WO2023190851A1 - Antibody binding to novel coronavirus (sars-cov-2) - Google Patents

Antibody binding to novel coronavirus (sars-cov-2) Download PDF

Info

Publication number
WO2023190851A1
WO2023190851A1 PCT/JP2023/013145 JP2023013145W WO2023190851A1 WO 2023190851 A1 WO2023190851 A1 WO 2023190851A1 JP 2023013145 W JP2023013145 W JP 2023013145W WO 2023190851 A1 WO2023190851 A1 WO 2023190851A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
acid sequence
sequence
sars
Prior art date
Application number
PCT/JP2023/013145
Other languages
French (fr)
Japanese (ja)
Inventor
慎哉 渡辺
順一 今井
葉月 志賀
慈子 佐藤
進 松倉
裕孝 星
Original Assignee
公立大学法人福島県立医科大学
株式会社メディクローム
福島セルファクトリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人福島県立医科大学, 株式会社メディクローム, 福島セルファクトリー株式会社 filed Critical 公立大学法人福島県立医科大学
Publication of WO2023190851A1 publication Critical patent/WO2023190851A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to antibodies against SARS-related coronaviruses.
  • the invention particularly relates to antibodies that bind to the S1 subunit of SARS-CoV-2.
  • Novel coronavirus infection is an emerging infectious disease caused by the new coronavirus (SARS-CoV-2), which was first reported in December 2019, and can lead to pneumonia caused by cold-like symptoms such as fever and cough. vinegar.
  • SARS-CoV-2 new coronavirus
  • the overall fatality rate in Japan is said to be 1-2%, but the rate increases as people get older, reaching over 12% for people in their 80s and older. Furthermore, it has become a global pandemic, making it the world's greatest epidemiological challenge.
  • the main method used to diagnose COVID-19 is to use PCR to detect SARS-CoV-2 present in body fluids, but this method takes time to measure, is expensive, and is too sensitive. There are problems such as the possibility that non-infectious virus fragments are being detected. Antigen test kits have also come out, but they are not necessarily highly specific, and there are problems with false positives and false negatives. In addition, although vaccinations have begun to be administered around the world and are expected to be effective, there are reports that the effectiveness of vaccines is limited and does not last for a long period of time. Furthermore, although there are reports that antibodies have been obtained that have the ability to bind and neutralize SARS-CoV-2 (Non-Patent Documents 1 to 5), there is currently no effective therapeutic drug. .
  • the present invention aims to provide a novel antibody that can prevent infection with the new coronavirus (SARS-CoV-2) and/or treat COVID-19.
  • SARS-CoV-2 new coronavirus
  • the present inventors isolated cells that produce antibodies against SARS-CoV-2 from the blood of people who had recovered from SARS-CoV-2 infection, and succeeded in obtaining the antibody gene for IgG antibodies.
  • the present inventors focused on the primary defense function of IgA antibodies, which bind to bacteria and viruses locally (eyes, nose, intestines, etc.) and prevent them from entering the body, and by modifying the IgG antibodies, the IgA antibodies can be improved. It was also successfully acquired.
  • the present invention has been completed based on this knowledge. That is, the present invention includes the following aspects:
  • Heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1
  • heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2
  • heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3
  • light chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4
  • an antibody having a light chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5
  • a light chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 6
  • An antibody or antibody fragment thereof that binds to the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2.
  • the antibody of the present invention or antibody fragment thereof is [2] The antibody or antibody fragment thereof according to [1] above, It is characterized in that the receptor binding domain (RBD) of the S1 subunit is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 or a polypeptide having a mutation in the polypeptide.
  • RBD receptor binding domain
  • the antibody of the present invention or antibody fragment thereof is [3] The antibody or antibody fragment thereof according to [1] or [2] above, (a) Amino acid sequence of SEQ ID NO: 8, (b) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence of (a), and (c) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (a), a heavy chain variable region consisting of an amino acid sequence selected from the group consisting of; and (d) the amino acid sequence of SEQ ID NO: 9, (e) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (d) above, and (f) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (e) above; It is characterized by having a light chain variable region consisting of an amino acid sequence selected from the group consist
  • Another aspect of the present invention is [7] A composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
  • Another aspect of the present invention is [8] A spray for preventing SARS-CoV-2 infection, comprising the composition according to [7] above.
  • Another aspect of the present invention is [9] A filter comprising a base material supporting the composition according to [7] above.
  • Another aspect of the present invention is [10] A mask for preventing SARS-CoV-2 infection or spreading, which includes the filter according to [9] above.
  • Another aspect of the present invention is [11] A food composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
  • the food composition of the present invention has the following features: [12] The food composition according to [11] above, characterized in that it is a food composition for preventing infection with SARS-CoV-2.
  • Another aspect of the present invention is [13] A reagent for detecting SARS-CoV-2, comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
  • Another aspect of the present invention is [14] A COVID-19 diagnostic agent comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
  • Another aspect of the present invention is [15] A pharmaceutical composition containing the antibody or antibody fragment thereof according to any one of [1] to [6] above, which is used for preventing and/or treating the onset of COVID-19.
  • Another aspect of the present invention is [16] A polynucleotide encoding the antibody or antibody fragment thereof according to any one of [1] to [6] above.
  • Another aspect of the present invention is [17] An expression vector containing the polynucleotide according to [16] above.
  • Another aspect of the present invention is [18] It relates to a host cell transformed with the expression vector described in [17] above.
  • Another aspect of the present invention is [19] A method for producing an antibody, comprising the steps of culturing the host cell according to [18] above, and collecting the antibody of interest from the culture obtained in the step.
  • Another aspect of the present invention is [20] relates to an antibody obtained by the production method described in [119] above.
  • One embodiment of the composition according to the present invention is [21] A composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above and a carrier.
  • One embodiment of the SARS-CoV-2 detection reagent according to the present invention is [22] A reagent for detecting SARS-CoV-2, comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above, and a carrier.
  • One embodiment of the COVID-19 diagnostic agent according to the present invention is [23] A COVID-19 diagnostic agent comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above and a carrier.
  • One embodiment of the pharmaceutical composition according to the present invention is [24] A pharmaceutical composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above and a pharmaceutically acceptable carrier.
  • Another aspect of the present invention is [25] A method for preventing and/or treating the onset of COVID-19, which comprises administering to a subject a therapeutically effective amount of the antibody or antibody fragment thereof according to any one of [1] to [6] above.
  • an embodiment of the antibody or antibody fragment thereof according to the present invention is [26] The antibody or antibody fragment thereof according to any one of [1] to [6] above, which is used for preventing and/or treating the onset of COVID-19.
  • Another aspect of the present invention is [27] It relates to the use of the antibody or antibody fragment thereof according to any one of [1] to [6] above in the manufacture of a pharmaceutical composition for preventing and/or treating the onset of COVID-19.
  • Another aspect of the invention is [28] A method of using the composition according to [7] above, comprising: The present invention relates to a method of using the composition, which includes the step of slowly releasing, spraying, or dispersing the composition into the air.
  • one embodiment of the method of using the composition of the present invention is as follows: [29] A method of using the composition according to [28] above, comprising: The method is characterized in that the step is a step of spraying the composition into the air using a humidifier.
  • the antibody according to the present invention is an antibody that strongly binds to the S1 region of SARS-CoV-2, and can be used for protection against (prevention of) SARS-CoV-2 infection. Furthermore, in addition to pharmaceuticals, the antibodies of the present invention can also be applied to antibody-containing sprays, antibody-containing masks, antibody-containing hand creams, antibody-containing cosmetics, and the like.
  • FIG. 1 shows the heavy chain amino acid sequence of the IgG antibody obtained in Example 1 below and the base sequence encoding it.
  • the underline indicates the heavy chain CDR1 region
  • the double line indicates the heavy chain CDR2 region
  • the wavy line indicates the heavy chain CDR3 region.
  • FIG. 2 shows the amino acid sequence of the heavy chain variable region of the IgG antibody obtained in Example 1 below and the base sequence encoding it.
  • the underline indicates the heavy chain CDR1 region
  • the double line indicates the heavy chain CDR2 region
  • the wavy line indicates the heavy chain CDR3 region.
  • FIG. 3 shows the light chain amino acid sequence of the IgG antibody obtained in Example 1 below and the base sequence encoding it.
  • FIG. 4 shows the amino acid sequence of the light chain variable region of the IgG antibody obtained in Example 1 below and the nucleotide sequence encoding it.
  • the underline indicates the light chain CDR1 region, the double line indicates the light chain CDR2 region, and the wavy line indicates the light chain CDR3 region.
  • FIG. 5 shows the heavy chain amino acid sequence of the IgA antibody obtained in Example 2 below and the base sequence encoding it.
  • the underline indicates the heavy chain CDR1 region, the double line indicates the heavy chain CDR2 region, and the wavy line indicates the heavy chain CDR3 region.
  • FIG. 4 shows the amino acid sequence of the light chain variable region of the IgG antibody obtained in Example 1 below and the nucleotide sequence encoding it.
  • the underline indicates the light chain CDR1 region, the double line indicates the light chain CDR2 region, and the wavy line indicates the light chain CDR3 region.
  • FIG. 5 shows the heavy chain amino acid sequence of the IgA antibody obtained in Example
  • FIG. 6 shows the amino acid sequence of the heavy chain variable region of the IgA antibody obtained in Example 2 below and the nucleotide sequence encoding the same.
  • the underline indicates the heavy chain CDR1 region
  • the double line indicates the heavy chain CDR2 region
  • the wavy line indicates the heavy chain CDR3 region.
  • FIG. 7 shows the light chain amino acid sequence of the IgA antibody obtained in Example 2 below and the nucleotide sequence encoding it.
  • the underline indicates the light chain CDR1 region
  • the double line indicates the light chain CDR2 region
  • the wavy line indicates the light chain CDR3 region.
  • FIG. 8 shows the amino acid sequence of the light chain variable region of the IgA antibody obtained in Example 2 below and the nucleotide sequence encoding the same.
  • FIG. 9 shows the results of the protein microarray performed in Example 3 below in the form of a heat map.
  • the binding ability to each coronavirus-derived protein was evaluated using the antibody according to the present invention, an antibody known as an antibody drug, and a commercially available antibody.
  • “New” refers to SARS-CoV-2
  • “SARS” refers to SARS-CoV
  • “MERS” refers to Middle East Respiratory Syndrome
  • OC43 refers to human coronavirus OC43 (HCoV- OC43)
  • HKU1 indicates human coronavirus HKU1 (HCoV-HKU1)
  • second29E indicates human coronavirus 229E (HCoV-229E)
  • NL63 indicates human coronavirus NL63 (HCoV-NL63). shows.
  • “HIG001677” and “HIG001677A1” indicate antibodies according to the present invention.
  • Figure 10A shows the human ACE2 protein, SARS-CoV2 spike protein (RBD region of S1 domain or trimer containing S1 domain and S2 domain), and each antibody used in Example 5 below. This is a table showing IC50 calculated from the results of antibody binding inhibition evaluation by competitive ELISA method.
  • Figure 10B shows the human ACE2 protein, SARS-CoV2 spike protein (RBD region of S1 domain or trimer containing S1 domain and S2 domain), and each antibody used in Example 5 below. This is a table showing IC50 calculated from the results of antibody binding inhibition evaluation by competitive ELISA method.
  • FIG. 11 is a graph showing the infection inhibition rate of the ABT#03985 antibody against the pseudovirus among the results of neutralization activity evaluation 1 using pseudovirus performed in Example 6-1 below.
  • FIG. 12 is a graph showing the infection inhibition rate of the ABT#04348 antibody against pseudoviruses among the results of neutralization activity evaluation 1 using pseudoviruses performed in Example 6-1 below.
  • FIG. 13 is a graph showing the infection inhibition rate of the HIG001677A1 antibody against the pseudovirus among the results of neutralization activity evaluation 1 using pseudovirus performed in Example 6-1 below.
  • FIG. 14 is a graph showing the infection inhibition rate of the HIG001677 antibody against pseudoviruses among the results of neutralization activity evaluation 1 using pseudoviruses performed in Example 6-1 below.
  • One aspect of the present invention is a heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1, a heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2, a heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3, and a heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 4.
  • Antibodies or antibody fragments thereof are provided that bind to a domain (RBD).
  • SARS-CoV severe acute respiratory syndrome coronavirus
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • coronaviruses belonging to the SARS-related coronavirus Severe acute respiratory syndrome-related coronavirus
  • It is an enveloped, single-stranded, positive-stranded RNA virus.
  • ⁇ SARS-CoV'' is a virus that causes acute respiratory syndrome (SARS).
  • SARS-CoV-2''' is the pathogenic virus that causes COVID-19, a new coronavirus infection.
  • SARS-CoV and SARS-CoV-2 have four major structural proteins: spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and envelope (E) protein.
  • the spike protein is a type I transmembrane protein consisting of two subunits, the S1 subunit and the S2 subunit, with the S1 subunit containing a receptor binding domain (RBD) that recognizes cell surface receptors.
  • the antibody or antibody fragment thereof according to the invention binds to the receptor binding domain (RBD) of the S1 subunit, the extracellular domain of the spike protein of SARS-CoV-2.
  • the antibody of the present invention or its antibody fragment has the receptor binding domain (RBD) of the S1 subunit to which it binds, it can be ) or a mutant strain that may be generated in the future from the mutant strain, the antibody or antibody fragment thereof according to the present invention can specifically bind.
  • mutant strains include, but are not limited to, the B.1.1.7 strain (Alpha strain), the B.1.351 strain (Beta strain), and the P.1 strain (Gamma strain).
  • gamma strain B.1.617.2 strain (Delta strain), B.1.427/B.1.429 strain (Epsilon strain), P.3 strain (Theta strain), B.1.617.
  • the antibody or antibody fragment thereof according to the present invention is selected from the group consisting of Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain.
  • the antibody or antibody fragment thereof according to the invention is directed against extracellular spike proteins derived from Wuhan, Alpha, Beta, Gamma, Delta, Epsilon, Theta, Kappa, and Omicron strains. It specifically binds to all of the receptor binding domains (RBD) of the S1 subunit.
  • the antibody or antibody fragment thereof according to the present invention can be used to target SARS-CoV-2 Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain. specifically binds to at least one strain selected from the group consisting of strains.
  • the antibody or antibody fragment thereof according to the present invention is specific for all of the Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain. Join.
  • the receptor binding domain (RBD) of the S1 subunit to which the antibody of the present invention or its antibody fragment binds is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 (wild type), or the Mention may be made of polypeptides that have mutations in the wild-type polypeptide.
  • the polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 is a polypeptide containing the 319th arginine residue to the 541st phenylalanine residue of the amino acid sequence specified by the accession number YP_009724390.
  • the polypeptide having a mutation in the wild-type RBD polypeptide includes, for example, a polypeptide containing from the 319th arginine residue to the 541st phenylalanine residue of the amino acid sequence specified by the accession number YP_009724390.
  • a conservative amino acid substitution is a substitution that occurs within an amino acid group that is related to the amino acid side chain.
  • Such amino acid substitutions include, for example, if the amino acid before substitution is a nonpolar amino acid (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), substitution with another nonpolar amino acid; If the amino acid is an uncharged amino acid (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine), it can be replaced with another uncharged amino acid; if the amino acid before substitution is an acidic amino acid (aspartic acid, glutamic acid) Examples include substitution with other acidic amino acids, and substitution with other basic amino acids if the amino acid before substitution is a basic amino acid (lysine, arginine, histidine).
  • amino acid groups are: aliphatic hydroxy groups (serine and threonine), amide-containing groups (asparagia and glutamine), aliphatic groups (alanine, valine, leucine and isoleucine), and , aromatic groups (phenylalanine, tryptophan and tyrosine).
  • Such acid substitutions are preferably carried out within a range that does not reduce the properties of the substance having the original amino acid sequence.
  • polypeptide having a mutation in the wild-type RBD polypeptide listed above for example, the amino acid sequence from the 319th arginine residue to the 541st phenylalanine residue is specified by the accession number YP_009724390.
  • Examples include polypeptides having mutations corresponding to the mutations in .
  • P337S indicates that proline at position 337 in a specific amino acid sequence is replaced with cysteine.
  • the polypeptide having a mutation in the wild-type polypeptide of RBD to which the antibody or antibody fragment thereof according to the present invention can bind is not limited to the polypeptides listed above.
  • Antibody binding can be measured and evaluated using known techniques such as protein microarray, ELISA, and Biacore (registered trademark) assay. More specifically, as shown in Example 2 below, the binding ability of antibodies can be evaluated using a protein microarray. In addition, the neutralizing activity of antibodies can be evaluated, for example, as shown in Examples 6 to 8 below, by using pseudoviruses (lentiviruses with coronavirus S glycoprotein in their envelope protein) or SARS-CoV-2 against ACE2-expressing cells. This can be evaluated by measuring the infection-inhibiting effect of antibodies against infection.
  • pseudoviruses lentiviruses with coronavirus S glycoprotein in their envelope protein
  • SARS-CoV-2 against ACE2-expressing cells
  • antibody mainly refers to human antibodies, mouse antibodies, humanized antibodies, chimeric antibodies of human antibodies and antibodies of other mammals, and chimeric antibodies of mouse antibodies and antibodies of other mammals.
  • the antibody is not limited to these as long as it has the property of specifically binding to the extracellular domain of the spike protein of SARS-CoV-2, and there is no particular restriction on the animal species of the antibody.
  • the antibodies of the invention or antibody fragments thereof are human antibodies or antibody fragments thereof.
  • naturally human antibodies refer to antibodies constructed and produced using genetic engineering technology based on the nucleotide sequence information encoding antibodies obtained from human individuals who have recovered from infection with the new coronavirus. say.
  • the term "antibody” as used herein includes the following known structures: Also includes antibodies with: (1) Antibodies consisting of two polypeptide chains, one immunoglobulin light chain and one immunoglobulin heavy chain, (2) a single chain antibody having a linker sequence on the C-terminal side of an immunoglobulin light chain and binding an immunoglobulin heavy chain to the C-terminal side of the linker sequence; (3) a single chain antibody having a linker sequence on the C-terminal side of an immunoglobulin heavy chain and binding an immunoglobulin light chain to the C-terminal side of the linker sequence; (4) Fab antibodies consisting of Fab regions, F(ab') antibodies consisting of Fab regions and all or part of the hinge region, and F(ab') 2 antibodies (5) Fab, F(ab') or scFab, scF(ab'),
  • the linker sequence for producing the antibody is not limited as long as the single chain antibody produced has specific affinity for the extracellular domain of the spike protein of SARS-CoV-2.
  • Examples of such a linker sequence include, but are not limited to, a peptide chain composed of 2 to 50 amino acid residues (preferably a peptide chain composed of only glycine or glycine and serine). can.
  • Antibody fragment refers to an antigen-binding fragment that retains at least a portion of its specific affinity for the extracellular domain of the spike protein of SARS-CoV-2. Examples of binding fragments include those shown in (4) and (5) above.
  • single chain antibodies Fab, Fab', F(ab') 2 , variable region (Fv), heavy chain variable region (V H ) and light chain variable region (V L ) linked with an appropriate linker ( scFv), a diabody which is a dimer of a polypeptide containing a heavy chain variable region (V H ) and a light chain variable region (V L ), and a part of the constant region (C H
  • Fab single chain antibodies
  • Fab', F(ab') 2 variable region
  • V H heavy chain variable region
  • V L light chain variable region linked with an appropriate linker
  • scFv a diabody which is a dimer of a polypeptide containing a heavy chain variable region (V H ) and a
  • antibody fragments are not limited to these molecules as long as they have specific affinity for the spike protein extracellular domain of SARS-CoV-2.
  • the antibody or antibody fragment thereof according to the present invention has any of the CDRs represented by SEQ ID NOs: 1 to 6 (any combination or all) and is directed against the extracellular domain of the spike protein of SARS-CoV-2.
  • the class and subclass of the antibody is not limited as long as it has specific affinity.
  • a preferred embodiment of the antibody or antibody fragment thereof according to the present invention is an IgG antibody or an IgA antibody, or an antibody fragment thereof. It is preferable to use an IgG antibody because the stability of the antibody is enhanced.
  • an IgA antibody it can be suitably used for applications focusing on the primary defense function of living organisms.
  • Applications focused on primary defense functions include, but are not limited to, the prevention of SARS-CoV-2 infection by local administration (eyes or nose) of living bodies, and/or the prevention and/or onset of COVID-19.
  • the antibody or antibody fragment thereof according to the present invention is an IgA antibody, it may be a monomer or a multimer such as a dimer, trimer, or tetramer.
  • the term IgA antibody includes these multimers.
  • the IgA antibody is dimeric.
  • CDR complementarity determining region. It is known that the heavy chain and light chain of an antibody molecule each have three CDRs. CDRs, also called hypervariable domains, are located within the variable regions of the heavy and light chains of antibodies, and are regions with particularly high variability in primary structure, and are located in the polypeptide chains of heavy and light chains. Each is separated into three locations on its primary structure.
  • heavy chain CDRs are expressed as heavy chain CDR1, heavy chain CDR2, and heavy chain CDR3 from the amino terminal side of the heavy chain amino acid sequence, and light chain CDRs are expressed as the light chain amino acid sequence. From the amino terminal side, they are written as light chain CDR1, light chain CDR2, and light chain CDR3.
  • the "heavy chain” has the structure of Ig ⁇ , Ig ⁇ , Ig ⁇ , Ig ⁇ , Ig ⁇ corresponding to the classes of IgG, IgM, IgA, IgD, and IgE, and , and can take the structures of Ig ⁇ 1, Ig ⁇ 2, Ig ⁇ 3, Ig ⁇ 4, Ig ⁇ 1, and Ig ⁇ 2 corresponding to the subclasses.
  • the antibody of the invention is an IgG antibody or an IgA antibody
  • the heavy chain is Ig ⁇ 1 and/or Ig ⁇ 2.
  • the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody, and has a heavy chain consisting of any amino acid sequence selected from the group consisting of (a) to (c) below.
  • the heavy chain variable region consisting of the specified amino acid sequence has the above (a) affinity for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2, which the heavy chain variable region consisting of the amino acid sequence of SEQ ID NO: 8 has. It is to maintain the
  • the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody and contains any amino acid selected from the group consisting of (a') to (c') below.
  • Consists of an array (a') Amino acid sequence of SEQ ID NO: 10, (b') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (a'), and (c') Amino acid sequence in which one or several amino acids are deleted, substituted or added in the framework region and constant region sequences other than each CDR sequence in the sequence (a') above.
  • the heavy chain variable region consisting of the amino acid sequence specified in (c') above is a receptor for the S1 subunit of SARS-CoV-2 possessed by the heavy chain variable region consisting of the amino acid sequence of (a') SEQ ID NO: 10 above. It maintains affinity for the binding domain (RBD).
  • the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody, and has any amino acid selected from the group consisting of (a'') to (c'') below.
  • the heavy chain variable region consisting of the amino acid sequence specified in (c'') above is the S1 subunit of SARS-CoV-2 possessed by the heavy chain variable region consisting of the amino acid sequence of SEQ ID NO: 29 (a'') above. It maintains affinity for the receptor binding domain (RBD).
  • the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody and is selected from the group consisting of (a''') to (c''') below. Consists of either amino acid sequence: (a''') Amino acid sequence of SEQ ID NO: 30, (b''') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (a'''), and (c''') An amino acid sequence in which one or several amino acids have been deleted, substituted, or added in the framework region and constant region sequences other than each CDR sequence in the sequence (a''') above.
  • the heavy chain variable region consisting of the amino acid sequence specified in (b'') or (c''') above is the SARS- It maintains the affinity for the receptor binding domain (RBD) of the S1 subunit of CoV-2.
  • the "light chain” can have an Ig ⁇ or Ig ⁇ structure.
  • the antibody of the invention is an IgG antibody or an IgA antibody, and the light chain is Ig ⁇ .
  • the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody, and the heavy chain consists of any amino acid sequence selected from the group consisting of (d) to (f) below.
  • variable regions (d) the amino acid sequence of SEQ ID NO: 9, (e) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (d) above, and (f) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (e) above;
  • a light chain variable region consisting of an amino acid sequence specified in (e) or (f) above is a light chain variable region consisting of an amino acid sequence selected from the group consisting of (d) SEQ ID NO: 9. This maintains the affinity of the light chain variable region for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2.
  • the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody and contains any amino acid selected from the group consisting of (d') to (f') below.
  • Consists of an array (d') Amino acid sequence of SEQ ID NO: 11, (e') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (d'), and (f') An amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region and constant region sequences other than each CDR sequence in the sequence (d') above.
  • the light chain variable region consisting of the amino acid sequence specified in (f') above is a receptor for the S1 subunit of SARS-CoV-2 possessed by the light chain variable region consisting of the amino acid sequence of (d') SEQ ID NO: 11 above. It maintains affinity for the binding domain (RBD).
  • the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody and has any amino acid sequence selected from the group consisting of (d'') to (f'') below.
  • the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody and is selected from the group consisting of (d''') to (f''') below. Consists of either amino acid sequence: (d''') amino acid sequence of SEQ ID NO: 32, (e''') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (d'''), and (f''') An amino acid sequence in which one or several amino acids have been deleted, substituted, or added in the framework region and constant region sequences other than each CDR sequence in the sequence (d''') above.
  • the light chain variable region consisting of the amino acid sequence specified in (e'') or (f''') above is the SARS- It maintains the affinity for the receptor binding domain (RBD) of the S1 subunit of CoV-2.
  • an amino acid sequence that has at least 90% or more identity to a framework region sequence other than each CDR sequence in a specific amino acid sequence is an amino acid sequence that has the same CDR as the specific amino acid sequence, and It means an amino acid sequence that has a mutation only in the framework region of the amino acid sequence.
  • Amino acid mutations in the framework region are 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the amino acid sequence in the framework region before mutation introduction. % or more.
  • any numerical value of "identity” shown in this specification may be a numerical value calculated using a homology search program known to those skilled in the art, for example, a default (initial setting) parameter in FASTA, BLAST, etc. It can be easily calculated by using .
  • the Blast algorithm can also be used by visiting www.ncbi.nlm.nih.gov/blast on the Internet. Note that the homology between the nucleotide sequence of the antibody of the present invention and the nucleotide sequences of other antibodies can also be determined by Blast algorithm.
  • severe amino acids When “several amino acids are deleted, substituted, or added,”"several refers to 1 to 50, 1 to 48, 1 to 40, 1 to 30, 1 to 23, 1 to 20 pieces, 1 to 10 pieces, 1 to 9 pieces, 1 to 8 pieces, 1 to 7 pieces, 1 to 6 pieces, 1 to 5 pieces, 1 to 4 pieces, 1 to 3 pieces, or 1 or 2 pieces do. Any amino acid substitutions introduced are preferably conservative substitutions.
  • the antibody or antibody fragment thereof according to the present invention has high affinity for the receptor binding domain (RBD) of the S1 subunit, the extracellular domain of the spike protein of SARS-CoV-2.
  • the antibody or antibody fragment thereof according to the invention has a dissociation constant (K D ) for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2 of less than 20 nM, more preferably less than 5 nM. , less than 2 nM, less than 1 nM, more preferably less than 0.1 nM, less than 0.05 nM.
  • K D dissociation constant
  • the dissociation constant of an antibody or an antibody fragment thereof can be evaluated by Biacore according to the method described in Example 4 below.
  • compositions comprising the above-described antibody or antibody fragment thereof according to the present invention. That is, one embodiment of the composition includes heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1, heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2, heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3, and heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3.
  • a composition comprising an antibody or antibody fragment thereof that binds to the S1 subunit in the extracellular domain.
  • the antibody or antibody fragment thereof included in the composition competes for binding between the extracellular domain of the human ACE receptor and the extracellular domain of the spike protein of SARS-CoV-2.
  • the composition according to the present invention can be used as an element (component) constituting a filter, spray, mask, etc. used to prevent infection with SARS-CoV-2, or as a component of cosmetics.
  • the filter is not limited to the following, examples include filters for air purifiers and air conditioners.
  • One aspect of the present invention also includes a method of slowly releasing, spraying, or dispersing a composition containing the above-described antibody or antibody fragment of the present invention into the air. That is, the composition according to the present invention (preferably a liquid composition) can be used by slow release, spraying, or scattering into the air (in a closed space such as indoors or in an open space such as outdoors). can.
  • the means is not limited as long as the composition according to the present invention can be released slowly, sprayed, or dispersed, and any known means (microcapsules, etc.), devices (humidifiers, etc.), and methods can be employed.
  • any known means microcapsules, etc.
  • devices humidityidifiers, etc.
  • the composition according to the present invention can be sprayed into the air while humidifying the air. Therefore, the composition according to the present invention can be provided in a form suitable for sustained release, spraying, or dispersion into the air (for example, an aqueous solution for a humidifier) depending on the means, apparatus, and method employed.
  • composition according to the present invention can be used as a composition for food or drink, a reagent for detecting SARS-CoV-2, a COVID-19 diagnostic agent, or a pharmaceutical composition used for preventing and/or treating the onset of COVID-19. It can also be provided as
  • the composition according to the present invention can adopt a form suitable for its use and contain preferred components. Therefore, the form of the composition is not limited, and may be in liquid form such as an aqueous solution, suspension, or emulsion, or in solid form (powder form) together with a carrier so that it can be dissolved, suspended, or emulsified. , lyophilized powder, etc.).
  • Solvents for dissolving antibodies or antibody fragments thereof include, but are not limited to, physiological saline, glucose solutions, and isotonic solutions (e.g., sodium chloride, potassium chloride, glycerin, mannitol, sorbitol, boric acid, borax). , propylene glycol, etc.), distilled water for injection, methanol, ethanol, propanol, isopropanol, and other organic solvents.
  • Carriers that can be used in the composition include, but are not limited to, stabilizers, solubilizers, suspending agents, emulsifiers, soothing agents, buffers, preservatives, preservatives, pH adjusters, and Examples include antioxidants.
  • stabilizers include various amino acids, albumin, globulin, gelatin, mannitol, glucose, dextran, ethylene glycol, propylene glycol, polyethylene glycol, ascorbic acid, sodium bisulfite, sodium thiosulfate, sodium edetate, sodium citrate, Dibutylhydroxytoluene and the like can be used.
  • solubilizing agents examples include alcohols (e.g., ethanol, etc.), polyalcohols (e.g., propylene glycol, polyethylene glycol, etc.), nonionic surfactants (e.g., polysorbate 20 (registered trademark), polysorbate 80 (registered trademark) ), HCO-50, etc.) can be used.
  • alcohols e.g., ethanol, etc.
  • polyalcohols e.g., propylene glycol, polyethylene glycol, etc.
  • nonionic surfactants e.g., polysorbate 20 (registered trademark), polysorbate 80 (registered trademark)
  • HCO-50 etc.
  • the suspending agent for example, glyceryl monostearate, aluminum monostearate, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, sodium lauryl sulfate, etc.
  • emulsifier for example, gum arabic, sodium alginate, tragacanth, etc. can be used
  • the soothing agent for example, benzyl alcohol, chlorobutanol, sorbitol, etc.
  • the buffer for example, phosphate buffer, acetate buffer, borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon aminocaproate buffer, etc.
  • preservatives include methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boric acid, and boric acid. Sand etc. can be used.
  • preservative for example, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol, etc.
  • pH adjuster for example, hydrochloric acid, sodium hydroxide, phosphoric acid, acetic acid, etc. can be used.
  • antioxidants for example, (1) water-soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite, etc., (2) ascorbyl palmitate, butylated hydroxyanisole, (3) using oil-soluble antioxidants such as butylated hydroxytoluene, lecithin, propyl gallate, ⁇ -tocopherol, etc.; and (3) metal chelating agents such as citric acid, ethylenediaminetetraacetic acid, sorbitol, tartaric acid, phosphoric acid, etc. Can be done.
  • water-soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite, etc.
  • ascorbyl palmitate butylated hydroxyanisole
  • oil-soluble antioxidants such as butylated hydroxytoluene, lecithin, propyl gallate, ⁇ -tocophe
  • the carrier is a pharmaceutically acceptable carrier.
  • a carrier that can be used.
  • examples of pharmaceutically acceptable carriers include the carriers listed above.
  • the content of the antibody or antibody fragment thereof in the composition of the present invention may be within a range that provides the desired effect depending on the intended use. For example, but not limited to, it can be 1 ⁇ g/kg to 1,000 mg/kg.
  • the present invention provides a spray for preventing SARS-CoV-2 infection, comprising the above composition.
  • the spray for preventing SARS-CoV-2 infection of the present invention contains the above-mentioned antibodies or antibody fragments thereof and their solvents. Therefore, it can be used by spraying in areas where SARS-CoV-2 infection is suspected (including, but not limited to, closed spaces, open spaces, masks, doorknobs, desks, straps, etc.), and it can also be used on hands. It can be used for disinfection.
  • the spray for preventing SARS-CoV-2 infection of the present invention can further contain other buffers, salts, sugars, additives (preservatives, surfactants, etc.), and the like.
  • known solvents, buffers, salts, sugars, additives, etc. that can be used in the spray can be used as long as they do not inhibit the affinity of the antibody for SARS-CoV-2.
  • it can be prepared using ethanol as a solvent and adding a preservative such as methylparaben and a surfactant such as polysorbate 80.
  • a spray can be manufactured according to a known spray manufacturing method.
  • the present invention provides a filter that includes a substrate carrying the composition described above.
  • the filter of the present invention can be used in applications such as air purifiers and mask materials to capture SARS-CoV-2 in the air.
  • the substrate is not limited as long as it can support the above antibody or antibody fragment and does not inhibit the affinity for SARS-CoV-2.
  • base materials include polyvinyl alcohol fibers (e.g., vinylon), polyester fibers (e.g., polyethylene terephthalate fibers), polyamide fibers (e.g., nylons such as nylon 6 and nylon 66, polyacrylamide fibers, etc.), polyolefin fibers (e.g., polyethylene fibers), synthetic fibers such as acrylic fibers, polyurethane fibers, cellulose fibers, and cellulose ester fibers; natural fibers such as cotton, silk, wool, and rayon; and recycled fibers and mixtures thereof.
  • polyvinyl alcohol fibers e.g., vinylon
  • polyester fibers e.g., polyethylene terephthalate fibers
  • polyamide fibers e.g., nylons such as nylon 6 and nylon 66, polyacrylamide fibers, etc.
  • polyolefin fibers e.g., polyethylene fibers
  • synthetic fibers such as acrylic fibers, polyurethane fibers, cellulose fibers, and cellulose ester fiber
  • the form of the base material may be nonwoven fabrics such as films, spunbond nonwoven fabrics, spunlace nonwoven fabrics, needle punched nonwoven fabrics, melt blown nonwoven fabrics, flash spun nonwoven fabrics, thermal bonded nonwoven fabrics, chemical bonded nonwoven fabrics, stitch bonded nonwoven fabrics, and wet paper-made nonwoven fabrics, or woven fabrics.
  • nonwoven fabrics such as films, spunbond nonwoven fabrics, spunlace nonwoven fabrics, needle punched nonwoven fabrics, melt blown nonwoven fabrics, flash spun nonwoven fabrics, thermal bonded nonwoven fabrics, chemical bonded nonwoven fabrics, stitch bonded nonwoven fabrics, and wet paper-made nonwoven fabrics, or woven fabrics.
  • sheets such as paper.
  • its basis weight is not particularly limited, but can be, for example, 1 ⁇ g/m 2 to 200 mg/m 2 .
  • the method of supporting a composition containing an antibody or an antibody fragment thereof on a substrate is not limited as long as the antibody can be supported on the substrate, but for example, a method of spraying an antibody-containing solution (liquid composition) onto a substrate, A method can be mentioned in which the material is impregnated with an antibody-containing solution (liquid composition) at an appropriate concentration and dried at an appropriate temperature and time.
  • a method of impregnating the substrate with an antibody-containing solution to support the antibody can be performed with reference to, for example, JP-A-2010-131537.
  • a method of introducing a functional group such as an aldehyde group onto the surface of the substrate and covalently bonding the antibody and the functional group and a method of using a carrier with molecules (Fc receptor, protein A/G, etc.) that selectively binds to the Fc portion of the antibody.
  • the antibody may be supported on the substrate via a linker or a method in which the antibody is introduced onto the surface and bound to the surface.
  • One aspect of the present invention provides a mask for preventing SARS-CoV-2 infection or spread, which includes the above filter.
  • the mask for preventing SARS-CoV-2 infection or spreading of the present invention is equipped with the above-mentioned filter to capture SARS-CoV-2 in the air and infiltrate into the body, or for subjects infected with SARS-related coronavirus. It captures SARS-CoV-2 contained in exhaled air and prevents it from being released outside the body (or into the air).
  • the form of the mask is not limited, and it can preferably be an oral cavity mask or a nasal cavity mask.
  • the mask for preventing SARS-CoV-2 infection of the present invention only needs to include the above-mentioned filter in the mask so that SARS-CoV-2 contained in exhaled or inhaled air can be captured.
  • Such a mask can be manufactured by a known method.
  • One aspect of the present invention provides a composition for food or drink containing the above-described antibody or antibody fragment thereof. Since the food and drink composition of the present invention contains antibodies or antibody fragments thereof that have affinity for SARS-CoV-2, SARS-CoV-2 taken into the body can enter cells in the esophagus, stomach, intestines, etc. restrain from doing. Therefore, in one embodiment, the food and drink composition of the present invention can be provided as a food composition for preventing infection with SARS-CoV-2.
  • the food and drink compositions may be in any form such as liquid, paste, gel-like solid, powder, etc., such as nutritional supplements, tablets, liquid foods (nutritive foods for tube ingestion); Flour products such as bread, macaroni, spaghetti, noodles, cake mixes, fried chicken powder, and bread crumbs; instant noodles, cup noodles, retort/cooked foods, cooked canned foods, microwave foods, instant soups/stews, instant miso soup/suimono, and canned soups.
  • liquid, paste, gel-like solid, powder, etc. such as nutritional supplements, tablets, liquid foods (nutritive foods for tube ingestion); Flour products such as bread, macaroni, spaghetti, noodles, cake mixes, fried chicken powder, and bread crumbs; instant noodles, cup noodles, retort/cooked foods, cooked canned foods, microwave foods, instant soups/stews, instant miso soup/suimono, and canned soups.
  • processed agricultural products such as canned agricultural products, canned fruits, jams and marmalades, pickles, boiled beans, dried agricultural products, and cereals (processed grain products); canned marine products; , processed seafood products such as fish hams and sausages, seafood paste products, seafood delicacies, and boiled fish; processed livestock products such as canned livestock products and pastes, meat hams and sausages; processed milk, milk drinks, yogurts, lactic acid bacteria drinks, Milk and dairy products such as cheese, ice cream, powdered milk, cream, and other dairy products; Oils and fats such as butter, margarine, and vegetable oil; Soy sauce, miso, sauces, processed tomato seasonings, mirin, and vinegar Basic seasonings such as cooking mixes, curry ingredients, sauces, dressings, noodle soups, spices, and other complex seasonings and foods; Frozen raw foods, semi-cooked frozen foods, Frozen foods such as cooked frozen foods; Confectionery such as caramels, candies, chew
  • the content of the antibody or its antibody fragment contained in the food/beverage composition of the present invention may be within a range in which a desired effect can be obtained depending on the form thereof. For example, but not limited to, it can be 1 ⁇ g/kg to 1,000 mg/kg.
  • Such food and drink compositions can be produced according to known methods.
  • the present invention provides a cosmetic product comprising the above-described antibody or antibody fragment thereof.
  • the cosmetics of the present invention prevent SARS-CoV-2 attached to the skin from entering the body (into cells) through mucous membranes, etc. suppress.
  • the form of cosmetics is not limited, and examples include lotion, serum, milky lotion, cream, facial cleanser, pack, body cleanser, shampoo, conditioner, treatment, conditioner, hair lotion, hair tonic, hair oil, hair cream, and hair. It can be in the form of wax, hair foam, gel, grease, pomade, tick, hair spray, hair water, hair mist, hair dye, coloring agent, bleaching agent, mascara, eyebrow mascara, eyebrow eyebrow, etc.
  • the content of the antibody or its antibody fragment contained in the cosmetics of the present invention may be within a range that allows desired effects to be obtained depending on the form thereof. For example, but not limited to, it can be 0.1 ng/ml to 100 mg/ml.
  • Such cosmetics can be manufactured according to known methods.
  • the present invention provides a reagent for detecting SARS-CoV-2 and a diagnostic agent for COVID-19, which contain the above-described antibody or antibody fragment thereof.
  • Methods for immunologically measuring SARS-CoV-2 using the antibodies of the present invention or antibody fragments thereof include, but are not limited to, enzyme immunoassays (hereinafter referred to as EIA or ELISA), chemiluminescent enzyme immunoassays, etc.
  • CLIA chemiluminescence immunoassay
  • FET fluorescent antibody assay
  • FION fluorescent enzyme immunoassay
  • ELIA electrochemiluminescence immunoassay
  • RIA radioimmunoassay
  • Known methods such as , agglutination method, competition method, etc. can be adopted.
  • the antibody or antibody fragment used in the SARS-CoV-2 detection reagent of the present invention may be labeled according to the measurement method. good.
  • the specimen to be detected for SARS-CoV-2 is not particularly limited, and may be a biologically derived sample or an environmentally derived sample.
  • Aqueous specimens are preferred, such as blood (whole blood, plasma, serum, etc.), urine, tissue fluid, lymph fluid, joint fluid, milk, cerebrospinal fluid, pus, saliva, tears, mucus, nasal discharge, sputum, ascites, and water.
  • body fluids such as semen, washing fluids after washing nasal cavities, bronchi, lungs, skin, abdominal cavity, various organs, joints, bones, etc., cell culture supernatants, column eluates, sewage samples, etc. .
  • samples can be used for measurement as they are, or after being diluted with various buffers or the like, or concentrated after extraction. Furthermore, by collecting any of the above specimens from a subject, it is possible to assist in determining whether or not the subject is suffering from COVID-19.
  • a pharmaceutical composition containing the antibody of the present invention or its antibody fragment may contain only the antibody or its antibody fragment as an active ingredient, but it usually contains a pharmaceutically acceptable compound as listed above. It can be produced by a known method by mixing together with one or more carriers. It is desirable to use the most effective administration route for the pharmaceutical composition of the present invention for treatment; oral administration; transmucosal administration such as intranasal, oral, respiratory tract, and intrarectal administration; subcutaneous, intramuscular, and intravenous administration. Parenteral administration such as intravenous administration can be mentioned. Examples of dosage forms include, but are not limited to, sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes, and the like.
  • Preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, and granules.
  • Preparations suitable for parenteral administration include injections, suppositories, and sprays. Sprays are prepared using the antibody or its antibody fragment itself or a carrier that does not irritate the subject's oral and respiratory mucous membranes and disperses the antibody or its antibody fragment as fine particles to facilitate absorption.
  • Specific examples of carriers include lactose and glycerin. Depending on the nature of the antibody or its antibody fragment and the carrier used, formulations such as aerosols and dry powders are possible.
  • the dose or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age, body weight, etc., but can be, for example, usually 1 ⁇ g/kg to 100 mg/kg per day for adults.
  • the pharmaceutical composition according to the invention is administered as a spray into the respiratory airways of the nasal cavity or throat.
  • Sprays suitable for administration are not particularly limited, but inhalation aerosol types that are sprayed as an aerosol are preferred.
  • Another aspect of the present invention provides a method for preventing and/or treating the onset of COVID-19, which includes the step of administering to a subject a therapeutically effective amount of the above antibody or antibody fragment thereof.
  • Subject refers to humans or non-human mammals (e.g., mice, guinea pigs, hamsters, rats, rats, rabbits, pigs, sheep, goats, cows, horses, cats, dogs, marmosets, monkeys, or chimpanzees). (one or more types).
  • the target may also be a patient who has developed COVID-19, has developed COVID-19, or has been diagnosed as being at risk of developing COVID-19.
  • Another aspect of the invention provides a polynucleotide encoding an antibody or antibody fragment thereof according to the invention.
  • Another aspect of the present invention provides an expression vector containing the above-described polynucleotide according to the present invention.
  • a polynucleotide of the invention encodes an antibody or antibody fragment thereof comprising a heavy chain CDR identified as SEQ ID NO: 1-3 or a light chain CDR identified as SEQ ID NO: 4-6.
  • the polynucleotide of the present invention is a polynucleotide encoding the heavy chain or light chain of an IgG antibody, which is a polynucleotide consisting of SEQ ID NO: 12 encoding the heavy chain, or a polynucleotide consisting of SEQ ID NO: 12 encoding the light chain. It is a polynucleotide consisting of 13.
  • the polynucleotide of the present invention is a polynucleotide encoding the heavy chain or light chain of an IgA antibody, which is a polynucleotide consisting of SEQ ID NO: 33 encoding the heavy chain, or a polynucleotide encoding the light chain.
  • This is a polynucleotide consisting of SEQ ID NO: 34.
  • the polynucleotide of the present invention is a polynucleotide encoding the variable region of the heavy chain or light chain of an IgG antibody, and comprising SEQ ID NO: 35 encoding the heavy chain, or a polynucleotide encoding the variable region of the heavy chain or light chain of an IgG antibody.
  • This is a polynucleotide consisting of SEQ ID NO: 36 encoding.
  • the polynucleotide of the present invention is a polynucleotide encoding the variable region of the heavy chain or light chain of an IgA antibody, and consisting of SEQ ID NO: 37 encoding the heavy chain, or a polynucleotide encoding the variable region of the heavy chain or light chain of an IgA antibody, or This is a polynucleotide consisting of SEQ ID NO: 38 encoding.
  • a transformant can be produced by introducing a vector containing this polynucleotide or the polypeptide into cells.
  • the polynucleotide or vector may be constructed to be capable of expressing anti-SARS-CoV-2 antibodies.
  • the polynucleotide or vector can contain components necessary for protein expression, such as a promoter, enhancer, and origin of replication, and/or genes for screening such as antibiotic resistance genes. Further, the polynucleotide or vector may have a base sequence derived from a different species.
  • a base sequence derived from a foreign species is, for example, a base sequence derived from two or more species selected from the group consisting of humans and non-human organisms (e.g., bacteria, archaea, yeast, insects, birds, viruses, or mammals other than humans). It may contain the original base sequence.
  • the above vectors are not limited as long as they can carry out protein expression in host cells, such as Escherichia coli-derived plasmids (e.g. pET-Blue), Bacillus subtilis-derived plasmids (e.g. pUB110), yeast-derived plasmids (e.g. pSH19). , animal cell expression plasmids (e.g. pA1-11, pcDNA3.1-V5/His-TOPO, pcDNA 3.1(-) Mammalian Expression Vector, pcDNA 3.1/Hygro(-) Mammalian Expression Vector), bacteriophages such as ⁇ phage, viruses Vectors derived from the above can be used.
  • the vector may be an expression vector and may be circular.
  • the "host cell” may be a cell of a human or a mammal other than a human (eg, rat, mouse, guinea pig, rabbit, cow, monkey, etc.).
  • mammalian cells include Chinese hamster ovary cells (CHO cells), monkey cells COS-7, human fetal kidney cells (eg, HEK293 cells), and mammalian cells Expi293.
  • the host cell may be Escherichia bacteria, yeast, or the like.
  • Methods for introducing the above-mentioned polynucleotides or vectors into cells are known, such as the calcium phosphate method, lipofection method, electroporation method, adenovirus method, retrovirus method, or microinjection.
  • a method for producing antibodies using cells is also known, and antibodies are produced by culturing cells under culture conditions suitable for host cells, and then recovered.
  • Another aspect of the present invention provides a method for producing an antibody, which includes the steps of culturing the host cell according to the present invention described above, and collecting the antibody of interest from the culture obtained in the step.
  • the method for producing an antibody may include a step of preparing a cell culture medium, and may also include a step of purifying an anti-SARS-CoV-2 antibody.
  • Antibody purification methods are known, such as ammonium sulfate, ethanol precipitation, protein A, protein G, protein L, gel filtration chromatography, anion, cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography. , affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or the like can be used.
  • Example 1 Recovery of IgG antibody and identification of CDR sequence
  • PBMCs Human peripheral blood mononuclear cells
  • PBMCs Human peripheral blood mononuclear cells
  • PBMCs Human peripheral blood mononuclear cells
  • a blastoid cell line (LCL) was generated.
  • B cells which normally do not have the ability to proliferate, were infected with human Epstein-Barr virus (EB virus) and transformed into a lymphoblastoid cell line (LCL) that has the ability to proliferate.
  • EB virus Epstein-Barr virus
  • An EB virus solution for infecting with EB virus was prepared as follows. B95-8 cells were cultured in RPMI medium (10% FBS), and after passage once, they were seeded at a concentration of 4 to 6 ⁇ 10 4 cells/ml. After that, the culture was continued for 10 to 14 days without replacing the medium. After the culture was completed, the B95-8 cell culture solution was centrifuged at 400 ⁇ g for 10 minutes at room temperature to collect the culture supernatant. The culture supernatant was filtered through a 0.45 ⁇ m filter and centrifuged at 10,000 rpm for 3 hours at 4°C to collect the virus fraction. It was dissolved again in RPMI1640 (10% FBS) to prepare an EB virus solution.
  • the EB virus solution was aliquoted and stored at -80°C until use. After thawing the PBMC, the number of cells was measured, and 100 ⁇ L of EB virus solution was added per 1 ⁇ 10 6 to 10 7 cells, followed by culturing at 37° C. for 30 minutes. After the infection, the cells were centrifuged at 400 xg for 10 minutes at room temperature, the supernatant was removed, and after washing once, they were suspended in RPMI1640 medium (20% FBS) to start culturing. After culturing for 7 to 14 days, a lymphoblastoid cell line (LCL) with proliferation ability was obtained.
  • RPMI1640 medium (20% FBS
  • Alexa Fluor 488 labeling of anti-His-tag antibody was labeled according to the procedure of Alexa Fluor 488 Antibody Labeling Kit (ThermoFisher Scientific, A20181).
  • coronavirus antigen - Alexa Fluor 488 was prepared by reacting with an anti-His-tag antibody labeled with Alexa Fluor 488. did. Specifically, coronavirus antigen was prepared at 100 ⁇ g/mL with a sorting solution, 15 ⁇ g of Alexa Fluor 488-labeled anti-His-tag antibody was added, and the mixture was incubated on ice for 30 minutes.
  • Single cell sorting of LCL LCL of interest was single cell sorted using a fluorescently labeled antigen. Specifically, LCLs in culture were washed with PBS and then adjusted to 2 ⁇ 10 7 cells/mL with a sorting solution. In the combination shown in Table 1, 5 ⁇ g of antigen and 1 ⁇ g of anti-IgA antibody (Bethyl, Cat. A80-202D5) were added per 1 ⁇ 10 6 cells, and incubated on ice for 30 minutes. After incubation, the cells were washed twice with PBS and suspended in a sorting solution.
  • an Alexa647-labeled anti-human IgA antibody fluorescently labeled with Alexa Fluor 647 as an antibody for detecting human immunoglobulin, and a Cy3-labeled anti-goat IgG antibody fluorescently labeled with Cy3 for detecting a reference antibody were added to 2 ml of secondary It was added to the diluted antibody solution and added to the cassette after stirring.
  • solution B 10X
  • solution B 10X
  • the protein microarray used for LCL antibody profiling is based on microorganisms (Actinomycetes, Aerococcaceae, Aeromonadaceae, Alcaligenes, Alcaligenes, Bacillus, Bacteroidetes, Bifidobacteriaceae, Campylobacteriaceae, Chlamydiaceae).
  • oligo(dT) primer (5'-GCGGCTGAAGACGGCCTATGTGGCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT -3': SEQ ID NO: 14) with an arbitrary sequence added to the 5' end, perform a reverse transcription reaction using SMARTScribe Reverse Transcriptase (TaKaRa, Cat.Z9538N).
  • cDNA synthesis was performed by adding an adapter oligo capable of binding to the 5' end.
  • the adapter oligo capable of binding to the 5' end was synthesized as an LNA-RNA-DNA chimera oligo with the sequence 5'-AAGCAGTGGTATCAACGCAGAGTACCGGG-3' (SEQ ID NO: 15).
  • 1stPCR_FW primer (5'- AAGCAGTGGTATCAACGCAGAGTAC -3' : SEQ ID NO: 16) and 1stPCR_RV primer (5'- GCGGCTGAAGACGGCCTATGT). -3': SEQ ID NO: 17) and PrimeSTAR GXL DNA Polymerase (TaKaRa, Cat. R050B), 1st PCR was performed to amplify all the RNAs expressed in the antibody-producing cells.
  • 2ndPCR_FW primer (5'- ACGGGCCCTCTAGACAAGCAGTGGTATCAACGC -3': SEQ ID NO: 24
  • 2ndPCR_IgG_RV primer (5'- TTACCCGGAGACAGGGAGAGG -3': SEQ ID NO: 25)
  • 2ndPCR_Ig-K_RV primer (5' - CCTGTTGAAGCTCTTTGTGACG -3': SEQ ID NO: 26)
  • 2nd PCR_Ig-L_RV primer (5'- GGGGCCACTGTCTTCTCCA -3': SEQ ID NO: 27)
  • PrimeSTAR GXL DNA Polymerase (TaKaRa, Cat.
  • R050B was applied to each of the H chain and L chain.
  • 2nd PCR was performed using the PCR method to amplify the full-length antibody gene. Size was confirmed by agarose gel electrophoresis, and only cells in which full-length antibody genes of the expected size for both H and L chains were amplified were selected. Since the 2nd PCR product contains residual oligos and non-specific side reaction products, the 2nd PCR product was purified by performing treatments such as extraction using PCR product purification beads and agarose gel. The H chain antibody gene fragments and L chain antibody gene fragments obtained for each were aligned to create an antibody gene set.
  • Expression clones for producing antibodies in mammalian cells were created. Expression clones were created from the H chain and L chain, and finally antibodies were produced by simultaneously transfecting cells with both. The antibody gene fragments for the H chain and L chain were cloned into a cell expression cassette vector that can be used for expression analysis using a recombination reaction between homologous sequences called seamless cloning.
  • pcDNA 3.1 (-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520) was used for the H chain gene
  • pcDNA 3.1/Hygro(-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520) was used for the L chain gene.
  • the vector into which the antibody gene fragment had been introduced was transformed into Escherichia coli. The transformants were selected and cultured on a drug-containing agar medium.Four subclones were selected for each antibody gene and cultured.
  • Plasmid DNA was prepared from the E. coli culture using an automatic plasmid separation device. The size of the prepared plasmid DNA was confirmed by agarose gel electrophoresis.
  • antibody gene expression clones whose antibody gene sequences could be determined were aligned as an antibody gene expression clone set.
  • the heavy chain amino acid sequence of the obtained antibody and the base sequence encoding it are shown in FIG.
  • the amino acid sequence of the heavy chain variable region of the obtained antibody and the nucleotide sequence encoding it are shown in FIG. 2.
  • the light chain amino acid sequence of the obtained antibody and the base sequence encoding it are shown in FIG.
  • the amino acid sequence of the light chain variable region of the obtained antibody and the nucleotide sequence encoding it are shown in FIG.
  • the obtained antibody was an IgG antibody, and the heavy chain of the antibody was Ig ⁇ 1 and the light chain was Ig ⁇ .
  • IgA human IgG antibody was produced based on the information on the amino acid sequences of the heavy chain variable region and light chain variable region of the antibody obtained in "1-9. Antibody gene sequence determination" above. Based on the C-terminal portion of the amino acid sequence, the most suitable isotype and subtype were predicted from the antibody gene database constructed at Fukushima Medical University, and a constant region sequence was added. Furthermore, based on the information on the N-terminal portion of the amino acid sequence of the variable region, an optimal signal sequence predicted from the antibody gene database constructed at Fukushima Medical University was added. In addition, an optimal 5'-UTR sequence was added for stable protein expression.
  • the base sequence encoding the predicted amino acid sequence was cloned into a cell expression cassette vector. More specifically, for the base sequence of the H chain, we used pcDNA 3.1 (-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520), and for the base sequence of the L chain, we used pcDNA 3.1/Hygro(-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V87520).
  • the gene (SEQ ID NO: 28) encoding JCHAIN (Joining Chain Of Multimeric IgA And IgM) for co-expression with IgA type antibody gene was subcloned into vector pcDNA3.2/V5-DEST (Invitrogen (ThermoFisher SCIENTIFIC)). did.
  • the heavy chain amino acid sequence of the constructed IgA human IgG antibody and the base sequence encoding it are shown in FIG.
  • the amino acid sequence of the heavy chain variable region of the constructed IgA human IgG antibody and the nucleotide sequence encoding it are shown in FIG.
  • the light chain amino acid sequence of the constructed IgA human IgG and the nucleotide sequence encoding it are shown in FIG.
  • the amino acid sequence of the light chain variable region of the constructed IgA human IgG and the nucleotide sequence encoding it are shown in FIG.
  • Example 3 Antibody evaluation 1 using protein microarray
  • 3-1 Antibody production The antibody gene obtained in "1-9. Determination of antibody gene sequence" or the antibody gene of the IgA-ized human IgG antibody produced in Example 2 above and the gene encoding JCHAIN were introduced into mammalian cells Expi293F. using ExpiFectamine 293 Transfection Kit (Gibco (ThermoFisher SCIENTIFIC), A14524) and transiently expressed to produce antibodies. Specifically, shaking culture of cryopreserved human floating cells was started in a 125 ml flask. A minimum of two passages were performed to allow cells to recover from freeze-thaw injury.
  • the obtained antibody was named natural human IgG antibody (HIG001677) or IgA-ized human IgG antibody (HIG001677A1).
  • the antigen was identified using a protein microarray.
  • Sequence information (amino acid sequence information of the variable region) of each of the publicly available preceding antibodies was obtained.
  • the nucleic acid sequence was predicted from the amino acid sequence information.
  • the isotype and subtype were predicted from the antibody gene database constructed at Fukushima Medical University, and a constant region sequence considered to be optimal was added.
  • an optimal signal sequence predicted from the antibody gene database constructed at Fukushima Medical University was added.
  • an optimal 5'-UTR sequence was added for stable protein expression.
  • the relationship between the base sequence encoding the predicted amino acid sequence and the sequence number is shown in the table below.
  • the nucleotide sequences encoding the predicted amino acid sequences for the heavy chain and light chain of each preceding antibody were cloned into a cell expression cassette vector. More specifically, for the base sequence of the H chain, we used pcDNA 3.1 (-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520), and for the base sequence of the L chain, we used pcDNA 3.1/Hygro(-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V87520). Then, the cell expression cassette vector was introduced into mammalian cell Expi293F using ExpiFectamine 293 Transfection Kit (Gibco (ThermoFisher SCIENTIFIC), A14524), and transiently expressed.
  • Antibodies were produced.Specifically, shaking culture of cryopreserved human suspension cells was started in a 125 ml flask.The cells were passaged at least twice to recover from freeze-thaw damage. Cells were passaged into 125 ml flasks, cultured overnight, and then seeded onto 96 plates, and cell expression cassette vectors (plasmid DNA) were introduced into the cells by lipofection. 3rd day after introduction of plasmid DNA. A culture supernatant was obtained. Using the obtained culture supernatant, it was developed by polyacrylamide electrophoresis under denaturing conditions, and the expression of each preceding antibody was confirmed by Coomassie Brilliant Blue (CBB) staining and Western blot analysis.
  • CBB Coomassie Brilliant Blue
  • a primary antibody dilution solution was prepared as a negative control (hereinafter referred to as negative control).
  • negative control 1000 ⁇ l of a primary antibody dilution solution was prepared as a negative control (hereinafter referred to as negative control).
  • reference antibody 10 ml of goat reference antibody mixture (10 reactions) (Fukushima Protein Factory, PA5010) with primary antibody dilution solution (hereinafter referred to as reference antibody), and shake all the prepared antibodies at 37°C for 1 hour. I let it happen.
  • results The results of evaluating natural human IgG antibody (HIG001677) and IgA human IgG antibody (HIG001677A1) using a protein microarray are shown.
  • the data obtained using the protein microarray was converted into the value of the signal of the Alexa647-labeled anti-human IgA antibody relative to the signal of the Cy3-labeled anti-goat IgG antibody, and further converted into a logarithmic ratio with a base of 2.
  • the data was converted into a relative ratio to a negative control (ie, data from a protein microarray that was not reacted with the primary antibody) (FIG. 9).
  • natural human IgG antibody HIG001677
  • IgA-ized human IgG antibody HIG001677A1
  • SARS-CoV-2 AZD1061, AZD8895, LY_CoV16, LY_CoV555, REGN10933, REGN10987, S309
  • ABT#03984 Active Motif, 91349
  • ABT#03985 Active Motif, 91361
  • ABT#04347 Active Motif, 91377)
  • IgA human IgG antibody (HIG001677A1) bound more strongly to the S1 protein of SARS-CoV-2 compared to known and commercially available antibodies.
  • Tables 3A to 3E show the protein microarray-mounted samples used for the analysis in FIG. 9. Additionally, Tables 4A-H provide relative ratio data to the negative control.
  • the binding affinity between an antigen and an antibody can be expressed by a dissociation constant (KD), which is calculated as the ratio of the dissociation rate to the binding rate (Ka/Kd) when the binding between the antigen and antibody reaches equilibrium.
  • KD dissociation constant
  • the dissociation constant was measured using surface plasmon resonance (SPR) technology by Biacore (Cytiva). All analyzes were performed by single cycle kinetics using a Biacore T200 instrument.
  • Natural human antibody (HIG001677), IgA human IgG antibody (HIG001677A1), commercially available antibodies (ABT#03984, ABT#03985, ABT#04347), and five preceding antibodies (LY) known as antibody drugs against SARS-CoV-2.
  • -CoV16, LY-CoV555, REGN10933, REGN10987, and S309) were used as test antibodies.
  • various recombinant coronavirus proteins (RBD region of the spike protein) as analytes were flowed onto the sensor chip to evaluate binding affinity.
  • the method followed the instructions of the supplier (Cytiva), and after activation with EDC and NHC reagents, the antibody (ligand) was coupled to the flow cell in a range of 20 RU to 100 RU. Subsequently, unreacted groups were blocked with 1M ethanolamine.
  • IgG antibodies Natural human IgG antibodies, commercially available antibodies, and preceding antibodies
  • Natural human IgG antibodies were obtained using Protein G Sepharose 4 Fast Flow from the culture supernatant obtained in "3-1. Antibody production” above. (cytiva, 17061801) purified antibody was used.
  • the preceding antibodies (LY-CoV16, LY-CoV555, REGN10933, REGN10987, and S309), which are IgG antibodies, are the purified antibodies obtained in "3-2.
  • Antibody evaluation (1) Preparation of the preceding antibodies above. Using.
  • ABT#03984, ABT#03985, ABT#04347 and preceding antibodies were prepared using EDC and NHC reagents on a series S sensor chip CM5 (carboxymethyl dextran coated tip) according to the instructions of the Human Antibody Capture Kit (Cytiva). After activation, anti-IgG antibodies were coupled in a range of approximately 8000 RU to 10,000 RU. Subsequently, unreacted groups were blocked with 1M ethanolamine. The IgG antibody (ligand) was then supplemented with approximately 500 to 700 RU of anti-IgG antibody.
  • reaction rate measurement Prepare 3-fold serial dilutions (27-0.33 nM) of each antigen protein (analyte) in running buffer (0.01 M HEPES, 0.15 M NaCl, 0.003 M EDTA and 0.05% v/v Surfactant P20). Injected into the flow cell for 120 seconds at a flow rate of 10 ⁇ L/min. After addition of the analyte, running buffer was injected for 900 seconds to dissociate the analyte. After subtracting the reference flow cell value from the measured value, the association rate (Ka) and dissociation rate (Kd) were calculated using analysis software for BIAcore T200 (version 2.0).
  • the dissociation constant (K D ) was calculated using a one-to-one binding model.
  • the detection range for Biacore T200 is an association rate (Ka) of 10 3 -10 7 (1/Ms) and a dissociation rate (Kd) of 10 -5 -0.5 (1/s).
  • Example 5 Antibody binding inhibition evaluation by competitive ELISA method
  • the binding inhibition effect of a natural human IgG antibody (HIG001677) and an IgA human IgG antibody (HIG001677A1) was evaluated using a competitive ELISA method.
  • the SARS-CoV2 spike protein (RBD region of the S1 domain) competed with a natural human IgG antibody or an IgA-modified human IgG antibody against the human ACE2 protein, and the binding inhibition rate was evaluated.
  • IgA human IgG antibody HIG001677A1
  • CaptureSelect IgA Affinity Matrix Thermo Scientific, 19428801L (1L)
  • the natural human IgG antibody HIG0016707
  • the preceding antibody were purified from the culture supernatant using Protein G Sepharose 4 Fast Flow in the same manner as in Example 4 above.
  • the ELISA method was performed using the SARS-CoV-2 Anti-RBD Antibody Profiling Kit (MBL, Code No. 5370) based on the attached protocol.
  • MBL SARS-CoV-2 Anti-RBD Antibody Profiling Kit
  • each antibody was prepared at 2 ⁇ g/ml, 1 ⁇ g/ml, 0.5 ⁇ g/ml, 0.25 ⁇ g/ml, 0.125 ⁇ g/ml, 0.0625 ⁇ g/ml, 0.03125 ⁇ g/ml, respectively, in the Reaction buffer provided with the kit. 100 ⁇ l each was prepared at 0.015625 ⁇ g/ml. Thereafter, 100 ⁇ l of the positive control was prepared so as to be diluted 4 times with Reaction buffer, and 100 ⁇ l of Reaction buffer was prepared as a blank.
  • RBD protein As the RBD protein, the spike proteins (RBD region or Trimer region of S1 domain) derived from the natural type (Wuhan type) and mutant SARS-CoV2 shown in the table below were used. Each RBD protein was prepared using Reaction buffer to a final concentration of 0.3 pmol.
  • HIG001677 and HIG001677A1 exhibited high inhibition rates against both the native (Wuhan type) and mutant SARS-CoV2-derived spike proteins (RBD region of S1 domain). .
  • HIG001677 and HIG001677A1 also showed an inhibition rate of 45% or more against Omicron strains (BA.2 and BA.3 strains) (2 ⁇ g/ml group).
  • Omicron strain B.1.1.529 strain
  • HIG001677A1 was the only antibody that showed an inhibition rate of 30% or more among the antibodies tested (2 ⁇ g/ml group).
  • IC50 (ng/ml) of each antibody was calculated from the obtained inhibition rate results.
  • IC50 was calculated using the following formula.
  • FIG. 10A corresponds to the results in Tables 8A-8D
  • FIG. 10B corresponds to the results in Tables 8H-8J.
  • IC50 10 ⁇ (LOG(A/B)*(50-C)/(DC)+LOG(B))
  • B Low concentration between 50% binding inhibition rate
  • C Inhibition rate at B
  • D Inhibition rate at A
  • the antibody of the present invention HIG001677 and HIG001677A1 showed inhibitory activity against all strains used in the test, and IC50 could be calculated against strains other than Omicron strain.
  • HIG001677A1 showed the highest inhibition rate (31.48%) against Omicron strain at 2 ⁇ g/ml.
  • the known antibodies used as controls either had no inhibitory activity against any of the strains, or had higher IC50 values than HIG001677 and HIG001677A1 depending on the mutant strain.
  • Example 6 Neutralization activity evaluation 1 using pseudovirus
  • Coronavirus entry into host cells is mediated by the trimeric transmembrane spike (S) glycoprotein.
  • S-glycoprotein is surface-exposed and binds to the SARS-CoV-2 receptor human angiotensin-converting enzyme 2 (ACE2) to mediate entry into host cells.
  • ACE2 forced expression cells were used to evaluate the inhibition of pseudovirus (lentivirus having S glycoprotein of coronavirus in the envelope protein) infection by natural human IgG antibody or IgA-modified human IgG antibody.
  • the Human ACE2 expression plasmid vector is a pcDNA3.2 V5-DEST-Hyg vector that contains the ORF (SEQ ID NO: 40) of the Human ACE2 (angiotensin I converting enzyme 2) protein (NP_068576.1; SEQ ID NO: 39) using a recombination reaction.
  • This is a plasmid vector constructed by inserting a nucleotide sequence encoding ) (SEQ ID NO: 41).
  • a mixed solution of 150 ⁇ l of ExpiFectamine 293 Transfection enhancer 1 and 1.5 ml of ExpiFectamine 293 Transfection enhancer 2 included in the ExpiFectamine 293 Transfection kit was added to the cells. Since the expression plasmid vectors used have a Hygromycin resistance gene, they were cultured in a medium containing 50 ⁇ g/ml hygromycin B (Thermo Fisher Scientific, cat#10687010), and cells into which each protein expression plasmid vector had been introduced were selected. . The obtained cells were designated as SSC#000364 (human ACE2 stably expressing cells).
  • the human ACE2 stably expressing cell group (SSC#000364) prepared above was immunostained with anti-ACE2 antibody (R&D systems, cat#MAB9332) and analyzed using Cell Sorter (SONY, cat#SH800S). After setting a gate in the range that included 6.8% of the cells with high ACE2 expression among the human ACE2 stably expressing cells (SSC#000364) group, the cell group with high ACE2 expression was obtained by cell sort and designated as SSC#000442.
  • SSC#000442 Furthermore, a similar analysis was performed on SSC#000442, and after setting a gate in a range that included 42.42% of cells with high ACE2 expression in SSC#000442, cells were cloned by Single cell sort. The expression of ACE2 was confirmed for the obtained 11 clones (SSC#000465-475) by flow cytometry analysis and Western blot analysis. Among them, SSC#000465 had a high expression level of ACE2 and had a sharp waveform when analyzed by flow cytometry, so it was decided to use it for the following test.
  • the final treatment concentration of natural human IgG antibody or IgA-ized human IgG antibody was 1 ⁇ g/mL, 0.5 ⁇ g/mL, 0.25 ⁇ g/mL, 0.1 ⁇ g/mL, or 0.01 ⁇ g/mL.
  • the final treatment concentration of commercially available antibodies was 1 ⁇ g/mL, 0.1 ⁇ g/mL, or 0.01 ⁇ g/mL.
  • Example 6-2 Neutralization activity evaluation 2 using pseudovirus
  • pseudoviruses using natural human IgG antibodies or IgA-ized human IgG antibodies were used in the same manner and under the same conditions as in Example 6-1, except that different pseudoviruses having the RBD region of the wild strain or each mutant strain were used. Inhibition of virus infection (a lentivirus with coronavirus S glycoprotein in its envelope protein) was evaluated. Information on the pseudovirus solution (manufactured by Vector Builder Japan Co., Ltd.) used in this example is shown in Table 10B below.
  • Table 10C shows the IC 50 of the natural human IgG antibody (HIG001697) or the IgA-conjugated human IgG antibody (HIG001697A1) against the pseudovirus.
  • Tables 10D and 10E show the infection inhibition rate of each antibody against the pseudovirus at each treatment concentration.
  • natural human IgG antibodies showed neutralizing activity against Wuhan type, delta type, and omicron type
  • IgA human IgG antibodies showed neutralizing activity against Wuhan type, delta type, alpha type, It showed neutralizing activity against Omicron type.
  • Example 7 Neutralization activity evaluation 2 using pseudovirus
  • the inhibition of infection by a pseudovirus a lentivirus having coronavirus S glycoprotein in its envelope protein
  • an IgA human IgG antibody HIG001677A1
  • HEK293 cells overexpressing ACE2 and TMPRSS2 were infected with a pseudolentivirus expressing GFP and SARS-CoV-2 spike (S) protein (Vector Builder LVL-S2DG (VB200088-2229upx)). It was carried out using The intermediate activity evaluation using this test was outsourced to Charles River Discovery Research Services UK Ltd. All tests were performed in triplicate for each condition.
  • Anti-SARS-CoV-2 S1 antibody (Amsbio; Cat # AMS.SAD-S35, Lot # S35-206RF1-TL) was used as a positive control, and IgA isotype control antibody (Invitrogen; Cat # 31148, Lot # WF3292542).
  • Example 8 Neutralization activity evaluation 1 using SARS-CoV-2
  • IgA human IgG antibody HOG001677A1
  • the intermediate activity evaluation using this test was outsourced to Charles River Discovery Research Services UK Ltd. All tests were performed in triplicate for each condition.
  • IgA isotype control antibody Invitrogen; Cat # 31148, Lot # WF3292542
  • WHO standard pooled convalescent plasma from SARS-CoV-2 patients were used as a control.
  • Table 12A The results of the neutralization activity test using each antibody are shown as infection inhibition rates in Table 12A.
  • Table 12B the concentration of WHO standard pooled convalescent plasma indicates the dilution factor (for example, 50.000 means 1/50 dilution).
  • HIG001677A1 inhibited SARS-CoV-2 infection at all concentrations tested, with an estimated EC50 value of ⁇ 0.031 ⁇ g/mL.
  • Table 12B also shows the cell survival rate of the group treated with HIG001677A1 or IgA isotype control antibody without being infected with SARS-CoV-2. HIG001677A1 did not affect cell viability even when added to cells at 32 ⁇ g/ml.
  • Example 9 Neutralization activity evaluation 2 using SARS-CoV-2
  • the same method as in Example 8 was used to evaluate the inhibition of SARS-CoV-2 infection by IgA human IgG antibody (HIG001677A1).
  • the Wuhan strain wild type
  • Delta strain and Omicron strain were used as SARS-CoV-2.
  • preceding antibodies REGN10987, AZD1061, LY_CoV16, AZD8895, REGN10933, S309
  • IgA isotype control antibody Invitrogen; Cat # 31148, Lot # WF3292542
  • Nanobody antibody Absolute Antibody; Cat # Ab02013-1.159.
  • Example 10 Antibody-RBD binding evaluation by ELISA method
  • a natural human IgG antibody HAG001677
  • Omicron strain BA.2 strain
  • Omicron strain BA.3 strain
  • the binding ability of IgA human IgG antibody HOG001677A1 was evaluated.
  • eight prior antibodies AZD1061, AZD8895, LY-CoV16, LY-CoV555, REGN10933, REGN10987, S309, ADG2 known as antibody drugs against SARS-CoV-2 were used.
  • the preceding antibodies prepared and purified in Examples 3 and 5 were used.
  • RBD proteins Various RBD proteins (RBD derived from Omicron strain (BA.1 strain): Acro Biosystems (SPD-C522e, 5716-21C8F1-Z1) SARS-CoV-2 Spike RBD, His Tag (B.1.1. 529/Omicron) (MALS verified) (Stock con. 0.6 mg/ml), RBD derived from Omicron strain (BA.2 strain): Acro Biosystems (SPD-C522g, 5911-222DF1-11F) SARS-CoV-2 Spike RBD, His Tag (BA.2/Omicron) (Stock con.
  • RBD derived from Omicron strain BA.3 strain: Acro Biosystems (SPD-C522i, 6063-2238F1-11W) SARS-CoV-2 Spike RBD, His Tag (BA.3/Omicron) (Stock con. 0.2 mg/ml), RBD derived from Omicron strain (BA.4/BA.5 strains): AcroBio (SPD-C522r, 6363-225HF1-133) SARS- CoV-2 Spike RBD, His Tag (BA.4&BA.5/Omicron) (MALS verified) (Stock con.
  • RBD solution 0.1 mol/L carbonate-bicarbonate buffer (pH 9.6)
  • 50 ⁇ l of the prepared RBD solution was added to a Corning (registered trademark) 96-well Half Area Clear Flat Bottom Polystyrene High Bind Microplate (Corning 3690) and left at 4° C. for 17 hours. After 17 hours, the RBD solution was removed and 180 ⁇ l of solution B (10X) (Fukushima Protein Factory, PA1110) diluted 10 times with ultrapure water with 0.02% Tween-20 added (hereinafter referred to as washing solution) was added for washing.
  • solution B 10X
  • washing solution 10X
  • Washing was performed by exchanging solutions, a total of two times. After the washing step, the washing solution was removed, and 180 ⁇ l of Blocking One (Nacalai Tesque, 03953-95) diluted 5 times with the washing solution was added, and the mixture was allowed to stand at room temperature (20-25°C) for 1 hour. After standing still for 1 hour, Blocking One was removed and 180 ⁇ l of washing solution was added for washing. Washing was performed by exchanging solutions, a total of two times. The plate subjected to the above treatment was used as an RBD coated microplate, and 180 ⁇ l of a washing solution was added thereto and stored at 4°C until use.
  • Blocking One Nacalai Tesque, 03953-95
  • Blocking ONE (hereinafter referred to as "antigen/antibody dilution solution"), which is a 20-fold dilution of purified natural human antibodies and preceding antibodies with washing solution, was used at 2 ⁇ g/ml, 1 ⁇ g/ml, 0.5 ⁇ g/ml, and 0.25 ⁇ g/ml, respectively. , 0.125 ⁇ g/ml, 0.0625 ⁇ g/ml, 0.03125 ⁇ g/ml, and 0.015625 ⁇ g/ml in 50 ⁇ l portions. 50 ⁇ l of antigen/antibody dilution solution was prepared as a blank solution.
  • reaction between antibody and RBD 50 ⁇ l of each prepared antibody/blank solution was transferred to an RBD coated microplate that had been warmed to room temperature, and reacted at room temperature (20-25°C) for 30 minutes. After 30 minutes of reaction, the reaction solution was removed from the RBD coated microplate, and 180 ⁇ l of washing solution was added to wash it. Washing was performed by changing the solution a total of 4 times.
  • Table 14A shows the binding ability of each antibody to RBD derived from Omicron strain (BA.1 strain)
  • Table 14B shows the binding ability of each antibody to RBD derived from Omicron strain (BA.2 strain)
  • Table 14C shows the binding ability of each antibody to RBD derived from Omicron strain (BA.2 strain).
  • Table 14D shows the binding ability of each antibody to the RBD derived from the Omicron strain (BA.4&5 strain).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Textile Engineering (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Birds (AREA)

Abstract

The present invention addresses the problem of providing a novel antibody that can prevent and/or treat COVID-19 infection. One aspect of the present invention provides: an antibody which has a heavy-chain CDR1 comprising the amino acid sequence of SEQ ID NO: 1, a heavy-chain CDR2 comprising the amino acid sequence of SEQ ID NO: 2, a heavy-chain CDR3 comprising the amino acid sequence of SEQ ID NO: 3, a light-chain CDR1 comprising the amino acid sequence of SEQ ID NO: 4, a light-chain CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and a light-chain CDR3 comprising the amino acid sequence of SEQ ID NO: 6, and which binds to an S1 subunit of SARS-CoV-2; or a fragment of said antibody.

Description

新型コロナウイルス(SARS-CoV-2)に結合する抗体Antibodies that bind to the new coronavirus (SARS-CoV-2)
 本発明は、SARS関連コロナウイルスに対する抗体に関する。本発明は特に、SARS-CoV-2のS1サブユニットに結合する抗体に関する。 The present invention relates to antibodies against SARS-related coronaviruses. The invention particularly relates to antibodies that bind to the S1 subunit of SARS-CoV-2.
 新型コロナウイルス感染症(COVID-19)は2019年12月に初めて報告された新型コロナウイルス(SARS-CoV-2)による新興感染症であり、発熱、咳嗽のような感冒様症状から肺炎を来す。日本における致死率は全体では1~2%と言われているが、高齢者になるほどその致死率は上がり、80代以上では12%以上にもなる。また、世界的な大流行(パンデミック)に至っており、世界最大の疫学的な課題となっている。 Novel coronavirus infection (COVID-19) is an emerging infectious disease caused by the new coronavirus (SARS-CoV-2), which was first reported in December 2019, and can lead to pneumonia caused by cold-like symptoms such as fever and cough. vinegar. The overall fatality rate in Japan is said to be 1-2%, but the rate increases as people get older, reaching over 12% for people in their 80s and older. Furthermore, it has become a global pandemic, making it the world's greatest epidemiological challenge.
 COVID-19の診断は、主に体液中に存在するSARS-CoV-2をPCRで検出する方法が採用されているが、測定に時間がかかること、コストが高いこと、感度が高すぎるために非感染性のウイルスの断片等を検出している可能性があること、等の問題がある。また、抗原検査キットも出てきているが、必ずしも特異性が高くなく、擬陽性や偽陰性の問題がある。
 また、世界中でワクチンの投与が始まっており、ワクチンの効果が期待されているものの、ワクチンの効果は限定的であり長期間持続しないという報告もある。
 さらに、SARS-CoV-2に対して結合能および中和活性能を有する抗体を取得したという報告がある(非特許文献1~5)ものの、有効な治療薬は未だ存在しないのが現状である。
The main method used to diagnose COVID-19 is to use PCR to detect SARS-CoV-2 present in body fluids, but this method takes time to measure, is expensive, and is too sensitive. There are problems such as the possibility that non-infectious virus fragments are being detected. Antigen test kits have also come out, but they are not necessarily highly specific, and there are problems with false positives and false negatives.
In addition, although vaccinations have begun to be administered around the world and are expected to be effective, there are reports that the effectiveness of vaccines is limited and does not last for a long period of time.
Furthermore, although there are reports that antibodies have been obtained that have the ability to bind and neutralize SARS-CoV-2 (Non-Patent Documents 1 to 5), there is currently no effective therapeutic drug. .
 本発明は、新型コロナウイルス(SARS-CoV-2)に対する感染予防および/またはCOVID-19の治療を可能とする新規抗体の提供を課題とする。 The present invention aims to provide a novel antibody that can prevent infection with the new coronavirus (SARS-CoV-2) and/or treat COVID-19.
 本発明者らは、SARS-CoV-2に感染して回復した人の血液から、SARS-CoV-2に対する抗体を産生する細胞を分離し、IgG抗体の抗体遺伝子を取得することに成功した。なお本発明らは、局所(目、鼻、腸等)で細菌やウイルスに結合し体内への侵入を防御するIgA抗体の一次防機能に着目し、当該IgG抗体を改変することでIgA抗体の取得にも成功した。本発明は当該知見より完成に至ったものである。すなわち本発明は以下の態様を含む: The present inventors isolated cells that produce antibodies against SARS-CoV-2 from the blood of people who had recovered from SARS-CoV-2 infection, and succeeded in obtaining the antibody gene for IgG antibodies. The present inventors focused on the primary defense function of IgA antibodies, which bind to bacteria and viruses locally (eyes, nose, intestines, etc.) and prevent them from entering the body, and by modifying the IgG antibodies, the IgA antibodies can be improved. It was also successfully acquired. The present invention has been completed based on this knowledge. That is, the present invention includes the following aspects:
 本発明の一態様は、
〔1〕配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、
 SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に結合する、抗体またはその抗体フラグメント。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔2〕上記〔1〕に記載の抗体またはその抗体フラグメントであって、
 前記S1サブユニットの受容体結合ドメイン(RBD)が配列番号7のアミノ酸配列からなるポリペプチドまたは前記ポリペプチドにおいて変異を有するポリペプチドであることを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔3〕上記〔1〕または〔2〕に記載の抗体またはその抗体フラグメントであって、
(a)配列番号8のアミノ酸配列、
(b)前記(a)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c)前記(a)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる重鎖可変領域、並びに
(d)配列番号9のアミノ酸配列、
(e)前記(d)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f)前記(e)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
を有することを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔4〕上記〔1〕または〔2〕に記載の抗体またはその抗体フラグメントであって、
(a’’)配列番号29のアミノ酸配列、
(b’’)前記(a’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’’)前記(a’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる重鎖可変領域、並びに
(d’’)配列番号31のアミノ酸配列、
(e’’)前記(d’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’’)前記(e’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
を有することを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔5〕ヒトIgA抗体である、上記〔1〕、〔2〕、または、〔4〕のいずれかに記載の抗体またはその抗体フラグメントであることを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔6〕多量体化しているヒトIgA抗体である、上記〔1〕~〔5〕のいずれかに記載の抗体またはその抗体フラグメントであることを特徴とする。
One aspect of the present invention is
[1] Heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1, heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2, heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3, light chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4 , an antibody having a light chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5, and a light chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 6,
An antibody or antibody fragment thereof that binds to the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2.
In one embodiment, the antibody of the present invention or antibody fragment thereof is
[2] The antibody or antibody fragment thereof according to [1] above,
It is characterized in that the receptor binding domain (RBD) of the S1 subunit is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 or a polypeptide having a mutation in the polypeptide.
In one embodiment, the antibody of the present invention or antibody fragment thereof is
[3] The antibody or antibody fragment thereof according to [1] or [2] above,
(a) Amino acid sequence of SEQ ID NO: 8,
(b) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence of (a), and
(c) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (a),
a heavy chain variable region consisting of an amino acid sequence selected from the group consisting of; and (d) the amino acid sequence of SEQ ID NO: 9,
(e) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (d) above, and
(f) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (e) above;
It is characterized by having a light chain variable region consisting of an amino acid sequence selected from the group consisting of:
In one embodiment, the antibody of the present invention or antibody fragment thereof is
[4] The antibody or antibody fragment thereof according to [1] or [2] above,
(a'') Amino acid sequence of SEQ ID NO: 29,
(b'') an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (a''), and
(c'') an amino acid sequence in which one or several amino acids are deleted, substituted or added in the framework region sequence other than each CDR sequence in the sequence (a'');
a heavy chain variable region consisting of an amino acid sequence selected from the group consisting of; and (d'') the amino acid sequence of SEQ ID NO: 31,
(e'') an amino acid sequence having at least 90% identity to the framework region sequence other than each CDR sequence in the sequence (d''), and
(f'') an amino acid sequence in which one or several amino acids are deleted, substituted or added in the framework region sequence other than each CDR sequence in the sequence (e'');
It is characterized by having a light chain variable region consisting of an amino acid sequence selected from the group consisting of:
In one embodiment, the antibody of the present invention or antibody fragment thereof is
[5] The antibody according to any one of [1], [2], or [4] above, which is a human IgA antibody, or an antibody fragment thereof.
In one embodiment, the antibody of the present invention or antibody fragment thereof is
[6] The antibody or antibody fragment thereof according to any one of [1] to [5] above is a multimerized human IgA antibody.
 また本発明の別の態様は、
〔7〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、組成物に関する。
 また本発明の別の態様は、
〔8〕上記〔7〕に記載の組成物を含む、SARS-CoV-2感染予防用スプレーに関する。
 また本発明の別の態様は、
〔9〕上記〔7〕に記載の組成物を担持する基材を含む、フィルタに関する。
 また本発明の別の態様は、
〔10〕上記〔9〕に記載のフィルタを含む、SARS-CoV-2感染予防または拡散防止用マスクに関する。
 また本発明の別の態様は、
〔11〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、食品用組成物に関する。
 ここで本発明の食品用組成物は一実施の形態において、
〔12〕上記〔11〕に記載の食品用組成物であって、SARS-CoV-2に対する感染予防のための食品用組成物であることを特徴とする。
 また本発明の別の態様は、
〔13〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、SARS-CoV-2検出用試薬に関する。
 また本発明の別の態様は、
〔14〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、COVID-19診断薬に関する。
 また本発明の別の態様は、
〔15〕COVID-19の発症予防および/または治療のために用いられる、上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む医薬組成物に関する。
 また本発明の別の態様は、
〔16〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントをコードするポリヌクレオチドに関する。
 また本発明の別の態様は、
〔17〕上記〔16〕に記載のポリヌクレオチドを含有する発現ベクターに関する。
 また本発明の別の態様は、
〔18〕上記〔17〕に記載の発現ベクターにより形質転換された宿主細胞に関する。
 また本発明の別の態様は、
〔19〕上記〔18〕に記載の宿主細胞を培養する工程と
 前記工程で得られた培養物から目的の抗体を採取する工程と
を含む、抗体の製造方法に関する。
 また本発明の別の態様は、
〔20〕上記〔119〕に記載の製造方法により得られる抗体に関する。
Another aspect of the present invention is
[7] A composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
Another aspect of the present invention is
[8] A spray for preventing SARS-CoV-2 infection, comprising the composition according to [7] above.
Another aspect of the present invention is
[9] A filter comprising a base material supporting the composition according to [7] above.
Another aspect of the present invention is
[10] A mask for preventing SARS-CoV-2 infection or spreading, which includes the filter according to [9] above.
Another aspect of the present invention is
[11] A food composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
In one embodiment, the food composition of the present invention has the following features:
[12] The food composition according to [11] above, characterized in that it is a food composition for preventing infection with SARS-CoV-2.
Another aspect of the present invention is
[13] A reagent for detecting SARS-CoV-2, comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
Another aspect of the present invention is
[14] A COVID-19 diagnostic agent comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above.
Another aspect of the present invention is
[15] A pharmaceutical composition containing the antibody or antibody fragment thereof according to any one of [1] to [6] above, which is used for preventing and/or treating the onset of COVID-19.
Another aspect of the present invention is
[16] A polynucleotide encoding the antibody or antibody fragment thereof according to any one of [1] to [6] above.
Another aspect of the present invention is
[17] An expression vector containing the polynucleotide according to [16] above.
Another aspect of the present invention is
[18] It relates to a host cell transformed with the expression vector described in [17] above.
Another aspect of the present invention is
[19] A method for producing an antibody, comprising the steps of culturing the host cell according to [18] above, and collecting the antibody of interest from the culture obtained in the step.
Another aspect of the present invention is
[20] relates to an antibody obtained by the production method described in [119] above.
 さらに本発明は以下の態様および実施の形態も含む:
 本発明に係る組成物の一実施の形態は、
〔21〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと担体とを含む、組成物であることを特徴とする。
 本発明に係るSARS-CoV-2検出用試薬の一実施の形態は、
〔22〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと担体とを含む、SARS-CoV-2検出用試薬であることを特徴とする。
 本発明に係るCOVID-19診断薬の一実施の形態は、
〔23〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと担体とを含む、COVID-19診断薬であることを特徴とする。
 本発明に係る医薬組成物の一実施の形態は、
〔24〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと薬学的に許容可能な担体とを含む、医薬組成物であることを特徴とする。
 また本発明の別の態様は、
〔25〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントの治療有効量を対象に対して投与する工程を含む、COVID-19の発症予防および/または治療方法に関する。
 また本発明に係る抗体またはその抗体フラグメントの一実施の形態は、
〔26〕COVID-19の発症予防および/または治療のために用いられる、上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントである。
 また本発明の別の態様は、
〔27〕COVID-19の発症予防および/または治療のための医薬組成物の製造における、上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントの使用に関する。
 本発明の別の態様は、
〔28〕上記〔7〕に記載の組成物の使用方法であって、
 前記組成物を空気中に徐放、噴霧、または散布する工程を含む、組成物の使用方法に関する。
 ここで本発明の組成物の使用方法の一実施の形態は、
〔29〕上記〔28〕に記載の組成物の使用方法であって、
 前記工程が前記組成物を加湿器を用いて空気中に噴霧する工程であることを特徴とする。 
Additionally, the present invention includes the following aspects and embodiments:
One embodiment of the composition according to the present invention is
[21] A composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above and a carrier.
One embodiment of the SARS-CoV-2 detection reagent according to the present invention is
[22] A reagent for detecting SARS-CoV-2, comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above, and a carrier.
One embodiment of the COVID-19 diagnostic agent according to the present invention is
[23] A COVID-19 diagnostic agent comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above and a carrier.
One embodiment of the pharmaceutical composition according to the present invention is
[24] A pharmaceutical composition comprising the antibody or antibody fragment thereof according to any one of [1] to [6] above and a pharmaceutically acceptable carrier.
Another aspect of the present invention is
[25] A method for preventing and/or treating the onset of COVID-19, which comprises administering to a subject a therapeutically effective amount of the antibody or antibody fragment thereof according to any one of [1] to [6] above.
Further, an embodiment of the antibody or antibody fragment thereof according to the present invention is
[26] The antibody or antibody fragment thereof according to any one of [1] to [6] above, which is used for preventing and/or treating the onset of COVID-19.
Another aspect of the present invention is
[27] It relates to the use of the antibody or antibody fragment thereof according to any one of [1] to [6] above in the manufacture of a pharmaceutical composition for preventing and/or treating the onset of COVID-19.
Another aspect of the invention is
[28] A method of using the composition according to [7] above, comprising:
The present invention relates to a method of using the composition, which includes the step of slowly releasing, spraying, or dispersing the composition into the air.
Here, one embodiment of the method of using the composition of the present invention is as follows:
[29] A method of using the composition according to [28] above, comprising:
The method is characterized in that the step is a step of spraying the composition into the air using a humidifier.
 本発明に係る抗体は、SARS-CoV-2のS1領域に強く結合する抗体であり、SARS-CoV-2感染防御(予防)に用いることができる。さらに、本発明の抗体は医薬品に加え、抗体入りのスプレー、抗体入りのマスク、抗体入りハンドクリーム、抗体入り化粧品などへの応用も可能である。 The antibody according to the present invention is an antibody that strongly binds to the S1 region of SARS-CoV-2, and can be used for protection against (prevention of) SARS-CoV-2 infection. Furthermore, in addition to pharmaceuticals, the antibodies of the present invention can also be applied to antibody-containing sprays, antibody-containing masks, antibody-containing hand creams, antibody-containing cosmetics, and the like.
図1は下記実施例1において得られたIgG抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。FIG. 1 shows the heavy chain amino acid sequence of the IgG antibody obtained in Example 1 below and the base sequence encoding it. The underline indicates the heavy chain CDR1 region, the double line indicates the heavy chain CDR2 region, and the wavy line indicates the heavy chain CDR3 region. 図2は下記実施例1において得られたIgG抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。FIG. 2 shows the amino acid sequence of the heavy chain variable region of the IgG antibody obtained in Example 1 below and the base sequence encoding it. The underline indicates the heavy chain CDR1 region, the double line indicates the heavy chain CDR2 region, and the wavy line indicates the heavy chain CDR3 region. 図3は下記実施例1において得られたIgG抗体の軽鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。FIG. 3 shows the light chain amino acid sequence of the IgG antibody obtained in Example 1 below and the base sequence encoding it. The underline indicates the light chain CDR1 region, the double line indicates the light chain CDR2 region, and the wavy line indicates the light chain CDR3 region. 図4は下記実施例1において得られたIgG抗体の軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。FIG. 4 shows the amino acid sequence of the light chain variable region of the IgG antibody obtained in Example 1 below and the nucleotide sequence encoding it. The underline indicates the light chain CDR1 region, the double line indicates the light chain CDR2 region, and the wavy line indicates the light chain CDR3 region. 図5は下記実施例2において得られたIgA抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。FIG. 5 shows the heavy chain amino acid sequence of the IgA antibody obtained in Example 2 below and the base sequence encoding it. The underline indicates the heavy chain CDR1 region, the double line indicates the heavy chain CDR2 region, and the wavy line indicates the heavy chain CDR3 region. 図6は下記実施例2において得られたIgA抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。FIG. 6 shows the amino acid sequence of the heavy chain variable region of the IgA antibody obtained in Example 2 below and the nucleotide sequence encoding the same. The underline indicates the heavy chain CDR1 region, the double line indicates the heavy chain CDR2 region, and the wavy line indicates the heavy chain CDR3 region. 図7は下記実施例2において得られたIgA抗体の軽鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。FIG. 7 shows the light chain amino acid sequence of the IgA antibody obtained in Example 2 below and the nucleotide sequence encoding it. The underline indicates the light chain CDR1 region, the double line indicates the light chain CDR2 region, and the wavy line indicates the light chain CDR3 region. 図8は下記実施例2において得られたIgA抗体の軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。FIG. 8 shows the amino acid sequence of the light chain variable region of the IgA antibody obtained in Example 2 below and the nucleotide sequence encoding the same. The underline indicates the light chain CDR1 region, the double line indicates the light chain CDR2 region, and the wavy line indicates the light chain CDR3 region. 図9は下記実施例3で行ったタンパク質マイクロアレイの結果をヒートマップにて示す。本発明に係る抗体、抗体医薬として公知の抗体、および、市販抗体を用いて、各コロナウイルス由来のタンパク質に対する結合能を評価した。「新型」はSARS-CoV-2を示し、「SARS」はSARS-CoVを示し、「MERS」は中東呼吸器症候群(Middle East Respiratory Syndrome)を示し、「OC43」はヒトコロナウイルスOC43(HCoV-OC43)を示し、「HKU1」はヒトコロナウイルスHKU1(HCoV-HKU1)を示し、「229E」はヒトコロナウイルス229E(HCoV-229E)を示し、「NL63」はヒトコロナウイルスNL63(HCoV-NL63)を示す。また、「HIG001677」および「HIG001677A1」は本発明に係る抗体を示す。FIG. 9 shows the results of the protein microarray performed in Example 3 below in the form of a heat map. The binding ability to each coronavirus-derived protein was evaluated using the antibody according to the present invention, an antibody known as an antibody drug, and a commercially available antibody. “New” refers to SARS-CoV-2, “SARS” refers to SARS-CoV, “MERS” refers to Middle East Respiratory Syndrome, and “OC43” refers to human coronavirus OC43 (HCoV- OC43), "HKU1" indicates human coronavirus HKU1 (HCoV-HKU1), "229E" indicates human coronavirus 229E (HCoV-229E), and "NL63" indicates human coronavirus NL63 (HCoV-NL63). shows. Furthermore, "HIG001677" and "HIG001677A1" indicate antibodies according to the present invention. 図10Aは、下記実施例5で行ったヒトACE2タンパク質、SARS-CoV2のスパイクタンパク質(S1ドメインのRBD領域もしくはS1ドメインおよびS2ドメインを含む三量体(トリマー))、および、各抗体を用いた競合ELISA法による抗体の結合阻害評価の結果より算出したIC50を示す表である。Figure 10A shows the human ACE2 protein, SARS-CoV2 spike protein (RBD region of S1 domain or trimer containing S1 domain and S2 domain), and each antibody used in Example 5 below. This is a table showing IC50 calculated from the results of antibody binding inhibition evaluation by competitive ELISA method. 図10Bは、下記実施例5で行ったヒトACE2タンパク質、SARS-CoV2のスパイクタンパク質(S1ドメインのRBD領域もしくはS1ドメインおよびS2ドメインを含む三量体(トリマー))、および、各抗体を用いた競合ELISA法による抗体の結合阻害評価の結果より算出したIC50を示す表である。Figure 10B shows the human ACE2 protein, SARS-CoV2 spike protein (RBD region of S1 domain or trimer containing S1 domain and S2 domain), and each antibody used in Example 5 below. This is a table showing IC50 calculated from the results of antibody binding inhibition evaluation by competitive ELISA method. 図11は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、ABT#03985抗体のシュードウイルスに対する感染阻害率を示すグラフである。FIG. 11 is a graph showing the infection inhibition rate of the ABT#03985 antibody against the pseudovirus among the results of neutralization activity evaluation 1 using pseudovirus performed in Example 6-1 below. 図12は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、ABT#04348抗体のシュードウイルスに対する感染阻害率を示すグラフである。FIG. 12 is a graph showing the infection inhibition rate of the ABT#04348 antibody against pseudoviruses among the results of neutralization activity evaluation 1 using pseudoviruses performed in Example 6-1 below. 図13は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、HIG001677A1抗体のシュードウイルスに対する感染阻害率を示すグラフである。FIG. 13 is a graph showing the infection inhibition rate of the HIG001677A1 antibody against the pseudovirus among the results of neutralization activity evaluation 1 using pseudovirus performed in Example 6-1 below. 図14は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、HIG001677抗体のシュードウイルスに対する感染阻害率を示すグラフである。FIG. 14 is a graph showing the infection inhibition rate of the HIG001677 antibody against pseudoviruses among the results of neutralization activity evaluation 1 using pseudoviruses performed in Example 6-1 below.
 本発明の一態様は、配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に結合する、抗体またはその抗体フラグメントを提供する。 One aspect of the present invention is a heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1, a heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2, a heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3, and a heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 4. An antibody having a light chain CDR1 consisting of the following, a light chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5, and a light chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 6, which binds to the receptor of the S1 subunit of SARS-CoV-2. Antibodies or antibody fragments thereof are provided that bind to a domain (RBD).
 本明細書において「SARS-CoV(Severe acute respiratory syndrome coronavirus)」および「SARS-CoV-2(severe acute respiratory syndrome coronavirus 2)」は、SARS関連コロナウイルス(Severe acute respiratory syndrome-related coronavirus)に属するコロナウイルスであり、エンベロープを持つ一本鎖プラス鎖RNAウイルスである。「SARS-CoV」は急性呼吸器症候群 (Severe acute respiratory syndrome = SARS) の病原体ウイルスである。また、「SARS-CoV-2」は新型コロナウイルス感染症であるCOVID-19の病原体ウイルスである。
 SARS-CoV およびSARS-CoV-2はスパイク(S)タンパク質、ヌクレオカプシド(N)タンパク質、膜(M)タンパク質、エンベロープ(E)タンパク質の4つの主要な構造タンパク質を有する。スパイクタンパク質は、2つのサブユニット、S1サブユニットおよびS2サブユニットからなるI型膜貫通型タンパク質であり、S1サブユニットは細胞表面の受容体を認識する受容体結合ドメイン(RBD)を含む。
 本発明に係る抗体またはその抗体フラグメントは、SARS-CoV-2のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)に結合する。よって、本発明の抗体またはその抗体フラグメントが結合するS1サブユニットの受容体結合ドメイン(RBD)を有する限り、「SARS-CoV」または「SARS-CoV-2」の変異株や野生型(武漢株)または当該変異株から将来的に発生しうる変異株に対しても、本発明に係る抗体またはその抗体フラグメントは特異的に結合することができる。このような変異株としては、以下に限定されないが例えば、B.1.1.7系統の変異株(Alpha株)、B.1.351系統の変異株(Beta株)、P.1系統の変異株(Gammaガンマ株)、B.1.617.2系統の変異株(Delta株)、B.1.427/B.1.429系統の変異株(Epsilon株)、P.3系統の変異株(Theta株)、B.1.617.1系統の変異株(Kappa株)、B.1.1.529系統の変異株(Omicron(オミクロン)株)、BA.2系統の変異株(Omicron(オミクロン)株)、BA.3系統の変異株(Omicron(オミクロン)株)を挙げることができる。SARS-CoV-2の変異株の情報は、例えばWorld Health Organizationのウェブサイト(https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/)やCoVariants(https://covariants.org/)から入手することができる。すなわち、本発明に係る抗体またはその抗体フラグメントは一実施の形態において、武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株からなる群より選択される少なくとも1つの株由来のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)に特異的に結合する。なお武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株からなる群より選択される少なくとも1つの株には、当該群から1~9つの株を選択する場合の全ての組み合わせが含まれる。好ましい実施の形態において、本発明に係る抗体またはその抗体フラグメントは武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株由来のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)の全てに特異的に結合する。
 また本発明に係る抗体またはその抗体フラグメントは一実施の形態において、SARS-CoV-2の武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株からなる群より選択される少なくとも1つの株に特異的に結合する。好ましい実施の形態において、本発明に係る抗体またはその抗体フラグメントは武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株の全てに特異的に結合する。
In this specification, "SARS-CoV (Severe acute respiratory syndrome coronavirus)" and "SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2)" refer to coronaviruses belonging to the SARS-related coronavirus (Severe acute respiratory syndrome-related coronavirus). It is an enveloped, single-stranded, positive-stranded RNA virus. ``SARS-CoV'' is a virus that causes acute respiratory syndrome (SARS). In addition, ``SARS-CoV-2'' is the pathogenic virus that causes COVID-19, a new coronavirus infection.
SARS-CoV and SARS-CoV-2 have four major structural proteins: spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and envelope (E) protein. The spike protein is a type I transmembrane protein consisting of two subunits, the S1 subunit and the S2 subunit, with the S1 subunit containing a receptor binding domain (RBD) that recognizes cell surface receptors.
The antibody or antibody fragment thereof according to the invention binds to the receptor binding domain (RBD) of the S1 subunit, the extracellular domain of the spike protein of SARS-CoV-2. Therefore, as long as the antibody of the present invention or its antibody fragment has the receptor binding domain (RBD) of the S1 subunit to which it binds, it can be ) or a mutant strain that may be generated in the future from the mutant strain, the antibody or antibody fragment thereof according to the present invention can specifically bind. Examples of such mutant strains include, but are not limited to, the B.1.1.7 strain (Alpha strain), the B.1.351 strain (Beta strain), and the P.1 strain (Gamma strain). gamma strain), B.1.617.2 strain (Delta strain), B.1.427/B.1.429 strain (Epsilon strain), P.3 strain (Theta strain), B.1.617. 1 strain (Kappa strain), B.1.1.529 strain (Omicron strain), BA.2 strain (Omicron strain), BA.3 strain (Omicron strain) One example is Omicron (stock). Information on SARS-CoV-2 variants can be found, for example, on the World Health Organization website (https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/) and CoVariants (https: Available from http://covariants.org/). That is, in one embodiment, the antibody or antibody fragment thereof according to the present invention is selected from the group consisting of Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain. specifically binds to the receptor binding domain (RBD) of the S1 subunit, the extracellular domain of the spike protein from at least one selected strain. At least one strain selected from the group consisting of the Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain contains 1 to 9 strains from the group. All combinations of stock selections are included. In a preferred embodiment, the antibody or antibody fragment thereof according to the invention is directed against extracellular spike proteins derived from Wuhan, Alpha, Beta, Gamma, Delta, Epsilon, Theta, Kappa, and Omicron strains. It specifically binds to all of the receptor binding domains (RBD) of the S1 subunit.
In one embodiment, the antibody or antibody fragment thereof according to the present invention can be used to target SARS-CoV-2 Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain. specifically binds to at least one strain selected from the group consisting of strains. In a preferred embodiment, the antibody or antibody fragment thereof according to the present invention is specific for all of the Wuhan strain, Alpha strain, Beta strain, Gamma strain, Delta strain, Epsilon strain, Theta strain, Kappa strain, and Omicron strain. Join.
 なお一実施の形態において、本発明の抗体またはその抗体フラグメントが結合するS1サブユニットの受容体結合ドメイン(RBD)としては、配列番号7のアミノ酸配列からなるポリペプチド(野生型)、または、当該野生型のポリペプチドにおいて変異を有するポリペプチドを挙げることができる。配列番号7のアミノ酸配列からなるポリペプチドは、アクセッション番号YP_009724390で特定されるアミノ酸配列の319番目のアルギニン残基から541番目のフェニルアラニン残基までを含むポリペプチドである。
 本明細書において、当該野生型RBDのポリペプチドにおいて変異を有するポリペプチドとしては、例えばアクセッション番号YP_009724390で特定されるアミノ酸配列の319番目のアルギニン残基から541番目のフェニルアラニン残基までを含むポリペプチドであって、当該アミノ酸配列における339番目のグリシン残基、352番目のアラニン残基、370番目のアスパラギン残基、371番目のセリン残基、372番目のアラニン残基、373番目のセリン残基、375番目のセリン残基、376番目のスレオニン残基、395番目のバリン残基、405番目のアスパラギン酸残基、408番目のアルギニン残基、409番目のグルタミン残基、414番目のグルタミン残基、417番目のリシン残基、439番目のアスパラギン残基、440番目のアスパラギン残基、445番目のバリン残基、446番目のグリシン残基、452番目のロイシン残基、453番目のチロシン残基、445番目のロイシン残基、456番目のフェニルアラニン残基、458番目のリシン残基、475番目のアラニン残基、476番目のグリシン残基、477番目のセリン残基、478番目のトレオニン残基、481番目のアスパラギン残基、484番目のグルタミン酸残基、486番目のフェニルアラニン残基、487番目のアスパラギン残基、490番目のフェニルアラニン残基、493番目のグルタミン残基、496番目のグリシン残基、498番目のグルタミン残基、499番目のプロリン残基、501番目のアスパラギン残基、505番目のチロシン残基、520番目のアラニン残基、または、それらの組み合わせにおけるアミノ酸残基に相当するアミノ酸残基における置換変異(好ましくは、保存的置換)を有するポリペプチドを挙げることができる。
In one embodiment, the receptor binding domain (RBD) of the S1 subunit to which the antibody of the present invention or its antibody fragment binds is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 (wild type), or the Mention may be made of polypeptides that have mutations in the wild-type polypeptide. The polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 is a polypeptide containing the 319th arginine residue to the 541st phenylalanine residue of the amino acid sequence specified by the accession number YP_009724390.
As used herein, the polypeptide having a mutation in the wild-type RBD polypeptide includes, for example, a polypeptide containing from the 319th arginine residue to the 541st phenylalanine residue of the amino acid sequence specified by the accession number YP_009724390. A peptide, the 339th glycine residue, the 352nd alanine residue, the 370th asparagine residue, the 371st serine residue, the 372nd alanine residue, and the 373rd serine residue in the amino acid sequence. , 375th serine residue, 376th threonine residue, 395th valine residue, 405th aspartic acid residue, 408th arginine residue, 409th glutamine residue, 414th glutamine residue , 417th lysine residue, 439th asparagine residue, 440th asparagine residue, 445th valine residue, 446th glycine residue, 452nd leucine residue, 453rd tyrosine residue, Leucine residue at position 445, phenylalanine residue at position 456, lysine residue at position 458, alanine residue at position 475, glycine residue at position 476, serine residue at position 477, threonine residue at position 478, 481 asparagine residue, 484th glutamic acid residue, 486th phenylalanine residue, 487th asparagine residue, 490th phenylalanine residue, 493rd glutamine residue, 496th glycine residue, 498th Substitution in an amino acid residue corresponding to a glutamine residue, a proline residue at position 499, an asparagine residue at position 501, a tyrosine residue at position 505, an alanine residue at position 520, or a combination thereof. Mention may be made of polypeptides having mutations (preferably conservative substitutions).
 なお本明細書においてアミノ酸の保存的置換とは、アミノ酸側鎖に関連のあるアミノ酸グループ内で生じる置換である。このようなアミノ酸置換としては、例えば、置換前のアミノ酸が非極性アミノ酸(アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)であれば他の非極性アミノ酸への置換、置換前のアミノ酸が非荷電性アミノ酸(グリシン、アスパラギン、グルタミン、システイン、セリン、スレオニン、チロシン)であれば他の非荷電性アミノ酸への置換、置換前のアミノ酸が酸性アミノ酸(アスパギン酸、グルタミン酸)であれば他の酸性アミノ酸への置換、および置換前のアミノ酸が塩基性アミノ酸(リジン、アルギニン、ヒスチジン)であれば他の塩基性アミノ酸への置換が挙げられる。その他の好適なアミノ酸グループ間での置換は次のとおりである:脂肪族ヒドロキシグループ(セリンおよびスレオニン)、アミド含有グループ(アスパラギおよびグルタミン)、脂肪族グループ(アラニン、バリン、ロイシンおよびイソロイシン)、並びに、芳香族グループ(フェニルアラニン、トリプトファンおよびチロシン)。このような酸置換は元のアミノ酸配列を有する物質の特性を低下させない範囲で行うのが好ましい。 Note that in this specification, a conservative amino acid substitution is a substitution that occurs within an amino acid group that is related to the amino acid side chain. Such amino acid substitutions include, for example, if the amino acid before substitution is a nonpolar amino acid (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), substitution with another nonpolar amino acid; If the amino acid is an uncharged amino acid (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine), it can be replaced with another uncharged amino acid; if the amino acid before substitution is an acidic amino acid (aspartic acid, glutamic acid) Examples include substitution with other acidic amino acids, and substitution with other basic amino acids if the amino acid before substitution is a basic amino acid (lysine, arginine, histidine). Other suitable substitutions between amino acid groups are: aliphatic hydroxy groups (serine and threonine), amide-containing groups (asparagia and glutamine), aliphatic groups (alanine, valine, leucine and isoleucine), and , aromatic groups (phenylalanine, tryptophan and tyrosine). Such acid substitutions are preferably carried out within a range that does not reduce the properties of the substance having the original amino acid sequence.
 上記に列挙する野生型RBDのポリペプチドにおいて変異を有するポリペプチドのさらなる具体例としては、例えばアクセッション番号YP_009724390で特定されるアミノ酸配列の319番目のアルギニン残基から541番目のフェニルアラニン残基までを含むポリペプチドであって、当該アミノ酸配列におけるG339D、A352S、N370S、S371L、A372T、S373P、S375F、T376A、V395I、D405N、R408S、Q409E、Q414R、K417T、K417N、N439K、N440K、V445F、G446S、G446V、L452R 、Y453F、L455F、F456E、F456L、K458Q、A475V、G476S、S477I、S477N、T478K、N481D、E484K、E484Q、F486S、N487R、F490L、Q493R、G496S、Q498R、P499R、N501Y、Y505C、Y505H、A520V、E484KおよびN501Yの二重変異、L452RおよびE484Qの二重変異、L452RおよびT478Kの二重変異、K417NとE484KとN501Yとの三重変異、K417TとE484KとN501Yとの三重変異、または、それらの組み合わせの変異に相当する変異を有するポリペプチドを挙げることができる。なお、例えばP337Sは、特定のアミノ酸配列における337番目のプロリンがシステインに置換していることを示す。
 しかしながら、本発明に係る抗体またはその抗体フラグメントが結合しうるRBDの野生型ポリペプチドにおいて変異を有するポリペプチドは、上記に列挙するポリペプチドに限定されない。
As a further specific example of a polypeptide having a mutation in the wild-type RBD polypeptide listed above, for example, the amino acid sequence from the 319th arginine residue to the 541st phenylalanine residue is specified by the accession number YP_009724390. A polypeptide containing G339D, A352S, N370S, S371L, A372T, S373P, S375F, T376A, V395I, D405N, R408S, Q409E, Q414R, K417T, K417N, N439K, N440K, V445F, G44 in the amino acid sequence. 6S, G446V , L452R, Y453F, L455F, F456E, F456L, K458Q, A475V, G476S, S477I, S477N, T478K, N481D, E484K, E484Q, F486S, N487R, F490L, Q493R, G496S, Q498R , P499R, N501Y, Y505C, Y505H, A520V , double mutation of E484K and N501Y, double mutation of L452R and E484Q, double mutation of L452R and T478K, triple mutation of K417N, E484K and N501Y, triple mutation of K417T, E484K and N501Y, or a combination thereof. Examples include polypeptides having mutations corresponding to the mutations in . Note that, for example, P337S indicates that proline at position 337 in a specific amino acid sequence is replaced with cysteine.
However, the polypeptide having a mutation in the wild-type polypeptide of RBD to which the antibody or antibody fragment thereof according to the present invention can bind is not limited to the polypeptides listed above.
 抗体の結合評価は、タンパク質マイクロアレイ、ELISAやBiacore(登録商標)アッセイなど公知の技術により測定および評価することができる。より具体的には、下記実施例2に示すように、タンパク質マイクロアレイにより抗体の結合能を評価することができる。
 また抗体の中和活性評価は、例えば、下記実施例6~8に示すように、ACE2発現細胞に対するシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)またはSARS-CoV-2の感染に対する抗体の感染阻害作用を測定することで評価することができる。
Antibody binding can be measured and evaluated using known techniques such as protein microarray, ELISA, and Biacore (registered trademark) assay. More specifically, as shown in Example 2 below, the binding ability of antibodies can be evaluated using a protein microarray.
In addition, the neutralizing activity of antibodies can be evaluated, for example, as shown in Examples 6 to 8 below, by using pseudoviruses (lentiviruses with coronavirus S glycoprotein in their envelope protein) or SARS-CoV-2 against ACE2-expressing cells. This can be evaluated by measuring the infection-inhibiting effect of antibodies against infection.
 本明細書において「抗体」とは、主としてヒト抗体、マウス抗体、ヒト化抗体、ヒト抗体と他の哺乳動物の抗体とのキメラ抗体、およびマウス抗体と他の哺乳動物の抗体とのキメラ抗体のことをいう。しかしながら、SARS-CoV-2のスパイクタンパク質細胞外ドメインに特異的に結合する性質を有するものである限り、これらに限定されるものではなく、また、抗体の動物種にも特に制限はない。好ましい実施の形態において、本発明の抗体またはその抗体フラグメントは、ヒト抗体またはその抗体フラグメントである。
 また本明細書において「天然ヒト抗体」とは、新型コロナウイルス感染から回復したヒト個体内から得られた抗体をコードする塩基配列情報を基に、遺伝子工学技術を用いて構築および産生した抗体をいう。
In this specification, "antibody" mainly refers to human antibodies, mouse antibodies, humanized antibodies, chimeric antibodies of human antibodies and antibodies of other mammals, and chimeric antibodies of mouse antibodies and antibodies of other mammals. Say something. However, the antibody is not limited to these as long as it has the property of specifically binding to the extracellular domain of the spike protein of SARS-CoV-2, and there is no particular restriction on the animal species of the antibody. In preferred embodiments, the antibodies of the invention or antibody fragments thereof are human antibodies or antibody fragments thereof.
Furthermore, in this specification, "natural human antibodies" refer to antibodies constructed and produced using genetic engineering technology based on the nucleotide sequence information encoding antibodies obtained from human individuals who have recovered from infection with the new coronavirus. say.
 本明細書における「抗体」には、2本の免疫グロブリン軽鎖と2本の免疫グロブリン重鎖の計4本のポリペプチド鎖からなる基本構造を有するものに加えて、以下の公知の構造を有する抗体も含む:
(1)1本の免疫グロブリン軽鎖と1本の免疫グロブリン重鎖の計2本のポリペプチド鎖からなる抗体、
(2)免疫グロブリン軽鎖のC末端側にリンカー配列を有し、当該リンカー配列のC末端側に免疫グロブリン重鎖を結合させてなる一本鎖抗体、
(3)免疫グロブリン重鎖のC末端側にリンカー配列を有し、当該リンカー配列のC末端側に免疫グロブリン軽鎖を結合させてなる一本鎖抗体、
(4)Fab領域からなるFab抗体およびFab領域とヒンジ部の全部若しくは一部とからなるF(ab’)抗体、および、F(ab’)抗体
(5)Fab,F(ab’)またはF(ab’)を構成する軽鎖と重鎖を、リンカー配列を介して結合させて一本鎖抗体としたscFab,scF(ab’),およびscF(ab’)抗体
 なお一本鎖抗体を作製するためのリンカー配列は、作製された一本鎖抗体がSARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性を有する限り限定されない。このようなリンカー配列としては、以下に限定されないが、例えば2~50個のアミノ酸残基から構成されるペプチド鎖(好ましくは、グリシンのみまたはグリシンとセリンから構成されるペプチド鎖)を挙げることができる。
In addition to those having a basic structure consisting of a total of four polypeptide chains, two immunoglobulin light chains and two immunoglobulin heavy chains, the term "antibody" as used herein includes the following known structures: Also includes antibodies with:
(1) Antibodies consisting of two polypeptide chains, one immunoglobulin light chain and one immunoglobulin heavy chain,
(2) a single chain antibody having a linker sequence on the C-terminal side of an immunoglobulin light chain and binding an immunoglobulin heavy chain to the C-terminal side of the linker sequence;
(3) a single chain antibody having a linker sequence on the C-terminal side of an immunoglobulin heavy chain and binding an immunoglobulin light chain to the C-terminal side of the linker sequence;
(4) Fab antibodies consisting of Fab regions, F(ab') antibodies consisting of Fab regions and all or part of the hinge region, and F(ab') 2 antibodies (5) Fab, F(ab') or scFab, scF(ab'), and scF(ab') 2 antibody, which is a single chain antibody by combining the light chain and heavy chain that constitute F(ab') 2 via a linker sequence. The linker sequence for producing the antibody is not limited as long as the single chain antibody produced has specific affinity for the extracellular domain of the spike protein of SARS-CoV-2. Examples of such a linker sequence include, but are not limited to, a peptide chain composed of 2 to 50 amino acid residues (preferably a peptide chain composed of only glycine or glycine and serine). can.
 「抗体フラグメント」は、SARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性の少なくとも一部を保持している抗原結合性断片のことをいう。結合性断片の例としては,例えば上記(4)および(5)に示されるものを挙げるこができる。またFab,Fab’,F(ab’),可変領域(Fv),重鎖可変領域(V)と軽鎖可変領域(V)とを適当なリンカーで連結させた一本鎖抗体(scFv),重鎖可変領域(V)と軽鎖可変領域(V)を含むポリペプチドの二量体であるダイアボディ、scFvの重鎖(H鎖)に定常領域の一部(C3)が結合したものの二量体であるミニボディ、その他の低分子化抗体等を含む。その他、本発明の抗体を適当な酵素で処理して得たもの、遺伝子工学的に改変された抗体遺伝子を用いて適当な宿主細胞において産生された蛋白質も含む。しかしながら、抗体フラグメントは、SARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性を有する限りこれらの分子に限定されない。 "Antibody fragment" refers to an antigen-binding fragment that retains at least a portion of its specific affinity for the extracellular domain of the spike protein of SARS-CoV-2. Examples of binding fragments include those shown in (4) and (5) above. In addition, single chain antibodies (Fab, Fab', F(ab') 2 , variable region (Fv), heavy chain variable region (V H ) and light chain variable region (V L ) linked with an appropriate linker ( scFv), a diabody which is a dimer of a polypeptide containing a heavy chain variable region (V H ) and a light chain variable region (V L ), and a part of the constant region (C H This includes minibodies that are dimers of 3) bound together, other low-molecular-weight antibodies, etc. In addition, it also includes those obtained by treating the antibody of the present invention with an appropriate enzyme, and proteins produced in appropriate host cells using genetically engineered antibody genes. However, antibody fragments are not limited to these molecules as long as they have specific affinity for the spike protein extracellular domain of SARS-CoV-2.
  抗体にはIgG、IgM、IgA、IgDおよびIgEの5つのクラス、ならびに、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2のサブクラスが存在する。本発明に係る抗体またはその抗体フラグメントは、配列番号1~6で表されるCDRのいずれか(いずれかの組み合わせもしくは全て)を有し、かつ、SARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性を有する限り、抗体のクラスおよびサブクラスは限定されない。
 なお本発明に係る抗体またはその抗体フラグメントの好ましい実施の形態は、IgG抗体もしくはIgA抗体、または、それらの抗体フラグメントである。IgG抗体とすることで、抗体の安定性が増強することとなり好ましい。またIgA抗体とすることで、生体の一次防御機能に着目した用途に好適に用いることができる。一次防御機能に着目した用途としては、以下に限定されないが、例えば生体の局所(目または鼻)への投与によるSARS-CoV-2の感染予防、ならびに/または、COVID-19の発症予防および/もしくは治療の用途を挙げることができる。
 また本発明に係る抗体またはその抗体フラグメントがIgA抗体である場合、単量体であってもよく、または、二量体、三量体、四量体などの多量体であってもよい。本明細書においてIgA抗体というときこれらの多量体を含む。好ましい実施の形態において、IgA抗体は二量体である。
There are five classes of antibodies: IgG, IgM, IgA, IgD, and IgE, and subclasses of IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. The antibody or antibody fragment thereof according to the present invention has any of the CDRs represented by SEQ ID NOs: 1 to 6 (any combination or all) and is directed against the extracellular domain of the spike protein of SARS-CoV-2. The class and subclass of the antibody is not limited as long as it has specific affinity.
A preferred embodiment of the antibody or antibody fragment thereof according to the present invention is an IgG antibody or an IgA antibody, or an antibody fragment thereof. It is preferable to use an IgG antibody because the stability of the antibody is enhanced. Furthermore, by using an IgA antibody, it can be suitably used for applications focusing on the primary defense function of living organisms. Applications focused on primary defense functions include, but are not limited to, the prevention of SARS-CoV-2 infection by local administration (eyes or nose) of living bodies, and/or the prevention and/or onset of COVID-19. Alternatively, you can mention therapeutic uses.
Furthermore, when the antibody or antibody fragment thereof according to the present invention is an IgA antibody, it may be a monomer or a multimer such as a dimer, trimer, or tetramer. In this specification, the term IgA antibody includes these multimers. In a preferred embodiment, the IgA antibody is dimeric.
 本明細書における「CDR」とは、相補性決定領域(Complemetarity deterring region)を意味する。抗体分子の重鎖および軽鎖にはそれぞれ3箇所のCDRがあることが知られている。CDRは、超可変領域(hypervariable domain)とも呼ばれ、抗体の重鎖および軽鎖の可変領域内にあって、一次構造の変異性が特に高い部位であり、重鎖および軽鎖のポリペプチド鎖の一次構造上において、それぞれ3ヶ所に分離している。本明細書中においては、抗体のCDRについて、重鎖のCDRを重鎖アミノ酸配列のアミノ末端側から重鎖CDR1、重鎖CDR2、重鎖CDR3と表記し、軽鎖のCDRを軽鎖アミノ酸配列のアミノ末端側から軽鎖CDR1、軽鎖CDR2、軽鎖CDR3と表記する。これらの部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。
 上述するように、本発明に係る抗体またはその抗体フラグメントにおける重鎖CDR1は配列番号1のアミノ酸配列からなり;重鎖CDR2は配列番号2のアミノ酸配列からなり;重鎖CDR3は配列番号3のアミノ酸配列からなる。また、本発明に係る抗体またはその抗体フラグメントにおける軽鎖CDR1は配列番号4のアミノ酸配列からなり;軽鎖CDR2は配列番号5のアミノ酸配列からなり;軽鎖CDR3は配列番号6のアミノ酸配列からなる。
"CDR" as used herein means complementarity determining region. It is known that the heavy chain and light chain of an antibody molecule each have three CDRs. CDRs, also called hypervariable domains, are located within the variable regions of the heavy and light chains of antibodies, and are regions with particularly high variability in primary structure, and are located in the polypeptide chains of heavy and light chains. Each is separated into three locations on its primary structure. In this specification, regarding antibody CDRs, heavy chain CDRs are expressed as heavy chain CDR1, heavy chain CDR2, and heavy chain CDR3 from the amino terminal side of the heavy chain amino acid sequence, and light chain CDRs are expressed as the light chain amino acid sequence. From the amino terminal side, they are written as light chain CDR1, light chain CDR2, and light chain CDR3. These sites are structurally close to each other and determine the specificity for the antigen to which they bind.
As mentioned above, in the antibody or antibody fragment thereof according to the present invention, heavy chain CDR1 consists of the amino acid sequence of SEQ ID NO: 1; heavy chain CDR2 consists of the amino acid sequence of SEQ ID NO: 2; heavy chain CDR3 consists of the amino acid sequence of SEQ ID NO: 3. Consists of an array. Furthermore, light chain CDR1 in the antibody or antibody fragment thereof according to the present invention consists of the amino acid sequence of SEQ ID NO: 4; light chain CDR2 consists of the amino acid sequence of SEQ ID NO: 5; light chain CDR3 consists of the amino acid sequence of SEQ ID NO: 6. .
 また本発明の抗体またはその抗体フラグメントにおいて「重鎖」(H鎖:Heavy Chain)は、IgG、IgM、IgA、IgD、IgEのクラスに対応したIgγ、Igμ、Igα、Igδ、Igεの構造、および、またサブクラスに対応するIgγ1、Igγ2、Igγ3、Igγ4、Igα1、Igα2の構造を取りうる。好ましい実施の形態において本発明の抗体はIgG抗体またはIgA抗体であり、重鎖はIgα1、および/または、Igα2である。 In addition, in the antibody of the present invention or its antibody fragment, the "heavy chain" has the structure of Igγ, Igμ, Igα, Igδ, Igε corresponding to the classes of IgG, IgM, IgA, IgD, and IgE, and , and can take the structures of Igγ1, Igγ2, Igγ3, Igγ4, Igα1, and Igα2 corresponding to the subclasses. In a preferred embodiment, the antibody of the invention is an IgG antibody or an IgA antibody, and the heavy chain is Igα1 and/or Igα2.
 一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖はIgG抗体の構造を取り、下記(a)~(c)からなる群から選択されるいずれかのアミノ酸配列からなる重鎖可変領域を含む:
(a)配列番号8のアミノ酸配列、
(b)前記(a)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c)前記(a)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(b)または上記(c)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a)配列番号8のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
In one embodiment, the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody, and has a heavy chain consisting of any amino acid sequence selected from the group consisting of (a) to (c) below. Contains variable regions:
(a) Amino acid sequence of SEQ ID NO: 8,
(b) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence of (a), and
(c) An amino acid sequence in which one or several amino acids have been deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (a) above. The heavy chain variable region consisting of the specified amino acid sequence has the above (a) affinity for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2, which the heavy chain variable region consisting of the amino acid sequence of SEQ ID NO: 8 has. It is to maintain the
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖は、IgG抗体の構造を取り、下記(a’)~(c’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(a’)配列番号10のアミノ酸配列、
(b’)前記(a’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’)前記(a’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
なお、上記(b’)または上記(c’)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a’)配列番号10のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
Furthermore, in a preferred embodiment, the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody and contains any amino acid selected from the group consisting of (a') to (c') below. Consists of an array:
(a') Amino acid sequence of SEQ ID NO: 10,
(b') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (a'), and
(c') Amino acid sequence in which one or several amino acids are deleted, substituted or added in the framework region and constant region sequences other than each CDR sequence in the sequence (a') above. Or, the heavy chain variable region consisting of the amino acid sequence specified in (c') above is a receptor for the S1 subunit of SARS-CoV-2 possessed by the heavy chain variable region consisting of the amino acid sequence of (a') SEQ ID NO: 10 above. It maintains affinity for the binding domain (RBD).
 また一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖はIgA抗体の構造を取り、下記(a’’)~(c’’)からなる群から選択されるいずれかのアミノ酸配列からなる重鎖可変領域を含む:
(a’’)配列番号29のアミノ酸配列、
(b’’)前記(a’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’’)前記(a’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(b’’)または上記(c’’)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a’’)配列番号29のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
Furthermore, in one embodiment, the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody, and has any amino acid selected from the group consisting of (a'') to (c'') below. Contains the heavy chain variable region consisting of the sequence:
(a'') Amino acid sequence of SEQ ID NO: 29,
(b'') an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (a''), and
(c'') An amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (a'') above (b'') Or, the heavy chain variable region consisting of the amino acid sequence specified in (c'') above is the S1 subunit of SARS-CoV-2 possessed by the heavy chain variable region consisting of the amino acid sequence of SEQ ID NO: 29 (a'') above. It maintains affinity for the receptor binding domain (RBD).
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖は、IgA抗体の構造を取り、下記(a’’’)~(c’’’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(a’’’)配列番号30のアミノ酸配列、
(b’’’)前記(a’’’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’’’)前記(a’’’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
なお、上記(b’’’)または上記(c’’’)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a’’’)配列番号30のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。  
In a preferred embodiment, the heavy chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody and is selected from the group consisting of (a''') to (c''') below. Consists of either amino acid sequence:
(a''') Amino acid sequence of SEQ ID NO: 30,
(b''') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (a'''), and
(c''') An amino acid sequence in which one or several amino acids have been deleted, substituted, or added in the framework region and constant region sequences other than each CDR sequence in the sequence (a''') above. The heavy chain variable region consisting of the amino acid sequence specified in (b''') or (c''') above is the SARS- It maintains the affinity for the receptor binding domain (RBD) of the S1 subunit of CoV-2.
 本発明の抗体またはその抗体フラグメントにおいて「軽鎖」(L鎖:Light Chain)はIgλ、Igκの構造を取りうる。好ましい実施の形態において本発明の抗体はIgG抗体またはIgA抗体であり、軽鎖はIgκである。
 一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖はIgG抗体の構造を取り、下記(d)~(f)からなる群から選択されるいずれかのアミノ酸配列からなる重鎖可変領域を含む:
(d)配列番号9のアミノ酸配列、
(e)前記(d)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f)前記(e)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
 なお、上記(e)または上記(f)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d)配列番号9のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
In the antibody of the present invention or its antibody fragment, the "light chain" can have an Igλ or Igκ structure. In a preferred embodiment, the antibody of the invention is an IgG antibody or an IgA antibody, and the light chain is Igκ.
In one embodiment, the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody, and the heavy chain consists of any amino acid sequence selected from the group consisting of (d) to (f) below. Contains variable regions:
(d) the amino acid sequence of SEQ ID NO: 9,
(e) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (d) above, and
(f) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (e) above;
A light chain variable region consisting of an amino acid sequence selected from the group consisting of: A light chain variable region consisting of an amino acid sequence specified in (e) or (f) above is a light chain variable region consisting of an amino acid sequence selected from the group consisting of (d) SEQ ID NO: 9. This maintains the affinity of the light chain variable region for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2.
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖は、IgG抗体の構造を取り、下記(d’)~(f’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(d’)配列番号11のアミノ酸配列、
(e’)前記(d’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’)前記(d’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(e’)または上記(f’)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d’)配列番号11のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
In a preferred embodiment, the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgG antibody and contains any amino acid selected from the group consisting of (d') to (f') below. Consists of an array:
(d') Amino acid sequence of SEQ ID NO: 11,
(e') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (d'), and
(f') An amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region and constant region sequences other than each CDR sequence in the sequence (d') above. Or, the light chain variable region consisting of the amino acid sequence specified in (f') above is a receptor for the S1 subunit of SARS-CoV-2 possessed by the light chain variable region consisting of the amino acid sequence of (d') SEQ ID NO: 11 above. It maintains affinity for the binding domain (RBD).
 一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖はIgA抗体の構造を取り、下記(d’’)~(f’’)からなる群から選択されるいずれかのアミノ酸配列からなる軽鎖可変領域を含む:
(d’’)配列番号31のアミノ酸配列、
(e’’)前記(d’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’’)前記(e’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
 なお、上記(e’’)または上記(f’’)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d’’)配列番号31のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
In one embodiment, the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody and has any amino acid sequence selected from the group consisting of (d'') to (f'') below. Contains a light chain variable region consisting of:
(d'') Amino acid sequence of SEQ ID NO: 31,
(e'') an amino acid sequence having at least 90% identity to the framework region sequence other than each CDR sequence in the sequence (d''), and
(f'') an amino acid sequence in which one or several amino acids are deleted, substituted or added in the framework region sequence other than each CDR sequence in the sequence (e'');
A light chain variable region consisting of an amino acid sequence selected from the group consisting of: A light chain variable region consisting of an amino acid sequence specified in (e'') or (f'') above, This maintains the affinity of the light chain variable region consisting of the amino acid sequence number 31 for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2.
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖は、IgA抗体の構造を取り、下記(d’’’)~(f’’’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(d’’’)配列番号32のアミノ酸配列、
(e’’’)前記(d’’’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’’’)前記(d’’’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(e’’’)または上記(f’’’)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d’’’)配列番号32のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
In a preferred embodiment, the light chain of the antibody or antibody fragment thereof according to the present invention has the structure of an IgA antibody and is selected from the group consisting of (d''') to (f''') below. Consists of either amino acid sequence:
(d''') amino acid sequence of SEQ ID NO: 32,
(e''') an amino acid sequence having at least 90% identity to the framework region and constant region sequences other than each CDR sequence in the sequence (d'''), and
(f''') An amino acid sequence in which one or several amino acids have been deleted, substituted, or added in the framework region and constant region sequences other than each CDR sequence in the sequence (d''') above. The light chain variable region consisting of the amino acid sequence specified in (e''') or (f''') above is the SARS- It maintains the affinity for the receptor binding domain (RBD) of the S1 subunit of CoV-2.
 ここで、特定のアミノ酸配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列とは、当該特定のアミノ酸配列と同一のCDRを有し、かつ、当該アミノ酸配列のフレームワーク領域にのみ変異を有するアミノ酸配列を意味する。フレームワーク領域におけるアミノ酸変異は、変異導入前のフレームワーク領域におけるアミノ酸配列に対して90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%以上である。 Here, an amino acid sequence that has at least 90% or more identity to a framework region sequence other than each CDR sequence in a specific amino acid sequence is an amino acid sequence that has the same CDR as the specific amino acid sequence, and It means an amino acid sequence that has a mutation only in the framework region of the amino acid sequence. Amino acid mutations in the framework region are 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the amino acid sequence in the framework region before mutation introduction. % or more.
 本明細書において示した「同一性」の数値はいずれも、当業者に公知の相同性検索プログラムを用いて算出される数値であればよく、例えばFASTA、BLAST等においてデフォルト(初期設定)のパラメータを用いることにより、容易に算出することができる。Blast algorithmは、インターネットでwww.ncbi.nlm.nih.gov/blastにアクセスすることによっても使用することができる。なお、本発明の抗体に係るヌクレオチド配列と他の抗体のヌクレオチド配列との間の相同性についてもBlast algorithmによって決定することができる。 Any numerical value of "identity" shown in this specification may be a numerical value calculated using a homology search program known to those skilled in the art, for example, a default (initial setting) parameter in FASTA, BLAST, etc. It can be easily calculated by using . The Blast algorithm can also be used by visiting www.ncbi.nlm.nih.gov/blast on the Internet. Note that the homology between the nucleotide sequence of the antibody of the present invention and the nucleotide sequences of other antibodies can also be determined by Blast algorithm.
 「数個のアミノ酸が欠失、置換または付加される」というとき、「数個」は1乃至50個、1乃至48個、1乃至40個、1乃至30個、1乃至23個、1乃至20個、1乃至10個、1乃至9個、1乃至8個、1乃至7個、1乃至6個、1乃至5個、1乃至4個、1乃至3個、または1若しくは2個を意味する。
 任意に導入されるアミノ酸の置換は、保存的置換であることが好ましい。
When "several amino acids are deleted, substituted, or added,""several" refers to 1 to 50, 1 to 48, 1 to 40, 1 to 30, 1 to 23, 1 to 20 pieces, 1 to 10 pieces, 1 to 9 pieces, 1 to 8 pieces, 1 to 7 pieces, 1 to 6 pieces, 1 to 5 pieces, 1 to 4 pieces, 1 to 3 pieces, or 1 or 2 pieces do.
Any amino acid substitutions introduced are preferably conservative substitutions.
 本発明に係る抗体またはその抗体フラグメントは、SARS-CoV-2のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)に対して高い親和性を有する。好ましい実施の形態において、本発明に係る抗体またはその抗体フラグメントは、SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する解離定数(KD)が20nM未満、より好ましくは5nM未満、2nM未満、1nM未満、さらに好ましくは0.1nM未満、0.05nM未満である。抗体またはその抗体フラグメントの解離定数は、下記実施例4に記載の方法に準じたBiacoreにより評価することができる。 The antibody or antibody fragment thereof according to the present invention has high affinity for the receptor binding domain (RBD) of the S1 subunit, the extracellular domain of the spike protein of SARS-CoV-2. In a preferred embodiment, the antibody or antibody fragment thereof according to the invention has a dissociation constant (K D ) for the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2 of less than 20 nM, more preferably less than 5 nM. , less than 2 nM, less than 1 nM, more preferably less than 0.1 nM, less than 0.05 nM. The dissociation constant of an antibody or an antibody fragment thereof can be evaluated by Biacore according to the method described in Example 4 below.
 本発明の別の態様は、上記の本発明に係る抗体またはその抗体フラグメントを含む組成物を提供する。すなわち、当該組成物の一実施の形態は、配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、SARS-CoV-2のスパイクタンパク質細胞外ドメインにおけるS1サブユニットに結合する、抗体またはその抗体フラグメントを含む組成物である。好ましい実施の形態において、当該組成物に含まれる抗体またはその抗体フラグメントは、ヒトACE受容体の細胞外ドメインとSARS-CoV-2のスパイクタンパク質の細胞外ドメインとの結合に競合するものである。 Another aspect of the present invention provides a composition comprising the above-described antibody or antibody fragment thereof according to the present invention. That is, one embodiment of the composition includes heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1, heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2, heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3, and heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3. An antibody having a light chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4, a light chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5, and a light chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 6, which is a spike protein of SARS-CoV-2. A composition comprising an antibody or antibody fragment thereof that binds to the S1 subunit in the extracellular domain. In a preferred embodiment, the antibody or antibody fragment thereof included in the composition competes for binding between the extracellular domain of the human ACE receptor and the extracellular domain of the spike protein of SARS-CoV-2.
 本発明に係る組成物は、SARS-CoV-2の感染を予防するために用いるフィルタ、スプレー、マスクなどを構成する要素(成分)や化粧品の成分として用いることができる。フィルタは以下に限定されないが例えば空気清浄器やエアコンディショナ用のフィルタを挙げることができる。
 また本発明の一態様は、上記の本発明に係る抗体またはその抗体フラグメントを含む組成物を空気中に徐放、噴霧、または散布する方法も含む。すなわち、本発明に係る組成物(液状の組成物であることが好ましい)は空気中(室内などの密閉空間または室外などの開放された空間)に徐放、噴霧、または散布して用いることができる。本発明に係る組成物を徐放、噴霧、または散布できる限り手段は限定されず、公知の手段(マイクロカプセルなど)や装置(加湿器など)や方法を採用することができる。以下に限定されないが、例えば加湿器用の水に本発明に係る組成物を含めることで空気の加湿とともに本発明に係る組成物を空気中に噴霧できる。よって、本発明に係る組成物は採用する手段、装置、方法に応じて、空気中への徐放、噴霧、または散布可能に適した形態で提供することができる(例えば、加湿器用水溶液)。
 さらに、本発明に係る組成物は飲食品用組成物、SARS-CoV-2検出用試薬、COVID-19診断薬、または、COVID-19の発症予防および/または治療のために用いられる医薬組成物として提供することもできる。
The composition according to the present invention can be used as an element (component) constituting a filter, spray, mask, etc. used to prevent infection with SARS-CoV-2, or as a component of cosmetics. Although the filter is not limited to the following, examples include filters for air purifiers and air conditioners.
One aspect of the present invention also includes a method of slowly releasing, spraying, or dispersing a composition containing the above-described antibody or antibody fragment of the present invention into the air. That is, the composition according to the present invention (preferably a liquid composition) can be used by slow release, spraying, or scattering into the air (in a closed space such as indoors or in an open space such as outdoors). can. The means is not limited as long as the composition according to the present invention can be released slowly, sprayed, or dispersed, and any known means (microcapsules, etc.), devices (humidifiers, etc.), and methods can be employed. Although not limited to the following, for example, by including the composition according to the present invention in water for a humidifier, the composition according to the present invention can be sprayed into the air while humidifying the air. Therefore, the composition according to the present invention can be provided in a form suitable for sustained release, spraying, or dispersion into the air (for example, an aqueous solution for a humidifier) depending on the means, apparatus, and method employed.
Furthermore, the composition according to the present invention can be used as a composition for food or drink, a reagent for detecting SARS-CoV-2, a COVID-19 diagnostic agent, or a pharmaceutical composition used for preventing and/or treating the onset of COVID-19. It can also be provided as
 本発明に係る組成物は上記抗体またはその抗体フラグメントに加えて、その用途に適した形態を採用し、好ましい成分を含むことができる。よって、組成物の形態は限定されず、水溶液、懸濁液または乳濁液などの液状であってもよいし、溶解、懸濁または乳濁して使用されるように、担体とともに固形(粉末状、凍結乾燥粉末状など)として提供することもできる。 In addition to the above-mentioned antibody or antibody fragment thereof, the composition according to the present invention can adopt a form suitable for its use and contain preferred components. Therefore, the form of the composition is not limited, and may be in liquid form such as an aqueous solution, suspension, or emulsion, or in solid form (powder form) together with a carrier so that it can be dissolved, suspended, or emulsified. , lyophilized powder, etc.).
 抗体またはその抗体フラグメントを溶解する溶剤としては、以下に限定されないが、例えば、生理食塩水、ブドウ糖溶液および等張液(例えば、塩化ナトリウム、塩化カリウム、グリセリン、マンニトール、ソルビトール、ホウ酸、ホウ砂、プロピレングリコール等の溶液)、注射用蒸留水、メタノール、エタノール、プロパノール、イソプロパノールなどの有機溶剤を挙げることができる。 Solvents for dissolving antibodies or antibody fragments thereof include, but are not limited to, physiological saline, glucose solutions, and isotonic solutions (e.g., sodium chloride, potassium chloride, glycerin, mannitol, sorbitol, boric acid, borax). , propylene glycol, etc.), distilled water for injection, methanol, ethanol, propanol, isopropanol, and other organic solvents.
 組成物に用いることができる担体としては、以下に限定されないが、例えば、安定剤、溶解補助剤、懸濁化剤、乳化剤、無痛化剤、緩衝剤、保存剤、防腐剤、pH調整剤および抗酸化剤等が挙げられる。安定剤としては、例えば、各種アミノ酸、アルブミン、グロブリン、ゼラチン、マンニトール、グルコース、デキストラン、エチレングリコール、プロピレングリコール、ポリエチレングリコール、アスコルビン酸、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、エデト酸ナトリウム、クエン酸ナトリウム、ジブチルヒドロキシトルエン等を用いることができる。溶解補助剤としては、例えば、アルコール(例えば、エタノール等)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(例えば、ポリソルベート20(登録商標)、ポリソルベート80(登録商標)、HCO-50等)等を用いることができる。懸濁化剤としては、例えば、モノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。乳化剤としては、例えば、アラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。無痛化剤としては、例えば、ベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。緩衝剤としては、例えば、リン酸緩衝液、酢酸緩衝液、ホウ酸緩衝液、炭酸緩衝液、クエン酸緩衝液、トリス緩衝液、グルタミン酸緩衝液、イプシロンアミノカプロン酸緩衝液等を用いることができる。保存剤としては、例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、クロロブタノール、ベンジルアルコール、塩化ベンザルコニウム、デヒドロ酢酸ナトリウム、エデト酸ナトリウム、ホウ酸、ホウ砂等を用いることができる。防腐剤としては、例えば、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。pH調整剤としては、例えば、塩酸、水酸化ナトリウム、リン酸、酢酸等を用いることができる。抗酸化剤として、例えば、(1)アスコルビン酸、システインハイドロクロライド、重硫酸ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸ナトリウム等のような水溶性抗酸化剤、(2)アスコルビルパルミテート、ブチル化ハイドロキシアニソール、ブチル化ハイドロキシトルエン、レシチン、プロピルガレート、α-トコフェロール等のような油溶性抗酸化剤および(3)クエン酸、エチレンジアミン四酢酸、ソルビトール、酒石酸、リン酸等のような金属キレート剤等を用いることができる。 Carriers that can be used in the composition include, but are not limited to, stabilizers, solubilizers, suspending agents, emulsifiers, soothing agents, buffers, preservatives, preservatives, pH adjusters, and Examples include antioxidants. Examples of stabilizers include various amino acids, albumin, globulin, gelatin, mannitol, glucose, dextran, ethylene glycol, propylene glycol, polyethylene glycol, ascorbic acid, sodium bisulfite, sodium thiosulfate, sodium edetate, sodium citrate, Dibutylhydroxytoluene and the like can be used. Examples of solubilizing agents include alcohols (e.g., ethanol, etc.), polyalcohols (e.g., propylene glycol, polyethylene glycol, etc.), nonionic surfactants (e.g., polysorbate 20 (registered trademark), polysorbate 80 (registered trademark) ), HCO-50, etc.) can be used. As the suspending agent, for example, glyceryl monostearate, aluminum monostearate, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, sodium lauryl sulfate, etc. can be used. As the emulsifier, for example, gum arabic, sodium alginate, tragacanth, etc. can be used. As the soothing agent, for example, benzyl alcohol, chlorobutanol, sorbitol, etc. can be used. As the buffer, for example, phosphate buffer, acetate buffer, borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon aminocaproate buffer, etc. can be used. Examples of preservatives include methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boric acid, and boric acid. Sand etc. can be used. As the preservative, for example, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol, etc. can be used. As the pH adjuster, for example, hydrochloric acid, sodium hydroxide, phosphoric acid, acetic acid, etc. can be used. As antioxidants, for example, (1) water-soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite, etc., (2) ascorbyl palmitate, butylated hydroxyanisole, (3) using oil-soluble antioxidants such as butylated hydroxytoluene, lecithin, propyl gallate, α-tocopherol, etc.; and (3) metal chelating agents such as citric acid, ethylenediaminetetraacetic acid, sorbitol, tartaric acid, phosphoric acid, etc. Can be done.
 本発明の組成物を化粧品、飲食品用組成物、および、医薬組成物など直接皮膚に接触させる、または、非経口投与もしくは経口投与される用途として提供する場合には、担体は薬学的に許容できる担体を用いる。薬学的に許容できる担体としては、例えば、上記に列挙する担体を挙げることができる。
 また本発明の組成物における抗体またはその抗体フラグメントの含有量は、用途に応じて所望の効果が得られる範囲とすればよい。以下に限定されないが、例えば、1μg/kg~1,000mg/kgすることができる。
When the composition of the present invention is provided as a cosmetic, a food/beverage composition, a pharmaceutical composition, etc. for use in direct contact with the skin, or for parenteral or oral administration, the carrier is a pharmaceutically acceptable carrier. Use a carrier that can be used. Examples of pharmaceutically acceptable carriers include the carriers listed above.
Furthermore, the content of the antibody or antibody fragment thereof in the composition of the present invention may be within a range that provides the desired effect depending on the intended use. For example, but not limited to, it can be 1 μg/kg to 1,000 mg/kg.
 本発明は一態様として、上記の組成物を含む、SARS-CoV-2感染予防用スプレーを提供する。
 本発明のSARS-CoV-2感染予防用スプレーには、上記抗体またはその抗体フラグメントとそれらの溶剤を含む。よって、SARS-CoV-2感染が疑われる場所(以下に限定されないが、密閉した空間、解放されている空間、マスク、ドアノブ、机、吊革など)に噴霧して使用することができ、また手の消毒用として用いることができる。本発明のSARS-CoV-2感染予防用スプレーには、さらにその他の緩衝剤、塩、糖、添加剤(防腐剤、界面活性剤など)などを含むことができる。スプレーに用いることのできる溶剤や緩衝剤、塩、糖、添加剤などは抗体のSARS-CoV-2に対する親和性を阻害しない限り上記に列挙するものに加え、公知のものを用いることができる。一実施の形態においては、溶剤としてエタノールを用い、メチルパラベンなどの防腐剤、および、ポリソルベート80などの界面活性剤を添加して調製することができる。このようなスプレーは公知のスプレーの製造方法に準じて製造することができる。
In one aspect, the present invention provides a spray for preventing SARS-CoV-2 infection, comprising the above composition.
The spray for preventing SARS-CoV-2 infection of the present invention contains the above-mentioned antibodies or antibody fragments thereof and their solvents. Therefore, it can be used by spraying in areas where SARS-CoV-2 infection is suspected (including, but not limited to, closed spaces, open spaces, masks, doorknobs, desks, straps, etc.), and it can also be used on hands. It can be used for disinfection. The spray for preventing SARS-CoV-2 infection of the present invention can further contain other buffers, salts, sugars, additives (preservatives, surfactants, etc.), and the like. In addition to those listed above, known solvents, buffers, salts, sugars, additives, etc. that can be used in the spray can be used as long as they do not inhibit the affinity of the antibody for SARS-CoV-2. In one embodiment, it can be prepared using ethanol as a solvent and adding a preservative such as methylparaben and a surfactant such as polysorbate 80. Such a spray can be manufactured according to a known spray manufacturing method.
 本発明は一態様として、上記の組成物を担持する基材を含む、フィルタを提供する。本発明のフィルタは例えば空気清浄機やマスクの素材など、空気中のSARS-CoV-2を捕捉する用途で用いることができる。
 基材としては、上記の抗体または抗体フラグメントを担持でき、かつ、SARS-CoV-2に対する親和性を阻害しない限り限定されない。例えば基材の素材として、ポリビニルアルコール繊維(例えばビニロン)、ポリエステル繊維(たとえばポリエチレンテレフタラート繊維)、ポリアミド繊維(たとえばナイロン6、ナイロン66などのナイロン、ポリアクリルアミド繊維等)、ポリオレフィン繊維(たとえばポリエチレン繊維、ポリプロピレン繊維等)、アクリル繊維、ポリウレタン繊維、セルロース繊維、セルロースエステル繊維などの合成繊維;綿、絹、ウール、レーヨンなどの天然繊維;および、再生繊維、ならびに、それらの混合材などが挙げられるが、これらに限定されない。また基材の形態は、フィルム、スパンボンド不織布、スパンレース不織布、ニードルパンチ不織布、メルトブロー不織布、フラッシュ紡糸不織布、サーマルボンド不織布、ケミカルボンド不織布、ステッチボンド不織布、および湿式抄紙不織布など不織布、あるいは織物、紙などシートの形態を成すものが挙げられる。また、基材の形態がシート状である場合、その目付は特に限定されないが、例えば1μg/m~200mg/mとすることができる。
In one aspect, the present invention provides a filter that includes a substrate carrying the composition described above. The filter of the present invention can be used in applications such as air purifiers and mask materials to capture SARS-CoV-2 in the air.
The substrate is not limited as long as it can support the above antibody or antibody fragment and does not inhibit the affinity for SARS-CoV-2. For example, base materials include polyvinyl alcohol fibers (e.g., vinylon), polyester fibers (e.g., polyethylene terephthalate fibers), polyamide fibers (e.g., nylons such as nylon 6 and nylon 66, polyacrylamide fibers, etc.), polyolefin fibers (e.g., polyethylene fibers), synthetic fibers such as acrylic fibers, polyurethane fibers, cellulose fibers, and cellulose ester fibers; natural fibers such as cotton, silk, wool, and rayon; and recycled fibers and mixtures thereof. However, it is not limited to these. The form of the base material may be nonwoven fabrics such as films, spunbond nonwoven fabrics, spunlace nonwoven fabrics, needle punched nonwoven fabrics, melt blown nonwoven fabrics, flash spun nonwoven fabrics, thermal bonded nonwoven fabrics, chemical bonded nonwoven fabrics, stitch bonded nonwoven fabrics, and wet paper-made nonwoven fabrics, or woven fabrics. Examples include things in the form of sheets such as paper. Furthermore, when the base material is in the form of a sheet, its basis weight is not particularly limited, but can be, for example, 1 μg/m 2 to 200 mg/m 2 .
 抗体またはその抗体フラグメントを含む組成物を基材に担持させる方法は、基材に抗体を担持できる限りにおいて限定されないが、例えば抗体含有溶液(液状組成物)を基材に噴霧する方法や、基材を適当な濃度の抗体含有溶液(液状組成物)に含浸し、適当な温度および時間で乾燥する方法を挙げることができる。基材を抗体含有溶液に含侵して抗体を担持させる方法は、例えば特開2010-131537などを参照して行うことができる。
 また、基材表面にアルデヒド基などの官能基を導入し、抗体と官能基とを共有結合させる方法や抗体のFc部分に選択的に結合する分子(Fcレセプター、プロテインA/Gなど)を担体表面に導入し抗体を結合させる方法、リンカーを介して抗体を基材に担持させてもよい。これらの方法は例えば特開2009-023985や特開2012-187145などを参照して行うことができる。
The method of supporting a composition containing an antibody or an antibody fragment thereof on a substrate is not limited as long as the antibody can be supported on the substrate, but for example, a method of spraying an antibody-containing solution (liquid composition) onto a substrate, A method can be mentioned in which the material is impregnated with an antibody-containing solution (liquid composition) at an appropriate concentration and dried at an appropriate temperature and time. A method of impregnating the substrate with an antibody-containing solution to support the antibody can be performed with reference to, for example, JP-A-2010-131537.
In addition, we have introduced a method of introducing a functional group such as an aldehyde group onto the surface of the substrate and covalently bonding the antibody and the functional group, and a method of using a carrier with molecules (Fc receptor, protein A/G, etc.) that selectively binds to the Fc portion of the antibody. Alternatively, the antibody may be supported on the substrate via a linker or a method in which the antibody is introduced onto the surface and bound to the surface. These methods can be performed with reference to, for example, JP-A No. 2009-023985 and JP-A No. 2012-187145.
 本発明は一態様として、上記のフィルタを含む、SARS-CoV-2感染予防または拡散防止用マスクを提供する。本発明のSARS-CoV-2感染予防または拡散防止用マスクは、上記フィルタを備えることで空気中のSARS-CoV-2を捕捉し体内へ侵入すること、または、SARS関連コロナウイルスに感染した対象からの呼気に含まれるSARS-CoV-2を捕捉し体外(もしくは空気中)へ放出することを防ぐ。
 マスクの形態は限定されず、好ましくは口腔用マスクや鼻腔用マスクとすることができる。よって、本発明のSARS-CoV-2感染予防用マスクは呼気または吸気に含まれるSARS-CoV-2が捕捉できるようにマスク内に上記フィルタを備えていればよい。このようなマスクは公知の方法により製造することができる。
One aspect of the present invention provides a mask for preventing SARS-CoV-2 infection or spread, which includes the above filter. The mask for preventing SARS-CoV-2 infection or spreading of the present invention is equipped with the above-mentioned filter to capture SARS-CoV-2 in the air and infiltrate into the body, or for subjects infected with SARS-related coronavirus. It captures SARS-CoV-2 contained in exhaled air and prevents it from being released outside the body (or into the air).
The form of the mask is not limited, and it can preferably be an oral cavity mask or a nasal cavity mask. Therefore, the mask for preventing SARS-CoV-2 infection of the present invention only needs to include the above-mentioned filter in the mask so that SARS-CoV-2 contained in exhaled or inhaled air can be captured. Such a mask can be manufactured by a known method.
 本発明は一態様として、上記の抗体またはその抗体フラグメントを含む、飲食品用組成物を提供する。本発明の飲食品用組成物はSARS-CoV-2に親和性を有する抗体またはその抗体フラグメントを含むため、体内に取り込まれたSARS-CoV-2が食道や胃、腸などにおいて細胞内へ侵入することを抑制する。よって、本発明の飲食品用組成物は一実施の形態において、SARS-CoV-2に対する感染予防のための食品用組成物として提供することができる。
  飲食品用組成物の形態としては、液状、ペースト状、ゲル状固体、粉末等の形態を問わず、例えば、栄養補助食品(サプリメント)、錠菓;流動食(経管摂取用栄養食);パン、マカロニ、スパゲッティ、めん類、ケーキミックス、から揚げ粉、パン粉等の小麦粉製品;即席めん、カップめん、レトルト・調理食品、調理缶詰め、電子レンジ食品、即席スープ・シチュー、即席みそ汁・吸い物、スープ缶詰め、フリーズ・ドライ食品、その他の即席食品等の即席食品類;農産缶詰め、果実缶詰め、ジャム・マーマレード類、漬物、煮豆類、農産乾物類、シリアル(穀物加工品)等の農産加工品;水産缶詰め、魚肉ハム・ソーセージ、水産練り製品、水産珍味類、つくだ煮類等の水産加工品;畜産缶詰め・ペースト類、畜肉ハム・ソーセージ等の畜産加工品;加工乳、乳飲料、ヨーグルト類、乳酸菌飲料類、チーズ、アイスクリーム類、調製粉乳類、クリーム、その他の乳製品等の乳・乳製品;バター、マーガリン類、植物油等の油脂類;しょうゆ、みそ、ソース類、トマト加工調味料、みりん類、食酢類等の基礎調味料;調理ミックス、カレーの素類、たれ類、ドレッシング類、めんつゆ類、スパイス類、その他の複合調味料等の複合調味料・食品類;素材冷凍食品、半調理冷凍食品、調理済冷凍食品等の冷凍食品;キャラメル、キャンディー、チューインガム、チョコレート、クッキー、ビスケット、ケーキ、パイ、スナック、クラッカー、和菓子、米菓子、豆菓子、デザート菓子、ゼリー、その他の菓子などの菓子類;炭酸飲料、天然果汁、果汁飲料、果汁入り清涼飲料、果肉飲料、果粒入り果実飲料、野菜系飲料、豆乳、豆乳飲料、コーヒー飲料、お茶飲料、粉末飲料、濃縮飲料、スポーツ飲料、栄養飲料、アルコール飲料、その他の嗜好飲料等の嗜好飲料類、ベビーフード、ふりかけ、お茶漬けのり等のその他の市販食品等;育児用調製粉乳;経腸栄養食;機能性食品(特定保健用食品、栄養機能食品)等が挙げられる。その他、飲食品の製造に通常用いられる食品用添加物(増粘安定剤、ゲル化剤、乳化剤、保存料、膨張剤、甘味料、着色料、香料など)を含んでいてもよい。
 また本発明の飲食品用組成物中に含まれる抗体またはその抗体フラグメントの含有量は、その形態に応じた所望の効果が得られる範囲とすればよい。以下に限定されないが、例えば、1μg /kg~1,000mg/kgとすることができる。このような飲食品用組成物は公知の方法に準じて製造することができる。
One aspect of the present invention provides a composition for food or drink containing the above-described antibody or antibody fragment thereof. Since the food and drink composition of the present invention contains antibodies or antibody fragments thereof that have affinity for SARS-CoV-2, SARS-CoV-2 taken into the body can enter cells in the esophagus, stomach, intestines, etc. restrain from doing. Therefore, in one embodiment, the food and drink composition of the present invention can be provided as a food composition for preventing infection with SARS-CoV-2.
The food and drink compositions may be in any form such as liquid, paste, gel-like solid, powder, etc., such as nutritional supplements, tablets, liquid foods (nutritive foods for tube ingestion); Flour products such as bread, macaroni, spaghetti, noodles, cake mixes, fried chicken powder, and bread crumbs; instant noodles, cup noodles, retort/cooked foods, cooked canned foods, microwave foods, instant soups/stews, instant miso soup/suimono, and canned soups. , freeze-dried foods, and other instant foods; processed agricultural products such as canned agricultural products, canned fruits, jams and marmalades, pickles, boiled beans, dried agricultural products, and cereals (processed grain products); canned marine products; , processed seafood products such as fish hams and sausages, seafood paste products, seafood delicacies, and boiled fish; processed livestock products such as canned livestock products and pastes, meat hams and sausages; processed milk, milk drinks, yogurts, lactic acid bacteria drinks, Milk and dairy products such as cheese, ice cream, powdered milk, cream, and other dairy products; Oils and fats such as butter, margarine, and vegetable oil; Soy sauce, miso, sauces, processed tomato seasonings, mirin, and vinegar Basic seasonings such as cooking mixes, curry ingredients, sauces, dressings, noodle soups, spices, and other complex seasonings and foods; Frozen raw foods, semi-cooked frozen foods, Frozen foods such as cooked frozen foods; Confectionery such as caramels, candies, chewing gum, chocolates, cookies, biscuits, cakes, pies, snacks, crackers, Japanese sweets, rice sweets, bean sweets, dessert sweets, jellies, and other sweets; Carbonated drinks, natural fruit juices, fruit juice drinks, soft drinks with fruit juice, pulp drinks, fruit drinks with fruit grains, vegetable drinks, soy milk, soy milk drinks, coffee drinks, tea drinks, powdered drinks, concentrated drinks, sports drinks, nutritional drinks, Alcoholic beverages, other beverages such as other beverages, baby food, furikake, other commercially available foods such as ochazuke seaweed; infant formula; enteral nutritional food; functional foods (food for specified health uses, food with nutritional functions) ) etc. In addition, it may contain food additives (thickening stabilizers, gelling agents, emulsifiers, preservatives, swelling agents, sweeteners, colorants, flavors, etc.) commonly used in the production of food and drink products.
Further, the content of the antibody or its antibody fragment contained in the food/beverage composition of the present invention may be within a range in which a desired effect can be obtained depending on the form thereof. For example, but not limited to, it can be 1 μg/kg to 1,000 mg/kg. Such food and drink compositions can be produced according to known methods.
 本発明は一態様として、上記の抗体またはその抗体フラグメントを含む、化粧品を提供する。本発明の化粧品は化粧品本来の身体を清潔にする、または、見た目を美しくする目的に加えて、皮膚に付着したSARS-CoV-2が粘膜等を介して体内(細胞内)へ侵入することを抑制する。
 化粧品の形態は限定されず、例えば、化粧水、美容液、乳液、クリーム、洗顔料、パック、身体用洗浄料、シャンプー、リンス、トリートメント、コンディショナー、ヘアローション、ヘアトニック、ヘアオイル、ヘアクリーム、ヘアワックス、ヘアフォーム、ジェル、グリース、ポマード、チック、ヘアスプレー、ヘアウォーター、ヘアミスト、染毛剤、着色剤、脱色剤、マスカラ、眉マスカラ、アイブロウ等の形態とすることができる。
 また本発明の化粧品中に含まれる抗体またはその抗体フラグメントの含有量は、その形態に応じた所望の効果が得られる範囲とすればよい。以下に限定されないが、例えば、0.1ng/ml~100mg/mlとすることができる。このような化粧品は公知の方法に準じて製造することができる。
In one aspect, the present invention provides a cosmetic product comprising the above-described antibody or antibody fragment thereof. In addition to the original purpose of cosmetics to cleanse the body or make the appearance beautiful, the cosmetics of the present invention prevent SARS-CoV-2 attached to the skin from entering the body (into cells) through mucous membranes, etc. suppress.
The form of cosmetics is not limited, and examples include lotion, serum, milky lotion, cream, facial cleanser, pack, body cleanser, shampoo, conditioner, treatment, conditioner, hair lotion, hair tonic, hair oil, hair cream, and hair. It can be in the form of wax, hair foam, gel, grease, pomade, tick, hair spray, hair water, hair mist, hair dye, coloring agent, bleaching agent, mascara, eyebrow mascara, eyebrow eyebrow, etc.
Further, the content of the antibody or its antibody fragment contained in the cosmetics of the present invention may be within a range that allows desired effects to be obtained depending on the form thereof. For example, but not limited to, it can be 0.1 ng/ml to 100 mg/ml. Such cosmetics can be manufactured according to known methods.
 本発明は一態様として、上記の抗体またはその抗体フラグメントを含む、SARS-CoV-2検出用試薬、および、COVID-19診断薬を提供する。
 本発明の抗体またはその抗体フラグメントを用いてSARS-CoV-2を免疫学的に測定する方法としては、以下に限定されないが例えば、エンザイムイムノアッセイ((以下、EIAまたはELISA)、化学発光酵素免疫測定法(CLEIA)、化学発光免疫測定法(CLIA)、蛍光抗体法(FAT)、蛍光酵素免疫測定法(FEIA)、電気化学発光免疫測定法(ECLIA)、放射免疫測定法(RIA)、イムノクロマト法、凝集法、競合法等など公知の手法を採用することができる。本発明のSARS-CoV-2検出用試薬に用いる抗体またはその抗体フラグメントは、測定方法に準じて標識したものであってもよい。
In one aspect, the present invention provides a reagent for detecting SARS-CoV-2 and a diagnostic agent for COVID-19, which contain the above-described antibody or antibody fragment thereof.
Methods for immunologically measuring SARS-CoV-2 using the antibodies of the present invention or antibody fragments thereof include, but are not limited to, enzyme immunoassays (hereinafter referred to as EIA or ELISA), chemiluminescent enzyme immunoassays, etc. (CLEIA), chemiluminescence immunoassay (CLIA), fluorescent antibody assay (FAT), fluorescent enzyme immunoassay (FEIA), electrochemiluminescence immunoassay (ECLIA), radioimmunoassay (RIA), immunochromatography Known methods such as , agglutination method, competition method, etc. can be adopted.The antibody or antibody fragment used in the SARS-CoV-2 detection reagent of the present invention may be labeled according to the measurement method. good.
 SARS-CoV-2の検出対象となる検体は、特に限定されず生体由来の試料であってもよく、環境由来の試料であってもよい。水性の検体が好ましく、例えば、血液(全血、血漿、血清等)、尿、組織液、リンパ液、関節液、乳汁、脳脊髄液、膿、唾液、涙液、粘液、鼻水、痰、腹水、用水、精液などの体液、また、鼻腔、気管支、肺、皮膚、腹腔、各種臓器、関節、骨などを洗浄した後の洗浄液、あるいは、細胞培養上清、またはカラム溶出液、下水試料等が挙げられる。これらの試料は、そのまま、あるいは各種緩衝液等で希釈あるいは抽出後濃縮され、測定に用いることができる。
 また上記のような検体のいずれかを被験者から採取することで、当該被験者がCOVID-19に罹患しているか否かの判断を補助することができる。
The specimen to be detected for SARS-CoV-2 is not particularly limited, and may be a biologically derived sample or an environmentally derived sample. Aqueous specimens are preferred, such as blood (whole blood, plasma, serum, etc.), urine, tissue fluid, lymph fluid, joint fluid, milk, cerebrospinal fluid, pus, saliva, tears, mucus, nasal discharge, sputum, ascites, and water. , body fluids such as semen, washing fluids after washing nasal cavities, bronchi, lungs, skin, abdominal cavity, various organs, joints, bones, etc., cell culture supernatants, column eluates, sewage samples, etc. . These samples can be used for measurement as they are, or after being diluted with various buffers or the like, or concentrated after extraction.
Furthermore, by collecting any of the above specimens from a subject, it is possible to assist in determining whether or not the subject is suffering from COVID-19.
 本発明の別の態様は、SARS-CoV-2に対する感染予防のために用いられる、上記の本発明に係る抗体またはその抗体を含む医薬組成物を提供する。
 本発明の抗体またはその抗体フラグメントを含む医薬組成物は、有効成分としての当該抗体またはその抗体フラグメントのみを含むものであってもよいが、通常は上記に列挙するような薬理学的に許容される1以上の担体と一緒に混合し、公知の方法により製造することができる。
 本発明の医薬組成物の投与経路は、治療に際して最も効果的なものを使用するのが望ましく、経口投与;鼻腔内、口腔内、気道内、直腸内などの経粘膜;皮下、筋肉内、静脈内などの非経口投与をあげることができる。投与形態としては、以下に限定されないが、例えば、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、テープ剤などがあげられる。
Another aspect of the present invention provides the above-described antibody according to the present invention or a pharmaceutical composition comprising the antibody, which is used for preventing infection against SARS-CoV-2.
A pharmaceutical composition containing the antibody of the present invention or its antibody fragment may contain only the antibody or its antibody fragment as an active ingredient, but it usually contains a pharmaceutically acceptable compound as listed above. It can be produced by a known method by mixing together with one or more carriers.
It is desirable to use the most effective administration route for the pharmaceutical composition of the present invention for treatment; oral administration; transmucosal administration such as intranasal, oral, respiratory tract, and intrarectal administration; subcutaneous, intramuscular, and intravenous administration. Parenteral administration such as intravenous administration can be mentioned. Examples of dosage forms include, but are not limited to, sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes, and the like.
 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などがあげられる。また非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤などがあげられる。噴霧剤は抗体またはその抗体フラグメント自体、もしくは、対象者の口腔および気道粘膜を刺激せず、かつ抗体またはその抗体フラグメントを微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。担体として具体的には乳糖、グリセリンなどが例示される。抗体またはその抗体フラグメントおよび用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。 Preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, and granules. Preparations suitable for parenteral administration include injections, suppositories, and sprays. Sprays are prepared using the antibody or its antibody fragment itself or a carrier that does not irritate the subject's oral and respiratory mucous membranes and disperses the antibody or its antibody fragment as fine particles to facilitate absorption. . Specific examples of carriers include lactose and glycerin. Depending on the nature of the antibody or its antibody fragment and the carrier used, formulations such as aerosols and dry powders are possible.
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、例えば通常成人1日当たり1μg/kg~100mg/kgとすることができる。
 好ましい一実施の形態において、本発明に係る医薬組成物は、スプレー剤として、鼻腔または咽喉の呼吸気道内に投与される。投与に適したスプレー剤としては、特に制限されないが、エアロゾルとして噴霧する吸入エアロゾル型が好ましい。
The dose or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age, body weight, etc., but can be, for example, usually 1 μg/kg to 100 mg/kg per day for adults.
In one preferred embodiment, the pharmaceutical composition according to the invention is administered as a spray into the respiratory airways of the nasal cavity or throat. Sprays suitable for administration are not particularly limited, but inhalation aerosol types that are sprayed as an aerosol are preferred.
 また本発明の別の態様は、上記抗体またはその抗体フラグメントの治療有効量を対象に対して投与する工程を含む、COVID-19の発症予防および/または治療方法を提供する。
 「対象」は、ヒト、またはヒトを除く哺乳動物(例えば、マウス、モルモット、ハムスター、ラット、ネズミ、ウサギ、ブタ、ヒツジ、ヤギ、ウシ、ウマ、ネコ、イヌ、マーモセット、サル、またはチンパンジー等の1種以上)を含む。また対象は、COVID-19を発症している、発症していた、または、発症の恐れがあると診断された患者であってもよい。
Another aspect of the present invention provides a method for preventing and/or treating the onset of COVID-19, which includes the step of administering to a subject a therapeutically effective amount of the above antibody or antibody fragment thereof.
"Subject" refers to humans or non-human mammals (e.g., mice, guinea pigs, hamsters, rats, rats, rabbits, pigs, sheep, goats, cows, horses, cats, dogs, marmosets, monkeys, or chimpanzees). (one or more types). The target may also be a patient who has developed COVID-19, has developed COVID-19, or has been diagnosed as being at risk of developing COVID-19.
 本発明の別の態様は、本発明に係る抗体またはその抗体フラグメントをコードするポリヌクレオチドを提供する。また、本発明の別の態様は、上記の本発明に係るポリヌクレオチドを含有する発現ベクターを提供する。
 本発明のポリヌクレオチドは、配列番号1~3として特定する重鎖CDRまたは配列番号4~6として特定する軽鎖CDRを含む抗体またはその抗体フラグメントをコードする。
 本発明のポリヌクレオチドは一実施の形態において、IgG抗体の重鎖または軽鎖をコードするポリヌクレオチドであって重鎖をコードする配列番号12からなるポリヌクレオチド、または、軽鎖をコードする配列番号13からなるポリヌクレオチドである。また本発明のポリヌクレオチドは別の実施の形態において、IgA抗体の重鎖または軽鎖をコードするポリヌクレオチドであって重鎖をコードする配列番号33からなるポリヌクレオチド、または、軽鎖をコードする配列番号34からなるポリヌクレオチドである。
 また本発明のポリヌクレオチドは別の実施の形態において、IgG抗体の重鎖または軽鎖の可変領域をコードするポリヌクレオチドであって重鎖をコードする配列番号35からなるポリヌクレオチド、または、軽鎖をコードする配列番号36からなるポリヌクレオチドである。また本発明のポリヌクレオチドは別の実施の形態において、IgA抗体の重鎖または軽鎖の可変領域をコードするポリヌクレオチドであって重鎖をコードする配列番号37からなるポリヌクレオチド、または、軽鎖をコードする配列番号38からなるポリヌクレオチドである。
 このポリヌクレオチドまたは当該ポリペプチドを含むベクターを細胞に導入することによって、形質転換体を作製できる。上記ポリヌクレオチドまたはベクターは、抗SARS-CoV-2抗体を発現可能に構築されていてもよい。上記ポリヌクレオチドまたはベクターは、例えば、プロモーター、エンハンサー、複製開始点など、蛋白質発現に必要な構成要素、および、または抗生物質耐性遺伝子などのスクリーニング用の遺伝子を含むことができる。また上記ポリヌクレオチドまたはベクターは、異種由来の塩基配列を有していてもよい。異種由来の塩基配列は、例えば、ヒトおよびヒトを除く生物(例えば、細菌、古細菌、酵母、昆虫、鳥類、ウイルス、またはヒトを除く哺乳動物等)からなる群から選ばれる2種以上の生物由来の塩基配列を含んでいてもよい。
Another aspect of the invention provides a polynucleotide encoding an antibody or antibody fragment thereof according to the invention. Another aspect of the present invention provides an expression vector containing the above-described polynucleotide according to the present invention.
A polynucleotide of the invention encodes an antibody or antibody fragment thereof comprising a heavy chain CDR identified as SEQ ID NO: 1-3 or a light chain CDR identified as SEQ ID NO: 4-6.
In one embodiment, the polynucleotide of the present invention is a polynucleotide encoding the heavy chain or light chain of an IgG antibody, which is a polynucleotide consisting of SEQ ID NO: 12 encoding the heavy chain, or a polynucleotide consisting of SEQ ID NO: 12 encoding the light chain. It is a polynucleotide consisting of 13. In another embodiment, the polynucleotide of the present invention is a polynucleotide encoding the heavy chain or light chain of an IgA antibody, which is a polynucleotide consisting of SEQ ID NO: 33 encoding the heavy chain, or a polynucleotide encoding the light chain. This is a polynucleotide consisting of SEQ ID NO: 34.
In another embodiment, the polynucleotide of the present invention is a polynucleotide encoding the variable region of the heavy chain or light chain of an IgG antibody, and comprising SEQ ID NO: 35 encoding the heavy chain, or a polynucleotide encoding the variable region of the heavy chain or light chain of an IgG antibody. This is a polynucleotide consisting of SEQ ID NO: 36 encoding. In another embodiment, the polynucleotide of the present invention is a polynucleotide encoding the variable region of the heavy chain or light chain of an IgA antibody, and consisting of SEQ ID NO: 37 encoding the heavy chain, or a polynucleotide encoding the variable region of the heavy chain or light chain of an IgA antibody, or This is a polynucleotide consisting of SEQ ID NO: 38 encoding.
A transformant can be produced by introducing a vector containing this polynucleotide or the polypeptide into cells. The polynucleotide or vector may be constructed to be capable of expressing anti-SARS-CoV-2 antibodies. The polynucleotide or vector can contain components necessary for protein expression, such as a promoter, enhancer, and origin of replication, and/or genes for screening such as antibiotic resistance genes. Further, the polynucleotide or vector may have a base sequence derived from a different species. A base sequence derived from a foreign species is, for example, a base sequence derived from two or more species selected from the group consisting of humans and non-human organisms (e.g., bacteria, archaea, yeast, insects, birds, viruses, or mammals other than humans). It may contain the original base sequence.
 上記のベクターとしては、宿主細胞におけるタンパク質発現を行うことができる限り限定されず、例えば大腸菌由来のプラスミド(例えばpET-Blue)、枯草菌由来のプラスミド(例えばpUB110)、酵母由来プラスミド(例えばpSH19)、動物細胞発現プラスミド(例えばpA1-11、pcDNA3.1-V5/His-TOPO、pcDNA 3.1 (-) Mammalian Expression Vector、pcDNA 3.1/Hygro(-) Mammalian Expression Vector)、λファージなどのバクテリオファージ、ウイルス由来のベクターなどを用いることができる。ベクターは発現ベクターであってもよく、環状であってもよい。 The above vectors are not limited as long as they can carry out protein expression in host cells, such as Escherichia coli-derived plasmids (e.g. pET-Blue), Bacillus subtilis-derived plasmids (e.g. pUB110), yeast-derived plasmids (e.g. pSH19). , animal cell expression plasmids (e.g. pA1-11, pcDNA3.1-V5/His-TOPO, pcDNA 3.1(-) Mammalian Expression Vector, pcDNA 3.1/Hygro(-) Mammalian Expression Vector), bacteriophages such as λ phage, viruses Vectors derived from the above can be used. The vector may be an expression vector and may be circular.
 本発明の別の態様は、上記の本発明に係る発現ベクターにより形質転換された宿主細胞を提供する。
 「宿主細胞」としては、ヒトまたはヒトを除く哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ウシ、サル等)の細胞であってもよい。哺乳動物細胞としては、例えば、チャイニーズハムスター卵巣細胞(CHO細胞)、サル細胞COS-7、ヒト胎児由来腎臓細胞(例えば、HEK293細胞)、哺乳動物細胞Expi293などが挙げられる。また宿主細胞はEscherichia属菌、酵母等であってもよい。
 上記のポリヌクレオチドまたはベクターを細胞へ導入する方法は公知であり、例えば、リン酸カルシウム法、リポフェクション法、エレクトロポレーション法、アデノウイルスによる方法、レトロウイルスによる方法、またはマイクロインジェクションなどを使用できる。細胞を用いた抗体の生産方法も公知であり、宿主細胞に適した培養条件にて細胞を培養することで抗体を産生させ、これを回収する。
Another aspect of the invention provides a host cell transformed with the expression vector according to the invention as described above.
The "host cell" may be a cell of a human or a mammal other than a human (eg, rat, mouse, guinea pig, rabbit, cow, monkey, etc.). Examples of mammalian cells include Chinese hamster ovary cells (CHO cells), monkey cells COS-7, human fetal kidney cells (eg, HEK293 cells), and mammalian cells Expi293. Furthermore, the host cell may be Escherichia bacteria, yeast, or the like.
Methods for introducing the above-mentioned polynucleotides or vectors into cells are known, such as the calcium phosphate method, lipofection method, electroporation method, adenovirus method, retrovirus method, or microinjection. A method for producing antibodies using cells is also known, and antibodies are produced by culturing cells under culture conditions suitable for host cells, and then recovered.
 本発明の別の態様は、上記の本発明に係る宿主細胞を培養する工程と、当該工程で得られた培養物から目的の抗体を採取する工程とを含む、抗体の製造方法を提供する。また一実施の形態において抗体の製造方法は、細胞培養液を調製する工程を含んでいてもよく、また、抗SARS-CoV-2抗体を精製する工程を含むことができる。 Another aspect of the present invention provides a method for producing an antibody, which includes the steps of culturing the host cell according to the present invention described above, and collecting the antibody of interest from the culture obtained in the step. Furthermore, in one embodiment, the method for producing an antibody may include a step of preparing a cell culture medium, and may also include a step of purifying an anti-SARS-CoV-2 antibody.
 抗体の精製方法は公知であり、例えば、硫酸アンモニウム、エタノール沈殿、プロテインA、プロテインG、プロテインL、ゲルろ過クロマトグラフィー、陰イオン、陽イオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティークロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィー、またはレクチンクロマトグラフィーなどを用いることができる。 Antibody purification methods are known, such as ammonium sulfate, ethanol precipitation, protein A, protein G, protein L, gel filtration chromatography, anion, cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography. , affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or the like can be used.
 本明細書中で挙げたすべての特許、特許出願、及び出版物は、参照として本明細書中に組み込まれる。
 以下、本発明について実施例を用いて具体的に説明するが、本発明は以下の実施の形態に限定されない。
All patents, patent applications, and publications mentioned herein are incorporated by reference.
Hereinafter, the present invention will be specifically described using Examples, but the present invention is not limited to the following embodiments.
(実施例1.IgG抗体の回収およびCDR配列の特定)
1-1.検体収集
 新型コロナウイルスに感染し回復した84名のボランティアから提供された血液を用い、ヒト末梢血単核細胞(PBMC)を分離した。
1-2.ヒト末梢血単核細胞(PBMC)を用いたリンパ芽球様細胞株(LCL)の作製
 検体として収集したヒト末梢血単核細胞(PBMC: peripheral blood mononuclear cell)に含まれるB細胞を基にリンパ芽球様細胞株(LCL)を作製した。本来増殖能を有さないB細胞にヒトエプスタイン・バール・ウイルス(EBウイルス)を感染させ、増殖能を有するリンパ芽球様細胞株(LCL: lymphoblastoid cell line)に形質転換した。
(Example 1. Recovery of IgG antibody and identification of CDR sequence)
1-1. Specimen collection Human peripheral blood mononuclear cells (PBMCs) were isolated using blood donated by 84 volunteers who had been infected with the new coronavirus and recovered.
1-2. Creation of lymphoblastoid cell line (LCL) using human peripheral blood mononuclear cells (PBMC). A blastoid cell line (LCL) was generated. B cells, which normally do not have the ability to proliferate, were infected with human Epstein-Barr virus (EB virus) and transformed into a lymphoblastoid cell line (LCL) that has the ability to proliferate.
 EBウイルスを感染させるためのEBウイルス溶液を以下のように調製した。B95-8細胞をRPMI培地(10 % FBS)で培養し、一回継代後、4~6 ×104 cells/mlの濃度で播種した。その後は培地交換を行わず、10~14日間培養を継続した。培養終了後、B95-8細胞培養液を400×g、10分間、室温の条件で遠心分離して培養上清を回収した。培養上清を0.45 μmのフィルタでろ過後、10,000 rpm、3時間、4℃の条件で遠心し、ウイルス画分を回収した。RPMI1640 (10%FBS)に再度溶解し、EBウイルス溶液とした。EBウイルス溶液は小分けし、使用するまで-80℃で保存した。
 PBMCを解凍後、細胞数を測定して1×106~107 cellsあたり100μLのEBウイルス溶液を添加し、37℃で30分間培養した。感染終了後、400×g、10分間、室温の条件で遠心分離し、上清を除去し、1回洗浄後、RPMI1640培地(20%FBS)に懸濁して培養を開始した。7~14日間培養後、増殖能を有するリンパ芽球様細胞株(LCL: lymphoblastoid cell line)を取得した。
An EB virus solution for infecting with EB virus was prepared as follows. B95-8 cells were cultured in RPMI medium (10% FBS), and after passage once, they were seeded at a concentration of 4 to 6 × 10 4 cells/ml. After that, the culture was continued for 10 to 14 days without replacing the medium. After the culture was completed, the B95-8 cell culture solution was centrifuged at 400×g for 10 minutes at room temperature to collect the culture supernatant. The culture supernatant was filtered through a 0.45 μm filter and centrifuged at 10,000 rpm for 3 hours at 4°C to collect the virus fraction. It was dissolved again in RPMI1640 (10% FBS) to prepare an EB virus solution. The EB virus solution was aliquoted and stored at -80°C until use.
After thawing the PBMC, the number of cells was measured, and 100 μL of EB virus solution was added per 1×10 6 to 10 7 cells, followed by culturing at 37° C. for 30 minutes. After the infection, the cells were centrifuged at 400 xg for 10 minutes at room temperature, the supernatant was removed, and after washing once, they were suspended in RPMI1640 medium (20% FBS) to start culturing. After culturing for 7 to 14 days, a lymphoblastoid cell line (LCL) with proliferation ability was obtained.
1-3.抗His-tag抗体のAlexa Fluor 488標識
 Alexa Fluor 488 Antibody Labeling Kit(ThermoFisher Scientific、A20181)の操作手順に従い、抗His-tag抗体(abcam,Cat. ab9108)を標識した。
1-3. Alexa Fluor 488 labeling of anti-His-tag antibody Anti-His-tag antibody (abcam, Cat. ab9108) was labeled according to the procedure of Alexa Fluor 488 Antibody Labeling Kit (ThermoFisher Scientific, A20181).
1-4.コロナウイルス抗原-Alexa Fluor 488の調製
 コロナウイルス抗原にはHis-tagが付与されているため、Alexa Fluor 488標識された抗His-tag抗体と反応させることで、コロナウイルス抗原-Alexa Fluor 488を調製した。具体的には、コロナウイルス抗原をソーティング溶液で100μg/mLに調製後、Alexa Fluor 488標識された抗His-tag抗体を15μg添加し,氷上で30分間インキュベートして調製した。
1-4. Preparation of coronavirus antigen - Alexa Fluor 488 Since the coronavirus antigen has a His-tag attached, coronavirus antigen - Alexa Fluor 488 was prepared by reacting with an anti-His-tag antibody labeled with Alexa Fluor 488. did. Specifically, coronavirus antigen was prepared at 100 μg/mL with a sorting solution, 15 μg of Alexa Fluor 488-labeled anti-His-tag antibody was added, and the mixture was incubated on ice for 30 minutes.
1-5.LCLのシングルセルソート
 蛍光標識した抗原を用いて目的のLCLをシングルセルソートした。具体的には、培養中のLCLをPBSで洗浄後、ソーティング溶液で2×107 cells/mLに調製した。表1に示す組合せで、1×106 cellsあたり抗原を5μg、抗IgA抗体(Bethyl,Cat. A80-202D5)を1μgずつ添加し、氷上で30分間インキュベートした。インキュベート終了後、PBSで2回洗浄し、ソーティング溶液に懸濁した。セルソーターMA900(SONY)を用いて、あらかじめ5μLの滅菌水を分注しておいたPCRプレートに抗原とIgAの双方が陽性の細胞を目的の細胞としてシングルセルソートした。なお、表1Aで示したコロナウイルス抗原の個別情報は表1B、表1Cに示す。
1-5. Single cell sorting of LCL LCL of interest was single cell sorted using a fluorescently labeled antigen. Specifically, LCLs in culture were washed with PBS and then adjusted to 2×10 7 cells/mL with a sorting solution. In the combination shown in Table 1, 5 μg of antigen and 1 μg of anti-IgA antibody (Bethyl, Cat. A80-202D5) were added per 1×10 6 cells, and incubated on ice for 30 minutes. After incubation, the cells were washed twice with PBS and suspended in a sorting solution. Using a cell sorter MA900 (SONY), cells positive for both antigen and IgA were single-cell sorted as target cells onto a PCR plate into which 5 μL of sterile water had been dispensed in advance. In addition, individual information on the coronavirus antigen shown in Table 1A is shown in Table 1B and Table 1C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1-7.LCLの抗体プロファイリング
(1)タンパク質マイクロアレイのブロッキング
 タンパク質マイクロアレイを100%エタノールに浸した後、10倍希釈したタンパク質マイクロアレイ専用最終洗浄液(10X) (福島プロテインファクトリー社製、 PA1210)(以下、最終洗浄液)へ浸した。その後、10倍希釈したタンパク質マイクロアレイ専用 solution A (10X) (福島プロテインファクトリー社製、PA1010)(以下「solution A」という。)へ浸した。
 前処理後、各タンパク質マイクロアレイを26℃のBlocking One (ナカライテスク, 03953-95)に浸し1時間振とうした。
1-7. Antibody profiling of LCL (1) Blocking of protein microarray After soaking the protein microarray in 100% ethanol, add it to the 10-fold diluted final washing solution for protein microarray (10X) (manufactured by Fukushima Protein Factory, PA1210) (hereinafter referred to as the final washing solution). Soaked. Thereafter, it was immersed in a 10-fold diluted protein microarray solution A (10X) (manufactured by Fukushima Protein Factory, PA1010) (hereinafter referred to as "solution A").
After pretreatment, each protein microarray was immersed in Blocking One (Nacalai Tesque, 03953-95) at 26°C and shaken for 1 hour.
(2)抗原・抗体反応
 一次抗体希釈溶液で20倍希釈したLCL由来培養上清を2 ml準備し、適量のヤギレファレンス抗体ミクスチャ(福島プロテインファクトリー、PA5010)を加え、LCL抗体溶液を作製した。2 mlのLCL抗体溶液をタンパク質マイクロアレイ用カセット(福島プロテインファクトリー、HC4-01-DE)(以下「カセット」という。)に全量加え、solution Aで十分に洗浄したタンパク質マイクロアレイをカセットに格納した。カセットを気相恒温器に入れ、37℃で17時間振とうし、1次抗体と反応させた。カセットからタンパク質マイクロアレイを取り出し、solution Aで十分に洗浄した。次に、ヒトイムノグロブリンの検出用抗体としてAlexa Fluor 647で蛍光標識したAlexa647標識抗ヒトIgA抗体と、レファレンス抗体の検出用としてCy3で蛍光標識したCy3標識抗ヤギIgG抗体を、2 mlの二次抗体希釈溶液に加え、撹拌後カセットに加えた。タンパク質マイクロアレイをカセットに格納後、気相恒温器に入れ、26℃で1時間振とうし、2次抗体と反応させた。1時間後、各カセットよりタンパク質マイクロアレイを取り出し、solution Aで洗浄した。その後、solution Aを洗浄するため、10倍希釈したタンパク質マイクロアレイ専用 solution B (10X) (福島プロテインファクトリー、PA1110)(以下、solution B)へ置換した。タンパク質マイクロアレイをsolution Bから最終洗浄液した後、遠心してタンパク質マイクロアレイより水分を除去した。
(2) Antigen/antibody reaction 2 ml of LCL-derived culture supernatant diluted 20 times with primary antibody dilution solution was prepared, and an appropriate amount of goat reference antibody mixture (Fukushima Protein Factory, PA5010) was added to prepare an LCL antibody solution. The entire amount of 2 ml of LCL antibody solution was added to a protein microarray cassette (Fukushima Protein Factory, HC4-01-DE) (hereinafter referred to as "cassette"), and the protein microarray thoroughly washed with solution A was stored in the cassette. The cassette was placed in a gas phase incubator, shaken at 37°C for 17 hours, and reacted with the primary antibody. The protein microarray was removed from the cassette and thoroughly washed with solution A. Next, an Alexa647-labeled anti-human IgA antibody fluorescently labeled with Alexa Fluor 647 as an antibody for detecting human immunoglobulin, and a Cy3-labeled anti-goat IgG antibody fluorescently labeled with Cy3 for detecting a reference antibody were added to 2 ml of secondary It was added to the diluted antibody solution and added to the cassette after stirring. After storing the protein microarray in a cassette, it was placed in a gas phase incubator, shaken at 26°C for 1 hour, and reacted with a secondary antibody. After 1 hour, the protein microarray was removed from each cassette and washed with solution A. Afterwards, to wash solution A, it was replaced with solution B (10X) exclusively for protein microarrays diluted 10 times (Fukushima Protein Factory, PA1110) (hereinafter referred to as solution B). After the protein microarray was washed with solution B for the final time, water was removed from the protein microarray by centrifugation.
(3)検出および解析
 タンパク質マイクロアレイに搭載している各タンパク質に相当するスポットの蛍光強度をスキャナGenePix4000B(モレキュラーデバイスジャパン)によって測定し、生データを取得することで、網羅的な抗体の検出を行った。この取得された生データから底を2とした対数比に変換したデータ(以下「一次比」という。)を算出し、コンピュータ上での種々の解析に活用できるデータ集合体の構成要素とした。この作成した構成要素を単一の行列に統合し、データ集合体とした。さらに、このデータ集合体から、LCL由来培養上清中の抗体が結合するタンパク質群を、数学的手法(各種検定およびクラスタ分析等)により抽出した。
(3) Detection and analysis The fluorescence intensity of spots corresponding to each protein mounted on the protein microarray is measured using a scanner GenePix4000B (Molecular Devices Japan), and raw data is obtained to perform comprehensive antibody detection. Ta. Data converted into a logarithmic ratio with a base of 2 (hereinafter referred to as "primary ratio") was calculated from the obtained raw data and used as a constituent element of a data collection that can be used for various analyzes on a computer. The created components were integrated into a single matrix to form a data set. Furthermore, from this data set, a group of proteins to which antibodies in the LCL-derived culture supernatant bind were extracted using mathematical methods (various tests, cluster analysis, etc.).
 なお、LCLの抗体プロファイリングに用いたタンパク質マイクロアレイは、微生物(アクチノマイセス科、アエロコッカス科、アエロモナス科、アルカリゲネス科、アルカリゲネス科、バシラス科、バクテロイデス科、ビフィドバクテリウム科、カンピロバクター科、クラミジア科、クロストリジウム科、コリネバクテリウム科、腸内細菌科、エンテロコッカス科、エリュシペロトリクス科、フラボバクテリウム科、フソバクテリウム科、ヘリコバクター科、ラクノスピラ科、乳酸桿菌科、レジオネラ科、マイクロコッカス科、モラクセラ科、マイコバクテリウム科、マイコプラスマ科、ナイセリア科、パスツレラ科、プレボテラ科、プロピオニバクテリウム科、シュードモナス科、ルミノコッカス科、スピロヘータ科、スフィンゴバクテリア科、ブドウ球菌科、レンサ球菌科、ビブリオ科、エルシニア科、コウジカビ科、デバリオマイセス科等に属する様々な微生物を含む)、原虫(アカントアメーバ科、エントアメーバ科、プラスモディウム科、トリコモナス科、トリパノソーマ科、ファールカンピア科等に属する様々な原虫を含む)、ウイルス(ヒトコロナウイルス、ブタコロナウイルス、ネココロナウイルス、ラットコロナウイルス、ヒトアデノウイルス、デングウイルス、ジカウイルス、ヒトヘルペスウイルス、インフルエンザウイルス、レスピロウイルス、ムンプスルブラウイルス、エンテロウイルス、ヒトライノウイルス、ロタウイルス、ラウス肉腫ウイルス等の各亜型を含む)アレルゲン(スズメバチ科、アリ科、ゴキブリ科、イエバエ科等の昆虫、ダニ、ミミガイ科、アカイカ科、クルマエビ科、タラバエビ科、カレイ科、サケ科、ケセンガニ科、マダコ科、タラ科、イタヤガイ科、サバ科、イガイ科、アカザエビ科等の魚介類、ウシ科、イノシシ科等の肉類、カモ科、キジ科等の鶏肉類、キジ科の卵、牛科の牛乳および乳製品、イヌ科、ネコ科、ウサギ科、ウシ科、ウマ科、ネズミ科、ハト科等の毛・上皮等、イネ科、アブラナ科、キク科、タデ科、アカザ科(ヒユ科アカザ亜科)、ヒユ科、ヒノキ科、ムクロジ科、ブナ科、カバノキ科、モクセイ科、ヤナギ科、マツ科等の花粉、ヒルガオ科、ナス科、ヤマノイモ科、ウリ科、バラ科、ミカン科、カキノキ科、マタタビ科、パイナップル科、バショウ科、ブドウ科、タマバリタケ科、ヒラタケ科、キクラゲ科、キシメジ科、シメジ科、トンビマイタケ科、イネ科、タデ科、セリ科、クルミ科、マメ科、アブラナ科、ヒガンバナ科等の食品、アオイ科、ウコギ科、イネ科、オオバコ科、キク科、キツネノマゴ科、クスノキ科、クマツヅラ科、ケシ科、シソ科、バラ科、マツ科、マメ科、モクセイ科等の木本・草木を含む)等の全タンパク質または特定のタンパク質の全長もしくは一部のフラグメント、ヒト由来のタンパク質の全長または一部のフラグメントをタンパク質マイクロアレイ搭載用に調製(福島プロテインファクトリー)したものを、カスタムアレイヤーVSA-Print 125T.2(マイクロダイアグノスティック)でスライドガラス上にアレイ化したものを用いた。 The protein microarray used for LCL antibody profiling is based on microorganisms (Actinomycetes, Aerococcaceae, Aeromonadaceae, Alcaligenes, Alcaligenes, Bacillus, Bacteroidetes, Bifidobacteriaceae, Campylobacteriaceae, Chlamydiaceae). , Clostridiaceae, Corynebacteriaceae, Enterobacteriaceae, Enterococcusfamily, Erysipelotrichaceae, Flavobacteriaceae, Fusobacteriaceae, Helicobacteriaceae, Lachnospiraceae, Lactobacillusfamily, Legionellaceae, Micrococcaceae, Moraxellaceae , Mycobacteriaceae, Mycoplasmataceae, Neisseriaceae, Pasteurellaceae, Prevotellaceae, Propionibacteriaceae, Pseudomonadaceae, Ruminococcaceae, Spirochetaceae, Sphingobacteriaceae, Staphylococcus, Streptococcus, Vibrionaceae, Yersiniaceae (including various microorganisms belonging to the families Aspergillus family, Aspergillus family, Debaryomycetaceae, etc.), protozoa (including various protozoa belonging to the Acanthamoeba family, Entamoeba family, Plasmodidae, Trichomonadaceae, Trypanosomatidae, Phalcampiaceae, etc.) ), viruses (human coronavirus, swine coronavirus, feline coronavirus, rat coronavirus, human adenovirus, dengue virus, Zika virus, human herpesvirus, influenza virus, respirovirus, mumps lubra virus, enterovirus, human rhinovirus, Allergens (including subtypes of rotavirus, Rous sarcoma virus, etc.) (Insects such as Waspidae, Formicidae, Cockroachidae, Muscatidae, etc., Mites, Eurasianidae, Acanthidae, Prawnidae, Arididae, Flatidae, Salmonidae) , fish and shellfish from families such as Crabidae, octopus, cod, snail family, mackerel, mussel family, and snail family, meat from bovidae and boar family, poultry products such as antidae and pheasant family, eggs from pheasant family, Milk and dairy products of bovines, hair and epithelium of bovines, felines, lagomorphs, bovids, equines, murines, pigeons, etc.; grasses, cruciferous, asteraceae, polygonaceae, chocopodiaceae ( Pollen of Amaranthaceae, Cypressaceae, Sapinaceae, Fagaceae, Birchaceae, Oleaceae, Salicaceae, Pinaceae, etc., Convolvulaceae, Solanaceae, Dioscoreaceae, Cucurbitaceae, Rosaceae, Mandarin Family, Persimmonaceae, Actinaceae, Pineappleaceae, Musaceae, Vitaceae, Laminaceae, Pleurotinaceae, Acanthaceae, Acanthaceae, Shimegiaceae, Odonataceae, Poaceae, Polygonaceae, Apiaceae, Walnutaceae, Fabaceae , foods such as Brassicaceae, Amaryllidaceae, Malvaceae, Araliaceae, Poaceae, Plantainaceae, Asteraceae, Acanthaceae, Lauraceae, Verbenaceae, Papaveraceae, Lamiaceae, Rosaceae, Pinaceae, Fabaceae, Osmanthus Full-length or partial fragments of whole proteins or specific proteins (including woody plants and plants such as families, etc.), and full-length or partial fragments of human-derived proteins were prepared for mounting on protein microarrays (Fukushima Protein Factory). The samples were arrayed on a glass slide using a custom arrayer VSA-Print 125T.2 (Micro Diagnostic).
1-8.有用な抗体遺伝子のクローニング
(1)シングルセルからのcDNA合成
 「1-6.LCLのシングルセルソート」で分取したシングルセルであって、「1-7.LCLの抗体プロファイリング」にてSARS-CoV-2のS1サブユニットに結合すると判断されたシングルセルに対して、細胞溶解液10X Lysis Buffer(TaKaRa、Cat.635013)およびRNasin Ribonuclease Inhibitors(Promega、Cat.N2515)を加えて、RNAを抽出した。5’末端側に任意の配列を付加したオリゴ(dT)プライマー(5’- GCGGCTGAAGACGGCCTATGTGGCCTTTTTTTTTTTTTTTTT -3’:配列番号14)を用い、SMARTScribe Reverse Transcriptase(TaKaRa、Cat.Z9538N)を用いた逆転写反応に、5’末端側に結合できるようなアダプターオリゴを加えて、cDNA合成を行った。なお、5’末端側に結合できるようなアダプターオリゴは、5’- AAGCAGTGGTATCAACGCAGAGTACGCGGG -3’(配列番号15)という配列でLNA-RNA-DNAキメラオリゴとして合成した。合成したcDNAを鋳型として、5'末端と3'末端にそれぞれ付加した配列を用いて設計したPrimer、すなわち1stPCR_FW primer(5’- AAGCAGTGGTATCAACGCAGAGTAC -3’ :配列番号16)および1stPCR_RV primer(5’- GCGGCTGAAGACGGCCTATGT -3’ :配列番号17)ならびにPrimeSTAR GXL DNA Polymerase (TaKaRa、Cat. R050B )を用いて1st PCRを行い、抗体産生細胞で発現している全てのRNAを増幅させた。
1-8. Cloning of useful antibody genes (1) cDNA synthesis from single cells Single cells sorted in "1-6. Single cell sorting of LCL" and SARS- Add cell lysate 10X Lysis Buffer (TaKaRa, Cat.635013) and RNasin Ribonuclease Inhibitors (Promega, Cat.N2515) to single cells determined to bind to the S1 subunit of CoV-2 to extract RNA. did. Using an oligo(dT) primer (5'-GCGGCTGAAGACGGCCTATGTGGCCTTTTTTTTTTTTTTT -3': SEQ ID NO: 14) with an arbitrary sequence added to the 5' end, perform a reverse transcription reaction using SMARTScribe Reverse Transcriptase (TaKaRa, Cat.Z9538N). cDNA synthesis was performed by adding an adapter oligo capable of binding to the 5' end. The adapter oligo capable of binding to the 5' end was synthesized as an LNA-RNA-DNA chimera oligo with the sequence 5'-AAGCAGTGGTATCAACGCAGAGTACCGGG-3' (SEQ ID NO: 15). Using the synthesized cDNA as a template, we designed primers using sequences added to the 5' and 3' ends, namely 1stPCR_FW primer (5'- AAGCAGTGGTATCAACGCAGAGTAC -3' : SEQ ID NO: 16) and 1stPCR_RV primer (5'- GCGGCTGAAGACGGCCTATGT). -3': SEQ ID NO: 17) and PrimeSTAR GXL DNA Polymerase (TaKaRa, Cat. R050B), 1st PCR was performed to amplify all the RNAs expressed in the antibody-producing cells.
(2)抗体遺伝子の検出
 定常領域を特異的に増幅できるように設計したPrimer、すなわち、Real-time PCR_IgG_FW primer(5’- CCCCATCGAGAAAACCATCTC -3’ :配列番号18)、Real-time PCR_ IgG_RV primer(5’- GTCGCTGGGATAGAAGCCTTT -3’ :配列番号19)、Real-time PCR_Ig-K_FW primer(5’- TCTGGAACTGCCTCTGTTGTGT -3’ :配列番号20)、Real-time PCR_Ig-K_RV primer(5’- CTGGGAGTTACCCGATTGGA -3’ :配列番号21)、Real-time PCR_Ig-L_FW primer(5’- CCCTCCAAACAAAGCAACAAC -3’:配列番号22)、Real-time PCR_Ig-L_RV primer(5’- CAGCTGTAGCTTCTGTGGGACTT -3’:配列番号23)を用い、(1)で増幅させた1st PCR産物を鋳型にして、Fast SYBR Green Master Mix(Thermo, Cat.4385614)を用いてリアルタイムPCRで抗体遺伝子の検出を行った。検出結果から、H鎖のアイソタイプとL鎖のタイプを同定した。
(2) Detection of antibody genes Primers designed to specifically amplify the constant region, namely Real-time PCR_IgG_FW primer (5'- CCCCATCGAGAAAACCATCTC -3': SEQ ID NO: 18), Real-time PCR_IgG_RV primer (5 '- GTCGCTGGGATAGAAGCCTTT -3': SEQ ID NO: 19), Real-time PCR_Ig-K_FW primer (5'- TCTGGAACTGCCTCTGTTGTGT -3': SEQ ID NO: 20), Real-time PCR_Ig-K_RV primer (5'- CTGGGAGTTACCCGATTGGA -3': Sequence (1 Using the 1st PCR product amplified by ) as a template, antibody genes were detected by real-time PCR using Fast SYBR Green Master Mix (Thermo, Cat.4385614). From the detection results, the H chain isotype and L chain type were identified.
(3)全長抗体遺伝子フラグメントの取得
 1st PCR産物を鋳型として、各抗体遺伝子の全長が増幅できるように定常領域の終始コドン付近に設計したPrimerとcDNA合成で5’末端側に結合させたオリゴの配列を使って設計したPrimer、すなわち、2ndPCR_FW primer(5’- ACGGGCCCTCTAGACAAGCAGTGGTATCAACGC -3’ :配列番号24)、2ndPCR_ IgG_RV primer(5’- TTACCCGGAGACAGGGAGAGG -3’:配列番号25)、2ndPCR_Ig-K_RV primer(5’- CCTGTTGAAGCTCTTTGTGACG -3’:配列番号26)、2ndPCR_Ig-L_RV primer(5’- GGGGCCACTGTCTTCTCCA -3’:配列番号27)を用いて、H鎖、L鎖それぞれにPrimeSTAR GXL DNA Polymerase (TaKaRa、Cat. R050B )を用いて2nd PCRを行い、全長の抗体遺伝子を増幅した。アガロースゲル電気泳動でサイズ確認を行い、H鎖、L鎖ともに予想されるサイズの全長抗体遺伝子が増幅できている細胞のみを選別した。2nd PCR産物には、残存するオリゴや非特異的な副反応物が含まれるため、PCR産物精製用のビーズやアガロースゲルによる抽出等の処理を行い、2nd PCR産物を精製した。それぞれに取得したH鎖の抗体遺伝子フラグメントおよびL鎖の抗体遺伝子フラグメントを整列化し、抗体遺伝子セットを作製した。
(3) Obtaining full-length antibody gene fragments Using the 1st PCR product as a template, a primer designed near the end codon of the constant region and an oligo linked to the 5' end by cDNA synthesis are used to amplify the full length of each antibody gene. Primers designed using the sequence, namely, 2ndPCR_FW primer (5'- ACGGGCCCTCTAGACAAGCAGTGGTATCAACGC -3': SEQ ID NO: 24), 2ndPCR_IgG_RV primer (5'- TTACCCGGAGACAGGGAGAGG -3': SEQ ID NO: 25), 2ndPCR_Ig-K_RV primer (5' - CCTGTTGAAGCTCTTTGTGACG -3': SEQ ID NO: 26) and 2nd PCR_Ig-L_RV primer (5'- GGGGCCACTGTCTTCTCCA -3': SEQ ID NO: 27), PrimeSTAR GXL DNA Polymerase (TaKaRa, Cat. R050B) was applied to each of the H chain and L chain. 2nd PCR was performed using the PCR method to amplify the full-length antibody gene. Size was confirmed by agarose gel electrophoresis, and only cells in which full-length antibody genes of the expected size for both H and L chains were amplified were selected. Since the 2nd PCR product contains residual oligos and non-specific side reaction products, the 2nd PCR product was purified by performing treatments such as extraction using PCR product purification beads and agarose gel. The H chain antibody gene fragments and L chain antibody gene fragments obtained for each were aligned to create an antibody gene set.
1-9.抗体遺伝子配列の決定
 「1-8.有用な抗体遺伝子のクローニング」で取得したH鎖とL鎖の抗体遺伝子フラグメントからなる抗体遺伝子セットについて、それらを細胞に導入し、抗体を産生させるために必要な発現クローン化を行った。取得した発現クローンの塩基配列解析を行い、導入した抗体遺伝子の配列を決定した。
1-9. Determination of antibody gene sequence The antibody gene set consisting of the H chain and L chain antibody gene fragments obtained in "1-8. Cloning of useful antibody genes" is necessary for introducing them into cells and producing antibodies. Expression cloning was performed. The obtained expression clone was sequenced to determine the sequence of the introduced antibody gene.
(1)抗体遺伝子フラグメントから発現クローンの取得
 哺乳動物細胞等で抗体を産生させるための発現クローンを作製した。H鎖とL鎖からそれぞれ発現クローンを作製し、最終的には両者を同時に細胞にトランスフェクションさせることで、抗体を産生させた。H鎖、L鎖それぞれの抗体遺伝子フラグメントを、シームレスクローニングと呼ばれている相同な配列間の組換え反応を使い、発現解析に用いることが可能な細胞発現用カセットベクターにクローニングした。より具体的には、H鎖の遺伝子についてはpcDNA 3.1 (-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V79520)を、L鎖の遺伝子についてはpcDNA 3.1/Hygro(-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V87520)にクローニングした。抗体遺伝子フラグメントを導入したベクターを大腸菌に形質転換した。形質転換体を薬剤入り寒天培地で選択、培養した。抗体遺伝子ごとに4サブクローンを選択し、培養した。大腸菌培養液から、プラスミド自動分離装置を用いてプラスミドDNAを調製した。調製したプラスミドDNAについて、アガロースゲル電気泳動でサイズ確認した。
(1) Obtaining expression clones from antibody gene fragments Expression clones for producing antibodies in mammalian cells were created. Expression clones were created from the H chain and L chain, and finally antibodies were produced by simultaneously transfecting cells with both. The antibody gene fragments for the H chain and L chain were cloned into a cell expression cassette vector that can be used for expression analysis using a recombination reaction between homologous sequences called seamless cloning. More specifically, pcDNA 3.1 (-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520) was used for the H chain gene, and pcDNA 3.1/Hygro(-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520) was used for the L chain gene. SCIENTIFIC, V87520).The vector into which the antibody gene fragment had been introduced was transformed into Escherichia coli.The transformants were selected and cultured on a drug-containing agar medium.Four subclones were selected for each antibody gene and cultured. Plasmid DNA was prepared from the E. coli culture using an automatic plasmid separation device.The size of the prepared plasmid DNA was confirmed by agarose gel electrophoresis.
(2)発現クローン化した抗体遺伝子の配列解析
 調製したプラスミドDNAを鋳型として、DNA配列解析機器(キャピラリー型DNAシーケンサー)を用いて、発現ベクターに導入した抗体遺伝子の配列を解析した。各発現ベクター上の任意の配列と各抗体遺伝子の定常領域配列を利用して得られた配列解析結果をアセンブルし、導入した全長配列を同定した。1つのフラグメントから得られた4サブクローンの配列解析結果を比較し、可変領域だけでなく定常領域の変異や、核酸とアミノ酸の両方の相同性等を評価し、代表とする発現クローンを1つ選出した。H鎖とL鎖の両方の評価の結果、抗体遺伝子配列が決定できた抗体遺伝子発現クローンを、抗体遺伝子発現クローンセットとして整列化した。得られた抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を図1に示す。得られた抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図2に示す。また得られた抗体の軽鎖アミノ酸配列およびそれをコードする塩基配列を図3に示す。得られた抗体の軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図4に示す。得られた抗体はIgG抗体であり、当該抗体の重鎖はIgγ1であり、軽鎖はIgκであった。
(2) Sequence analysis of antibody gene cloned for expression Using the prepared plasmid DNA as a template, the sequence of the antibody gene introduced into the expression vector was analyzed using a DNA sequence analysis device (capillary type DNA sequencer). Sequence analysis results obtained using arbitrary sequences on each expression vector and constant region sequences of each antibody gene were assembled, and the introduced full-length sequence was identified. Compare the sequence analysis results of 4 subclones obtained from one fragment, evaluate mutations in not only the variable region but also the constant region, homology of both nucleic acids and amino acids, and select one representative expression clone. Selected. As a result of evaluation of both H chain and L chain, antibody gene expression clones whose antibody gene sequences could be determined were aligned as an antibody gene expression clone set. The heavy chain amino acid sequence of the obtained antibody and the base sequence encoding it are shown in FIG. The amino acid sequence of the heavy chain variable region of the obtained antibody and the nucleotide sequence encoding it are shown in FIG. 2. Furthermore, the light chain amino acid sequence of the obtained antibody and the base sequence encoding it are shown in FIG. The amino acid sequence of the light chain variable region of the obtained antibody and the nucleotide sequence encoding it are shown in FIG. The obtained antibody was an IgG antibody, and the heavy chain of the antibody was Igγ1 and the light chain was Igκ.
(実施例2.天然ヒトIgG抗体のIgA化)
 上記「1-9.抗体遺伝子配列の決定」において得られた抗体の重鎖可変領域および軽鎖可変領域のアミノ酸配列の情報を基に、IgA化ヒトIgG抗体を作製した。
 当該アミノ酸配列のC末端部分を元に、福島県立医科大学で構築した抗体遺伝子データベースから最適だと考えるアイソタイプおよびサブタイプを予測し定常領域配列を付加した。さらに当該可変領域のアミノ酸配列のN末端部分の情報を元に、福島県立医科大学で構築した抗体遺伝子データベースから予測した最適なシグナル配列を付加した。なお、安定したタンパク質発現のために、最適な5’-UTR配列を付加した。予測により構築したアミノ酸配列をコードする塩基配列を細胞発現用カセットベクターにクローニングした。より具体的には、H鎖の塩基配列についてはpcDNA 3.1 (-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V79520)に、L鎖の塩基配列についてはpcDNA 3.1/Hygro(-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V87520)にクローニングした。
 また、IgA型の抗体遺伝子と共発現させるためのJCHAIN (Joining Chain Of Multimeric IgA And IgM)をコードする遺伝子(配列番号28)をベクターpcDNA3.2/V5-DEST(Invitrogen(ThermoFisher SCIENTIFIC))にサブクローニングした。
 構築したIgA化ヒトIgG抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を図5に示す。構築したIgA化ヒトIgG抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図6に示す。また構築したIgA化ヒトIgGの軽鎖アミノ酸配列およびそれをコードする塩基配列を図7に示す。構築したIgA化ヒトIgGの軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図8に示す。
(Example 2. IgA conversion of natural human IgG antibody)
An IgA human IgG antibody was produced based on the information on the amino acid sequences of the heavy chain variable region and light chain variable region of the antibody obtained in "1-9. Antibody gene sequence determination" above.
Based on the C-terminal portion of the amino acid sequence, the most suitable isotype and subtype were predicted from the antibody gene database constructed at Fukushima Medical University, and a constant region sequence was added. Furthermore, based on the information on the N-terminal portion of the amino acid sequence of the variable region, an optimal signal sequence predicted from the antibody gene database constructed at Fukushima Medical University was added. In addition, an optimal 5'-UTR sequence was added for stable protein expression. The base sequence encoding the predicted amino acid sequence was cloned into a cell expression cassette vector. More specifically, for the base sequence of the H chain, we used pcDNA 3.1 (-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520), and for the base sequence of the L chain, we used pcDNA 3.1/Hygro(-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V87520).
In addition, the gene (SEQ ID NO: 28) encoding JCHAIN (Joining Chain Of Multimeric IgA And IgM) for co-expression with IgA type antibody gene was subcloned into vector pcDNA3.2/V5-DEST (Invitrogen (ThermoFisher SCIENTIFIC)). did.
The heavy chain amino acid sequence of the constructed IgA human IgG antibody and the base sequence encoding it are shown in FIG. The amino acid sequence of the heavy chain variable region of the constructed IgA human IgG antibody and the nucleotide sequence encoding it are shown in FIG. Furthermore, the light chain amino acid sequence of the constructed IgA human IgG and the nucleotide sequence encoding it are shown in FIG. The amino acid sequence of the light chain variable region of the constructed IgA human IgG and the nucleotide sequence encoding it are shown in FIG.
(実施例3.タンパク質マイクロアレイによる抗体評価1)
3-1.抗体作製
 前記「1-9.抗体遺伝子配列の決定」で取得した抗体遺伝子、または、上記実施例2で作製したIgA化ヒトIgG抗体の抗体遺伝子とJCHAINをコードする遺伝子とを、哺乳動物細胞Expi293FにExpiFectamine 293 Transfection Kit(Gibco (ThermoFisher SCIENTIFIC)、A14524)を用いて導入し、一過的に発現させ、抗体を作製した。具体的には、凍結保存していたヒト浮遊細胞を125 mlフラスコにて振とう培養を開始した。最低2回の継代を行い、凍結融解の傷害から細胞を回復させた。125 mlフラスコに細胞を継代し、一晩培養した後、96プレート上に播種し、リポフェクション法により前記「1-9.抗体遺伝子配列の決定」等で調製した発現クローン(プラスミドDNA)を細胞に導入した。なお、重鎖、軽鎖、J鎖等の発現クローンを混合して細胞に導入した。プラスミドDNAの導入後3日目に培養上清を取得した。取得した培養上清を用いて、変性条件下でのポリアクリルアミド電気泳動により展開し、Coomassie Brilliant Blue (CBB) 染色、ウエスタンブロット解析によりIgG抗体およびIgA抗体の発現を確認した。IgA抗体について二量体の抗体の発現を確認した。得られた抗体を天然ヒトIgG抗体(HIG001677)またはIgA化ヒトIgG抗体(HIG001677A1)と名付けた。抗体の発現が確認できた培養上清を用いて、タンパク質マイクロアレイを用いた抗原の特定を行った。
(Example 3. Antibody evaluation 1 using protein microarray)
3-1. Antibody production The antibody gene obtained in "1-9. Determination of antibody gene sequence" or the antibody gene of the IgA-ized human IgG antibody produced in Example 2 above and the gene encoding JCHAIN were introduced into mammalian cells Expi293F. using ExpiFectamine 293 Transfection Kit (Gibco (ThermoFisher SCIENTIFIC), A14524) and transiently expressed to produce antibodies. Specifically, shaking culture of cryopreserved human floating cells was started in a 125 ml flask. A minimum of two passages were performed to allow cells to recover from freeze-thaw injury. Passage the cells into a 125 ml flask, culture them overnight, then seed them onto a 96 plate, and use the lipofection method to inject the expression clone (plasmid DNA) prepared in ``1-9. Antibody gene sequence determination'' into the cells. It was introduced in Note that expression clones for heavy chain, light chain, J chain, etc. were mixed and introduced into cells. Culture supernatant was obtained 3 days after introduction of plasmid DNA. The obtained culture supernatant was developed by polyacrylamide electrophoresis under denaturing conditions, and the expression of IgG and IgA antibodies was confirmed by Coomassie Brilliant Blue (CBB) staining and Western blot analysis. Regarding IgA antibodies, we confirmed the expression of dimeric antibodies. The obtained antibody was named natural human IgG antibody (HIG001677) or IgA-ized human IgG antibody (HIG001677A1). Using the culture supernatant in which antibody expression was confirmed, the antigen was identified using a protein microarray.
3-2.抗体評価
 各種サンプル抗体としてSARS-CoV-2に対する抗体医薬として公知の7つの抗体((1)AZD1061(アストラゼネカ社製)、(2)AZD8895(アストラゼネカ社製)、(3)LY_CoV16(イーライ・リリー社製)、(4)LY_CoV555(イーライ・リリー社製)、(5)REGN10933(リジェネロン社製)、(6)REGN10987(リジェネロン社製)、(7)S309(グラクソ・スミスクライン社およびVir Biotechnology社製))、3つの市販抗体((1) SARS-CoV-2 Spike Antibody (AM002414)(Active Motif (91349, 10020001))、市販抗体(2) SARS-CoV-2 Spike Antibody (AM015553) Active Motif (91377, 17820001)、市販抗体(3) SARS-CoV-2 Spike Antibody, 414-1 (AM001414) Active Motif (91361, 10020001)、ならびに、上記で得られた2つの天然ヒト抗体((1)天然ヒトIgG抗体(HIG001677)、(2)IgA化ヒトIgG抗体(HIG001677A1))を用いた。
(1)先行抗体の作製
 公開されている各先行抗体の配列情報(可変領域のアミノ酸配列情報)を入手した。当該アミノ酸配列情報から、核酸配列を予測した。次に、当該アミノ酸配列のC末端部分を元に、福島県立医科大学で構築した抗体遺伝子データベースからアイソタイプおよびサブタイプを予測し、最適だと考える定常領域配列を付加した。さらに、当該可変領域のアミノ酸配列のN末端部分の情報を元に、福島県立医科大学で構築した抗体遺伝子データベースから予測した最適なシグナル配列を付加した。なお、安定したタンパク質発現のために、最適な5’-UTR配列を付加した。各先行抗体の重鎖および軽鎖に関し、予測により構築したアミノ酸配列をコードする塩基配列と配列番号との関係を下記表に示す。
3-2. Antibody evaluation Seven antibodies known as antibody drugs against SARS-CoV-2 were used as various sample antibodies ((1) AZD1061 (manufactured by AstraZeneca), (2) AZD8895 (manufactured by AstraZeneca), (3) LY_CoV16 (manufactured by Eli Lilly), (4) LY_CoV555 (Eli Lilly), (5) REGN10933 (Regeneron), (6) REGN10987 (Regeneron), (7) S309 (GlaxoSmithKline and Vir Biotechnology) ), three commercially available antibodies ((1) SARS-CoV-2 Spike Antibody (AM002414) (Active Motif (91349, 10020001)), commercially available antibodies (2) SARS-CoV-2 Spike Antibody (AM015553) Active Motif (91377, 17820001), commercially available antibodies (3) SARS-CoV-2 Spike Antibody, 414-1 (AM001414) Active Motif (91361, 10020001), and the two natural human antibodies obtained above ((1) Human IgG antibody (HIG001677), (2) IgA-conjugated human IgG antibody (HIG001677A1)) were used.
(1) Preparation of preceding antibodies Sequence information (amino acid sequence information of the variable region) of each of the publicly available preceding antibodies was obtained. The nucleic acid sequence was predicted from the amino acid sequence information. Next, based on the C-terminal portion of the amino acid sequence, the isotype and subtype were predicted from the antibody gene database constructed at Fukushima Medical University, and a constant region sequence considered to be optimal was added. Furthermore, based on information on the N-terminal portion of the amino acid sequence of the variable region, an optimal signal sequence predicted from the antibody gene database constructed at Fukushima Medical University was added. In addition, an optimal 5'-UTR sequence was added for stable protein expression. Regarding the heavy chain and light chain of each preceding antibody, the relationship between the base sequence encoding the predicted amino acid sequence and the sequence number is shown in the table below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各先行抗体の重鎖および軽鎖に関して予測により構築したアミノ酸配列をコードする塩基配列を細胞発現用カセットベクターにクローニングした。より具体的には、H鎖の塩基配列についてはpcDNA 3.1 (-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V79520)に、L鎖の塩基配列についてはpcDNA 3.1/Hygro(-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V87520)にクローニングした。次いで、当該細胞発現用カセットベクターを哺乳動物細胞Expi293FにExpiFectamine 293 Transfection Kit(Gibco (ThermoFisher SCIENTIFIC)、A14524)を用いて導入し、一過的に発現させ、抗体を作製した。具体的には、凍結保存していたヒト浮遊細胞を125 mlフラスコにて振とう培養を開始した。最低2回の継代を行い、凍結融解の傷害から細胞を回復させた。125 mlフラスコに細胞を継代し、一晩培養した後、96プレート上に播種し、リポフェクション法により細胞発現用カセットベクター(プラスミドDNA)を細胞に導入した。プラスミドDNAの導入後3日目に培養上清を取得した。取得した培養上清を用いて、変性条件下でのポリアクリルアミド電気泳動により展開し、Coomassie Brilliant Blue (CBB) 染色、ウエスタンブロット解析により各先行抗体の発現を確認した。先行抗体の発現が確認できた培養上清を用いて、Protein G Sepharose 4 Fast Flow(cytiva、17061801)の手順書に従って精製した。精製した抗体を使用し、以下のマイクロアレイの試験に用いた。
(2)抗体の調製
 天然ヒト抗体は、上記「2-1.抗体作製」により得られた培養上清10μlに対して1次抗体希釈液を990μl加えて1mlとなるように調製した。市販抗体および先行抗体は、1次抗体希釈液でそれぞれ2μg/mlになるよう1000μlずつ調製した。また、Negative control(以下、ネガコン)として1次抗体希釈液を1000μl準備した。最後に、ヤギレファレンス抗体ミクスチャ(10反応分)(福島プロテインファクトリー、PA5010)を1次抗体希釈液で10 ml調製し(以下、レファレンス抗体)、調製したすべての抗体を37℃で1時間振とうさせた。
The nucleotide sequences encoding the predicted amino acid sequences for the heavy chain and light chain of each preceding antibody were cloned into a cell expression cassette vector. More specifically, for the base sequence of the H chain, we used pcDNA 3.1 (-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V79520), and for the base sequence of the L chain, we used pcDNA 3.1/Hygro(-) Mammalian Expression Vector (Invitrogen (ThermoFisher SCIENTIFIC, V87520).Then, the cell expression cassette vector was introduced into mammalian cell Expi293F using ExpiFectamine 293 Transfection Kit (Gibco (ThermoFisher SCIENTIFIC), A14524), and transiently expressed. Antibodies were produced.Specifically, shaking culture of cryopreserved human suspension cells was started in a 125 ml flask.The cells were passaged at least twice to recover from freeze-thaw damage. Cells were passaged into 125 ml flasks, cultured overnight, and then seeded onto 96 plates, and cell expression cassette vectors (plasmid DNA) were introduced into the cells by lipofection. 3rd day after introduction of plasmid DNA. A culture supernatant was obtained. Using the obtained culture supernatant, it was developed by polyacrylamide electrophoresis under denaturing conditions, and the expression of each preceding antibody was confirmed by Coomassie Brilliant Blue (CBB) staining and Western blot analysis. Using the culture supernatant in which the expression of the preceding antibody was confirmed, it was purified according to the procedure manual for Protein G Sepharose 4 Fast Flow (cytiva, 17061801).The purified antibody was used for the following microarray test.
(2) Preparation of antibody A natural human antibody was prepared by adding 990 μl of a primary antibody dilution solution to 10 μl of the culture supernatant obtained in “2-1. Antibody Preparation” above to give a total volume of 1 ml. The commercially available antibody and the preceding antibody were prepared in 1000 μl each using a primary antibody dilution solution at a concentration of 2 μg/ml. In addition, 1000 μl of a primary antibody dilution solution was prepared as a negative control (hereinafter referred to as negative control). Finally, prepare 10 ml of goat reference antibody mixture (10 reactions) (Fukushima Protein Factory, PA5010) with primary antibody dilution solution (hereinafter referred to as reference antibody), and shake all the prepared antibodies at 37°C for 1 hour. I let it happen.
(3)抗原タンパク質マイクロアレイのブロッキング
 タンパク質マイクロアレイは上記「1-7.LCLの抗体プロファイリング」において用いたものと同一のものを使用した。タンパク質マイクロアレイを100%エタノールで浸した後に、最終洗浄液に浸した。さらに、その後、solution Aに浸した。前処理後、タンパク質マイクロアレイを26℃のBlocking Oneに浸し1時間振とうした。
(3) Blocking of antigen protein microarray The same protein microarray used in "1-7. Antibody profiling of LCL" above was used. The protein microarray was soaked in 100% ethanol and then in the final wash solution. Furthermore, it was then immersed in solution A. After pretreatment, the protein microarray was immersed in Blocking One at 26°C and shaken for 1 hour.
(4)1次抗体反応
 ブロッキング処理後、タンパク質マイクロアレイを再びsolution Aへ置換させた。タンパク質マイクロアレイ用カセット(福島プロテインファクトリー、HC4-01-DE)(以下、カセット)へ37℃で1時間振とうさせた各種サンプル抗体またはネガコンとレファレンス抗体とを等量(1mlずつ)加え、solution Aへ置換させたタンパク質マイクロアレイを各カセットに1枚ずつセットした。セットしたタンパク質マイクロアレイは37℃で17時間振とうし、1次抗体と反応させた。
(4) Primary antibody reaction After the blocking treatment, the protein microarray was replaced with solution A again. Add equal volumes (1 ml each) of various sample antibodies or negative con and reference antibodies that have been shaken at 37°C for 1 hour to a protein microarray cassette (Fukushima Protein Factory, HC4-01-DE) (hereinafter referred to as the cassette), and add solution A. One protein microarray substituted with 1 was set in each cassette. The set protein microarray was shaken at 37°C for 17 hours and reacted with the primary antibody.
(5)2次抗体反応
 17時間後、各カセットよりタンパク質マイクロアレイを取り出し、solution Aで洗浄した後、各種サンプル抗体検出用のAlexa647標識抗ヒトIgG抗体またはAlexa647標識抗ヒトIgA抗とレファレンス抗体検出用のCy3標識抗ヤギIgG抗体をそれぞれ1 mlをカセットに加え、洗浄したタンパク質マイクロアレイをセットした。セットしたタンパク質マイクロアレイは26℃で1時間振とうし、2次抗体と反応させた。
(5) Secondary antibody reaction After 17 hours, remove the protein microarray from each cassette, wash it with solution A, and use Alexa647-labeled anti-human IgG antibody or Alexa647-labeled anti-human IgA antibody for detection of various sample antibodies and reference antibody for detection. 1 ml of each Cy3-labeled anti-goat IgG antibody was added to the cassette, and the washed protein microarray was set. The set protein microarray was shaken at 26°C for 1 hour and reacted with a secondary antibody.
(6)最終処理
 1時間後、各カセットよりタンパク質マイクロアレイを取り出し、solution Aで洗浄した。その後、solution Aを洗浄するため、10倍希釈したタンパク質マイクロアレイ専用 solution B (10X) (福島プロテインファクトリー、PA1110)(以下、solution B)へ置換した。タンパク質マイクロアレイをsolution Bから最終洗浄液した後、遠心してタンパク質マイクロアレイより水分を除去した。
(6) Final treatment One hour later, the protein microarray was removed from each cassette and washed with solution A. Then, to wash solution A, it was replaced with solution B (10X) exclusively for protein microarrays diluted 10 times (Fukushima Protein Factory, PA1110) (hereinafter referred to as solution B). After the protein microarray was washed with solution B for the final time, water was removed from the protein microarray by centrifugation.
(7)検出および解析
 タンパク質マイクロアレイに搭載している各タンパク質に相当するスポットの蛍光強度をスキャナGenePix4000B(モレキュラーデバイスジャパン)によって測定し、生データを取得することで、網羅的な抗体の検出を行った。この取得された生データから底を2とした対数比に変換したデータ(以下「一次比」という。)を算出し、コンピュータ上での種々の解析に活用できるデータ集合体の構成要素とした。この作成した構成要素を単一の行列に統合し、データ集合体とした。
(7) Detection and analysis Comprehensive antibody detection is performed by measuring the fluorescence intensity of spots corresponding to each protein mounted on the protein microarray using a scanner GenePix4000B (Molecular Devices Japan) and acquiring raw data. Ta. Data converted into a logarithmic ratio with a base of 2 (hereinafter referred to as "primary ratio") was calculated from the obtained raw data and used as a constituent element of a data collection that can be used for various analyzes on a computer. The created components were integrated into a single matrix to form a data set.
3-3.結果
 天然ヒトIgG抗体(HIG001677)およびIgA化ヒトIgG抗体(HIG001677A1)について、タンパク質マイクロアレイを用いて評価した結果を示す。タンパク質マイクロアレイを用いて取得したデータについて、Cy3標識抗ヤギIgG抗体のシグナルに対するAlexa647標識抗ヒトIgA抗体のシグナルの値に変換し、さらに、底を2とする対数比に変換した。次に、タンパク質アレイ間の補正を行った後に、ネガティブコントロール(すなわち、1次抗体を反応させていないタンパク質マイクロアレイのデータ)に対する相対比に変換した(図9)。
 図9に示すように、天然ヒトIgG抗体(HIG001677)およびIgA化ヒトIgG抗体(HIG001677A1)は、SARS-CoV-2に対する公知の抗体(AZD1061、AZD8895、LY_CoV16、LY_CoV555、REGN10933、REGN10987、S309)および市販抗体(ABT#03984(Active Motif社、91349)、ABT#03985(Active Motif社、91361)、ABT#04347(Active Motif社、91377))と比較して、SARS-CoV-2のS1タンパク質に同等かそれ以上の強さで結合を示した。特にIgA化ヒトIgG抗体(HIG001677A1)は、公知の抗体および市販抗体と比較してSARS-CoV-2の S1タンパク質により強く結合した。表3A~Eに図9の解析に用いたタンパク質マイクロアレイ搭載検体を示す。さらに、表4A~Hにネガティブコントロールに対する相対比のデータを示す。
3-3. Results The results of evaluating natural human IgG antibody (HIG001677) and IgA human IgG antibody (HIG001677A1) using a protein microarray are shown. The data obtained using the protein microarray was converted into the value of the signal of the Alexa647-labeled anti-human IgA antibody relative to the signal of the Cy3-labeled anti-goat IgG antibody, and further converted into a logarithmic ratio with a base of 2. Next, after correction between protein arrays, the data was converted into a relative ratio to a negative control (ie, data from a protein microarray that was not reacted with the primary antibody) (FIG. 9).
As shown in Figure 9, natural human IgG antibody (HIG001677) and IgA-ized human IgG antibody (HIG001677A1) are known antibodies against SARS-CoV-2 (AZD1061, AZD8895, LY_CoV16, LY_CoV555, REGN10933, REGN10987, S309) and compared to commercially available antibodies (ABT#03984 (Active Motif, 91349), ABT#03985 (Active Motif, 91361), ABT#04347 (Active Motif, 91377)). The bond was shown to be of equal or greater strength. In particular, the IgA human IgG antibody (HIG001677A1) bound more strongly to the S1 protein of SARS-CoV-2 compared to known and commercially available antibodies. Tables 3A to 3E show the protein microarray-mounted samples used for the analysis in FIG. 9. Additionally, Tables 4A-H provide relative ratio data to the negative control.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
(実施例4.Biacore(ビアコア)を用いた抗体親和性の決定)
 抗原と抗体の結合親和性は解離定数(KD)によって表すことができ、抗原と抗体との結合が平衡に達する時の解離速度の結合速度に対する比率(Ka/Kd)として計算される。本実施例ではビアコア(Cytiva社)による表面プラズモン共鳴(Surface Plasmon Resonance = SPR)技術を用いて解離定数を測定した。全ての解析は、ビアコアT200機器を使用したシングルサイクル反応速度論により行った。天然ヒト抗体(HIG001677)、IgA化ヒトIgG抗体(HIG001677A1)、市販抗体(ABT#03984、ABT#03985、ABT#04347)および、SARS-CoV-2に対する抗体医薬として公知の5つの先行抗体(LY-CoV16、LY-CoV555、REGN10933、REGN10987、および、S309)を被験抗体として用いた。被験抗体をビアコアセンサーチップ上に固定後、アナライトとしての各種組み換えコロナウイルスタンパク質(スパイクタンパク質のRBD領域)をセンサーチップ上に流し、結合親和性を評価した。
(Example 4. Determination of antibody affinity using Biacore)
The binding affinity between an antigen and an antibody can be expressed by a dissociation constant (KD), which is calculated as the ratio of the dissociation rate to the binding rate (Ka/Kd) when the binding between the antigen and antibody reaches equilibrium. In this example, the dissociation constant was measured using surface plasmon resonance (SPR) technology by Biacore (Cytiva). All analyzes were performed by single cycle kinetics using a Biacore T200 instrument. Natural human antibody (HIG001677), IgA human IgG antibody (HIG001677A1), commercially available antibodies (ABT#03984, ABT#03985, ABT#04347), and five preceding antibodies (LY) known as antibody drugs against SARS-CoV-2. -CoV16, LY-CoV555, REGN10933, REGN10987, and S309) were used as test antibodies. After immobilizing the test antibody on the Biacore sensor chip, various recombinant coronavirus proteins (RBD region of the spike protein) as analytes were flowed onto the sensor chip to evaluate binding affinity.
4-1.センサーチップへのIgA化ヒトIgG抗体(HIG001677A1)の固定化
 IgA化ヒトIgG抗体(HIG001677A1)は、上記「3-1.抗体作製」において得られた培養上清からCaptureSelec IgA Affinity Matrix(Thermo Scientific、19428801L (1L))を用いて手順書に従って精製した。精製したIgA化ヒトIgG抗体(HIG001677A1)は、シリーズSセンサーチップCM5(カルボキシメチルデキストラン塗布チップ)に標準的なアミンカップリングで共有結合させた。方法は供給業者(Cytiva社)の説明書に従い、EDC及びNHC試薬で活性化後、抗体(リガンド)をフローセルに20 RUから100 RUの範囲でカップリングした。続いて、1Mのエタノールアミンで未反応の基をブロッキングした。
4-1. Immobilization of IgA-conjugated human IgG antibody (HIG001677A1) to sensor chip IgA-conjugated human IgG antibody (HIG001677A1) was obtained from the culture supernatant obtained in "3-1. Antibody production" above using CaptureSelect IgA Affinity Matrix (Thermo Scientific, 19428801L (1L)) according to the procedure manual. The purified IgA human IgG antibody (HIG001677A1) was covalently bonded to a series S sensor chip CM5 (carboxymethyl dextran coated chip) using standard amine coupling. The method followed the instructions of the supplier (Cytiva), and after activation with EDC and NHC reagents, the antibody (ligand) was coupled to the flow cell in a range of 20 RU to 100 RU. Subsequently, unreacted groups were blocked with 1M ethanolamine.
4-2.センサーチップへのIgG抗体(天然ヒトIgG抗体、市販抗体、および先行抗体)の固定化
 天然ヒトIgG抗体は上記「3-1.抗体作製」において得られた培養上清からProtein G Sepharose 4 Fast Flow(cytiva、17061801)の手順書に従って精製した抗体を用いた。IgG抗体である先行抗体(LY-CoV16、LY-CoV555、REGN10933、REGN10987、および、S309)は、上記「3-2.抗体評価」(1)先行抗体の作製において得られた精製後の抗体を用いた。市販抗体(ABT#03984、ABT#03985、ABT#04347)および先行抗体はシリーズSセンサーチップCM5(カルボキシメチルデキストラン塗布チップ)にHuman Antibody Capture Kit(Cytiva社)の説明書に従い、EDC及びNHC試薬で活性化後、抗IgG抗体を約8000 RUから10,000 RUの範囲でカップリングした。続いて、1Mのエタノールアミンで未反応の基をブロッキングした。その後、IgG抗体(リガンド)を抗IgG抗体で約500 RUから700 RU補足した。
4-2. Immobilization of IgG antibodies (natural human IgG antibodies, commercially available antibodies, and preceding antibodies) onto the sensor chip Natural human IgG antibodies were obtained using Protein G Sepharose 4 Fast Flow from the culture supernatant obtained in "3-1. Antibody production" above. (cytiva, 17061801) purified antibody was used. The preceding antibodies (LY-CoV16, LY-CoV555, REGN10933, REGN10987, and S309), which are IgG antibodies, are the purified antibodies obtained in "3-2. Antibody evaluation" (1) Preparation of the preceding antibodies above. Using. Commercially available antibodies (ABT#03984, ABT#03985, ABT#04347) and preceding antibodies were prepared using EDC and NHC reagents on a series S sensor chip CM5 (carboxymethyl dextran coated tip) according to the instructions of the Human Antibody Capture Kit (Cytiva). After activation, anti-IgG antibodies were coupled in a range of approximately 8000 RU to 10,000 RU. Subsequently, unreacted groups were blocked with 1M ethanolamine. The IgG antibody (ligand) was then supplemented with approximately 500 to 700 RU of anti-IgG antibody.
4-3.反応速度測定
 各抗原タンパク質(アナライト)をランニングバッファー(0.01 M HEPES, 0.15 M NaCl, 0.003 M EDTA and 0.05% v/v Surfactant P20)で3倍連続希釈液(27-0.33 nM)を調製し、流速10 μL/分で120秒間フローセルに注入した。アナライト添加終了後、ランニングバッファーを900秒間注入し、アナライトを解離させた。
 測定値からリファレンスフローセルの値を差し引いた後、BIAcore T200用解析ソフトウェア(バージョン2.0)を用いて、結合速度(Ka)及び解離速度(Kd)を算出した。解離定数(KD)は一対一の結合モデルで算出した。ビアコアT200における検出範囲は、結合速度(Ka)が103-107(1/Ms)、解離速度(Kd)が10-5-0.5(1/s)である。
4-3. Reaction rate measurement Prepare 3-fold serial dilutions (27-0.33 nM) of each antigen protein (analyte) in running buffer (0.01 M HEPES, 0.15 M NaCl, 0.003 M EDTA and 0.05% v/v Surfactant P20). Injected into the flow cell for 120 seconds at a flow rate of 10 μL/min. After addition of the analyte, running buffer was injected for 900 seconds to dissociate the analyte.
After subtracting the reference flow cell value from the measured value, the association rate (Ka) and dissociation rate (Kd) were calculated using analysis software for BIAcore T200 (version 2.0). The dissociation constant (K D ) was calculated using a one-to-one binding model. The detection range for Biacore T200 is an association rate (Ka) of 10 3 -10 7 (1/Ms) and a dissociation rate (Kd) of 10 -5 -0.5 (1/s).
4-4.結果
 各種抗体と各種コロナ抗原(アナライト)との結合速度(Ka)、解離速度(Kd)、及び解離定数(KD)の結果を表5A~Cに示す。表中、「非特異結合あり」は非特異的な結合シグナルが観察され解析不能であったことを示し、「結合なし」は結合したシグナルを検出できなかったことを示す。
 表5A~Dに示すように、天然ヒトIgG抗体(HIG001677)(リガンド)は、南アフリカ変異株(BA4.&BA.5系統)を除き、使用したいずれの抗原(アナライト)に対しても結合親和性(KD値)が強く、最も弱いアナライト(南アフリカ変異株BA.2系統由来)でも8.577 nMの結合親和性(KD値)が見られた。また、インド変異株(B.1.617.1系統およびB.1.617.2系統)由来のアナライトに対しては、抗体の結合が強く解離がほとんど見られないため、解離速度(Kd)は検出限界以下となった。
 IgA化ヒトIgG抗体(HIG001677A1)(リガンド)は使用したいずれの抗原(アナライト)に対しても結合親和性(KD値)が強く、最も弱いアナライト(南アフリカ変異株(B.1.1.529系統))でも17.25 nMの結合親和性(KD値)が見られた。また、武漢株、E484K変異株、Y453F変異株、イギリス変異株、インド変異株(B.1.617.1系統およびB.1.617.2系統)、カリフォルニア変異株、ペルー変異株由来のアナライトに対しては、抗体の結合が強く解離がほとんど見られないため、解離速度(Kd)は検出限界以下となった。
4-4. Results The results of the binding rate (Ka), dissociation rate (Kd), and dissociation constant (KD) between various antibodies and various corona antigens (analytes) are shown in Tables 5A to C. In the table, "non-specific binding" indicates that a non-specific binding signal was observed and analysis was impossible, and "no binding" indicates that no bound signal could be detected.
As shown in Tables 5A to D, the natural human IgG antibody (HIG001677) (ligand) had no binding affinity for any of the antigens (analytes) used except for the South African mutant strain (BA4.&BA.5 strains). Even the weakest analyte (derived from the South African mutant BA.2 strain) had a binding affinity (K D value) of 8.577 nM. In addition, the antibody binding to analytes derived from the Indian mutant strains (B.1.617.1 and B.1.617.2 strains) is strong and almost no dissociation is observed, so the dissociation rate (Kd) is at the detection limit. It became the following.
IgA human IgG antibody (HIG001677A1) (ligand) has strong binding affinity (K D value) for all antigens (analytes) used, and the weakest analyte (South African variant (B.1.1.529) A binding affinity (K D value) of 17.25 nM was also observed for the strain (Strain)). Additionally, for analytes derived from the Wuhan strain, E484K mutant, Y453F mutant, UK mutant, Indian mutant (B.1.617.1 and B.1.617.2 strains), California mutant, and Peruvian mutant. The dissociation rate (Kd) was below the detection limit because antibody binding was strong and dissociation was hardly observed.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(実施例5.競合ELISA法による抗体の結合阻害評価)
 本実施例では競合的ELISA法を用いて天然ヒトIgG抗体(HIG001677)およびIgA化ヒトIgG抗体(HIG001677A1)の結合阻害作用を評価した。具体的には、ヒトACE2タンパク質に対して、SARS-CoV2のスパイクタンパク質(S1ドメインのRBD領域)と天然ヒトIgG抗体またはIgA化ヒトIgG抗体とを競合させ、その結合阻害率を評価した。また天然ヒトIgG抗体およびIgA化ヒトIgG抗体の対照として、公知の先行抗体(AZD1061、AZD8895、LY_CoV16、LY_CoV555、REGN10933、REGN10987、S309、ADG2)および市販抗体(ABT#03984(Active Motif社、91349)、ABT#03985(Active Motif社、91361)、ABT#04347(Active Motif社、91377))を用いた。IgA化ヒトIgG抗体(HIG001677A1)は上記実施例4と同様に培養上清からCaptureSelec IgA Affinity Matrix(Thermo Scientific、19428801L (1L))を用いて精製した抗体を用いた。天然ヒトIgG抗体(HIG001677)および先行抗体は、上記実施例4と同様に培養上清からProtein G Sepharose 4 Fast Flowで精製したものを用いた。またELISA法はSARS-CoV-2 Anti-RBD Antibody Profiling Kit (MBL, Code No. 5370)を用い添付のプロトコルに基づき実施した。先行抗体であるADG2の予測により構築したアミノ酸配列をコードする塩基配列と配列番号との関係を下記表に示す。
Figure JPOXMLDOC01-appb-T000022
(Example 5. Antibody binding inhibition evaluation by competitive ELISA method)
In this example, the binding inhibition effect of a natural human IgG antibody (HIG001677) and an IgA human IgG antibody (HIG001677A1) was evaluated using a competitive ELISA method. Specifically, the SARS-CoV2 spike protein (RBD region of the S1 domain) competed with a natural human IgG antibody or an IgA-modified human IgG antibody against the human ACE2 protein, and the binding inhibition rate was evaluated. In addition, as controls for natural human IgG antibodies and IgA-ized human IgG antibodies, we used known prior antibodies (AZD1061, AZD8895, LY_CoV16, LY_CoV555, REGN10933, REGN10987, S309, ADG2) and commercially available antibodies (ABT#03984 (Active Motif, 91349)). , ABT#03985 (Active Motif, 91361), ABT#04347 (Active Motif, 91377)). As the IgA human IgG antibody (HIG001677A1), an antibody purified from the culture supernatant using CaptureSelect IgA Affinity Matrix (Thermo Scientific, 19428801L (1L)) was used in the same manner as in Example 4 above. The natural human IgG antibody (HIG001677) and the preceding antibody were purified from the culture supernatant using Protein G Sepharose 4 Fast Flow in the same manner as in Example 4 above. In addition, the ELISA method was performed using the SARS-CoV-2 Anti-RBD Antibody Profiling Kit (MBL, Code No. 5370) based on the attached protocol. The table below shows the relationship between the nucleotide sequence encoding the amino acid sequence constructed based on the prediction of the preceding antibody ADG2 and the sequence number.
Figure JPOXMLDOC01-appb-T000022
5-1.抗体の調製
 各抗体はキットに附属のReaction bufferにて、それぞれ2μg/ml、1 μg/ml、0.5 μg/ml、0.25μg/ml、0.125μg/ml、0.0625μg/ml、0.03125μg/ml、0.015625μg/mlに100μlずつ調製した。その後、Positive controlをReaction bufferで4倍希釈になるよう100μl調製し、BlankとしてReaction bufferを100μl準備した。
5-1. Preparation of antibodies Each antibody was prepared at 2 μg/ml, 1 μg/ml, 0.5 μg/ml, 0.25 μg/ml, 0.125 μg/ml, 0.0625 μg/ml, 0.03125 μg/ml, respectively, in the Reaction buffer provided with the kit. 100 μl each was prepared at 0.015625 μg/ml. Thereafter, 100 μl of the positive control was prepared so as to be diluted 4 times with Reaction buffer, and 100 μl of Reaction buffer was prepared as a blank.
5-2.RBDタンパク質の調製
 RBDタンパク質として、下記表の天然型(武漢型)および変異型SARS-CoV2由来のスパイクタンパク質(S1ドメインのRBD領域またはTrimer領域)を用いた。各種RBDタンパク質はそれぞれ最終濃度0.3 pmolとなるようにReaction bufferを用いて調製した。
5-2. Preparation of RBD Protein As the RBD protein, the spike proteins (RBD region or Trimer region of S1 domain) derived from the natural type (Wuhan type) and mutant SARS-CoV2 shown in the table below were used. Each RBD protein was prepared using Reaction buffer to a final concentration of 0.3 pmol.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
5-3.競合的ELISA法
 調製した各種RBDタンパク質をPrimary reaction microplateに100μl加えた。その後、調製した各抗体、Positive control、または、BlankをRBDタンパク質の入ったPrimary reaction microplateに100μlずつ混合し、室温(20-25℃)で30分間反応させた。30分の反応後、各wellより抗体-RBD混合液を100μlずつACE2 coated microplateへ移し、室温(20-25℃)で30分間反応させた。30分の反応後、ACE2 coated microplateより、反応溶液を除き洗浄液(超純水で10倍希釈したWash concentrate)を350μl加え、洗浄した。洗浄液を交換することで合計4回洗浄を行った。洗浄後、溶液をできる限り除き、Conjugate diluentで101倍希釈したHRP conjugated antibodyを100μlずつACE2 coated microplateへ移し、室温(20-25℃)で30分間反応させた。反応後、ACE2 coated microplateより、反応溶液を除き洗浄液を350μl加え、洗浄した。Well内の洗浄液を交換することで合計4回洗浄を行った。洗浄後、溶液をできる限り除き、Substrate solutionを100μlずつACE2 coated microplateへ移し、室温(20-25℃)で15分間反応させた。15分後、ACE2 coated microplateにStop solutionを100μlずつ加え反応を停止させ、450 nmの吸光度を測定した。
5-3. Competitive ELISA method 100 μl of each prepared RBD protein was added to the primary reaction microplate. Thereafter, 100 μl of each prepared antibody, positive control, or blank was mixed in a primary reaction microplate containing RBD protein, and reacted at room temperature (20-25°C) for 30 minutes. After 30 minutes of reaction, 100 μl of the antibody-RBD mixture was transferred from each well to the ACE2 coated microplate and reacted for 30 minutes at room temperature (20-25°C). After 30 minutes of reaction, the reaction solution was removed from the ACE2 coated microplate, and 350 μl of a washing solution (Wash concentrate diluted 10 times with ultrapure water) was added for washing. Washing was performed a total of 4 times by changing the washing solution. After washing, as much of the solution as possible was removed, and 100 μl of HRP conjugated antibody diluted 101 times with Conjugate diluent was transferred to an ACE2 coated microplate and reacted for 30 minutes at room temperature (20-25°C). After the reaction, the reaction solution was removed from the ACE2 coated microplate, and 350 μl of washing solution was added to wash it. Washing was performed a total of 4 times by replacing the washing solution in the well. After washing, as much of the solution as possible was removed, and 100 μl of each Substrate solution was transferred to an ACE2 coated microplate and reacted at room temperature (20-25°C) for 15 minutes. After 15 minutes, 100 μl of Stop solution was added to each ACE2 coated microplate to stop the reaction, and the absorbance at 450 nm was measured.
5-4.結果
 競合ELISAによる試験結果を表8A~Gに示す。表8A~Gに示す表は、各濃度で抗体を添加した際のヒトACE2タンパクとSARS-CoV2由来スパイクタンパク質との結合阻害率を示す。結合阻害率(%)は下記式より算出した。
 結合阻害率(%)=(1-サンプルのO.D. value/BlankのO.D. value)×100
 表8A~Gは各変異株由来のRBD領域に対する結合阻害率を示す。表8H~Jは各変異株由来のRBD領域またはTrimer領域に対する結合阻害率を示す。に示すように、本発明の抗体であるHIG001677およびHIG001677A1は天然型(武漢型)および変異型のいずれのSARS-CoV2由来スパイクタンパク質(S1ドメインのRBD領域)に対しても高い阻害率を示した。特に、HIG001677およびHIG001677A1はオミクロン株(BA.2系統およびBA.3系統)にも45%以上の阻害率を示した(2μg/ml区)。オミクロン株(B.1.1.529系統)に対しては、HIG001677A1が試験した各抗体の中で唯一30%以上の阻害率を示した(2μg/ml区)。一方、対照群である公知の抗体や市販抗体は、オミクロン株(BA.2系統)に対するAZD1061の結果を除き、変異型により阻害活性を示さない、または、変異株により天然ヒトIgG抗体およびIgA化ヒトIgG抗体と比較して低い阻害率を示した。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
5-4. Results The competitive ELISA test results are shown in Tables 8A-G. Tables 8A to 8G show the inhibition rate of binding between human ACE2 protein and SARS-CoV2-derived spike protein when antibodies were added at various concentrations. The binding inhibition rate (%) was calculated using the following formula.
Binding inhibition rate (%) = (1 - OD value of sample/OD value of Blank) x 100
Tables 8A to 8G show the inhibition rate of binding to the RBD region derived from each mutant strain. Tables 8H to 8J show the binding inhibition rate for the RBD region or Trimer region derived from each mutant strain. As shown in , the antibodies of the present invention, HIG001677 and HIG001677A1, exhibited high inhibition rates against both the native (Wuhan type) and mutant SARS-CoV2-derived spike proteins (RBD region of S1 domain). . In particular, HIG001677 and HIG001677A1 also showed an inhibition rate of 45% or more against Omicron strains (BA.2 and BA.3 strains) (2 μg/ml group). For the Omicron strain (B.1.1.529 strain), HIG001677A1 was the only antibody that showed an inhibition rate of 30% or more among the antibodies tested (2 μg/ml group). On the other hand, known antibodies and commercially available antibodies that serve as a control group, except for the results of AZD1061 against Omicron strain (BA.2 strain), show no inhibitory activity depending on the mutant type, or have a natural human IgG antibody and an IgA-activated antibody due to the mutant strain. It showed a lower inhibition rate compared to human IgG antibody.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 また得られた阻害率の結果より、各抗体のIC50(ng/ml)を算出した。IC50は以下の式により算出した。図10Aは表8A~8Dの結果に対応し、図10Bは表8H~8Jの結果に対応する。
 IC50=10^(LOG(A/B)*(50-C)/(D-C)+LOG(B))
A: 50%結合阻害率を挟む高い濃度, B: 50%結合阻害率を挟む低い濃度, C: Bでの阻害率, D: Aでの阻害率
 図10に示すように、本発明の抗体であるHIG001677およびHIG001677A1は試験に用いた全ての株に対して阻害活性を示し、オミクロン株以外の株に対してIC50を算出することができた。特にHIG001677A1はオミクロン株に対して2μg/mlで最も高い阻害率(31.48%)を示した。一方で、対照とした公知抗体はいずれかの株に対して阻害活性を有していないか、変異株によりHIG001677およびHIG001677A1よりもIC50の値が大きかった。
Furthermore, the IC50 (ng/ml) of each antibody was calculated from the obtained inhibition rate results. IC50 was calculated using the following formula. FIG. 10A corresponds to the results in Tables 8A-8D, and FIG. 10B corresponds to the results in Tables 8H-8J.
IC50=10^(LOG(A/B)*(50-C)/(DC)+LOG(B))
A: High concentration between 50% binding inhibition rate, B: Low concentration between 50% binding inhibition rate, C: Inhibition rate at B, D: Inhibition rate at A, as shown in FIG. 10, the antibody of the present invention HIG001677 and HIG001677A1 showed inhibitory activity against all strains used in the test, and IC50 could be calculated against strains other than Omicron strain. In particular, HIG001677A1 showed the highest inhibition rate (31.48%) against Omicron strain at 2 μg/ml. On the other hand, the known antibodies used as controls either had no inhibitory activity against any of the strains, or had higher IC50 values than HIG001677 and HIG001677A1 depending on the mutant strain.
(実施例6. シュードウイルスを用いた中和活性評価1)
 コロナウイルスの宿主細胞への侵入は、三量体膜貫通スパイク(S)糖タンパク質によって媒介される。S糖タンパク質は表面に露出しており、SARS-CoV-2受容体であるヒトアンジオテンシン変換酵素2(ACE2)と結合して宿主細胞への侵入を媒介している。
 本実施例ではACE2強制発現細胞を用いて、天然ヒトIgG抗体またはIgA化ヒトIgG抗体によるシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)の感染阻害を評価した。また天然ヒトIgG抗体およびIgA化ヒトIgG抗体の対照として、市販抗体(ABT#03985(Active Motif社、91361)、ABT#04348(Active Motif社、91379))を用いた。被験抗体の情報を下記表に示す。
(Example 6. Neutralization activity evaluation 1 using pseudovirus)
Coronavirus entry into host cells is mediated by the trimeric transmembrane spike (S) glycoprotein. The S-glycoprotein is surface-exposed and binds to the SARS-CoV-2 receptor human angiotensin-converting enzyme 2 (ACE2) to mediate entry into host cells.
In this example, ACE2 forced expression cells were used to evaluate the inhibition of pseudovirus (lentivirus having S glycoprotein of coronavirus in the envelope protein) infection by natural human IgG antibody or IgA-modified human IgG antibody. In addition, commercially available antibodies (ABT#03985 (Active Motif, 91361), ABT#04348 (Active Motif, 91379)) were used as controls for the natural human IgG antibody and the IgA-modified human IgG antibody. Information on the test antibodies is shown in the table below.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
6-1.Human ACE2安定発現細胞の作製
 Expi293F cell(Thermo Fisher Scientific, cat#A14527)をExpi293 Expression Medium (Thermo Fisher Scientific, cat#A1435102)を用い、8 % CO2存在下37℃で振盪培養を行った。
 トランスフェクション前日にExpi293F cellを2 x 106 cells/mlの濃度で継代し、一晩培養した。Expi Fectamine 293 Transfection kit (Thermo Fisher Scientific, cat#A14524)に含まれるExpiFectamine 293 Reagent 80μlとOpti-MEMI 1420μlを混合し、5分間インキュベート後、タンパク質発現プラスミドベクター 30μgを含むOpti-MEMI 溶液1500μlと混合し、室温で20 分間インキュベートしトランスフェクション溶液とした。125mlフラスコに25.5mlの培地中7.5 x 10cellsになるように当日継代したExpi293F cellへ上記のトランスフェクション溶液を添加し、トランスフェクションを行った。なおHuman ACE2発現プラスミドベクターは、pcDNA3.2 V5-DEST-Hygベクターに組換え反応を利用してHuman ACE2 (angiotensin I converting enzyme 2)タンパク質(NP_068576.1;配列番号39)のORF(配列番号40)をコードする塩基配列を挿入することにより構築したプラスミドベクターである(配列番号41)。トランスフェクション48時間後、ExpiFectamine 293 Transfection kit に含まれるExpiFectamine 293 Transfection enhancer 1, 150μlとExpiFectamine 293 Transfection enhancer 2, 1.5mlの混合溶液を細胞に添加した。使用した発現プラスミドベクターはHygromycin耐性遺伝子を有するため、50 μg/ml hygromycin B(Thermo Fisher Scientific, cat#10687010)を含む培地で培養し、各タンパク質発現プラスミドベクターが導入された細胞の選択を行った。得られた細胞をそれぞれSSC#000364 (human ACE2安定発現細胞)とした。
6-1. Preparation of cells stably expressing Human ACE2 Expi293F cells (Thermo Fisher Scientific, cat#A14527) were cultured with shaking at 37°C in the presence of 8% CO 2 using Expi293 Expression Medium (Thermo Fisher Scientific, cat#A1435102).
The day before transfection, Expi293F cells were passaged at a concentration of 2 x 10 6 cells/ml and cultured overnight. Mix 80 μl of ExpiFectamine 293 Reagent included in the Expi Fectamine 293 Transfection kit (Thermo Fisher Scientific, cat#A14524) and 1420 μl of Opti-MEMI, incubate for 5 minutes, and then mix with 1500 μl of Opti-MEMI solution containing 30 μg of protein expression plasmid vector. , and incubated at room temperature for 20 minutes to prepare a transfection solution. The above transfection solution was added to Expi293F cells that had been passaged on the same day in a 125 ml flask to 7.5 x 10 7 cells in 25.5 ml of medium, and transfection was performed. The Human ACE2 expression plasmid vector is a pcDNA3.2 V5-DEST-Hyg vector that contains the ORF (SEQ ID NO: 40) of the Human ACE2 (angiotensin I converting enzyme 2) protein (NP_068576.1; SEQ ID NO: 39) using a recombination reaction. This is a plasmid vector constructed by inserting a nucleotide sequence encoding ) (SEQ ID NO: 41). 48 hours after transfection, a mixed solution of 150 μl of ExpiFectamine 293 Transfection enhancer 1 and 1.5 ml of ExpiFectamine 293 Transfection enhancer 2 included in the ExpiFectamine 293 Transfection kit was added to the cells. Since the expression plasmid vectors used have a Hygromycin resistance gene, they were cultured in a medium containing 50 μg/ml hygromycin B (Thermo Fisher Scientific, cat#10687010), and cells into which each protein expression plasmid vector had been introduced were selected. . The obtained cells were designated as SSC#000364 (human ACE2 stably expressing cells).
 次いで、Human ACE2安定発現細胞のクローニングを行った。上記で作製したHuman ACE2安定発現細胞(SSC#000364)群について抗ACE2抗体(R&D systems, cat#MAB9332)による免疫染色を行い、Cell Sorter(SONY, cat#SH800S)により解析した。Human ACE2安定発現細胞(SSC#000364)群のうちACE2の高発現細胞6.8%を含む範囲にゲートを設定後、Cell sortによりACE2高発現細胞群を取得し、SSC#000442とした。さらにSSC#000442について同様の解析を行い、SSC#000442のACE2高発現細胞42.42%を含む範囲にゲートを設定後、Single cell sortにより細胞のクローニングを行った。取得した11クローン (SSC#000465-475) についてフローサイトメトリによる解析およびウエスタンブロット解析によりACE2の発現を確認した。そのうちSSC#000465がACE2の発現量が高く、フローサイトメトリによる解析の波形がシャープであったため以下の試験に用いることとした。 Next, cells stably expressing Human ACE2 were cloned. The human ACE2 stably expressing cell group (SSC#000364) prepared above was immunostained with anti-ACE2 antibody (R&D systems, cat#MAB9332) and analyzed using Cell Sorter (SONY, cat#SH800S). After setting a gate in the range that included 6.8% of the cells with high ACE2 expression among the human ACE2 stably expressing cells (SSC#000364) group, the cell group with high ACE2 expression was obtained by cell sort and designated as SSC#000442. Furthermore, a similar analysis was performed on SSC#000442, and after setting a gate in a range that included 42.42% of cells with high ACE2 expression in SSC#000442, cells were cloned by Single cell sort. The expression of ACE2 was confirmed for the obtained 11 clones (SSC#000465-475) by flow cytometry analysis and Western blot analysis. Among them, SSC#000465 had a high expression level of ACE2 and had a sharp waveform when analyzed by flow cytometry, so it was decided to use it for the following test.
6-2.ACE2強制発現細胞の播種と抗体,ウイルス液添加
 各濃度に調製した被験抗体溶液3μLとシュードウイルス溶液(VectorBuilder社 Cat. No. LVL-S2[VB900088-2549mex])0.75 μLを混和し、氷上で10分間インキュベートした。インキュベート終了後、Polybreneを100分の1容量加え、ACE2強制発現細胞(SSC#000465: Expi293F cellにACE2を強制発現させた細胞)を2 x 103 cells/ 20 μLで播種した384ブラッククリアプレートに10 μLずつ添加した。プレートは測定までCO2インキュベーター(37℃, 5% CO2)で48時間培養した。天然ヒトIgG抗体またはIgA化ヒトIgG抗体の最終的な処理濃度は、1μg/mL、0.5μg/mL、0.25μg/mL、0.1μg/mL、または、0.01μg/mLとした。市販抗体の最終的な処理濃度は、1μg/mL、0.1μg/mL、または、0.01μg/mLとした。
6-2. Seeding of ACE2 forced expression cells and addition of antibody and virus solution Mix 3 μL of test antibody solution prepared at each concentration and 0.75 μL of pseudovirus solution (VectorBuilder Cat. No. LVL-S2 [VB900088-2549mex]), and keep on ice for 10 minutes. Incubated for minutes. After incubation, add 1/100 volume of Polybrene and seed ACE2 forced expression cells (SSC#000465: Expi293F cells with forced expression of ACE2) at 2 x 10 3 cells/20 μL on a 384 black clear plate. Added 10 μL each. The plates were incubated in a CO 2 incubator (37°C, 5% CO 2 ) for 48 hours until measurement. The final treatment concentration of natural human IgG antibody or IgA-ized human IgG antibody was 1 μg/mL, 0.5 μg/mL, 0.25 μg/mL, 0.1 μg/mL, or 0.01 μg/mL. The final treatment concentration of commercially available antibodies was 1 μg/mL, 0.1 μg/mL, or 0.01 μg/mL.
6-2.ACE2強制発現細胞の蛍光値測定
 測定プレートを室温で30分間インキュベート後、ONE-Glo Luciferase Assay System(Promega社Cat. No. PRE6120)を10 μL/ウェルずつ添加した。本実施例に用いたシュードウイルスはルシフェラーゼ遺伝子が導入されており、当該シュードウイルスが感染した細胞は蛍光を発する。室温で3分間インキュベート後、Enspireマルチモードプレートリーダー(Perkin Elmer社)で蛍光値を測定した。感染阻害率は以下の計算式で算出した。
   感染阻害率(%)=100-{(抗体添加群の測定値/抗体非添加群の測定値)x100}
6-2. Fluorescence value measurement of cells forced to express ACE2 After incubating the measurement plate at room temperature for 30 minutes, ONE-Glo Luciferase Assay System (Promega Cat. No. PRE6120) was added at 10 μL/well. The pseudovirus used in this example has a luciferase gene introduced therein, and cells infected with the pseudovirus emit fluorescence. After incubation for 3 minutes at room temperature, fluorescence values were measured using an Enspire multimode plate reader (Perkin Elmer). The infection inhibition rate was calculated using the following formula.
Infection inhibition rate (%) = 100 - {(measured value of antibody added group/measured value of non-antibody added group) x 100}
6-3.結果
 各処理濃度における各種抗体のシュードウイルスに対する感染阻害率を表10、図11~14に示す。市販抗体のポジティブコントロールとして使用したABT#03985の感染阻害率は1 μg/mLで97.9%、0.1 μg/mLで51.0%、0.01 μg/mLで22.0%だった。また、ネガティブコントロールとして使用したABT#04348は1 μg/mLで49.5%、0.1 μg/mLで14.5%、0.01 μg/mLで13.9%であった(表8は小数点以下四捨五入した値を示す)。
 本試験において、天然ヒトIgG抗体およびIgA化ヒトIgG抗体は、ポジティブコントロールの市販抗体とほぼ同程度の感染阻害率を示した。
6-3. Results Table 10 and Figures 11 to 14 show the infection inhibition rates of the various antibodies against the pseudovirus at each treatment concentration. The infection inhibition rate of ABT#03985, which was used as a positive control for commercially available antibodies, was 97.9% at 1 μg/mL, 51.0% at 0.1 μg/mL, and 22.0% at 0.01 μg/mL. Furthermore, ABT#04348 used as a negative control was 49.5% at 1 μg/mL, 14.5% at 0.1 μg/mL, and 13.9% at 0.01 μg/mL (Table 8 shows values rounded to the nearest whole number).
In this test, the natural human IgG antibody and the IgA-conjugated human IgG antibody showed infection inhibition rates that were approximately the same as the positive control commercially available antibody.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
(実施例6-2. シュードウイルスを用いた中和活性評価2)
 本実施例では、野生株または各変異株のRBD領域を有する異なるシュードウイルスを用いた以外は、実施例6-1と同様の手法および条件にて天然ヒトIgG抗体またはIgA化ヒトIgG抗体によるシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)の感染阻害を評価した。本実施例に用いたシュードウイルス液(ベクタービルダー・ジャパン株式会社製)の情報を下記表10Bに示す。
Figure JPOXMLDOC01-appb-T000037
(Example 6-2. Neutralization activity evaluation 2 using pseudovirus)
In this example, pseudoviruses using natural human IgG antibodies or IgA-ized human IgG antibodies were used in the same manner and under the same conditions as in Example 6-1, except that different pseudoviruses having the RBD region of the wild strain or each mutant strain were used. Inhibition of virus infection (a lentivirus with coronavirus S glycoprotein in its envelope protein) was evaluated. Information on the pseudovirus solution (manufactured by Vector Builder Japan Co., Ltd.) used in this example is shown in Table 10B below.
Figure JPOXMLDOC01-appb-T000037
 天然ヒトIgG抗体(HIG001697)またはIgA化ヒトIgG抗体(HIG001697A1)のシュードウイルスに対するIC50を表10Cに示す。各処理濃度における各抗体のシュードウイルスに対する感染阻害率を表10Dおよび表10Eに示す。
 本試験において、天然ヒトIgG抗体は武漢型、デルタ型、オミクロン型に対して中和活性を示し、またIgA化ヒトIgG抗体は武漢型、デルタ型、アルファ型、
オミクロン型に対して中和活性を示した。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Table 10C shows the IC 50 of the natural human IgG antibody (HIG001697) or the IgA-conjugated human IgG antibody (HIG001697A1) against the pseudovirus. Tables 10D and 10E show the infection inhibition rate of each antibody against the pseudovirus at each treatment concentration.
In this study, natural human IgG antibodies showed neutralizing activity against Wuhan type, delta type, and omicron type, and IgA human IgG antibodies showed neutralizing activity against Wuhan type, delta type, alpha type,
It showed neutralizing activity against Omicron type.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
(実施例7. シュードウイルスを用いた中和活性評価2)
 本実施例では、IgA化ヒトIgG抗体(HIG001677A1)によるシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)の感染阻害を評価した。具体的には、ACE2およびTMPRSS2を過剰発現したHEK293細胞を、GFPおよびSARS-CoV-2スパイク(S)蛋白質(Vector Builder LVL-S2DG(VB200088-2229upx))を発現するシュードレンチウイルスに感染させる系を用いて実施した。なお本試験による中活性評価はCharles River Discovery Research Services UK Ltdに外注した。
 全ての試験は、各条件について3回行った。本実施例ではpositive controlとしてAnti-SARS-CoV-2 S1 antibody(Amsbio;Cat # AMS.SAD-S35、Lot # S35-206RF1-TL)を用い、アイソタイプ対照抗体としてIgA isotype control antibody(Invitrogen;Cat # 31148、Lot # WF3292542)を用いた。
(Example 7. Neutralization activity evaluation 2 using pseudovirus)
In this example, the inhibition of infection by a pseudovirus (a lentivirus having coronavirus S glycoprotein in its envelope protein) by an IgA human IgG antibody (HIG001677A1) was evaluated. Specifically, we used a system in which HEK293 cells overexpressing ACE2 and TMPRSS2 were infected with a pseudolentivirus expressing GFP and SARS-CoV-2 spike (S) protein (Vector Builder LVL-S2DG (VB200088-2229upx)). It was carried out using The intermediate activity evaluation using this test was outsourced to Charles River Discovery Research Services UK Ltd.
All tests were performed in triplicate for each condition. In this example, Anti-SARS-CoV-2 S1 antibody (Amsbio; Cat # AMS.SAD-S35, Lot # S35-206RF1-TL) was used as a positive control, and IgA isotype control antibody (Invitrogen; Cat # 31148, Lot # WF3292542).
7-1.シュードウイルスを用いた中和活性試験
 ACE2/TMPRSS2を過剰発現するHEK293細胞を96ウェルプレート中に約30%のコンフルエンスで播種した。次いで、2時間インキュベートし細胞を沈降させてプレートに付着させた。試験抗体(HIG001677およびHIG001677A1)およびIgAアイソタイプ対照抗体を、6つの濃度(32、8、2、0.5、0.125、0.03125μg/ml)となるように調製した。各濃度の抗体をGFPおよびSARS-CoV-2スパイク蛋白質を発現しているシュードウイルスと共に1時間インキュベートした。1時間のインキュベート後、抗体とシュードウイルスの混合物を細胞に添加した。シュードウイルスの感染を補助するために、細胞を1000×gで1時間回転させた。抗体は、アッセイの過程を通して培養中に維持した。IncuCyte Zoomを用いて、12時間ごとに位相コントラストおよび緑色蛍光画像を撮影した。
7-1. Neutralization activity test using pseudovirus HEK293 cells overexpressing ACE2/TMPRSS2 were seeded at approximately 30% confluence in a 96-well plate. The cells were then incubated for 2 hours to sediment and adhere to the plate. Test antibodies (HIG001677 and HIG001677A1) and IgA isotype control antibodies were prepared at six concentrations (32, 8, 2, 0.5, 0.125, 0.03125 μg/ml). Each concentration of antibody was incubated for 1 hour with pseudoviruses expressing GFP and SARS-CoV-2 spike proteins. After 1 hour of incubation, the antibody and pseudovirus mixture was added to the cells. To aid pseudovirus infection, cells were spun at 1000 × g for 1 h. Antibodies were maintained in culture throughout the course of the assay. Phase contrast and green fluorescence images were taken every 12 hours using an IncuCyte Zoom.
7-2.結果
 中和活性試験の結果を下記表11A~11Lに示す。表9中、Confluence areaは細胞同士が密着して生存している領域を示し、ウェル上の表面積に対する割合として示す。GFP expressing areaはSARS-CoV-2がVero E6細胞に感染した結果、GFPの蛍光を生じている細胞の領域を示し、ウェル上の表面積に対する割合として示す。HIG001677A1は少なくとも22μg/mlの濃度で、シュードウイルスの感染を完全に阻害した。また、120時間経過後では、HIG001677A1が0.5μg/mlの濃度で約2.5%のGFPが検出され、0.125μg/mlの濃度で約21%のGFPが検出された。なお、0.032μg/mLの濃度では、シュードウイルスの感染阻害は認められなかった。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
7-2. Results The results of the neutralization activity test are shown in Tables 11A to 11L below. In Table 9, Confluence area indicates an area where cells live in close contact with each other, and is expressed as a percentage of the surface area on the well. The GFP expression area indicates the area of cells that generates GFP fluorescence as a result of SARS-CoV-2 infection of Vero E6 cells, and is expressed as a percentage of the surface area on the well. HIG001677A1 completely inhibited pseudovirus infection at concentrations of at least 22 μg/ml. Furthermore, after 120 hours, about 2.5% GFP was detected at a concentration of 0.5 μg/ml of HIG001677A1, and about 21% GFP was detected at a concentration of 0.125 μg/ml. In addition, no inhibition of pseudovirus infection was observed at a concentration of 0.032 μg/mL.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
(実施例8.SARS-CoV-2を用いた中和活性評価1)
 本実施例では、IgA化ヒトIgG抗体(HIG001677A1)によるSARS-CoV-2の感染阻害を評価した。具体的には、TMPRESS2過剰発現させたVero E6細胞を、SARS-CoV-2/human/Liverpool/REMRQ001/2020に感染させる系を用いて実施した。なお本試験による中活性評価はCharles River Discovery Research Services UK Ltdに外注した。全ての試験は、各条件について3回行った。本実施例では対照としてIgA isotype control antibody(Invitrogen;Cat # 31148、Lot # WF3292542)、WHO standard pooled convalescent plasma from SARS-CoV-2 patients (dilution from neat)を用いた。
(Example 8. Neutralization activity evaluation 1 using SARS-CoV-2)
In this example, inhibition of SARS-CoV-2 infection by an IgA human IgG antibody (HIG001677A1) was evaluated. Specifically, the experiment was carried out using a system in which Vero E6 cells overexpressing TMPRESS2 were infected with SARS-CoV-2/human/Liverpool/REMRQ001/2020. The intermediate activity evaluation using this test was outsourced to Charles River Discovery Research Services UK Ltd. All tests were performed in triplicate for each condition. In this example, IgA isotype control antibody (Invitrogen; Cat # 31148, Lot # WF3292542) and WHO standard pooled convalescent plasma from SARS-CoV-2 patients (dilution from neat) were used as a control.
8-1.SARS-CoV-2を用いた中和活性試験
 TMPRSS2を過剰発現させたVero E6細胞を標準条件下で培養し、融合するまで96ウェルプレートに播種した。培地を除去し、実験条件に従って各濃度となるように抗体を添加した。次いで、感染前1時間、細胞を抗体と共にインキュベートした。1時間後、SARS-CoV-2を単一濃度で添加した。非感染プレートもセットアップした。感染後、同等の濃度の抗体を含むオーバーレイ培地を添加した。プレートを48時間インキュベートした後、抗SARSヌクレオカプシド(N)抗体で染色した。細胞を画像化することで感染率を測定し、非感染プレートの感染率から各試験区の感染阻害率を算出した。
 またSARS-CoV-2を感染させずに各濃度でHIG001677A1またはIgA isotype control antibodyを処置した群に対してMTTアッセイを行い、細胞生存率を評価した。
8-1. Neutralizing activity test using SARS-CoV-2 Vero E6 cells overexpressing TMPRSS2 were cultured under standard conditions and seeded in 96-well plates until confluence. The medium was removed, and antibodies were added at various concentrations according to the experimental conditions. Cells were then incubated with antibodies for 1 hour before infection. After 1 hour, SARS-CoV-2 was added at a single concentration. Non-infected plates were also set up. After infection, overlay medium containing equivalent concentrations of antibodies was added. Plates were incubated for 48 hours and then stained with anti-SARS nucleocapsid (N) antibody. The infection rate was measured by imaging the cells, and the infection inhibition rate for each test group was calculated from the infection rate of the non-infected plate.
In addition, MTT assay was performed on groups treated with HIG001677A1 or IgA isotype control antibody at various concentrations without SARS-CoV-2 infection to evaluate cell viability.
8-2.結果
 各抗体を用いた中和活性試験の結果を感染阻害率として表12Aに示す。表12中、WHO standard pooled convalescent plasmaの濃度は希釈倍率を示す(例えば、50.000は、50分の1希釈を意味する)。HIG001677A1は、試験した全濃度でSARS-CoV-2感染を阻害し、EC50値は<0.031μg/mLと推定された。またSARS-CoV-2を感染させずにHIG001677A1またはIgA isotype control antibodyを処置した群の細胞生存率を表12Bに示す。HIG001677A1は32μg/mlとなるように細胞に対して添加しても細胞生存率に影響を与えなかった。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
8-2. Results The results of the neutralization activity test using each antibody are shown as infection inhibition rates in Table 12A. In Table 12, the concentration of WHO standard pooled convalescent plasma indicates the dilution factor (for example, 50.000 means 1/50 dilution). HIG001677A1 inhibited SARS-CoV-2 infection at all concentrations tested, with an estimated EC50 value of <0.031 μg/mL. Table 12B also shows the cell survival rate of the group treated with HIG001677A1 or IgA isotype control antibody without being infected with SARS-CoV-2. HIG001677A1 did not affect cell viability even when added to cells at 32 μg/ml.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
(実施例9.SARS-CoV-2を用いた中和活性評価2)
 本実施例では、実施例8と同様の手法を用いて、IgA化ヒトIgG抗体(HIG001677A1)によるSARS-CoV-2の感染阻害を評価した。本実施例ではSARS-CoV-2として武漢(Wuhan)株(野生型)、デルタ(Delta)株、および、オミクロン(Omicron)株を用いた。また本実施例では対照として先行抗体(REGN10987、AZD1061、LY_CoV16、AZD8895、REGN10933、S309)、IgA isotype control antibody(Invitrogen;Cat # 31148、Lot # WF3292542)、Nanobody抗体(Absolute Antibody;Cat # Ab02013-1.159、Lot # Sb#15)、WHO standard pooled convalescent plasma from SARS-CoV-2 patients (dilution from neat)を用いた。本試験による中活性評価はCharles River Discovery Research Services UK Ltdに外注した。中和活性試験は実施例8の「8-1.SARS-CoV-2を用いた中和活性試験」と同じ条件にて実施した。全ての試験は、各条件について3回行った。
(Example 9. Neutralization activity evaluation 2 using SARS-CoV-2)
In this example, the same method as in Example 8 was used to evaluate the inhibition of SARS-CoV-2 infection by IgA human IgG antibody (HIG001677A1). In this example, the Wuhan strain (wild type), Delta strain, and Omicron strain were used as SARS-CoV-2. In addition, in this example, as controls, we used preceding antibodies (REGN10987, AZD1061, LY_CoV16, AZD8895, REGN10933, S309), IgA isotype control antibody (Invitrogen; Cat # 31148, Lot # WF3292542), and Nanobody antibody (Absolute Antibody; Cat # Ab02013-1.159). , Lot # Sb#15), WHO standard pooled convalescent plasma from SARS-CoV-2 patients (dilution from neat) was used. The intermediate activity evaluation using this test was outsourced to Charles River Discovery Research Services UK Ltd. The neutralization activity test was conducted under the same conditions as in Example 8, "8-1. Neutralization activity test using SARS-CoV-2." All tests were performed in triplicate for each condition.
9-1.結果
 各抗体の50%効果濃度(EC50)および50%細胞毒性濃度(CC50)を表13に示す。表13が示すように、IgA化ヒトIgG抗体(HIG001677A1)は武漢(Wuhan)株(野生型)、デルタ(Delta)株、および、オミクロン(Omicron)株に対してEC50の値が0.023以下であり、CC50よりも低い濃度であった。特にオミクロン株に対するEC50の値は、他の先行抗体等と比較して一桁低い濃度であった。なおLY_CoV16は濃度を高めてもオミクロン株に対する阻害活性を得ることができずCC50を算出することができなかったことを示す。
Figure JPOXMLDOC01-appb-T000055
9-1. Results The 50% effective concentration (EC50) and 50% cytotoxic concentration (CC50) of each antibody are shown in Table 13. As shown in Table 13, the IgA human IgG antibody (HIG001677A1) has an EC50 value of 0.023 or less against Wuhan strain (wild type), Delta strain, and Omicron strain. , the concentration was lower than CC50. In particular, the EC50 value for the Omicron strain was an order of magnitude lower than that of other preceding antibodies. It should be noted that LY_CoV16 could not obtain inhibitory activity against the Omicron strain even when the concentration was increased, indicating that CC50 could not be calculated.
Figure JPOXMLDOC01-appb-T000055
(実施例10.ELISA法による抗体-RBD結合評価)
 本実施例ではELISA法を用いて、SARS-CoV-2の変異株であるオミクロン株(BA.2系統)およびオミクロン株(BA.3系統)由来のRBDドメインに対する天然ヒトIgG抗体(HIG001677)およびIgA化ヒトIgG抗体(HIG001677A1)の結合能を評価した。また対照として、SARS-CoV-2に対する抗体医薬として公知の8つの先行抗体(AZD1061、AZD8895、LY-CoV16、LY-CoV555、REGN10933、REGN10987、S309、ADG2)を用いた。先行抗体は実施例3および5で調製および精製したものを用いた。
(Example 10. Antibody-RBD binding evaluation by ELISA method)
In this example, we used an ELISA method to develop a natural human IgG antibody (HIG001677) against the RBD domain from Omicron strain (BA.2 strain) and Omicron strain (BA.3 strain), which are mutant strains of SARS-CoV-2. The binding ability of IgA human IgG antibody (HIG001677A1) was evaluated. In addition, as controls, eight prior antibodies (AZD1061, AZD8895, LY-CoV16, LY-CoV555, REGN10933, REGN10987, S309, ADG2) known as antibody drugs against SARS-CoV-2 were used. The preceding antibodies prepared and purified in Examples 3 and 5 were used.
10-1.RBDタンパク質の固相化
 各種RBDタンパク質((オミクロン株(BA.1系統)由来RBD:Acro Biosystems (SPD-C522e, 5716-21C8F1-Z1) SARS-CoV-2 Spike RBD, His Tag (B.1.1.529/Omicron) (MALS verified) (Stock con. 0.6 mg/ml)、オミクロン株(BA.2系統)由来RBD:Acro Biosystems (SPD-C522g, 5911-222DF1-11F) SARS-CoV-2 Spike RBD, His Tag (BA.2/Omicron) (Stock con. 0.6 mg/ml))、オミクロン株(BA.3系統)由来RBD:Acro Biosystems (SPD-C522i, 6063-2238F1-11W) SARS-CoV-2 Spike RBD, His Tag (BA.3/Omicron) (Stock con. 0.2 mg/ml)、オミクロン株(BA.4・BA.5系統)由来RBD:AcroBio (SPD-C522r, 6363-225HF1-133) SARS-CoV-2 Spike RBD, His Tag (BA.4&BA.5/Omicron) (MALS verified) (Stock con. 400μg/ml))をそれぞれ0.6234375 pmolになるよう0.1 mol/L 炭酸-重炭酸バッファー(pH 9.6)で50μl/wellとなるように調製した(以下「RBD溶液」という。)。調製したRBD溶液をCorning(登録商標) 96-well Half Area Clear Flat Bottom Polystyrene High Bind Microplate (Corning 3690)に50μl加え、17時間、4℃に静置した。17時間後、RBD溶液を除き超純水で10倍希釈したsolution B (10X) (福島プロテインファクトリー, PA1110)にTween-20を0.02%加えた溶液(以下、洗浄液)を180μl加え、洗浄した。溶液を交換することで洗浄し、合計2回行った。洗浄工程後に洗浄液を除き、洗浄液で5倍希釈したBlocking One (ナカライテスク, 03953-95) を180μl加え、1時間室温(20-25℃)に静置した。1時間の静置の後、Blocking Oneを除き洗浄液を180μl加え、洗浄した。溶液を交換することで洗浄し、合計2回行った。 上記処理を行ったPlateをRBD coated microplateとし、使用まで洗浄液を180μl加え4℃で保存した。
10-1. Immobilization of RBD proteins Various RBD proteins (RBD derived from Omicron strain (BA.1 strain): Acro Biosystems (SPD-C522e, 5716-21C8F1-Z1) SARS-CoV-2 Spike RBD, His Tag (B.1.1. 529/Omicron) (MALS verified) (Stock con. 0.6 mg/ml), RBD derived from Omicron strain (BA.2 strain): Acro Biosystems (SPD-C522g, 5911-222DF1-11F) SARS-CoV-2 Spike RBD, His Tag (BA.2/Omicron) (Stock con. 0.6 mg/ml)), RBD derived from Omicron strain (BA.3 strain): Acro Biosystems (SPD-C522i, 6063-2238F1-11W) SARS-CoV-2 Spike RBD, His Tag (BA.3/Omicron) (Stock con. 0.2 mg/ml), RBD derived from Omicron strain (BA.4/BA.5 strains): AcroBio (SPD-C522r, 6363-225HF1-133) SARS- CoV-2 Spike RBD, His Tag (BA.4&BA.5/Omicron) (MALS verified) (Stock con. 400μg/ml)) to 0.6234375 pmol each in 0.1 mol/L carbonate-bicarbonate buffer (pH 9.6) (hereinafter referred to as "RBD solution"). 50 μl of the prepared RBD solution was added to a Corning (registered trademark) 96-well Half Area Clear Flat Bottom Polystyrene High Bind Microplate (Corning 3690) and left at 4° C. for 17 hours. After 17 hours, the RBD solution was removed and 180 μl of solution B (10X) (Fukushima Protein Factory, PA1110) diluted 10 times with ultrapure water with 0.02% Tween-20 added (hereinafter referred to as washing solution) was added for washing. Washing was performed by exchanging solutions, a total of two times. After the washing step, the washing solution was removed, and 180 μl of Blocking One (Nacalai Tesque, 03953-95) diluted 5 times with the washing solution was added, and the mixture was allowed to stand at room temperature (20-25°C) for 1 hour. After standing still for 1 hour, Blocking One was removed and 180 μl of washing solution was added for washing. Washing was performed by exchanging solutions, a total of two times. The plate subjected to the above treatment was used as an RBD coated microplate, and 180 μl of a washing solution was added thereto and stored at 4°C until use.
10-2.抗体の調製
 天然ヒトIgG抗体(HIG001677)、IgA化ヒトIgG抗体(HIG001677A1)、先行抗体(AZD1061、AZD8895、LY-CoV16、LY-CoV555、REGN10933、REGN10987、S309、ADG2)は実施例4および実施例5と同様に、CaptureSelect IgA Affinity MatrixまたはProtein G Sepharose 4 Fast Flowにより精製した抗体を用いた。精製した天然ヒト抗体および先行抗体を洗浄液で20倍希釈したBlocking ONE(以下「抗原・抗体希釈液」という。)にて、それぞれ2μg/ml、1μg/ml、0.5μg/ml、0.25μg/ml、0.125μg/ml、0.0625μg/ml、0.03125μg/ml、0.015625μg/mlに50μlずつ調製した。Blank溶液として抗原・抗体希釈液を50μl準備した。
10-2. Preparation of antibodies Natural human IgG antibody (HIG001677), IgA-ized human IgG antibody (HIG001677A1), and preceding antibodies (AZD1061, AZD8895, LY-CoV16, LY-CoV555, REGN10933, REGN10987, S309, ADG2) were prepared in Example 4 and Example 4. As in 5, antibodies purified by CaptureSelect IgA Affinity Matrix or Protein G Sepharose 4 Fast Flow were used. Blocking ONE (hereinafter referred to as "antigen/antibody dilution solution"), which is a 20-fold dilution of purified natural human antibodies and preceding antibodies with washing solution, was used at 2 μg/ml, 1 μg/ml, 0.5 μg/ml, and 0.25 μg/ml, respectively. , 0.125 μg/ml, 0.0625 μg/ml, 0.03125 μg/ml, and 0.015625 μg/ml in 50 μl portions. 50 μl of antigen/antibody dilution solution was prepared as a blank solution.
10-3.抗体とRBDとの反応
 調製した抗体・Blank溶液を50μlずつ室温に戻したRBD coated microplateへ移し、室温(20-25℃)で30分間反応させた。30分の反応後、RBD coated microplateより、反応溶液を除き洗浄液を180μl加え、洗浄した。溶液を交換することで洗浄し、合計4回行った。
10-3. Reaction between antibody and RBD 50 μl of each prepared antibody/blank solution was transferred to an RBD coated microplate that had been warmed to room temperature, and reacted at room temperature (20-25°C) for 30 minutes. After 30 minutes of reaction, the reaction solution was removed from the RBD coated microplate, and 180 μl of washing solution was added to wash it. Washing was performed by changing the solution a total of 4 times.
10-4.HRP標識二次抗体の反応
 洗浄後、溶液をできる限り除き、抗原・抗体希釈液で10,000倍希釈したPeroxidase Donkey Anti-Human IgG (H+L) (Jackson Immuno Research (709-035-149, 129616)またはPeroxidase Goat Anti-Human Serum IgA, α Chain Specific (Jackson Immuno Research (109-035-011, 130660)を50μlずつRBD coated microplateへ移し、室温(20-25℃)で30分間反応させた。RBD coated microplateより、反応溶液を除き洗浄液を180μl加え、洗浄した。Well内の洗浄液を交換することで洗浄し、合計4回行った。
10-4. Reaction of HRP-labeled secondary antibody After washing, remove as much of the solution as possible and use Peroxidase Donkey Anti-Human IgG (H+L) (Jackson Immuno Research (709-035-149, 129616) diluted 10,000 times with antigen/antibody diluent). Alternatively, 50 μl of Peroxidase Goat Anti-Human Serum IgA, α Chain Specific (Jackson Immuno Research (109-035-011, 130660) was transferred to an RBD coated microplate and reacted at room temperature (20-25°C) for 30 minutes.RBD coated The reaction solution was removed from the microplate, 180 μl of washing solution was added, and washing was carried out. Washing was performed by exchanging the washing solution in the wells, a total of 4 times.
10-5.検出
 洗浄後、洗浄液をできる限り除き、ELISA POD基質 TMBキット(ナカライ 05298-80)を50μlずつRBD coated microplateへ移し、室温(20-25℃)で5分間反応させた。10分後、RBD coated microplateに2N硫酸を50μlずつ加え反応を停止させ、2030 ARVO X シリーズ マルチラベルリーダー (PerkinElmer)にて450 nm の吸光度を測定した。
10-5. Detection After washing, as much of the washing solution as possible was removed, and 50 μl of ELISA POD substrate TMB kit (Nacalai 05298-80) was transferred to the RBD coated microplate and reacted at room temperature (20-25°C) for 5 minutes. After 10 minutes, 50 μl of 2N sulfuric acid was added to each RBD coated microplate to stop the reaction, and the absorbance at 450 nm was measured using a 2030 ARVO X series multilabel reader (PerkinElmer).
10-6.結果
 上記で得られた各抗体の測定値を表14A~表14Dに示す。表14Aはオミクロン株(BA.1系統)由来のRBDに対する各抗体の結合能を示し、表14Bはオミクロン株(BA.2系統)由来のRBDに対する各抗体の結合能を示し、表14Cはオミクロン株(BA.4系統)由来のRBDに対する各抗体の結合能を示し、表14Dはオミクロン株(BA.4&5系統)由来のRBDに対する各抗体の結合能を示す。表14A~表14Dに示すように、天然ヒトIgG抗体(HIG001677)、IgA化ヒトIgG抗体(HIG001677A1)はいずれのオミクロン株に対しても対照の先行抗体と比較して相対的に強い結合能を示した。一方で、対照の先行抗体は、AZD1061およびS309がオミクロン株の系統によりRBDに対して結合能を示したが、それ以外はオミクロン株由来のいずれのRBDに対してもほとんど結合能を示さなかった。
10-6. Results The measured values for each antibody obtained above are shown in Tables 14A to 14D. Table 14A shows the binding ability of each antibody to RBD derived from Omicron strain (BA.1 strain), Table 14B shows the binding ability of each antibody to RBD derived from Omicron strain (BA.2 strain), and Table 14C shows the binding ability of each antibody to RBD derived from Omicron strain (BA.2 strain). Table 14D shows the binding ability of each antibody to the RBD derived from the Omicron strain (BA.4&5 strain). As shown in Tables 14A to 14D, natural human IgG antibody (HIG001677) and IgA-ized human IgG antibody (HIG001677A1) have relatively strong binding ability to all Omicron strains compared to the control preceding antibody. Indicated. On the other hand, the preceding control antibodies showed binding ability to RBDs of AZD1061 and S309 depending on the strain of Omicron strain, but other antibodies showed almost no binding ability to any RBD derived from Omicron strain. .
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059

Claims (21)

  1.  配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、
     SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に結合する、抗体またはその抗体フラグメント。
    Heavy chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 1, heavy chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 2, heavy chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 3, light chain CDR1 consisting of the amino acid sequence of SEQ ID NO: 4, SEQ ID NO: An antibody having a light chain CDR2 consisting of the amino acid sequence of SEQ ID NO: 5 and a light chain CDR3 consisting of the amino acid sequence of SEQ ID NO: 6,
    An antibody or antibody fragment thereof that binds to the receptor binding domain (RBD) of the S1 subunit of SARS-CoV-2.
  2.  請求項1に記載の抗体またはその抗体フラグメントであって、
     前記S1サブユニットの受容体結合ドメイン(RBD)が配列番号7のアミノ酸配列からなるポリペプチドまたは前記ポリペプチドにおいて変異を有するポリペプチドである、抗体またはその抗体フラグメント。
    The antibody or antibody fragment thereof according to claim 1,
    An antibody or an antibody fragment thereof, wherein the receptor binding domain (RBD) of the S1 subunit is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 7 or a polypeptide having a mutation in the polypeptide.
  3.  請求項1または2に記載の抗体またはその抗体フラグメントであって、
    (a)配列番号8のアミノ酸配列、
    (b)前記(a)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
    (c)前記(a)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
    からなる群から選択されるアミノ酸配列からなる重鎖可変領域、並びに
    (d)配列番号9のアミノ酸配列、
    (e)前記(d)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
    (f)前記(e)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
    からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
    を有する抗体またはその抗体フラグメント。
    The antibody or antibody fragment thereof according to claim 1 or 2,
    (a) Amino acid sequence of SEQ ID NO: 8,
    (b) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence of (a), and
    (c) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (a),
    a heavy chain variable region consisting of an amino acid sequence selected from the group consisting of; and (d) the amino acid sequence of SEQ ID NO: 9,
    (e) an amino acid sequence having at least 90% identity to the framework region sequences other than each CDR sequence in the sequence (d) above, and
    (f) an amino acid sequence in which one or several amino acids are deleted, substituted, or added in the framework region sequence other than each CDR sequence in the sequence (e) above;
    An antibody or antibody fragment thereof having a light chain variable region consisting of an amino acid sequence selected from the group consisting of:
  4.  ヒトIgA抗体である、請求項1~3のいずれか一項に記載の抗体またはその抗体フラグメント。 The antibody or antibody fragment thereof according to any one of claims 1 to 3, which is a human IgA antibody.
  5.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、組成物。 A composition comprising the antibody or antibody fragment thereof according to any one of claims 1 to 4.
  6.  請求項5に記載の組成物を含む、SARS-CoV-2感染予防用スプレー。 A spray for preventing SARS-CoV-2 infection, comprising the composition according to claim 5.
  7.  請求項5に記載の組成物を担持する基材を含む、フィルタ。 A filter comprising a base material supporting the composition according to claim 5.
  8.  請求項7に記載のフィルタを含む、SARS-CoV-2感染予防または拡散防止用マスク。 A mask for preventing SARS-CoV-2 infection or spreading, comprising the filter according to claim 7.
  9.  請求項5に記載の組成物の使用方法であって、
     前記組成物を空気中に徐放、噴霧、または散布する工程を含む
    組成物の使用方法。
    6. A method of using the composition according to claim 5, comprising:
    A method of using a composition comprising the step of slowly releasing, spraying, or dispersing the composition into the air.
  10.  請求項9に記載の組成物の使用方法であって、
     前記工程が前記組成物を加湿器を用いて空気中に噴霧する工程である
    組成物の使用方法。
    A method of using the composition according to claim 9, comprising:
    A method for using a composition, wherein the step is a step of spraying the composition into the air using a humidifier.
  11.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、飲食品用組成物。 A composition for food or drink, comprising the antibody or antibody fragment thereof according to any one of claims 1 to 4.
  12.  請求項11に記載の食品用組成物であって、SARS-CoV-2に対する感染予防のための飲食品用組成物。 The food composition according to claim 11, which is used for preventing infection with SARS-CoV-2.
  13.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、化粧品。 A cosmetic product comprising the antibody or antibody fragment thereof according to any one of claims 1 to 4.
  14.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、SARS-CoV-2検出用試薬。 A reagent for detecting SARS-CoV-2, comprising the antibody or antibody fragment thereof according to any one of claims 1 to 4.
  15.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、COVID-19診断薬。 A COVID-19 diagnostic agent comprising the antibody or antibody fragment thereof according to any one of claims 1 to 4.
  16.  COVID-19の発症予防および/または治療のために用いられる、請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む医薬組成物。 A pharmaceutical composition comprising the antibody or antibody fragment thereof according to any one of claims 1 to 4, which is used for preventing and/or treating the onset of COVID-19.
  17.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントをコードするポリヌクレオチド。 A polynucleotide encoding the antibody or antibody fragment thereof according to any one of claims 1 to 4.
  18.  請求項17に記載のポリヌクレオチドを含有する発現ベクター。 An expression vector containing the polynucleotide according to claim 17.
  19.  請求項18に記載の発現ベクターにより形質転換された宿主細胞。 A host cell transformed with the expression vector according to claim 18.
  20.  請求項19に記載の宿主細胞を培養する工程と
     前記工程で得られた培養物から目的の抗体を採取する工程と
    を含む、抗体の製造方法。
    A method for producing an antibody, comprising the steps of culturing the host cell according to claim 19, and collecting the antibody of interest from the culture obtained in the step.
  21.  請求項20の製造方法により得られる抗体。 An antibody obtained by the production method according to claim 20.
PCT/JP2023/013145 2022-03-31 2023-03-30 Antibody binding to novel coronavirus (sars-cov-2) WO2023190851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059383 2022-03-31
JP2022-059383 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190851A1 true WO2023190851A1 (en) 2023-10-05

Family

ID=88202848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013145 WO2023190851A1 (en) 2022-03-31 2023-03-30 Antibody binding to novel coronavirus (sars-cov-2)

Country Status (1)

Country Link
WO (1) WO2023190851A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592594A (en) * 2020-03-13 2020-08-28 北京大学 Monoclonal antibody for resisting novel coronavirus and application thereof
KR102205028B1 (en) * 2020-03-22 2021-01-20 (주)셀트리온 A binding molecules able to neutralize SARS-CoV-2
WO2021045836A1 (en) * 2020-04-02 2021-03-11 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
KR102229225B1 (en) * 2020-09-04 2021-03-19 (주)셀트리온 Binding Molecules Binding To A Spike Protein Of SARS-CoV-2 For Diagnosis Of COVID-19

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592594A (en) * 2020-03-13 2020-08-28 北京大学 Monoclonal antibody for resisting novel coronavirus and application thereof
KR102205028B1 (en) * 2020-03-22 2021-01-20 (주)셀트리온 A binding molecules able to neutralize SARS-CoV-2
WO2021045836A1 (en) * 2020-04-02 2021-03-11 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
KR102229225B1 (en) * 2020-09-04 2021-03-19 (주)셀트리온 Binding Molecules Binding To A Spike Protein Of SARS-CoV-2 For Diagnosis Of COVID-19

Similar Documents

Publication Publication Date Title
TWI628190B (en) Human binding molecules capable of binding to and neutralizing influenza b viruses and uses thereof
CN105418757B (en) Human binding molecules and its application of influenza virus H3N2 can be neutralized
CN109618556A (en) Specificity is directed to the antibody and its application method of hyperphosphorylated Tau protein
CN101072795A (en) Human monoclonal antibodies to influenza m2 protein and methods of making and using same
KR20220158053A (en) Human monoclonal antibody to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
CN107660150A (en) The associated proteins of IL 18 (IL 18BP) and antibody are in inflammatory disease
KR102122618B1 (en) Agents for influenza neutralization
CN109071637A (en) In conjunction with serious fever with the antibody of envelope glycoprotein and application thereof of thrombocytopenic syndromes virus
PT2423229E (en) Binding member for gm-csf receptor
CN115066435A (en) Single domain antibodies to LILRB2
CN108368160A (en) C- terminal epitopes in amyloid beta and its conformation antibodies selective
CN106999556A (en) The treatment of cancer of the Mediated by Bi-specific Antibodies of cytokine induced kill cell
CN108350053A (en) Amyloid beta epitope and its antibody
CN109535263A (en) SIRP alpha-mutant and its fusion protein
CA3174033A1 (en) Monoclonal antibodies and antigen binding fragments thereof for suppressing cd73 immune checkpoint and uses thereof
CN106795223A (en) For the novel antibodies of Fc γ receptor II B and Fc epsilon receptors
CN103665155A (en) Anti-influenza-virus broad-spectrum-neutrality neutralizing molecule 1F2
WO2023190851A1 (en) Antibody binding to novel coronavirus (sars-cov-2)
WO2023190852A1 (en) Antibody capable of binding to new coronavirus (sars-cov-2)
KR20140012131A (en) Compositions and methods for the therapy and diagnosis of influenza
WO2023002944A1 (en) Antibody capable of binding to novel coronavirus (sars-cov-2) and sars coronavirus (sars-cov)
JP2023152613A (en) Antibodies that bind to sars-cov-2
JP2023061248A (en) Antibody bound to novel coronavirus (sars-cov-2)
JP2023061249A (en) Antibody bound to novel coronavirus (sars-cov-2)
US20240228592A1 (en) Antibody and fusion protein for treating coronaviruses and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780859

Country of ref document: EP

Kind code of ref document: A1