WO2023191262A1 - 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법 - Google Patents

환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법 Download PDF

Info

Publication number
WO2023191262A1
WO2023191262A1 PCT/KR2023/000146 KR2023000146W WO2023191262A1 WO 2023191262 A1 WO2023191262 A1 WO 2023191262A1 KR 2023000146 W KR2023000146 W KR 2023000146W WO 2023191262 A1 WO2023191262 A1 WO 2023191262A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
information
cancer
recurrence
target
Prior art date
Application number
PCT/KR2023/000146
Other languages
English (en)
French (fr)
Inventor
허성훈
이욱재
김수연
김황필
문성태
김태유
Original Assignee
주식회사 아이엠비디엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이엠비디엑스 filed Critical 주식회사 아이엠비디엑스
Priority to EP23708379.5A priority Critical patent/EP4287213A1/en
Priority to US18/027,425 priority patent/US20240318253A1/en
Publication of WO2023191262A1 publication Critical patent/WO2023191262A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for predicting cancer recurrence using a patient-tailored panel.
  • cancer survival rates have increased due to early diagnosis through active health checkups, newly developed imaging technologies, and chemotherapy treatment.
  • more than 30% of patients who have undergone surgery and received chemotherapy have cancer recurrence, leading to death. Therefore, selectively identifying patients who are expected or suspected to have recurrence and determining the optimal treatment is very important in increasing the survival rate of cancer patients.
  • recurrence of cancer is difficult to detect unless it has grown to a size that is detectable by an imaging scan, such as a CT scan.
  • an imaging scan such as a CT scan.
  • cancer reaches the level where it can be detected by image, treatment becomes more complicated and treatment options decrease, so there is a need for an early prediction method for cancer recurrence with high sensitivity and accuracy to determine whether cancer has recurred.
  • the present inventors derived patient-specific genomic mutation information from tissue samples of cancer after surgery, used this to manufacture a customized panel for the patient, and compared the genomic information of the patient's blood-derived sample to determine whether cancer has recurred. I would like to present .
  • One aspect of the present invention is an information provision method for predicting the recurrence prognosis of cancer, which is performed as an information providing device for predicting the recurrence prognosis of cancer; a) deriving patient-specific genomic mutation information from a tissue sample of a target patient; b) manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information; and c) comparing the sequencing information of the target patient's blood sample with the information of the patient-customized panel to determine whether the target patient has cancer recurrence.
  • the purpose is to provide an information provision method for predicting the prognosis of cancer recurrence. Do it as
  • Another aspect of the present invention includes the steps of a) deriving patient-specific genomic mutation information from a tissue sample of a target patient; b) manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information; and c) comparing the sequencing information of the target patient's blood sample with the information of the patient-customized panel to determine whether the target patient has cancer recurrence.
  • the purpose is to provide an information provision method for predicting the prognosis of cancer recurrence. Do it as
  • One aspect of the present invention is an information provision method for predicting the recurrence prognosis of cancer, which is performed as an information providing device for predicting the recurrence prognosis of cancer; a) deriving patient-specific genomic mutation information from a tissue sample of a target patient; b) manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information; and c) comparing the sequencing information of the target patient's blood sample with the information of the patient-customized panel to determine whether the target patient's cancer has relapsed.
  • the tissue sample may be formalin-fixed, paraffin-embedded, or freshly frozen.
  • the patient-specific genomic mutations may have a number of 20 or more and less than 300.
  • the blood-derived sample may be cell-free DNA or the genome of peripheral blood cells.
  • the clinically applicable targets include ABL1, AKT1, ALK, APC, BRAF, BRCA1, BRCA2, BTK, CDKN2A, CTNNB1, EGFR, ERBB2, EZH2, FGFR2, FGFR3, FLT3, GNAS, HRAS, It may be one or more genes selected from IDH1, IDH2, KIT, KRAS, MET, MTOR, MYC, MYCN, NRAS, NTRK1, NTRK3, PGFRA, PIK3CA, PTEN and TP53.
  • the patient-specific genomic mutation may be a mutation contained in an exon of the target gene.
  • step (c) is a case in which one or more ctDNA molecules are detected in a blood sample of a target patient, and two or more patient-specific genomic mutations and/or clinically applicable targets are detected. If so, it may be determined that the cancer has recurred.
  • Another aspect of the present invention includes the steps of a) deriving patient-specific genomic mutation information from a tissue sample of a target patient; b) manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information; and c) comparing the sequencing information of the target patient's blood sample with the information of the patient-customized panel to determine whether the target patient's cancer has relapsed.
  • Figure 1 is a schematic diagram showing a method of providing information for predicting the recurrence prognosis of cancer according to an embodiment of the present invention.
  • Figure 2 is a list showing clinically applicable target information included in a bespoke panel produced according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a method for detecting patient-specific tumor tissue mutations from tumor tissue whole-exome sequencing data or whole-genome sequencing data.
  • Figure 4 is a series of analysis flowcharts for securing a raw mutation list of a tumor tissue sample.
  • Figure 5 is a flowchart showing the process for removing false positives and selecting tumor patient-specific mutations.
  • Figure 6 is a schematic diagram of stratification for patient-specific mutation selection.
  • Figures 7 and 8 are graphs showing the results of evaluating the analytical performance of a platform using a bespoke panel manufactured according to an embodiment of the present invention.
  • Figure 9 is a graph showing the results of evaluating the clinical performance of a platform using a bespoke panel manufactured according to an embodiment of the present invention.
  • One aspect of the present invention is an information provision method for predicting the recurrence prognosis of cancer, which is performed as an information providing device for predicting the recurrence prognosis of cancer; a) deriving patient-specific genomic mutation information from a tissue sample of a target patient; b) manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information; and c) comparing the sequencing information of the target patient's blood sample with the information of the patient-customized panel to determine whether the target patient's cancer has relapsed.
  • a method of providing information for predicting the prognosis of cancer recurrence analyzes the genome of tumor tissue obtained after surgery of a patient, selects patient-specific genomic mutations, and obtains information from the blood of a patient visiting the hospital after surgery. This is a method of providing information to predict the prognosis of cancer recurrence by examining DNA samples and detecting selected patient-specific mutations.
  • a patient-specific mutation capture panel (bespoke panel) is used to enrich and capture patient-specific mutations in the blood to predict the prognosis of cancer recurrence by the method of the present invention. panel) can be produced.
  • the “bespoke panel” may be used with the same meaning as “patient-specific panel.”
  • Figure 1 is a schematic diagram showing a method of providing information for predicting the recurrence prognosis of cancer according to an embodiment of the present invention.
  • a cancer patient undergoes surgery to remove a tumor
  • the patient's tumor tissue and blood are obtained and stored to check for recurrence of the cancer in the future.
  • all genomic information obtained from the patient's blood and tissue was used, but in the method of providing information for predicting the prognosis of cancer recurrence according to the present invention, genomic mutation information obtained from the tumor tissue of the target patient Since the recurrence of cancer can be predicted by making a bespoke panel alone, a blood sample (marked PO in Figure 1) obtained immediately after surgery is not essential. Therefore, it is possible to register target patients without a reference blood sample, and has the advantage of reducing sequencing costs by reducing the number of target samples.
  • patient-specific genomic mutations are obtained by including all patient-specific germ cell mutations using PBMC without removing them.
  • the tissue sample obtained from the tumor tissue may be in a formalin-fixed paraffin-embedded form or a fresh frozen form, but is not limited thereto.
  • the patient-specific genomic mutations may have a number of 10 to 500, preferably 20 to 400, more preferably 20 to 300, and most preferably can have a number of 20 or more and less than 200.
  • the DNA sample obtained from the patient's blood includes cell-free DNA (cfDNA) and genomic DNA (gDNA) of peripheral blood mononuclear cells (PBMC). It is not limited.
  • PBMC gDNA obtained from the target patient's blood sample at P1 (the time of first blood sample collection after surgery) is used to remove patient-specific germline mutation information among patient-specific mutations. And only somatic mutation information is tested in cfDNA. Cancer recurrence is diagnosed depending on whether the patient's circulating tumor DNA (ctDNA) is detected at P1, and if not detected, blood is collected and tested according to time (e.g., P2 to P5). I do it.
  • a blood DNA sample obtained from a target patient can be concentrated by capturing only the desired region in the genome among the DNA molecules present in the sample using a hybridization capture method using the prepared bespoke panel.
  • the production of the bespoke panel is a clinically applicable area that can capture not only patient-specific mutation information, but also mutations that frequently appear in tumor patient groups or have drugs to directly treat tumor patients. It can be produced by combining target (clinically actionable target) information.
  • Figure 2 is a list showing clinically applicable target information included in the bespoke panel.
  • the clinically applicable targets are ABL1, AKT1, ALK, APC, BRAF, BRCA1, BRCA2, BTK, CDKN2A, and CTNNB1.
  • HRAS IDH1, IDH2, KIT, KRAS, MET
  • MTOR MYC, MYCN, NRAS, NTRK1, NTRK3, PGFRA, PIK3CA, PTEN and TP53
  • a total of 33 genes can be targeted, and 261 mutations within the genes can be targeted.
  • gray shading indicates genes required by the Korean FDA for genome testing.
  • FIG. 3 The analysis procedure for selecting patient-specific mutations through tumor tissue genome analysis is shown in Figure 3.
  • Figure 3 starting with a raw variant call, after going through a process of removing false positives, a database of clinically applicable target information for the variant list from which false positives were removed, and a target patient
  • Patient-specific mutations are selected by combining information from a database that reflects the biological characteristics of the tumor. Mutations in the selected tumor tissue are selected according to the grade of the mutation, from the highest grade to the total number of target patient-specific mutations.
  • the bespoke panel according to one embodiment of the present invention may be manufactured using a single target patient information, or may be produced including a plurality of target patient information.
  • the bespoke panel since the bespoke panel includes clinically applicable target information, it is possible to provide information on recurrence of previously known cancers and recurrence of cancer specific to the target patient.
  • Figure 4 shows a flow chart of obtaining a raw mutation list, which is the starting step in the analysis procedure for selecting patient-specific mutations.
  • the raw variant list is largely obtained by performing a data clean process and variant annotation process.
  • Sequencing data (S1) obtained through full-length exome sequencing or whole-genome sequencing is in FASTQ format and undergoes a data purification process to remove low-quality bases or sequencing adapter sequences used in the sequencing sample preparation process on a per-sequencing read basis. It goes through (S2).
  • Geocheon sequencing reads are compared with the reference sequence of the human genome and their positions in the reference sequence are mapped (S3).
  • the mapped read data goes through a process of removing overlapping reads that occurred during the experiment (S4), and then goes through a process of recalibrating the quality of the base sequence using statistical methods (S5).
  • the format of the data file waiting for analysis (analysis-ready) after going through the above series of processes is the BAM (Binary sequence Alignment/Map) format (S6).
  • raw mutation detection variant call
  • the format of the raw variant list file is VCF (Variant Call Format) (S7).
  • mutation annotation including germline prediction and functionality prediction is performed (S8) using various databases to create a VCF file, which is converted to TSV (TSV).
  • TSV TSV
  • Tab-separated values are converted to text files (S9), and finally, a TSV data file awaiting classification is obtained (S10).
  • the database used for the mutation annotation may include the following, and the respective annotations are disclosed in S8 of FIG. 4.
  • the various annotated mutation lists are used as a raw mutation list to remove false positives and select tumor patient-specific mutations.
  • Figure 5 shows the process for removing false positives and selecting (variant catagorization) specific mutations in tumor patients.
  • this process first goes through a process of selecting only mutations corresponding to exons, and through this, mutations corresponding to introns are removed.
  • the patient-specific genomic mutation may be a mutation contained in the exon of the target gene.
  • the process of removing mutations that occurred in areas with insufficient information (depth filter) due to insufficient reads as a result of genome sequencing of tumor tissue, and mutations that occurred in areas that are already known in the human genome are poorly sequenced, or have abnormal data distribution. It goes through a process of removing mutations and a process of removing mutations corresponding to genes related to immune cells.
  • mutations thought to have an impact on tumor development are set as patient-specific mutations, which involves a process of selecting mutations detected in a database with clinical utility and a process of selecting mutations detected in a database that uses the biological characteristics of tumors. It goes through a process of selecting mutations.
  • Databases having clinical utility may include, for example, COSMIC, ClinVar, and hotspot, but are not limited thereto.
  • FIG. 6 shows a schematic diagram of stratification for patient-specific mutation selection.
  • Stratification is a biological characteristic used to increase the probability of detecting ctDNA in a target sample because the cells present in tumor tissue are genetically very heterogeneous.
  • stratification is a biological characteristic used to increase the probability of detecting ctDNA in a target sample.
  • the final patient-specific mutations are selected through stratification (Tier 0 to Tier VI) based on six criteria. A description of each stratification is as follows.
  • Tier 0 Mutations that occur frequently in tumors or mutations that are frequently reported in tumor databases
  • Tier I Mutations detected in a group of tumor cells (clonal)
  • the cell population that is most dominant among the population of the entire tumor cell population that is, derived from the cells of the cancer that most likely occurred first. If cancer recurrence occurs, the probability of recurrence in the primary cancer Since this is high, this standard is used.
  • VAF variant allele frequency
  • Tier III Among genes involved in tumor creation/development, when tumor biological score type 1 (Tier I) of mutation passes the threshold
  • Tier IV Among genes involved in tumor creation/development, when tumor biological score type 2 (Tier II) of mutation passes the threshold
  • Tier V Among genes involved in tumor creation/development, when tumor biological score type 2 (Tier II) of mutation does not pass the threshold
  • Tier VI Mutations found in genes other than those involved in tumor creation/development
  • the cancer recurrence of the target patient is determined when one or more ctDNA molecules are detected in the blood sample of the target patient, and if two or more of the patient-specific genomic mutations and/or clinically applicable targets are detected, the cancer is confirmed. It can be judged that it has relapsed.
  • Another aspect of the present invention includes the steps of a) deriving patient-specific genomic mutation information from a tissue sample of a target patient; b) manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information; and c) comparing the sequencing information of the target patient's blood sample with the information of the patient-customized panel to determine whether the target patient's cancer has relapsed.
  • Step a) is a step of deriving patient-specific genomic mutation information from a tissue sample of the target patient and can be performed through whole exome sequencing or whole genome sequencing.
  • Step b) is a step of manufacturing a patient-customized panel by combining the derived patient-specific genomic mutation information and clinically actionable target information.
  • the tumor tissue used in this example is formalin-fixed paraffin embedded (FFPE) and fresh frozen (FF).
  • FFPE gDNA is extracted using an FFPE gDNA extraction kit (Promega, USA)
  • FF gDNA is extracted using a Tissue gDNA extraction kit (Promega, USA).
  • the extracted FFPE gDNA was quality checked (QC) using the TapeStation System (Agilent, USA), and the FF gDNA was checked using a Qubit fluorometer (Thermofisher Scientific, USA) and Nanodrop (Thermofisher Scientific, USA). Check the quality.
  • the extracted gDNA is sheared to the desired size (main peak 180 to 220 bp) using a Sonicator or Enzyme, and the quality is checked using the TapeStation System (Agilent, USA).
  • FFPE gDNA pretreatment is completed by repairing damaged DNA using an FFPE DNA repair kit (New England Biolabs, USA).
  • the extracted gDNA undergoes an NGS DNA library preparation process using the xGen Prism kit (Integrated Device Technology, USA).
  • the library preparation process consists of end repair, adapter ligation, and PCR amplification.
  • the prepared DNA library is subjected to Whole Exome sequencing (WES) using a Whole exome enrichment kit (Agilent, USA). At this time, a plurality of samples can be pooled or a single sample can be used.
  • the quality of the completed gDNA whole exome enriched library is checked using the TapeStation System (Agilent, USA).
  • each sample was mixed according to the desired NGS data production for the gDNA whole exome enriched library, NGS was performed using Illumina's Nextseq or Novaseq device, and the NGS data produced from the library was used to determine tissue-generated data.
  • NGS was performed using Illumina's Nextseq or Novaseq device, and the NGS data produced from the library was used to determine tissue-generated data.
  • Example 2 Method for predicting cancer recurrence using blood gDNA extraction and bespoke panel
  • Plasma and PBMC Plasma and PBMC (Peripheral Blood Mononuclear Cell) are separated from the target patient's blood, and cfDNA is extracted from the plasma using a cfDNA extraction kit (Promega, USA). The quality of the extracted cfDNA is checked using the TapeStation System (Agilent, USA). At this time, samples obtained consecutively from one target patient are labeled as P0 at the time of surgery, and sequentially labeled as P1, P2, etc. at subsequent time points.
  • PBMC gDNA was extracted from the isolated PBMC using a Blood gDNA extraction kit (Progmega, USA), and the quality was confirmed using a Qubit fluorometer (Thermofisher Scientific, USA) and Nanodrop (Thermofisher Scientific, USA). do.
  • PBMC gDNA whose quality has been confirmed is sheared to the desired size (main peak 180 to 220 bp) using a sonicator or enzyme.
  • the prepared cfDNA and/or sheared PBMC gDNA undergoes an NGS DNA library preparation process.
  • the library preparation process consists of end repair, adapter ligation, and PCR amplification.
  • the prepared DNA library is subjected to targeted enrichment for the target patient using the bespoke panel produced in Example 1.
  • the quality of the completed target-enriched library was checked using the TapeStation System (Agilent, USA), and then each sample was mixed according to the desired NGS data production for the bespoke panel enriched library, and then analyzed using Illumina's Novaseq device. Perform NGS.
  • Example 3 Analytical performance evaluation of cancer recurrence prediction platform using bespoke panel
  • two different B-lymphocytes NA12891 and NA12892, of which two genotypes are known, were selected, respectively, at 1%, 0.5%, 0.1%, 0.05%, and 0.01% of the total, respectively.
  • 0.005%, 0.001%, and 0% control group
  • the targets for monitoring are those that are different from each other among the known SNP markers in each cell line disclosed through the HapMap project (for example, one cell line is a reference compared to the human reference, and the other cell line is not).
  • Only markers were selected and used, and the amount of DNA used was 40 ng.
  • FIG. 8 is a diagram showing the detection limit according to the number of mutations targeted, where the x-axis represents the number of mutations to be monitored and the y-axis represents the fraction of ctDNA detected. Random sampling was performed 10 times to ensure that the number of mutations was equal to the maximum number (257). The shaded portion in the graph of FIG. 8 represents the observed range, and it can be seen that as the number of mutations increases, a lower fraction of ctDNA can be detected more reliably. In other words, it was confirmed that when there are more than 100 somatic mutations, up to 0.005% can be stably detected.
  • Example 4 Clinical performance evaluation of cancer recurrence prediction platform using bespoke panel

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 환자 맞춤형 패널을 이용한 암의 재발 예후 예측을 위한 정보제공 방법에 관한 것이다. 본 발명의 일 구체예에 따른 암 재발을 예측하는 방법에 의하면, 민감도 및 정확도가 향상된 암 재발 여부 예측이 가능하다.

Description

환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법
본 발명은 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법에 관한 것이다.
암에 대한 관심이 증가함에 따라 적극적인 건강검진에 의한 조기진단, 새롭게 개발된 이미징 기술, 항암요법치료 등으로 암의 생존률은 증가되어 왔다. 하지만, 수술을 받고 항암 치료를 받은 환자 중 30% 이상의 환자는 암이 재발하여 사망에 이르고 있다. 그러므로, 재발이 일어날 것으로 예상 또는 의심되는 환자들을 선별적으로 확인하여 최적의 치료법을 결정하는 것은 암 환자의 생존률을 높이는 데 있어 매우 중요하다.
일반적으로, 암의 재발은 CT 스캔과 같은 이미징 스캔에 의해 검출 가능할 정도로 크기가 자라지 않으면 검출되기가 힘들다. 암이 이미지에 의해 검출될 정도까지 다다르면, 치료가 복잡해지고, 치료의 선택지가 줄어들게 되므로, 암의 재발 여부를 확인할 수 있는 민감도와 정확도가 높은 암 재발 여부의 조기 예측 방법이 필요한 실정이다.
이에, 본 발명자들은 수술 후 암의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하고, 이를 활용하여 환자 맞춤형 패널을 제조하여 환자 혈액 유래 시료의 유전체 정보를 비교함으로써 암의 재발 여부를 확인할 수 있는 방법을 제시하고자 한다.
본 발명의 일 양상은 암의 재발 예후 예측을 위한 정보제공 장치로 수행되는 암의 재발 예후 예측을 위한 정보제공 방법으로; a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계; b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계; b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 암의 재발 예후 예측을 위한 정보제공 장치로 수행되는 암의 재발 예후 예측을 위한 정보제공 방법으로; a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계; b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법을 제공하는 것이다.
본 발명의 일 구체예로, 상기 조직 시료는 포르말린-고정 파라핀 포매 형태 또는 신선 동결 형태인 것일 수 있다.
본 발명의 일 구체예로, 상기 환자 특이적 유전체 변이는 20개 이상 300개 미만의 개수를 갖는 것일 수 있다.
본 발명의 일 구체예로, 상기 혈액 유래 시료는 세포 유리 DNA 또는 말초 혈액 세포의 유전체인 것일 수 있다.
본 발명의 일 구체예로, 상기 임상적용 가능한 표적은 ABL1, AKT1, ALK, APC, BRAF, BRCA1, BRCA2, BTK, CDKN2A, CTNNB1, EGFR, ERBB2, EZH2, FGFR2, FGFR3, FLT3, GNAS, HRAS, IDH1, IDH2, KIT, KRAS, MET, MTOR, MYC, MYCN, NRAS, NTRK1, NTRK3, PGFRA, PIK3CA, PTEN 및 TP53으부터 선택되는 하나 이상의 유전자인 것일 수 있다.
본 발명의 일 구체예로, 상기 환자 특이적 유전체 변이는 타겟 유전자의 엑손에 포함된 변이인 것일 수 있다.
본 발명의 일 구체예로, 상기 (c) 단계는 대상 환자의 혈액 유래 시료 내에서 ctDNA 분자 개수가 하나 이상 검출되는 경우로서, 상기 환자 특이적 유전체 변이 및/또는 임상적용 가능한 표적이 2 이상 검출되는 경우 암이 재발한 것으로 판단하는 것일 수 있다.
본 발명의 다른 일 양상은 a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계; b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법을 제공하는 것이다.
본 발명의 일 구체예에 따른 암 재발을 예측하는 방법에 의하면, 민감도 및 정확도가 향상된 암 재발 여부 예측이 가능하다.
도 1은 본 발명의 일 구체예에 따른 암의 재발 예후 예측을 위한 정보제공 방법을 나타내는 모식도이다.
도 2는 본 발명의 일 구체예에 따라 제작된 비스포크 패널에 포함되는 임상적용 가능한 표적 정보를 나타내는 리스트이다.
도 3은 종양 조직 전장 엑솜 시퀀싱 데이터 또는 전장 유전체 시퀀싱 데이터로부터 환자 특이적인 종양 조직 변이를 검출하는 방법을 나타내는 모식도이다.
도 4는 종양 조직 시료의 원시 변이 리스트 확보를 위한 일련의 분석 흐름도이다.
도 5는 위양성을 제거하고 종양 환자 특이적인 변이를 선별하기 위한 과정을 나타낸 흐름도이다.
도 6은 환자 특이적 변이 선별을 위한 계층화의 모식도이다.
도 7 및 도 8은 본 발명의 일 구체예에 따라 제작된 비스포크 패널을 이용한 플랫폼의 분석적 성능을 평가한 결과를 나타낸 그래프이다.
도 9는 본 발명의 일 구체예에 따라 제작된 비스포크 패널을 이용한 플랫폼의 임상적 성능을 평가한 결과를 나타낸 그래프이다.
본 발명의 일 양상은 암의 재발 예후 예측을 위한 정보제공 장치로 수행되는 암의 재발 예후 예측을 위한 정보제공 방법으로; a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계; b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법을 제공한다.
본 발명의 일 구체예에 따른 암의 재발 예후 예측을 위한 정보제공 방법은 환자의 수술 후 얻어진 종양 조직의 유전체를 분석하여, 환자 특이적인 유전체 변이를 선별하고, 수술 후에 내원하는 환자의 혈액에서 얻어지는 DNA 시료를 검사하여, 선별된 환자 특이적 변이의 검출 유무에 따라 암의 재발 예후 예측을 위한 정보제공 방법이다.
일 구체예에 따르면, 본 발명의 방법에 의하여 암의 재발 예후를 예측하기 위해 환자 특이적 변이를 혈액에서 농축(enrich)하여 포획(capture)하기 위한 환자 특이적 변이 포획 패널(비스포크 패널, bespoke panel)을 제작할 수 있다. 본 명세서에서, 상기 "비스포크 패널"은 "환자 맞춤형 패널"과 동일한 의미로 사용될 수 있다.
도 1은 본 발명의 일 구체예에 따른 암의 재발 예후 예측을 위한 정보제공 방법을 나타내는 모식도이다. 일반적으로, 암 환자가 종양 제거 수술을 하게되면, 추후 암의 재발 여부를 확인하기 위해 대상 환자의 종양 조직 및 혈액을 수득하여 보관한다. 기존의 암의 재발을 확인하기 위해서는 환자의 혈액과 조직으로부터 수득하는 유전체 정보를 모두 사용하였으나, 본 발명에 따른 암의 재발 예후 예측을 위한 정보제공 방법에서는 대상 환자의 종양 조직으로부터 수득하는 유전체 변이 정보만으로 비스포크 패널을 제작하여 암의 재발 여부를 예측할 수 있으므로, 수술 직후 수득되는 혈액 시료(도 1에서 PO로 표시)는 필수적이지 않다. 따라서, 기준이 되는 혈액 시료 없이도 대상 환자 등록이 가능하며, 대상 시료의 수가 감소하여 시퀀싱 비용이 절감된다는 장점을 갖는다.
환자의 종양 조직으로부터 유전체 분석 시에는 PBMC를 이용한 환자 특이적인 생식 세포 변이를 제거하지 않고 모두 포함하여 환자 특이적인 유전체 변이를 수득하게 된다. 일 구체예에 따르면, 상기 종양 조직으로부터 수득하는 조직 시료는 포르말린-고정 파라핀 포매 형태 또는 신선 동결 형태일 수 있으나, 이에 한정하지는 않는다. 일 구체예에 따르면, 상기 환자 특이적인 유전체 변이는 10개 이상 500개 미만의 개수를 가질 수 있으며, 바람직하게는 20개 이상 400개 미만, 더욱 바람직하게는 20개 이상 300개 미만, 가장 바람직하게는 20개 이상 200개 미만의 개수를 가질 수 있다.
본 발명의 일 구체예에 따르면, 상기 환자의 혈액에서 얻어지는 DNA 시료는 세포 유리 DNA(cell-free DNA, cfDNA) 및 말초 혈액 단핵 세포(PBMC)의 유전체 (genomic DNA, gDNA)를 포함하나, 이에 한정하지는 않는다.
본 발명에 따른 암의 재발을 예측하기 위해서는 P1 시점(수술 이후 최초 혈액 시료 채취 시점)의 대상 환자 혈액 시료에서 수득한 PBMC gDNA를 이용하여 환자 특이적인 변이 중, 환자 특이적인 생식 세포 변이 정보를 제거하고, 체세포 변이 정보들만 cfDNA에서 검사하게 된다. P1 시점에서 환자의 혈액 순환 종양 DNA(circulating tumor DNA, ctDNA)가 검출되는지 여부에 따라 암의 재발 여부를 진단하며, 미검출 시 시간(예를 들어, P2 내지 P5)에 따라 혈액을 채취하여 검사하게 된다.
대상 환자로부터 수득한 혈액의 DNA 시료는 상기 제작된 비스포크 패널을 이용한 혼성화 포획법(hybridization capture method)를 이용하여 시료 내에 존재하는 DNA 분자들 중 게놈상에서 원하는 영역만을 포획하고 농축될 수 있다.
일 구체예에 따르면, 상기 비스포크 패널의 제작은 환자 특이적 변이 정보 뿐만 아니라, 종양 환자 군에서 빈번하게 나타나거나, 종양 환자에 직접적으로 치료할 약제가 있는 변이를 포획할 수 있는 영역인 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 제작될 수 있다. 도 2는 비스포크 패널에 포함되는 임상적용 가능한 표적 정보를 나타내는 리스트로서, 일 구체예에 따르면, 상기 임상적용 가능한 표적은 ABL1, AKT1, ALK, APC, BRAF, BRCA1, BRCA2, BTK, CDKN2A, CTNNB1, EGFR, ERBB2, EZH2, FGFR2, FGFR3, FLT3, GNAS, HRAS, IDH1, IDH2, KIT, KRAS, MET, MTOR, MYC, MYCN, NRAS, NTRK1, NTRK3, PGFRA, PIK3CA, PTEN 및 TP53으로부터 선택되는 하나 이상의 유전자일 수 있으나, 이에 한정하지는 않는다. 예를 들어, 상기 표적을 모두 사용하는 경우 총 33개의 유전자로서, 상기 유전자 내에 존재하는 261개의 변이를 타겟으로 할 수 있다. 도 2에서 회색 음영은 한국 FDA에서 유전체 검사 시에 요구하는 유전자를 나타낸다.
종양 조직의 유전체 분석을 수행하고 변이를 검출하기 위해서는 충분한 체세포 변이를 포함하도록 종양 조직에 대한 전장 엑솜 시퀀싱(whole exome sequencing) 또는 전장 유전체 시퀀싱(whole genome sequencing)을 이용할 수 있다. 종양 조직 유전체 분석을 통해 환자 특이적인 변이를 선별하기 위한 분석 절차를 도 3에 나타내었다. 도 3에 따르면, 원시 변이 리스트(raw variant call)를 시작으로, 위양성(false positive)을 제거하는 과정을 거친 이후, 위양성이 제거된 변이 리스트에 대해서 임상적용 가능한 표적 정보에 대한 데이터베이스와, 대상 환자의 종양의 생물학적인 특성을 반영하는 데이터베이스에 대한 정보를 조합하여 환자 특이적인 변이를 선별하게 된다. 선별된 종양 조직의 변이는 변이의 등급에 따라 높은 등급부터 목표로 하는 총 환자 특이적인 변이의 개수까지 선별하게 된다.
본 발명의 일 구체예에 따른 비스포크 패널은 단수의 대상 환자 정보를 이용하여 제작되거나, 복수의 대상 환자 정보를 포함하여 제작될 수 있다. 아울러, 상기 비스포크 패널은 임상적용 가능한 표적 정보를 포함하므로, 기존에 알려진 암에 대한 재발 여부 및 대상 환자 특이적인 암의 재발 여부에 대한 정보 제공이 가능하다.
도 4는 환자 특이적인 변이를 선별하기 위한 분석 절차에서 시작 단계인 원시 변이 리스트를 수득하는 흐름도를 나타낸 것이다.
원시 변이 리스트는 크게 데이터 클린(data clean) 과정과 변이 주석(variant annotation) 과정을 수행하여 수득하게 된다. 전장 엑솜 시퀀싱 또는 전장 유전체 시퀀싱을 통해 얻어진 시퀀싱 데이터(S1)는 FASTQ 형식으로, 시퀀싱 리드(read) 단위로 낮은 품질의 염기, 혹은 시퀀싱 시료 준비 과정에 이용된 시퀀싱 어답터 서열을 제거하는 데이터 정제 과정을 거치게 된다(S2). 정제 과정을 거천 시퀀싱 리드들은 인간 게놈의 참조 서열(reference sequence)과 비교하여 참조 서열에서의 위치를 매핑하게 된다(S3). 이후, 매핑된 리드 데이터에 대해서 실험 과정에서 발생한 중복되는 리드를 제거하는 작업을 거치고(S4), 통계적인 방법을 이용한 염기 서열의 품질을 재조정(recalibration)하는 과정을 거치게 된다(S5). 상기 일련의 과정을 거친 분석을 대기(analysis-ready) 중인 데이터 파일의 형식은 BAM (Binary sequence Alignment/Map) 형식이다(S6).
이후, 분석 대기 중인 BAM 파일을 변이 검출 소프트웨어(예를 들어, Mutect2)를 이용하여 종양에 존재하는 원시 변이 검출(variant call)을 수행한다. 원시 변이 리스트 파일의 형식은 VCF (Variant Call Format)이다(S7). 원시 변이 리스트 파일에 존재하는 변이들은 다양한 데이터베이스를 이용하여 생식세포 예측(germline prediction)과 기능 예측(functionality prediction)을 포함하는 변이 주석(annotation)을 수행(S8)하여 VCF 파일을 만들고, 이를 TSV(Tab-separated values) 텍스트 파일로 변환(S9)하여 최종적으로 분류 대기(classification-ready) 중인 TSV 데이터 파일을 얻게 된다(S10). 상기 변이 주석에 사용되는 데이터 베이스는 다음을 포함할 수 있으며, 이에 대한 각각의 주석은 도 4의 S8에 개시하였다.
- 체세포 변이 데이터베이스
- 변이의 임상적 유용성을 포함하는 데이터베이스
- 변이가 실제 영향을 주는 단백질에 대한 기능에 대한 데이터베이스
- 변이에 대해 종양의 생물학적 특성을 고려하는 점수를 제공하는 데이터베이스
이후, 상기 다양한 주석이 첨가된 변이 리스트가 위양성을 제거하고 종양 환자 특이적인 변이를 선별하기 위한 원시 변이 리스트로 사용된다.
도 5는 위양성을 제거하고 종양 환자 특이적인 변이를 선별(variant catagorization)하기 위한 과정을 나타낸다. 일 구체예에 따르면, 본 과정은 먼저 엑손에 해당하는 변이만을 선별하는 과정을 거치며, 이를 통해 인트론에 해당하는 변이는 제거하게 된다. 즉, 환자 특이적 유전체 변이는 타겟 유전자의 엑손에 포함된 변이일 수 있다. 또한, 종양 조직의 유전체 시퀀싱 결과상 충분한 읽기가 되지 않아 정보가 부족한 부분(depth filter)에서 발생한 변이를 제거하는 과정, 인간 유전체에서 이미 알려진, 시퀀싱이 잘 되지 않거나, 이상 데이터 분포를 가지는 영역에서 발생한 변이를 제거하는 과정 및 면역 세포와 관련된 유전자에 해당하는 변이를 제거하는 과정을 거치게 된다. 결과적으로, 종양 발생에 영향이 있을 것으로 생각되는 변이를 환자 특이적 변이로 설정하게 되는데, 이는 임상적인 유용성을 가지는 데이터베이스에서 검출된 변이를 선별하는 과정과 종양의 생물학적인 특성을 이용하는 데이터베이스에서 검출된 변이를 선별하는 과정을 거치게 된다. 상기 임상적인 유용성을 가지는 데이터베이스는 예를 들어, COSMIC, ClinVar, hotspot을 포함할 수 있으나, 이에 한정하지는 않는다. 엑손에 해당하는 변이만을 선별한 이후, 이전 단계에서 부착된 변이 주석을 이용하여 3종(생식세포 변이, 체세포 변이, 위양성)의 서로 다른 분류로 각 변이를 선별하게 된다.
도 6은 환자 특이적 변이 선별을 위한 계층화의 모식도를 나타낸다. 계층화는 종양 조직에 존재하는 세포들이 유전적으로 매우 이질적(heterogeneous)이므로, 대상 시료 내에서 ctDNA를 검출하기 위한 확률을 높이는 데에 이용하는 생물학적인 특성으로서, 이전의 변이 선별 및 분류 결과 체세포 변이에 해당하는 환자 특이적인 변이에 대해서 6개의 기준으로 계층화(Tier 0 내지 Tier VI)를 통해 최종 환자 특이적 변이를 선별하게 된다. 각 계층화에 대한 설명은 다음과 같다.
Tier 0 : 종양에서 빈번하게 발생되는 변이 이거나, 종양 데이터베이스에서 보고가 많이된 변이
Tier I : 한 무리의 종양 세포 군(clonal)에서 검출된 변이
구체적으로, 종양 전체 세포군의 모집단(population) 중에서 가장 우세한(dominant), 즉, 가장 최초에 발생했을 암의 세포에서 유래한 세포군에서 선정한 것으로, 암의 재발이 발생하는 경우, 원발암에서 재발할 확률이 높을 것이므로 본 기준을 사용한다.
Tier II : 변이의 존재 빈도(variant allele frequency, VAF)가 원하는 임계치를 통과하는 경우
구체적으로, 클로날(clonal)하지는 않지만, 그럼에도 불구하고 종양 모집단(population)에서 많은 부분을 차지하고 있기 때문에, 재발 시 혈액에 유리될 확률이 높을 것이므로 본 기준을 사용한다.
Tier III : 종양의 생성/발달에 관여된 유전자 중에서, 변이의 종양 생물학적인 점수 1번 타입(Tier I)이 임계치를 통과하는 경우
Tier IV : 종양의 생성/발달에 관여된 유전자 중에서, 변이의 종양 생물학적인 점수 2번 타입(Tier II)이 임계치를 통과하는 경우
Tier V : 종양의 생성/발달에 관여된 유전자 중에서, 변이의 종양 생물학적인 점수 2번 타입(Tier II)이 임계치를 통과하지 못하는 경우
Tier VI : 종양의 생성/발달에 관여된 유전자가 아닌 유전자에서 발견된 변이
최종적으로, 대상 환자의 암 재발 여부는 대상 환자의 혈액 유래 시료 내에서 ctDNA 분자 개수가 하나 이상 검출되는 경우로서, 상기 환자 특이적 유전체 변이 및/또는 임상적용 가능한 표적이 2 이상 검출되는 경우 암이 재발된 것으로 판단할 수 있다.
본 발명의 다른 일 양상은 a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계; b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법을 제공한다.
상기 a) 단계는 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계로 전장 엑솜 시퀀싱(whole exome sequencing) 또는 전장 유전체 시퀀싱(whole genome sequencing)을 통해 수행될 수 있다.
상기 b) 단계는 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계이다.
상기 c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계로 상기 환자 특이적 유전체 변이 및/또는 임상적용 가능한 표적이 2 이상 검출되는 경우 암이 재발된 것으로 판단하는 기준을 통해 수행될 수 있다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. 조직 gDNA 추출 및 비스포크(bespoke) 패널 제작
본 실시예에서 사용되는 종양의 조직은 포르말린-고정 파라핀 포매(Formalin fixed paraffin embedded, FFPE) 형태와 신선 동결(Fresh frozen, FF) 형태의 시료를 사용한다. FFPE 형태의 시료는 FFPE gDNA extraction kit(Promega 사, 미국)을 이용하여 FFPE gDNA를 추출하며, FF 형태의 시료는 Tissue gDNA extraction kit(Promega 사, 미국)을 이용하여 FF gDNA를 추출한다. 이후, 추출된 FFPE gDNA는 TapeStation System(Agilent 사, 미국)을 이용하여 퀄리티를 확인(QC)하고, FF gDNA는 Qubit fluorometer(Thermofisher Scientific 사, 미국) 및 Nanodrop(Thermofisher Scientific 사, 미국)을 이용하여 퀄리티를 확인한다. 상기 추출된 gDNA는 Sonicator 혹은 Enzyme을 이용하여 원하는 크기 (main peak 180 내지 220bp)로 시어링(shearing)을 진행하고, TapeStation System(Agilent 사, 미국)를 이용하여 퀄리티를 확인한다. 이때, 시어링된 FFPE gDNA의 경우는 FFPE DNA repair kit(New England Biolabs 사, 미국)를 사용하여 손상된 DNA를 복구함으로서 전처리를 마무리한다.
이후, 상기 추출한 gDNA는 xGen Prism kit(Integrated Device Technology 사, 미국)를 사용하여 NGS DNA 라이브러리 준비 과정을 진행한다. 상기 라이브러리 준비 과정은 End repair, Adaptor ligation, PCR amplification의 과정으로 구성된다. 상기 준비된 DNA 라이브러리는 Whole exome enrichment kit(Agilent 사, 미국)을 이용하여 Whole Exome sequencing (WES)을 진행한다. 이때, 복수개의 시료를 풀링(pooling)하거나, 단독 시료로 진행할 수 있다. 이후, 완성된 gDNA Whole exome enriched 라이브러리는 TapeStation System(Agilent 사, 미국)를 이용하여 퀄리티를 확인한다. 이후, 상기 gDNA whole exome enriched 라이브러리에 대하여 원하는 NGS 데이터 생산량에 따라 각각의 시료를 혼합하고, Illumina 사의 Nextseq 혹은 Novaseq 장치를 이용하여 NGS를 수행한 다음, 상기 라이브러리로부터 생산된 NGS 데이터에서 조직에서 발생된 변이를 기반으로 NGS 패널을 디자인하여 환자 맞춤형 비스포크(bespoke) 패널을 제작한다.
실시예 2. 혈액 gDNA 추출 및 비스포크 패널을 이용한 암 재발 예측 방법
대상 환자의 혈액으로부터 플라즈마(plasma)와 PBMC(Peripheral Blood Mononuclear Cell)을 분리하고 cfDNA extraction kit(Promega 사, 미국)을 이용하여, 플라즈마로부터 cfDNA를 추출한다. 추출된 cfDNA는 TapeStation System(Agilent 사, 미국)를 이용하여 퀄리티를 확인한다. 이때, 1명의 대상 환자로부터 연속적으로 수득되는 시료는 수술 시점을 P0로, 이후 시점은 순차적으로 P1, P2 등의 라벨링을 진행한다. 또한, 상기 분리된 PBMC로부터 Blood gDNA extraction kit(Progmega 사, 미국)을 이용하여 PBMC gDNA를 추출하고, Qubit fluorometer(Thermofisher Scientific 사, 미국) 및 Nanodrop(Thermofisher Scientific 사, 미국)을 이용하여 퀄리티를 확인한다. 퀄리티를 확인한 PBMC gDNA는 Sonicator 혹은 Enzyme을 이용하여 원하는 크기 (main peak 180 내지 220bp)로 시어링을 수행한다. 상기 준비된 cfDNA 및/또는 시어링된 PBMC gDNA는 NGS DNA 라이브러리 준비 과정을 진행한다. 상기 라이브러리 준비 과정은 End repair, Adaptor ligation, PCR amplification의 과정으로 구성된다. 상기 준비된 DNA 라이브러리는 실시예 1에서 제작된 비스포크 패널을 이용하여 대상 환자에 대한 Targeted enrichment를 진행한다. 완성된 Target-enriched 라이브러리는 TapeStation System(Agilent 사, 미국)를 이용하여 퀄리티를 확인한 다음, 비스포크 패널 enriched 라이브러리에 대하여 원하는 NGS 데이터 생산량에 따라 각각의 시료를 혼합하고, Illumina 사의 Novaseq 장치를 이용하여 NGS를 수행한다.
실시예 3. 비스포크 패널을 이용한 암 재발 예측 플랫폼의 분석적 성능 평가
본 발명의 일 구체예에 따른 암 재발 예측 플랫폼의 분석적 성능 평가를 위해 2개의 유전자형이 알려진 서로 다른 B-림프구 NA12891, NA12892를 각각 전체의 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, 0.001%, 0%(대조군)으로 혼합하여, 적은 비율로 혼합되어 있는 실험군을 종양의 혼합 상태로, 혼합 비율을 ctDNA의 비율인 것으로 미믹(mimic)하였다. 이 때, 모니터링을 위한 타겟은 HapMap project를 통해 공개된 각 세포주에서 알려진 SNP 마커들 중에서, 서로 차이가 나는(예를 들어, 한 세포주는 인간 레퍼런스(human reference) 대비 레퍼런스이고, 다른 세포주는 그렇지 않은) 마커만을 선별하여 사용하였으며, 사용된 DNA 량은 40 ng이었다.
총 3개의 모사체(replicate)에 대해 확인한 결과, 도 7에서 보는 바와 같이, 0.005% 이상에서는 0%(대조군)과 비교하여 구분이 되도록 검출이 가능한 것을 확인하였다. 도 8은 타겟하는 변이 수에 따른 검출 한계를 나타내는 그림으로, x축은 모니터링하는 변이의 수를, y축은 검출된 ctDNA의 분율을 나타낸다. 변이의 개수는 최대 개수(257개)에서 해당 개수만큼이 되도록 랜덤 샘플링을 10회 진행하였다. 도 8의 그래프에서 그림자로 표시한 부분은 관찰되는 범위를 의미하여, 변이의 개수가 많아질 수록 낮은 분율의 ctDNA를 보다 안정적으로 검출할 수 있음을 확인할 수 있다. 즉, 체세포 변이가 100개 이상이 되면 0.005%까지 안정적으로 검출할 수 있음을 확인하였다.
실시예 4. 비스포크 패널을 이용한 암 재발 예측 플랫폼의 임상적 성능 평가
본 발명의 일 구체예에 따른 암 재발 예측 플랫폼의 임상적 성능 평가를 위해 대장암 환자 100명의 코호트 중 일부인 36명에 대해 평가를 진행하였으며, 이중 11명이 임상적으로 대장암이 재발하였음을 확인하였다(도 9의 (a)). 임상적 성능 평가 결과 민감도(sensitivity)는 91%, 음성 예측도(negative predictive value, NPV)는 95%의 수치를 기록하였고, 본 발명에 따른 암 재발 예측 방법을 이용하여 생존을 미세잔존질환(minimal residual disease, MRD) 상태에 따라 분석한 결과, 통계적으로 유의하게 (p<0.05) 재발(recur) 군과 비재발 군에서 생존의 차이가 나는 것을 확인할 수 있었다(11명의 재발 환자 중 1명은 재발 시점이 명확하지 않아 생존 분석에서 제외함). 또한, 재발할 것이라고 예측한 군이 그렇지 않은 군에 비해서 13배 더 위험하다(hazard ratio = 13.0)는 결과를 확인할 수 있었다(도 9의 (b)).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (8)

  1. 암의 재발 예후 예측을 위한 정보제공 장치로 수행되는 암의 재발 예후 예측을 위한 정보제공 방법으로;
    a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계;
    b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및
    c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법.
  2. 청구항 1에 있어서,
    상기 조직 시료는 포르말린-고정 파라핀 포매 형태 또는 신선 동결 형태인 것인 암의 재발 예후 예측을 위한 정보제공 방법.
  3. 청구항 1에 있어서,
    상기 환자 특이적 유전체 변이는 20개 이상 300개 미만의 개수를 갖는 것인암의 재발 예후 예측을 위한 정보제공 방법.
  4. 청구항 1에 있어서,
    상기 혈액 유래 시료는 세포 유리 DNA 또는 말초 혈액 세포의 유전체인 것인 암의 재발 예후 예측을 위한 정보제공 방법.
  5. 청구항 1에 있어서,
    상기 임상적용 가능한 표적은 ABL1, AKT1, ALK, APC, BRAF, BRCA1, BRCA2, BTK, CDKN2A, CTNNB1, EGFR, ERBB2, EZH2, FGFR2, FGFR3, FLT3, GNAS, HRAS, IDH1, IDH2, KIT, KRAS, MET, MTOR, MYC, MYCN, NRAS, NTRK1, NTRK3, PGFRA, PIK3CA, PTEN 및 TP53으부터 선택되는 하나 이상의 유전자인 것인 암의 재발 예후 예측을 위한 정보제공 방법.
  6. 청구항 1에 있어서,
    상기 환자 특이적 유전체 변이는 타겟 유전자의 엑손에 포함된 변이인 것인 암의 재발 예후 예측을 위한 정보제공 방법.
  7. 청구항 1에 있어서,
    상기 (c) 단계는 대상 환자의 혈액 유래 시료 내에서 ctDNA 분자 개수가 하나 이상 검출되는 경우로서, 상기 환자 특이적 유전체 변이 및/또는 임상적용 가능한 표적이 2 이상 검출되는 경우 암이 재발한 것으로 판단하는 것인 방법 암의 재발 예후 예측을 위한 정보제공 방법.
  8. a) 대상 환자의 조직 시료로부터 환자 특이적 유전체 변이 정보를 도출하는 단계;
    b) 상기 도출된 환자 특이적 유전체 변이 정보 및 임상적용 가능한 표적(clinically actionable target) 정보를 조합하여 환자 맞춤형 패널을 제조하는 단계; 및
    c) 대상 환자의 혈액 유래 시료의 시퀀싱 정보와 상기 환자 맞춤형 패널의 정보를 비교하여 대상 환자의 암 재발 여부를 판단하는 단계를 포함하는 암의 재발 예후 예측을 위한 정보제공 방법.
PCT/KR2023/000146 2022-03-29 2023-01-04 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법 WO2023191262A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23708379.5A EP4287213A1 (en) 2022-03-29 2023-01-04 Method for predicting cancer recurrence using patient-specific panel
US18/027,425 US20240318253A1 (en) 2022-03-29 2023-01-04 Method of predicting cancer recurrence using patient-specific panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0038856 2022-03-29
KR1020220038856A KR102472050B1 (ko) 2022-03-29 2022-03-29 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법

Publications (1)

Publication Number Publication Date
WO2023191262A1 true WO2023191262A1 (ko) 2023-10-05

Family

ID=84234410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000146 WO2023191262A1 (ko) 2022-03-29 2023-01-04 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법

Country Status (4)

Country Link
US (1) US20240318253A1 (ko)
EP (1) EP4287213A1 (ko)
KR (1) KR102472050B1 (ko)
WO (1) WO2023191262A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472050B1 (ko) * 2022-03-29 2022-11-30 주식회사 아이엠비디엑스 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080094803A (ko) * 2006-01-27 2008-10-24 트리패스 이미징, 인코포레이티드 난소암의 발병 가능성이 높은 환자를 확인하는 방법 및 그의 조성물
KR20140002150A (ko) * 2012-06-28 2014-01-08 서울대학교산학협력단 췌장암 재발 예후 예측용 마커 및 이의 용도
KR20200112535A (ko) * 2019-03-22 2020-10-05 울산대학교 산학협력단 외과적 절제술을 받은 췌장암 환자의 재발 예측방법
KR20210019916A (ko) * 2019-08-13 2021-02-23 가톨릭대학교 산학협력단 난소암의 진단 또는 모니터링 방법
KR20210112118A (ko) * 2020-03-04 2021-09-14 주식회사 클리노믹스 생검 분석용 유전자 패널 및 이를 이용한 개인 맞춤형 치료 방법
KR102472050B1 (ko) * 2022-03-29 2022-11-30 주식회사 아이엠비디엑스 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080094803A (ko) * 2006-01-27 2008-10-24 트리패스 이미징, 인코포레이티드 난소암의 발병 가능성이 높은 환자를 확인하는 방법 및 그의 조성물
KR20140002150A (ko) * 2012-06-28 2014-01-08 서울대학교산학협력단 췌장암 재발 예후 예측용 마커 및 이의 용도
KR20200112535A (ko) * 2019-03-22 2020-10-05 울산대학교 산학협력단 외과적 절제술을 받은 췌장암 환자의 재발 예측방법
KR20210019916A (ko) * 2019-08-13 2021-02-23 가톨릭대학교 산학협력단 난소암의 진단 또는 모니터링 방법
KR20210112118A (ko) * 2020-03-04 2021-09-14 주식회사 클리노믹스 생검 분석용 유전자 패널 및 이를 이용한 개인 맞춤형 치료 방법
KR102472050B1 (ko) * 2022-03-29 2022-11-30 주식회사 아이엠비디엑스 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법

Also Published As

Publication number Publication date
US20240318253A1 (en) 2024-09-26
EP4287213A1 (en) 2023-12-06
KR102472050B1 (ko) 2022-11-30

Similar Documents

Publication Publication Date Title
US10998084B2 (en) Sequencing data analysis method, device and computer-readable medium for microsatellite instability
US11142798B2 (en) Systems and methods for monitoring lifelong tumor evolution field of invention
Teschendorff et al. An epigenetic signature in peripheral blood predicts active ovarian cancer
EP3543356B1 (en) Methylation pattern analysis of tissues in dna mixture
CA2832468C (en) Resolving genome fractions using polymorphism counts
CN106778073B (zh) 一种评估肿瘤负荷变化的方法和系统
CN107368708B (zh) 一种精准分析dmd基因结构变异断点的方法及系统
CN107513565A (zh) 一种微卫星不稳定位点组合、检测试剂盒及其应用
CA3186272A1 (en) A method for detecting a genetic variant
CN106029899B (zh) 确定染色体预定区域中snp信息的方法、系统和计算机可读介质
CN110592208B (zh) 地中海贫血症三类亚型的捕获探针组合物及其应用方法和应用装置
Gai et al. Applications of genetic-epigenetic tissue mapping for plasma DNA in prenatal testing, transplantation and oncology
Gallon et al. Constitutional microsatellite instability, genotype, and phenotype correlations in constitutional mismatch repair deficiency
CN108229103A (zh) 循环肿瘤dna重复序列的处理方法及装置
CN116631508B (zh) 肿瘤特异性突变状态的检测方法及其应用
WO2023191262A1 (ko) 환자 맞춤형 패널을 이용한 암의 재발을 예측하는 방법
WO2019046804A1 (en) IDENTIFICATION OF FALSE POSITIVE VARIANTS USING A MODEL OF IMPORTANCE
Kim et al. Universal screening for Lynch syndrome compared with pedigree-based screening: 10-year experience in a tertiary hospital
CN111961707B (zh) 一种核酸文库构建方法及其在植入前胚胎染色体结构异常分析中的应用
US20200263258A1 (en) Assessing and treating mammals having polyps
Locher et al. Clonal dynamics in a composite chronic lymphocytic leukemia and hairy cell leukemia‐variant
US20200095641A1 (en) Means and methods for anti-vegf therapy
WO2018216905A2 (ko) 무세포 핵산으로부터 수득된 서열 분석 데이터에 대한 배경 대립인자의 빈도 분포를 생성하는 방법 및 이를 이용하여 무세포 핵산으로부터 변이를 검출하는 방법
CN111118113A (zh) 噬血细胞综合征的高通量测序检测
WO2023182585A1 (ko) 순환 종양 핵산의 복제수 변이 분석 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18027425

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023708379

Country of ref document: EP

Effective date: 20230313

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23708379

Country of ref document: EP

Kind code of ref document: A1