WO2023191144A1 - Method for manufacturing separable ceramic dental implant - Google Patents

Method for manufacturing separable ceramic dental implant Download PDF

Info

Publication number
WO2023191144A1
WO2023191144A1 PCT/KR2022/004623 KR2022004623W WO2023191144A1 WO 2023191144 A1 WO2023191144 A1 WO 2023191144A1 KR 2022004623 W KR2022004623 W KR 2022004623W WO 2023191144 A1 WO2023191144 A1 WO 2023191144A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
dental implant
hours
polymer insert
implant
Prior art date
Application number
PCT/KR2022/004623
Other languages
French (fr)
Korean (ko)
Inventor
박정식
Original Assignee
(주)메세텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)메세텍 filed Critical (주)메세텍
Publication of WO2023191144A1 publication Critical patent/WO2023191144A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0022Self-screwing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/22Apparatus or processes for treating or working the shaped or preshaped articles for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/342Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/348Moulds, cores, or mandrels of special material, e.g. destructible materials of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/08Injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/08Copolymers of styrene, e.g. AS or SAN, i.e. acrylonitrile styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate

Definitions

  • the present invention relates to a method of manufacturing a detachable dental implant made of ceramic material, and more specifically, to the production of a detachable dental implant made of ceramic material that does not form a parting line, thereby increasing the production efficiency of the product. It's about method.
  • zirconia As the economy and standard of living improve, aesthetic demands increase, and the development of implant products using zirconia (ZrO2), a ceramic material instead of metal (titanium), is expanding in the field of dental prosthetics. Dental implant products using zirconia are being produced in Europe and the United States. The demand is rapidly increasing, especially in developed countries.
  • the general manufacturing method for ceramic zirconia implants is to manufacture zirconia rod materials by milling (diamond grinding), which is very difficult to manufacture, expensive, and difficult to mass-produce, and has limitations in terms of mechanical properties and manufacturing shape. has.
  • the parting line part must be subjected to a secondary machining process (grinding, milling, etc.) after sintering to manufacture the ceramic implant.
  • This secondary machining method makes the ceramic screw machining process difficult and time-consuming. Because it took a long time, it had the problems of high manufacturing costs and difficulties in mass production.
  • Patent Document 1 Korean Patent Publication No. 10-2017-011302 (2017.10.12), Method of manufacturing screw parts by insert ceramic powder injection molding
  • Patent Document 2 Korean Patent, No. 10-1137013 (2012.04.09), Manufacturing method of dental zirconia implant member by injection molding and dental zirconia implant member using the same
  • the present invention was created to solve this problem, and the purpose of the present invention is to provide a method of manufacturing a detachable dental implant made of ceramic that can produce a detachable dental ceramic implant without forming a parting line. It is for this purpose.
  • the present invention uses a first screw core pin with a first thread corresponding to the screw shape of a dental implant as an insert core, and injects a first feedstock made of polymer to form a cylindrical bottom.
  • the second threaded portion of the second screw core pin is placed inside the threaded groove of the polymer insert, and the second feedstock made of ceramic material is injected, so that a cylindrical fastening portion corresponding to the first threaded portion is formed on the outer surface.
  • a method of manufacturing a detachable dental implant made of ceramic material comprising:
  • the first feedstock is made of polymethyl methacrylate (PMMA) or styrene-acrylonitrile (SAN), and has a melting point of 160°C or higher.
  • PMMA polymethyl methacrylate
  • SAN styrene-acrylonitrile
  • the second feedstock is zichronium oxide (ZrO2) powder, ATZ (Alumina Toughened Zirconia) powder, or a ceramic powder in which 1 to 20 wt% of zichronium oxide (ZrO2) powder and alumina (Al2O3) powder are mixed.
  • ZrO2 powder zichronium oxide
  • ATZ Al Toughened Zirconia
  • Al2O3 powder a ceramic powder in which 1 to 20 wt% of zichronium oxide (ZrO2) powder and alumina (Al2O3) powder are mixed.
  • a mixture of polyethylene, paraffin wax, and stearic acid is used.
  • the polymer insert removal step uses acetone, methyl ethyl ketone (MEK), hexane, heptane, THF, benzene, ether, or chloroform as an organic solvent.
  • MEK methyl ethyl ketone
  • the polymer insert removal step removes the polymer insert by immersing the implant injection molded body with the polymer insert in the organic solvent for 12 hours.
  • the solvent degreasing step uses THF (Tetra Hydro Furan) as a solvent and is performed within 72 hours at a temperature of 20°C to 30°C.
  • THF Tetra Hydro Furan
  • the heat degreasing step includes a first heat degreasing step of raising the temperature to 250 to 230° C. at a rate of 0.1 to 0.4° C./min and maintaining the temperature for 4 to 8 hours; A second heating degreasing step in which the temperature is raised to 170-350°C at a rate of 0.2-0.5°C/min and maintained for 4-8 hours; A third heating degreasing step of raising the temperature to 350-500°C at a rate of 0.2-0.4°C/min and maintaining it for 4-8 hours; And a pre-sintering step of raising the temperature to 500-850°C at a rate of 1.0-5.0°C/min and maintaining it for 2 hours.
  • the sintering step includes a first sintering step of raising the temperature to 250-600°C at a rate of 1.0-2.0°C/min and maintaining it for 1-2 hours; A second sintering step of raising the temperature to 600-1,100°C at a rate of 0.7-1.5°C/min and maintaining it for 2 hours; And a third sintering step of raising the temperature to 1,100-1,450°C at a rate of 0.5-1.0°C/min and maintaining it for 2-4 hours.
  • the present invention has the following excellent effects.
  • a dental implant made of ceramic material is used using a polymer insert and a screw core pin formed of a polymer material with a thread-shaped groove having a shape corresponding to the screw shape of the dental implant.
  • the screw core pin and polymer insert are separated, and a separate parting dental implant made of ceramic material without a parting line is manufactured through a solvent degreasing step, a heat degreasing step, and a sintering step.
  • post-treatment processes such as line removal processes, which has the effect of increasing product production efficiency.
  • implant parts can be very easily used to manufacture implants with various thread shapes, and has the advantage of manufacturing implant parts not only of ceramic materials but also of metal (titanium, Co-Cr-Mo materials, etc.), and of complex-shaped thread parts. Since it is a technology that can be applied to industrial products, it can be usefully used in various fields such as information and communications, automobiles, semiconductors, medicine, precision machinery, and aerospace.
  • FIG. 1 is a step diagram illustrating a method of manufacturing a detachable dental implant made of ceramic material according to the present invention.
  • Figure 2 is a diagram for explaining the polymer insert manufacturing steps of the present invention.
  • Figure 3 is a diagram for explaining the implant injection molding step of the present invention.
  • Figure 4 is a photograph showing various types of polymer inserts manufactured through the polymer insert manufacturing step of the present invention.
  • Figure 5 is a photograph showing a dental implant (implant injection body) manufactured by the method of manufacturing a detachable dental implant made of ceramic material according to the present invention.
  • FIG. 1 is a step diagram illustrating a method of manufacturing a detachable dental implant made of ceramic material according to an embodiment of the present invention.
  • the method for manufacturing a detachable dental implant made of ceramic material is a process for manufacturing a detachable dental implant made of ceramic material in which a parting line is not formed by injection molding.
  • a polymer insert manufacturing step (S100) of manufacturing a polymer insert 110 made of a polymer material is performed.
  • the polymer insert manufacturing step (S100) is a process for injection molding a polymer insert 110 in a cylindrical shape with an open bottom and a thread-shaped groove 110a formed, and includes a first thread portion corresponding to the screw shape of a dental implant (
  • the first threaded core pin (P1) formed with a) is used as an insert core, and a first feedstock made of polymer is injected to form a threaded groove portion (110a) having a shape corresponding to the first threaded portion (a).
  • Polymer inserts are injection molded.
  • the first feedstock may be made of PMMA (polymethyl methacrylate) or SAN (styrene-acrylonitrile) material.
  • the first feedstock may be made of a material having a melting point of at least 160°C, and it is more preferable to use a polymer having a melting point of 200°C or more.
  • a first screw core pin separation step (S200) of rotating and disengaging the first screw core pin (P1) coupled to the polymer insert 110 is performed.
  • the thread-shaped groove portion 110a may be formed.
  • the manufactured polymer insert 110 is used as an insert in a mold for ceramic injection molding, and the second screw core pin (P2) is used as an insert core to inject a ceramic implant.
  • the implant injection molding step (S300) of injection molding the body is performed.
  • the second threaded portion (b) of the second screw core pin (P2) is located inside the threaded groove portion (110a) of the polymer insert (110), and a second feedstock made of ceramic material is installed.
  • a fastening part 100a of a shape corresponding to the first screw part (a) is formed on the outer surface in a cylindrical shape, and the lower end is opened to connect the second screw part (b).
  • the implant injection body 100 with the fastening groove 100b of a corresponding shape is formed by injection molding.
  • the second feedstock is a mixture of ceramic powder, polyethylene, paraffin wax, and stearic acid.
  • the ceramic powder may be ZrO2 (3YSZ) powder, ATZ (Alumina Toughened Zirconia) powder, or a powder in which 1 to 20 wt% of alumina (AL2O3) powder is mixed with ZrO2 (3YSZ) powder.
  • a second screw core pin separation step (S400) of rotating and disengaging the second screw core pin (P2) coupled to the implant injection body 100 is performed.
  • the fastening groove (100b) without a parting line can be formed in the implant injection body (100).
  • a polymer insert removal step (S500) is performed in which the polymer insert 110 formed in the implant injection molded body 100 is dissolved using an organic solvent.
  • the organic solvent used in the polymer insert removal step (S500) may be acetone, MEK, hexane, heptane, THF, benzene, ether, or chloroform.
  • a solvent degreasing step (S600) is performed to remove paraffin wax and stearic acid present in the implant extruded body 100.
  • the solvent used in the solvent degreasing step (S600) may be THF (Tetra Hydro Furan), and is preferably treated within 72 hours at a temperature of 20°C to 30°C.
  • a heating degreasing step (S700) is performed to remove polyethylene by heating the implant extruded body from which paraffin wax and stearic acid have been removed.
  • the heat degreasing step (S700) may be performed sequentially through a first heat degreasing step, a second heat degreasing step, a third heat degreasing step, and a pre-sintering step.
  • the first heating degreasing step is to raise the temperature to 250-230 °C at a rate of 0.1-0.4 °C/min and then maintain it for 4-8 hours, and to 170-350 °C at a rate of 0.2-0.5 °C/min.
  • a second heating degreasing step in which the temperature is raised and maintained for 4 to 8 hours, a third heating degreasing step in which the temperature is raised to 350 to 500 °C at a rate of 0.2 to 0.4 °C/min and maintained for 4 to 8 hours, and 1.0 to 5.0 °C
  • the heating degreasing step is completed by sequentially going through a pre-sintering step in which the temperature is raised to 500-850°C at a rate of /min and maintained for 2 hours.
  • a sintering step (S800) of sintering the degreased body obtained through the heating degreasing step (S700) is performed.
  • the sintering step (S800) can be completed through a three-step sintering process.
  • the first temperature is raised to 250-600°C at a rate of 1.0-2.0°C/min and then maintained for 1-2 hours.
  • Sintering step, the second sintering step in which the temperature is raised to 600-1,100 °C at a rate of 0.7-1.5 °C/min and maintained for 2 hours, and the temperature is raised to 1,100-1,450 °C at a rate of 0.5-1.0 °C/min and then 2-4 It is completed sequentially through the third sintering step, which is maintained for a period of time.
  • a polymer insert 110 with a thread-shaped groove 110a of a shape corresponding to the thread shape of the implant was manufactured by injection molding so that the thread shape of the dental implant could be transferred.
  • Figure 4 shows photographs of polymer inserts manufactured in various shapes.
  • a first screw core pin with a first threaded portion was used as an insert of the mold used for injection molding, and by rotating and removing the first screw core pin from the injection molded body, the screw core pin was attached to the polymer insert 110.
  • a groove portion 110a was formed.
  • Implant injection molding step and first screw core pin separation step (S300, S400)
  • the polymer insert 110 was used as an insert in a mold for ceramic injection molding, a second screw core pin with a second threaded portion was used as an insert core, and a mixture of ZrO2, PE, paraffin wax, and stearic acid was used as a feedstock.
  • an implant injection body was molded in a cylindrical shape, with a fastening part having a shape corresponding to the first threaded part formed on the outer surface, and the lower end being opened to form a fastening groove having a shape corresponding to the second screwed part.
  • the implant extruded body from which paraffin wax and stearic acid were removed was heated at room temperature to 800°C for 2 hours to remove polyethylene.
  • a detachable dental implant made of ceramic material As described above, according to the method of manufacturing a detachable dental implant made of ceramic material according to the present invention, a polymer insert made of a polymer material and a screw core pin with a thread-shaped groove having a shape corresponding to the screw shape of the dental implant is formed. After injection molding a dental implant made of ceramic material, the screw core pin and polymer insert are separated, and through the solvent degreasing step, heat degreasing step, and sintering step, a detachable dental implant made of ceramic material that does not form a parting line is made. By manufacturing, there is no need for post-processing processes such as a separate parting line removal process, which has the effect of increasing the production efficiency of the product.
  • Implants manufactured using the manufacturing method of the present invention can be provided as dental implants made of metal (titanium, Co-Cr-Mo materials, etc.) as well as ceramic materials. Furthermore, the manufacturing method of the present invention allows for threads of complex shapes to be formed. Since it is a technology that can be applied to existing industrial products, it can be usefully used in various fields such as information and communications, automobiles, semiconductors, medicine, precision machinery, and aerospace.

Abstract

The present invention relates to a method for manufacturing a separable ceramic dental implant and, more specifically, to a method for manufacturing a separable ceramic dental implant, the method comprising: injection molding a ceramic dental implant by using a screw core pin and a polymer insert made of a polymer material and including a screw-shaped groove part having a shape corresponding to the screw shape of the dental implant; and then separating the screw core pin and the polymer insert and performing a solvent degreasing step, a heat degreasing step, and a sintering step, thereby manufacturing a ceramic dental implant without a parting line formed thereon.

Description

세라믹 재질의 분리형 치과용 임플란트의 제조방법Manufacturing method of detachable dental implant made of ceramic material
본 발명은 세라믹 재질의 분리형 치과용 임플란트의 제조방법에 관한 것으로, 보다 구체적으로는 파팅 라인(Parting Line)이 형성되지 않아, 제품의 생산효율을 증대시킬 수 있는 세라믹 재질의 분리형 치과용 임플란트의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a detachable dental implant made of ceramic material, and more specifically, to the production of a detachable dental implant made of ceramic material that does not form a parting line, thereby increasing the production efficiency of the product. It's about method.
경제 및 생활수준이 향상됨에 따라 심미적 요구가 높아지면서 치과 보철분야에서도 금속(Titanium)대신 세라믹 소재인 지르코니아(ZrO2)를 이용한 임플란트 제품 개발이 확대되고 있으며, 지르코니아를 이용한 치과용 임플란트 제품은 유럽이나 미국 등 선진국 중심으로 그 수요가 빠르게 증가 추세에 있다.As the economy and standard of living improve, aesthetic demands increase, and the development of implant products using zirconia (ZrO2), a ceramic material instead of metal (titanium), is expanding in the field of dental prosthetics. Dental implant products using zirconia are being produced in Europe and the United States. The demand is rapidly increasing, especially in developed countries.
유럽 등에서는 세라믹 지르코니아 임플란트의 일반적인 제조방법은 지르코니아 Rod 소재를 밀링(다이아몬드 연삭 가공) 방식으로 제작하고 있어 제조가 매우 어렵고, 가격이 고가이며, 대량생산이 어려울 뿐만 아니라 기계적 물성과 제조 형상에 대하여 한계를 가지고 있다. In Europe, etc., the general manufacturing method for ceramic zirconia implants is to manufacture zirconia rod materials by milling (diamond grinding), which is very difficult to manufacture, expensive, and difficult to mass-produce, and has limitations in terms of mechanical properties and manufacturing shape. has.
최근에는 세라믹 임플란트를 제조하기 위하여 세라믹 분말사출성형기술을 적용하여 개발을 시도하고 있지만 일반적인 세라믹 분말사출성형방법은 임플란트 나사부를 구현하기 위해서는 금형 구조에서 파팅 라인(Parting Line)이 발생될 수 밖에 없다.Recently, attempts have been made to apply ceramic powder injection molding technology to manufacture ceramic implants, but the general ceramic powder injection molding method inevitably generates a parting line in the mold structure in order to realize the implant screw portion.
파팅 라인(Parting Line)이 존재하는 상태에서 소결체를 치과보철용으로 사용하여 잇몸 뼈에 세라믹 임플란트를 삽입할 경우, 파팅 라인(Parting Line)에 의한 잇몸 손상이 발생될 가능성이 크기 때문에, 사용하는 것은 매우 어려운 상황이다. If a ceramic implant is inserted into the gum bone using the sintered body for dental prosthetics in the presence of a parting line, there is a high possibility that gum damage will occur due to the parting line, so it is not recommended to use it. It is a very difficult situation.
이에 따라, 파팅 라인(Parting Line)부분은 소결 후에 2차 기계가공(연삭, 밀링 등) 공정이 추가되어야 세라믹 임플란트를 제조할 수 있는데, 이러한 2차 가공 방법은 세라믹 나사가공 공정이 어렵고 시간적으로 가공시간이 길기 때문에 고가의 제조비용 및 대량 생산의 어려운 문제점을 지니고 있었다.Accordingly, the parting line part must be subjected to a secondary machining process (grinding, milling, etc.) after sintering to manufacture the ceramic implant. This secondary machining method makes the ceramic screw machining process difficult and time-consuming. Because it took a long time, it had the problems of high manufacturing costs and difficulties in mass production.
(특허문헌 1) 한국공개특허, 10-2017-011302호(2017.10.12), 인서트 세라믹 분말 사출성형에 의한 나사부품 제조방법(Patent Document 1) Korean Patent Publication No. 10-2017-011302 (2017.10.12), Method of manufacturing screw parts by insert ceramic powder injection molding
(특허문헌 2) 한국등록특허, 10-1137013호(2012.04.09), 사출성형에 의한 치과용 지르코니아 임플란트 부재의 제조방법 및 이를 이용한 치과용 지르코니아 임플란트 부재(Patent Document 2) Korean Patent, No. 10-1137013 (2012.04.09), Manufacturing method of dental zirconia implant member by injection molding and dental zirconia implant member using the same
본 발명은 이러한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 파팅 라인(Parting Line)이 형성되지 않는 분리형 치과형 세라믹 임플란트를 제조할 수 있는 세라믹 재질의 분리형 치과용 임플란트의 제조방법을 제공하기 위한 것이다.The present invention was created to solve this problem, and the purpose of the present invention is to provide a method of manufacturing a detachable dental implant made of ceramic that can produce a detachable dental ceramic implant without forming a parting line. It is for this purpose.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the objects mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the description below.
상기의 목적을 달성하기 위하여 본 발명은 치과용 임플란트의 나사 형상과 대응되는 제1 나사부가 형성된 제1 나사 코어핀을 인서트 코어로 이용하고, 폴리머 재질의 제1 피드스탁을 주입하여 원통형상으로 하단이 개방되어 상기 제1 나사부와 대응되는 형상의 나사형 홈부가 형성된 폴리머 인서트를 사출 성형하는 폴리머 인서트 제조단계; 상기 폴리머 인서트에 결합된 상기 제1 나사코어핀을 회전 이탈시키는 제1 나사 코어핀 분리 단계; 상기 폴리머 인서트의 나사형 홈부 내부에 제2 나사 코어핀의 제2 나사부를 위치시키고, 세라믹 재질의 제2 피드스탁을 주입하여, 원통형상으로 외측면에는 상기 제1 나사부와 대응되는 형상의 체결부가 형성되고, 하단이 개방되어 상기 제2 나사부와 대응되는 형상의 체결홈이 형성된 임플란트 사출체를 사출 성형하는 임플란트 사출체 성형 단계; 상기 임플란트 사출체에 결합된 상기 제2 나사코어핀을 회전 이탈시키는 제2 나사코어핀 분리 단계; 상기 임플란트 사출체에 결합된 상기 폴리머 인서트를 유기용매를 이용하여 용해시키는 폴리머 인서트 제거 단계; 상기 임플란트 사출체에 존재하는 파라핀왁스와 스테아린산을 제거하는 용매 탈지 단계; 파라핀왁스와 스테아린산이 제거된 임플란트 사출체를 가열하여 폴리에틸렌을 제거하는 가열 탈지 단계; 상기 가열 탈지 단계를 통해 수득된 탈지체를 소결하는 소결단계;를 포함는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법을 제공한다.In order to achieve the above object, the present invention uses a first screw core pin with a first thread corresponding to the screw shape of a dental implant as an insert core, and injects a first feedstock made of polymer to form a cylindrical bottom. A polymer insert manufacturing step of injection molding the polymer insert that is opened and has a thread-shaped groove portion having a shape corresponding to the first thread portion; A first screw core pin separation step of rotating and disengaging the first screw core pin coupled to the polymer insert; The second threaded portion of the second screw core pin is placed inside the threaded groove of the polymer insert, and the second feedstock made of ceramic material is injected, so that a cylindrical fastening portion corresponding to the first threaded portion is formed on the outer surface. An implant injection molding step of injection molding an implant injection body having an open lower end and a fastening groove having a shape corresponding to the second screw portion. A second screw core pin separation step of rotating and disengaging the second screw core pin coupled to the implant injection body; A polymer insert removal step of dissolving the polymer insert coupled to the implant injection molding body using an organic solvent; A solvent degreasing step to remove paraffin wax and stearic acid present in the implant extruded body; A heating degreasing step of removing polyethylene by heating the implant extruded body from which paraffin wax and stearic acid have been removed; A sintering step of sintering the degreased body obtained through the heating degreasing step. A method of manufacturing a detachable dental implant made of ceramic material is provided, comprising:
바람직한 실시예에 있어서, 상기 제1 피드스탁은 PMMA(polymethyl methacrylate) 또는 SAN(styrene-acrylonitrile)재질이 이용되고, 녹는점(melting point)이 160℃이 이상이다.In a preferred embodiment, the first feedstock is made of polymethyl methacrylate (PMMA) or styrene-acrylonitrile (SAN), and has a melting point of 160°C or higher.
바람직한 실시예에 있어서, 상기 제2 피드스탁은 산화지크로늄(ZrO2) 분말, ATZ(Alumina Toughened Zirconia) 분말 또는 산화지크로늄(ZrO2) 분말에 알루미나(Al2O3)분말이 1 ~ 20wt% 혼합된 세라믹 분말, 폴리에틸렌, 파라핀왁스 및 스테아린산이 혼합된 혼합물이 이용된다.In a preferred embodiment, the second feedstock is zichronium oxide (ZrO2) powder, ATZ (Alumina Toughened Zirconia) powder, or a ceramic powder in which 1 to 20 wt% of zichronium oxide (ZrO2) powder and alumina (Al2O3) powder are mixed. , a mixture of polyethylene, paraffin wax, and stearic acid is used.
바람직한 실시예에 있어서, 상기 폴리머 인서트 제거 단계는 유기용매로 아세톤, 메틸에틸케톤(MEK), 헥산, 햅탄, THF, 벤젠, 에테르 또는 클로로포름이 이용된다.In a preferred embodiment, the polymer insert removal step uses acetone, methyl ethyl ketone (MEK), hexane, heptane, THF, benzene, ether, or chloroform as an organic solvent.
바람직한 실시예에 있어서, 상기 폴리머 인서트 제거단계는 상기 폴리머 인서트가 형성된 상기 임플란트 사출체를 상기 유기용매에 12시간 동안 침지시켜, 상기 폴리머 인서트를 제거한다.In a preferred embodiment, the polymer insert removal step removes the polymer insert by immersing the implant injection molded body with the polymer insert in the organic solvent for 12 hours.
바람직한 실시예에 있어서, 상기 용매 탈지단계는 용매로 THF(Tetra Hydro Furan)가 이용되며, 20℃ 내지 30℃의 온도조건에서 72시간 이내에 처리된다.In a preferred embodiment, the solvent degreasing step uses THF (Tetra Hydro Furan) as a solvent and is performed within 72 hours at a temperature of 20°C to 30°C.
바람직한 실시예에 있어서, 상기 가열 탈지단계는 0.1~0.4 ℃/min의 속도로 250~230 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제1 가열 탈지단계; 0.2~0.5 ℃/min의 속도로 170~350 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제2 가열 탈지단계; 0.2~0.4 ℃/min의 속도로 350~500 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제3 가열 탈지단계; 및 1.0~5.0 ℃/min의 속도로 500~850 ℃까지 승온시킨 후 2 시간 동안 유지하는 가소결 단계;을 포함한다.In a preferred embodiment, the heat degreasing step includes a first heat degreasing step of raising the temperature to 250 to 230° C. at a rate of 0.1 to 0.4° C./min and maintaining the temperature for 4 to 8 hours; A second heating degreasing step in which the temperature is raised to 170-350°C at a rate of 0.2-0.5°C/min and maintained for 4-8 hours; A third heating degreasing step of raising the temperature to 350-500°C at a rate of 0.2-0.4°C/min and maintaining it for 4-8 hours; And a pre-sintering step of raising the temperature to 500-850°C at a rate of 1.0-5.0°C/min and maintaining it for 2 hours.
바람직한 실시예에 있어서, 상기 소결 단계는 1.0~2.0 ℃/min의 속도로 250~600℃까지 승온시킨 후 1~2 시간 동안 유지하는 제1 소결단계; 0.7~1.5 ℃/min의 속도로 600~1,100 ℃까지 승온시킨 후 2 시간 동안 유지하는 제2 소결단계; 및 0.5~1.0 ℃/min의 속도로 1,100~1,450 ℃까지 승온시킨 후 2~4 시간 동안 유지하는 제3 소결단계;를 포함한다.In a preferred embodiment, the sintering step includes a first sintering step of raising the temperature to 250-600°C at a rate of 1.0-2.0°C/min and maintaining it for 1-2 hours; A second sintering step of raising the temperature to 600-1,100°C at a rate of 0.7-1.5°C/min and maintaining it for 2 hours; And a third sintering step of raising the temperature to 1,100-1,450°C at a rate of 0.5-1.0°C/min and maintaining it for 2-4 hours.
본 발명은 다음과 같은 우수한 효과를 가진다.The present invention has the following excellent effects.
본 발명의 세라믹 재질의 분리형 치과용 임플란트의 제조방법에 의하면, 치과용 임플란트의 나사 형상과 대응되는 형상의 나사형 홈부가 형성된 폴리머 재질의 폴리머 인서트와 나사 코어핀을 이용하여, 세라믹 재질의 치과용 임플란트를 사출 성형한 다음, 나사 코어핀과 폴리머 인서트를 분리해내고, 용매 탈지 단계, 가열 탈지 단계 및 소결 단계를 통해 파팅 라인이 형성되지 않는 세라믹 재질의 분리형 치과용 임플란트를 제조함으로써, 별도의 파팅 라인 제거 공정 등의 후처리 공정이 필요없어, 제품의 생산효율을 증대시킬 수 있는 효과가 있다.According to the method of manufacturing a detachable dental implant made of ceramic material of the present invention, a dental implant made of ceramic material is used using a polymer insert and a screw core pin formed of a polymer material with a thread-shaped groove having a shape corresponding to the screw shape of the dental implant. After injection molding the implant, the screw core pin and polymer insert are separated, and a separate parting dental implant made of ceramic material without a parting line is manufactured through a solvent degreasing step, a heat degreasing step, and a sintering step. There is no need for post-treatment processes such as line removal processes, which has the effect of increasing product production efficiency.
더 나아가, 다양한 나사부 형상을 갖는 임플란트를 제조하는데 매우 용이하게 활용할 수 있으며, 세라믹소재 뿐만 아니라 메탈(타이타늄, Co-Cr-Mo 소재 등) 임플란트 부품을 제조할 있는 장점을 가지고 있으며, 복잡한 형상의 나사부가 있는 산업용 제품에도 적용이 가능한 기술이기 때문에 정보통신, 자동차, 반도체, 의학, 정밀기계, 및 우주 항공 등 다양한 분야 등에 유용하게 이용할 수 있다.Furthermore, it can be very easily used to manufacture implants with various thread shapes, and has the advantage of manufacturing implant parts not only of ceramic materials but also of metal (titanium, Co-Cr-Mo materials, etc.), and of complex-shaped thread parts. Since it is a technology that can be applied to industrial products, it can be usefully used in various fields such as information and communications, automobiles, semiconductors, medicine, precision machinery, and aerospace.
도 1은 본 발명에 따른 세라믹 재질의 분리형 치과용 임플란트의 제조방법을 설명하기 위한 단계도이다.1 is a step diagram illustrating a method of manufacturing a detachable dental implant made of ceramic material according to the present invention.
도 2는 본 발명의 폴리머 인서트 제조단계를 설명하기 위한 도면이다.Figure 2 is a diagram for explaining the polymer insert manufacturing steps of the present invention.
도 3은 본 발명의 임플란트 사출체 성형단계를 설명하기 위한 도면이다.Figure 3 is a diagram for explaining the implant injection molding step of the present invention.
도 4는 본 발명의 폴리머 인서트 제조단계를 통해 제조된 다양한 형태의 폴리머 인서트들을 보여주는 사진이다.Figure 4 is a photograph showing various types of polymer inserts manufactured through the polymer insert manufacturing step of the present invention.
도 5는 본 발명의 본 발명에 따른 세라믹 재질의 분리형 치과용 임플란트의 제조방법으로 제조된 치과용 임플란트(임플란트 사출체)를 보여주는 사진이다.Figure 5 is a photograph showing a dental implant (implant injection body) manufactured by the method of manufacturing a detachable dental implant made of ceramic material according to the present invention.
100 : 치과용 임플란트 사출체100: Dental implant injection body
100a : 체결부100a: fastening part
100b : 체결홈100b: Fastening groove
110 : 폴리머 인서트110: polymer insert
110a : 나사형 홈부110a: Threaded groove part
P1 : 제1 나사 코어핀P1: 1st screw core pin
P2 : 제2 나사 코어핀P2: 2nd screw core pin
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The terms used in the present invention are general terms that are currently widely used as much as possible. However, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning described or used in the detailed description of the invention rather than the simple name of the term is considered. Therefore, its meaning must be understood.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to preferred embodiments shown in the attached drawings.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like reference numerals refer to like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 세라믹 재질의 분리형 치과용 임플란트의 제조방법을 설명하기 위한 단계도이다.1 is a step diagram illustrating a method of manufacturing a detachable dental implant made of ceramic material according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 세라믹 재질의 분리형 치과용 임플란트의 제조방법은 사출 성형에 의한 파팅 라인이 형성되지 않는 세라믹 재질의 분리형 치과용 임플란트를 제조하기 위한 공정으로, 도 2에 도시된 바와 같이, 먼저, 폴리머 재질의 폴리머 인서트(110)를 제조하는 폴리머 인서트 제조단계(S100)가 수행된다.Referring to FIG. 1, the method for manufacturing a detachable dental implant made of ceramic material according to an embodiment of the present invention is a process for manufacturing a detachable dental implant made of ceramic material in which a parting line is not formed by injection molding. As shown in Figure 2, first, a polymer insert manufacturing step (S100) of manufacturing a polymer insert 110 made of a polymer material is performed.
상기 폴리머 인서트 제조단계(S100)는 원통형상으로 하단이 개방되어 나사형 홈부(110a)가 형성된 폴리머 인서트(110)을 사출 성형하기 위한 공정으로, 치과용 임플란트의 나사 형상과 대응되는 제1 나사부(a)가 형성된 제1 나사 코어핀(P1)을 인서트 코어로 이용하고, 폴리머 재질의 제1 피드스탁을 주입하여, 상기 제1 나사부(a)와 대응되는 형상의 나사형 홈부(110a)가 형성된 폴리머 인서트가 사출성형한다.The polymer insert manufacturing step (S100) is a process for injection molding a polymer insert 110 in a cylindrical shape with an open bottom and a thread-shaped groove 110a formed, and includes a first thread portion corresponding to the screw shape of a dental implant ( The first threaded core pin (P1) formed with a) is used as an insert core, and a first feedstock made of polymer is injected to form a threaded groove portion (110a) having a shape corresponding to the first threaded portion (a). Polymer inserts are injection molded.
여기서, 상기 제1 피드스탁은 PMMA(polymethyl methacrylate) 또는 SAN(styrene-acrylonitrile)재질이 이용될 수 있다.Here, the first feedstock may be made of PMMA (polymethyl methacrylate) or SAN (styrene-acrylonitrile) material.
또한, 상기 제1 피드스탁은 녹는점(melting point)이 적어도 160℃이 이상인 재질이 이용될 수 있고, 200℃ 이상의 녹는점을 갖는 폴리머가 이용되는 것이 보다 바람직하다.In addition, the first feedstock may be made of a material having a melting point of at least 160°C, and it is more preferable to use a polymer having a melting point of 200°C or more.
이후, 상기 폴리머 인서트(110)에 결합된 상기 제1 나사코어핀(P1)을 회전 이탈 시키는 제1 나사코어핀 분리 단계(S200)가 수행된다. Afterwards, a first screw core pin separation step (S200) of rotating and disengaging the first screw core pin (P1) coupled to the polymer insert 110 is performed.
즉, 상기 제1 나사 코어핀(P1)이 인서트로 이용되는 금형에 의해 상기 폴리머 인서트(110)의 사출성형이 완료된 이후, 상기 제1 나사 코어핀(P1)은 회전 이탈되어, 파팅 라인이 없는 상기 나사형 홈부(110a)가 형성될 수 있다.That is, after the injection molding of the polymer insert 110 is completed by the mold in which the first screw core pin (P1) is used as an insert, the first screw core pin (P1) is rotated away, leaving no parting line. The thread-shaped groove portion 110a may be formed.
다음, 도 3에 도시된 바와 같이, 제조된 상기 폴리머 인서트(110)를 세라믹 사출 성형용 금형의 인서트로 이용하고, 제2 나사 코어핀(P2)을 인서트 코어로 이용하여, 세라믹 재질의 임플란트 사출체를 사출 성형하는 임플란트 사출체 성형단계(S300)가 수행된다.Next, as shown in FIG. 3, the manufactured polymer insert 110 is used as an insert in a mold for ceramic injection molding, and the second screw core pin (P2) is used as an insert core to inject a ceramic implant. The implant injection molding step (S300) of injection molding the body is performed.
보다 구체적으로 설명하면, 상기 폴리머 인서트(110)의 상기 나사형 홈부(110a) 내부에 상기 제2 나사 코어핀(P2)의 제2 나사부(b)를 위치시키고, 세라믹 재질의 제2 피드스탁을 주입하여, 도 5에 도시된 바와 같이, 원통형상으로 외측면에는 상기 제1 나사부(a)와 대응되는 형상의 체결부(100a)가 형성되고, 하단이 개방되어 상기 제2 나사부(b)와 대응되는 형상의 체결홈(100b)이 형성된 임플란트 사출체(100)를 사출 성형한다.To be more specific, the second threaded portion (b) of the second screw core pin (P2) is located inside the threaded groove portion (110a) of the polymer insert (110), and a second feedstock made of ceramic material is installed. By injection, as shown in FIG. 5, a fastening part 100a of a shape corresponding to the first screw part (a) is formed on the outer surface in a cylindrical shape, and the lower end is opened to connect the second screw part (b). The implant injection body 100 with the fastening groove 100b of a corresponding shape is formed by injection molding.
또한, 상기 제2 피드스탁은 세라믹 분말, 폴리에틸렌, 파라핀왁스 및 스테아린산이 혼합된 혼합물이 이용된다.Additionally, the second feedstock is a mixture of ceramic powder, polyethylene, paraffin wax, and stearic acid.
여기서, 상기 세라믹 분말은 ZrO2(3YSZ) 분말, ATZ(Alumina Toughened Zirconia) 분말 또는 ZrO2(3YSZ) 분말에 알루미나(AL2O3)분말이 1 ~ 20wt% 혼합된분말이 이용될 수 있다.Here, the ceramic powder may be ZrO2 (3YSZ) powder, ATZ (Alumina Toughened Zirconia) powder, or a powder in which 1 to 20 wt% of alumina (AL2O3) powder is mixed with ZrO2 (3YSZ) powder.
다음, 상기 임플란트 사출체(100)에 결합된 상기 제2 나사코어핀(P2)을 회전 이탈시키는 제2 나사코어핀 분리 단계(S400)가 수행된다.Next, a second screw core pin separation step (S400) of rotating and disengaging the second screw core pin (P2) coupled to the implant injection body 100 is performed.
즉, 상기 제1 나사 코어핀(P2)은 회전 이탈되므로, 상기 임플란트 사출체(100)는 파팅 라인이 없는 상기 체결홈(100b)가 형성될 수 있다.That is, since the first screw core pin (P2) is rotated away, the fastening groove (100b) without a parting line can be formed in the implant injection body (100).
다음, 상기 임플란트 사출체(100)에 형성된 상기 폴리머 인서트(110)를 유기용매를 이용하여 용해시키는 폴리머 인서트 제거 단계(S500)가 수행된다.Next, a polymer insert removal step (S500) is performed in which the polymer insert 110 formed in the implant injection molded body 100 is dissolved using an organic solvent.
상기 폴리머 인서트 제거 단계(S500)에서 이용되는 유기용매는 아세톤, MEK, 헥산, 햅탄, THF, 벤젠, 에테르 또는 클로로포름이 이용될 수 있다.The organic solvent used in the polymer insert removal step (S500) may be acetone, MEK, hexane, heptane, THF, benzene, ether, or chloroform.
이때, 상기 폴리머 인서트(110)가 형성된 상기 임플란트 사출체(100)를 상기 유기용매에 12시간 동안 침지시켜, 상기 폴리머 인서트(110)를 제거하는 것이 바람직하다.At this time, it is preferable to immerse the implant injection body 100 on which the polymer insert 110 is formed in the organic solvent for 12 hours to remove the polymer insert 110.
다음, 상기 임플란트 사출체(100)에 존재하는 파라핀왁스와 스테아린산을 제거하는 용매 탈지 단계(S600)가 수행된다.Next, a solvent degreasing step (S600) is performed to remove paraffin wax and stearic acid present in the implant extruded body 100.
상기 용매 탈지 단계(S600)에서 이용되는 용매는 THF(Tetra Hydro Furan)가 이용될 수 있으며, 20℃ 내지 30℃의 온도조건에서 72시간 이내에 처리되는 것이 바람직하다.The solvent used in the solvent degreasing step (S600) may be THF (Tetra Hydro Furan), and is preferably treated within 72 hours at a temperature of 20°C to 30°C.
다음, 파라핀왁스와 스테아린산이 제거된 임플란트 사출체를 가열하여 폴리에틸렌을 제거하는 가열 탈지 단계(S700)가 수행된다.Next, a heating degreasing step (S700) is performed to remove polyethylene by heating the implant extruded body from which paraffin wax and stearic acid have been removed.
상기 가열 탈지 단계(S700)는 제1 가열 탈지 단계, 제2 가열 탈지 단계, 제3 가열 탈지단계 및 가소결 단계를 순차적으로 거쳐 수행될 수 있다.The heat degreasing step (S700) may be performed sequentially through a first heat degreasing step, a second heat degreasing step, a third heat degreasing step, and a pre-sintering step.
보다 구체적으로 설명하면, 0.1~0.4 ℃/min의 속도로 250~230 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제1 가열 탈지단계, 0.2~0.5 ℃/min의 속도로 170~350 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제2 가열 탈지단계, 0.2~0.4 ℃/min의 속도로 350~500 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제3 가열 탈지단계 및 1.0~5.0 ℃/min의 속도로 500~850 ℃까지 승온시킨 후 2 시간 동안 유지하는 가소결 단계를 순차적으로 거쳐 가열 탈지 단계가 완료된다.More specifically, the first heating degreasing step is to raise the temperature to 250-230 ℃ at a rate of 0.1-0.4 ℃/min and then maintain it for 4-8 hours, and to 170-350 ℃ at a rate of 0.2-0.5 ℃/min. A second heating degreasing step in which the temperature is raised and maintained for 4 to 8 hours, a third heating degreasing step in which the temperature is raised to 350 to 500 ℃ at a rate of 0.2 to 0.4 ℃/min and maintained for 4 to 8 hours, and 1.0 to 5.0 ℃ The heating degreasing step is completed by sequentially going through a pre-sintering step in which the temperature is raised to 500-850°C at a rate of /min and maintained for 2 hours.
이후, 상기 가열 탈지 단계(S700)를 통해 수득된 탈지체를 소결하는 소결단계(S800)가 수행된다.Thereafter, a sintering step (S800) of sintering the degreased body obtained through the heating degreasing step (S700) is performed.
상기 소결 단계(S800)는 3단계의 소결 공정을 거쳐 완료될 수 있는데, 보다 자세하게 설명하면, 1.0~2.0 ℃/min의 속도로 250~600℃까지 승온시킨 후 1~2 시간 동안 유지하는 제1 소결단계, 0.7~1.5 ℃/min의 속도로 600~1,100 ℃까지 승온시킨 후 2 시간 동안 유지하는 제2 소결단계 및 0.5~1.0 ℃/min의 속도로 1,100~1,450 ℃까지 승온시킨 후 2~4 시간 동안 유지하는 제3 소결단계를 순차적으로 거쳐 완료된다.The sintering step (S800) can be completed through a three-step sintering process. To be described in more detail, the first temperature is raised to 250-600°C at a rate of 1.0-2.0°C/min and then maintained for 1-2 hours. Sintering step, the second sintering step in which the temperature is raised to 600-1,100 ℃ at a rate of 0.7-1.5 ℃/min and maintained for 2 hours, and the temperature is raised to 1,100-1,450 ℃ at a rate of 0.5-1.0 ℃/min and then 2-4 It is completed sequentially through the third sintering step, which is maintained for a period of time.
실시예 Example
폴리머 인서트 제조 및 제1 나사 코어핀 분리 단계(S100, S200)Polymer insert manufacturing and first screw core pin separation steps (S100, S200)
SAN재질을 원료물질로 이용하여, 치과용 임플란트의 나사 형상이 전사될 수 있도록, 임플란트의 나사 형상과 대응되는 형상의 나사형 홈부(110a)가 형성된 폴리머 인서트(110)를 사출성형으로 제조하였으며, 도 4에는 다양한 형상으로 제조된 폴리머 인서트의 사진을 도시하였다.Using SAN material as a raw material, a polymer insert 110 with a thread-shaped groove 110a of a shape corresponding to the thread shape of the implant was manufactured by injection molding so that the thread shape of the dental implant could be transferred. Figure 4 shows photographs of polymer inserts manufactured in various shapes.
이때, 사출성형에 이용된 금형의 인서트로 제1 나사부가 형성된 제1 나사 코어핀을 이용하였으며, 사출성형체로부터 상기 제1 나사 코어핀을 회전시켜 제거해냄으로써, 상기 폴리머 인서트(110)에 상기 나사형 홈부(110a)를 형성시켰다.At this time, a first screw core pin with a first threaded portion was used as an insert of the mold used for injection molding, and by rotating and removing the first screw core pin from the injection molded body, the screw core pin was attached to the polymer insert 110. A groove portion 110a was formed.
임플란트 사출체 성형단계 및 제1 나사 코어핀 분리 단계(S300, S400)Implant injection molding step and first screw core pin separation step (S300, S400)
상기 폴리머 인서트(110)를 세라믹 사출 성형용 금형의 인서트로, 제2 나사부가 형성된 제2 나사 코어핀을 인서트 코어로 이용하였고, ZrO2, PE, 파라핀왁스, 스테아린산을 이용한 혼합물을 피드스탁으로 이용하여, 원통형상으로 외측면에는 상기 제1 나사부와 대응되는 형상의 체결부가 형성되고, 하단이 개방되어 상기 제2 나사부와 대응되는 형상의 체결홈이 형성된 임플란트 사출체를 성형하였다.The polymer insert 110 was used as an insert in a mold for ceramic injection molding, a second screw core pin with a second threaded portion was used as an insert core, and a mixture of ZrO2, PE, paraffin wax, and stearic acid was used as a feedstock. , an implant injection body was molded in a cylindrical shape, with a fastening part having a shape corresponding to the first threaded part formed on the outer surface, and the lower end being opened to form a fastening groove having a shape corresponding to the second screwed part.
이후, 임플란트 사출체에 결합된 상기 제2 나사코어핀을 회전 이탈시켜 분리해내었다.Afterwards, the second screw core pin coupled to the implant injection body was rotated away and separated.
폴리머 인서트 제거 단계(S500)Polymer insert removal step (S500)
상기 임플란트 사출체에 상기 폴리머 인서트가 형성된 채로, 아세톤 용매에 침지 시켰으며, 25℃의 온도조건에서 12시간 동안 반응시켜, 상기 폴리머 인서트를 제거하였다.With the polymer insert formed on the implant extruded body, it was immersed in acetone solvent and reacted at a temperature of 25°C for 12 hours to remove the polymer insert.
용매 탈지 단계(S600)Solvent degreasing step (S600)
이후, THF용매에 25℃의 온도조건에서 48시간 동안 반응시켜, 상기 임플란트 사출체에 존재하는 파라핀왁스와 스테아린산을 제거하였다.Afterwards, it was reacted in THF solvent at a temperature of 25°C for 48 hours to remove paraffin wax and stearic acid present in the implant extruded body.
가열 탈지 단계(S700)Heating degreasing step (S700)
파라핀왁스와 스테아린산이 제거된 임플란트 사출체를 상온 내지 800℃의 온도조건에서 2시간 동안 가열시켜, 폴리에틸렌을 제거하였다.The implant extruded body from which paraffin wax and stearic acid were removed was heated at room temperature to 800°C for 2 hours to remove polyethylene.
소결단계(S800)Sintering step (S800)
이후, 수득된 탈지체를 1,450℃의 온도조건에서 2시간 동안 소결시켜, 분리형(2-바디형) 세라믹 임플란트를 제조하였으며, 소결처리된 치과용 임플란트 소결체 사진을 도 5에 나타내었다.Thereafter, the obtained degreased body was sintered at a temperature of 1,450°C for 2 hours to produce a separate (2-body type) ceramic implant. A photograph of the sintered dental implant sintered body is shown in FIG. 5.
상술한 바와 같이, 본 발명에 따른 세라믹 재질의 분리형 치과용 임플란트의 제조방법에 의하면, 치과용 임플란트의 나사 형상과 대응되는 형상의 나사형 홈부가 형성된 폴리머 재질의 폴리머 인서트와 나사 코어핀을 이용하여, 세라믹 재질의 치과용 임플란트를 사출 성형한 다음, 나사 코어핀과 폴리머 인서트를 분리해내고, 용매 탈지 단계, 가열 탈지 단계 및 소결 단계를 통해 파팅 라인이 형성되지 않는 세라믹 재질의 분리형 치과용 임플란트를 제조함으로써, 별도의 파팅 라인 제거 공정 등의 후처리 공정이 필요없어, 제품의 생산효율을 증대시킬 수 있는 효과가 있다.As described above, according to the method of manufacturing a detachable dental implant made of ceramic material according to the present invention, a polymer insert made of a polymer material and a screw core pin with a thread-shaped groove having a shape corresponding to the screw shape of the dental implant is formed. After injection molding a dental implant made of ceramic material, the screw core pin and polymer insert are separated, and through the solvent degreasing step, heat degreasing step, and sintering step, a detachable dental implant made of ceramic material that does not form a parting line is made. By manufacturing, there is no need for post-processing processes such as a separate parting line removal process, which has the effect of increasing the production efficiency of the product.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As discussed above, the present invention has been illustrated and described with reference to preferred embodiments, but it is not limited to the above-described embodiments and is intended to be used by those skilled in the art without departing from the spirit of the invention. Various changes and modifications will be possible.
본 발명의 제조방법으로 제조된 임플란트는 세라믹소재 뿐만 아니라 메탈(타이타늄, Co-Cr-Mo 소재 등) 소재의 치과용 임플란트로 제공될 수 있으며, 더 나아가 본 발명의 제조방법은 복잡한 형상의 나사부가 있는 산업용 제품에도 적용이 가능한 기술이기 때문에 정보통신, 자동차, 반도체, 의학, 정밀기계, 및 우주 항공 등 다양한 분야 등에 유용하게 이용될 수 있다.Implants manufactured using the manufacturing method of the present invention can be provided as dental implants made of metal (titanium, Co-Cr-Mo materials, etc.) as well as ceramic materials. Furthermore, the manufacturing method of the present invention allows for threads of complex shapes to be formed. Since it is a technology that can be applied to existing industrial products, it can be usefully used in various fields such as information and communications, automobiles, semiconductors, medicine, precision machinery, and aerospace.

Claims (8)

  1. 치과용 임플란트의 나사 형상과 대응되는 제1 나사부가 형성된 제1 나사 코어핀을 인서트 코어로 이용하고, 폴리머 재질의 제1 피드스탁을 주입하여 원통형상으로 하단이 개방되어 상기 제1 나사부와 대응되는 형상의 나사형 홈부가 형성된 폴리머 인서트를 사출 성형하는 폴리머 인서트 제조단계;A first screw core pin with a first thread portion corresponding to the screw shape of a dental implant is used as an insert core, and a first feedstock made of polymer is injected to form a cylindrical shape with the bottom open and corresponding to the first thread portion. A polymer insert manufacturing step of injection molding a polymer insert having a thread-shaped groove portion formed therein;
    상기 폴리머 인서트에 결합된 상기 제1 나사코어핀을 회전 이탈시키는 제1 나사 코어핀 분리 단계; A first screw core pin separation step of rotating and disengaging the first screw core pin coupled to the polymer insert;
    상기 폴리머 인서트의 나사형 홈부 내부에 제2 나사 코어핀의 제2 나사부를 위치시키고, 세라믹 재질의 제2 피드스탁을 주입하여, 원통형상으로 외측면에는 상기 제1 나사부와 대응되는 형상의 체결부가 형성되고, 하단이 개방되어 상기 제2 나사부와 대응되는 형상의 체결홈이 형성된 임플란트 사출체를 사출 성형하는 임플란트 사출체 성형 단계;The second threaded portion of the second screw core pin is placed inside the threaded groove of the polymer insert, and the second feedstock made of ceramic material is injected, so that a cylindrical fastening portion corresponding to the first threaded portion is formed on the outer surface. An implant injection molding step of injection molding an implant injection body having an open lower end and a fastening groove having a shape corresponding to the second screw portion.
    상기 임플란트 사출체에 결합된 상기 제2 나사코어핀을 회전 이탈시키는 제2 나사코어핀 분리 단계;A second screw core pin separation step of rotating and disengaging the second screw core pin coupled to the implant injection body;
    상기 임플란트 사출체에 결합된 상기 폴리머 인서트를 유기용매를 이용하여 용해시키는 폴리머 인서트 제거 단계;A polymer insert removal step of dissolving the polymer insert coupled to the implant injection molding body using an organic solvent;
    상기 임플란트 사출체에 존재하는 파라핀왁스와 스테아린산을 제거하는 용매 탈지 단계;A solvent degreasing step to remove paraffin wax and stearic acid present in the implant extruded body;
    파라핀왁스와 스테아린산이 제거된 임플란트 사출체를 가열하여 폴리에틸렌을 제거하는 가열 탈지 단계;A heating degreasing step of removing polyethylene by heating the implant extruded body from which paraffin wax and stearic acid have been removed;
    상기 가열 탈지 단계를 통해 수득된 탈지체를 소결하는 소결단계;를 포함하는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.A method of manufacturing a detachable dental implant made of ceramic, comprising a sintering step of sintering the degreased body obtained through the heating degreasing step.
  2. 제 1항에 있어서,According to clause 1,
    상기 제1 피드스탁은The first feedstock is
    PMMA(polymethyl methacrylate) 또는 SAN(styrene-acrylonitrile)재질이 이용되고, 녹는점(melting point)이 160℃이 이상인 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.A method of manufacturing a detachable dental implant made of ceramic material, wherein polymethyl methacrylate (PMMA) or styrene-acrylonitrile (SAN) material is used and the melting point is above 160°C.
  3. 제 1항에 있어서,According to clause 1,
    상기 제2 피드스탁은 The second feedstock is
    산화지크로늄(ZrO2) 분말, ATZ(Alumina Toughened Zirconia) 분말 또는 산화지크로늄(ZrO2) 분말에 알루미나(Al2O3)분말이 1 ~ 20wt% 혼합된 세라믹 분말, 폴리에틸렌, 파라핀왁스 및 스테아린산이 혼합된 혼합물이 이용되는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.Zirconium oxide (ZrO2) powder, ATZ (Alumina Toughened Zirconia) powder, or ceramic powder containing 1 to 20 wt% of zichronium oxide (ZrO2) powder and alumina (Al2O3) powder, and a mixture of polyethylene, paraffin wax, and stearic acid. A method of manufacturing a detachable dental implant made of ceramic material, characterized in that it is used.
  4. 제 1항에 있어서, According to clause 1,
    상기 폴리머 인서트 제거 단계는 유기용매로 아세톤, 메틸에틸케톤(MEK), 헥산, 햅탄, THF, 벤젠, 에테르 또는 클로로포름이 이용되는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.The polymer insert removal step is a method of manufacturing a detachable dental implant made of ceramic material, characterized in that acetone, methyl ethyl ketone (MEK), hexane, heptane, THF, benzene, ether, or chloroform is used as an organic solvent.
  5. 제 4항에 있어서,According to clause 4,
    상기 폴리머 인서트 제거단계는 The polymer insert removal step is
    상기 폴리머 인서트가 형성된 상기 임플란트 사출체를 상기 유기용매에 12시간 동안 침지시켜, 상기 폴리머 인서트를 제거하는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.A method of manufacturing a detachable dental implant made of ceramic, characterized in that the implant injection body on which the polymer insert is formed is immersed in the organic solvent for 12 hours to remove the polymer insert.
  6. 제 1항에 있어서,According to clause 1,
    상기 용매 탈지단계는 The solvent degreasing step is
    용매로 THF(Tetra Hydro Furan)가 이용되며, 20℃ 내지 30℃의 온도조건에서 72시간 이내에 처리되는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.A method of manufacturing a detachable dental implant made of ceramic material, wherein THF (Tetra Hydro Furan) is used as a solvent and processed within 72 hours at a temperature of 20°C to 30°C.
  7. 제 1항에 있어서,According to clause 1,
    상기 가열 탈지단계는 The heating degreasing step is
    0.1~0.4 ℃/min의 속도로 250~230 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제1 가열 탈지단계;A first heating degreasing step in which the temperature is raised to 250-230°C at a rate of 0.1-0.4°C/min and maintained for 4-8 hours;
    0.2~0.5 ℃/min의 속도로 170~350 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제2 가열 탈지단계;A second heating degreasing step in which the temperature is raised to 170-350°C at a rate of 0.2-0.5°C/min and maintained for 4-8 hours;
    0.2~0.4 ℃/min의 속도로 350~500 ℃까지 승온시킨 후 4~8 시간 동안 유지하는 제3 가열 탈지단계; 및A third heating degreasing step of raising the temperature to 350-500°C at a rate of 0.2-0.4°C/min and maintaining it for 4-8 hours; and
    1.0~5.0 ℃/min의 속도로 500~850 ℃까지 승온시킨 후 2 시간 동안 유지하는 가소결 단계;을 포함하는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.A method of manufacturing a detachable dental implant made of ceramic material, comprising a pre-sintering step of raising the temperature to 500-850 °C at a rate of 1.0-5.0 °C/min and maintaining it for 2 hours.
  8. 제 1항에 있어서,According to clause 1,
    상기 소결 단계는The sintering step is
    1.0~2.0 ℃/min의 속도로 250~600℃까지 승온시킨 후 1~2 시간 동안 유지하는 제1 소결단계;A first sintering step in which the temperature is raised to 250-600°C at a rate of 1.0-2.0°C/min and maintained for 1-2 hours;
    0.7~1.5 ℃/min의 속도로 600~1,100 ℃까지 승온시킨 후 2 시간 동안 유지하는 제2 소결단계; 및A second sintering step of raising the temperature to 600-1,100°C at a rate of 0.7-1.5°C/min and maintaining it for 2 hours; and
    0.5~1.0 ℃/min의 속도로 1,100~1,450 ℃까지 승온시킨 후 2~4 시간 동안 유지하는 제3 소결단계;를 포함하는 것을 특징으로 하는 세라믹 재질의 분리형 치과용 임플란트의 제조방법.A method of manufacturing a detachable dental implant made of ceramic material, comprising: a third sintering step of raising the temperature to 1,100 to 1,450 °C at a rate of 0.5 to 1.0 °C/min and maintaining it for 2 to 4 hours.
PCT/KR2022/004623 2022-03-31 2022-03-31 Method for manufacturing separable ceramic dental implant WO2023191144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0040038 2022-03-31
KR1020220040038A KR20230142039A (en) 2022-03-31 2022-03-31 Manufacturing method for 2-body dental implant of ceramic material

Publications (1)

Publication Number Publication Date
WO2023191144A1 true WO2023191144A1 (en) 2023-10-05

Family

ID=88202986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004623 WO2023191144A1 (en) 2022-03-31 2022-03-31 Method for manufacturing separable ceramic dental implant

Country Status (2)

Country Link
KR (1) KR20230142039A (en)
WO (1) WO2023191144A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912272B1 (en) * 2008-11-26 2009-08-17 주식회사 쎄타텍 Ceramic dental implant fixture and manufacturing method for the implant fixture
KR101137013B1 (en) * 2010-04-07 2012-04-19 주식회사 쿠보텍 Manufacturing method of dental zirconia implant members by injection molding and dental zirconia implant members using the same
KR20170111302A (en) * 2016-03-26 2017-10-12 (주)엠아이디 Method for manufacturing screw component by inserting ceramic powder injection molding
KR101922150B1 (en) * 2017-07-06 2018-11-26 계림금속 주식회사 Porous implants for dentistry and surgery and manufacturing method thereof
KR20210085242A (en) * 2019-12-30 2021-07-08 (주)메세텍 Manufacturing method for integral ceramic implant using polymer insert

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753176B1 (en) 2015-07-22 2017-07-03 오택근 urinal and method for installing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912272B1 (en) * 2008-11-26 2009-08-17 주식회사 쎄타텍 Ceramic dental implant fixture and manufacturing method for the implant fixture
KR101137013B1 (en) * 2010-04-07 2012-04-19 주식회사 쿠보텍 Manufacturing method of dental zirconia implant members by injection molding and dental zirconia implant members using the same
KR20170111302A (en) * 2016-03-26 2017-10-12 (주)엠아이디 Method for manufacturing screw component by inserting ceramic powder injection molding
KR101922150B1 (en) * 2017-07-06 2018-11-26 계림금속 주식회사 Porous implants for dentistry and surgery and manufacturing method thereof
KR20210085242A (en) * 2019-12-30 2021-07-08 (주)메세텍 Manufacturing method for integral ceramic implant using polymer insert

Also Published As

Publication number Publication date
KR20230142039A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2014137037A1 (en) Method for manufacturing zirconia block for artificial teeth having color gradations
WO2011162512A2 (en) Production device and production method for an implant using amorphous alloy
DK173541B1 (en) Artificial dental crown
WO2019231179A1 (en) Composition for fdm 3d printers
WO2020241974A1 (en) Dental bulk block for machining and manufacturing method therefor
WO2023191144A1 (en) Method for manufacturing separable ceramic dental implant
DE69522351T2 (en) Process for the production of a bone prosthesis with directly cast macrotextural surface regions
EP0389461A1 (en) Artificial onlay tooth crowns and inlays
JP2004525700A (en) Method for producing all-ceramic dental molded articles
US20090115084A1 (en) Slip-casting method of fabricating zirconia blanks for milling into dental appliances
WO2012134051A2 (en) Dental implant abutment and method for manufacturing same
CN109311093B (en) Method, housing and apparatus for manufacturing a component
WO2014109511A1 (en) Detachable fixture level and abutment level implant analog
DE60027588T2 (en) PRESS FURNACE PISTON
Talibi et al. Do you know your ceramics? Part 1: classification
KR102404210B1 (en) Manufacturing method for integral ceramic implant using polymer insert
CN1704367A (en) Model forming device and method for optical glass lens
SE463800B (en) METHOD OF MANUFACTURING A CERAMIC UNIT
WO2011027975A2 (en) Dental implant assembly having settlement-preventing step
WO2016006930A1 (en) Method for preparing macro/micro dual porous structure-type three-dimensional porous support, and macro/micro dual porous structure-type three-dimensional porous support prepared thereby
EP1136055B1 (en) Tough denture and method for producing the same
WO2020122312A1 (en) Method for manufacturing high-strength molds and cores for large cast products
WO2021137666A2 (en) Method for preparing zirconia sintered body for dental prosthesis
WO1995035070A1 (en) Procedure for the production of ceramic tooth restorations and materials for distance, separation and substructure for the carrying out of the procedure
WO2022250183A1 (en) Dental bulk block to be cut and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935820

Country of ref document: EP

Kind code of ref document: A1