WO2023191009A1 - バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬 - Google Patents

バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬 Download PDF

Info

Publication number
WO2023191009A1
WO2023191009A1 PCT/JP2023/013429 JP2023013429W WO2023191009A1 WO 2023191009 A1 WO2023191009 A1 WO 2023191009A1 JP 2023013429 W JP2023013429 W JP 2023013429W WO 2023191009 A1 WO2023191009 A1 WO 2023191009A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
culture supernatant
filter
purification
drug substance
Prior art date
Application number
PCT/JP2023/013429
Other languages
English (en)
French (fr)
Inventor
順一 郡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023191009A1 publication Critical patent/WO2023191009A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the technology of the present disclosure relates to a method for producing a biopharmaceutical drug substance, a system for producing a biopharmaceutical drug substance, and a biopharmaceutical drug substance.
  • Cell products such as antibodies are obtained by culturing cells such as antibody-producing cells in which antibody genes have been incorporated into Chinese hamster ovary cells (CHO cells), and biotechnology is achieved by purifying the products.
  • Obtaining active pharmaceutical ingredients for pharmaceuticals is widely practiced.
  • Batch production in which the cell culture process and product purification process are performed separately, has traditionally been used to manufacture active pharmaceutical ingredients for biopharmaceuticals, but in recent years, continuous production has become mainstream instead of batch production. It's coming.
  • Continuous production involves physically connecting the culture section that performs the culture process, including culture tanks, and the purification section that performs the purification process, including chromatography equipment, so that the culture process and purification process can be performed consistently and continuously. This is the way to do it. This continuous production allows for significantly higher drug substance quality and productivity than batch production.
  • JP 2020-033364A and JP 2018-518161A describe a system for producing active pharmaceutical ingredients for biopharmaceuticals through continuous production.
  • a sterile filter is provided between the culture section and the purification section.
  • the sterile filter filters the culture supernatant flowing from the culture section to the purification section.
  • the culture supernatant is obtained by removing cells from the cell culture solution using a cell removal filter provided in the culture section, and mainly contains products. According to the sterile filter, it is possible to prevent bacteria from entering the culture section from the purification section, and it is possible to reduce concerns about contamination of the culture supernatant.
  • JP 2020-033364 A and PCT International Publication No. 2018-518161 0.2 ⁇ m is exemplified as the pore diameter of the cell removal filter located upstream.
  • the pore diameter of the sterile filter located downstream is 0.2 ⁇ m, which is the same as the cell removal filter, or a larger value than the cell removal filter. ing.
  • the purification process is mainly performed using a chromatography device.
  • the pore diameter of the sterile filter is set to be the same as or larger than the cell removal filter as in JP 2020-033364A and JP 2018-518161A, the load on the downstream sterilization filter is increased. Reduced. Therefore, problems such as clogging of the sterile filter are less likely to occur, and maintainability is improved.
  • One embodiment of the technology of the present disclosure provides a method for producing a biopharmaceutical drug substance, a system for producing a biopharmaceutical drug substance, and a biopharmaceutical drug substance that can suppress deterioration in maintainability. .
  • the method for producing a biopharmaceutical drug substance of the present disclosure involves culturing cells in a culture solution stored in a culture tank, and removing cells from the culture solution using a cell removal filter to obtain a culture supernatant containing cell products.
  • the culture section performs the culture process to obtain the product
  • the purification section performs the purification process to obtain the drug substance for biopharmaceuticals by purifying the product from the culture supernatant.
  • the purification section including the purification process used is connected by a connection line, and a sterile filter with a pore size larger than the cell removal filter is installed in the connection line, and the culture supernatant flowing from the culture section to the purification section through the connection line is , filter through a sterile filter.
  • the next step after the purification step using a single-pass tangential flow filtration type purification filter is preferably a purification step using a chromatography device.
  • the chromatography device is preferably a single column.
  • connection line In addition to the sterile filter provided in the connection line, it is preferable to use a sterile filter connected in parallel to the connection line.
  • the maximum capacity of the culture tank is MCC and the filtration area of the sterile filter is FA, it is preferable that 0.001 m 2 /L ⁇ (FA/MCC) ⁇ 0.01 m 2 /L.
  • the pore diameter of the sterile filter is larger than the pore diameter of a single-pass tangential flow filtration type purification filter, and is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the sterile filter preferably has a structure of folded flat filter paper.
  • the sterile filter preferably has a structure made of bundled hollow fibers.
  • the material of the sterile filter is preferably polyether sulfone.
  • the flow rate of the culture supernatant to the sterile filter is constant.
  • the product is a protein.
  • the cells are derived from Chinese hamster ovary cells.
  • the biopharmaceutical drug substance manufacturing system of the present disclosure cultivates cells in a culture solution stored in a culture tank, and removes cells from the culture solution using a cell removal filter to obtain a culture supernatant containing cell products.
  • the culture section performs the culture process to obtain the product
  • the purification section performs the purification process to obtain the drug substance for biopharmaceuticals by purifying the product from the culture supernatant.
  • a purification section including the purification process used, a connection line connecting the culture section and the purification section, and a sterile filter installed in the connection line and having a larger pore diameter than the cell removal filter, It includes a sterile filter that filters the culture supernatant flowing into the purification section.
  • the biopharmaceutical drug substance of the present disclosure is produced by the method for producing a biopharmaceutical drug substance described above.
  • FIG. 1 is a diagram showing a manufacturing system for a biopharmaceutical drug substance. It is a figure showing the vicinity of a sterile filter. It is a figure showing the structure of a sterile filter and an intermediate container.
  • FIG. 2 is a block diagram of a computer that constitutes a control device. It is a block diagram of CPU of the computer which constitutes a control device. It is a figure which shows the time change of the liquid volume of the culture supernatant liquid in an intermediate container, the operation timing of a 1st supply pump, and the operation timing of a refinement
  • FIG. 2 is a diagram showing temporal changes in the flow rate of culture supernatant flowing into a purification filter of a single-pass tangential flow filtration system.
  • FIG. 10 is a diagram showing changes over time in the amount of culture supernatant in the intermediate container of the example shown in FIG. 9;
  • FIG. 6 illustrates a second embodiment using multiple sterile filters.
  • 13A is a diagram showing the process of the intermediate control unit of the second embodiment, in which FIG.
  • FIG. 13A shows the process before the cumulative flow rate of the culture supernatant to the sterile filter of the connecting path reaches a set amount
  • FIG. 13B shows the process of the sterile filter of the connecting path. The cases in which the cumulative flow rate of the culture supernatant to the filter reaches the set amount are shown. It is a figure which shows another example of a sterile filter.
  • a biopharmaceutical drug substance production system 2 that implements a biopharmaceutical drug substance production method according to the technology of the present disclosure includes a culture section 10 that performs a culture process, an intermediate section 11, and a purification section 10. It includes a purification section 12 that performs the process, and a control device 13.
  • the culture section 10 has a culture tank 14 and a cell removal filter 15.
  • a culture solution (also referred to as a culture solution) 16 is stored in the culture tank 14 .
  • Antibody producing cells 17 are seeded in the culture tank 14, and the antibody producing cells 17 are cultured in the culture solution 16.
  • the antibody-producing cells 17 are, for example, cells established by integrating an antibody gene into cells such as Chinese hamster ovary cells.
  • the antibody-producing cells 17 are an example of "cells derived from Chinese hamster ovary cells” according to the technology of the present disclosure.
  • Antibody-producing cells 17 produce immunoglobulin, ie, antibody 18, as a product during the culture process. Therefore, not only antibody-producing cells 17 but also antibodies 18 are present in the culture solution.
  • the antibody 18 is, for example, a monoclonal antibody, and serves as an active ingredient of a biopharmaceutical. Note that the antibody 18 is an example of a "protein" according to the technology of the present disclosure.
  • the culture tank 14 is provided with a culture solution supply channel 19, a gas supply channel 20, an exhaust channel 21, a culture solution delivery/recovery channel 22, a sparger 23, a gas supply channel 24, a stirring blade 25, and the like.
  • the culture solution supply path 19 is a flow path for continuously supplying fresh culture solution 16 into the culture tank 14, as shown by arrow A. That is, the culture unit 10 performs perfusion culture.
  • the gas supply path 20 is a flow path for supplying gas containing air and carbon dioxide from above, as shown by arrow B.
  • the exhaust path 21, as shown by arrow C is a flow path for exhausting the gas supplied from the gas supply path 20 to the outside of the culture tank 14.
  • An exhaust filter 26 is provided in the exhaust path 21.
  • the culture solution delivery/recovery path 22 is connected to the inlet/outlet 27 of the cell removal filter 15.
  • the culture solution delivery/recovery path 22 is a flow path for sending the culture solution 16 in the culture tank 14 to the cell removal filter 15, as shown by arrow D.
  • the culture solution delivery/recovery channel 22 is a flow channel for returning the culture solution 16 (concentrated solution) from the cell removal filter 15 into the culture tank 14, as shown by arrow E.
  • the culture solution supply path 19 is provided with a pump that supplies the culture solution 16 into the culture tank 14.
  • the sparger 23 is placed at the bottom of the culture tank 14.
  • the sparger 23 releases the oxygen-containing gas supplied from the gas supply path 24 into the culture tank 14, as shown by arrow F.
  • the oxygen released from the sparger 23 is dissolved in the culture medium 16 and assists the antibody-producing cells 17 in producing the antibody 18 .
  • the stirring blade 25 is rotated by a motor or the like at a predetermined number of rotations, and stirs the culture solution 16 in the culture tank 14 . This maintains the homogeneity of the culture solution 16 in the culture tank 14.
  • the culture tank 14 is also provided with a flow path for cell bleeding treatment in which a portion of the culture solution 16 is intentionally drawn out.
  • the stirring blade 25 may have a plurality of blades as shown in the figure, or may have a single disc-shaped blade, and its shape is not particularly limited. Furthermore, two or more stirring blades 25 may be arranged within the culture tank 14.
  • the cell removal filter 15 has a filter membrane 28 inside. Filter membrane 28 captures antibody-producing cells 17 and allows antibodies 18 to pass therethrough.
  • the cell removal filter 15 obtains a culture supernatant liquid 29 by removing antibody-producing cells 17 from the culture medium 16 using a filter membrane 28, for example, using a tangential flow filtration (TFF) method.
  • the pore diameter of the filter membrane 28 is not particularly limited as long as it is large enough to remove cells such as the antibody-producing cells 17 from the culture solution 16, but it may be 0.01 ⁇ m or more and 0.5 ⁇ m or less, preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the pore diameter of the filter membrane 28 is, for example, 0.2 ⁇ m. Note that the pore size here means the average pore size. The average pore diameter can be measured by mercury porosimetry.
  • the cell removal filter 15 includes a diaphragm pump 31 having an elastic membrane 30 inside, and a deaeration/air supply path 32.
  • the culture solution 16 in the culture tank 14 is degassed from the lower side of the elastic membrane 30 through the deaeration/air supply path 32 and elastically deformed so as to stick to the lower end of the diaphragm pump 31. flows into the cell removal filter 15 via the culture solution delivery/recovery path 22.
  • air by supplying air to the lower side of the elastic membrane 30 from the degassing/air supply path 32 and elastically deforming the elastic membrane 30 so that it sticks to the upper side of the diaphragm pump 31, air cannot pass through the filter membrane 28.
  • the culture solution 16 (concentrated solution) is returned into the culture tank 14 via the culture solution delivery/recovery path 22.
  • the culture supernatant 29 flows out from the outlet 33 of the cell removal filter 15 as shown by arrow G.
  • Culture supernatant 29 mainly contains antibody 18.
  • the culture supernatant 29 also contains cell-derived proteins, cell-derived DNA (deoxyribonucleic acid), contaminants such as aggregates of the antibody 18, viruses, and the like.
  • a connection path 34 is connected to the outlet 33 of the cell removal filter 15.
  • a delivery pump 35 and a flow meter 36 are provided in the connection path 34 .
  • the delivery pump 35 sends out the culture supernatant 29 flowing out from the outlet 33 toward the downstream intermediate section 11 and purification section 12 .
  • the flow meter 36 measures the flow rate of the culture supernatant 29 flowing through the connection path 34 .
  • connection path 34 is sterilely connected to the connection path 41 and the branch path 42 via a three-way joint 40.
  • the connecting path 41 is provided with a pinch valve 43 and a sterile filter 44 .
  • the pinch valve 43 and the sterile filter 44 are provided in the connecting path 41 downstream of the three-way joint 40 that is the connecting portion with the branch path 42 .
  • the pinch valve 43 is a valve for switching the flow path of the culture supernatant 29 from the connection path 41 to the branch path 42.
  • the pinch valve 43 is a valve that closes the connecting passage 41 by squeezing the tube constituting the connecting passage 41 from the outside with a valve body, for example, by the action of a coil and a movable iron core.
  • the pinch valve 43 blocks the flow of the culture supernatant 29 from the culture section 10 to the purification section 12 via the connection path 41 by crushing the tube that constitutes the connection path 41 .
  • the pinch valve 43 is of a type that pinches the tube from the outside, and it is possible to switch the flow path without contacting the culture supernatant 29.
  • pinch valves 50 and 70 which will be described later, have the same configuration and function as the pinch valve 43, except that the tubes crushed by the valve body are different, so a detailed explanation will be omitted.
  • a pinch valve 56 which will be described later, has the same configuration and function as the pinch valve 43, except that the tube to be crushed by the valve body is different and it is operated manually, so a detailed description thereof will be omitted.
  • the sterile filter 44 filters the culture supernatant liquid 29 flowing into the purification section 12 .
  • the sterile filter 44 is a filter having a larger pore diameter than the filter membrane 28 of the cell removal filter 15 and the purification filter 82 of a single pass tangential flow filtration (hereinafter abbreviated as SPTFF) device 80, which will be described later. It incorporates a membrane 99 and a filter membrane 100 (both shown in FIG. 3). Filter membrane 100 has a smaller pore size than filter membrane 99. The pore diameters of filter membranes 99 and 100 each satisfy the following conditions.
  • Pore diameter of filter membrane 99 0.4 ⁇ m or more and 2.0 ⁇ m or less, preferably 0.4 ⁇ m or more and 1.0 ⁇ m or less
  • Pore diameter of filter membrane 100 0.1 ⁇ m or more and 1.0 ⁇ m or less, preferably 0.1 ⁇ m or more and 0.3 ⁇ m or less
  • a tank 45 is connected to the branch path 42.
  • the tank 45 temporarily stores the culture supernatant liquid 29 from the culture section 10 when some kind of problem occurs in the purification section 12 .
  • the tank 45 is made by molding a resin film such as polyolefin (PO) or ethylene-vinyl acetate (EVA) copolymer into a rectangular parallelepiped shape, and has flexibility. Further, the tank 45 is a single-use product that is used only once.
  • PO polyolefin
  • EVA ethylene-vinyl acetate
  • the tank 45 has a capacity that is 0.2 times or more and 10 times or less the amount of the culture solution 16 in the culture tank 14. Therefore, for example, when the amount of culture solution 16 is 50L, the storage capacity of tank 45 is 10L to 500L. Further, for example, when the amount of the culture solution 16 is 5000L, the capacity of the tank 45 is 1000L to 50000L.
  • a sterile connector 46 is provided at the tip of the branch path 42.
  • a sterile connector 49 is also provided at the tip of the inflow tube 48 connected to the inlet 47 of the culture supernatant 29 in the tank 45 . Via these sterile connectors 46 and 49, the branch 42 and the inflow tube 48, and thus the tank 45, are connected in a sterile manner. All channels for the culture supernatant 29 from the culture section 10 to the tank 45 are connected in a sterile manner by these sterile connectors 46 and 49, the three-way joint 40, and the like.
  • sterile connector 46 and the like including the sterile connectors 53, 55, 65, and 68 described later
  • ReadyMate TM DAC Disposable Aseptic Connector
  • a pinch valve 50 is provided in the branch path 42.
  • the pinch valve 50 is a valve for allowing the culture supernatant 29 to flow into the tank 45 via the branch path 42.
  • the tank 45 is provided with a liquid level sensor (not shown). When this liquid level sensor detects that the culture supernatant liquid 29 has reached a predetermined water level, a signal indicating that the tank 45 is filled with the culture supernatant liquid 29 is transmitted to the control device 13.
  • a discharge port 51 is provided at the bottom of the tank 45.
  • a discharge tube 52 is connected to the discharge port 51 .
  • a sterile connector 53 is provided at the distal end of the discharge tube 52.
  • a waste liquid path 54 is connected to the discharge tube 52 .
  • a sterile connector 55 is provided at the tip of the waste liquid path 54.
  • a manual pinch valve 56 is provided in the waste liquid path 54.
  • the pinch valve 56 When the pinch valve 56 is opened, the culture supernatant liquid 29 temporarily stored in the tank 45 is drained into a waste liquid tank (not shown) via the discharge port 51, the discharge tube 52, and the waste liquid path 54.
  • the reason why the culture supernatant liquid 29 from the culture section 10 is not directly drained into the waste liquid path 54 but is stored in the tank 45 and then drained into the waste liquid path 54 is to prevent contamination from the waste liquid path 54. be.
  • a sterile filter may be installed between the waste liquid path 54 and the waste liquid tank.
  • the tank 45 is separated from the branch path 42 by removing the sterile connector 49 from the sterile connector 46.
  • a sterile connector 49 of a new tank 45 is attached to the sterile connector 46 . Thereby, the used tank 45 is replaced with a new tank 45.
  • a branch path may be further connected to the upstream side of the pinch valve 50 of the branch path 42, so that a plurality of tanks 45 can be connected.
  • the tank 45 and the connection path 41 may be connected, and the culture supernatant liquid 29 temporarily stored in the tank 45 may be returned to the connection path 41 and flowed into the purification section 12.
  • connection path 41 Downstream of the sterile filter 44, the connection path 41 is sterilely connected to a connection path 58 and a branch path 59 via a three-way joint 57.
  • An intermediate container 60 is connected to the connection path 58 .
  • the intermediate container 60 temporarily stores the culture supernatant 29 before the purification section 12 .
  • a connecting path 61 is connected to the intermediate container 60 .
  • the connecting path 61 is connected to the refining section 12.
  • the connecting path 61 is provided with a first supply pump 62 and a flow meter 63.
  • the first supply pump 62 supplies the culture supernatant 29 in the intermediate container 60 to the purification section 12 .
  • connection paths 34, 41, 58, and 61 are examples of "connection lines" according to the technology of the present disclosure.
  • a sampling container 64 is connected to the branch path 59.
  • the branch path 59 is an example of a "branch line" according to the technology of the present disclosure.
  • the sampling container 64 is a container whose purpose is to collect a small amount of the culture supernatant 29 for sampling the concentration of the antibody 18 in the culture supernatant 29 and the like.
  • the sampling container 64 is made of a resin film made of polyolefin or ethylene vinyl acetate copolymer and is formed into a rectangular parallelepiped shape, and is flexible. Further, like the tank 45, the sampling container 64 is a single-use product that is used only once. However, the sampling container 64 has a smaller storage capacity than the tank 45.
  • a sterile connector 65 is provided at the tip of the branch path 59.
  • a sterile connector 68 is also provided at the tip of the inflow tube 67 connected to the inflow port 66 of the culture supernatant 29 of the sampling container 64. Via these sterile connectors 65 and 68, branch 59 and inflow tube 67, and thus sampling container 64, are connected aseptically.
  • a second supply pump 69 and a pinch valve 70 are provided in the branch path 59.
  • the second supply pump 69 draws the culture supernatant liquid 29 flowing through the connection path 41 into the branch path 59 .
  • the pinch valve 70 is a valve for allowing the culture supernatant 29 drawn into the branch path 59 by the second supply pump 69 to flow into the sampling container 64 .
  • the second supply pump 69 is an example of a "supply pump" according to the technology of the present disclosure.
  • the sampling container 64 is separated from the branch path 59 by removing the sterile connector 68 from the sterile connector 65 after a sufficient amount of culture supernatant liquid 29 for sampling has been poured into the sampling container 64 .
  • the separated sampling container 64 is applied to a sampling device such as an antibody concentration measuring device.
  • a sterile connector 68 of a new sampling container 64 is attached to the sterile connector 65 .
  • the used sampling container 64 is replaced with a new sampling container 64.
  • a branch path may be further connected between the second supply pump 69 of the branch path 59 and the pinch valve 70, so that a plurality of sampling containers 64 can be connected.
  • the purification section 12 includes a SPTFF device 80, an immunoaffinity chromatography device 81, etc., and continuously purifies the culture supernatant 29 using these devices 80, 81, etc.
  • the culture supernatant 29 flows into the SPTFF device 80 via the connection path 61.
  • the SPTFF device 80 has an SPTFF type purification filter 82.
  • the purification filter 82 is composed of a plurality of ultrafiltration (UF) filter membranes connected in series. According to this purification filter 82, the antibody 18 can be sufficiently concentrated by passing the culture supernatant 29 through it once, without requiring a loop of the culture supernatant 29.
  • the SPTFF device 80 generates a first purified liquid 83 by extracting the antibody 18 from the culture supernatant 29 using a purification filter 82 .
  • the immunoaffinity chromatography device 81 extracts the antibody 18 from the culture supernatant 29 using a column in which a ligand such as protein A or protein G that has an affinity for the antibody 18 is immobilized on a carrier, thereby obtaining a second purified solution.
  • Generate 84 that is, in the purification section 12, the first step is a purification step using the SPTFF type purification filter 82, and the next step is a purification step using the single column immunoaffinity chromatography device 81.
  • the second purified liquid 84 is subjected to a process 85 for inactivating the virus (hereinafter referred to as virus inactivation process).
  • the second purified liquid 84 that has been subjected to the virus inactivation treatment 85 is transferred to an ion affinity chromatography device 86 that has a column that uses a cation exchanger as a stationary phase and/or a column that uses an anion exchanger as a stationary phase.
  • the virus is passed through a filter 87 to remove viruses.
  • the second purified liquid 84 is subjected to concentration and filtration processing by ultrafiltration by a filter 88 and diafiltration (DF). This yields a biopharmaceutical drug substance 89.
  • the purification section 12 is a place where the concentration of the object of purification such as the antibody 18 and the removal of impurities other than the object of purification such as the virus are intentionally performed by making full use of the SPTFF device 80 and the like.
  • the sterile filter 44 has an inflow tube 91 with a sterile connector 90 and an outflow tube 93 with a sterile connector 92.
  • the connection path 41 is provided with sterile connectors 94 and 95 on the upstream and downstream sides.
  • the sterile filter 44 is attached to the connection path 41 by connecting the sterile connector 90 to the sterile connector 94 and connecting the sterile connector 92 to the sterile connector 95.
  • the sterile filter 44 is sterilely connected to the connection path 41 via these sterile connectors 90, 92, 94, and 95.
  • the sterile filter 44 has a built-in integrated flow meter 96 that measures the integrated flow rate of the culture supernatant 29. Furthermore, the sterile filter 44 is provided with an indicator 97 that indicates when the cumulative flow rate of the culture supernatant liquid 29 measured by the cumulative flow meter 96 reaches a set amount.
  • the indicator 97 is, for example, a rotating disk having a white background and a red background, and displays a white background until the cumulative flow rate of the culture supernatant liquid 29 reaches the set amount, and displays the white background until the cumulative flow rate of the culture supernatant liquid 29 reaches the set amount. Displays red in this case.
  • the indicator 97 is a light emitting element such as an LED (Light-Emitting Diode).
  • the set amount is set between 1000L/m 2 and 10000L/m 2 .
  • the integrated flowmeter 96 does not need to be built into the sterile filter 44, and may be provided separately from the sterile filter 44 and upstream of the sterile filter 44.
  • the sterile filter 44 When the cumulative flow rate of the culture supernatant liquid 29 reaches the set amount, the sterile filter 44 is separated from the connection path 41 by removing the sterile connectors 90 and 92 from the sterile connectors 94 and 95. Sterile connectors 94 and 95 are fitted with sterile connectors 90 and 92 of a new sterile filter 44. As a result, the sterile filter 44 whose cumulative flow rate of the culture supernatant liquid 29 has reached the set amount is replaced with a new sterile filter 44 .
  • the flow rate of the culture supernatant liquid 29 flowing into the sterile filter 44 by the delivery pump 35 is constant.
  • Constant means not only completely constant, but also includes errors that are generally allowed in the technical field to which the technology of the present disclosure belongs, and that do not go against the spirit of the technology of the present disclosure. Refers to a certain meaning.
  • Constant may mean that the flow rate of the culture supernatant liquid 29 flowing into the sterile filter 44 is within ⁇ 20% of the target value, preferably within ⁇ 10%. .
  • Sterile filter 44 has filter membranes 99 and 100.
  • the filter membranes 99 and 100 are constructed by folding flat filter paper made of polyethersulfone.
  • a sterile filter 44 having such filter membranes 99 and 100 is called a flat membrane filter.
  • the ratio FA of the maximum capacity MCC of the culture tank 14 and the filtration area FA of the filter membranes 99 and 100 /MCC may be within the range of formula (1) below, and more preferably within the range of formula (2) below. 0.0004m 2 /L (liter) ⁇ (FA/MCC) ⁇ 0.02m 2 /L...(1) 0.001m 2 /L ⁇ (FA/MCC) ⁇ 0.01m 2 /L...(2)
  • the maximum capacity MCC of the culture tank 14 is, for example, 50 L or more and 5000 L or less. For this reason, for example, when the maximum capacity MCC of the culture tank 14 is the lower limit of 50 L, the filtration area FA of the filter membranes 99 and 100 is 0.05 m 2 or more and 0.5 m 2 or less. Further, for example, when the maximum capacity MCC of the culture tank 14 is the upper limit of 5000 L, the filtration area FA of the filter membranes 99 and 100 is 5 m 2 or more and 50 m 2 or less.
  • the intermediate container 60 is a bag made by liquid-tightly bonding two sheets made of resin such as polyolefin or ethylene vinyl acetate copolymer by pouching the entire circumference of the two sheets.
  • the intermediate container 60 like the tank 45 and the sampling container 64, is a single-use product that is used only once.
  • the bottom 101 of the intermediate container 60 is provided with an inlet 102 through which the culture supernatant 29 from the culture section 10 flows.
  • An inflow tube 103 is attached to the inflow port 102, and a sterile connector 104 is provided at the tip of the inflow tube 103.
  • a sterile connector 105 is also provided at the tip of the connection path 58. Via these sterile connectors 104 and 105, connection path 58 and inflow tube 103, and thus intermediate container 60, are connected aseptically.
  • the bottom 101 of the intermediate container 60 is provided with an outlet 106 through which the culture supernatant 29 flows out toward the purification section 12.
  • An outflow tube 107 is attached to the outflow port 106, and a sterile connector 108 is provided at the tip of the outflow tube 107.
  • a sterile connector 109 is also provided at the tip of the connection path 61. Via these sterile connectors 108 and 109, the outflow tube 107 and thus the intermediate container 60 and the connecting channel 61 are connected in a sterile manner.
  • Intermediate container 60 is separated from connections 58 and 61 by removing sterile connectors 104 and 108 from sterile connectors 105 and 109. Sterile connectors 105 and 109 are fitted with sterile connectors 104 and 108 of new intermediate container 60. Thereby, the used intermediate container 60 is replaced with a new intermediate container 60.
  • the flow rate of the culture supernatant liquid 29 flowing into the inlet 102 by the delivery pump 35 is constant. Further, the flow rate of the culture supernatant liquid 29 flowing out from the outlet 106 by the first supply pump 62 is also constant. Furthermore, the outflow speed of the culture supernatant liquid 29 from the outflow port 106 is faster than the inflow speed of the culture supernatant liquid 29 from the inflow port 102 . Note that the outflow speed of the culture supernatant 29 from the outflow port 106 should be faster than the inflow speed of the culture supernatant 29 from the inflow port 102 by 1% or more and 30% or less, more preferably 2% or more and 20% or more. % or less faster.
  • a hanging tool 111 is attached to the upper part 110 of the intermediate container 60. With this hanging tool 111, the intermediate container 60 can be hung from the hook 112 for use.
  • An electronic spring balance 113 is attached to the hook 112.
  • the electronic spring balance 113 measures the amount of culture supernatant liquid 29 in the intermediate container 60 by measuring the weight of the intermediate container 60 suspended from the hook 112 .
  • the electronic spring balance 113 has an empty intermediate container 6 0 and the weight of the hook 112 are stored in advance.
  • the electronic spring balance 113 calculates the liquid volume of the culture supernatant liquid 29 in the intermediate container 60 by subtracting the weight of the empty intermediate container 60 and the weight of the hook 112 from the measured weight of the intermediate container 60. , output this as the measurement result.
  • the electronic spring balance 113 transmits the measurement result of the liquid amount to the control device 13. Note that the electronic spring balance 113 is further attached to a hook of a hanging stand (not shown). Note that the electronic spring balance 113 may output the weight of the intermediate container 60 as a measurement result to the control device 13, and the control device 13 may convert the weight to the liquid amount. Alternatively, the weight of the intermediate container 60 itself may be treated as the volume of the culture supernatant liquid 29.
  • a computer that constitutes the control device 13 includes a storage 120, a memory 121, a CPU (Central Processing Unit) 122, a communication section 123, a display 124, and an input device 125. These are interconnected via bus line 126.
  • a storage 120 a storage 120, a memory 121, a CPU (Central Processing Unit) 122, a communication section 123, a display 124, and an input device 125. These are interconnected via bus line 126.
  • CPU Central Processing Unit
  • the storage 120 is a hard disk drive built into the computer constituting the control device 13 or connected via a cable or network. Alternatively, the storage 120 is a disk array in which a plurality of hard disk drives are connected in series.
  • the storage 120 stores control programs such as an operating system, various application programs, and various data accompanying these programs. Note that a solid state drive may be used instead of the hard disk drive.
  • the memory 121 is a work memory for the CPU 122 to execute processing.
  • the CPU 122 loads the program stored in the storage 120 into the memory 121 and executes processing according to the program. Thereby, the CPU 122 centrally controls each part of the computer. Note that the memory 121 may be built into the CPU 122.
  • the communication unit 123 controls transmission of various information to and from external devices.
  • the display 124 displays various screens. Various screens are provided with operation functions using a GUI (Graphical User Interface).
  • the computer constituting the control device 13 receives operation instructions from the input device 125 through various screens.
  • the input device 125 is a keyboard, a mouse, a touch panel, a microphone for voice input, or the like.
  • a control program 130 is stored in the storage 120 of the control device 13.
  • the control program 130 is an application program for causing the computer to function as the control device 13.
  • the storage 120 also stores data for various screens to be displayed on the display 124.
  • the CPU 122 of the computer constituting the control device 13 functions as a culture section control section 135, an intermediate section control section 136, and a purification section control section 137 in cooperation with the memory 121 and the like.
  • the culture section control section 135 controls the operation of the culture section 10
  • the intermediate section control section 136 controls the operation of the intermediate section 11
  • the purification section control section 137 controls the operation of the purification section 12 .
  • the culture unit control unit 135 receives the measurement result of the flow rate of the culture supernatant liquid 29 from the flow meter 36.
  • the culture unit control unit 135 controls the flow rate of the culture supernatant 29 based on the measurement results. More specifically, the culture unit control unit 135 transmits a control signal to the delivery pump 35 to set the flow rate of the culture supernatant 29 to a preset value. Through such control, the flow rate of the culture supernatant liquid 29 flowing into the sterile filter 44 and the flow rate of the culture supernatant liquid 29 flowing into the inlet 102 of the intermediate container 60 become constant.
  • the culture unit control unit 135 also controls the supply amount of the culture solution 16 through the culture solution supply path 19, the supply amount of oxygen-containing gas through the sparger 23 and the gas supply path 24, and the stirring blade 25. Controls the rotation speed, etc.
  • the intermediate control section 136 sends control signals to the pinch valves 43, 50, and 70.
  • the control signal is a signal that transmits either an instruction not to cause current to flow through a coil such as the pinch valve 43, or an instruction to cause current to flow.
  • the pinch valve 43 or the like opens the flow path.
  • the pinch valve 43 and the like close the flow path.
  • a control signal that transmits an instruction not to apply current to the coil will be referred to as a control signal (open).
  • a control signal that transmits an instruction to cause current to flow through the coil is referred to as a control signal (closed).
  • the intermediate control unit 136 receives the measurement result of the flow rate of the culture supernatant liquid 29 from the flow meter 63.
  • the intermediate controller 136 controls the flow rate of the culture supernatant 29 based on the measurement results. More specifically, the intermediate controller 136 transmits a control signal to the first supply pump 62 to set the flow rate of the culture supernatant 29 to a preset value. Through such control, the flow rate of the culture supernatant 29 from the outlet 106 becomes constant.
  • the intermediate control unit 136 When receiving an instruction to collect the culture supernatant 29 for sampling through the input device 125, the intermediate control unit 136 transmits a control signal to the second supply pump 69 to operate the second supply pump 69. Further, the intermediate control section 136 transmits a control signal (open) to the pinch valve 70. As a result, the culture supernatant 29 flows into the sampling container 64.
  • the intermediate control unit 136 receives the measurement result of the amount of culture supernatant 29 in the intermediate container 60 from the electronic spring balance 113.
  • the intermediate control unit 136 operates or stops the first supply pump 62 based on the measurement result of the liquid amount.
  • the intermediate section control section 136 transmits a signal indicating that the first supply pump 62 has been operated to the purification section control section 137. Further, the intermediate section control section 136 transmits a signal indicating that the operation of the first supply pump 62 has been stopped to the purification section control section 137.
  • the purification unit control unit 137 transmits a control signal to the SPTFF device 80 and the immunoaffinity chromatography device 81.
  • the SPTFF device 80 and the immunoaffinity chromatography device 81 operate built-in pumps, valves, etc. according to control signals.
  • the purification unit control unit 137 also sends a control signal to the ion affinity chromatography device 86.
  • the purification unit control unit 137 receives an error signal from the SPTFF device 80 or the immunoaffinity chromatography device 81.
  • the error signal is generated from the SPTFF device 80 or the immunoaffinity chromatography device 81 when some kind of malfunction occurs in the SPTFF device 80 or the immunoaffinity chromatography device 81.
  • the purification unit control unit 137 also receives an error signal from the ion affinity chromatography device 86. Some malfunctions include, for example, a failure of the pump in the SPTFF device 80 or the immunoaffinity chromatography device 81, or clogging of a column in the immunoaffinity chromatography device 81.
  • the refining section control section 137 transmits an error signal to the intermediate section control section 136.
  • a notification signal indicating this is sent to the purification unit control unit 137 from the SPTFF device 80, immunoaffinity chromatography device 81, or ion affinity chromatography device 86. emitted towards.
  • the intermediate section control section 136 When receiving an error signal from the purification section control section 137, the intermediate section control section 136 transmits a control signal (close) to the pinch valve 43, and then transmits a control signal (open) to the pinch valve 50. Thereby, the flow path of the culture supernatant 29 is switched from the connection path 41 to the branch path 42. That is, the intermediate control unit 136 performs control to switch the flow path of the culture supernatant 29 from the connection path 41 to the branch path 42 when the purification unit 12 outputs an error signal indicating that a malfunction has occurred.
  • the culture supernatant 29 flows into the tank 45 through the branch path 42, the inflow tube 48, and the inlet 47.
  • the intermediate section control section 136 transmits a control signal (close) to the pinch valve 50 and then closes the pinch valve.
  • a control signal (open) is sent to the valve 43 to control the flow path of the culture supernatant 29 from the branch path 42 to return to the connection path 41.
  • the liquid amount is preset between the storage upper limit amount UL and the storage lower limit amount LL of the intermediate container 60.
  • the intermediate control unit 136 operates (turns on) the first supply pump 62 to start outflowing the culture supernatant 29 through the outflow port 106.
  • the purification section control section 137 operates (turns on) the purification section 12. .
  • the intermediate part control unit 136 operates the first supply pump 62. is stopped (turned off) to stop the outflow of the culture supernatant liquid 29 through the outflow port 106.
  • the purification section control section 137 stops the operation of the purification section 12. (off). That is, the purification unit 12 operates intermittently while the culture supernatant 29 is flowing out from the outlet 106, and stops operating while the culture supernatant 29 is not flowing out from the outlet 106. I do.
  • the storage lower limit amount LL, the storage upper limit amount UL, and the set amount PL are also taken as the weight of the intermediate container 60.
  • 3 kg is the storage lower limit amount LL
  • 7 kg is the storage upper limit amount UL
  • the set amount PL is 5 kg.
  • the flow rate of the culture supernatant 29 from the culture section 10 to the inlet 102 is constant. Therefore, the amount of culture supernatant 29 increases linearly. Further, as described above, the flow rate of the culture supernatant liquid 29 from the outlet 106 to the purification unit 12 is also constant. Therefore, the amount of culture supernatant 29 decreases linearly.
  • the slope of the straight line indicating the increase in the amount of the culture supernatant 29 represents the amount of increase in the amount of the culture supernatant 29 per unit time, that is, the inflow speed of the culture supernatant 29 from the inlet 102.
  • the slope of the straight line indicating the decrease in the volume of the culture supernatant 29 indicates the amount of decrease in the volume of the culture supernatant 29 per unit time. It does not match the outflow velocity. This is because even while the culture supernatant 29 is flowing out from the outlet 106, the culture supernatant 29 continues to flow in from the inlet 102.
  • the outflow speed of the culture supernatant 29 from the outflow port 106 is faster than the inflow speed of the culture supernatant 29 from the inflow port 102. Therefore, while the culture supernatant 29 is flowing out from the outflow port 106, if the culture supernatant 29 flowing in from the inflow port 102 is subtracted, the volume of the culture supernatant 29 decreases.
  • the slope of the straight line representing the increase in the amount of culture supernatant 29 is steeper than the slope of the straight line representing the increase in the amount of culture supernatant 29.
  • the culture supernatant 29 while the culture supernatant 29 is flowing out from the outflow port 106, it also includes the culture supernatant 29 flowing in from the inflow port 102.
  • the difference between the inflow speed of the culture supernatant liquid 29 from the inflow port 102 and the outflow speed of the culture supernatant liquid 29 from the outflow port 106 is small. Therefore, the slope of the straight line representing the decrease in the amount of culture supernatant 29 is gentler than the slope of the straight line representing the increase in the amount of culture supernatant 29, as shown in the figure.
  • the constant flow rate of the culture supernatant 29 from the outlet 106 to the purification unit 12 means that the intermediate control unit 136 operates the first supply pump 62 to allow the culture supernatant 29 to flow through the outlet 106. This means that the flow rate is constant from when the culture supernatant 29 starts flowing out until when the first supply pump 62 stops operating and the culture supernatant 29 stops flowing out through the outlet 106.
  • the upper limit storage amount UL of the intermediate container 60 is within the range of formula (3) below. 0.5MC ⁇ UL ⁇ 1.0MC...(3) In this way, the storage upper limit amount UL does not necessarily match the maximum storage amount MC.
  • the storage lower limit amount LL of the intermediate container 60 is within the range of the following formula (4). 0.1MC ⁇ LL ⁇ 0.5MC...(4) In this way, the storage lower limit amount LL is a value larger than zero.
  • the set amount PL is expressed, for example, by the following formula (5).
  • the set amount PL is not limited to the above equation (5).
  • antibody-producing cells 17 are seeded in the culture tank 14 of the culture unit 10 and cultured in the culture solution 16.
  • antibodies 18 are produced from the antibody-producing cells 17, and the antibodies 18 are dispersed in the culture medium 16.
  • the culture solution 16 is delivered to the cell removal filter 15 via the culture solution delivery/recovery path 22 and entrance/exit 27.
  • Antibody producing cells 17 are removed from the culture solution 16 by the filter membrane 28 of the cell removal filter 15, and the culture solution 16 is turned into a culture supernatant 29.
  • the culture supernatant 29 flows out from the outlet 33 into the connecting path 34 and is sent downstream by the delivery pump 35.
  • a control signal according to the measurement result of the flowmeter 36 is transmitted from the culture unit control unit 135 to the delivery pump 35, and thereby the flow rate of the culture supernatant liquid 29 is controlled to be constant based on the measurement result of the flowmeter 36. be done.
  • the culture supernatant liquid 29 flows from the connecting path 34 into the connecting path 41 and passes through the pinch valve 43 and the sterile filter 44 . By passing through the sterile filter 44, impurities other than the antibody 18 in the culture supernatant 29 are removed.
  • the culture supernatant 29 that has passed through the sterile filter 44 flows into the inlet 102 of the intermediate container 60 via the connection path 58 and the inflow tube 103, and flows into the intermediate container 60 through the inlet 102. As a result, the culture supernatant 29 is stored in the intermediate container 60.
  • the amount of culture supernatant 29 in intermediate container 60 is measured by electronic spring balance 113.
  • the measurement result of the amount of culture supernatant liquid 29 is transmitted from the electronic spring balance 113 to the intermediate control section 136.
  • the operation of the first supply pump 62 is stopped by the intermediate controller 136 until the amount of culture supernatant 29 does not reach the set amount PL (NO in step ST110 in FIG. 7). and the operation of the refining section 12 is stopped by the refining section control section 137 (step ST100).
  • the first supply pump 62 is operated by the intermediate controller 136, The culture supernatant 29 starts flowing out.
  • the purification unit 12 is operated by the purification unit control unit 137 (step ST120). In the purification section 12, the antibody 18 in the culture supernatant 29 is continuously purified by the SPTFF device 80 and the immunoaffinity chromatography device 81, and finally a biopharmaceutical drug substance 89 is obtained.
  • step ST130 Until the volume of the culture supernatant 29 reaches the storage lower limit LL (NO in step ST130), the intermediate section control section 136 continues the operation of the first supply pump 62, and the purification section control section 137 continues the purification process.
  • the operation of section 12 continues (step ST120).
  • the operation of the first supply pump 62 is stopped by the intermediate section control section 136, and the Outflow of culture supernatant 29 through outlet 106 is stopped. Further, the operation of the refining section 12 is stopped by the refining section control section 137 (step ST100).
  • the intermediate section control section 136 sends a control signal (open) to the pinch valve 43 and a control signal (closed) to the pinch valve 50, respectively.
  • the connection path 41 is opened and the branch path 42 is closed. In this way, the culture supernatant 29 flows from the connecting path 34 into the connecting path 41 .
  • an error signal is issued from the SPTFF device 80 or the like to the purification section control section 137.
  • the error signal is sent from the refiner controller 137 to the intermediate controller 136.
  • the intermediate control unit 136 transmits a control signal (close) to the pinch valve 43 and then transmits a control signal (open) to the pinch valve 50.
  • the connection path 41 is closed and the branch path 42 is opened.
  • the culture supernatant 29 flows into the tank 45. This state in which the culture supernatant liquid 29 is flowed into the tank 45 and temporarily stored will continue until the problem in the purification section 12 is resolved.
  • the intermediate section control section 136 transmits a control signal (close) to the pinch valve 50 and then transmits a control signal (open) to the pinch valve 43.
  • the connection path 41 is opened again, the branch path 42 is closed, and the culture supernatant 29 flows into the connection path 41 from the connection path 34 .
  • a control signal is transmitted from the intermediate control unit 136 to the second supply pump 69, and the second supply pump 69 is operated. Further, a control signal (open) is transmitted from the intermediate control section 136 to the pinch valve 70. As a result, the culture supernatant 29 flows into the sampling container 64.
  • the culture section 10 and the purification section 12 are connected through the connection paths 34, 41, 58, and 61.
  • the culture unit 10 cultivates antibody-producing cells 17 in a culture solution 16 stored in a culture tank 14 and removes the antibody-producing cells 17 from the culture solution 16 using a cell removal filter 15 to obtain a culture supernatant containing antibodies 18.
  • a culture step to obtain No. 29 is carried out.
  • the purification unit 12 performs a purification process to obtain a biopharmaceutical drug substance 89 by purifying the antibody 18 from the culture supernatant 29 .
  • the purification section 12 includes a purification process using a purification filter 82 of the SPTFF type.
  • a sterile filter 44 having a larger pore diameter than the cell removing filter 15 is provided in the connecting path 41, and the culture supernatant liquid 29 flowing from the culture section 10 to the purification section 12 through the connecting path 41 is filtered by the sterile filter 44.
  • the purification section 12 includes a purification process using the SPTFF type purification filter 82
  • the following effects are achieved. That is, according to the purification process using the SPTFF type purification filter 82, the antibody 18 can be purified by circulating the culture supernatant 29 once. Traditional circulating purification processes require additional pumps and tanks and are complicated to operate. Additionally, the risk of contamination is high due to the complex configuration.
  • the purification process using the SPTFF purification filter 82 no additional pump or tank is required and the workability is good. Furthermore, since the configuration is simple, the risk of contamination is low.
  • impurities in the culture supernatant 29 can be effectively removed. Therefore, the load on the downstream immunoaffinity chromatography device 81 is reduced, and the risk of problems such as clogging of the column of the immunoaffinity chromatography device 81 can be reduced. Therefore, it is possible to suppress deterioration in maintainability.
  • the sterile filter 44 has a larger pore diameter than the cell removal filter 15.
  • the cell removal filter 15 has a smaller pore diameter than the sterile filter 44. Therefore, most of the impurities in the culture supernatant 29 are removed by the cell removal filter 15. As a result, the load on the sterile filter 44 located downstream is reduced, and problems such as clogging of the sterile filter 44 are less likely to occur. Therefore, it is possible to suppress deterioration in maintainability.
  • the sterile filter 44 may have a two-layer filter membrane having a pore diameter that satisfies the following conditions. Conditions: Even if 10 7 /cm 2 of indicator bacteria are loaded on the upstream side, it is possible to obtain a sterile liquid on the downstream side.
  • the next step after the purification step using the SPTFF purification filter 82 is a single column purification step using the immunoaffinity chromatography device 81. Therefore, compared to the case where a purification process is performed using a plurality of chromatography apparatuses each having a different column, the possibility of occurrence of a problem can be reduced.
  • the antibody 18 can be sufficiently concentrated in a shorter time than when a chromatography device is used. Therefore, even if the next step of the purification process using the SPTFF type purification filter 82 is a purification process using the single column immunoaffinity chromatography device 81, in other words, the SPTFF type purification filter 82 can be used. Highly pure antibody 18 can be obtained even if the next step after the first purification step is not a purification step using a plurality of chromatography devices each having a different column.
  • the SPTFF type purification filter 82 does not require maintenance such as stopping the flow of the culture supernatant liquid 29 and washing it, unlike a column of a chromatography device, and allows the culture supernatant liquid 29 to continue flowing. Therefore, it is compatible with the mode in which the purification unit 12 is operated while the culture supernatant liquid 29 is flowing out from the outlet 106.
  • the culture supernatant liquid 29 can be filtered using the sterile filter 44 having a relatively small filtration area FA with respect to the maximum capacity MCC of the culture tank 14.
  • the pore size of the sterile filter 44 is larger than the purification filter 82 of the SPTFF device 80. Therefore, the load on the sterile filter 44 is further reduced, and problems such as clogging of the sterile filter 44 are less likely to occur. Therefore, it becomes possible to further suppress deterioration in maintainability.
  • the pore diameter of the sterile filter 44 is 0.1 ⁇ m or more and 1.0 ⁇ m or less. Therefore, impurities in the culture supernatant 29 can be effectively captured.
  • the sterile filter 44 has a structure made by folding flat filter paper.
  • the sterile filter 44 which is constructed by folding flat filter paper, is relatively inexpensive. Therefore, the cost of the sterile filter 44 can be reduced.
  • the material of the sterile filter 44 is polyether sulfone. Polyether sulfone has high filterability and is resistant to clogging. For this reason, it becomes possible to further suppress deterioration in maintainability.
  • the culture supernatant 29 is sent from the culture section 10 toward the purification section 12 by the delivery pump 35 provided upstream of the sterile filter 44 in the connection line such as the connection path 34.
  • the delivery pump 35 is provided downstream of the sterile filter 44, it is possible to reduce the possibility that the sterile filter 44 will become clogged with air bubbles from the delivery pump 35.
  • the culture supernatant 29 is temporarily stored in an intermediate container 60 provided downstream of the sterile filter 44 in a connection line such as the connection path 34. Therefore, the culture supernatant liquid 29 can be continuously purified by the purification section 12 without any delay.
  • the flow rate of the culture supernatant liquid 29 to the sterile filter 44 is constant. Therefore, the state of the culture supernatant liquid 29 flowing into the sterile filter 44 can be kept constant.
  • the culture supernatant liquid 29 is caused to flow into the sampling container 64 connected downstream of the sterile filter 44 in the connecting path 41.
  • the sampling container 64 is connected upstream of the sterile filter 44, there is a risk that bacteria and the like may enter the culture section 10 from the branch path 59 including the sampling container 64 and the like, and the culture section 10 may be contaminated.
  • the sterile filter 44 prevents the entry of bacteria and the like from the branch path 59, the sterile state upstream of the sterile filter 44 can be maintained.
  • the culture supernatant liquid 29 is caused to flow into the sampling container 64 by the second supply pump 69 provided in the branch path 59 connecting the connecting paths 41 and 58 and the sampling container 64. Therefore, the culture supernatant 29 can be reliably flowed into the sampling container 64. Further, since the second supply pump 69 acts like a valve, invasion of bacteria and the like from the downstream side of the second supply pump 69 can be suppressed.
  • Biopharmaceuticals containing Antibody 18 as an active ingredient are called antibody drugs and are widely used to treat chronic diseases such as cancer, diabetes, and rheumatoid arthritis, as well as rare diseases such as hemophilia and Crohn's disease. . Therefore, according to this example, in which the cells are antibody-producing cells 17 derived from CHO cells and the products are proteins, especially antibodies 18, it is possible to contribute to the development of antibody drugs that are widely used in the treatment of various diseases. I can do it.
  • a liquid level sensor 140 is provided in the upper part 110 of the intermediate container 60. Then, the liquid level of the culture supernatant liquid 29 in the intermediate container 60 is measured by detecting the position of the liquid level of the culture supernatant liquid 29 in the intermediate container 60 using the liquid level sensor 140 .
  • the liquid level sensor 140 is, for example, a reflective photosensor (also called a photoreflector).
  • the liquid level sensor 140 detects the position of the liquid level of the culture supernatant liquid 29 based on the difference in intensity of the received reflected light.
  • the liquid level sensor 140 refers to a data table showing the relationship between the position of the liquid level of the culture supernatant 29 and the amount of the culture supernatant 29 in the intermediate container 60, and detects the detected culture supernatant 29.
  • the position of the liquid level is converted into the liquid volume of the culture supernatant liquid 29 in the intermediate container 60, and this is output as a measurement result.
  • the liquid level sensor 140 transmits the measurement result of the liquid amount to the control device 13.
  • the liquid level sensor 140 outputs the liquid level position of the culture supernatant liquid 29 as a measurement result to the control device 13, and the control device 13 converts the liquid level position of the culture supernatant liquid 29 into a liquid volume. It's okay.
  • the position of the liquid level itself may be treated as the liquid volume of the culture supernatant liquid 29.
  • the amount of culture supernatant 29 in intermediate container 60 is measured by measuring the position of the liquid level of culture supernatant 29. Therefore, even in a situation where it is difficult to measure the weight of the intermediate container 60, the amount of culture supernatant liquid 29 in the intermediate container 60 can be measured.
  • the liquid level sensor may use ultrasonic waves.
  • the flow rate of the culture supernatant liquid 29 from the outlet 106 to the purification unit 12 is constant, but the flow rate is not limited to this.
  • the intermediate control unit 136 controls the operation of the first supply pump 62 to control the culture supernatant flowing into the purification filter 82 of the SPTFF device 80.
  • the flow rate of No. 29 is varied at set intervals SI.
  • the set interval SI is set between 2 minutes and 30 minutes (2 minutes ⁇ SI ⁇ 30 minutes).
  • the maximum value FRmax of the flow rate of the culture supernatant liquid 29 is more than half of the minimum value FRmin (FRmax ⁇ 0.5FRmin). That is, the flow rate of the culture supernatant liquid 29 flowing into the purification filter 82 fluctuates by 50% or more.
  • the amount of the culture supernatant 29 in the intermediate container 60 decreases not in a straight line but in a polygonal line, as shown in FIG. 10 as an example.
  • the flow rate of the culture supernatant liquid 29 flowing into the purification filter 82 is varied by 50% or more at the set interval SI set between 2 minutes and 30 minutes.
  • the set interval SI is less than 2 minutes, the rinsing effect will be enhanced, but the flow rate of the culture supernatant 29 will fluctuate too frequently, making it impossible to sufficiently concentrate the antibody 18.
  • the set interval SI is longer than 30 minutes, the rinsing effect will be reduced and the purification filter 82 will be more likely to become clogged.
  • the range of variation is less than 50%, the rinsing effect is still reduced and the purification filter 82 is likely to become clogged. For this reason, the set interval SI is set between 2 minutes and 30 minutes, and the range of flow rate fluctuation is set at 50% or more.
  • the sterile filter 44 is described as one, but the present invention is not limited to this. As an example, as shown in FIG. 11, a plurality of sterile filters 44 may be used.
  • FIG. 11 shows an example using two sterile filters 44A and 44B.
  • three-way joints 145 and 146 are provided in the connection path 41 upstream of the pinch valve 43 and downstream of the sterile filter 44A.
  • a branch passage 147 is connected to the three-way joints 145 and 146, and a pinch valve 148 and a sterile filter 44B are provided in the branch passage 147.
  • the sterile filter 44B is also sterilely connected to the branch path 147 via sterile connectors 90 and 92 and the like.
  • the integrated flow rate of the culture supernatant liquid 29 is determined from an integrated flow meter 96A built in the sterile filter 44A and an integrated flow meter 96B built in the sterile filter 44B.
  • the measurement results are input to the intermediate section control section 136.
  • the intermediate control unit 136 compares the measurement result of the integrated flow rate of the culture supernatant liquid 29 and the set amount SIF.
  • the set amount SIF is set between 1000 L/m 2 and 10000 L/m 2 as explained in FIG. 2 of the first embodiment.
  • the intermediate control unit 136 transmits a control signal to the pinch valves 43 and 148 when the measurement result of the integrated flow rate of the culture supernatant 29 reaches the set amount SIF.
  • FIG. 13A a control signal (open) is sent to the pinch valve 43 and a control signal (closed) to the pinch valve 148 from the intermediate control unit 136, and the sterile filter 44A of the connection path 41 is used to perform the culture.
  • a state in which the clear liquid 29 is being filtered is shown.
  • the intermediate controller 136 controls the flow rate as shown in FIG. 13B.
  • FIG. 3 after transmitting a control signal (close) to the pinch valve 43, a control signal (open) is transmitted to the pinch valve 148.
  • the flow path of the culture supernatant liquid 29 is switched from the connection path 41 to the branch path 147, and the culture supernatant liquid 29 flows into the sterile filter 44B of the branch path 147. That is, when the cumulative flow rate of culture supernatant liquid 29 of one of the plurality of sterile filters 44 reaches the set amount SIF, intermediate control unit 136 switches the use to another sterile filter 44 .
  • a sterile filter 44B connected in parallel to the connection path 41 is used. Therefore, the effort required to replace the sterile filter 44 can be reduced. Note that the number of sterile filters 44 connected in parallel to the connecting path 41 is not limited to the one illustrated, but may be two or more.
  • the sterile filter 44 has the filter membranes 99 and 100 each having a structure of folded flat filter paper made of polyether sulfone, but the present invention is not limited thereto.
  • a sterile filter 150 shown in FIG. 14 may be used.
  • the sterile filter 150 has a filter membrane 151 having a structure in which hollow fibers made of polyethersulfone are bundled.
  • a sterile filter 150 having such a filter membrane 151 is called a hollow fiber filter.
  • the filter membrane 151 which has a structure of bundled hollow fibers, has a rinsing effect. Therefore, the sterile filter 150 can be replaced less frequently than the sterile filter 44, which has filter membranes 99 and 100 having a structure of folded flat filter paper. Note that the filter membrane 151 may also have a two-layer structure like the filter membranes 99 and 100 of the first embodiment.
  • sterile connector 46 and the like are illustrated as a means for sterile connection, the present invention is not limited thereto.
  • Aseptic connections may be made by heat welding.
  • the pinch valve 43 and the like are illustrated as non-wetted valves, the present invention is not limited thereto. Instead of the pinch valve 43 or the like, a non-electrified (manual) tube clamp may be used. As the tube clamp, a screw type, alligator type, roller type, ratchet type, etc. can be adopted.
  • the purification section 12 may be provided with an indicator such as a warning light to notify the user that a malfunction has occurred in the purification section 12. In this case, it is not necessary to issue an error signal from the SPTFF device 80 or the immunoaffinity chromatography device 81 to the purification unit control unit 137.
  • the product is not limited to antibody 18.
  • antibody 18 There is no particular limitation as long as it can be used as a drug substance for biopharmaceuticals, but proteins other than antibodies 18, peptides, nucleic acids (DNA, RNA (ribonucleic acid)), lipids, viruses, virus subunits, virus-like particles, etc. can also be used. good.
  • the hardware structure of the processing unit that executes various processes is as follows.
  • various types of processors shown can be used.
  • various processors include the CPU 122, which is a general-purpose processor that executes software (control program 130) and functions as various processing units, as well as FPGA (Field Programmable Gate Array), etc.
  • Dedicated to execute specific processing such as programmable logic devices (PROGRAMMABLE LOGIC DEVICE: PLD), ASIC (APPLICICIFIC INTEGRATED CIRCUIT), which is a processor that can change the circuit configuration.
  • PROGRAMMABLE LOGIC DEVICE: PLD programmable logic devices
  • ASIC APPLICICIFIC INTEGRATED CIRCUIT
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs and/or a CPU and (in combination with FPGA). Further, the plurality of processing units may be configured with one processor.
  • one processor is configured with a combination of one or more CPUs and software, as typified by computers such as clients and servers.
  • a processor functions as multiple processing units.
  • SoC system-on-chip
  • various processing units are configured using one or more of the various processors described above as a hardware structure.
  • an electric circuit that is a combination of circuit elements such as semiconductor elements can be used.
  • a and/or B has the same meaning as “at least one of A and B.” That is, “A and/or B” means that it may be only A, only B, or a combination of A and B. Furthermore, in this specification, even when three or more items are expressed in conjunction with “and/or”, the same concept as “A and/or B" is applied.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Reproductive Health (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

培養槽に貯留された培養液内において細胞を培養し、除細胞フィルタにより培養液から細胞を除くことで細胞の生産物を含む培養上清液を得る培養工程を行う培養部と、培養上清液から生産物を精製することでバイオ医薬品の原薬を得る精製工程を行う精製部であって、シングルパスタンジェンシャルフロー濾過方式の精製フィルタを用いた精製工程を含む精製部とを連結ラインにて連結し、除細胞フィルタよりも大きい孔径を有する無菌フィルタを連結ラインに設け、連結ラインを通じて培養部から精製部に流入する培養上清液を、無菌フィルタにより濾過する、バイオ医薬品の原薬の製造方法。

Description

バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬
 本開示の技術は、バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬に関する。
 チャイニーズハムスター卵巣細胞(CHO細胞(Chinese Hamster Ovary cells))に抗体遺伝子を組み込んだ抗体生産細胞等の細胞を培養することで抗体等の細胞の生産物を得て、生産物を精製することでバイオ医薬品の原薬を得ることが広く行われている。こうしたバイオ医薬品の原薬の製造においては、従来、細胞の培養工程と生産物の精製工程とを別々に行うバッチ生産が行われていたが、近年、バッチ生産に代わって連続生産が主流となってきている。連続生産は、培養槽等を含む培養工程を行う培養部と、クロマトグラフィー装置等を含む精製工程を行う精製部とを物理的に連結して、培養工程と精製工程を一貫して連続的に行う方法である。この連続生産によれば、バッチ生産よりも原薬の品質および生産性を大幅に高めることができる。
 特開2020-033364号公報および特表2018-518161号公報には、連続生産によるバイオ医薬品の原薬の製造システムが記載されている。特開2020-033364号公報および特表2018-518161号公報に記載の製造システムでは、培養部と精製部との間に無菌フィルタが設けられている。無菌フィルタは、培養部から精製部に流入する培養上清液を濾過する。培養上清液は、培養部に設けられた除細胞フィルタにより細胞の培養液から細胞を除くことで得られ、主として生産物を含む。無菌フィルタによれば、精製部から培養部への細菌の侵入を防ぐことができ、培養上清液の汚染の懸念を低減することが可能となる。
 特開2020-033364号公報および特表2018-518161号公報においては、上流に位置する除細胞フィルタの孔径として0.2μmが例示されている。また、特開2020-033364号公報および特表2018-518161号公報においては、下流に位置する無菌フィルタの孔径として、除細胞フィルタと同じ0.2μm、あるいは除細胞フィルタよりも大きい数値が例示されている。また、特開2020-033364号公報および特表2018-518161号公報においては、主としてクロマトグラフィー装置によって精製工程を行っている。
 無菌フィルタの孔径を、特開2020-033364号公報および特表2018-518161号公報のように除細胞フィルタと同じ、または除細胞フィルタよりも大きくした場合、下流に位置する無菌フィルタに掛かる負荷が軽減される。このため、無菌フィルタに詰まりといった不具合が発生しにくくなり、メンテナンス性が向上する。
 しかしながら、主としてクロマトグラフィー装置によって精製工程を行った場合は、不具合が発生しやすいといった理由でメンテナンス性が低下する。
 本開示の技術に係る1つの実施形態は、メンテナンス性の低下を抑制することが可能なバイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬を提供する。
 本開示のバイオ医薬品の原薬の製造方法は、培養槽に貯留された培養液内において細胞を培養し、除細胞フィルタにより培養液から細胞を除くことで細胞の生産物を含む培養上清液を得る培養工程を行う培養部と、培養上清液から生産物を精製することでバイオ医薬品の原薬を得る精製工程を行う精製部であって、シングルパスタンジェンシャルフロー濾過方式の精製フィルタを用いた精製工程を含む精製部とを連結ラインにて連結し、除細胞フィルタよりも大きい孔径を有する無菌フィルタを連結ラインに設け、連結ラインを通じて培養部から精製部に流入する培養上清液を、無菌フィルタにより濾過する。
 シングルパスタンジェンシャルフロー濾過方式の精製フィルタを用いた精製工程の次の工程は、クロマトグラフィー装置を用いた精製工程であることが好ましい。
 クロマトグラフィー装置は単カラムであることが好ましい。
 連結ラインに設けられた無菌フィルタに加えて、連結ラインに並列に接続された無菌フィルタを用いることが好ましい。
 培養槽の最大収容量をMCC、無菌フィルタの濾過面積をFAとした場合、0.001m/L≦(FA/MCC)≦0.01m/Lであることが好ましい。
 無菌フィルタの孔径は、シングルパスタンジェンシャルフロー濾過方式の精製フィルタの孔径よりも大きく、0.1μm以上1.0μm以下であることが好ましい。
 無菌フィルタは、平坦な濾紙を折り畳んだ構造であることが好ましい。
 無菌フィルタは、中空の繊維を束ねた構造であることが好ましい。
 無菌フィルタの材料は、ポリエーテルスルホンであることが好ましい。
 連結ラインにおいて無菌フィルタの上流に設けた送出ポンプにより、培養部から精製部に向けて培養上清液を送り出すことが好ましい。
 連結ラインにおいて無菌フィルタの下流に設けた中間容器に、培養上清液を一時的に貯留させることが好ましい。
 無菌フィルタへの培養上清液の流量は一定であることが好ましい。
 無菌フィルタへの培養上清液の積算流量が1000L/m~10000L/mの間に設定された設定量に達した場合に、無菌フィルタを交換することが好ましい。
 精製フィルタに流入する培養上清液の流量を、2分~30分の間に設定された設定間隔で50%以上変動させることが好ましい。
 連結ラインにおいて無菌フィルタの下流に接続したサンプリング容器に培養上清液を流入させることが好ましい。
 連結ラインとサンプリング容器とを接続する分岐ラインに設けた供給ポンプにより、サンプリング容器に培養上清液を流入させることが好ましい。
 生産物はタンパク質であることが好ましい。
 細胞は、チャイニーズハムスター卵巣細胞由来の細胞であることが好ましい。
 本開示のバイオ医薬品の原薬の製造システムは、培養槽に貯留された培養液内において細胞を培養し、除細胞フィルタにより培養液から細胞を除くことで細胞の生産物を含む培養上清液を得る培養工程を行う培養部と、培養上清液から生産物を精製することでバイオ医薬品の原薬を得る精製工程を行う精製部であって、シングルパスタンジェンシャルフロー濾過方式の精製フィルタを用いた精製工程を含む精製部と、培養部と精製部とを連結する連結ラインと、連結ラインに設けられ、除細胞フィルタよりも大きい孔径を有する無菌フィルタであって、連結ラインを通じて培養部から精製部に流入する培養上清液を濾過する無菌フィルタと、を備える。
 本開示のバイオ医薬品の原薬は、上に記載のバイオ医薬品の原薬の製造方法によって製造されたものである。
 本開示の技術によれば、メンテナンス性の低下を抑制することが可能なバイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬を提供することができる。
バイオ医薬品の原薬の製造システムを示す図である。 無菌フィルタの周辺を示す図である。 無菌フィルタおよび中間容器の構造を示す図である。 制御装置を構成するコンピュータのブロック図である。 制御装置を構成するコンピュータのCPUのブロック図である。 中間容器内の培養上清液の液量の時間変化、第1供給ポンプの動作タイミング、および精製部の動作タイミングを示す図である。 制御装置の処理手順を示すフローチャートである。 培養上清液の液量の測定の仕方の別の例を示す図である。 シングルパスタンジェンシャルフロー濾過方式の精製フィルタに流入する培養上清液の流量の時間変化を示す図である。 図9で示した例の中間容器内の培養上清液の液量の時間変化を示す図である。 複数の無菌フィルタを用いる第2実施形態を示す図である。 第2実施形態の中間部制御部を示す図である。 第2実施形態の中間部制御部の処理を示す図であり、図13Aは、連結路の無菌フィルタへの培養上清液の積算流量が設定量に達する前、図13Bは、連結路の無菌フィルタへの培養上清液の積算流量が設定量に達した場合をそれぞれ示す。 無菌フィルタの別の例を示す図である。
 [第1実施形態]
 一例として図1に示すように、本開示の技術に係るバイオ医薬品の原薬の製造方法を実施するバイオ医薬品の原薬の製造システム2は、培養工程を行う培養部10、中間部11、精製工程を行う精製部12、および制御装置13を備える。培養部10は培養槽14と除細胞フィルタ15を有する。培養槽14には培養液(培養液ともいう)16が貯留されている。培養槽14には抗体生産細胞17が播種され、抗体生産細胞17は培養液16内において培養される。
 抗体生産細胞17は、例えば、チャイニーズハムスター卵巣細胞といった細胞に抗体遺伝子を組み込むことで樹立された細胞である。つまり、抗体生産細胞17は、本開示の技術に係る「チャイニーズハムスター卵巣細胞由来の細胞」の一例である。抗体生産細胞17は、生産物として、免疫グロブリン、すなわち抗体18を培養の過程で生産する。このため培養液中には抗体生産細胞17だけでなく抗体18も存在している。抗体18は例えばモノクロナール抗体であり、バイオ医薬品の有効成分となる。なお、抗体18は、本開示の技術に係る「タンパク質」の一例である。
 培養槽14には、培養液供給路19、ガス供給路20、排気路21、培養液送出・回収路22、スパージャー23、ガス供給路24、および撹拌翼25等が設けられている。培養液供給路19は、矢印Aで示すように、培養槽14内に新鮮な培養液16を継続的に供給するための流路である。つまり、培養部10は灌流培養を行う。ガス供給路20は、矢印Bで示すように、上部から空気および二酸化炭素を含むガスを供給するための流路である。排気路21は、矢印Cで示すように、ガス供給路20から供給されたガスを培養槽14外に排気するための流路である。排気路21には排気フィルタ26が設けられている。
 培養液送出・回収路22は、除細胞フィルタ15の出入口27に接続されている。培養液送出・回収路22は、矢印Dで示すように、培養槽14内の培養液16を除細胞フィルタ15に送り出すための流路である。また、培養液送出・回収路22は、矢印Eで示すように、除細胞フィルタ15からの培養液16(濃縮液)を培養槽14内に戻すための流路である。なお、図示は省略するが、培養液供給路19には、培養槽14内に培養液16を供給するポンプが設けられている。
 スパージャー23は、培養槽14の底部に配置されている。スパージャー23は、矢印Fで示すように、ガス供給路24から供給される酸素を含むガスを培養槽14内に放出する。スパージャー23から放出された酸素は培養液16中に溶解し、抗体生産細胞17の抗体18の生産活動の援けとなる。撹拌翼25は、モータ等により所定の回転数で回転され、培養槽14内の培養液16を撹拌する。これにより培養槽14内の培養液16の均質性が保たれる。培養槽14には、これらの他にも、培養液16の一部を意図的に抜き取るセルブリード処理のための流路等が設けられている。なお、撹拌翼25は、図示のように複数の羽根を有するものであってもよいし、ディスク状の1枚の羽根を有するものであってもよく、形状は特に限定されない。また、培養槽14内に2つ以上の撹拌翼25が配されていてもよい。
 除細胞フィルタ15は内部にフィルタ膜28を有する。フィルタ膜28は、抗体生産細胞17を捕捉し、抗体18を透過する。除細胞フィルタ15は、例えばタンジェンシャルフロー濾過(TFF:Tangential Flow Filtration)方式により、フィルタ膜28で培養液16から抗体生産細胞17を除くことで培養上清液29を得る。フィルタ膜28の孔径は、抗体生産細胞17といった細胞を培養液16から除くことが可能な大きさであれば特に限定されないが、0.01μm以上0.5μm以下であればよく、好ましくは0.1μm以上0.4μm以下であり、特に好ましくは0.15μm以上0.3μm以下である。フィルタ膜28の孔径は、一例では0.2μmである。なお、ここでいう孔径とは、平均孔径を意味する。平均孔径は水銀圧入法により測定することが可能である。
 より詳しくは、除細胞フィルタ15は、内部に弾性膜30を有するダイアフラムポンプ31と、脱気・供気路32とを有する。弾性膜30の下側の空気を脱気・供気路32から脱気しつつ、弾性膜30をダイアフラムポンプ31の下端に貼り付くように弾性変形させることで、培養槽14内の培養液16が、培養液送出・回収路22を介して除細胞フィルタ15内に流入する。また、弾性膜30の下側に脱気・供気路32から空気を供給しつつ、弾性膜30をダイアフラムポンプ31の上側に貼り付くように弾性変形させることで、フィルタ膜28を通過できなかった培養液16(濃縮液)が、培養液送出・回収路22を介して培養槽14内に戻される。
 培養上清液29は、矢印Gで示すように、除細胞フィルタ15の出口33から流出する。培養上清液29は主として抗体18を含む。培養上清液29は、抗体18の他に、細胞由来タンパク質・細胞由来DNA(Deoxyribonucleic Acid)、および抗体18の凝集物といった夾雑物、あるいはウイルス等も含む。
 除細胞フィルタ15の出口33には、連結路34が接続されている。連結路34には送出ポンプ35および流量計36が設けられている。送出ポンプ35は、出口33から流出した培養上清液29を下流の中間部11および精製部12に向けて送り出す。流量計36は、連結路34を流れる培養上清液29の流量を測定する。
 中間部11において、連結路34は、三方継手40を介して連結路41および分岐路42に無菌接続されている。連結路41には、ピンチバルブ43および無菌フィルタ44が設けられている。ピンチバルブ43および無菌フィルタ44は、連結路41において分岐路42との接続部である三方継手40よりも下流に設けられている。
 ピンチバルブ43は、培養上清液29の流路を連結路41から分岐路42に切り替えるためのバルブである。ピンチバルブ43は、例えばコイルと可動鉄心の作用により、連結路41を構成するチューブを弁体で外側から押し潰すことで連結路41を閉塞させるバルブである。ピンチバルブ43は、連結路41を構成するチューブを押し潰すことで、連結路41を介した培養部10から精製部12への培養上清液29の流入を遮断する。このように、ピンチバルブ43は外部からチューブを挟む方式であり、培養上清液29と接触することなく流路を切り替えることが可能である。なお、後述する他のピンチバルブ50および70も、弁体で押し潰すチューブが異なるだけで、ピンチバルブ43と同じ構成および作用を有するので、詳細な説明は省略する。また、後述するピンチバルブ56も、弁体で押し潰すチューブが異なり、かつ手動であることを除けば、ピンチバルブ43と同じ構成および作用を有するので、詳細な説明は省略する。
 無菌フィルタ44は、精製部12に流入する培養上清液29を濾過する。無菌フィルタ44は、除細胞フィルタ15のフィルタ膜28、並びに後述するシングルパスタンジェンシャルフロー濾過(以下、SPTFF(Single Pass Tangential Flow Filtration)と略す)装置80の精製フィルタ82よりも大きい孔径を有するフィルタ膜99およびフィルタ膜100(ともに図3参照)を内蔵している。フィルタ膜100は、フィルタ膜99よりも小さい孔径を有する。フィルタ膜99および100の孔径は、それぞれ以下の条件を満たす。
 フィルタ膜99の孔径:0.4μm以上2.0μm以下、好ましくは0.4μm以上1.0μm以下
 フィルタ膜100の孔径:0.1μm以上1.0μm以下、好ましくは0.1μm以上0.3μm以下
 分岐路42にはタンク45が接続されている。タンク45は、精製部12において何らかの不具合が生じた場合に、培養部10からの培養上清液29を一時的に貯留する。タンク45は、例えば、ポリオレフィン(PO:Polyolefin)、エチレン酢酸ビニル(EVA:Ethylene-Vinyl Acetate)コポリマーといった樹脂フイルムを直方体状に成形したものであり、可撓性を有する。また、タンク45は一度しか使用しないシングルユース製である。
 タンク45は、培養槽14における培養液16の量の0.2倍以上10倍以下の収容量をもつ。このため、例えば培養液16の量が50Lであった場合、タンク45の収容量は10L~500Lである。また、例えば培養液16の量が5000Lであった場合、タンク45の収容量は1000L~50000Lである。
 分岐路42の先端には無菌コネクタ46が設けられている。また、タンク45の培養上清液29の流入口47に接続された流入チューブ48の先端にも無菌コネクタ49が設けられている。これらの無菌コネクタ46および49を介して、分岐路42と流入チューブ48、ひいてはタンク45とが無菌接続される。これら無菌コネクタ46および49と三方継手40等によって、培養部10からタンク45までの培養上清液29の流路は全て無菌接続される。なお、無菌コネクタ46等(後述する無菌コネクタ53、55、65、および68等も含む)としては、例えば、グローバルライフサイエンステクノロジーズジャパン株式会社製のReadyMateTMDAC(Disposable Aseptic Connector)を用いることができる。
 分岐路42にはピンチバルブ50が設けられている。ピンチバルブ50は、分岐路42を介して培養上清液29をタンク45に流入させるためのバルブである。
 タンク45には、図示省略した液面センサが設けられている。この液面センサで培養上清液29が所定の水位に達したことが検知された場合、タンク45が培養上清液29で満たされたことを示す信号が制御装置13に送信される。
 タンク45の底部には排出口51が設けられている。排出口51には排出チューブ52が接続されている。排出チューブ52の先端には無菌コネクタ53が設けられている。排出チューブ52には廃液路54が接続されている。廃液路54の先端には無菌コネクタ55が設けられている。これらの無菌コネクタ53および55を介して、排出チューブ52、ひいてはタンク45と廃液路54とが無菌接続される。
 廃液路54には手動のピンチバルブ56が設けられている。ピンチバルブ56を開いた場合、タンク45に一時的に貯留された培養上清液29は、排出口51、排出チューブ52、および廃液路54を介して図示省略した廃液タンクに廃液される。なお、培養部10からの培養上清液29を直接廃液路54に廃液せずに、一旦タンク45に貯留してから廃液路54に廃液するのは、廃液路54からの汚染を防ぐためである。図示は省略するが、廃液路54と廃液タンクとの間に無菌フィルタを設置してもよい。
 タンク45は、ピンチバルブ56が手動で開かれて培養上清液29が廃液された後、無菌コネクタ46から無菌コネクタ49を取り外すことで分岐路42から分離される。無菌コネクタ46には新しいタンク45の無菌コネクタ49が取り付けられる。これにより、使用済みのタンク45が新しいタンク45に交換される。
 なお、分岐路42のピンチバルブ50の上流側にさらに分岐路を接続し、複数のタンク45を接続可能な構成としてもよい。また、タンク45と連結路41とを接続し、タンク45に一時的に貯留された培養上清液29を連結路41に戻し、精製部12に流入させてもよい。
 無菌フィルタ44の下流において、連結路41は、三方継手57を介して連結路58および分岐路59に無菌接続されている。連結路58には中間容器60が接続されている。中間容器60は、精製部12の手前において培養上清液29を一時的に貯留する。中間容器60には連結路61が接続されている。連結路61は精製部12に繋がっている。連結路61には第1供給ポンプ62および流量計63が設けられている。第1供給ポンプ62は、中間容器60内の培養上清液29を精製部12に供給する。流量計63は、連結路61を流れる培養上清液29、つまりは精製部12に流入する培養上清液29の流量を測定する。なお、連結路34、41、58、および61は、本開示の技術に係る「連結ライン」の一例である。
 分岐路59にはサンプリング容器64が接続されている。分岐路59は、本開示の技術に係る「分岐ライン」の一例である。サンプリング容器64は、培養上清液29中の抗体18の濃度等をサンプリングするための少量の培養上清液29を採取することを目的とした容器である。サンプリング容器64は、タンク45と同様に、ポリオレフィン、エチレン酢酸ビニルコポリマーといった樹脂フイルムを直方体状に成形したものであり、可撓性を有する。また、サンプリング容器64は、タンク45と同様に一度しか使用しないシングルユース製である。ただし、サンプリング容器64は、タンク45と比べて収容量が小さい。
 分岐路59の先端には無菌コネクタ65が設けられている。また、サンプリング容器64の培養上清液29の流入口66に接続された流入チューブ67の先端にも無菌コネクタ68が設けられている。これらの無菌コネクタ65および68を介して、分岐路59と流入チューブ67、ひいてはサンプリング容器64とが無菌接続される。
 分岐路59には第2供給ポンプ69およびピンチバルブ70が設けられている。第2供給ポンプ69は、連結路41を流れる培養上清液29を分岐路59に引き入れる。ピンチバルブ70は、第2供給ポンプ69により分岐路59に引き入れられた培養上清液29をサンプリング容器64に流入させるためのバルブである。第2供給ポンプ69は、本開示の技術に係る「供給ポンプ」の一例である。
 サンプリング容器64は、サンプリングに十分な量の培養上清液29が流入された後、無菌コネクタ65から無菌コネクタ68を取り外すことで分岐路59から分離される。分離されたサンプリング容器64は、抗体濃度測定装置といったサンプリング装置に掛けられる。無菌コネクタ65には新しいサンプリング容器64の無菌コネクタ68が取り付けられる。これにより、使用済みのサンプリング容器64が新しいサンプリング容器64に交換される。なお、タンク45と同様に、分岐路59の第2供給ポンプ69とピンチバルブ70の間にさらに分岐路を接続し、複数のサンプリング容器64を接続可能な構成としてもよい。
 精製部12は、SPTFF装置80およびイムノアフィニティクロマトグラフィー装置81等を含み、これらの装置80および81等により培養上清液29を連続的に精製する。SPTFF装置80には、連結路61を介して培養上清液29が流入する。SPTFF装置80は、SPTFF方式の精製フィルタ82を有する。精製フィルタ82は、直列に接続された複数の限外濾過(UF:Ultrafiltration)フィルタ膜で構成される。この精製フィルタ82によれば、培養上清液29のループを必要とすることなく、培養上清液29を1回通しただけで抗体18を十分に濃縮することができる。SPTFF装置80は、精製フィルタ82を用いて培養上清液29から抗体18を抽出することで、第1精製液83を生成する。
 イムノアフィニティクロマトグラフィー装置81には、精製フィルタ82を用いて抽出された第1精製液83が流入する。イムノアフィニティクロマトグラフィー装置81は、抗体18と親和性をもつプロテインAまたはプロテインG等のリガンドを担体に固定したカラムを用いて培養上清液29から抗体18を抽出することで、第2精製液84を生成する。すなわち、精製部12は、最初の工程がSPTFF方式の精製フィルタ82を用いた精製工程であり、その次の工程が単カラムのイムノアフィニティクロマトグラフィー装置81を用いた精製工程である。
 第2精製液84には、ウイルスを不活性化させる処理(以下、ウイルス不活性化処理と表記する)85が施される。ウイルス不活性化処理85が施された第2精製液84は、陽イオン交換体を固定相とするカラム、および/または、陰イオン交換体を固定相とするカラムを有するイオンアフィニティクロマトグラフィー装置86によりさらに精製された後、フィルタ87に通されてウイルスが除去される。その後、第2精製液84にはフィルタ88による限外濾過および透析濾過(DF:Diafiltration)による濃縮・濾過処理が施される。これによりバイオ医薬品の原薬89が得られる。こうしてSPTFF装置80およびイムノアフィニティクロマトグラフィー装置81等による成分分離処理を順に行うことで、培養上清液29から夾雑物およびウイルスが段階的に除去され、抗体18の純度が段階的に高められる。このように、精製部12は、抗体18といった精製目的物の濃縮、およびウイルスといった精製目的物以外の不純物の除去を、SPTFF装置80等を駆使して意図的に行う箇所である。
 一例として図2に示すように、無菌フィルタ44は、無菌コネクタ90を有する流入チューブ91と、無菌コネクタ92を有する流出チューブ93とを有する。一方、連結路41には、上流側および下流側に無菌コネクタ94および95が設けられている。無菌コネクタ94に無菌コネクタ90を接続し、無菌コネクタ95に無菌コネクタ92を接続することで、連結路41に無菌フィルタ44が取り付けられる。これら無菌コネクタ90、92、94、および95を介して、無菌フィルタ44が連結路41に無菌接続される。
 無菌フィルタ44には、培養上清液29の積算流量を測定する積算流量計96が内蔵されている。また、無菌フィルタ44には、積算流量計96で測定した培養上清液29の積算流量が設定量に達した場合に、その旨を報せるインジケータ97が設けられている。インジケータ97は、例えば、白地と赤地を有する回転円盤であり、培養上清液29の積算流量が設定量に達しないうちは白地を表示し、培養上清液29の積算流量が設定量に達した場合に赤字を表示する。あるいは、インジケータ97はLED(Light-Emitting Diode)等の発光素子である。設定量は、1000L/m~10000L/mの間に設定される。なお、積算流量計96は無菌フィルタ44に内蔵されていなくてもよく、無菌フィルタ44とは別に無菌フィルタ44の上流に設けてもよい。
 培養上清液29の積算流量が設定量に達した場合、無菌フィルタ44は、無菌コネクタ94および95から無菌コネクタ90および92を取り外すことで連結路41から分離される。無菌コネクタ94および95には新しい無菌フィルタ44の無菌コネクタ90および92が取り付けられる。これにより、培養上清液29の積算流量が設定量に達した無菌フィルタ44が新しい無菌フィルタ44に交換される。
 一例として図3に示すように、送出ポンプ35によって無菌フィルタ44に流入する培養上清液29の流量は一定である。なお、「一定」とは、完全な一定の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの一定を指す。本開示の技術において、「一定」とは、無菌フィルタ44に流入する培養上清液29の流量が目標値に対して±20%以内であればよく、好ましくは±10%以内であればよい。
 無菌フィルタ44はフィルタ膜99および100を有する。フィルタ膜99および100は、ポリエーテルスルホン製の平坦な濾紙を折り畳んだ構造である。こうしたフィルタ膜99および100を有する無菌フィルタ44は平膜フィルタと呼ばれる。
 培養槽14の最大収容量をMCC、無菌フィルタ44のフィルタ膜99および100の濾過面積をFAとした場合、培養槽14の最大収容量MCCとフィルタ膜99および100の濾過面積FAとの比FA/MCCは、下記式(1)の範囲であればよく、さらに下記式(2)の範囲であることがより好ましい。
 0.0004m/L(リットル)≦(FA/MCC)≦0.02m/L・・・(1)
 0.001m/L≦(FA/MCC)≦0.01m/L・・・(2)
 培養槽14の最大収容量MCCは、例えば、50L以上5000L以下である。このため、例えば培養槽14の最大収容量MCCが下限値の50Lであった場合、フィルタ膜99および100の濾過面積FAは0.05m以上0.5m以下である。また、例えば培養槽14の最大収容量MCCが上限値の5000Lであった場合、フィルタ膜99および100の濾過面積FAは5m以上50m以下である。
 中間容器60は、ポリオレフィン、エチレン酢酸ビニルコポリマーといった樹脂製の2枚のシートの全周をパウチ加工する等して、樹脂製の2枚のシートを液密に貼り合わせてなるバッグである。中間容器60は、タンク45およびサンプリング容器64と同様に、一度しか使用しないシングルユース製である。
 中間容器60の底部101には、培養部10からの培養上清液29が流入する流入口102が設けられている。流入口102には流入チューブ103が取り付けられており、流入チューブ103の先端には無菌コネクタ104が設けられている。連結路58の先端にも無菌コネクタ105が設けられている。これらの無菌コネクタ104および105を介して、連結路58と流入チューブ103、ひいては中間容器60とが無菌接続される。
 また、中間容器60の底部101には、精製部12に向けて培養上清液29が流出する流出口106が設けられている。流出口106には流出チューブ107が取り付けられており、流出チューブ107の先端には無菌コネクタ108が設けられている。連結路61の先端にも無菌コネクタ109が設けられている。これらの無菌コネクタ108および109を介して、流出チューブ107、ひいては中間容器60と連結路61とが無菌接続される。
 中間容器60は、無菌コネクタ105および109から無菌コネクタ104および108を取り外すことで、連結路58および61から分離される。無菌コネクタ105および109には新しい中間容器60の無菌コネクタ104および108が取り付けられる。これにより、使用済みの中間容器60が新しい中間容器60に交換される。
 送出ポンプ35によって流入口102に流入する培養上清液29の流量は一定である。また、第1供給ポンプ62によって流出口106から流出する培養上清液29の流量も一定である。さらに、流入口102からの培養上清液29の流入速度よりも、流出口106からの培養上清液29の流出速度のほうが速い。なお、流入口102からの培養上清液29の流入速度よりも、流出口106からの培養上清液29の流出速度のほうが1%以上30%以下速ければよく、より好ましくは2%以上20%以下速ければよい。
 中間容器60の上部110には、吊り下げ具111が取り付けられている。この吊り下げ具111によって、中間容器60はフック112に吊り下げて使用することができる。フック112には電子ばねばかり113が取り付けられている。電子ばねばかり113は、フック112に吊り下げられた状態の中間容器60の重量を測定することで、中間容器60内の培養上清液29の液量を測定する。電子ばねばかり113には、空の中間容器6
0の重量、およびフック112の重量が予め記憶されている。電子ばねばかり113は、測定した中間容器60の重量から、空の中間容器60の重量、およびフック112の重量を減算することで、中間容器60内の培養上清液29の液量を算出し、これを測定結果として出力する。電子ばねばかり113は、液量の測定結果を制御装置13に送信する。なお、電子ばねばかり113はさらに、図示省略した吊り下げスタンドのフックに取り付けられている。なお、電子ばねばかり113から制御装置13に測定結果として中間容器60の重量を出力し、重量の液量への換算は制御装置13が行ってもよい。あるいは、中間容器60の重量自体を培養上清液29の液量として扱ってもよい。
 一例として図4に示すように、制御装置13を構成するコンピュータは、ストレージ120、メモリ121、CPU(Central Processing Unit)122、通信部123、ディスプレイ124、および入力デバイス125を備えている。これらはバスライン126を介して相互接続されている。
 ストレージ120は、制御装置13を構成するコンピュータに内蔵、またはケーブル、ネットワークを通じて接続されたハードディスクドライブである。もしくはストレージ120は、ハードディスクドライブを複数台連装したディスクアレイである。ストレージ120には、オペレーティングシステム等の制御プログラム、各種アプリケーションプログラム、およびこれらのプログラムに付随する各種データ等が記憶されている。なお、ハードディスクドライブに代えてソリッドステートドライブを用いてもよい。
 メモリ121は、CPU122が処理を実行するためのワークメモリである。CPU122は、ストレージ120に記憶されたプログラムをメモリ121へロードして、プログラムにしたがった処理を実行する。これによりCPU122は、コンピュータの各部を統括的に制御する。なお、メモリ121は、CPU122に内蔵されていてもよい。
 通信部123は、外部装置との各種情報の伝送制御を行う。ディスプレイ124は各種画面を表示する。各種画面にはGUI(Graphical User Interface)による操作機能が備えられる。制御装置13を構成するコンピュータは、各種画面を通じて、入力デバイス125からの操作指示の入力を受け付ける。入力デバイス125は、キーボード、マウス、タッチパネル、および音声入力用のマイク等である。
 一例として図5に示すように、制御装置13のストレージ120には、制御プログラム130が記憶されている。制御プログラム130は、コンピュータを制御装置13として機能させるためのアプリケーションプログラムである。ストレージ120には、この他にも、ディスプレイ124に表示する各種画面のデータ等が記憶されている。
 制御プログラム130が起動されると、制御装置13を構成するコンピュータのCPU122は、メモリ121等と協働して、培養部制御部135、中間部制御部136、および精製部制御部137として機能する。培養部制御部135は培養部10の動作を制御し、中間部制御部136は中間部11の動作を制御し、精製部制御部137は精製部12の動作を制御する。
 培養部制御部135は、流量計36から培養上清液29の流量の測定結果を受信する。培養部制御部135は、測定結果に基づいて培養上清液29の流量を制御する。より詳しくは、培養部制御部135は、培養上清液29の流量を予め設定された値とするための制御信号を送出ポンプ35に送信する。こうした制御によって、無菌フィルタ44に流入する培養上清液29の流量、および中間容器60の流入口102への培養上清液29の流量が一定となる。なお、培養部制御部135は、この他にも、培養液供給路19を通じた培養液16の供給量、スパージャー23およびガス供給路24を通じた酸素を含むガスの供給量、および撹拌翼25の回転数等を制御する。
 中間部制御部136は、ピンチバルブ43、50、および70に制御信号を送信する。制御信号は、ピンチバルブ43等のコイルに電流を流さない指示、および流す指示のうちのいずれかを伝達する信号である。コイルに電流を流さない指示を伝達する制御信号を受信した場合、ピンチバルブ43等は流路を開通させる。一方、コイルに電流を流す指示を伝達する制御信号を受信した場合、ピンチバルブ43等は流路を閉塞する。以下、コイルに電流を流さない指示を伝達する制御信号を、制御信号(開)と表記する。また、コイルに電流を流す指示を伝達する制御信号を、制御信号(閉)と表記する。
 中間部制御部136は、流量計63から培養上清液29の流量の測定結果を受信する。中間部制御部136は、測定結果に基づいて培養上清液29の流量を制御する。より詳しくは、中間部制御部136は、培養上清液29の流量を予め設定された値とするための制御信号を第1供給ポンプ62に送信する。こうした制御によって、流出口106からの培養上清液29の流量が一定となる。
 中間部制御部136は、入力デバイス125を通じてサンプリング用の培養上清液29の採取が指示された場合、第2供給ポンプ69に制御信号を送信して第2供給ポンプ69を動作させる。また、中間部制御部136は、ピンチバルブ70に制御信号(開)を送信する。これによりサンプリング容器64に培養上清液29が流入する。
 中間部制御部136は、中間容器60内の培養上清液29の液量の測定結果を電子ばねばかり113から受信する。中間部制御部136は、液量の測定結果に基づいて第1供給ポンプ62を動作させたり停止させたりする。中間部制御部136は、第1供給ポンプ62を動作させた旨の信号を精製部制御部137に送信する。また、中間部制御部136は、第1供給ポンプ62の動作を停止させた旨の信号を精製部制御部137に送信する。
 精製部制御部137は、SPTFF装置80およびイムノアフィニティクロマトグラフィー装置81に制御信号を送信する。SPTFF装置80およびイムノアフィニティクロマトグラフィー装置81は、制御信号に応じて内蔵のポンプおよびバルブ等を動作させる。また、図示は省略するが、精製部制御部137は、イオンアフィニティクロマトグラフィー装置86にも制御信号を送信する。
 また、図示は省略するが、精製部制御部137は、SPTFF装置80またはイムノアフィニティクロマトグラフィー装置81からエラー信号を受信する。エラー信号は、SPTFF装置80またはイムノアフィニティクロマトグラフィー装置81に何らかの不具合が生じた場合に、SPTFF装置80またはイムノアフィニティクロマトグラフィー装置81から発せられる。精製部制御部137は、イオンアフィニティクロマトグラフィー装置86からもエラー信号を受信する。何らかの不具合とは、例えば、SPTFF装置80またはイムノアフィニティクロマトグラフィー装置81内のポンプの故障、あるいはイムノアフィニティクロマトグラフィー装置81内のカラムの詰まり等である。精製部制御部137は、エラー信号を中間部制御部136に送信する。なお、これも図示は省略するが、不具合が解消された場合は、SPTFF装置80、イムノアフィニティクロマトグラフィー装置81、またはイオンアフィニティクロマトグラフィー装置86からその旨を示す報知信号が精製部制御部137に向けて発せられる。
 精製部制御部137からエラー信号を受信した場合、中間部制御部136は、ピンチバルブ43に制御信号(閉)を送信した後、ピンチバルブ50に制御信号(開)を送信する。これにより、培養上清液29の流路が連結路41から分岐路42に切り替わる。すなわち、中間部制御部136は、精製部12から不具合が生じた旨のエラー信号が出力された場合に、培養上清液29の流路を連結路41から分岐路42に切り替える制御を行う。培養上清液29は、分岐路42、流入チューブ48、並びに流入口47を伝ってタンク45に流入する。なお、精製部12における不具合が解消されて、SPTFF装置80等からその旨を示す報知信号を受信した場合、中間部制御部136は、ピンチバルブ50に制御信号(閉)を送信した後、ピンチバルブ43に制御信号(開)を送信し、培養上清液29の流路を分岐路42から連結路41に戻す制御を行う。
 一例として図6に示すように、中間容器60内の培養上清液29の液量の測定結果により、液量が中間容器60の貯留上限量ULと貯留下限量LLとの間の予め設定された設定量PLに達したことが検知された場合、中間部制御部136は第1供給ポンプ62を動作(オン)させて、流出口106を通じた培養上清液29の流出を開始させる。この第1供給ポンプ62の動作開始に伴い、中間部制御部136から第1供給ポンプ62を動作させた旨の信号を受信した場合、精製部制御部137は精製部12を動作(オン)させる。
 一方、中間容器60内の培養上清液29の液量の測定結果により、液量が貯留下限量LLに達したことが検知された場合、中間部制御部136は第1供給ポンプ62の動作を停止(オフ)させて、流出口106を通じた培養上清液29の流出を停止させる。この第1供給ポンプ62の動作停止に伴い、中間部制御部136から第1供給ポンプ62の動作を停止させた旨の信号を受信した場合、精製部制御部137は精製部12の動作を停止(オフ)させる。すなわち、精製部12は、流出口106から培養上清液29が流出している間は動作し、流出口106から培養上清液29が流出していない間は動作を停止する、という間欠運転を行う。
 なお、中間容器60の重量自体を培養上清液29の液量として扱う場合は、貯留下限量LL、貯留上限量UL、および設定量PLも中間容器60の重量とする。例えば3kgを貯留下限量LL、7kgを貯留上限量UL、設定量PLを5kgとする。中間部制御部136は、中間容器60の重量が5kgに達したことが検知された場合、培養上清液29の流出を開始させ、中間容器60の重量が3kgに達したことが検知された場合、培養上清液29の流出を停止させる。
 前述のように、培養部10から流入口102への培養上清液29の流量は一定である。このため培養上清液29の液量は直線状に増加する。また、これも前述のように、流出口106から精製部12への培養上清液29の流量も一定である。このため培養上清液29の液量は直線状に減少する。培養上清液29の液量の増加を示す直線の傾きは、単位時間当たりの培養上清液29の液量の増加量、すなわち流入口102からの培養上清液29の流入速度を表す。対して、培養上清液29の液量の減少を示す直線の傾きは、単位時間当たりの培養上清液29の液量の減少量を示すが、流出口106からの培養上清液29の流出速度とは一致しない。というのも、流出口106から培養上清液29が流出されている間も、流入口102から培養上清液29が流入し続けているためである。
 前述のように、流出口106からの培養上清液29の流出速度は、流入口102からの培養上清液29の流入速度よりも速い。このため、流出口106から培養上清液29が流出されている間に、流入口102から流入している培養上清液29の分を差し引けば、培養上清液29の液量の減少を示す直線の傾きは、培養上清液29の液量の増加を示す直線の傾きよりも急峻になる。しかし、実際には、流出口106から培養上清液29が流出されている間に流入口102から流入している培養上清液29の分も含んでいる。また、流入口102からの培養上清液29の流入速度と流出口106からの培養上清液29の流出速度との差は僅かである。このため、培養上清液29の液量の減少を示す直線の傾きは、図示のように培養上清液29の液量の増加を示す直線の傾きよりも緩やかになっている。
 ここで、流出口106から精製部12への培養上清液29の流量が一定とは、中間部制御部136により、第1供給ポンプ62を動作させて、流出口106を通じた培養上清液29の流出を開始させてから、第1供給ポンプ62の動作を停止させて、流出口106を通じた培養上清液29の流出を停止させるまでの間の流量が一定という意味である。
 中間容器60の最大収容量をMCとした場合、中間容器60の貯留上限量ULは、下記式(3)の範囲である。
 0.5MC≦UL≦1.0MC・・・(3)
 このように、貯留上限量ULは最大収容量MCと必ずしも一致しない。
 また、中間容器60の貯留下限量LLは、下記式(4)の範囲である。
 0.1MC≦LL<0.5MC・・・(4)
 このように、貯留下限量LLは0よりも大きい値である。
 設定量PLは、例えば、下記式(5)で表される。
 PL=(UL+LL)/2・・・(5)
 このため、例えば貯留上限量ULが1.0MC、貯留下限量LLが0.2MCであった場合、PL=(1.0MC+0.2MC)/2=0.6MCである。なお、設定量PLは上記式(5)に限らない。PL=0.5MC、あるいは、PL=0.9MCでもよい。PL=0.9999MC等として、設定量PLを最大収容量MCと略同じとしてもよい。
 次に、上記構成による作用について、一例として図7のフローチャートを参照して説明する。まず、培養部10の培養槽14に抗体生産細胞17が播種され、培養液16内において培養される。これにより抗体生産細胞17から抗体18が生産され、抗体18が培養液16中に分散される。
 培養液16は、培養液送出・回収路22および出入口27を介して除細胞フィルタ15に送り出される。培養液16は、除細胞フィルタ15のフィルタ膜28によって抗体生産細胞17が除かれ、培養上清液29とされる。培養上清液29は、出口33から連結路34に流出し、送出ポンプ35によって下流に送り出される。この際、培養部制御部135から送出ポンプ35に流量計36の測定結果に応じた制御信号が送信され、これにより流量計36の測定結果に基づいて培養上清液29の流量が一定に制御される。
 培養上清液29は、連結路34から連結路41に流入し、ピンチバルブ43および無菌フィルタ44を通過する。無菌フィルタ44を通過することにより、培養上清液29内の抗体18以外の不純物が取り除かれる。
 無菌フィルタ44を通過した培養上清液29は、連結路58および流入チューブ103を介して中間容器60の流入口102に流れ、流入口102を通じて中間容器60内に流入する。これにより中間容器60に培養上清液29が貯留される。
 図3で示したように、中間容器60内の培養上清液29の液量は、電子ばねばかり113により測定される。培養上清液29の液量の測定結果は、電子ばねばかり113から中間部制御部136に送信される。
 図6で示したように、培養上清液29の液量が設定量PLに達しないうちは(図7のステップST110でNO)、中間部制御部136によって第1供給ポンプ62の動作が停止され、かつ精製部制御部137によって精製部12の動作が停止されている(ステップST100)。ここで、培養上清液29の液量が設定量PLに達したことが検知された場合(ステップST110でYES)、中間部制御部136によって第1供給ポンプ62が動作され、流出口106を通じた培養上清液29の流出が開始される。また、精製部制御部137によって精製部12が動作される(ステップST120)。精製部12では、SPTFF装置80およびイムノアフィニティクロマトグラフィー装置81によって培養上清液29中の抗体18が連続的に精製され、最終的にバイオ医薬品の原薬89が得られる。
 培養上清液29の液量が貯留下限量LLに達しないうちは(ステップST130でNO)、中間部制御部136によって第1供給ポンプ62の動作が継続され、かつ精製部制御部137によって精製部12の動作が継続される(ステップST120)。ここで、培養上清液29の液量が貯留下限量LLに達したことが検知された場合(ステップST130でYES)、中間部制御部136によって第1供給ポンプ62の動作が停止され、流出口106を通じた培養上清液29の流出が停止される。また、精製部制御部137によって精製部12の動作が停止される(ステップST100)。
 精製部12において不具合が生じていない場合は、中間部制御部136から、ピンチバルブ43に制御信号(開)、ピンチバルブ50に制御信号(閉)がそれぞれ送信されている。これにより連結路41が開通され、分岐路42が閉塞される。こうして培養上清液29が連結路34から連結路41に流入される。
 一方、精製部12において不具合が生じた場合は、SPTFF装置80等から精製部制御部137にエラー信号が発せられる。エラー信号は精製部制御部137から中間部制御部136に送信される。この場合、中間部制御部136から、ピンチバルブ43に制御信号(閉)が送信された後、ピンチバルブ50に制御信号(開)が送信される。これにより連結路41が閉塞され、分岐路42が開通される。こうして培養上清液29がタンク45に流入される。この培養上清液29をタンク45に流入させて一時的に貯留する状態は、精製部12における不具合が解消しないうちは継続される。
 精製部12における不具合が解消した場合は、中間部制御部136から、ピンチバルブ50に制御信号(閉)が送信された後、ピンチバルブ43に制御信号(開)が送信される。これにより再び連結路41が開通され、分岐路42が閉塞され、培養上清液29が連結路34から連結路41に流入される。
 入力デバイス125を通じてサンプリング用の培養上清液29の採取が指示された場合、中間部制御部136から第2供給ポンプ69に制御信号が送信され、第2供給ポンプ69が動作される。また、中間部制御部136からピンチバルブ70に制御信号(開)が送信される。これによりサンプリング容器64に培養上清液29が流入される。
 以上説明したように、本開示の技術に係るバイオ医薬品の原薬の製造方法は、培養部10と精製部12とを連結路34、41、58、および61にて連結する。培養部10は、培養槽14に貯留された培養液16内において抗体生産細胞17を培養し、除細胞フィルタ15により培養液16から抗体生産細胞17を除くことで抗体18を含む培養上清液29を得る培養工程を行う。精製部12は、培養上清液29から抗体18を精製することでバイオ医薬品の原薬89を得る精製工程を行う。精製部12は、SPTFF方式の精製フィルタ82を用いた精製工程を含む。そして、除細胞フィルタ15よりも大きい孔径を有する無菌フィルタ44を連結路41に設け、連結路41を通じて培養部10から精製部12に流入する培養上清液29を、無菌フィルタ44により濾過する。
 精製部12が、SPTFF方式の精製フィルタ82を用いた精製工程を含むことで、以下の効果がある。すなわち、SPTFF方式の精製フィルタ82を用いた精製工程によれば、1回の培養上清液29の流通により抗体18の精製を行うことができる。従来の循環式の精製工程では、追加のポンプおよびタンクが必要となり、作業も煩雑である。また、構成が複雑であるため汚染のリスクも高い。対してSPTFF方式の精製フィルタ82を用いた精製工程によれば、追加のポンプおよびタンクは不要で、作業性もよい。また、構成が単純であるため汚染のリスクも低い。また、SPTFF方式の精製フィルタ82によれば、培養上清液29中の不純物を効果的に取り除くことができる。このため、後段のイムノアフィニティクロマトグラフィー装置81への負荷が軽減され、イムノアフィニティクロマトグラフィー装置81のカラムが詰まるといった不具合が発生するおそれを低減することができる。したがって、メンテナンス性の低下を抑制することが可能となる。
 また、無菌フィルタ44は除細胞フィルタ15よりも大きい孔径を有する。逆を言えば、除細胞フィルタ15は無菌フィルタ44よりも小さい孔径を有する。このため、培養上清液29中の不純物の大部分は、除細胞フィルタ15により取り除かれる。これにより、下流に位置する無菌フィルタ44に掛かる負荷が軽減され、無菌フィルタ44に詰まりといった不具合が発生しにくくなる。したがって、メンテナンス性の低下を抑制することが可能となる。また、無菌フィルタ44に詰まりといった不具合が頻繁に発生して、精製部12による抗体18の連続精製が頻繁に停止することを防ぐことができる。具体的には、数日~数十日、無菌フィルタ44の不具合が原因で一度も停止することなく連続精製を行うことができる。
 なお、無菌フィルタ44は、除細胞フィルタ15よりも大きい孔径を有する、という条件に加えて、以下の条件を満たす孔径の2層構造のフィルタ膜を有するものであってもよい。
 条件:上流側に指標菌を10/cm負荷しても下流側では無菌の液を得ることが可能。
 図1で示したように、SPTFF方式の精製フィルタ82を用いた精製工程の次の工程は、イムノアフィニティクロマトグラフィー装置81を用いた単カラムの精製工程である。このため、それぞれ異なるカラムを有する複数のクロマトグラフィー装置を用いて精製工程を行う場合と比べて、不具合が発生するおそれを低減することができる。
 SPTFF方式の精製フィルタ82によれば、クロマトグラフィー装置を用いた場合と比べて、短時間で抗体18を十分に濃縮することができる。このため、SPTFF方式の精製フィルタ82を用いた精製工程の次の工程が単カラムのイムノアフィニティクロマトグラフィー装置81を用いた精製工程であっても、換言すれば、SPTFF方式の精製フィルタ82を用いた精製工程の次の工程がそれぞれ異なるカラムを有する複数のクロマトグラフィー装置を用いた精製工程でなくても、純度の高い抗体18を得ることができる。
 また、SPTFF方式の精製フィルタ82は、クロマトグラフィー装置のカラムのように、培養上清液29の流入を停止させて洗浄するといったメンテナンスがいらず、培養上清液29を流し続けることができる。このため、流出口106から培養上清液29が流出している間は精製部12を動作させるという態様との相性がよい。
 図3で示したように、培養槽14の最大収容量をMCC、無菌フィルタ44の濾過面積をFAとした場合、0.001m/L≦(FA/MCC)≦0.01m/Lである。このため、培養槽14の最大収容量MCCに対して比較的小さい濾過面積FAの無菌フィルタ44を用いて、培養上清液29を濾過することができる。
 図1で示したように、無菌フィルタ44の孔径は、SPTFF装置80の精製フィルタ82よりも大きい。このため、無菌フィルタ44に掛かる負荷がより軽減され、無菌フィルタ44に詰まりといった不具合がより発生しにくくなる。したがって、メンテナンス性の低下をさらに抑制することが可能となる。また、図1で示したように、無菌フィルタ44の孔径は、0.1μm以上1.0μm以下である。このため、培養上清液29中の不純物を効果的に捕捉することができる。
 図3で示したように、無菌フィルタ44は、平坦な濾紙を折り畳んだ構造である。平坦な濾紙を折り畳んだ構造の無菌フィルタ44は、比較的安価である。このため、無菌フィルタ44に掛かるコストを低減することができる。また、無菌フィルタ44の材料は、ポリエーテルスルホンである。ポリエーテルスルホンは濾過性が高く、かつ詰まりにくい。このため、メンテナンス性の低下をさらに抑制することが可能となる。
 図1で示したように、連結路34等の連結ラインにおいて無菌フィルタ44の上流に設けた送出ポンプ35により、培養部10から精製部12に向けて培養上清液29を送り出す。無菌フィルタ44の下流に送出ポンプ35を設けた場合と比べて、送出ポンプ35からの気泡により無菌フィルタ44が詰まるといった不具合が発生するおそれを低減することができる。
 図1で示したように、連結路34等の連結ラインにおいて無菌フィルタ44の下流に設けた中間容器60に、培養上清液29を一時的に貯留させる。このため、精製部12による培養上清液29の連続的な精製を滞りなく行うことができる。
 図3で示したように、無菌フィルタ44への培養上清液29の流量は一定である。このため、無菌フィルタ44に流入する培養上清液29の状態を一定に保つことができる。
 図2で示したように、無菌フィルタ44への培養上清液29の積算流量が1000L/m~10000L/mの間に設定された設定量に達した場合に、無菌フィルタ44を交換する。このため、積算流量が設定量に達して濾過性能が劣化した無菌フィルタ44を使い続けてしまうことがなく、常に濾過性能が良好な無菌フィルタ44を使用することができる。
 図1で示したように、連結路41において無菌フィルタ44の下流に接続したサンプリング容器64に培養上清液29を流入させる。無菌フィルタ44の上流にサンプリング容器64を接続した場合は、サンプリング容器64等を含む分岐路59から培養部10に細菌等が侵入し、培養部10が汚染されるおそれがある。しかしながら本例においては、分岐路59からの細菌等の侵入を無菌フィルタ44で阻止するため、無菌フィルタ44よりも上流側の無菌状態を保つことができる。
 また、図1で示したように、連結路41および58とサンプリング容器64とを接続する分岐路59に設けた第2供給ポンプ69により、サンプリング容器64に培養上清液29を流入させる。このため、サンプリング容器64に培養上清液29を確実に流入させることができる。また、第2供給ポンプ69がバルブのような役割を果たすので、第2供給ポンプ69の下流側からの細菌等の侵入を抑えることができる。
 抗体18を有効成分とするバイオ医薬品は、抗体医薬品と呼ばれ、癌、糖尿病、関節リウマチといった慢性疾患の治療をはじめとして、血友病、クローン病といった希少疾患の治療にも幅広く用いられている。このため、細胞をCHO細胞由来の抗体生産細胞17とし、生産物をタンパク質、特に抗体18とした本例によれば、様々な疾患の治療に幅広く用いられている抗体医薬品の開発に寄与することができる。
 [第2実施形態]
 一例として図8に示すように、第2実施形態においては、中間容器60の上部110に液面センサ140を設ける。そして、液面センサ140により中間容器60内の培養上清液29の液面の位置を検知することで、中間容器60内の培養上清液29の液量を測定する。
 液面センサ140は、例えば、培養上清液29の液面に向けて測定光MLを照射し、培養上清液29の液面からの測定光MLの反射光を受光する反射型フォトセンサ(フォトリフレクタとも呼ばれる)である。液面センサ140は、受光した反射光の強度の違いによって、培養上清液29の液面の位置を検知する。液面センサ140は、培養上清液29の液面の位置と中間容器60内の培養上清液29の液量との関係を示すデータテーブル等を参照して、検出した培養上清液29の液面の位置を中間容器60内の培養上清液29の液量に換算し、これを測定結果として出力する。液面センサ140は、液量の測定結果を制御装置13に送信する。以降の処理は上記第1実施形態と同じであるため説明を省略する。なお、液面センサ140から制御装置13に測定結果として培養上清液29の液面の位置を出力し、培養上清液29の液面の位置の液量への換算は制御装置13が行ってもよい。あるいは、中間容器60の重量の場合と同様に、液面の位置自体を培養上清液29の液量として扱ってもよい。
 このように、第2実施形態では、培養上清液29の液面の位置を測定することで、中間容器60内の培養上清液29の液量を測定する。このため、中間容器60の重量の測定が困難な状況においても、中間容器60内の培養上清液29の液量を測定することができる。なお、液面センサは超音波を用いたものでもよい。
 [第3実施形態]
 上記第1実施形態では、流出口106から精製部12への培養上清液29の流量を一定としているが、これに限らない。
 一例として図9に示すように、第3実施形態においては、中間部制御部136は、第1供給ポンプ62の動作を制御することで、SPTFF装置80の精製フィルタ82に流入する培養上清液29の流量を、設定間隔SIで変動させる。設定間隔SIは、2分~30分の間で設定される(2分≦SI≦30分)。また、培養上清液29の流量の最大値FRmaxは、最小値FRminの半分以上である(FRmax≧0.5FRmin)。すなわち、精製フィルタ82に流入する培養上清液29の流量は50%以上変動する。この場合、中間容器60内の培養上清液29の液量は、一例として図10に示すように、直線状ではなく折れ線状に減少する。
 このように、第3実施形態では、精製フィルタ82に流入する培養上清液29の流量を、2分~30分の間に設定された設定間隔SIで50%以上変動させる。こうして精製フィルタ82に流入する培養上清液29の流量に変化をつけることで、流入した培養上清液29によって、精製フィルタ82に捕捉された不純物を洗い流すすすぎ効果が期待できる。抗体18を精製しながら精製フィルタ82を効率的に洗浄することができる。
 設定間隔SIが2分未満であると、すすぎ効果は高まるが培養上清液29の流量の変動が頻繁すぎて抗体18を十分に濃縮することができない。対して設定間隔SIが30分よりも長いと、すすぎ効果が低下して精製フィルタ82に詰まりが発生しやすくなる。また、変動の幅が50%未満であっても、やはりすすぎ効果が低下して精製フィルタ82に詰まりが発生しやすくなる。このため設定間隔SIを2分~30分の間とし、流量の変動の幅を50%以上としている。
 [第4実施形態]
 上記各実施形態では、無菌フィルタ44を1つとして説明したが、これに限らない。一例として図11に示すように、複数の無菌フィルタ44を用いてもよい。
 図11においては、2つの無菌フィルタ44Aおよび44Bを用いる例を示している。この場合、連結路41のピンチバルブ43の上流側および無菌フィルタ44Aの下流側に三方継手145および146を設ける。そして、三方継手145および146に分岐路147を接続し、分岐路147にピンチバルブ148および無菌フィルタ44Bを設ける。なお、図示は省略するが、無菌フィルタ44Bも、無菌コネクタ90および92等を介して、分岐路147と無菌接続されている。
 一例として図12に示すように、本実施形態においては、無菌フィルタ44Aに内蔵された積算流量計96A、および無菌フィルタ44Bに内蔵された積算流量計96Bからそれぞれ、培養上清液29の積算流量の測定結果が中間部制御部136に入力される。中間部制御部136は、培養上清液29の積算流量の測定結果と設定量SIFとを比較する。設定量SIFは、上記第1実施形態の図2で説明したように、1000L/m~10000L/mの間に設定される。中間部制御部136は、培養上清液29の積算流量の測定結果が設定量SIFに達した場合、ピンチバルブ43および148に制御信号を送信する。
 図13Aは、中間部制御部136から、ピンチバルブ43に制御信号(開)を、ピンチバルブ148に制御信号(閉)をそれぞれ送信していて、連結路41の無菌フィルタ44Aを用いて培養上清液29を濾過している状態を示す。この図13Aに示す状態において、無菌フィルタ44Aに内蔵された積算流量計96Aからの培養上清液29の積算流量の測定結果が設定量SIFに達した場合、中間部制御部136は、図13Bに示すように、ピンチバルブ43に制御信号(閉)を送信した後、ピンチバルブ148に制御信号(開)を送信する。これにより、培養上清液29の流路が連結路41から分岐路147に切り替わり、培養上清液29が分岐路147の無菌フィルタ44Bに流入する。すなわち、中間部制御部136は、複数の無菌フィルタ44のうちの1つの培養上清液29の積算流量が設定量SIFに達した場合、別の無菌フィルタ44に使用を切り替える。
 このように、第4実施形態では、連結路41に設けられた無菌フィルタ44Aに加えて、連結路41に並列に接続された無菌フィルタ44Bを用いる。このため、無菌フィルタ44の交換の手間を軽減することができる。なお、連結路41に並列接続する無菌フィルタ44の数は、例示の1つに限らず、2つ以上でもよい。
 [第5実施形態]
 上記第1実施形態では、ポリエーテルスルホン製の平坦な濾紙を折り畳んだ構造のフィルタ膜99および100を有する無菌フィルタ44を例示したが、これに限らない。一例として図14に示す無菌フィルタ150を用いてもよい。無菌フィルタ150は、ポリエーテルスルホン製の中空の繊維を束ねた構造のフィルタ膜151を有する。こうしたフィルタ膜151を有する無菌フィルタ150は中空糸フィルタと呼ばれる。
 中空の繊維を束ねた構造のフィルタ膜151にはすすぎ効果がある。このため、無菌フィルタ150によれば、平坦な濾紙を折り畳んだ構造のフィルタ膜99および100を有する無菌フィルタ44よりも、交換の頻度を少なくすることができる。なお、フィルタ膜151も、上記第1実施形態のフィルタ膜99および100のように2層構造としてもよい。
 なお、無菌接続の手段として無菌コネクタ46等を例示したが、これに限らない。熱溶着により無菌接続してもよい。熱溶着には、例えば、ザルトリウス・ステディム・ジャパン社製のバイオウェルダー(インターネットURL(Uniform Resource Locator):https://premium.ipros.jp/sartorius-stedim/product/detail/2000608451/?hub=163&categoryId=52772)を用いる。
 非接液型バルブとしてピンチバルブ43等を例示したが、これに限らない。ピンチバルブ43等に代えて、非電化式(手動式)のチューブクランプを用いてもよい。チューブクランプとしては、スクリュー式、ワニ口式、ローラー式、あるいはラチェット式等を採用することができる。
 チューブクランプのような非電化式の非接液型バルブを用いる場合は、精製部12に警告灯等のインジケータを設け、精製部12において不具合が生じたことをインジケータでユーザに報せてもよい。この場合は、SPTFF装置80またはイムノアフィニティクロマトグラフィー装置81から精製部制御部137にエラー信号を発しなくてもよい。
 生産物は抗体18に限らない。バイオ医薬品の原薬89となるものであれば特に限定されないが、抗体18以外のタンパク質、ペプチド、核酸(DNA、RNA(Ribonucleic Acid))、脂質、ウイルス、ウイルスサブユニット、およびウイルス様粒子等でもよい。
 上記各実施形態において、例えば、培養部制御部135、中間部制御部136、および精製部制御部137といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。各種のプロセッサには、上述したように、ソフトウェア(制御プログラム130)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU122に加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、および/または、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 本開示の技術は、上述の種々の実施形態および/または種々の変形例を適宜組み合わせることも可能である。また、上記各実施形態に限らず、要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。さらに、本開示の技術は、プログラムに加えて、プログラムを非一時的に記憶する記憶媒体にもおよぶ。
 以上に示した記載内容および図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、および効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、および効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容および図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容および図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。
 本明細書において、「Aおよび/またはB」は、「AおよびBのうちの少なくとも1つ」と同義である。つまり、「Aおよび/またはB」は、Aだけであってもよいし、Bだけであってもよいし、AおよびBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「および/または」で結び付けて表現する場合も、「Aおよび/またはB」と同様の考え方が適用される。
 本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (21)

  1.  培養槽に貯留された培養液内において細胞を培養し、除細胞フィルタにより前記培養液から前記細胞を除くことで前記細胞の生産物を含む培養上清液を得る培養工程を行う培養部と、前記培養上清液から前記生産物を精製することでバイオ医薬品の原薬を得る精製工程を行う精製部であって、シングルパスタンジェンシャルフロー濾過方式の精製フィルタを用いた精製工程を含む精製部とを連結ラインにて連結し、
     前記除細胞フィルタよりも大きい孔径を有する無菌フィルタを前記連結ラインに設け、
     前記連結ラインを通じて前記培養部から前記精製部に流入する前記培養上清液を、前記無菌フィルタにより濾過する、
    バイオ医薬品の原薬の製造方法。
  2.  前記シングルパスタンジェンシャルフロー濾過方式の精製フィルタを用いた精製工程の次の工程は、クロマトグラフィー装置を用いた精製工程である請求項1に記載のバイオ医薬品の原薬の製造方法。
  3.  前記クロマトグラフィー装置は単カラムである請求項2に記載のバイオ医薬品の原薬の製造方法。
  4.  前記連結ラインに設けられた前記無菌フィルタに加えて、前記連結ラインに並列に接続された無菌フィルタを用いる請求項1から請求項3のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  5.  前記培養槽の最大収容量をMCC、前記無菌フィルタの濾過面積をFAとした場合、
     0.001m/L≦(FA/MCC)≦0.01m/L
    である請求項1から請求項4のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  6.  前記無菌フィルタの孔径は、前記シングルパスタンジェンシャルフロー濾過方式の精製フィルタの孔径よりも大きい請求項1から請求項5のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  7.  前記無菌フィルタの孔径は、0.1μm以上1.0μm以下である請求項1から請求項6のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  8.  前記無菌フィルタは、平坦な濾紙を折り畳んだ構造である請求項1から請求項7のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  9.  前記無菌フィルタは、中空の繊維を束ねた構造である請求項1から請求項7のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  10.  前記無菌フィルタの材料は、ポリエーテルスルホンである請求項1から請求項9のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  11.  前記連結ラインにおいて前記無菌フィルタの上流に設けた送出ポンプにより、前記培養部から前記精製部に向けて前記培養上清液を送り出す請求項1から請求項10のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  12.  前記連結ラインにおいて前記無菌フィルタの下流に設けた中間容器に、前記培養上清液を一時的に貯留させる請求項1から請求項11のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  13.  前記無菌フィルタへの前記培養上清液の流量は一定である請求項1から請求項12のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  14.  前記無菌フィルタへの前記培養上清液の積算流量が1000L/m~10000L/mの間に設定された設定量に達した場合に、前記無菌フィルタを交換する請求項1から請求項13のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  15.  前記精製フィルタに流入する前記培養上清液の流量を、2分~30分の間に設定された設定間隔で50%以上変動させる請求項1から請求項14のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  16.  前記連結ラインにおいて前記無菌フィルタの下流に接続したサンプリング容器に前記培養上清液を流入させる請求項1から請求項15のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  17.  前記連結ラインと前記サンプリング容器とを接続する分岐ラインに設けた供給ポンプにより、前記サンプリング容器に前記培養上清液を流入させる請求項16に記載のバイオ医薬品の原薬の製造方法。
  18.  前記生産物はタンパク質である請求項1から請求項17のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  19.  前記細胞は、チャイニーズハムスター卵巣細胞由来の細胞である請求項1から請求項18のいずれか1項に記載のバイオ医薬品の原薬の製造方法。
  20.  培養槽に貯留された培養液内において細胞を培養し、除細胞フィルタにより前記培養液から前記細胞を除くことで前記細胞の生産物を含む培養上清液を得る培養工程を行う培養部と、
     前記培養上清液から前記生産物を精製することでバイオ医薬品の原薬を得る精製工程を行う精製部であって、シングルパスタンジェンシャルフロー濾過方式の精製フィルタを含む精製工程である精製部と、
     前記培養部と前記精製部とを連結する連結ラインと、
     前記連結ラインに設けられ、前記除細胞フィルタよりも大きい孔径を有する無菌フィルタであって、前記連結ラインを通じて前記培養部から前記精製部に流入する前記培養上清液を濾過する無菌フィルタと、
    を備えるバイオ医薬品の製造システム。
  21.  請求項1から請求項19のいずれか1項に記載のバイオ医薬品の原薬の製造方法によって製造されたバイオ医薬品の原薬。
PCT/JP2023/013429 2022-03-30 2023-03-30 バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬 WO2023191009A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022057528 2022-03-30
JP2022-057528 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023191009A1 true WO2023191009A1 (ja) 2023-10-05

Family

ID=88202297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013429 WO2023191009A1 (ja) 2022-03-30 2023-03-30 バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬

Country Status (1)

Country Link
WO (1) WO2023191009A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510981A (ja) * 2013-03-08 2016-04-14 ジェンザイム・コーポレーション 治療用タンパク質の連続的な精製
JP2017522169A (ja) * 2014-05-13 2017-08-10 アムジエン・インコーポレーテツド フィルタ及び濾過プロセスで用いるためのプロセス制御システム及び方法
JP2018518161A (ja) * 2015-05-07 2018-07-12 バイエル、アクチエンゲゼルシャフトBayer Aktiengesellschaft 殺菌状態で生成物を連続的に生産および/または調製するモジュラーシステムおよび方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510981A (ja) * 2013-03-08 2016-04-14 ジェンザイム・コーポレーション 治療用タンパク質の連続的な精製
JP2017522169A (ja) * 2014-05-13 2017-08-10 アムジエン・インコーポレーテツド フィルタ及び濾過プロセスで用いるためのプロセス制御システム及び方法
JP2018518161A (ja) * 2015-05-07 2018-07-12 バイエル、アクチエンゲゼルシャフトBayer Aktiengesellschaft 殺菌状態で生成物を連続的に生産および/または調製するモジュラーシステムおよび方法

Similar Documents

Publication Publication Date Title
RU2676639C2 (ru) Блок ультрафильтрации для непрерывной замены буферного раствора или среды из раствора белка
JP6862000B2 (ja) Cff/tff使い捨て流路における再循環ループ
CA2824907C (en) Pneumatic alternating pressure membrane cell separation system
Madsen et al. Single pass tangential flow filtration: Critical operational variables, fouling, and main current applications
TW201843299A (zh) 用於健康護理產品連續加工方法之除氣
WO2023191009A1 (ja) バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬
WO2023191008A1 (ja) バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬
JP2024020456A (ja) 一体型かつ連続した組換えタンパク質の製造
CN202415421U (zh) 简易蛋白质动态透析系统
WO2023188937A1 (ja) バイオ医薬品の原薬の製造方法、バイオ医薬品の原薬の製造システム、およびバイオ医薬品の原薬
US10625210B2 (en) Mixing method and system
CN116134125A (zh) 用于自动处理细胞的即时医疗系统
US20230356111A1 (en) An automated centrifugation device and methods to continuously separate components from different mixtures
EP3363517A1 (en) Degassing in methods for continuous production of a healthcare product
NZ614364B2 (en) Pneumatic alternating pressure membrane cell separation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781017

Country of ref document: EP

Kind code of ref document: A1