-hydrophilic anodic oxide film, and furthermore may be useful in a machine learning database for developing a surface treatment technology for a 6000 series aluminum alloy.

Description

프리패터닝 공정을 생략한 알루미늄 6000계열 합금에 균일한 POP 나노구조물 생성을 위한 최적의 양극산화 피막 제조 방법Optimal anodization film manufacturing method for creating uniform POP nanostructures on aluminum 6000 series alloy without pre-patterning process
본 발명은 프리패터닝 공정을 생략한 알루미늄 6000계열 합금에 균일한 POP 나노구조물 생성을 위한 최적의 양극산화 피막 제조 방법에 관한 것으로, 본 발명에서 얻은 양극산화 처리 조건 데이터는 머신러닝에 활용할 수 있다.The present invention relates to an optimal anodization film manufacturing method for generating uniform POP nanostructures on aluminum 6000 series alloy without the pre-patterning process. The anodization treatment condition data obtained in the present invention can be used for machine learning.
규칙적인 육각형 구조로 배열된 나노 크기의 기공을 가진 알루미늄 산화 피막은 1995년 처음 연구되어 보고된 이래로, 최근 응용 범위 확대로 알루미늄 양극 산화 공정을 이용하여 탄소 나노 튜브, 나노 와이어 등과 같은 나노 기술에 사용되고 있으며, 그 밖에 다양한 나노 기술 연구가 활발히 진행되고 있다. Aluminum oxide films with nano-sized pores arranged in a regular hexagonal structure were first studied and reported in 1995, and with the recent expansion of their application range, they have been used in nanotechnology such as carbon nanotubes and nanowires using the aluminum anodic oxidation process. In addition, various nanotechnology research is actively underway.
알루미늄 양극산화 피막의 기공의 직경(Pore diameter; DP)과 기공과 기공간의 간격(Interpore distance; Dint)은 태양 전지, LED 등 광전소자와 금속 나노 와이어와 같은 나노 기술에 중요한 요소로서, 관련 응용 분야 및 장치에서의 성능에 직접적인 영향을 준다.The pore diameter ( DP ) and the interpore distance (D int ) of the aluminum anodized film are important factors in photovoltaic devices such as solar cells and LEDs and nanotechnology such as metal nanowires. It has a direct impact on performance in related applications and devices.
전기화학적 양극산화 처리 공정은 70년 이상 금속 재료의 표면 처리에 사용되어 왔다. 양극산화 공정을 통해 제작된 나노 구조물은 값 비싼 전자 리소그래피나 실리콘을 이용한 반도체 식각 공정에 비해 적은 예산과 시간으로 나노 구조물을 구현할 수 있다. 그러나 이러한 양극산화 피막의 경우 측면 치수만 제어 가능한 2차원 다공성 배열을 가지고 있다. Electrochemical anodizing processes have been used for surface treatment of metallic materials for more than 70 years. Nanostructures produced through an anodization process can be implemented with less budget and time than expensive electronic lithography or semiconductor etching processes using silicon. However, this anodized film has a two-dimensional porous arrangement in which only the lateral dimensions can be controlled.
또한, 알루미늄 합금의 산 전해질의 종류 및 농도를 조절한 규칙적으로 배열된 양극산화 알루미늄 피막 제작에 있어서는 수산법, 황산법, 인산법 등 많은 연구와 기술들이 발전되어지고 있으나, 산 전해질 종류와 농도의 변화에 의한 양극산화 공정은 기공의 직경과 기공과 기공의 간격의 증가에 한계가 있으며, 이러한 기술 역시 2차원 다공성 양극산화 피막 제작만이 가능하다.In addition, many researches and technologies, such as the oxalic acid method, sulfuric acid method, and phosphoric acid method, have been developed in the production of regularly arranged anodized aluminum films by controlling the type and concentration of the acid electrolyte of aluminum alloy. However, there are changes in the type and concentration of the acid electrolyte. The anodic oxidation process has limitations in increasing the pore diameter and the gap between pores, and this technology is also only capable of producing a two-dimensional porous anodic oxidation film.
한편, 기공 상부에 날카로운 기둥(pillar)이 단일(single) 또는 번들(bundle) 형태로 형성된 구조인 필라-온-포어(pillar-on-pore, POP) 구조는, 기존의 평면 육각형 다공성 표면보다 높은 접촉각(contact angle) 및 낮은 접촉이력각(contact angle hysteresis)을 가지며, 이에 따라 우수한 초소수성 특성을 갖는다. 또한, 필라-온-포어 구조는 수력 역학 항력 감소, 부식방지(anticorrosion), 생물 부착방지(antibiofouling), 이빙(anti-icing) 등의 특성을 가지므로, 스마트폰, 가전제품 등의 표면을 구현하는데 큰 역할을 할 수 있다.Meanwhile, the pillar-on-pore (POP) structure, which is a structure in which sharp pillars are formed in a single or bundle form at the top of the pore, has a higher density than the existing planar hexagonal porous surface. It has a low contact angle and low contact angle hysteresis, and thus has excellent superhydrophobic properties. In addition, the pillar-on-pore structure has properties such as hydrodynamic drag reduction, anticorrosion, antibiofouling, and anti-icing, making it possible to create surfaces for smartphones, home appliances, etc. It can play a big role in doing this.
그러나, 이러한 필라-온-포어 구조를 반도체 또는 순도 높은 알루미늄 기판 상에 형성하는 기술은 연구된 바 있으나, 알루미늄 합금 상에 형성하는 것은 매우 어렵다. 일반적으로 순도가 높은 알루미늄 기판으로부터 3차원 형상의 다공성 배열을 가진 구조물을 제조하는 기술에 관한 연구가 많이 이루어져 있으나, 실제 산업에서는 순도 높은 알루미늄 기판보다는 합금 형태로 이용되고 있으며, 순도 높은 알루미늄 기판을 대상으로 연구된 기술을 실제 상용화에 이용되는 알루미늄 합금에 적용할 경우, 형성 제어가 동일하게 재현되기 어렵다는 문제점이 있다.However, although technology for forming this pillar-on-pore structure on a semiconductor or high-purity aluminum substrate has been studied, it is very difficult to form it on an aluminum alloy. In general, much research has been conducted on the technology of manufacturing structures with a three-dimensional porous arrangement from high-purity aluminum substrates, but in actual industry, they are used in alloy form rather than high-purity aluminum substrates, and high-purity aluminum substrates are targeted. When applying the researched technology to aluminum alloys used in actual commercialization, there is a problem that it is difficult to reproduce the same formation control.
이 건 발명자의 선출원(등록특허공보 제10-2086933호)에서는 5000계열 알루미늄 합금에 필라-온-포어 구조의 양극산화 피막을 형성하는 방법을 개시하고 있으나, 등록 청구항 1항에 나타나듯 프리패터닝 단계를 필수로 포함하고 있어, 제조비용이 향상되는 문제점이 있었다.In this case, the inventor's earlier application (Patent Publication No. 10-2086933) discloses a method of forming an anodized film with a pillar-on-pore structure on a 5000 series aluminum alloy, but as shown in claim 1 of the registration, a pre-patterning step is used. Since it is required, there was a problem in that the manufacturing cost increased.
아울러, 알루미늄 합금 1000계열, 2000계열, 3000계열, 4000계열, 5000계열, 6000계열 등의 계열 간에는 합금 화학 성분에 차이가 있어서, 양극산화 처리 조건 및 기공 확장 처리 조건이 모두 상이하게 적용된다.In addition, there are differences in alloy chemical composition between the aluminum alloy 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, and 6000 series, so the anodizing treatment conditions and pore expansion treatment conditions are all applied differently.
이에, 본 발명자는 프리패터닝 단계를 생략한 6000계열 알루미늄 합금 상에 필라-온-포어 구조의 양극산화 피막 형성 방법을 개발하기 위하여, 1차 양극산화 - 기공확장 -2차 양극산화 처리 조건을 달리하며 탐색하였고, 특정 처리 조건에서 프리패터닝을 생략하고서도 필라-온-포어 구조의 양극산화 피막이 형성됨을 확인하고, 본 발명을 완성하였다.Accordingly, in order to develop a method of forming an anodized film with a pillar-on-pore structure on a 6000 series aluminum alloy omitting the pre-patterning step, the present inventor varied the treatment conditions of primary anodization - pore expansion - secondary anodization. It was confirmed that an anodized film with a pillar-on-pore structure was formed even without pre-patterning under specific processing conditions, and the present invention was completed.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
등록특허공보 제10-2086933호Registered Patent Publication No. 10-2086933
본 발명의 목적은 프리패터닝(pre-patterning) 단계를 생략한 6000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법을 제공하는 것이다.The purpose of the present invention is to provide a method for manufacturing a superhydrophilic anodized film on 6000 series aluminum alloy omitting the pre-patterning step.
본 발명의 다른 목적은 상기 제조방법으로 제조되는 초친수성의 양극산화 피막이 형성된 6000계열 알루미늄 합금을 제공하는 것이다.Another object of the present invention is to provide a 6000 series aluminum alloy with a superhydrophilic anodized film produced by the above manufacturing method.
상기 목적을 달성하기 위하여,In order to achieve the above purpose,
본 발명은 6000계열 알루미늄(aluminum) 합금을 35-45V에서 1-10분 동안 1차 양극산화 처리하는 단계(단계 1);The present invention includes the steps of primary anodizing a 6000 series aluminum alloy at 35-45V for 1-10 minutes (step 1);
0.05-1.0M 인산(H3PO4) 용액에 10-60분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.05-1.0M phosphoric acid (H 3 PO 4 ) solution for 10-60 minutes (step 2); and
35-45V에서 1-10분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함하고,A secondary anodizing step (step 3) at 35-45V for 1-10 minutes,
상기 단계 1 이전에 프리패터닝(pre-patterning) 공정을 생략한 것을 특징으로 하는,Characterized in that the pre-patterning process is omitted before step 1,
6000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법을 제공한다.A method for manufacturing a superhydrophilic anodized film on 6000 series aluminum alloy is provided.
또한, 본 발명은 제조방법으로 제조되는 초친수성의 양극산화 피막이 형성된 6000계열 알루미늄 합금을 제공한다.In addition, the present invention provides a 6000 series aluminum alloy with a superhydrophilic anodized film produced by a manufacturing method.
본 발명에 따른 6000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법은 프리패터닝(pre-patterning) 단계를 생략하고도 균일한 양극산화 피막을 제조할 수 있어 제조비용을 절감할 수 있을 뿐만 아니라, 초친수성 양극산화 피막을 형성할 수 있는 효과가 있다.The method for manufacturing a superhydrophilic anodized film on a 6000 series aluminum alloy according to the present invention not only reduces manufacturing costs by manufacturing a uniform anodized film without the pre-patterning step. It has the effect of forming a superhydrophilic anodized film.
도 1은 제조예 1-1 내지 제조예 1-10의 조건으로 1차 양극산화 처리(단계 1)까지만 진행한 시편의 Top view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 1 is an image taken with a field emission scanning electron microscope (FE-SEM) of the top view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
도 2는 제조예 1-1 내지 제조예 1-10의 조건으로 1차 양극산화 처리(단계 1)까지만 진행한 시편의 Cross view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 2 is an image taken with a field emission scanning electron microscope (FE-SEM) of a cross view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
도 3은 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편의 Top view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 3 is a top view image of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
도 4는 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편의 Cross view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 4 is an image of a cross view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6 taken with a field emission scanning electron microscope (FE-SEM).
도 5는 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편의 Tilted view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 5 is an image of a tilted view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
도 6은 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 Top view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 6 is an image of a top view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
도 7는 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 Cross view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 7 is an image of a cross view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
도 8은 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 Tilted view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 8 is an image taken with a field emission scanning electron microscope (FE-SEM) of a tilted view of a specimen that was completely processed from Examples 1-1 to 1-6 to secondary anodization (step 3).
도 9는 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 물(정제수) 및 오일(식용유)에 대한 접촉각을 측정한 결과를 나타낸 그래프이다.Figure 9 is a graph showing the results of measuring the contact angle for water (purified water) and oil (cooking oil) of specimens treated from Examples 1-1 to 1-6 to secondary anodization (step 3).
본 발명은 6000계열 알루미늄(aluminum) 합금을 35-45V에서 1-10분 동안 1차 양극산화 처리하는 단계(단계 1);The present invention includes the steps of primary anodizing a 6000 series aluminum alloy at 35-45V for 1-10 minutes (step 1);
0.05-1.0M 인산(H3PO4) 용액에 10-60분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.05-1.0M phosphoric acid (H 3 PO 4 ) solution for 10-60 minutes (step 2); and
35-45V에서 1-10분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함하고,A secondary anodizing step (step 3) at 35-45V for 1-10 minutes,
상기 단계 1 이전에 프리패터닝(pre-patterning) 공정을 생략한 것을 특징으로 하는,Characterized in that the pre-patterning process is omitted before step 1,
6000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법을 제공한다.A method for manufacturing a superhydrophilic anodized film on 6000 series aluminum alloy is provided.
상기 6000계열 알루미늄 합금은 Al 6061, Al 6060, Al 6063, Al 6005, Al 6005A, Al 6262, Al 6020 등을 사용할 수 있다.The 6000 series aluminum alloys include Al 6061, Al 6060, Al 6063, Al 6005, Al 6005A, Al 6262, and Al 6020.
양극산화 피막은 친수성(hydrophilicity)을 나타내는데, 본 발명의 일실시예에 따른 기공 구조 위에 기둥(pillars)이 형성된 필라-온-포어(Pillar-On-Pore) 형태 미세구조의 양극산화 피막은 접촉각 10° 이하의 초친수성(super-hydrophilicity)을 나타낼 수 있다.The anodized film exhibits hydrophilicity, and the anodized film with a pillar-on-pore microstructure in which pillars are formed on the pore structure according to an embodiment of the present invention has a contact angle of 10. It can exhibit super-hydrophilicity of ° or less.
상기 프리패터닝 공정은 6000계열 알루미늄 합금을 양극산화 처리한 후, 에칭하여 양극산화 피막을 제거함에 따라, 6000계열 알루미늄(aluminum) 합금 표면에 미세구조 패턴이 남게되는 공정이다.The pre-patterning process is a process in which a 6000 series aluminum alloy is anodized and then etched to remove the anodized film, thereby leaving a microstructure pattern on the surface of the 6000 series aluminum alloy.
종래의 양극산화 처리를 통한 금속 기재 표면에 양극산화 피막을 형성하는 방법은 프리패터닝(pre-patterning) 공정을 통해 금속 기재 표면에 미세구조 패턴을 형성한 다음, 양극산화 처리를 진행하는 것이 일반적이다. 프리패터닝 공정에 의해 형성된 금속 기재 표면의 미세구조 패턴을 따라 후공정 양극산화 처리로 형성되는 양극산화 피막이 균일하게 형성될 수 있게 하기 위함이다.The general method of forming an anodized film on the surface of a metal substrate through a conventional anodizing treatment is to form a microstructure pattern on the surface of the metal substrate through a pre-patterning process and then proceed with the anodizing treatment. . This is to ensure that the anodized film formed by post-process anodization treatment can be uniformly formed along the microstructure pattern of the surface of the metal substrate formed by the pre-patterning process.
이 건 발명에서는 상기 프리패터닝 공정을 생략하고도 양극산화 피막이 균일하게 형성하는 방법을 제공하고자 함에 목적이 있고, 프리패터닝 공정을 생략함에 따라 제조비용 절감에 상당히 유리한 효과가 있다.The purpose of this invention is to provide a method of uniformly forming an anodized film even while omitting the pre-patterning process, and omitting the pre-patterning process has a significant advantage in reducing manufacturing costs.
바람직하게,Preferably,
6000계열 알루미늄(aluminum) 합금을 38-42V에서 4-8분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 38-42V for 4-8 minutes (step 1);
0.05-0.15M 인산(H3PO4) 용액에 35-45분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.05-0.15M phosphoric acid (H 3 PO 4 ) solution for 35-45 minutes (step 2); and
38-42V에서 4-8분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함할 수 있다.It may include secondary anodizing treatment at 38-42V for 4-8 minutes (step 3).
더욱 바람직하게,More preferably,
6000계열 알루미늄(aluminum) 합금을 39-41V에서 5-7분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 39-41V for 5-7 minutes (step 1);
0.06-0.14M 인산(H3PO4) 용액에 38-42분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.06-0.14M phosphoric acid (H 3 PO 4 ) solution for 38-42 minutes (step 2); and
39-41V에서 5-7분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함할 수 있다.It may include secondary anodizing treatment at 39-41V for 5-7 minutes (step 3).
특히 바람직하게,Especially preferably,
6000계열 알루미늄(aluminum) 합금을 39.5-40.5V에서 5.8-6.2분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 39.5-40.5V for 5.8-6.2 minutes (step 1);
0.095-0.105M 인산(H3PO4) 용액에 39-41분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.095-0.105M phosphoric acid (H 3 PO 4 ) solution for 39-41 minutes (step 2); and
39.5-40.5V에서 5.8-6.2분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함할 수 있다.It may include secondary anodizing treatment at 39.5-40.5V for 5.8-6.2 minutes (step 3).
만약, 상술한 단계 1 내지 단계 3의 처리 조건을 벗어날 경우에는, 균일한 양극산화 피막이 형성되지 않거나, 초친수성을 달성할 수 없는 문제점이 발생할 수 있다.If the processing conditions of steps 1 to 3 described above are exceeded, problems may occur in which a uniform anodized film is not formed or superhydrophilicity cannot be achieved.
양극산화 처리 공정은 -5 내지 30℃의 전해액이 담긴 산화처리 반응조에 양극산화 하고자 하는 6000계열 알루미늄 합금을 작동전극으로 하여 양극을 걸어 준 다음, 백금(Pt) 또는 카본(carbon) 전극을 상대전극으로 하여 음극을 걸어 주어서 산화시켜 이루어지는 것일 수 있다. 상기 작동전극 및 상대전극의 거리는 1-15 cm일 수 있고, 바람직하게는 3-12 cm, 더욱 바람직하게는 4-10 cm, 더욱 더 바람직하게는 4.5-8 cm, 특히 바람직하게는 4.75-5.25 cm일 수 있다.In the anodizing process, an anode is placed in an oxidation treatment tank containing an electrolyte at -5 to 30°C using the 6000 series aluminum alloy to be anodized as a working electrode, and then a platinum (Pt) or carbon electrode is used as the counter electrode. This may be achieved by applying a cathode and oxidizing it. The distance between the working electrode and the counter electrode may be 1-15 cm, preferably 3-12 cm, more preferably 4-10 cm, even more preferably 4.5-8 cm, especially preferably 4.75-5.25 cm. It can be cm.
상기 1차 양극산화 및 2차 양극산화 처리의 전해액으로는 각각 황산(sulfuric acid, H2SO4), 인산(phosphoric acid, H3PO4), 옥살산(oxalic acid, C2H2O4), 크롬산(chromic acid), 불산(hydrofluoric acid), 인산수소칼륨(dipotassium phosphate, K2HPO4) 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.Electrolytes for the first and second anodic oxidation treatments include sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), oxalic acid (C 2 H2O 4 ), and chromic acid, respectively. Chromic acid, hydrofluoric acid, dipotassium phosphate (K 2 HPO 4 ), etc. can be used alone or in a mixture of two or more.
바람직하게, 상기 전해액은 -5 내지 25℃의 0.1-0.5M 옥살산을 사용할 수 있고, 더욱 바람직하게는 15 내지 25℃의 0.27-0.33M 옥살산을 사용할 수 있으며, 특히 바람직하게는 19 내지 21℃의 0.285-0.315M 옥살산을 사용할 수 있다.Preferably, the electrolyte solution may use 0.1-0.5M oxalic acid at -5 to 25°C, more preferably 0.27-0.33M oxalic acid at 15 to 25°C, and particularly preferably 19 to 21°C. 0.285-0.315M oxalic acid can be used.
또한, 본 발명은 제조방법으로 제조되는 초친수성의 양극산화 피막이 형성된 6000계열 알루미늄 합금을 제공한다.In addition, the present invention provides a 6000 series aluminum alloy with a superhydrophilic anodized film produced by a manufacturing method.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through the following examples. However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited by the following examples.
<실시예 1-1 내지 1-6> 알루미늄 6061 합금의 양극산화처리를 통한 필라-온-포어(Pillar-On-Pore, POP) 구조의 양극산화 피막의 제조<Examples 1-1 to 1-6> Manufacture of an anodized film with a pillar-on-pore (POP) structure through anodizing aluminum 6061 alloy
종래의 양극산화 처리를 통한 금속 기재 표면에 양극산화 피막을 형성하는 방법은 프리패터닝(pre-patterning) 공정을 통해 금속 기재 표면에 미세구조 패턴을 형성한 다음, 양극산화 처리를 진행하는 것이 일반적이다. 프리패터닝 공정은 금속 기재를 양극산화 처리하여 양극산화 피막을 형성한 후에 에칭 처리함에 따라서 형성된 산화막을 제거하여 기재 표면에 미세구조 패턴만 남게하는 공정으로서, 프리패터닝 공정에 의해 형성된 기재 표면의 미세구조 패턴을 따라 후공정 양극산화 처리로 형성되는 양극산화 피막이 균일하게 형성될 수 있게 하기 위함이다.The general method of forming an anodized film on the surface of a metal substrate through a conventional anodizing treatment is to form a microstructure pattern on the surface of the metal substrate through a pre-patterning process and then proceed with the anodizing treatment. . The pre-patterning process is a process in which a metal substrate is anodized to form an anodized film and then etched to remove the formed oxide film, leaving only a microstructure pattern on the surface of the substrate. The microstructure of the substrate surface formed by the pre-patterning process This is to ensure that the anodized film formed through post-process anodization treatment can be formed uniformly along the pattern.
이 건 발명에서는 상기 프리패터닝 공정을 생략하고도 양극산화 피막이 균일하게 형성하는 방법을 제공하고자 함에 목적이 있고, 프리패터닝 공정을 생략함에 따라 제조비용 절감에 상당히 유리한 효과가 있다.The purpose of this invention is to provide a method of uniformly forming an anodized film even while omitting the pre-patterning process, and omitting the pre-patterning process has a significant advantage in reducing manufacturing costs.
특히, 이 건 발명은 프리패터닝(pre-patterning) 공정을 생략하면서, 알루미늄 6061 합금을 기재로 하여 양극산화 피막을 형성하되, 양극산화 피막의 기공 구조 위에 번들(bundle) 모양의 기둥(pillars)이 형성된 필라-온-포어(Pillar-On-Pore, 이하 'POP'이라 함) 구조의 양극산화 피막이 형성되는 양극산화 처리조건을 알아내기 위하여 다음과 같이 실시하였다.In particular, this invention forms an anodized film based on aluminum 6061 alloy while omitting the pre-patterning process, and bundle-shaped pillars are formed on the pore structure of the anodized film. In order to find out the anodizing treatment conditions under which an anodized film having a pillar-on-pore (hereinafter referred to as 'POP') structure was formed, the following was performed.
상기 알루미늄 6061 합금(Al 6061, 크기 20×30mm, 제조사: Alcoa INC, USA)의 성분 정보는 하기와 같다.The component information of the aluminum 6061 alloy (Al 6061, size 20 × 30 mm, manufacturer: Alcoa INC, USA) is as follows.
Figure PCTKR2023004010-appb-img-000001
Figure PCTKR2023004010-appb-img-000001
상기 알루미늄 6061 합금 표면에 있는 불순물을 제거하기 위해, 20℃의 아세톤에서 10분, 그리고 에탄올에서 10분 동안 초음파 처리하여 세척하였다.To remove impurities on the surface of the aluminum 6061 alloy, it was cleaned by sonicating in acetone at 20°C for 10 minutes and then in ethanol for 10 minutes.
다음으로, 표면 조도를 얻기 위하여 상기 초음파 세척된 알루미늄 6061 합금을 에탄올 및 과염소산 혼합 용액(Junsei, HClO4:C2H5OH= 4:1 (v/v))에 넣어 상온(20℃)에서 20V의 전압을 인가하여 1분 동안 전해연마(Electrochemical polishing)하였다. 전해연마가 완료된 알루미늄 합금 표면은 반사가 잘 이루어져 표면이 평탄해짐을 확인하였다.Next, in order to obtain surface roughness, the ultrasonic cleaned aluminum 6061 alloy was placed in a mixed solution of ethanol and perchloric acid (Junsei, HClO 4 :C 2 H 5 OH= 4:1 (v/v)) at room temperature (20°C). A voltage of 20V was applied and electrochemical polishing was performed for 1 minute. It was confirmed that the aluminum alloy surface after electrolytic polishing was well reflected and had a flat surface.
단계 1: 1차 양극산화Step 1: Primary anodization
상기 전해연마된 알루미늄 6061 합금(두께 1mm, 크기 20×30mm)을 작동 전극으로 하고, 음극으로는 백금(Pt)전극을 사용하여, 상기 두 개의 전극은 5cm 간격으로 극간 거리를 일정하게 유지하여 1차 양극산화를 실시하였다. 상기 1차 양극산화는 0.3M 옥살산을 전해액으로 사용하였고, 이중 비이커를 이용하여 전해액 온도를 20℃로 일정하게 유지하면서 실시하였다. 국부적인 온도 상승으로 인한 안정된 산화물 성장의 방해를 억제하기 위하여 일정 속도로 교반하였으며, 정전압 방식을 사용하여 40V의 전압을 1-10분 인가하여 1차 양극산화 공정을 수행하여 알루미나 층을 성장시켰다.The electropolished aluminum 6061 alloy (thickness 1 mm, size 20 Secondary anodization was performed. The first anodization was performed using 0.3M oxalic acid as an electrolyte, and using a double beaker while maintaining the electrolyte temperature constant at 20°C. In order to suppress interference with stable oxide growth due to local temperature rise, the mixture was stirred at a constant speed, and a voltage of 40V was applied for 1-10 minutes using a constant voltage method to perform the first anodization process to grow an alumina layer.
단계 2: 기공확장(pore widening; PW)Step 2: Pore widening (PW)
1차 양극산화를 통해 성장된 알루미나 층은 2차 양극산화를 실시하기 전에 30℃의 0.1M 인산 용액에 10~60분 동안 침지시키는 기공확장(pore widening; PW) 공정을 수행하였다.The alumina layer grown through primary anodization was subjected to a pore widening (PW) process by immersing it in a 0.1M phosphoric acid solution at 30°C for 10 to 60 minutes before performing secondary anodization.
단계 3: 2차 양극산화Step 3: Secondary anodization
상기 1차 양극산화와 동일하게 실시하되, 전압 인가 시간을 6분으로 고정하여 2차 양극산화 공정을 수행하여 알루미나 층을 더 성장시켰다.The second anodization process was performed in the same manner as the first anodization, but the voltage application time was fixed to 6 minutes to further grow the alumina layer.
상기 1차 양극산화(단계 1), 기공 확장(단계 2) 및 2차 양극산화(단계 3) 공정을 하기 표 1과 같은 조건으로 실시하여, 알루미늄 6061 합금 표면에 미세구조의 양극산화 피막을 제조하였다.The primary anodization (step 1), pore expansion (step 2), and secondary anodization (step 3) processes were performed under the conditions shown in Table 1 below to produce a microstructured anodized film on the surface of aluminum 6061 alloy. did.
1차 양극산화
(단계 1)
Primary anodization
(Step 1)
기공 확장
(단계 2)
pore expansion
(Step 2)
2차 양극산화
(단계 3)
Secondary anodization
(Step 3)
전압(V)Voltage (V) 시간(min)Time (min) 시간(min)Time (min) 전압(V)Voltage (V) 시간(min)Time (min)
제조예 1-1Manufacturing Example 1-1


40



40
1One


-



-



-



-



-



-
제조예 1-2Manufacturing Example 1-2 22
제조예 1-3Manufacturing Example 1-3 33
제조예 1-4Manufacturing Example 1-4 44
제조예 1-5Manufacturing Example 1-5 55
제조예 1-6Manufacturing Example 1-6 66
제조예 1-7Manufacturing Example 1-7 77
제조예 1-8Manufacturing Example 1-8 88
제조예 1-9Manufacturing Example 1-9 99
제조예 1-10Manufacturing Example 1-10 1010
실시예 1-1Example 1-1

40


40


6


6
1010

40


40


6


6
실시예 1-2Example 1-2 2020
실시예 1-3Example 1-3 3030
실시예 1-4Example 1-4 4040
실시예 1-5Examples 1-5 5050
실시예 1-6Example 1-6 6060
<실험예 1> 양극산화 피막의 미세구조 분석<Experimental Example 1> Microstructure analysis of anodized film
(1) 1차 양극산화 처리 시간에 따른 양극산화 피막의 미세구조 및 두께 분석(1) Analysis of microstructure and thickness of anodized film according to primary anodization treatment time
상기 표 1의 제조예 1-1 내지 제조예 1-10은 1차 양극산화 처리(단계 1)까지만 진행한 시편으로 이들의 표면(Top viwe) 및 횡단면(Cross view)을 전계방출 주사전자현미경(FE-SEM) 시스템(AURIGA® small dual-bean FIB-SEM, Zeiss)을 사용하여 관찰하였다.Preparation Examples 1-1 to 1-10 of Table 1 are specimens that have undergone only the first anodization treatment (step 1), and their surfaces (top view) and cross sections (cross views) are examined using a field emission scanning electron microscope ( Observations were made using a FE-SEM) system (AURIGA® small dual-bean FIB-SEM, Zeiss).
구체적으로, 각각의 알루미늄 합금 양극산화 피막 시편을 작은 조각으로 절단한 다음, 카본 테이프로 스테이지 상에 고정하고, 스퍼터링으로 15초 동안 금(Au)으로 코팅한 후 전계방출 주사전자현미경(SEM)으로 이미징 하였다. 이때, 피막 시편을 90°로 구부려 평행 균열을 생성시켜 알루미늄 합금 양극산화 피막의 표면 및 횡단면 구조를 관찰하였다.Specifically, each aluminum alloy anodized film specimen was cut into small pieces, fixed on a stage with carbon tape, coated with gold (Au) by sputtering for 15 seconds, and then analyzed using a field emission scanning electron microscope (SEM). Imaging was performed. At this time, the film specimen was bent at 90° to create parallel cracks and the surface and cross-sectional structure of the aluminum alloy anodized film were observed.
도 1은 제조예 1-1 내지 제조예 1-10의 조건으로 1차 양극산화 처리(단계 1)까지만 진행한 시편의 Top view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 1 is an image taken with a field emission scanning electron microscope (FE-SEM) of the top view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
도 2는 제조예 1-1 내지 제조예 1-10의 조건으로 1차 양극산화 처리(단계 1)까지만 진행한 시편의 Cross view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 2 is an image taken with a field emission scanning electron microscope (FE-SEM) of a cross view of a specimen that underwent only the first anodization treatment (step 1) under the conditions of Preparation Examples 1-1 to 1-10.
도 1에 나타난 바와 같이, 표면(top view) 이미지에는 검은색으로 나타난 기공들 옆에 하얀색(밝은 회색)의 양극산화물이 형성되어 있는 것으로 나타나, 표면에 다공성 양극산화 피막이 형성됨을 확인할 수 있다.As shown in Figure 1, the surface (top view) image shows that white (light gray) anodized oxide is formed next to the black pores, confirming that a porous anodized film is formed on the surface.
도 2에 나타난 바와 같이, 횡단면(cross-view) 이미지에서 매끈하게 나타나는 하단 부분은 알루미늄 6061 합금이고, 상단 부분은 1차 양극산화 처리로 형성된 양극산화 피막으로서 다공성 기둥 형상을 확인할 수 있다. 1차 양극산화 시간이 길어질수록 형성되는 양극산화 피막의 두께가 두꺼워지는 것을 확인할 수 있다.As shown in Figure 2, the lower part that appears smooth in the cross-view image is aluminum 6061 alloy, and the upper part is an anodized film formed through primary anodization, and a porous column shape can be seen. It can be seen that the longer the primary anodization time, the thicker the anodization film formed.
양극산화 처리를 하면 양극산화 피막의 두께가 두꺼워지고, 기공확장 처리를 하면 기공 직경이 넓어짐과 동시에 피막 상부의 일부가 깍여나가 두께가 다소 감소되는 경향이 있다. 이 건 발명에서 1차 양극산화-기공확장-2차 양극산화를 통한 최종 시편에서 양극산화 피막의 두께가 최소 500-700 nm는 되어야 내구성 및 미세구조로 인한 초친수성이 확보될 수 있다는 관점에서, 1차 양극산화 시간을 6분으로 셋팅하여 대략 400-500 nm의 두께를 확보하는 것이 가장 적절한 것으로 판단하였다.When anodized, the thickness of the anodized film becomes thicker, and when pore expansion is performed, the pore diameter widens and at the same time, part of the upper part of the film is chipped away, which tends to reduce the thickness somewhat. In this invention, in the final specimen through primary anodization, pore expansion, and secondary anodization, the thickness of the anodization film must be at least 500-700 nm to ensure durability and superhydrophilicity due to the microstructure, It was judged most appropriate to set the first anodization time to 6 minutes to secure a thickness of approximately 400-500 nm.
(2) 기공확장 처리 시간에 따른 양극산화 피막의 미세구조 및 두께 분석(2) Analysis of microstructure and thickness of anodized film according to pore expansion treatment time
상기 표 1의 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편으로 이들의 표면(Top viwe) 및 횡단면(Cross view)을 전계방출 주사전자현미경(FE-SEM) 시스템(AURIGA® small dual-bean FIB-SEM, Zeiss)을 사용하여 관찰하였다.The surface (top view) and cross section (cross view) of specimens treated only up to pore expansion (step 2) in Examples 1-1 to 1-6 of Table 1 above were examined using a field emission scanning electron microscope (FE-SEM). ) was observed using the system (AURIGA® small dual-bean FIB-SEM, Zeiss).
도 3은 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편의 Top view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 3 is a top view image of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
도 4는 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편의 Cross view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 4 is an image of a cross view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6 taken with a field emission scanning electron microscope (FE-SEM).
도 5는 실시예 1-1 내지 실시예 1-6에서 기공확장(단계 2)까지만 처리한 시편의 Tilted view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 5 is an image of a tilted view of a specimen processed only up to pore expansion (step 2) in Examples 1-1 to 1-6, taken using a field emission scanning electron microscope (FE-SEM).
도 3에 나타난 바와 같이, 표면(top view) 이미지에는 검은색으로 나타난 기공 직경이 도 1 대비 커진 것을 확인할 수 있고, 기공확장 처리 시간이 길어질수록 기공 직경이 커지는 경향을 확인할 수 있다. 또한, 기공확장 처리 시간에 따라 표면 기공의 형태가 상이하게 나타나는 것을 확인할 수 있다. 한편, 기공확장 60분 처리한 시편은 양극산화 피막이 대부분 에칭되어 제거된 것을 확인할 수 있다.As shown in Figure 3, it can be seen that the pore diameter shown in black in the surface (top view) image has increased compared to Figure 1, and it can be confirmed that the pore diameter tends to increase as the pore expansion treatment time increases. In addition, it can be seen that the shape of surface pores appears differently depending on the pore expansion treatment time. Meanwhile, it can be seen that most of the anodized film of the specimen treated with pore expansion for 60 minutes was etched and removed.
도 4에 나타난 바와 같이, 기공확장 처리에 따라 양극산화 피막의 두께가 도 2(4 min 처리 시편) 대비 일부 감소한 것을 확인할 수 있다. 또한, 기공확장 처리 시간에 따라 양극산화 피막 상부의 미세구조 형태가 상이하게 나타남을 확인할 수 있다.As shown in Figure 4, it can be seen that the thickness of the anodized film was partially reduced due to the pore expansion treatment compared to Figure 2 (4 min treated specimen). In addition, it can be seen that the microstructure of the upper part of the anodized film appears differently depending on the pore expansion treatment time.
도 5는 도 3 및 도 4와 유사한 결과를 확인할 수 있다.Figure 5 shows similar results to Figures 3 and 4.
(3) 2차 양극산화 처리에 따른 양극산화 피막의 미세구조 및 두께 분석(3) Microstructure and thickness analysis of anodized film according to secondary anodization treatment
상기 표 1의 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편으로 이들의 표면(Top viwe) 및 횡단면(Cross view)을 전계방출 주사전자현미경(FE-SEM) 시스템(AURIGA® small dual-bean FIB-SEM, Zeiss)을 사용하여 관찰하였다.The surface (top view) and cross section (cross view) of the specimens treated from Examples 1-1 to 1-6 of Table 1 up to secondary anodization (step 3) were examined using a field emission scanning electron microscope. Observations were made using a FE-SEM) system (AURIGA® small dual-bean FIB-SEM, Zeiss).
도 6은 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 Top view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 6 is an image of a top view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
도 7는 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 Cross view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 7 is an image of a cross view of a specimen processed from Examples 1-1 to 1-6 through secondary anodization (step 3) taken with a field emission scanning electron microscope (FE-SEM).
도 8은 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 Tilted view를 전계방출 주사전자현미경(FE-SEM)으로 촬영한 이미지이다.Figure 8 is an image taken with a field emission scanning electron microscope (FE-SEM) of a tilted view of a specimen that was completely processed from Examples 1-1 to 1-6 to secondary anodization (step 3).
도 6에 나타난 바와 같이, 표면(top view) 이미지는 도 3과 유사한 것으로 나타나, 2차 양극산화 처리는 1차 양극산화 및 기공확장 처리에 따라 형성된 양극산화 피막의 상단부 미세구조에는 별다른 영향을 주지 않는 것을 확인할 수 있다.As shown in Figure 6, the surface (top view) image appears similar to Figure 3, and the secondary anodization treatment does not have any significant effect on the microstructure of the upper part of the anodization film formed according to the primary anodization and pore expansion treatment. You can check that it is not.
도 7에 나타난 바와 같이, 기공확장 40 min 처리한 시편의 횡단면(cross-view) 이미지에서 매끈하게 나타나는 하단 부분은 알루미늄 6061 합금이고, 노란색 화살표로 표시한 두께는 2차 양극산화에 따른 피막으로 다공성 기둥 형상을 나타내고, 그 상단부는 1차 양극산화 및 기공확장 처리에 따른 피막으로 필라 형상을 나타낸다. 도 7에서 보면 기공확장 40 min 처리한 시편에서 POP 미세구조가 잘 나타나는 것으로 보인다.As shown in Figure 7, the bottom part that appears smooth in the cross-view image of the specimen treated with pore expansion for 40 min is aluminum 6061 alloy, and the thickness indicated by the yellow arrow is a porous film due to secondary anodization. It has a pillar shape, and the upper part has a pillar shape as a result of the first anodization and pore expansion treatment. Looking at Figure 7, it appears that the POP microstructure appears well in the specimen treated with pore expansion for 40 min.
도 8은 도 6 및 도 7과 유사한 결과를 확인할 수 있다.Figure 8 shows similar results to Figures 6 and 7.
본 실험예 1의 결과로부터, 1차 양극산화 조건으로 인가전압 40V에서 6min, 기공확장 40 min, 2차 양극산화 조건으로 인가전압 40V에서 6min 실시하는 것이 바람직한 것으로 판단된다.From the results of Experimental Example 1, it is determined that it is preferable to perform the first anodization at an applied voltage of 40V for 6 min, pore expansion for 40 min, and the second anodization at an applied voltage of 40V for 6 min.
<실험예 2> 실시예 1-1 내지 1-6의 접촉각 평가<Experimental Example 2> Contact angle evaluation of Examples 1-1 to 1-6
실시예 1-1 내지 1-6의 시편에 대하여 물(정제수) 및 오일(식용유)에 대한 접촉각을 측정하였고, 그 결과를 하기 표 2 및 도 9에 나타내었다.The contact angles for water (purified water) and oil (cooking oil) were measured for the specimens of Examples 1-1 to 1-6, and the results are shown in Table 2 and Figure 9 below.
접촉각 (°)Contact angle (°)
기공확장 시간 (min)Pore expansion time (min) water 오일oil
실시예 1-1Example 1-1 1010 23.51 ± 1.7123.51 ± 1.71 25.15 ± 1.0425.15 ± 1.04
실시예 1-2Example 1-2 2020 20.64 ± 2.0020.64 ± 2.00 23.23 ± 2.3023.23 ± 2.30
실시예 1-3Example 1-3 3030 11.97 ± 1.6211.97 ± 1.62 11.57 ± 2.9711.57 ± 2.97
실시예 1-4Example 1-4 4040 NoneNone NoneNone
실시예 1-5Examples 1-5 5050 17.17 ± 2.3317.17 ± 2.33 14.95 ± 2.0014.95 ± 2.00
실시예 1-6Example 1-6 6060 16.89 ± 2.2316.89 ± 2.23 15.76 ± 3.3915.76 ± 3.39
* None : 접촉각이 0°에 가까워 측정이 불가능함을 의미함.* None: This means that measurement is impossible because the contact angle is close to 0°.
도 9는 실시예 1-1 내지 실시예 1-6에서 2차 양극산화(단계 3)까지 모두 처리한 시편의 물(정제수) 및 오일(식용유)에 대한 접촉각을 측정한 결과를 나타낸 그래프이다.Figure 9 is a graph showing the results of measuring the contact angle for water (purified water) and oil (cooking oil) of specimens treated from Examples 1-1 to 1-6 to secondary anodization (step 3).
상기 표 2 및 도 9에 나타난 바와 같이, 물 및 오일에 대한 접촉각이 10° 이하로 나타나 초친수성을 나타내는 시편은 실시예 1-4, 1개의 시편으로 확인하였고, 이는 실험예 1의 결과에서 예상한 결과와 일치하였다.As shown in Table 2 and Figure 9, the specimen showing superhydrophilicity with a contact angle for water and oil of 10° or less was confirmed to be Examples 1-4, one specimen, which was expected from the results of Experimental Example 1 This was consistent with one result.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특히 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is set forth in particular in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.
본 발명에 따른 6000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법은 프리패터닝(pre-patterning) 단계를 생략하고도 균일한 양극산화 피막을 제조할 수 있어 제조비용을 절감할 수 있을 뿐만 아니라, 초친수성 양극산화 피막을 형성할 수 있다.The method for manufacturing a superhydrophilic anodized film on a 6000 series aluminum alloy according to the present invention not only reduces manufacturing costs by manufacturing a uniform anodized film without the pre-patterning step. A superhydrophilic anodized film can be formed.

Claims (8)

  1. 6000계열 알루미늄(aluminum) 합금을 35-45V에서 1-10분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 35-45V for 1-10 minutes (step 1);
    0.05-1.0M 인산(H3PO4) 용액에 10-60분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.05-1.0M phosphoric acid (H 3 PO 4 ) solution for 10-60 minutes (step 2); and
    35-45V에서 1-10분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함하고,A secondary anodizing step (step 3) at 35-45V for 1-10 minutes,
    상기 단계 1 이전에 프리패터닝(pre-patterning) 공정을 생략한 것을 특징으로 하는,Characterized in that the pre-patterning process is omitted before step 1,
    6000계열 알루미늄 합금에 초친수성 양극산화 피막의 제조방법.Method for manufacturing superhydrophilic anodized film on 6000 series aluminum alloy.
  2. 제1항에 있어서,According to paragraph 1,
    상기 6000계열 알루미늄 합금은 Al 6061, Al 6060, Al 6063, Al 6005, Al 6005A, Al 6262 및 Al 6020으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.A manufacturing method, characterized in that the 6000 series aluminum alloy is at least one selected from the group consisting of Al 6061, Al 6060, Al 6063, Al 6005, Al 6005A, Al 6262, and Al 6020.
  3. 제1항에 있어서,According to paragraph 1,
    상기 초친수성 양극산화 피막은 기공 구조 위에 기둥(pillars)이 형성된 필라-온-포어(Pillar-On-Pore) 형태인 것을 특징으로 하는 제조방법.A manufacturing method wherein the superhydrophilic anodized film is in a pillar-on-pore form in which pillars are formed on the pore structure.
  4. 제1항에 있어서,According to paragraph 1,
    상기 프리패터닝 공정은 6000계열 알루미늄 합금을 양극산화 처리한 후, 에칭하여 양극산화 피막을 제거함에 따라, 6000계열 알루미늄(aluminum) 합금 표면에 미세구조 패턴이 남게되는 것을 특징으로 하는 제조방법.The pre-patterning process is a manufacturing method characterized in that the 6000 series aluminum alloy is anodized and then etched to remove the anodized film, thereby leaving a microstructure pattern on the 6000 series aluminum alloy surface.
  5. 제1항에 있어서,According to paragraph 1,
    6000계열 알루미늄(aluminum) 합금을 38-42V에서 4-8분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 38-42V for 4-8 minutes (step 1);
    0.05-0.15M 인산(H3PO4) 용액에 35-45분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.05-0.15M phosphoric acid (H 3 PO 4 ) solution for 35-45 minutes (step 2); and
    38-42V에서 4-8분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함하는 것을 특징으로 하는 제조방법.A manufacturing method comprising a secondary anodizing step (step 3) at 38-42V for 4-8 minutes.
  6. 제5항에 있어서,According to clause 5,
    6000계열 알루미늄(aluminum) 합금을 39-41V에서 5-7분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 39-41V for 5-7 minutes (step 1);
    0.06-0.14M 인산(H3PO4) 용액에 38-42분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.06-0.14M phosphoric acid (H 3 PO 4 ) solution for 38-42 minutes (step 2); and
    39-41V에서 5-7분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함하는 것을 특징으로 하는 제조방법.A manufacturing method comprising a secondary anodizing process (step 3) at 39-41V for 5-7 minutes.
  7. 제6항에 있어서,According to clause 6,
    6000계열 알루미늄(aluminum) 합금을 39.5-40.5V에서 5.8-6.2분 동안 1차 양극산화 처리하는 단계(단계 1);Primary anodizing of the 6000 series aluminum alloy at 39.5-40.5V for 5.8-6.2 minutes (step 1);
    0.095-0.105M 인산(H3PO4) 용액에 39-41분 동안 침지하여 기공확장(pore widening) 처리하는 단계(단계 2); 및Pore widening process by immersing in 0.095-0.105M phosphoric acid (H 3 PO 4 ) solution for 39-41 minutes (step 2); and
    39.5-40.5V에서 5.8-6.2분 동안 2차 양극산화 처리하는 단계(단계 3);를 포함하는 것을 특징으로 하는 제조방법.A manufacturing method comprising a secondary anodizing step (step 3) at 39.5-40.5 V for 5.8-6.2 minutes.
  8. 제1항의 제조방법으로 제조되는 초친수성의 양극산화 피막이 형성된 6000계열 알루미늄 합금.A 6000 series aluminum alloy with a superhydrophilic anodized film produced by the manufacturing method of claim 1.
PCT/KR2023/004010 2022-03-30 2023-03-27 Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 6000 series aluminum alloy without pre-patterning process WO2023191409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0039771 2022-03-30
KR1020220039771A KR102562891B1 (en) 2022-03-30 2022-03-30 A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 6000 alloys without pre-patterning process

Publications (1)

Publication Number Publication Date
WO2023191409A1 true WO2023191409A1 (en) 2023-10-05

Family

ID=87566473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004010 WO2023191409A1 (en) 2022-03-30 2023-03-27 Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 6000 series aluminum alloy without pre-patterning process

Country Status (2)

Country Link
KR (1) KR102562891B1 (en)
WO (1) WO2023191409A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050046828A (en) * 2003-11-14 2005-05-19 Kyu Wang Lee Transparent porous anodic alumina film on insulating substrates and its preparation method
KR20180134562A (en) * 2017-06-09 2018-12-19 조정수 Method of surface treatment of insulated material and Surface treated insulated material by the same
US20190112725A1 (en) * 2016-04-18 2019-04-18 Fokker Aerostructures B.V. Anodizing an article of aluminum or alloy thereof
KR102176791B1 (en) * 2019-08-12 2020-11-09 동의대학교 산학협력단 Method for manufacturing aluminum anodic oxide film having pillar-on-pore structure using phosphoric acid
KR20210140976A (en) * 2020-05-14 2021-11-23 한국화학연구원 Method for forming anodized film and anodized aluminum containing anodized film formed thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2781895A1 (en) * 2009-12-21 2011-07-14 Innovative Surface Technologies, Inc. Coating agents and coated articles
KR102086933B1 (en) 2018-12-31 2020-03-09 동의대학교 산학협력단 Method of anode oxide film of aluminum alloy having a superhydrophobic surface
KR102187089B1 (en) * 2019-01-31 2020-12-04 한밭대학교 산학협력단 Hydrophobic absorber and method for manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050046828A (en) * 2003-11-14 2005-05-19 Kyu Wang Lee Transparent porous anodic alumina film on insulating substrates and its preparation method
US20190112725A1 (en) * 2016-04-18 2019-04-18 Fokker Aerostructures B.V. Anodizing an article of aluminum or alloy thereof
KR20180134562A (en) * 2017-06-09 2018-12-19 조정수 Method of surface treatment of insulated material and Surface treated insulated material by the same
KR102176791B1 (en) * 2019-08-12 2020-11-09 동의대학교 산학협력단 Method for manufacturing aluminum anodic oxide film having pillar-on-pore structure using phosphoric acid
KR20210140976A (en) * 2020-05-14 2021-11-23 한국화학연구원 Method for forming anodized film and anodized aluminum containing anodized film formed thereby

Also Published As

Publication number Publication date
KR102562891B1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2020141714A1 (en) Method for manufacturing aluminum alloy anodized film having superhydrophobic surface
US8002958B2 (en) Deposition method for nanostructure materials
WO2021029645A1 (en) Method for manufacturing aluminum anodized film having pillar-on-pore structure by using phosphoric acid
WO2021006439A1 (en) Electrochemical water decomposition catalyst and method for producing same
KR20060039898A (en) Deposition method for nanostructure materials
WO2011040679A1 (en) High field anodizing apparatus
WO2020209635A1 (en) Water-dispersible graphene nanosheet
WO2023191409A1 (en) Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 6000 series aluminum alloy without pre-patterning process
WO2023182768A1 (en) Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 3000 series aluminum alloy without pre-patterning process
WO2023195705A1 (en) Optimal anodized oxide film manufacturing method for generating uniform pop nanostructure in aluminum 1000 series alloy without pre-patterning process
WO2021096226A1 (en) Method for improving implementation of vivid color on superhydrophilic surface of aluminum alloy
WO2018070612A1 (en) Ion diode membrane comprising branch form of nanopores and method for manufacturing same
KR102562889B1 (en) A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 5000 alloys without prepatterning process
WO2011013911A2 (en) Insoluble anode and preparation method thereof
KR100999255B1 (en) Manufacturing nano-pillars magnetism-membrane with perpendicular anisotropy
WO2021125410A1 (en) Surface-treated copper foil, method for producing same, and negative electrode for secondary battery including same
WO2021045302A1 (en) Water electrolysis electrode containing catalyst having three-dimensional nanosheet structure, method for manufacturing same, and water electrolysis device including same
WO2012177013A2 (en) Apparatus and method for removing defect
WO2021029678A1 (en) Method for manufacturing 6000 series aluminum alloy, having superhydrophilic surface, for filter and rainwater storage water tank
WO2018105787A1 (en) Ionic diode membrane containing tapered nano-pores and method for manufacturing same
KR20090010484A (en) Manufacturing method of filter
KR102181086B1 (en) Manhole cover with superhydrophobic function
Xu et al. Preparation of porous alumina by anodization
WO2023191242A1 (en) Method for forming simultaneously superhydrophobic and superoleophobic surface on 6000-series aluminum alloy omitting pre-patterning step in anodization process
WO2023163323A1 (en) Method for simultaneously achieving superhydrophobic and superoleophobic surface on 5,000 series aluminum alloy in anodic oxidation process without pre-patterning step

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781265

Country of ref document: EP

Kind code of ref document: A1