WO2023190658A1 - Laminate, heat dissipation substrate, and laminate production method - Google Patents

Laminate, heat dissipation substrate, and laminate production method Download PDF

Info

Publication number
WO2023190658A1
WO2023190658A1 PCT/JP2023/012756 JP2023012756W WO2023190658A1 WO 2023190658 A1 WO2023190658 A1 WO 2023190658A1 JP 2023012756 W JP2023012756 W JP 2023012756W WO 2023190658 A1 WO2023190658 A1 WO 2023190658A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal substrate
laminate
metal
metal layer
inorganic insulating
Prior art date
Application number
PCT/JP2023/012756
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 高倉
岳人 石川
力優 三宅
浩一 坂田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023190658A1 publication Critical patent/WO2023190658A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits

Definitions

  • the present invention relates to a laminate, a heat dissipation substrate, and a method for manufacturing a laminate.
  • a laminate that includes a metal layer, an alloy layer, and a ceramic layer in order in the thickness direction (for example, see Patent Document 1 below).
  • the thickness of the ceramic layer is 635 ⁇ m.
  • the laminate is required to be thin and have excellent thermal conductivity.
  • the laminate described in Patent Document 1 may not be able to satisfy the above requirements.
  • the present invention provides a laminate that is thin and has excellent thermal conductivity, a heat dissipation substrate, and a method for manufacturing the laminate.
  • the present invention (1) includes a laminate including a metal substrate, a metal layer, and an inorganic insulating layer in order in the thickness direction, and the thickness of the inorganic insulating layer is 10 ⁇ m or less.
  • the present invention (2) includes the laminate according to (1), wherein the material of the metal substrate is at least one selected from the group consisting of copper, aluminum, tungsten, and molybdenum.
  • the present invention (3) provides the laminated layer according to (1) or (2), wherein the material of the inorganic insulating layer is at least one selected from the group consisting of oxides, nitrides, and oxynitrides. Including the body.
  • the present invention (4) is characterized in that the material of the inorganic insulating layer contains at least one selected from the group consisting of aluminum, magnesium, zinc, silicon, yttrium, and titanium. ).
  • the present invention (5) includes the laminate according to any one of (1) to (4), wherein the metal layer has a work function that is the same as or higher than the work function of the metal substrate.
  • the present invention (6) includes the laminate according to any one of (1) to (5), wherein the metal layer has a lower redox potential than the metal substrate.
  • the present invention (7) includes the laminate according to any one of (1) to (6), wherein the density of the metal layer is higher than the density of the metal substrate.
  • the present invention (8) is described in any one of (1) to (7), wherein the material of the metal layer is at least one selected from the group consisting of tungsten, nickel, molybdenum, and chromium. laminate.
  • the metal substrate includes one surface and the other surface in the thickness direction, and a side surface connecting a peripheral edge of the one surface and a peripheral edge of the other surface
  • the metal layer includes:
  • the laminated body according to any one of (1) to (8) is included, which is disposed on the one surface and the side surface of the metal substrate.
  • the present invention (10) includes a heat dissipation substrate comprising the laminate according to any one of (1) to (9).
  • the present invention (11) is a method for manufacturing the laminate according to any one of (1) to (9), in which a metal layer is formed on one side of a metal substrate in the thickness direction using a vacuum film-forming method. and forming an inorganic insulating layer on the surface of the metal layer using a vacuum film forming method.
  • the laminate manufactured by the manufacturing method of the present invention and the heat dissipation substrate including the same are thin and have excellent thermal conductivity.
  • FIG. 1 is a cross-sectional view of an embodiment of a laminate of the present invention. It is a sectional view of the layered product of the first modification. It is a sectional view of the layered product of the second modification. It is a sectional view of the layered product of the third modification.
  • the laminate 1 has a thickness.
  • the laminate 1 has a plate shape.
  • the laminate 1 has a rectangular plate shape.
  • the laminate 1 extends in the plane direction.
  • the surface direction is perpendicular to the thickness direction.
  • the laminate 1 includes a metal substrate 2, a metal layer 3, and an inorganic insulating layer 4.
  • the metal substrate 2 has a plate shape.
  • the metal substrate 2 has a rectangular plate shape.
  • the metal substrate 2 includes one surface 21 and the other surface 22 in the thickness direction, and a side surface 23 that connects the peripheral edge of the one surface 21 and the peripheral edge of the other surface 22.
  • Each of the one side 21 and the other side 22 has a flat shape.
  • One surface 21 and the other surface 22 are parallel.
  • Each of the one side 21 and the other side 22 is perpendicular to the thickness direction.
  • the side surface 23 is along the thickness direction. In this embodiment, the side surface 23 is orthogonal to the one surface 21 and the other surface 22.
  • the work function of metal substrate 2 is not limited.
  • the work function is the amount of work required to transfer one electron from the surface of the member (metal substrate 2) to the external vacuum.
  • the work function of the metal substrate 2 depends on the material of the metal substrate 2 (described later).
  • the work function of the metal substrate 2 is, for example, 4.0 eV or more, and is, for example, 5.2 eV or less, preferably 5.1 eV or less.
  • the work function of the metal substrate 2 is measured by, for example, X-ray photoelectron spectroscopy.
  • the work function of the metal substrate 2 can also be obtained from literature values based on the material of the metal substrate 2 (described later).
  • the redox potential of metal substrate 2 is not limited. Redox potential is sometimes referred to as standard redox potential or standard electrode potential.
  • the oxidation-reduction potential of the metal substrate 2 depends on the material of the metal substrate 2 (described later).
  • the oxidation-reduction potential of the metal substrate 2 is, for example, 2.0V or less, preferably 1.0V or less, more preferably 0.5V or less, and, for example, -2.0V or more, preferably 0.0V or less. It is 0V or more, more preferably 0.2V or more.
  • Redox potential is measured, for example, by cyclic voltammetry.
  • the oxidation-reduction potential of the metal substrate 2 can also be obtained from literature values based on the material of the metal substrate 2 (described later).
  • the density of metal substrate 2 is not limited.
  • the density of the metal substrate 2 depends on the material of the metal substrate 2 (described later).
  • the density of the metal substrate 2 is, for example, 10 g/cm 3 or less, preferably 9 g/cm 3 or less, more preferably 5 g/cm 3 or less, and, for example, 1 g/cm 3 or more, preferably 2 g/cm 3 or less. / cm3 or more.
  • the density of the metal substrate 2 can be obtained from literature values based on the material of the metal substrate 2 (described later).
  • the material of metal substrate 2 is not limited.
  • the material of the metal substrate 2 is preferably at least one selected from the group consisting of copper, aluminum, tungsten, and molybdenum.
  • the material of the metal substrate 2 may contain an alloy. Examples of the alloy include copper alloy, aluminum alloy, tungsten alloy, and molybdenum alloy.
  • Preferable materials for the metal substrate 2 include copper, copper alloy, aluminum, and aluminum alloy. If the material of the metal substrate 2 is copper or a copper alloy, the metal substrate 2 will have good thermal conductivity, and the laminate 1 will have excellent heat dissipation. If the material of the metal substrate 2 is aluminum or an aluminum alloy, both thermal conductivity and light weight can be achieved.
  • the thickness of the metal substrate 2 is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, and is, for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • Metal layer 3 is arranged on one side 21 of metal substrate 2 .
  • the metal layer 3 contacts the entire one side 21 of the metal substrate 2 .
  • the metal layer 3 follows the shape of the one side 21 .
  • the metal layer 3 has a shape extending in the plane direction.
  • Metal layer 3 has an inner surface 31 and an outer surface 32. Inner surface 31 contacts all of one side 21 .
  • the outer surface 32 is spaced to one side of the inner surface 31 in the thickness direction.
  • the work function of metal layer 3 is not limited.
  • the work function of the metal layer 3 is preferably the same as or higher than the work function of the metal substrate 2, and more preferably higher than the work function of the metal substrate 2. If the work function of the metal layer 3 is the same as or higher than the work function of the metal substrate 2, the energy barrier at the interface between the metal layer 3 and the inorganic insulating layer 4 will increase, and therefore the insulation resistance of the laminate 1 will be increased. can.
  • the above-mentioned "same” includes a case where both are very similar, and includes a range where the ratio of the work function of the metal layer 3 to the work function of the metal substrate 2 is 0.95 or more and 1.05 or less.
  • the work function of the metal layer 3 depends on the material of the metal layer 3 (described later).
  • the work function of the metal layer 3 is, for example, 4.0 eV or more, preferably 4.6 eV or more, more preferably 5.0 eV or more, and, for example, 6 eV or less.
  • the work function of the metal layer 3 is obtained in the same manner as the work function of the metal substrate 2 described above.
  • the ratio of the work function of the metal layer 3 to the work function of the metal substrate 2 is preferably 1 or more, more preferably 1.10 or more, and still more preferably 1.15 or more.
  • the value obtained by subtracting the work function of the metal substrate 2 from the work function of the metal layer 3 is preferably 0 eV or more, more preferably 0.1 eV or more, still more preferably 0.3 eV or more, particularly preferably 0.5 eV. and is, for example, 2.0 eV or less, preferably 1.5 eV or less, more preferably 1.0 eV or less. If the ratio and/or value described above is equal to or higher than the lower limit described above, the insulation resistance of the laminate 1 can be further increased.
  • the redox potential of metal layer 3 is not limited. In this embodiment, the redox potential of the metal layer 3 is preferably lower than the redox potential of the metal substrate 2. If the redox potential of the metal layer 3 is lower than the redox potential of the metal substrate 2, the adhesion of the metal layer 3 to the metal substrate 2 can be improved, and in turn, the adhesion of the inorganic insulating layer 4 to the metal substrate 2 can be improved. .
  • the oxidation-reduction potential of the metal layer 3 depends on the material of the metal layer 3 (described later).
  • the oxidation-reduction potential of the metal layer 3 is preferably 0.0V or less, more preferably -0.5V or less, still more preferably -1.0V or less, and, for example, -3.0V or more, preferably is -2.0V or higher.
  • the oxidation-reduction potential of the metal layer 3 is obtained in the same manner as the oxidation-reduction potential of the metal substrate 2 described above.
  • the value obtained by subtracting the redox potential of the metal layer 3 from the redox potential of the metal substrate 2 is preferably 0V or more, more preferably 0.7V or more, still more preferably 1.0V or more, particularly preferably 1 .2V or more, and, for example, 2.0V or less. If the above-mentioned value is above the above-described lower limit, the adhesion of the inorganic insulating layer 4 to the metal substrate 2 can be further improved.
  • the density of metal layer 3 is not limited. In this embodiment, the density of the metal layer 3 is preferably higher than the density of the metal substrate 2. If the density of the metal layer 3 is higher than the density of the metal substrate 2, the insulation properties of the laminate 1 can be improved. A method for measuring the density of the metal layer 3 will be described in the examples below.
  • the value obtained by subtracting the density of the metal substrate 2 from the density of the metal layer 3 is, for example, 0.1 g/cm 3 or more, preferably 1 g/cm 3 or more, more preferably 5 g/cm 3 or more, and even more preferably, It is 10 g/cm 3 or more and, for example, 20 g/cm 3 or less. If the above-mentioned value is above the above-described lower limit, the insulation properties of the laminate 1 can be further improved.
  • the material of metal layer 3 is not limited. In this embodiment, the material of the metal layer 3 is different from the material of the metal substrate 2.
  • Examples of the material for the metal layer 3 include high work function metals, adhesive metals, and high density metals. High work function metals, adhesive metals, and high density metals are not clearly distinguished and may partially overlap. In other words, metals that are high work function metals, adhesive metals, and high density metals are also included in metals. Examples of the above metal include at least one selected from the group consisting of tungsten, nickel, molybdenum, and chromium, and preferably nickel, tungsten, and molybdenum.
  • high work function metals include gold (Au), platinum (Pt), palladium (Pd), silver (Ag), cobalt (Co), iridium (Ir), ruthenium (Ru), rhodium (Rh), and nickel. (Ni), iron (Fe), tungsten (W), molybdenum (Mo), zinc (Zn), and tantalum (Ta).
  • the work function of the high work function metal is, for example, 4.6 eV or more.
  • the adhesive metal examples include nickel, iron, tungsten, molybdenum, zinc, tantalum, titanium (Ti), and chromium (Cr).
  • the oxidation-reduction potential of the adhesive metal is, for example, 0V or less, preferably -0.2V or less.
  • Dense metals include, for example, gold, platinum, palladium, silver, cobalt, iridium, ruthenium, rhodium, nickel, iron, tungsten, molybdenum, zinc, and tantalum.
  • the density of the high-density metal is, for example, 8.9 g/cm 3 or more, preferably 10 g/cm 3 or more.
  • the material for the metal layer 3 is preferably an adhesive metal and a high-density metal, and specific examples thereof include nickel, tungsten, and molybdenum.
  • the thickness of the metal layer 3 is, for example, 1 nm or more, preferably 10 nm or more, and is, for example, 500 nm or less, preferably 100 nm or less.
  • the ratio of the thickness of the metal layer 3 to the thickness of the metal substrate 2 is, for example, 0.000001 or more, preferably 0.00001 or more, and is, for example, 0.0167 or less, preferably 0.0034 or less. .
  • Inorganic insulation layer 4 The inorganic insulating layer 4 is arranged on the outer surface 32 of the metal layer 3. Inorganic insulating layer 4 contacts all of outer surface 32 . The inorganic insulating layer 4 forms one surface (exposed surface) of the laminate 1 in the thickness direction. Inorganic insulating layer 4 follows the shape of outer surface 32 . In this embodiment, the inorganic insulating layer 4 has a shape extending in the plane direction. The inorganic insulating layer 4 is a single layer or a multilayer. Inorganic insulating layer 4 is crystalline or amorphous.
  • the material of the inorganic insulating layer 4 examples include inorganic substances. Examples of inorganic substances include oxides, nitrides, and oxynitrides. Further, the material of the inorganic insulating layer 4 contains, for example, at least one selected from the group consisting of aluminum, magnesium, zinc, silicon, yttrium, and titanium. Preferable materials include silicon, aluminum, and titanium. The above materials can be used alone or in combination.
  • oxides include aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), silicon oxide (SiO 2 ), yttrium oxide (Y 2 O 3 ), and chromium oxide (Cr 2 O 3 , CrO 2 , CrO 3 ).
  • nitrides examples include silicon nitride and aluminum nitride.
  • oxynitrides examples include silicon oxynitride and aluminum oxynitride.
  • Preferable examples of the inorganic substance include oxides.
  • the thickness of inorganic insulating layer 4 is 10 ⁇ m or less.
  • the inorganic insulating layer 4 exceeds 10 ⁇ m, the inorganic insulating layer 4 becomes thick, the laminate 1 becomes large, and the thermal conductivity of the inorganic insulating layer 4 becomes poor. Thermal conductivity becomes poor.
  • the thickness of the inorganic insulating layer 4 is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.5 ⁇ m or less.
  • the thickness of the inorganic insulating layer 4 is, for example, 10 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and still more preferably 40 nm or more. If the thickness of the inorganic insulating layer 4 is at least the above-described lower limit, the laminate 1 will have excellent insulation properties.
  • the ratio of the thickness of the inorganic insulating layer 4 to the thickness of the metal substrate 2 is, for example, 0.00001 or less, preferably 0.0001 or less, and is, for example, 0.35 or more, preferably 0.1 or more. be.
  • the ratio of the thickness of the inorganic insulating layer 4 to the thickness of the metal layer 3 is, for example, 0.01 or less, preferably 0.1 or less, and is, for example, 100 or more, preferably 10 or more.
  • the ratio of the thickness of the inorganic insulating layer 4 to the thickness of the laminate 1 is, for example, 0.01 or less, preferably 0.1 or less, and is, for example, 100 or more, preferably 10 or more.
  • the method for manufacturing the laminate 1 will be explained.
  • the metal substrate 2 is prepared, and then the metal layer 3 is formed on one side 21 of the metal substrate 2 using a vacuum film forming method.
  • the vacuum film forming method include a vapor deposition method, a sputtering method, and an ion plating method.
  • the vacuum film forming method includes a sputtering method.
  • the inorganic insulating layer 4 is formed on the outer surface 32 of the metal layer 3 using a vacuum film forming method.
  • the conditions for forming the inorganic insulating layer 4 may be different from those for forming the metal layer 3, or may be the same.
  • the laminate 1 is provided on a heat dissipation substrate 10. That is, the heat dissipation board 10 includes the above-described laminate 1.
  • the heat dissipation substrate 10 may further include an electrode 5 (imaginary line) arranged on one surface of the laminate 1 in the thickness direction.
  • the electrode 5 has a pattern.
  • the electrode 5 is arranged on a part of one surface of the inorganic insulating layer 4 in the thickness direction.
  • the electrode 5 is made of a conductor. Examples of the conductor include copper and titanium.
  • the electrode 5 has a single layer or multiple layers.
  • the thickness of the inorganic insulating layer 4 is 10 ⁇ m or less, so the laminate 1 is thin and has even better thermal conductivity.
  • the energy barrier at the interface between the metal layer 3 and the inorganic insulating layer 4 increases, and therefore the insulation resistance of the laminate 1 increases. can be made higher.
  • the adhesion of the metal layer 3 to the metal substrate 2 is improved, and in turn, the adhesion of the inorganic insulating layer 4 to the metal substrate 2 is improved. can.
  • the insulation of the laminate 1 can be improved.
  • the metal layer 3 is formed by a vacuum film-forming method
  • the inorganic insulating layer 4 is formed by a vacuum film-forming method, so that each of the metal layer 3 and the inorganic insulating layer 4 can be easily formed. can.
  • the metal layer 3 is disposed on one side 21 and the side 23 of the metal substrate 2.
  • Metal layer 3 continuously covers one side 21 and side 23.
  • the metal layer 3 follows the shape of the one side 21 and the side 23.
  • the metal layer 3 disposed on the side surface 23 has a shape extending in the thickness direction.
  • the inorganic insulating layer 4 is arranged on the outer surface 32 of the metal layer 3. Inorganic insulating layer 4 contacts all of the outer surface 32 of metal layer 3 .
  • the metal layer 3 is also formed on the side surface 23 of the metal substrate 2, so the laminate 1 has a high thermal conductivity on the side surface. Excellent in
  • the metal layer 3 is arranged on one surface 21, the other surface 22, and the side surface 23 of the metal substrate 2.
  • the metal layer 3 continuously covers one side 21 , the other side 22 , and the side surface 23 .
  • the inorganic insulating layer 4 is placed on the outer surface 32 of only the metal layer 3 placed on one side 21.
  • the third modification includes the metal layer 3 of the second modification.
  • the inorganic insulating layer 4 is disposed on the outer surface 32 of the metal layer 3 disposed on one side 21 and on the outer surface 32 of the metal layer 3 disposed on the side surface 23.
  • the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited to the examples at all.
  • the specific numerical values of the blending ratio (content ratio), physical property values, parameters, etc. used in the following description are the corresponding blending ratios ( Content percentage), physical property values, parameters, etc. can be replaced with the upper limit (value defined as “less than” or “less than”) or lower limit (value defined as “more than” or “exceeding”).
  • Example 1 A metal substrate 2 was prepared.
  • the metal substrate 2 has a thickness of 150 ⁇ m and is made of copper.
  • a metal layer 3 made of platinum (Pt) and having a thickness of 50 nm was formed using a vacuum film forming method.
  • the film forming conditions are as follows.
  • Vacuum film formation method DC magnetron sputtering method
  • Sputtering gas Ar Sputtering pressure: 0.2Pa
  • Output 80W Sputtering temperature: 25°C
  • an inorganic insulating layer 4 made of silica oxide (SiO 2 ) and having a thickness of 50 nm was formed using a vacuum film forming method.
  • the film forming conditions are as follows.
  • Vacuum film formation method RF magnetron sputtering method
  • Sputtering gas Ar/O 2 mixed gas
  • Sputtering pressure 0.2 Pa
  • Output 100W Sputtering temperature: 25°C
  • Example 2-Example 10 Laminated body 1 was manufactured in the same manner as in Example 1. However, the material of the metal layer 3 was changed as shown in Table 1.
  • Example 11 Laminated body 1 was manufactured in the same manner as in Example 6. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
  • Example 12 Laminated body 1 was manufactured in the same manner as in Example 7. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
  • Example 13 Laminated body 1 was manufactured in the same manner as in Example 8. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
  • Example 14 Laminated body 1 was manufactured in the same manner as in Example 9. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
  • the area-based thermal resistance of the inorganic insulating layer 4 was less than 1000 ⁇ 10 ⁇ 8 Km 2 W ⁇ 1 , and the thermal conductivity was good.
  • The area-specific thermal resistance of the inorganic insulating layer 4 was 1000 ⁇ 10 ⁇ 8 Km 2 W ⁇ 1 or more, and the thermal conductivity was poor.
  • An electrode 5 was formed on one side of the inorganic insulating layer 4 in each of the laminates 1 of Examples 1 to 6 and Comparative Example 1 through a metal mask having an opening.
  • the electrode 5 includes a titanium layer with a thickness of 5 nm and a copper layer with a thickness of 100 nm in order toward one side in the thickness direction.
  • the electrode 5 has a size of 2.5 mm in length and 2.5 mm in width.
  • the conditions for forming the electrode 5 are as follows.
  • Vacuum film formation method DC magnetron sputtering method
  • Sputtering gas Ar Sputtering pressure: 0.2Pa
  • Output 80W Sputtering temperature: 25°C
  • Insulation resistance exceeded 1 G ⁇ , and insulation properties were good.
  • the insulation resistance was 1 G ⁇ or less, and the insulation was poor.
  • Adhesion (checkerboard peel test)
  • the inorganic insulating layer 4 of the laminate 1 of each Example and Comparative Example was subjected to a cross-cut process in a checkerboard shape.
  • the grid was square, each side had a length of 1 mm, and there were 25 grids.
  • a 24 mm wide adhesive tape (manufactured by Nichiban Co., Ltd.) was attached to the inorganic insulating layer 4, and then the adhesive tape was rapidly peeled off at a peeling angle of 180 degrees. Thereafter, the cross-cut portion was visually observed.
  • Adhesion was evaluated according to the following criteria.
  • the peeled area was less than 10%, and the adhesion of the inorganic insulating layer 4 to the metal substrate 2 was good.
  • The peeled area was 10% or more, and the adhesion of the inorganic insulating layer 4 to the metal substrate 2 was poor.
  • the metal layer 3 was formed on one side of the silicon substrate in the thickness direction in the same manner as in each of the Examples and Comparative Examples. The density of this metal layer 3 was determined by X-ray reflectance measurement.
  • Example 11 was on the same level as Example 6, and Example 12 was on the same level as Example 7.
  • Example 13 was comparable to Example 8, and Example 14 was comparable to Example 9.
  • the laminate is used for a heat dissipation board.

Abstract

A laminate (1) comprises a metal substrate (2), a metal layer (3), and an inorganic insulating layer (4) sequentially in the thickness direction. The thickness of the inorganic insulating layer (4) is at most 10 μm.

Description

積層体、放熱基板および積層体の製造方法Laminate, heat dissipation substrate, and method for manufacturing the laminate
 本発明は、積層体、放熱基板および積層体の製造方法に関する。 The present invention relates to a laminate, a heat dissipation substrate, and a method for manufacturing a laminate.
 金属層と、合金層と、セラミックス層とを厚み方向に順に備える積層体が知られている(例えば、下記特許文献1参照。)。特許文献1に記載される積層体では、セラミックス層の厚みは、635μmである。 A laminate is known that includes a metal layer, an alloy layer, and a ceramic layer in order in the thickness direction (for example, see Patent Document 1 below). In the laminate described in Patent Document 1, the thickness of the ceramic layer is 635 μm.
特開2017-135373号公報JP 2017-135373 Publication
 積層体には、薄型で、熱伝導性にも優れることが求められる。しかし、特許文献1に記載の積層体は、上記した要求を満足できない場合がある。 The laminate is required to be thin and have excellent thermal conductivity. However, the laminate described in Patent Document 1 may not be able to satisfy the above requirements.
 本発明は、薄型で、熱伝導性に優れる積層体、放熱基板および積層体の製造方法を提供する。 The present invention provides a laminate that is thin and has excellent thermal conductivity, a heat dissipation substrate, and a method for manufacturing the laminate.
 本発明(1)は、金属基板と、金属層と、無機絶縁層とを厚み方向に順に備え、前記無機絶縁層の厚みは、10μm以下である、積層体を含む。 The present invention (1) includes a laminate including a metal substrate, a metal layer, and an inorganic insulating layer in order in the thickness direction, and the thickness of the inorganic insulating layer is 10 μm or less.
 本発明(2)は、前記金属基板の材料は、銅、アルミニウム、タングステンおよびモリブデンからなる群から選択される少なくとも1つである、(1)に記載の積層体を含む。 The present invention (2) includes the laminate according to (1), wherein the material of the metal substrate is at least one selected from the group consisting of copper, aluminum, tungsten, and molybdenum.
 本発明(3)は、前記無機絶縁層の材料は、酸化物、窒化物および酸窒化物からなる群から選択される少なくともいずれか1つである、(1)または(2)に記載の積層体を含む。 The present invention (3) provides the laminated layer according to (1) or (2), wherein the material of the inorganic insulating layer is at least one selected from the group consisting of oxides, nitrides, and oxynitrides. Including the body.
 本発明(4)は、前記無機絶縁層の材料は、アルミニウム、マグネシウム、亜鉛、ケイ素、イットリウム、および、チタンからなる群から選択される少なくともいずれか1つを含有する、(1)から(3)のいずれか一項に記載の積層体を含む。 The present invention (4) is characterized in that the material of the inorganic insulating layer contains at least one selected from the group consisting of aluminum, magnesium, zinc, silicon, yttrium, and titanium. ).
 本発明(5)は、前記金属層の仕事関数は、前記金属基板の仕事関数と同一または高い、(1)から(4)のいずれか一項に記載の積層体を含む。 The present invention (5) includes the laminate according to any one of (1) to (4), wherein the metal layer has a work function that is the same as or higher than the work function of the metal substrate.
 本発明(6)は、前記金属層の酸化還元電位は、前記金属基板の酸化還元電位より、低い、(1)から(5)のいずれか一項に記載の積層体を含む。 The present invention (6) includes the laminate according to any one of (1) to (5), wherein the metal layer has a lower redox potential than the metal substrate.
 本発明(7)は、前記金属層の密度は、前記金属基板の密度より、高い、(1)から(6)のいずれか一項に記載の積層体を含む。 The present invention (7) includes the laminate according to any one of (1) to (6), wherein the density of the metal layer is higher than the density of the metal substrate.
 本発明(8)は、前記金属層の材料は、タングステン、ニッケル、モリブデン、および、クロムからなる群から選択される少なくとも1つである、(1)から(7)のいずれか一項に記載の積層体を含む。 The present invention (8) is described in any one of (1) to (7), wherein the material of the metal layer is at least one selected from the group consisting of tungsten, nickel, molybdenum, and chromium. laminate.
 本発明(9)は、前記金属基板は、厚み方向における一方面および他方面と、前記一方面の周端縁および前記他方面の周端縁を連結する側面とを含み、前記金属層は、前記金属基板の前記一方面および前記側面に配置される、(1)から(8)のいずれか一項に記載の積層体を含む。 In the present invention (9), the metal substrate includes one surface and the other surface in the thickness direction, and a side surface connecting a peripheral edge of the one surface and a peripheral edge of the other surface, and the metal layer includes: The laminated body according to any one of (1) to (8) is included, which is disposed on the one surface and the side surface of the metal substrate.
 本発明(10)は、(1)から(9)のいずれか一項に記載の積層体を備える、放熱基板を含む。 The present invention (10) includes a heat dissipation substrate comprising the laminate according to any one of (1) to (9).
 本発明(11)は、(1)から(9)のいずれか一項に記載の積層体の製造方法であり、金属層を、厚み方向における金属基板の一方面に、真空成膜法を用いて形成し、無機絶縁層を、前記金属層の表面に、真空成膜法を用いて形成する、積層体の製造方法を含む。 The present invention (11) is a method for manufacturing the laminate according to any one of (1) to (9), in which a metal layer is formed on one side of a metal substrate in the thickness direction using a vacuum film-forming method. and forming an inorganic insulating layer on the surface of the metal layer using a vacuum film forming method.
 本発明の製造方法により製造される積層体、および、それを備える放熱基板は、薄型で、熱伝導性に優れる。 The laminate manufactured by the manufacturing method of the present invention and the heat dissipation substrate including the same are thin and have excellent thermal conductivity.
本発明の積層体の一実施形態の断面図である。FIG. 1 is a cross-sectional view of an embodiment of a laminate of the present invention. 第1変形例の積層体の断面図である。It is a sectional view of the layered product of the first modification. 第2変形例の積層体の断面図である。It is a sectional view of the layered product of the second modification. 第3変形例の積層体の断面図である。It is a sectional view of the layered product of the third modification.
 1.積層体の一実施形態
 図1を参照して、本発明の積層体の一実施形態を説明する。積層体1は、厚みを有する。積層体1は、板形状を有する。本実施形態では、積層体1は、矩形板形状を有する。積層体1は、面方向に延びる。面方向は、厚み方向に直交する。積層体1は、金属基板2と、金属層3と、無機絶縁層4とを備える。
1. One Embodiment of Laminate With reference to FIG. 1, one embodiment of the laminate of the present invention will be described. The laminate 1 has a thickness. The laminate 1 has a plate shape. In this embodiment, the laminate 1 has a rectangular plate shape. The laminate 1 extends in the plane direction. The surface direction is perpendicular to the thickness direction. The laminate 1 includes a metal substrate 2, a metal layer 3, and an inorganic insulating layer 4.
 1.1 金属基板2
 金属基板2は、板形状を有する。本実施形態では、金属基板2は、矩形板形状を有する。金属基板2は、厚み方向における一方面21および他方面22と、一方面21の周端縁および他方面22の周端縁を連結する側面23と、を含む。
1.1 Metal substrate 2
The metal substrate 2 has a plate shape. In this embodiment, the metal substrate 2 has a rectangular plate shape. The metal substrate 2 includes one surface 21 and the other surface 22 in the thickness direction, and a side surface 23 that connects the peripheral edge of the one surface 21 and the peripheral edge of the other surface 22.
 一方面21および他方面22のそれぞれは、平坦形状を有する。一方面21および他方面22は、平行する。一方面21および他方面22のそれぞれは、厚み方向と直交する。 Each of the one side 21 and the other side 22 has a flat shape. One surface 21 and the other surface 22 are parallel. Each of the one side 21 and the other side 22 is perpendicular to the thickness direction.
 側面23は、厚み方向に沿う。本実施形態では、側面23は、一方面21および他方面22に対して直交する。 The side surface 23 is along the thickness direction. In this embodiment, the side surface 23 is orthogonal to the one surface 21 and the other surface 22.
 1.1.1 金属基板2の仕事関数
 金属基板2の仕事関数は、限定されない。仕事関数は、部材(金属基板2)の表面から1個の電子を外部の真空へ移すのに必要な仕事量である。金属基板2の仕事関数は、金属基板2の材料(後述)に依存する。金属基板2の仕事関数は、例えば、4.0eV以上であり、また、例えば、5.2eV以下、好ましくは、5.1eV以下である。金属基板2の仕事関数は、例えば、X線光電子分光法によって測定される。金属基板2の仕事関数を、金属基板2の材料(後述)に基づく文献値から得ることもできる。
1.1.1 Work function of metal substrate 2 The work function of metal substrate 2 is not limited. The work function is the amount of work required to transfer one electron from the surface of the member (metal substrate 2) to the external vacuum. The work function of the metal substrate 2 depends on the material of the metal substrate 2 (described later). The work function of the metal substrate 2 is, for example, 4.0 eV or more, and is, for example, 5.2 eV or less, preferably 5.1 eV or less. The work function of the metal substrate 2 is measured by, for example, X-ray photoelectron spectroscopy. The work function of the metal substrate 2 can also be obtained from literature values based on the material of the metal substrate 2 (described later).
 1.1.2 金属基板2の酸化還元電位
 金属基板2の酸化還元電位は、限定されない。酸化還元電位は、標準酸化還元電位、または、標準電極電位と称呼されることがある。金属基板2の酸化還元電位は、金属基板2の材料(後述)に依存する。金属基板2の酸化還元電位は、例えば、2.0V以下、好ましくは、1.0V以下、より好ましくは、0.5V以下であり、また、例えば、-2.0V以上、好ましくは、0.0V以上、より好ましくは、0.2V以上である。酸化還元電位は、例えば、サイクリックボルタンメトリーによって測定される。金属基板2の酸化還元電位を、金属基板2の材料(後述)に基づく文献値から得ることもできる。
1.1.2 Redox potential of metal substrate 2 The redox potential of metal substrate 2 is not limited. Redox potential is sometimes referred to as standard redox potential or standard electrode potential. The oxidation-reduction potential of the metal substrate 2 depends on the material of the metal substrate 2 (described later). The oxidation-reduction potential of the metal substrate 2 is, for example, 2.0V or less, preferably 1.0V or less, more preferably 0.5V or less, and, for example, -2.0V or more, preferably 0.0V or less. It is 0V or more, more preferably 0.2V or more. Redox potential is measured, for example, by cyclic voltammetry. The oxidation-reduction potential of the metal substrate 2 can also be obtained from literature values based on the material of the metal substrate 2 (described later).
 1.1.3 金属基板2の密度
 金属基板2の密度は、限定されない。金属基板2の密度は、金属基板2の材料(後述)に依存する。金属基板2の密度は、例えば、10g/cm以下、好ましくは、9g/cm以下、より好ましくは、5g/cm以下であり、また、例えば、1g/cm以上、好ましくは、2g/cm以上である。金属基板2の密度を、金属基板2の材料(後述)に基づく文献値から得ることができる。
1.1.3 Density of Metal Substrate 2 The density of metal substrate 2 is not limited. The density of the metal substrate 2 depends on the material of the metal substrate 2 (described later). The density of the metal substrate 2 is, for example, 10 g/cm 3 or less, preferably 9 g/cm 3 or less, more preferably 5 g/cm 3 or less, and, for example, 1 g/cm 3 or more, preferably 2 g/cm 3 or less. / cm3 or more. The density of the metal substrate 2 can be obtained from literature values based on the material of the metal substrate 2 (described later).
 1.1.4 金属基板2の材料
 金属基板2の材料は、限定されない。金属基板2の材料は、好ましくは、銅、アルミニウム、タングステンおよびモリブデンからなる群から選択される少なくとも1つであるである。金属基板2の材料は、合金を含有してもよい。合金としては、例えば、銅合金、アルミニウム合金、タングステン合金、および、モリブデン合金が挙げられる。金属基板2の材料として、好ましくは、銅、銅合金、アルミニウムおよびアルミニウム合金が挙げられる。金属基板2の材料が銅または銅合金であれば、金属基板2の熱伝導性が良好となり、積層体1の放熱性に優れる。金属基板2の材料がアルミニウムまたはアルミニウム合金であれば、熱伝導性と軽量性とを両立できる。
1.1.4 Material of Metal Substrate 2 The material of metal substrate 2 is not limited. The material of the metal substrate 2 is preferably at least one selected from the group consisting of copper, aluminum, tungsten, and molybdenum. The material of the metal substrate 2 may contain an alloy. Examples of the alloy include copper alloy, aluminum alloy, tungsten alloy, and molybdenum alloy. Preferable materials for the metal substrate 2 include copper, copper alloy, aluminum, and aluminum alloy. If the material of the metal substrate 2 is copper or a copper alloy, the metal substrate 2 will have good thermal conductivity, and the laminate 1 will have excellent heat dissipation. If the material of the metal substrate 2 is aluminum or an aluminum alloy, both thermal conductivity and light weight can be achieved.
 金属基板2の厚みは、例えば、30μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。 The thickness of the metal substrate 2 is, for example, 30 μm or more, preferably 50 μm or more, and is, for example, 1000 μm or less, preferably 500 μm or less.
 1.2 金属層3
 金属層3は、金属基板2の一方面21に配置される。金属層3は、金属基板2の一方面21の全てに接触する。金属層3は、一方面21の形状に追従する。本実施形態では、金属層3は、面方向に延びる形状を有する。金属層3は、内表面31と、外表面32とを有する。内表面31は、一方面21の全てに接触する。外表面32は、厚み方向において、内表面31の一方側に間隔が隔てられる。
1.2 Metal layer 3
Metal layer 3 is arranged on one side 21 of metal substrate 2 . The metal layer 3 contacts the entire one side 21 of the metal substrate 2 . The metal layer 3 follows the shape of the one side 21 . In this embodiment, the metal layer 3 has a shape extending in the plane direction. Metal layer 3 has an inner surface 31 and an outer surface 32. Inner surface 31 contacts all of one side 21 . The outer surface 32 is spaced to one side of the inner surface 31 in the thickness direction.
 1.2.1 金属層3の仕事関数
 金属層3の仕事関数は、限定されない。本実施形態では、好ましくは、金属層3の仕事関数は、金属基板2の仕事関数と同一または高く、より好ましくは、金属基板2の仕事関数より高い。金属層3の仕事関数は、金属基板2の仕事関数と同一または高ければ、金属層3と無機絶縁層4との界面のエネルギー障壁が増加することとなり、そのため、積層体1の絶縁抵抗を高くできる。なお、上記した「同一」は、両者が酷似した場合を含み、金属基板2の仕事関数に対する金属層3の仕事関数の比が、0.95以上、1.05以下の範囲を含む。金属層3の仕事関数は、金属層3の材料(後述)に依存する。
1.2.1 Work function of metal layer 3 The work function of metal layer 3 is not limited. In this embodiment, the work function of the metal layer 3 is preferably the same as or higher than the work function of the metal substrate 2, and more preferably higher than the work function of the metal substrate 2. If the work function of the metal layer 3 is the same as or higher than the work function of the metal substrate 2, the energy barrier at the interface between the metal layer 3 and the inorganic insulating layer 4 will increase, and therefore the insulation resistance of the laminate 1 will be increased. can. Note that the above-mentioned "same" includes a case where both are very similar, and includes a range where the ratio of the work function of the metal layer 3 to the work function of the metal substrate 2 is 0.95 or more and 1.05 or less. The work function of the metal layer 3 depends on the material of the metal layer 3 (described later).
 金属層3の仕事関数は、例えば、4.0eV以上、好ましくは、4.6eV以上、より好ましくは、5.0eV以上であり、また、例えば、6eV以下である。金属層3の仕事関数は、上記した金属基板2の仕事関数と同様にして取得される。 The work function of the metal layer 3 is, for example, 4.0 eV or more, preferably 4.6 eV or more, more preferably 5.0 eV or more, and, for example, 6 eV or less. The work function of the metal layer 3 is obtained in the same manner as the work function of the metal substrate 2 described above.
 金属基板2の仕事関数に対する金属層3の仕事関数の比は、好ましくは、1以上、より好ましくは、1.10以上、さらに好ましくは、1.15以上である。金属層3の仕事関数から金属基板2の仕事関数を差し引いた値は、好ましくは、0eV以上、より好ましくは、0.1eV以上、さらに好ましくは、0.3eV以上、とりわけ好ましくは、0.5eV以上であり、また、例えば、2.0eV以下、好ましくは、1.5eV以下、より好ましくは、1.0eV以下である。上記した比および/または値が上記した下限以上であれば、積層体1の絶縁抵抗をより一層高くできる。 The ratio of the work function of the metal layer 3 to the work function of the metal substrate 2 is preferably 1 or more, more preferably 1.10 or more, and still more preferably 1.15 or more. The value obtained by subtracting the work function of the metal substrate 2 from the work function of the metal layer 3 is preferably 0 eV or more, more preferably 0.1 eV or more, still more preferably 0.3 eV or more, particularly preferably 0.5 eV. and is, for example, 2.0 eV or less, preferably 1.5 eV or less, more preferably 1.0 eV or less. If the ratio and/or value described above is equal to or higher than the lower limit described above, the insulation resistance of the laminate 1 can be further increased.
 1.2.2 金属層3の酸化還元電位
 金属層3の酸化還元電位は、限定されない。本実施形態では、好ましくは、金属層3の酸化還元電位は、金属基板2の酸化還元電位より低い。金属層3の酸化還元電位は、金属基板2の酸化還元電位より低ければ、金属層3の金属基板2に対する密着力を向上させ、ひいては、無機絶縁層4の金属基板2に対する密着力を向上できる。金属層3の酸化還元電位は、金属層3の材料(後述)に依存する。
1.2.2 Redox potential of metal layer 3 The redox potential of metal layer 3 is not limited. In this embodiment, the redox potential of the metal layer 3 is preferably lower than the redox potential of the metal substrate 2. If the redox potential of the metal layer 3 is lower than the redox potential of the metal substrate 2, the adhesion of the metal layer 3 to the metal substrate 2 can be improved, and in turn, the adhesion of the inorganic insulating layer 4 to the metal substrate 2 can be improved. . The oxidation-reduction potential of the metal layer 3 depends on the material of the metal layer 3 (described later).
 金属層3の酸化還元電位は、好ましくは、0.0V以下、より好ましくは、-0.5V以下、さらに好ましくは、-1.0V以下であり、また、例えば、-3.0V以上、好ましくは、-2.0V以上である。金属層3の酸化還元電位は、上記した金属基板2の酸化還元電位と同様にして取得される。 The oxidation-reduction potential of the metal layer 3 is preferably 0.0V or less, more preferably -0.5V or less, still more preferably -1.0V or less, and, for example, -3.0V or more, preferably is -2.0V or higher. The oxidation-reduction potential of the metal layer 3 is obtained in the same manner as the oxidation-reduction potential of the metal substrate 2 described above.
 金属基板2の酸化還元電位から金属層3の酸化還元電位を差し引いた値は、好ましくは、0V以上、より好ましくは、0.7V以上、さらに好ましくは、1.0V以上、とりわけ好ましくは、1.2V以上であり、また、例えば、2.0V以下である。上記した値が上記した下限以上であれば、無機絶縁層4の金属基板2に対する密着力をより一層向上できる。 The value obtained by subtracting the redox potential of the metal layer 3 from the redox potential of the metal substrate 2 is preferably 0V or more, more preferably 0.7V or more, still more preferably 1.0V or more, particularly preferably 1 .2V or more, and, for example, 2.0V or less. If the above-mentioned value is above the above-described lower limit, the adhesion of the inorganic insulating layer 4 to the metal substrate 2 can be further improved.
 1.2.3 金属層3の密度
 金属層3の密度は、限定されない。本実施形態では、好ましくは、金属層3の密度は、金属基板2の密度より、高い。金属層3の密度が金属基板2の密度より高ければ、積層体1の絶縁性を向上できる。金属層3の密度の測定方法は、後の実施例で記載される。
1.2.3 Density of metal layer 3 The density of metal layer 3 is not limited. In this embodiment, the density of the metal layer 3 is preferably higher than the density of the metal substrate 2. If the density of the metal layer 3 is higher than the density of the metal substrate 2, the insulation properties of the laminate 1 can be improved. A method for measuring the density of the metal layer 3 will be described in the examples below.
 金属層3の密度から金属基板2の密度を差し引いた値は、例えば、0.1g/cm以上、好ましくは、1g/cm以上、より好ましくは、5g/cm以上、さらに好ましくは、10g/cm以上であり、また、例えば、20g/cm以下である。上記した値が上記した下限以上であれば、積層体1の絶縁性をより一層向上できる。 The value obtained by subtracting the density of the metal substrate 2 from the density of the metal layer 3 is, for example, 0.1 g/cm 3 or more, preferably 1 g/cm 3 or more, more preferably 5 g/cm 3 or more, and even more preferably, It is 10 g/cm 3 or more and, for example, 20 g/cm 3 or less. If the above-mentioned value is above the above-described lower limit, the insulation properties of the laminate 1 can be further improved.
 1.2.3 金属層3の材料
 金属層3の材料は、限定されない。本実施形態では、金属層3の材料は、金属基板2の材料と異なる。金属層3の材料としては、例えば、高仕事関数金属、密着性金属、および、高密度金属が挙げられる。高仕事関数金属、密着性金属、および、高密度金属は、明確に峻別されず、一部重複してもよい。つまり、高仕事関数金属で、密着性金属、かつ、高密度金属であるものも金属に含まれる。上記した金属として、例えば、タングステン、ニッケル、モリブデン、および、クロムからなる群から選択される少なくとも1つが挙げられ、好ましくは、ニッケル、タングステン、および、モリブデンが挙げられる。
1.2.3 Material of Metal Layer 3 The material of metal layer 3 is not limited. In this embodiment, the material of the metal layer 3 is different from the material of the metal substrate 2. Examples of the material for the metal layer 3 include high work function metals, adhesive metals, and high density metals. High work function metals, adhesive metals, and high density metals are not clearly distinguished and may partially overlap. In other words, metals that are high work function metals, adhesive metals, and high density metals are also included in metals. Examples of the above metal include at least one selected from the group consisting of tungsten, nickel, molybdenum, and chromium, and preferably nickel, tungsten, and molybdenum.
 高仕事関数金属としては、例えば、金(Au)、白金(Pt)、パラジウム(Pd)、銀(Ag)、コバルト(Co)、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、ニッケル(Ni)、鉄(Fe)、タングステン(W)、モリブデン(Mo)、亜鉛(Zn)、および、タンタル(Ta)が挙げられる。高仕事関数金属の仕事関数は、例えば、4.6eV以上である。 Examples of high work function metals include gold (Au), platinum (Pt), palladium (Pd), silver (Ag), cobalt (Co), iridium (Ir), ruthenium (Ru), rhodium (Rh), and nickel. (Ni), iron (Fe), tungsten (W), molybdenum (Mo), zinc (Zn), and tantalum (Ta). The work function of the high work function metal is, for example, 4.6 eV or more.
 密着性金属としては、例えば、ニッケル、鉄、タングステン、モリブデン、亜鉛、タンタル、チタン(Ti)、および、クロム(Cr)が挙げられる。密着性金属の酸化還元電位は、例えば、0V以下、好ましくは、-0.2V以下である。 Examples of the adhesive metal include nickel, iron, tungsten, molybdenum, zinc, tantalum, titanium (Ti), and chromium (Cr). The oxidation-reduction potential of the adhesive metal is, for example, 0V or less, preferably -0.2V or less.
 高密度金属としては、例えば、金、白金、パラジウム、銀、コバルト、イリジウム、ルテニウム、ロジウム、ニッケル、鉄、タングステン、モリブデン、亜鉛、および、タンタルが挙げられる。高密度金属の密度は、例えば、8.9g/cm以上、好ましくは、10g/cm以上である。 Dense metals include, for example, gold, platinum, palladium, silver, cobalt, iridium, ruthenium, rhodium, nickel, iron, tungsten, molybdenum, zinc, and tantalum. The density of the high-density metal is, for example, 8.9 g/cm 3 or more, preferably 10 g/cm 3 or more.
 金属層3の材料として、好ましくは、密着性金属かつ高密度金属が挙げられ、具体的には、ニッケル、タングステン、および、モリブデンが挙げられる。 The material for the metal layer 3 is preferably an adhesive metal and a high-density metal, and specific examples thereof include nickel, tungsten, and molybdenum.
 1.2.4 金属層3の厚み
 金属層3の厚みは、例えば、1nm以上、好ましくは、10nm以上であり、また、例えば、500nm以下、好ましくは、100nm以下である。金属基板2の厚みに対する金属層3の厚みの比は、例えば、0.000001以上、好ましくは、0.00001以上であり、また、例えば、0.0167以下、好ましくは、0.0034以下である。
1.2.4 Thickness of Metal Layer 3 The thickness of the metal layer 3 is, for example, 1 nm or more, preferably 10 nm or more, and is, for example, 500 nm or less, preferably 100 nm or less. The ratio of the thickness of the metal layer 3 to the thickness of the metal substrate 2 is, for example, 0.000001 or more, preferably 0.00001 or more, and is, for example, 0.0167 or less, preferably 0.0034 or less. .
 1.3 無機絶縁層4
 無機絶縁層4は、金属層3の外表面32に配置される。無機絶縁層4は、外表面32の全てに接触する。無機絶縁層4は、厚み方向における積層体1の一方面(露出面)を形成する。無機絶縁層4は、外表面32の形状に追従する。本実施形態では、無機絶縁層4は、面方向に延びる形状を有する。無機絶縁層4は、単層または複層である。無機絶縁層4は、結晶質または非晶質である。
1.3 Inorganic insulation layer 4
The inorganic insulating layer 4 is arranged on the outer surface 32 of the metal layer 3. Inorganic insulating layer 4 contacts all of outer surface 32 . The inorganic insulating layer 4 forms one surface (exposed surface) of the laminate 1 in the thickness direction. Inorganic insulating layer 4 follows the shape of outer surface 32 . In this embodiment, the inorganic insulating layer 4 has a shape extending in the plane direction. The inorganic insulating layer 4 is a single layer or a multilayer. Inorganic insulating layer 4 is crystalline or amorphous.
 1.3.1 無機絶縁層4の材料
 無機絶縁層4の材料としては、例えば、無機物が挙げられる。無機物としては、例えば、酸化物、窒化物および酸窒化物が挙げられる。また、無機絶縁層4の材料は、例えば、アルミニウム、マグネシウム、亜鉛、ケイ素、イットリウム、および、チタンからなる群から選択される少なくともいずれか1つを含有する。材料として、好ましくは、ケイ素、アルミニウム、および、チタンが挙げられる。上記した材料は、単独または併用できる。
1.3.1 Material of the inorganic insulating layer 4 Examples of the material of the inorganic insulating layer 4 include inorganic substances. Examples of inorganic substances include oxides, nitrides, and oxynitrides. Further, the material of the inorganic insulating layer 4 contains, for example, at least one selected from the group consisting of aluminum, magnesium, zinc, silicon, yttrium, and titanium. Preferable materials include silicon, aluminum, and titanium. The above materials can be used alone or in combination.
 酸化物としては、例えば、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、酸化ケイ素(SiO)、酸化イットリウム(Y)、および、酸化クロム(Cr3、CrO2、CrO)が挙げられる。 Examples of oxides include aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), silicon oxide (SiO 2 ), yttrium oxide (Y 2 O 3 ), and chromium oxide (Cr 2 O 3 , CrO 2 , CrO 3 ).
 窒化物としては、例えば、窒化ケイ素、および、窒化アルミニウムが挙げられる。 Examples of nitrides include silicon nitride and aluminum nitride.
 酸窒化物としては、例えば、酸窒化ケイ素、および、酸窒化アルミニウムが挙げられる。 Examples of oxynitrides include silicon oxynitride and aluminum oxynitride.
 無機物として、好ましくは、酸化物が挙げられる。 Preferable examples of the inorganic substance include oxides.
 1.3.2 無機絶縁層4の厚み
 無機絶縁層4の厚みは、10μm以下である。
1.3.2 Thickness of inorganic insulating layer 4 The thickness of inorganic insulating layer 4 is 10 μm or less.
 一方、無機絶縁層4の厚みが10μmを超過すれば、無機絶縁層4が厚くなり、積層体1が大型化し、さらに、無機絶縁層4の熱伝導性が不良となり、ひいては、積層体1の熱伝導性が不良となる。 On the other hand, if the thickness of the inorganic insulating layer 4 exceeds 10 μm, the inorganic insulating layer 4 becomes thick, the laminate 1 becomes large, and the thermal conductivity of the inorganic insulating layer 4 becomes poor. Thermal conductivity becomes poor.
 他方、無機絶縁層4の厚みは、好ましくは、好ましくは、5μm以下、より好ましくは、2μm以下、より好ましくは、1μm以下、さらに好ましくは、0.5μm以下である。 On the other hand, the thickness of the inorganic insulating layer 4 is preferably 5 μm or less, more preferably 2 μm or less, more preferably 1 μm or less, and still more preferably 0.5 μm or less.
 無機絶縁層4の厚みは、例えば、10nm以上、好ましくは、20nm以上、より好ましくは、30nm以上、さらに好ましくは、40nm以上である。無機絶縁層4の厚みが上記した下限以上であれば、積層体1は、絶縁性に優れる。 The thickness of the inorganic insulating layer 4 is, for example, 10 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and still more preferably 40 nm or more. If the thickness of the inorganic insulating layer 4 is at least the above-described lower limit, the laminate 1 will have excellent insulation properties.
 金属基板2の厚みに対する無機絶縁層4の厚みの比は、例えば、0.00001以下、好ましくは、0.0001以下であり、また、例えば、0.35以上、好ましくは、0.1以上である。金属層3の厚みに対する無機絶縁層4の厚みの比は、例えば、0.01以下、好ましくは、0.1以下であり、また、例えば、100以上、好ましくは、10以上である。積層体1の厚みに対する無機絶縁層4の厚みの比は、例えば、0.01以下、好ましくは、0.1以下であり、また、例えば、100以上、好ましくは、10以上である。 The ratio of the thickness of the inorganic insulating layer 4 to the thickness of the metal substrate 2 is, for example, 0.00001 or less, preferably 0.0001 or less, and is, for example, 0.35 or more, preferably 0.1 or more. be. The ratio of the thickness of the inorganic insulating layer 4 to the thickness of the metal layer 3 is, for example, 0.01 or less, preferably 0.1 or less, and is, for example, 100 or more, preferably 10 or more. The ratio of the thickness of the inorganic insulating layer 4 to the thickness of the laminate 1 is, for example, 0.01 or less, preferably 0.1 or less, and is, for example, 100 or more, preferably 10 or more.
 1.4 積層体1の製造方法
 積層体1の製造方法を説明する。積層体1を製造するには、まず、金属基板2を準備し、次いで、真空成膜法を用いて、金属層3を、金属基板2の一方面21に形成する。真空成膜法としては、例えば、蒸着法、スパッタリング法、および、イオンプレーティング法が挙げられる。真空成膜法として、好ましくは、スパッタリング法が挙げられる。
1.4 Method for manufacturing the laminate 1 The method for manufacturing the laminate 1 will be explained. To manufacture the laminate 1, first, the metal substrate 2 is prepared, and then the metal layer 3 is formed on one side 21 of the metal substrate 2 using a vacuum film forming method. Examples of the vacuum film forming method include a vapor deposition method, a sputtering method, and an ion plating method. Preferably, the vacuum film forming method includes a sputtering method.
 その後、真空成膜法を用いて、無機絶縁層4を金属層3の外表面32に形成する。無機絶縁層4の成膜条件は、金属層3の成膜条件と異なっていてもよく、また、同一であってもよい。 Thereafter, the inorganic insulating layer 4 is formed on the outer surface 32 of the metal layer 3 using a vacuum film forming method. The conditions for forming the inorganic insulating layer 4 may be different from those for forming the metal layer 3, or may be the same.
 1.5 積層体1の用途
 この積層体1の用途は、限定されない。好ましくは、積層体1は、放熱基板10に備えられる。つまり、放熱基板10は、上記した積層体1を備える。放熱基板10は、厚み方向における積層体1の一方面に配置される電極5(仮想線)をさらに備えてもよい。電極5は、パターンを有する。電極5は、厚み方向における無機絶縁層4の一方面の一部に配置される。電極5は、導体からなる。導体としては、例えば、銅、および、チタンが挙げられる。電極5は、単層または複層である。
1.5 Application of laminate 1 The application of this laminate 1 is not limited. Preferably, the laminate 1 is provided on a heat dissipation substrate 10. That is, the heat dissipation board 10 includes the above-described laminate 1. The heat dissipation substrate 10 may further include an electrode 5 (imaginary line) arranged on one surface of the laminate 1 in the thickness direction. The electrode 5 has a pattern. The electrode 5 is arranged on a part of one surface of the inorganic insulating layer 4 in the thickness direction. The electrode 5 is made of a conductor. Examples of the conductor include copper and titanium. The electrode 5 has a single layer or multiple layers.
 2. 一実施形態の作用効果 
 この積層体1では、無機絶縁層4の厚みが10μm以下であるので、積層体1は、薄型で、熱伝導性がより一層に優れる。
2. Effects of one embodiment
In this laminate 1, the thickness of the inorganic insulating layer 4 is 10 μm or less, so the laminate 1 is thin and has even better thermal conductivity.
 また、金属層3の仕事関数が、金属基板2の仕事関数と同一または高ければ、金属層3と無機絶縁層4との界面のエネルギー障壁が増加することとなり、そのため、積層体1の絶縁抵抗を高くできる。 Further, if the work function of the metal layer 3 is the same as or higher than the work function of the metal substrate 2, the energy barrier at the interface between the metal layer 3 and the inorganic insulating layer 4 increases, and therefore the insulation resistance of the laminate 1 increases. can be made higher.
 また、金属層3の酸化還元電位が、金属基板2の仕事関数より低ければ、金属層3の金属基板2に対する密着力を向上させ、ひいては、無機絶縁層4の金属基板2に対する密着力を向上できる。 Further, if the oxidation-reduction potential of the metal layer 3 is lower than the work function of the metal substrate 2, the adhesion of the metal layer 3 to the metal substrate 2 is improved, and in turn, the adhesion of the inorganic insulating layer 4 to the metal substrate 2 is improved. can.
 さらに、金属層3の密度が、金属基板2の密度より高ければ、積層体1の絶縁性を向上できる。 Furthermore, if the density of the metal layer 3 is higher than the density of the metal substrate 2, the insulation of the laminate 1 can be improved.
 積層体1の製造方法では、真空成膜法で、金属層3を形成し、真空成膜法で、無機絶縁層4を形成するので、金属層3および無機絶縁層4のそれぞれを簡便に形成できる。 In the manufacturing method of the laminate 1, the metal layer 3 is formed by a vacuum film-forming method, and the inorganic insulating layer 4 is formed by a vacuum film-forming method, so that each of the metal layer 3 and the inorganic insulating layer 4 can be easily formed. can.
 3. 変形例 3. Modification example
 以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態および変形例を適宜組み合わせることができる。 In each of the following modified examples, the same reference numerals are given to the same members and steps as in the above-described embodiment, and detailed explanation thereof will be omitted. Moreover, each modification can produce the same effects as the one embodiment except as otherwise specified. Furthermore, one embodiment and the modified examples can be combined as appropriate.
 3.1 第1変形例
 図2に示すように、第1変形例の積層体1では、金属層3は、金属基板2の一方面21と側面23とに配置されている。金属層3は、一方面21および側面23を連続して被覆する。金属層3は、一方面21および側面23の形状に追従する。側面23に配置される金属層3は、厚み方向に延びる形状を有する。
3.1 First Modification As shown in FIG. 2, in the laminate 1 of the first modification, the metal layer 3 is disposed on one side 21 and the side 23 of the metal substrate 2. Metal layer 3 continuously covers one side 21 and side 23. The metal layer 3 follows the shape of the one side 21 and the side 23. The metal layer 3 disposed on the side surface 23 has a shape extending in the thickness direction.
 第1変形例において、無機絶縁層4は、金属層3の外表面32に配置される。無機絶縁層4は、金属層3の外表面32の全てに接触する。 In the first modification, the inorganic insulating layer 4 is arranged on the outer surface 32 of the metal layer 3. Inorganic insulating layer 4 contacts all of the outer surface 32 of metal layer 3 .
 3.1.1 第1変形例の作用効果
 第1変形例の積層体1では、金属層3は、金属基板2の側面23にも形成されるので、積層体1は、側面における熱伝導性に優れる。
3.1.1 Effects of the first modification In the laminate 1 of the first modification, the metal layer 3 is also formed on the side surface 23 of the metal substrate 2, so the laminate 1 has a high thermal conductivity on the side surface. Excellent in
 3.2 第2変形例
 図3に示すように、第2変形例の積層体1では、金属層3は、金属基板2の一方面21と他方面22と側面23とに配置されている。金属層3は、一方面21と他方面22と側面23とを連続して被覆する。
3.2 Second Modification As shown in FIG. 3, in the laminate 1 of the second modification, the metal layer 3 is arranged on one surface 21, the other surface 22, and the side surface 23 of the metal substrate 2. The metal layer 3 continuously covers one side 21 , the other side 22 , and the side surface 23 .
 無機絶縁層4は、一方面21に配置される金属層3のみの外表面32に配置されている。 The inorganic insulating layer 4 is placed on the outer surface 32 of only the metal layer 3 placed on one side 21.
 3.3 第3変形例
 図4に示すように、第3変形例は、第2変形例の金属層3を備えている。無機絶縁層4は、一方面21に配置される金属層3の外表面32と、側面23に配置される金属層3の外表面32とに配置されている。
3.3 Third Modification As shown in FIG. 4, the third modification includes the metal layer 3 of the second modification. The inorganic insulating layer 4 is disposed on the outer surface 32 of the metal layer 3 disposed on one side 21 and on the outer surface 32 of the metal layer 3 disposed on the side surface 23.
 以下に、実施例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited to the examples at all. In addition, the specific numerical values of the blending ratio (content ratio), physical property values, parameters, etc. used in the following description are the corresponding blending ratios ( Content percentage), physical property values, parameters, etc. can be replaced with the upper limit (value defined as "less than" or "less than") or lower limit (value defined as "more than" or "exceeding"). can.
<実施例1>
 金属基板2を準備した。金属基板2は、厚みが150μmであり、銅からなる。
<Example 1>
A metal substrate 2 was prepared. The metal substrate 2 has a thickness of 150 μm and is made of copper.
 次いで、真空成膜法を用いて、白金(Pt)からなり、厚み50nmである金属層3を成膜した。成膜条件は、以下の通りである。 Next, a metal layer 3 made of platinum (Pt) and having a thickness of 50 nm was formed using a vacuum film forming method. The film forming conditions are as follows.
 真空成膜法:DCマグネトロンスパッタリング法
 スパッタリングガス:Ar
 スパッタリング圧力:0.2Pa
 出力:80W
 スパッタリング温度:25℃
Vacuum film formation method: DC magnetron sputtering method Sputtering gas: Ar
Sputtering pressure: 0.2Pa
Output: 80W
Sputtering temperature: 25℃
 続いて、真空成膜法を用いて、酸化シリカ(SiO)からなり、厚み50nmの無機絶縁層4を形成した。成膜条件は、以下の通りである。 Subsequently, an inorganic insulating layer 4 made of silica oxide (SiO 2 ) and having a thickness of 50 nm was formed using a vacuum film forming method. The film forming conditions are as follows.
 真空成膜法:RFマグネトロンスパッタリング法
 スパッタリングガス:Ar/O混合ガス
 スパッタリング圧力:0.2Pa
 出力:100W
 スパッタリング温度:25℃
Vacuum film formation method: RF magnetron sputtering method Sputtering gas: Ar/O 2 mixed gas Sputtering pressure: 0.2 Pa
Output: 100W
Sputtering temperature: 25℃
<実施例2-実施例10>
 実施例1と同様にして、積層体1を製造した。但し、金属層3の材料を表1に記載の通りに変更した。
<Example 2-Example 10>
Laminated body 1 was manufactured in the same manner as in Example 1. However, the material of the metal layer 3 was changed as shown in Table 1.
<実施例11>
 実施例6と同様にして、積層体1を製造した。但し、金属基板2の材料をアルミニウムに変更した。アルミニウムの仕事関数、密度および酸化還元電位は、表1に記載の通りである。
<Example 11>
Laminated body 1 was manufactured in the same manner as in Example 6. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
<実施例12>
 実施例7と同様にして、積層体1を製造した。但し、金属基板2の材料をアルミニウムに変更した。アルミニウムの仕事関数、密度および酸化還元電位は、表1に記載の通りである。
<Example 12>
Laminated body 1 was manufactured in the same manner as in Example 7. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
<実施例13>
 実施例8と同様にして、積層体1を製造した。但し、金属基板2の材料をアルミニウムに変更した。アルミニウムの仕事関数、密度および酸化還元電位は、表1に記載の通りである。
<Example 13>
Laminated body 1 was manufactured in the same manner as in Example 8. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
<実施例14>
 実施例9と同様にして、積層体1を製造した。但し、金属基板2の材料をアルミニウムに変更した。アルミニウムの仕事関数、密度および酸化還元電位は、表1に記載の通りである。
<Example 14>
Laminated body 1 was manufactured in the same manner as in Example 9. However, the material of the metal substrate 2 was changed to aluminum. The work function, density, and redox potential of aluminum are as listed in Table 1.
<比較例1>
 実施例1と同様にして、積層体1を製造した。但し、無機絶縁層4の厚みを表1に記載の通りに変更した。
<Comparative example 1>
Laminated body 1 was manufactured in the same manner as in Example 1. However, the thickness of the inorganic insulating layer 4 was changed as shown in Table 1.
<評価>
 1.熱伝導性
 単位長さ当たりの無機絶縁層4の断面積および熱伝導率から、面積規格熱抵抗を求めた。そして、面積規格熱抵抗から熱伝導性を下記の基準に従って、評価した。その結果を表1に記載する。
<Evaluation>
1. Thermal Conductivity The area-standardized thermal resistance was determined from the cross-sectional area and thermal conductivity of the inorganic insulating layer 4 per unit length. Then, the thermal conductivity was evaluated based on the area-standardized thermal resistance according to the following criteria. The results are listed in Table 1.
○:無機絶縁層4の面積規格熱抵抗が1000×10-8Km-1未満であり、熱伝導性が良好であった。
×:無機絶縁層4の面積規格熱抵抗が1000×10-8Km-1以上であり、熱伝導性が不良であった。
Good: The area-based thermal resistance of the inorganic insulating layer 4 was less than 1000×10 −8 Km 2 W −1 , and the thermal conductivity was good.
×: The area-specific thermal resistance of the inorganic insulating layer 4 was 1000×10 −8 Km 2 W −1 or more, and the thermal conductivity was poor.
 2.絶縁性
 2.1 絶縁性評価サンプルの作製
2. Insulation 2.1 Preparation of insulation evaluation sample
 実施例1-実施例6および比較例1のそれぞれの積層体1における無機絶縁層4の一方面に、開口部を有するメタルマスクを介して、電極5を成膜した。電極5は、厚み5nmのチタン層、および、厚み100nmの銅層を厚み方向の一方側に向かって順に備える。
 電極5は、縦2.5mm、横2.5mmのサイズを有する。
An electrode 5 was formed on one side of the inorganic insulating layer 4 in each of the laminates 1 of Examples 1 to 6 and Comparative Example 1 through a metal mask having an opening. The electrode 5 includes a titanium layer with a thickness of 5 nm and a copper layer with a thickness of 100 nm in order toward one side in the thickness direction.
The electrode 5 has a size of 2.5 mm in length and 2.5 mm in width.
 電極5の成膜条件は、以下の通りである。 The conditions for forming the electrode 5 are as follows.
 真空成膜法:DCマグネトロンスパッタリング法
 スパッタリングガス:Ar
 スパッタリング圧力:0.2Pa
 出力:80W
 スパッタリング温度:25℃
Vacuum film formation method: DC magnetron sputtering method Sputtering gas: Ar
Sputtering pressure: 0.2Pa
Output: 80W
Sputtering temperature: 25℃
 2.2 絶縁抵抗の測定
 各実施例および比較例の積層体1の絶縁性を評価した。図1の仮想線で示すように、ソース-メジャーユニット(SMU)6を、金属基板2および電極5のそれぞれにライン7を介して接続した。そして、25℃で、ソース-メジャーユニット6を用いて、電極5側に+5Vを印可したときの電流値から絶縁抵抗として得た。下記の基準に従って、絶縁性を評価した。
2.2 Measurement of Insulation Resistance The insulation properties of the laminate 1 of each Example and Comparative Example were evaluated. As shown by the phantom lines in FIG. 1, a source-measure unit (SMU) 6 was connected to each of the metal substrate 2 and the electrode 5 via a line 7. Then, the insulation resistance was obtained from the current value when +5V was applied to the electrode 5 side using the source-measure unit 6 at 25°C. Insulation was evaluated according to the following criteria.
○:絶縁抵抗が1GΩ超過であり、絶縁性が良好であった。
×:絶縁抵抗が1GΩ以下であり、絶縁性不良好であった。
○: Insulation resistance exceeded 1 GΩ, and insulation properties were good.
×: The insulation resistance was 1 GΩ or less, and the insulation was poor.
 3.密着性(碁盤目剥離試験)
 各実施例および比較例のそれぞれの積層体1の無機絶縁層4に対して、碁盤目形状のクロスカット処理を施した。マス目は、正方形状であり、一辺の長さ1mmであり、マス目は、25個であった。続いて、24mm幅の粘着テープ(ニチバン社製)を無機絶縁層4に貼りつけ、その後、180度の剥離角度で、粘着テープを急激に剥がした。その後、クロスカット部分を目視で観察した。下記の基準に従って、密着性を評価した。
3. Adhesion (checkerboard peel test)
The inorganic insulating layer 4 of the laminate 1 of each Example and Comparative Example was subjected to a cross-cut process in a checkerboard shape. The grid was square, each side had a length of 1 mm, and there were 25 grids. Subsequently, a 24 mm wide adhesive tape (manufactured by Nichiban Co., Ltd.) was attached to the inorganic insulating layer 4, and then the adhesive tape was rapidly peeled off at a peeling angle of 180 degrees. Thereafter, the cross-cut portion was visually observed. Adhesion was evaluated according to the following criteria.
○:剥離面積が10%未満であり、無機絶縁層4の金属基板2に対する密着が良好であった。
×:剥離面積が10%以上であり、無機絶縁層4の金属基板2に対する密着が不良であった。
Good: The peeled area was less than 10%, and the adhesion of the inorganic insulating layer 4 to the metal substrate 2 was good.
×: The peeled area was 10% or more, and the adhesion of the inorganic insulating layer 4 to the metal substrate 2 was poor.
 4.金属層3の密度
 厚み方向におけるシリコン基板の一方面に各実施例および各比較例のそれぞれと同様にして、金属層3を形成した。この金属層3の密度を、X線反射率測定によって、求めた。
4. Density of Metal Layer 3 The metal layer 3 was formed on one side of the silicon substrate in the thickness direction in the same manner as in each of the Examples and Comparative Examples. The density of this metal layer 3 was determined by X-ray reflectance measurement.
 なお、上記した」「熱伝導性」、「絶縁性」、および、「密着性」のそれぞれの評価において、実施例11は、実施例6と同程度であり、実施例12は、実施例7と同程度であり、実施例13は、実施例8と同程度であり、実施例14は、実施例9と同程度であった。 In addition, in the evaluation of each of the above-mentioned "thermal conductivity", "insulation", and "adhesion", Example 11 was on the same level as Example 6, and Example 12 was on the same level as Example 7. Example 13 was comparable to Example 8, and Example 14 was comparable to Example 9.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Note that although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limiting manner. Variations of the invention that are obvious to those skilled in the art are within the scope of the following claims.
 積層体は、放熱基板に用いられる。 The laminate is used for a heat dissipation board.
1 積層体
2 金属基板
3 金属層
4 無機絶縁層
10 放熱基板
21 一方面
22 他方面
23 側面
1 Laminated body 2 Metal substrate 3 Metal layer 4 Inorganic insulating layer 10 Heat dissipation substrate 21 One side 22 Other side 23 Side surface

Claims (11)

  1.  金属基板と、金属層と、無機絶縁層とを厚み方向に順に備え、
     前記無機絶縁層の厚みは、10μm以下である、積層体。
    comprising a metal substrate, a metal layer, and an inorganic insulating layer in order in the thickness direction,
    A laminate, wherein the inorganic insulating layer has a thickness of 10 μm or less.
  2.  前記金属基板の材料は、銅、アルミニウム、タングステンおよびモリブデンからなる群から選択される少なくとも1つである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the material of the metal substrate is at least one selected from the group consisting of copper, aluminum, tungsten, and molybdenum.
  3.  前記無機絶縁層の材料は、酸化物、窒化物および酸窒化物からなる群から選択される少なくともいずれか1つである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the material of the inorganic insulating layer is at least one selected from the group consisting of oxides, nitrides, and oxynitrides.
  4.  前記無機絶縁層の材料は、アルミニウム、マグネシウム、亜鉛、ケイ素、イットリウム、および、チタンからなる群から選択される少なくともいずれか1つを含有する、請求項1に記載の積層体。 The laminate according to claim 1, wherein the material of the inorganic insulating layer contains at least one selected from the group consisting of aluminum, magnesium, zinc, silicon, yttrium, and titanium.
  5.  前記金属層の仕事関数は、前記金属基板の仕事関数と同一または高い、請求項1に記載の積層体。 The laminate according to claim 1, wherein the work function of the metal layer is the same as or higher than the work function of the metal substrate.
  6.  前記金属層の酸化還元電位は、前記金属基板の酸化還元電位より、低い、請求項1に記載の積層体。 The laminate according to claim 1, wherein the redox potential of the metal layer is lower than the redox potential of the metal substrate.
  7.  前記金属層の密度は、前記金属基板の密度より、高い、請求項1に記載の積層体。 The laminate according to claim 1, wherein the density of the metal layer is higher than the density of the metal substrate.
  8.  前記金属層の材料は、タングステン、ニッケル、モリブデン、および、クロムからなる群から選択される少なくとも1つである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the material of the metal layer is at least one selected from the group consisting of tungsten, nickel, molybdenum, and chromium.
  9.  前記金属基板は、厚み方向における一方面および他方面と、前記一方面の周端縁および前記他方面の周端縁を連結する側面とを含み、
     前記金属層は、前記金属基板の前記一方面および前記側面に配置される、請求項1に記載の積層体。
    The metal substrate includes one surface and the other surface in the thickness direction, and a side surface connecting the peripheral edge of the one surface and the peripheral edge of the other surface,
    The laminate according to claim 1, wherein the metal layer is arranged on the one side and the side surface of the metal substrate.
  10.  請求項1から請求項9のいずれか一項に記載の積層体を備える、放熱基板。 A heat dissipation board comprising the laminate according to any one of claims 1 to 9.
  11.  請求項1から請求項9のいずれか一項に記載の積層体の製造方法であり、
     金属層を、厚み方向における金属基板の一方面に、真空成膜法を用いて形成し、
     無機絶縁層を、前記金属層の表面に、真空成膜法を用いて形成する、積層体の製造方法。
    A method for manufacturing a laminate according to any one of claims 1 to 9,
    A metal layer is formed on one side of the metal substrate in the thickness direction using a vacuum deposition method,
    A method for producing a laminate, comprising forming an inorganic insulating layer on the surface of the metal layer using a vacuum film forming method.
PCT/JP2023/012756 2022-04-01 2023-03-29 Laminate, heat dissipation substrate, and laminate production method WO2023190658A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061604 2022-04-01
JP2022061604 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023190658A1 true WO2023190658A1 (en) 2023-10-05

Family

ID=88202042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012756 WO2023190658A1 (en) 2022-04-01 2023-03-29 Laminate, heat dissipation substrate, and laminate production method

Country Status (2)

Country Link
TW (1) TW202347644A (en)
WO (1) WO2023190658A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815241A (en) * 1981-07-20 1983-01-28 Sumitomo Electric Ind Ltd Substrate for semiconductor device
JPS5868997A (en) * 1981-10-19 1983-04-25 松下電器産業株式会社 Electrically insulating board and method of producing same
JPS6120803A (en) * 1984-07-10 1986-01-29 Toppan Printing Co Ltd Measuring method of film thickness
JPS6214445A (en) * 1985-07-12 1987-01-23 Sumitomo Electric Ind Ltd Composite material for electronic part
JPS6221247A (en) * 1985-07-19 1987-01-29 Sumitomo Electric Ind Ltd Electrically insulating substrate for semiconductor device
JPS62108551A (en) * 1985-11-06 1987-05-19 Kanegafuchi Chem Ind Co Ltd High heat-conductive insulating substrate and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815241A (en) * 1981-07-20 1983-01-28 Sumitomo Electric Ind Ltd Substrate for semiconductor device
JPS5868997A (en) * 1981-10-19 1983-04-25 松下電器産業株式会社 Electrically insulating board and method of producing same
JPS6120803A (en) * 1984-07-10 1986-01-29 Toppan Printing Co Ltd Measuring method of film thickness
JPS6214445A (en) * 1985-07-12 1987-01-23 Sumitomo Electric Ind Ltd Composite material for electronic part
JPS6221247A (en) * 1985-07-19 1987-01-29 Sumitomo Electric Ind Ltd Electrically insulating substrate for semiconductor device
JPS62108551A (en) * 1985-11-06 1987-05-19 Kanegafuchi Chem Ind Co Ltd High heat-conductive insulating substrate and manufacture thereof

Also Published As

Publication number Publication date
TW202347644A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US11692806B2 (en) Strain gauge with improved stability
CN105830227B (en) Solar cell and its manufacture method
US20110033784A1 (en) Electrode with a coating, method in production thereof and use of a material
KR101406581B1 (en) Cu ALLOY INTERCONNECTION FILM FOR TOUCH-PANEL SENSOR AND METHOD OF MANUFACTURING THE INTERCONNECTION FILM, TOUCH-PANEL SENSOR, AND SPUTTERING TARGET
JP2007502536A (en) New metal strip
WO2006030762A1 (en) Transparent conductive film, process for producing the same, transparent conductive base material and luminescent device
JPWO2019176552A1 (en) Oxide thin film and oxide sintered body for sputtering target for producing the thin film
CN104425090A (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP2023129465A (en) strain gauge
JP2009224152A (en) Transparent electrode, transparent conductive substrate, and transparent touch panel
WO2023190658A1 (en) Laminate, heat dissipation substrate, and laminate production method
TW200949873A (en) Capacitor-forming member and printed wiring board comprising capacitor
TWI576443B (en) Copper alloy film, copper laminated film, wiring electrode, input device and touch panel sensor
KR20180007209A (en) Transparent electrode and its fabrication method
CN110335730B (en) Thin film resistor and preparation method thereof
JP4588621B2 (en) Laminated body for flexible printed wiring board and Cu alloy sputtering target used for forming copper alloy layer of the laminated body
WO2019088119A1 (en) Strain gauge
US10249704B2 (en) Capacitor
WO2023190659A1 (en) Laminate, heat-dissipating substrate, and method for producing laminate
WO2021193370A1 (en) Strain gauge
WO2023190661A1 (en) Laminate, heat-dissipating substrate, and laminate production method
TW201437405A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
CN115398178A (en) Strain gauge
JP2007242880A (en) Film deposition method
Jin et al. Reliability enhancement of zinc oxide varistors using sputtered silver electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780667

Country of ref document: EP

Kind code of ref document: A1