WO2023190488A1 - Washing nozzle and dishwasher using same - Google Patents
Washing nozzle and dishwasher using same Download PDFInfo
- Publication number
- WO2023190488A1 WO2023190488A1 PCT/JP2023/012453 JP2023012453W WO2023190488A1 WO 2023190488 A1 WO2023190488 A1 WO 2023190488A1 JP 2023012453 W JP2023012453 W JP 2023012453W WO 2023190488 A1 WO2023190488 A1 WO 2023190488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sphere
- guide groove
- swirling chamber
- cleaning
- water
- Prior art date
Links
- 238000005406 washing Methods 0.000 title claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 102
- 239000007921 spray Substances 0.000 claims abstract description 17
- 238000004140 cleaning Methods 0.000 claims description 99
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003599 detergent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 241001553178 Arachis glabrata Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- -1 polyoxymethylene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L15/00—Washing or rinsing machines for crockery or tableware
- A47L15/42—Details
Definitions
- the present disclosure relates to a washing nozzle that sprays washing water to wash dishes and the like, and a dishwasher using the nozzle.
- FIG. 20 is a diagram showing the configuration of a cleaning system in a conventional dishwasher.
- a dishwasher has a configuration as shown in FIG. 20 in order to efficiently wash a large number of dishes.
- a plurality of dish baskets (upper dish basket 101, lower dish basket 103) are arranged in the washing tank.
- the cleaning nozzles 102a and 102b are arranged to wash the tableware placed in the upper tableware basket 101 and the lower tableware basket 103, respectively.
- the dishwasher sprays washing water, which is force-fed by a built-in washing pump, toward the tableware from shower heads arranged in washing nozzles 102a and 102b. According to this configuration, the entire tableware can be washed with a small amount of water while alternately switching the jets from the washing nozzles 102a and 102b.
- the cleaning nozzle 102b is arranged below the lower tableware basket 103.
- Each of the cleaning nozzles 102a and 102b has a rotating shaft and an arm portion.
- the arm section has a plurality of shower heads whose discharge ports are oriented to form various spray angles toward the lower tableware basket 103.
- rotating nozzles are used as the cleaning nozzles 102a and 102b.
- the rotating nozzle spreads the jet stream over a wide range while rotating the arm part using the reaction force of the jet stream.
- the cleaning nozzle 102a is arranged below the upper tableware basket 101 (for example, see Patent Document 1).
- FIG. 21 is a diagram showing the configuration of a cleaning system in another conventional dishwasher.
- the fixed nozzle 104 is fixed to the side wall in the cleaning tank and has a plurality of shower heads whose discharge ports are oriented to form various spray angles (see Patent Document 2). .
- JP2007-282831A Japanese Patent Application Publication No. 2012-91041
- the direction of the jet stream is fixed, so if the placement position of the tableware or the direction of the tableware shifts, the original cleaning performance cannot be ensured.
- the present disclosure has been made in view of these issues, and has a space-saving configuration, and is capable of uniformly spraying a jet stream over a wide angle range while maintaining a low water flow rate and high jet pressure. To provide a washing nozzle capable of spreading water and a dishwasher using the same.
- a cleaning nozzle includes a shower head that sprays pressurized cleaning water.
- the shower head has a swirling chamber, an inlet, and an outlet.
- the swirling chamber has a substantially cylindrical side wall and forms a swirling flow.
- the inlet allows the cleaning water to flow into the swirling chamber in an oblique direction along the side wall of the swirling chamber.
- the discharge port is provided on one of two surfaces of the swirling chamber located in a direction along the central axis of the swirling chamber, and discharges cleaning water.
- the swirling chamber includes a sphere and a guide groove.
- the guide groove supports the sphere at a position below the radial height of the sphere.
- the guide groove portion causes the sphere to perform reciprocating motion due to the swirling flow.
- a dishwasher includes a cleaning tank that accommodates items to be washed, a cleaning pump that pressurizes cleaning water to be sprayed onto the items to be cleaned, and a cleaning nozzle according to the above aspect.
- the cleaning nozzle has one or more shower heads.
- Each of the one or more showerheads is a showerhead according to the above embodiment.
- the cleaning nozzle of the present disclosure has a space-saving configuration and can spread a jet stream over a wide angle while maintaining a high jet pressure with a low amount of water.
- FIG. 1 is a perspective view of a washing tank in a dishwasher according to Embodiment 1 of the present disclosure, as viewed diagonally from the rear.
- FIG. 2 is a schematic cross-sectional view of the washing tank in the dishwasher according to the first embodiment, taken along line II-II in FIG.
- FIG. 3 is a schematic cross-sectional view of the washing tank in the dishwasher according to the first embodiment, taken along line III-III in FIG.
- FIG. 4 is a vertical sectional view of the shower head according to the first embodiment.
- FIG. 5 is a plan view of the shower head according to Embodiment 1, when looking at the inlet from the water conduit.
- FIG. 6 is a plan view of the shower head according to Embodiment 1, when the discharge port is viewed from the swirling chamber.
- FIG. 5 is a plan view of the shower head according to Embodiment 1, when looking at the inlet from the water conduit.
- FIG. 6 is a plan view of the shower head according to Embodiment 1, when the
- FIG. 7 is a vertical cross-sectional view of the shower head according to the first embodiment when viewed from the front.
- FIG. 8 is a plan view showing the movable range of the sphere in the rotating chamber of the shower head according to the first embodiment.
- FIG. 9 is a vertical cross-sectional view of the shower head according to the first embodiment when viewed from the front, showing the movable range of the sphere in the rotating chamber.
- FIG. 10 is a vertical cross-sectional view of the shower head according to the first embodiment taken along line XX in FIG.
- FIG. 11A is a vertical cross-sectional view of the shower head according to Embodiment 1 before the swirling chamber is filled with water.
- FIG. 11B is a vertical cross-sectional view of the shower head according to Embodiment 1 when the swirling chamber is filled with water.
- FIG. 12A is a plan view showing the swirling flow in the swirling chamber and the position of the sphere (right end) of the shower head according to the first embodiment.
- FIG. 12B is a plan view showing the swirling flow in the swirling chamber and the position (center) of the sphere in the shower head according to the first embodiment.
- FIG. 12C is a plan view showing the swirling flow in the swirling chamber and the position of the sphere (left end) of the shower head according to the first embodiment.
- FIG. 13 is a vertical sectional view of the shower head according to the first embodiment when viewed from the side.
- FIG. 12A is a plan view showing the swirling flow in the swirling chamber and the position of the sphere (right end) of the shower head according to the first embodiment.
- FIG. 12B is a plan view showing the swirling flow in the swirling chamber and the position (
- FIG. 14A is a vertical cross-sectional view of the shower head according to Embodiment 1, showing the water jet direction when the sphere is located at the right end of the swirling chamber.
- FIG. 14B is a vertical cross-sectional view of the shower head according to Embodiment 1, showing the water jet direction when the sphere is located at the center of the swirling chamber.
- FIG. 14C is a vertical sectional view of the shower head according to Embodiment 1, showing the water jet direction when the sphere is located at the left end of the swirling chamber.
- FIG. 15A is a plan view showing the jet flow of the shower head according to the first embodiment.
- FIG. 15B is a front view showing the jet flow of the shower head according to the first embodiment.
- FIG. 16 is a perspective view of a rotating nozzle according to Embodiment 2 of the present disclosure.
- FIG. 17 is a horizontal cross-sectional view of the shower head in the rotary nozzle according to the second embodiment, when viewed from the discharge port side.
- FIG. 18 is a vertical sectional view of the arm and shower head in the rotary nozzle according to the second embodiment, taken along the line XVIII-XVIII in FIG. 17.
- FIG. 19 is a vertical sectional view of the arm and shower head in the rotary nozzle according to the second embodiment, taken along the line XIV-XIV in FIG. 17.
- FIG. 20 is a diagram showing the configuration of a washing system in a conventional dishwasher.
- FIG. 21 is a diagram showing the configuration of a washing system in another conventional dishwasher.
- the cleaning nozzle according to the first aspect of the present disclosure includes a shower head that sprays pressurized cleaning water.
- the shower head has a swirling chamber, an inlet, and an outlet.
- the swirling chamber has a substantially cylindrical side wall and forms a swirling flow.
- the inlet allows the cleaning water to flow into the swirling chamber in an oblique direction along the side wall of the swirling chamber.
- the discharge port is provided on one of two surfaces located in a direction along the central axis of the swirling chamber, and discharges cleaning water.
- the swirling chamber includes a sphere and a guide groove.
- the guide groove supports the sphere at a position below the radial height of the sphere.
- the guide groove portion causes the sphere to perform reciprocating motion due to the swirling flow.
- the water flowing in from the inlet forms a swirling flow along the cylindrical side wall of the swirling chamber.
- the water pressure causes the sphere to fit inside the guide groove.
- the spatial distance between the outer periphery of the sphere and the side wall of the swirling chamber differs on both sides of the sphere in the longitudinal direction of the guide groove.
- the spatial distance between the outer periphery of the sphere on one side of the sphere in the longitudinal direction of the guide groove and the side wall of the swirling chamber is different from that on the other side of the sphere in the longitudinal direction of the guide groove.
- the sphere moves from the higher pressure side to the lower pressure side.
- the longitudinal direction of the guide groove is a direction along the locus of the reciprocating motion of the sphere (that is, the range of motion of the sphere).
- the guide groove portion causes the sphere to reciprocate along a trajectory curved on the opposite side from the discharge port along the central axis of the swirling chamber. Let it happen.
- the sphere that is accommodated in the guide groove by water pressure reliably approaches the longitudinal end of the guide groove. Therefore, due to the difference in pressure applied to the sphere, the sphere can stably perform reciprocating motion due to self-excited vibration.
- the longitudinal end of the guide groove is the end of the locus of the reciprocating motion of the sphere (that is, the range of motion of the sphere).
- the opening width of the opening edge of the guide groove in the direction perpendicular to the orbit of the sphere is larger than that of the sphere near both ends of the orbit of the sphere. It is narrower near the center of the orbit.
- the sphere vibrates along a linear trajectory in plan view while the sphere surface is in contact with the receiving surface of the guide groove. As a result, vibration noise can be reduced.
- the discharge port is a substantially elliptical opening having a major axis substantially parallel to the trajectory of reciprocating motion by the sphere in plan view.
- the injection angle can be tilted due to the Coanda effect of the sphere, and the injection flow can be spread over a wider range.
- the discharge port has an edge surface that is substantially parallel to the central axis of the swirling chamber.
- the jet stream has a flatter elliptical shape in plan view. As a result, a jet stream that spreads over a wider area and more uniformly can be formed.
- the guide groove has a sphere receiving part that is formed near the opening edge of the guide groove and supports the sphere.
- a groove is formed between the sphere receiving portion and the discharge port.
- a space is formed between this groove and the surface of the sphere.
- the spatial distance between the opening edge of the guide groove and the surface on the inlet side of the swirling chamber is spherical. smaller than the diameter of
- the sphere even if a foreign object is caught between the sphere and the guide groove, the sphere will separate from the guide groove when the water in the swirling chamber is discharged. Next, when water is allowed to flow into the swirling chamber, the foreign matter caught in the guide groove is first discharged from the discharge port, and then the sphere is accommodated in the guide groove. As a result, the sphere can perform more stable reciprocating motion.
- the swirling chamber has an inlet provided on the side wall of the swirling chamber. According to this aspect, the thickness of the cleaning nozzle can be made thinner.
- a dishwasher includes a washing tank that accommodates objects to be washed, a washing pump that pressurizes washing water to be sprayed onto the objects to be washed, and a dishwasher according to any one of the first to eighth aspects.
- the cleaning nozzle has one or more shower heads. Each of the one or more showerheads is the showerhead of any one of the first to eighth aspects.
- the jet stream can be spread over a wider area, and the cleaning performance can be improved.
- the cleaning nozzle is a rotary nozzle that includes an arm and a shaft portion having a water conduit, and rotates by a jet reaction force from the shower head. It is.
- the rotating chamber of the shower head fits within the height of the water conduit.
- the jet stream can be diffused over a wider range without impairing the ease of placing tableware, and the cleaning performance can be improved.
- FIG. 1 is a perspective view of a washing tank of a dishwasher 1 according to the present embodiment, viewed diagonally from the rear.
- FIG. 2 is a schematic cross-sectional view of the washing tank of the dishwasher 1 taken along line II-II in FIG.
- FIG. 3 is a schematic cross-sectional view of the washing tank of the dishwasher 1 taken along line III-III in FIG.
- the dishwasher 1 includes a housing (not shown) and a washing tank 2 that can be pulled out from the housing when the door 1a is opened.
- a user places objects to be cleaned, such as tableware, on a tableware basket and stores them in the washing tank 2.
- washing water is supplied into the washing tank 2 via a water supply valve (not shown). After the cleaning water is pressurized by the cleaning pump 3, it is supplied to a cleaning nozzle (cleaning means) provided with a plurality of injection holes. The cleaning nozzle sprays cleaning water toward the dishes.
- the cleaning pump 3 includes a motor whose rotation speed is variable in order to change the pressure applied to the cleaning water, and an inverter circuit to control the motor.
- the washing tank 2 includes an upper tableware basket 4, a middle tableware basket 5, a lower tableware basket 6, a rotating nozzle 7, a fixed nozzle 8a, a fixed nozzle 8b, a drain port 9, and a water dividing device 10.
- the rotating nozzle 7 is a cleaning nozzle corresponding to the lower tableware basket 6, and rotates around the rotation center axis due to the spray reaction force.
- the fixed nozzles 8a and 8b are fixed to the side wall of the washing tank 2, and are washing nozzles corresponding to the upper tableware basket 4 and the middle tableware basket 5, respectively. Both the upper tableware basket 4 and the middle tableware basket 5 are not necessarily required, and at least one of them may be provided.
- the drain port 9 is provided at the bottom of the cleaning tank 2 and communicates with the suction side of the cleaning pump 3.
- the drain port 9 has a residue filter (not shown) for collecting residue and a drain pump (not shown) for discharging the wash water in the washing tank 2.
- the water diversion device 10 is arranged in the discharge path of the cleaning pump 3.
- the water dividing device 10 transfers wash water pressurized by the wash pump 3 to a rotating nozzle 7, a fixed nozzle 8a, and a fixed nozzle 8b using a valve body (not shown) disposed inside the water dividing device 10. Supply selectively.
- each operation of the dishwasher 1 is performed by a built-in control section (not shown) controlling each component.
- the control unit includes a processor and a semiconductor memory. The control unit controls each component by the processor operating according to software stored in the semiconductor memory.
- step 1 After placing the items to be washed in the dishwasher basket and storing the washing tank 2 in the casing, and adding detergent, the user closes the opening of the casing of the dishwasher 1 with the door body 1a, and then starts the dishwasher. Start operation of step 1.
- the control unit executes, in this order, a "cleaning step” for cleaning the object to be cleaned, a “rinsing step” for rinsing off the attached detergent and residue, and a “drying step” for drying the object to be cleaned.
- the control unit operates the water supply valve to supply a predetermined amount of cleaning water to the cleaning tank 2.
- the control unit causes the cleaning pump 3 to pressurize the cleaning water, and causes the cleaning nozzles (rotary nozzle 7, fixed nozzles 8a, 8b) to spray the cleaning water.
- the cleaning water passes through the waste filter from the drain port 9, is sucked into the cleaning pump 3, is supplied by the cleaning pump 3 to a predetermined cleaning nozzle in the cleaning tank 2, and is sprayed from this cleaning nozzle. After washing the dishes, this washing water returns to the drain port 9 again. Washing water circulates through this route. At this time, the residue washed off from the dishes flows into the residue filter together with the washing water. Debris that is too large to pass through the debris filter is collected by the debris filter.
- the water separating device 10 causes the cleaning nozzles corresponding to each of the dish baskets (the upper dish basket 4, the suspended dish basket 5, and the lower dish basket 6) to spray water for a predetermined period of time, and then switches the cleaning nozzles in order. . As a result, the entire tableware is cleaned. When the cleaning process is finished, the control unit discharges the cleaning water containing dirt and supplies new cleaning water.
- the control unit operates the cleaning pump 3 and causes the cleaning nozzle to spray cleaning water again, thereby rinsing the object to be cleaned such as detergent and residue.
- the entire tableware is rinsed by causing each washing nozzle to spray for a predetermined period of time and then switching the washing nozzles in order.
- the control unit repeats the rinsing operation two to three times, in which the washing water is discharged and the washing water is supplied again. Thereafter, the control unit discharges the washing water and completes the rinsing process.
- control unit performs a drying process for a predetermined period of time to evaporate water droplets attached to the object to be cleaned.
- the series of operations is completed.
- FIGS. 4 to 15B the structure and operation of the shower head 11 with fixed nozzles 8a and 8b, which is one of the features of this embodiment, will be explained using FIGS. 4 to 15B.
- FIG. 4 is a vertical cross-sectional view of the shower head 11 at the central portion of the shower head 11.
- an orthogonal coordinate system including a first axis C1, a second axis C2, and a third axis C3 is used to indicate the orientation of the shower head 11.
- the first axis C1 is an axis along the central axis of the swirling chamber 14.
- the second axis C2 and the third axis C3 are axes along the longitudinal direction and the lateral direction of the discharge port 13, respectively (see FIGS. 8 to 10).
- FIG. 5 is a plan view of the shower head 11 when looking at the inlet 12 from the water conduit 21.
- FIG. 6 is a plan view of the shower head 11 when the discharge port 13 is viewed from the swirling chamber 14.
- FIG. 7 is a vertical sectional view of the shower head 11 when viewed from the front.
- FIG. 8 is a plan view of the shower head 11 showing the movable range D of the sphere 17 in the swirling chamber 14.
- FIG. 9 is a vertical sectional view of the shower head 11 when viewed from the front, showing the range of motion D of the sphere 17 within the swirling chamber 14.
- FIG. 10 is a vertical sectional view of the shower head 11 taken along line XX in FIG. 9 when viewed from the side.
- a front view means a view along the third axis C3 in the positive direction of the third axis C3, and a side view means a view along the second axis C2 in the positive direction of the third axis C3. This means when viewed in the negative direction.
- a plan view means a drawing viewed along the first axis C1 in the positive or negative direction of the first axis.
- the shower head 11 includes a cylindrical swirling chamber 14, two inlets 12, an outlet 13, two passages 15, a sphere 17, a guide groove 18, has.
- the swirling chamber 14 is arranged at the center of the shower head 11 in plan view (see FIG. 6).
- the discharge port 13 is provided on one side (lower side in FIG. 4) of the shower head 11 in the direction along the central axis of the swirl chamber 14, and discharges water from the swirl chamber 14.
- the central axis of the discharge port 13 coincides with the central axis of the swirling chamber 14 (see FIGS. 8 to 10).
- the two inflow ports 12 are provided on the other side (upper side in FIG. 4) of the shower head 11 in the direction along the central axis of the swirling chamber 14.
- the two inflow ports 12 are arranged symmetrically with respect to the central axis of the swirling chamber 14 in plan view (see FIGS. 5 and 6).
- Each of the two passages 15 communicates a corresponding one of the two inflow ports 12 with the swirling chamber 14 (see FIG. 7). Due to the arrangement positions of each of the two passages 15 and the swirling chamber 14, the two passages 15 are formed to be inclined from the frontage on the upstream side of the inlet 12 toward the frontage on the swirling chamber 14 side in a vertical cross-sectional view. (See Figure 7). On the other hand, the two passages 15 are formed so as to be in contact with the side wall 16 of the swirling chamber 14 in plan view (see FIG. 5).
- the swirling chamber 14 may have a perfect circular cylindrical shape or an elliptical cylindrical shape as long as it has a cylindrical shape (including a substantially cylindrical shape).
- the cleaning water flows into the swirling chamber 14 along the surface of the side wall 16 of the swirling chamber 14 in a plan view (see FIG. 5) and in an oblique direction (see FIG. 7) in a front view.
- the inlet 12 has an elliptical shape (including a substantially elliptical shape), the present disclosure is not limited thereto.
- the guide groove portion 18 is provided on the discharge port 13 side of the swirling chamber 14 .
- the guide groove portion 18 has an arcuate cross section (including a substantially arcuate shape (see FIG. 10)) so that the sphere 17 can be accommodated therein.
- the guide groove portion 18 is formed so that the sphere 17 can slide in its longitudinal direction when viewed from above.
- the guide groove 18 has an opening that communicates with the discharge port 13 at the center of the guide groove 18 in plan view.
- the sphere 17 is made of resin, specifically polyoxymethylene, and has a diameter of 6 mm. As shown in FIG. 4, a portion of the sphere 17 from the lower end of the sphere 17 to a height of approximately 30% of the diameter of the sphere 17 fits within the guide groove portion 18.
- the present disclosure is not limited to this example. It is sufficient that a portion of the sphere 17 from the lower end of the sphere 17 to a height of about 20% to 50% of the diameter of the sphere 17 fits inside the guide groove portion 18. When the half portion of the sphere 17 on the discharge port 13 side fits inside the guide groove 18, the guide groove 18 supports the sphere 17 at a position below the radial height of the sphere 17.
- a portion of the sphere 17 from the upper end of the sphere 17 to a height of about 70% of the diameter protrudes from (the opening of) the guide groove 18 into the space of the swirling chamber 14. More specifically, a portion of the sphere 17 ranging from about 50% to 80% of the diameter from the upper end of the sphere 17 may protrude from (the opening of) the guide groove 18 into the space of the swirling chamber 14. That is, a half portion of the sphere 17 on the inflow port 12 side may protrude into the space of the swirling chamber 14 from (the opening of) the guide groove portion 18 .
- the lower end of the sphere 17 is the part of the sphere 17 closest to the discharge port 13, and means the part of the sphere 17 on the most negative side in the direction along the first axis C1.
- the upper end of the sphere 17 is the part of the sphere 17 farthest from the discharge port 13, and means the part of the sphere 17 on the most positive side in the direction along the first axis C1.
- "a portion of the sphere 17 fits within the guide groove 18" means that a portion of the sphere 17 protrudes from (the opening of) the guide groove 18 toward the discharge port 13 side.
- the guide groove 18 has a second groove 19 and a spherical receiving surface 20.
- the second groove 19 is formed on the discharge port 13 side of the guide groove 18 (first groove) (see FIG. 4).
- the sphere receiving surface 20 is formed between the opening of the guide groove 18 on the swirling chamber 14 side and the second groove 19, and makes sliding contact with the sphere 17 (see FIGS. 4 and 6).
- the sphere receiving surface 20 is formed near the opening edge of the guide groove 18 to support the sphere 17.
- a groove, which is a second groove portion 19, is provided between the sphere receiving surface 20 and the discharge port 13.
- a space C is formed between the second groove portion 19 and the surface of the sphere 17.
- the second groove 19 is provided on the side of the discharge port 13 of the guide groove 18, and by narrowing the space where the sphere 17 and the sphere receiving surface 20 of the guide groove 18 come into contact, the swirling chamber 14 is Even if foreign matter or the like enters, the possibility of the foreign matter being caught between the sphere 17 and the sphere receiving surface 20 can be significantly reduced. Therefore, the sphere 17 can be caused to reciprocate more stably.
- the bidirectional arrows shown in FIG. 8 indicate the movable range D of the sphere 17 in a plan view of the guide groove portion 18.
- the opening width of the opening edge of the guide groove 18 in the direction perpendicular to the range of motion D of the sphere 17 varies from near both ends (B) of the range of motion D of the sphere 17 to the center of the range of motion D of the sphere 17.
- Nearby (A) is narrower.
- the guide groove portion 18 has a peanut-like elliptical shape in plan view.
- the peanut-shaped oval shape is a peanut shell-like shape formed by two circles arranged side by side and a smooth curve connecting the two circles.
- the position of the sphere 17 along the first axis C1 is such that the sphere 17 is located at both ends of the guide groove 18 in the longitudinal direction. It moves a little in the positive direction of the first axis C1 compared to when. In this way, the sphere 17 slides on the guide groove 18, thereby reciprocating along the trajectory shown by the arrow in FIG. That is, the guide groove portion 18 causes the sphere 17 to perform reciprocating motion along this trajectory.
- the orbit of the sphere 17 has a curved shape along the central axis of the swirling chamber 14 on the opposite side to the discharge port 13.
- the trajectory of the sphere 17 has a shape that bulges toward the positive side of the first axis C1 along the first axis C1.
- the trajectory of the reciprocating motion by the sphere 17 corresponds to the range of motion D in the reciprocating motion by the sphere 17.
- the amplitude of the reciprocating motion by the sphere 17 in the guide groove portion 18 is set to about 4 mm.
- the guide groove portion 18 is arranged so that its central axis in the longitudinal direction in plan view is parallel (including substantially parallel) to the passage 15 of the inlet 12 (see FIGS. 5 and 6).
- the discharge port 13 has an elliptical shape with a major axis parallel to the longitudinal direction of the guide groove portion 18 in plan view.
- the discharge port 13 has a short axis of about 3 mm and a long axis of 5 to 7 mm.
- the discharge port 13 has a linear edge surface with a length of approximately 2 mm between the boundary with the second groove portion 19 and the opening frontage of the discharge port 13 (see FIG. 4).
- the discharge port 13 is an elliptical (including substantially elliptical) opening having a major axis substantially parallel to the trajectory of the reciprocating motion by the sphere 17 (see range of motion D shown in FIG. 8).
- the discharge port 13 has an edge surface that is parallel (including substantially parallel) to the central axis of the swirling chamber 14.
- the surface of the swirling chamber 14 on the inlet 12 side is formed into a hemispherical shape.
- the sphere 17 contacts the surface of the hemispherical swirling chamber 14 and the opening edge of the guide groove 18.
- the height of the whirling chamber 14 is set so that the center of the sphere 17 is located slightly closer to the center of the whirling chamber 14 than the point of contact between the sphere 17 and the opening edge of the guide groove 18.
- the height dimension of the swirling chamber 14 is the dimension of the swirling chamber 14 along the first axis C1.
- the spatial distance P (maximum distance) between the opening edge of the guide groove 18 and the surface of the swirling chamber 14 on the inlet 12 side that faces the guide groove 18 is smaller than the diameter of the sphere 17.
- FIG. 11A is a vertical sectional view of the shower head 11 when viewed from the front before the swirling chamber 14 is filled with water.
- FIG. 11B is a vertical sectional view of the shower head 11 when viewed from the front when the swirling chamber 14 is filled with water.
- the spherical body 17 approaches either of the longitudinal ends of the guide groove portion 18, that is, either of the opposite ends of the movable range D of the spherical body 17.
- FIGS. 12A to 12C is a plan view of the shower head 11 when viewed in the negative direction of the first axis C1, showing the swirling flow in the swirling chamber 14 and the position of the sphere 17.
- 12A, 12B, and 12C show cases where the sphere 17 is located at the right end, center, and left end, respectively.
- the passage 15 of the inlet 12 is formed tangentially to the side wall 16 of the cylindrical swirl chamber 14 . Therefore, the water flow flowing in from the inlet 12 flows into the swirling chamber 14 in the tangential direction of the side wall 16. As a result, a swirling flow is generated within the swirling chamber 14, as shown in FIGS. 12A to 12C.
- the space between the outer periphery of the sphere 17 and the side wall 16 of the turning chamber 14 is small near the end opposite to the end where the sphere 17 is close in the movable range D of the sphere 17. It becomes wider. Therefore, a water stream is ejected from the discharge port 13, and the pressure at this location becomes low.
- the sphere 17 moves from a position close to the right end of the range of motion D of the sphere 17 to a position close to the left end of the range of motion D of the sphere 17 in the guide groove portion 18.
- the ball slides on the spherical receiving surface 20 of the ball.
- the pressure distribution within the swirling chamber 14 is reversed from the state shown in FIG. 12A. Therefore, the sphere 17 moves from a position close to the left end of the range of motion D of the sphere 17 to a position close to the right end of the range of motion D of the sphere 17 . In this way, the sphere 17 performs reciprocating motion along a curved trajectory along the guide groove 18 due to self-excited vibration.
- the opening width of the guide groove portion 18 in plan view is an elliptical shape without a depression near the center. That is, a case is assumed in which the sphere 17 performs reciprocating motion on a straight trajectory instead of a curved trajectory as shown by the arrow in FIG. 9 when viewed from the front.
- FIG. 13 is a vertical sectional view of the shower head 11 when viewed from the side.
- the opening frontage of the guide groove portion 18 has a shape in which the vicinity of the center is recessed inward when viewed from above. Therefore, as shown in FIGS. 12A to 12C and FIG. 13, the sphere 17 performs reciprocating motion along the first axis C1 and the second axis C2 while sliding on the sphere receiving surface 20. That is, movement of the sphere 17 in the direction along the third axis C3 is restricted. As a result, generation of vibration noise during reciprocating motion is suppressed.
- 14A to 14C are vertical cross-sectional views of the shower head 11 when viewed from the front, showing the water jetting directions when the sphere 17 is located at the right end, center, and left end of the swirling chamber 14, respectively.
- 14A to 14C are vertical cross-sectional views of the shower head 11 corresponding to the top views of the shower head 11 shown in FIGS. 12A to 12C, respectively.
- the discharge port 13 has an elliptical shape with a major axis parallel to the longitudinal direction of the guide groove portion 18 in plan view. Therefore, the angle of the jet flow generated by the Coanda effect with respect to the central axis of the swirling chamber 14 can be increased.
- the passage length of the discharge port 13 is set to about 2 mm or more.
- the passage length of the discharge port 13 is the length of the discharge port 13 along the central axis of the discharge port 13. Therefore, the spread of the jet flow in the direction perpendicular to the reciprocating motion (vertical direction in FIG. 15A) is narrower than in the direction of the reciprocating motion of the sphere 17 (horizontal direction in FIG. 15A). Thereby, the diffusion density of the jet stream can be distributed approximately uniformly (see FIGS. 15A and 15B).
- the inventors found that when the passage length of the discharge port 13 is set to 1 mm or less, the spread of the jet flow in the direction perpendicular to the reciprocating motion of the sphere 17 is expanded compared to the direction of the reciprocating motion of the sphere 17, and the center of the swirling chamber 14 is It was confirmed that the distribution of the jet flow becomes sparse in the axial direction.
- the water flow flowing into the swirling chamber 14 forms a swirling flow along the cylindrical side wall 16 of the swirling chamber 14.
- This swirling flow causes a difference in the pressure applied to both sides of the sphere 17.
- Self-excited vibration occurs when this difference in pressure changes periodically.
- the jet stream can be spread over a wide angle of 60° or more while maintaining a high jet pressure with a low amount of water.
- water can be sprayed onto the entire tableware placed in the tableware basket using the cleaning nozzle having a space-saving configuration.
- the sphere can perform more stable reciprocating motion.
- Embodiment 2 A washing nozzle and a dishwasher according to Embodiment 2 will be described below with reference to FIGS. 16 to 19. Note that the main configuration of the dishwasher 1 according to the present embodiment is the same as the configuration of the dishwasher 1 described in the first embodiment, so a detailed explanation will be omitted.
- FIG. 16 is a perspective view of the rotating nozzle 7.
- FIG. 17 is a horizontal cross-sectional view of the arm 25 and shower head 22 of the rotary nozzle 7 when viewed from the discharge port 13 side.
- FIG. 18 is a vertical sectional view of the arm 25 and shower head 22 in the rotating nozzle 7, taken along the line XVIII-XVIII in FIG.
- FIG. 19 is a vertical sectional view of the arm 25 and shower head 22 in the rotating nozzle 7, taken along the line XIV-XIV in FIG.
- FIG. 18 shows a cross section of the arm 25 and the shower head 22 at a position shifted in the positive direction of the third axis C3 in FIG. 17 from the case of FIG. 18.
- the rotating nozzle 7 includes a shaft portion 24 disposed along the rotational center axis of the rotating nozzle 7, and an arm 25 perpendicular to the rotational center axis of the rotating nozzle 7, and has a T-shape as a whole. It has a shape.
- a plurality of shower heads 22 are arranged on the upper surface of the arm 25. Each of the plurality of shower heads 22 has a first axis C1 set at a predetermined angle. The rotating nozzle 7 rotates around the central axis of rotation due to the spray reaction force from each of the plurality of shower heads 22 .
- the discharge port 13 is provided on one side (upper side in FIG. 18) of the shower head 22 in the direction along the central axis of the cylindrical swirling chamber 14.
- the swirling chamber 14 has two inlets 23 provided in its cylindrical side wall 16 and communicating the swirling chamber 14 and a water conduit 27.
- the two inflow ports 23 are provided point-symmetrically with respect to the central axis of the swirling chamber 14 in plan view.
- Each of the two inlets 23 has a passage 26 provided in contact with the side wall 16 .
- the shower head 22 is provided on the side of the discharge port 13 of the swirling chamber 14, and has a guide groove 18 having a peanut-shaped elliptical shape in plan view.
- the guide groove portion 18 is formed such that the sphere 17 can slide therein, and the opening thereof communicates with the discharge port 13 .
- a second groove 19 is formed inside the guide groove 18 on the side communicating with the discharge port 13.
- the sphere receiving surface 20 is formed between the opening of the guide groove 18 on the swirling chamber 14 side and the second groove 19 , and comes into sliding contact with the sphere 17 .
- the guide groove portion 18 has a peanut-like elliptical shape in plan view.
- the discharge port 13 has an elliptical shape with a major axis parallel to the longitudinal direction of the guide groove portion 18.
- the surface of the swirling chamber 14 opposite to the guide groove portion 18 is formed in a hemispherical shape (see FIGS. 17 and 18).
- the sphere 17 contacts the surface of the hemispherical swirling chamber 14 and the opening edge of the guide groove 18 .
- the height of the whirling chamber 14 is set so that the center of the sphere 17 is located slightly closer to the center of the whirling chamber 14 than the point of contact between the sphere 17 and the opening edge of the guide groove 18.
- the turning chamber 14 of the shower head 22 is configured to fit within the height of the water conduit 27 of the arm 25 (see FIG. 18).
- the direction of the central axis of the swirling chamber 14 coincides with the first axis C1 of some shower heads 22 (see FIG. 16).
- the swirl chamber 14 of the shower head 22 can be configured to fit within the height of the water conduit 27 of the arm 25.
- the water conduit 27, the inlet 23, and the swirling chamber 14 are arranged within the height dimension of the arm 25. Therefore, the thickness of the rotating nozzle 7 does not increase. As a result, the rotating nozzle 7 having a large spray range can be configured without increasing the height of the cleaning tank 2.
- the jet direction of the jet flow jetted from one shower head 22 periodically fluctuates. For this reason, even if the diffusion range of the jet streams of other adjacent shower heads 22 overlaps, the first axis C1 of each of the plurality of shower heads 22 is arranged such that the collision of the plurality of jet streams is reduced. is set.
- the period of the reciprocating motion by the sphere 17 can be adjusted by adjusting the material of the sphere 17 and/or the opening area of the inlet 23.
- the cycles of the reciprocating motion by the spheres 17 can be different from each other in the plurality of showerheads 22, interference between two adjacent jet streams can be suppressed.
- the cleaning nozzle according to the present disclosure is applicable to dishwashers, cleaning toilet seats, and the like.
- Dishwasher 1a Door body 2 Washing tank 3 Washing pump 4 Upper dish basket 5 Middle dish basket 6 Lower dish basket 7 Rotating nozzle 8a, 8b Fixed nozzle 9 Drain port 10 Water dividing device 11, 22 shower head 12, 23 Inlet 13 Discharge port 14 Turning chamber 15, 26 Passage 16 Side wall 17 Sphere 18 Guide groove 19 Second groove 20 Sphere receiving surface 21, 27 Water conduit 24 Shaft 25 Arm 101 Upper tableware basket 102a, 102b Washing nozzle 103 Lower tableware basket 104 Fixed nozzle
Landscapes
- Washing And Drying Of Tableware (AREA)
Abstract
A washing nozzle according to the present disclosure comprises a shower head (11) that sprays pressurized washing water. The shower head (11) comprises a swirl chamber (14), an inflow port (12), and a discharge port (13). The swirl chamber (13) has a substantially cylindrical side wall and forms a swirl flow. The inflow port (12) causes the washing water to flow into the swirl chamber (14) in an oblique direction along the side wall of the swirl chamber (14). The discharge port (13) is provided to one surface of two surfaces of the swirl chamber located in a direction along the center axis of the swirl chamber (14) and discharges the washing water. The swirl chamber (14) comprises a spherical body (17) and a guide groove portion (18). The guide groove portion (18) supports the spherical body (17) at a position which has a height equal to or lower than the radius height of the spherical body (17). The guide groove portion (18) causes the spherical body (17) to reciprocate by the swirl flow.
Description
本開示は、洗浄水を噴射して食器などを洗浄する洗浄ノズル、および、それを用いた食器洗い機に関する。
The present disclosure relates to a washing nozzle that sprays washing water to wash dishes and the like, and a dishwasher using the nozzle.
図20は、従来の食器洗い機における洗浄システムの構成を示す図である。一般的に、食器洗い機は、多くの食器を効率良く洗浄するため、図20に示すような構成を有する。洗浄槽内に複数の食器かご(上段食器かご101、下段食器かご103)が配置される。洗浄ノズル102a、102bはそれぞれ、上段食器かご101、下段食器かご103に載置された食器類を洗浄するために配置される。
FIG. 20 is a diagram showing the configuration of a cleaning system in a conventional dishwasher. Generally, a dishwasher has a configuration as shown in FIG. 20 in order to efficiently wash a large number of dishes. A plurality of dish baskets (upper dish basket 101, lower dish basket 103) are arranged in the washing tank. The cleaning nozzles 102a and 102b are arranged to wash the tableware placed in the upper tableware basket 101 and the lower tableware basket 103, respectively.
食器洗い機は、内蔵した洗浄ポンプにより圧送された洗浄水を、洗浄ノズル102a、102bに配置されたシャワーヘッドから食器類に向けて噴射する。この構成によれば、洗浄ノズル102a、102bからの噴射を交互に切り替えながら、少ない水量で食器全体を洗浄することができる。
The dishwasher sprays washing water, which is force-fed by a built-in washing pump, toward the tableware from shower heads arranged in washing nozzles 102a and 102b. According to this configuration, the entire tableware can be washed with a small amount of water while alternately switching the jets from the washing nozzles 102a and 102b.
例えば、洗浄ノズル102bは、下段食器かご103の下方に配置される。洗浄ノズル102a、102bの各々は、回転軸とアーム部とを有する。
For example, the cleaning nozzle 102b is arranged below the lower tableware basket 103. Each of the cleaning nozzles 102a and 102b has a rotating shaft and an arm portion.
アーム部は、下段食器かご103に向かって様々な噴射角度をなすように吐出口の向きを設定した複数のシャワーヘッドを有する。一般的に、洗浄ノズル102a、102bとして回転ノズルが用いられる。回転ノズルは、噴射流の反力を利用してアーム部を回転させながら広範囲に噴射流を拡散する。下段食器かご103と同様に、洗浄ノズル102aは、上段食器かご101の下方に配置される(例えば、特許文献1参照)。
The arm section has a plurality of shower heads whose discharge ports are oriented to form various spray angles toward the lower tableware basket 103. Generally, rotating nozzles are used as the cleaning nozzles 102a and 102b. The rotating nozzle spreads the jet stream over a wide range while rotating the arm part using the reaction force of the jet stream. Similar to the lower tableware basket 103, the cleaning nozzle 102a is arranged below the upper tableware basket 101 (for example, see Patent Document 1).
図21は、従来の他の食器洗い機における洗浄システムの構成を示す図である。図21に示すように、固定ノズル104は、洗浄槽内の側壁に固定されて、様々な噴射角度をなすように吐出口の向きが設定された複数のシャワーヘッドを有する(特許文献2参照)。
FIG. 21 is a diagram showing the configuration of a cleaning system in another conventional dishwasher. As shown in FIG. 21, the fixed nozzle 104 is fixed to the side wall in the cleaning tank and has a plurality of shower heads whose discharge ports are oriented to form various spray angles (see Patent Document 2). .
特許文献1、2に記載の洗浄ノズル構成において、以下の問題が知られている。
The following problems are known in the cleaning nozzle configurations described in Patent Documents 1 and 2.
回転ノズルを用いる場合、回転ノズルの軌道空間を確保しなければ、回転ノズルと下段食器かごに載置された食器との干渉が生じる。このため、上段食器かごと下段食器かごとの間にある程度の距離を確保する必要があり、その分、本体サイズが大きくなる。
When using a rotating nozzle, if the orbital space for the rotating nozzle is not secured, interference will occur between the rotating nozzle and the dishes placed in the lower tableware basket. Therefore, it is necessary to ensure a certain distance between the upper tableware basket and the lower tableware basket, and the size of the main body increases accordingly.
固定ノズルを用いる場合、噴射流の方向が固定されるため、食器の載置位置、または、食器の向きがずれると、本来の洗浄性能を確保できない。
When using a fixed nozzle, the direction of the jet stream is fixed, so if the placement position of the tableware or the direction of the tableware shifts, the original cleaning performance cannot be ensured.
固定ノズルを用いた構成によれば、省スペース化を図ることができる。しかしながら、低水量で、かつ、高い噴射圧力を維持しつつ、広範囲に洗浄水を噴射できる洗浄ノズルを実現するという観点においては、未だ改善の余地がある。
According to the configuration using a fixed nozzle, it is possible to save space. However, there is still room for improvement in terms of realizing a cleaning nozzle that can spray cleaning water over a wide range while maintaining a low amount of water and a high injection pressure.
本開示は、これらの課題に鑑みてなされたものであり、省スペースな構成を有し、低水量で、かつ、高い噴射圧力を維持しつつ、広角な範囲に対して一様に噴射流を拡散することができる洗浄ノズル、および、それを用いた食器洗い機を提供する。
The present disclosure has been made in view of these issues, and has a space-saving configuration, and is capable of uniformly spraying a jet stream over a wide angle range while maintaining a low water flow rate and high jet pressure. To provide a washing nozzle capable of spreading water and a dishwasher using the same.
本開示の一態様に係る洗浄ノズルは、加圧された洗浄水を噴射するシャワーヘッドを備える。シャワーヘッドは、旋回室と、流入口と、吐出口と、を有する。
A cleaning nozzle according to one aspect of the present disclosure includes a shower head that sprays pressurized cleaning water. The shower head has a swirling chamber, an inlet, and an outlet.
旋回室は、略円筒形状の側壁を有して旋回流を形成する。流入口は、旋回室の側壁に沿って洗浄水を斜め方向に旋回室に流入させる。吐出口は、旋回室の中心軸に沿った方向に位置する旋回室の二面の一方の面に設けられて洗浄水を吐出する。
The swirling chamber has a substantially cylindrical side wall and forms a swirling flow. The inlet allows the cleaning water to flow into the swirling chamber in an oblique direction along the side wall of the swirling chamber. The discharge port is provided on one of two surfaces of the swirling chamber located in a direction along the central axis of the swirling chamber, and discharges cleaning water.
旋回室は、球体と、ガイド溝部とを備える。ガイド溝部は、球体の半径高さ以下の位置で球体を支持する。ガイド溝部は、旋回流によって球体に往復運動を行わせる。
The swirling chamber includes a sphere and a guide groove. The guide groove supports the sphere at a position below the radial height of the sphere. The guide groove portion causes the sphere to perform reciprocating motion due to the swirling flow.
本開示の他の態様に係る食器洗い機は、被洗浄物を収容する洗浄槽と、被洗浄物に噴射される洗浄水を加圧する洗浄ポンプと、上記態様に係る洗浄ノズルと、を備える。本態様の食器洗い機において、洗浄ノズルは一つまたは複数のシャワーヘッドを有する。一つまたは複数のシャワーヘッドの各々は上記態様に係るシャワーヘッドである。
A dishwasher according to another aspect of the present disclosure includes a cleaning tank that accommodates items to be washed, a cleaning pump that pressurizes cleaning water to be sprayed onto the items to be cleaned, and a cleaning nozzle according to the above aspect. In the dishwasher of this embodiment, the cleaning nozzle has one or more shower heads. Each of the one or more showerheads is a showerhead according to the above embodiment.
本開示の洗浄ノズルは、省スペースな構成を有して、低水量で高い噴射圧を維持しながら広角に噴射流を拡散することができる。
The cleaning nozzle of the present disclosure has a space-saving configuration and can spread a jet stream over a wide angle while maintaining a high jet pressure with a low amount of water.
本開示の第1態様に係る洗浄ノズルは、加圧された洗浄水を噴射するシャワーヘッドを備える。シャワーヘッドは、旋回室と、流入口と、吐出口と、を有する。
The cleaning nozzle according to the first aspect of the present disclosure includes a shower head that sprays pressurized cleaning water. The shower head has a swirling chamber, an inlet, and an outlet.
旋回室は、略円筒形状の側壁を有して旋回流を形成する。流入口は、旋回室の側壁に沿って洗浄水を斜め方向に旋回室に流入させる。吐出口は、旋回室の中心軸に沿った方向に位置する二面の一方の面に設けられて洗浄水を吐出する。
The swirling chamber has a substantially cylindrical side wall and forms a swirling flow. The inlet allows the cleaning water to flow into the swirling chamber in an oblique direction along the side wall of the swirling chamber. The discharge port is provided on one of two surfaces located in a direction along the central axis of the swirling chamber, and discharges cleaning water.
旋回室は、球体と、ガイド溝部とを備える。ガイド溝部は、球体の半径高さ以下の位置で球体を支持する。ガイド溝部は、旋回流によって球体に往復運動を行わせる。
The swirling chamber includes a sphere and a guide groove. The guide groove supports the sphere at a position below the radial height of the sphere. The guide groove portion causes the sphere to perform reciprocating motion due to the swirling flow.
本態様によれば、流入口から流入した水は旋回室の円筒形状の側壁に沿って旋回流を形成する。旋回室内が水で満たされると、水圧によって球体がガイド溝部の内部に収まる。球体が平面視においてガイド溝部の長手方向の端部に近接すると、球体外周と旋回室の側壁との間の空間距離が、ガイド溝部の長手方向における球体の両側で異なる。
According to this aspect, the water flowing in from the inlet forms a swirling flow along the cylindrical side wall of the swirling chamber. When the swirling chamber is filled with water, the water pressure causes the sphere to fit inside the guide groove. When the sphere approaches the longitudinal end of the guide groove in plan view, the spatial distance between the outer periphery of the sphere and the side wall of the swirling chamber differs on both sides of the sphere in the longitudinal direction of the guide groove.
すなわち、ガイド溝部の長手方向における球体の一方の側における球体外周と旋回室の側壁との間の空間距離は、ガイド溝部の長手方向における球体の他方の側のそれと相異する。これにより、ガイド溝部の長手方向における球体の両側で圧力の相違が生じる。その結果、球体はこの圧力の高い方から低い方に移動する。
That is, the spatial distance between the outer periphery of the sphere on one side of the sphere in the longitudinal direction of the guide groove and the side wall of the swirling chamber is different from that on the other side of the sphere in the longitudinal direction of the guide groove. This results in a pressure difference on both sides of the sphere in the longitudinal direction of the guide groove. As a result, the sphere moves from the higher pressure side to the lower pressure side.
球体の移動が完了すると、球体の両側に掛かる圧力の大きさが逆転する。このため、球体は先程と反対方向に移動する。このようにして、この圧力の相違の変動により球体に自励振動が生じる。なお、ガイド溝部の長手方向とは、球体による往復運動の軌跡(すなわち球体の可動域)に沿った方向である。
When the movement of the sphere is complete, the magnitude of the pressure on both sides of the sphere is reversed. Therefore, the sphere moves in the opposite direction. In this way, variations in this pressure difference cause self-excited vibrations in the sphere. Note that the longitudinal direction of the guide groove is a direction along the locus of the reciprocating motion of the sphere (that is, the range of motion of the sphere).
平面視において、球体が球体による往復運動の軌道の一端に近接すると、球体による往復運動の軌道の他端側から水流が吐出口を通して噴射される。この時、球体外周の曲面に沿ったコアンダ効果により、水流は吐出口の中心軸に対して斜め方向に噴射される。このため、高い吐出圧の噴射流を、球体の自励振動と往復運動とにより噴射方向を周期的に揺動させながら広角に噴射することができる。その結果、より広範囲に噴射を拡散させることができる。
In a plan view, when the sphere approaches one end of the trajectory of the reciprocating motion by the sphere, a water stream is ejected from the other end of the trajectory of the reciprocating motion by the sphere through the discharge port. At this time, due to the Coanda effect along the curved surface of the outer periphery of the sphere, the water stream is ejected in an oblique direction with respect to the central axis of the discharge port. Therefore, a jet stream with a high discharge pressure can be jetted over a wide angle while the jet direction is periodically oscillated by the self-excited vibration and reciprocating motion of the sphere. As a result, the injection can be spread over a wider area.
本開示の第2態様に係る洗浄ノズルにおいて、第1の態様に加えて、ガイド溝部は、球体に、旋回室の中心軸に沿って吐出口と反対側に湾曲した軌道に沿った往復運動を行わせる。
In the cleaning nozzle according to the second aspect of the present disclosure, in addition to the first aspect, the guide groove portion causes the sphere to reciprocate along a trajectory curved on the opposite side from the discharge port along the central axis of the swirling chamber. Let it happen.
本態様によれば、旋回室内が水で満されたとき、水圧でガイド溝部に収まった球体は、確実にガイド溝部の長手方向の端部に近接する。このため、球体に掛かる圧力の相違により、球体に自励振動による往復運動を安定的に行わせることができる。なお、ガイド溝部の長手方向の端部とは、球体による往復運動の軌跡(すなわち球体の可動域)の端部である。
According to this aspect, when the swirling chamber is filled with water, the sphere that is accommodated in the guide groove by water pressure reliably approaches the longitudinal end of the guide groove. Therefore, due to the difference in pressure applied to the sphere, the sphere can stably perform reciprocating motion due to self-excited vibration. Note that the longitudinal end of the guide groove is the end of the locus of the reciprocating motion of the sphere (that is, the range of motion of the sphere).
本開示の第3態様に係る洗浄ノズルにおいて、第2態様に加えて、平面視において、球体の軌道に垂直な方向におけるガイド溝部の開口縁の開口幅は、球体の軌道の両端付近より球体の軌道の中心付近の方が狭い。
In the cleaning nozzle according to the third aspect of the present disclosure, in addition to the second aspect, in a plan view, the opening width of the opening edge of the guide groove in the direction perpendicular to the orbit of the sphere is larger than that of the sphere near both ends of the orbit of the sphere. It is narrower near the center of the orbit.
本態様によれば、球体表面がガイド溝部の受け面に接しながら、平面視において球体は直線的な軌道に沿って振動する。その結果、振動音を低減することができる。
According to this aspect, the sphere vibrates along a linear trajectory in plan view while the sphere surface is in contact with the receiving surface of the guide groove. As a result, vibration noise can be reduced.
本開示の第4態様に係る洗浄ノズルにおいて、第2態様に加えて、吐出口は、平面視において、球体による往復運動の軌道に略平行な長径を有する略楕円形状の開口である。
In the cleaning nozzle according to the fourth aspect of the present disclosure, in addition to the second aspect, the discharge port is a substantially elliptical opening having a major axis substantially parallel to the trajectory of reciprocating motion by the sphere in plan view.
本態様によれば、球体のコアンダ効果により噴射角度を傾斜させることができ、より広範囲に噴射流を拡散することができる。
According to this aspect, the injection angle can be tilted due to the Coanda effect of the sphere, and the injection flow can be spread over a wider range.
本開示の第5態様に係る洗浄ノズルにおいて、第1態様~第4態様のいずれかに加えて、吐出口は、旋回室の中心軸と略平行な縁面を有する。
In the cleaning nozzle according to the fifth aspect of the present disclosure, in addition to any of the first to fourth aspects, the discharge port has an edge surface that is substantially parallel to the central axis of the swirling chamber.
本態様によれば、噴射流は、平面視においてより扁平な楕円状となる。その結果、より広範囲かつより一様に拡散する噴射流を形成することができる。
According to this aspect, the jet stream has a flatter elliptical shape in plan view. As a result, a jet stream that spreads over a wider area and more uniformly can be formed.
本開示の第6態様に係る洗浄ノズルにおいて、第1態様または第2態様に加えて、ガイド溝部は、ガイド溝部の開口縁の付近に形成されて球体を支持する球体受け部を有する。球体受け部と吐出口との間に溝が形成される。この溝と球体の表面との間に空間が形成される。
In the cleaning nozzle according to the sixth aspect of the present disclosure, in addition to the first aspect or the second aspect, the guide groove has a sphere receiving part that is formed near the opening edge of the guide groove and supports the sphere. A groove is formed between the sphere receiving portion and the discharge port. A space is formed between this groove and the surface of the sphere.
本態様によれば、球体とガイド溝部との接触部に異物などが挟まりにくくすることができ、球体により安定した往復運動を行わせことができる。
According to this aspect, it is possible to prevent foreign objects from getting caught in the contact portion between the sphere and the guide groove, and it is possible to cause the sphere to perform more stable reciprocating motion.
本開示の第7態様に係る洗浄ノズルにおいて、第1態様また第2態様に加えて、旋回室において、ガイド溝部の開口縁と、旋回室の流入口の側の面との空間距離が、球体の直径より小さい。
In the cleaning nozzle according to the seventh aspect of the present disclosure, in addition to the first aspect and the second aspect, in the swirling chamber, the spatial distance between the opening edge of the guide groove and the surface on the inlet side of the swirling chamber is spherical. smaller than the diameter of
本態様によれば、球体とガイド溝部との間に異物などが挟まっても、旋回室内の水が排出されると球体はガイド溝部から離れる。次に、旋回室内に水を流入させると、まずガイド溝部に挟まった異物が吐出口から排出されてから、球体がガイド溝部に収まる。その結果、球体により安定した往復運動を行わせることができる。
According to this aspect, even if a foreign object is caught between the sphere and the guide groove, the sphere will separate from the guide groove when the water in the swirling chamber is discharged. Next, when water is allowed to flow into the swirling chamber, the foreign matter caught in the guide groove is first discharged from the discharge port, and then the sphere is accommodated in the guide groove. As a result, the sphere can perform more stable reciprocating motion.
本開示の第8態様に係る洗浄ノズルにおいて、第1態様~第7態様のいずれかに加えて、旋回室は、旋回室の側壁に設けられた流入口を有する。本態様によれば、洗浄ノズルの厚み寸法をより薄くすることができる。
In the cleaning nozzle according to the eighth aspect of the present disclosure, in addition to any of the first to seventh aspects, the swirling chamber has an inlet provided on the side wall of the swirling chamber. According to this aspect, the thickness of the cleaning nozzle can be made thinner.
本開示の第9態様に係る食器洗い機は、被洗浄物を収容する洗浄槽と、被洗浄物に噴射される洗浄水を加圧する洗浄ポンプと、第1態様~第8態様のいずれかに係る洗浄ノズルと、を備える。本態様の食器洗い機において、洗浄ノズルは一つまたは複数のシャワーヘッドを有する。一つまたは複数のシャワーヘッドの各々は第1態様~第8態様のいずれかのシャワーヘッドである。
A dishwasher according to a ninth aspect of the present disclosure includes a washing tank that accommodates objects to be washed, a washing pump that pressurizes washing water to be sprayed onto the objects to be washed, and a dishwasher according to any one of the first to eighth aspects. A cleaning nozzle. In the dishwasher of this embodiment, the cleaning nozzle has one or more shower heads. Each of the one or more showerheads is the showerhead of any one of the first to eighth aspects.
本態様によれば、噴射流をより広範囲に拡散させることができ、洗浄性能を向上させることができる。
According to this aspect, the jet stream can be spread over a wider area, and the cleaning performance can be improved.
本開示の第10態様に係る食器洗い機において、第9の態様に加えて、洗浄ノズルは、導水路を備えたアームと軸部とを備えて、シャワーヘッドからの噴射反力により回転する回転ノズルである。シャワーヘッドの旋回室は導水路の高さに収まる。
In the dishwasher according to the tenth aspect of the present disclosure, in addition to the ninth aspect, the cleaning nozzle is a rotary nozzle that includes an arm and a shaft portion having a water conduit, and rotates by a jet reaction force from the shower head. It is. The rotating chamber of the shower head fits within the height of the water conduit.
本態様によれば、食器の載置しやすさを損なうことなく、噴射流をより広範囲に拡散させることができ、洗浄性能を向上させることができる。
According to this aspect, the jet stream can be diffused over a wider range without impairing the ease of placing tableware, and the cleaning performance can be improved.
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、これから説明する実施の形態によって本開示が限定されるものではない。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the embodiments described below.
(実施の形態1)
図1は、本実施の形態に係る食器洗い機1の洗浄槽を斜め後方から見た斜視図である。図2は、食器洗い機1の洗浄槽の図1におけるII-II線に沿った概略断面図である。図3は、食器洗い機1の洗浄槽の図1におけるIII-III線に沿った概略断面図である。 (Embodiment 1)
FIG. 1 is a perspective view of a washing tank of a dishwasher 1 according to the present embodiment, viewed diagonally from the rear. FIG. 2 is a schematic cross-sectional view of the washing tank of the dishwasher 1 taken along line II-II in FIG. FIG. 3 is a schematic cross-sectional view of the washing tank of the dishwasher 1 taken along line III-III in FIG.
図1は、本実施の形態に係る食器洗い機1の洗浄槽を斜め後方から見た斜視図である。図2は、食器洗い機1の洗浄槽の図1におけるII-II線に沿った概略断面図である。図3は、食器洗い機1の洗浄槽の図1におけるIII-III線に沿った概略断面図である。 (Embodiment 1)
FIG. 1 is a perspective view of a washing tank of a dishwasher 1 according to the present embodiment, viewed diagonally from the rear. FIG. 2 is a schematic cross-sectional view of the washing tank of the dishwasher 1 taken along line II-II in FIG. FIG. 3 is a schematic cross-sectional view of the washing tank of the dishwasher 1 taken along line III-III in FIG.
図1~図3に示すように、食器洗い機1は、筐体(図示せず)と、扉体1aを開けると筐体から引き出し可能な洗浄槽2と、を備える。使用者は、食器などの被洗浄物を食器かごに載置して洗浄槽2内に収容する。
As shown in FIGS. 1 to 3, the dishwasher 1 includes a housing (not shown) and a washing tank 2 that can be pulled out from the housing when the door 1a is opened. A user places objects to be cleaned, such as tableware, on a tableware basket and stores them in the washing tank 2.
食器洗い機1において、給水弁(図示せず)を介して洗浄槽2内に洗浄水が供給される。洗浄水は、洗浄ポンプ3により加圧された後、複数の噴射孔が設けられた洗浄ノズル(洗浄手段)に供給される。洗浄ノズルは、食器に向かって洗浄水を噴射する。
In the dishwasher 1, washing water is supplied into the washing tank 2 via a water supply valve (not shown). After the cleaning water is pressurized by the cleaning pump 3, it is supplied to a cleaning nozzle (cleaning means) provided with a plurality of injection holes. The cleaning nozzle sprays cleaning water toward the dishes.
洗浄ポンプ3は、洗浄水への加圧圧力を変化させるために、回転数が可変なモータと、そのモータを制御するためのインバータ回路とを有する。洗浄槽2は、上段食器かご4、中段食器かご5、下段食器かご6と、回転ノズル7と、固定ノズル8aと、固定ノズル8bと、排水口9と、分水装置10と、を有する。
The cleaning pump 3 includes a motor whose rotation speed is variable in order to change the pressure applied to the cleaning water, and an inverter circuit to control the motor. The washing tank 2 includes an upper tableware basket 4, a middle tableware basket 5, a lower tableware basket 6, a rotating nozzle 7, a fixed nozzle 8a, a fixed nozzle 8b, a drain port 9, and a water dividing device 10.
回転ノズル7は、下段食器かご6に対応する洗浄ノズルであり、噴射反力によって回転中心軸を中心に回転する。固定ノズル8a、8bは洗浄槽2の側壁に固定され、それぞれ上段食器かご4および中段食器かご5に対応する洗浄ノズルである。上段食器かご4および中段食器かご5の両方は必ずしも必要ではなく、少なくともいずれか一方が設けられればよい。
The rotating nozzle 7 is a cleaning nozzle corresponding to the lower tableware basket 6, and rotates around the rotation center axis due to the spray reaction force. The fixed nozzles 8a and 8b are fixed to the side wall of the washing tank 2, and are washing nozzles corresponding to the upper tableware basket 4 and the middle tableware basket 5, respectively. Both the upper tableware basket 4 and the middle tableware basket 5 are not necessarily required, and at least one of them may be provided.
排水口9は、洗浄槽2の底部に設けられ、洗浄ポンプ3の吸い込み側に連通する。排水口9は、残さいを収集するための残さいフィルタ(図示せず)と、洗浄槽2内の洗浄水を排出するための排水ポンプ(図示せず)と、を有する。
The drain port 9 is provided at the bottom of the cleaning tank 2 and communicates with the suction side of the cleaning pump 3. The drain port 9 has a residue filter (not shown) for collecting residue and a drain pump (not shown) for discharging the wash water in the washing tank 2.
分水装置10は、洗浄ポンプ3の吐出経路に配置される。分水装置10は、洗浄ポンプ3で加圧された洗浄水を、その内部に配置された弁体(図示せず)を用いて、回転ノズル7と、固定ノズル8aと、固定ノズル8bとに選択的に供給する。
The water diversion device 10 is arranged in the discharge path of the cleaning pump 3. The water dividing device 10 transfers wash water pressurized by the wash pump 3 to a rotating nozzle 7, a fixed nozzle 8a, and a fixed nozzle 8b using a valve body (not shown) disposed inside the water dividing device 10. Supply selectively.
上記構成において、食器洗い機1の基本動作について説明する。なお、食器洗い機1の各動作は、内蔵する制御部(図示せず)が各構成要素を制御することによって行われる。制御部は、プロセッサと、半導体メモリとを有する。制御部は、半導体メモリに記憶されたソフトウェアに応じてプロセッサが動作することで各構成要素を制御する。
In the above configuration, the basic operation of the dishwasher 1 will be explained. Note that each operation of the dishwasher 1 is performed by a built-in control section (not shown) controlling each component. The control unit includes a processor and a semiconductor memory. The control unit controls each component by the processor operating according to software stored in the semiconductor memory.
使用者は、被洗浄物を食器かごに載置して洗浄槽2を筐体に収容し、洗剤を投入した後、食器洗い機1の筐体の開口部を扉体1aで閉じて、食器洗い機1の運転を開始する。
After placing the items to be washed in the dishwasher basket and storing the washing tank 2 in the casing, and adding detergent, the user closes the opening of the casing of the dishwasher 1 with the door body 1a, and then starts the dishwasher. Start operation of step 1.
制御部は、被洗浄物を洗浄する「洗浄工程」と、付着した洗剤および残さいのすすぎを行う「すすぎ工程」と、被洗浄物を乾燥させる「乾燥工程」とを、この順に実行する。
The control unit executes, in this order, a "cleaning step" for cleaning the object to be cleaned, a "rinsing step" for rinsing off the attached detergent and residue, and a "drying step" for drying the object to be cleaned.
洗浄工程において、制御部は、給水弁を動作させて所定量の洗浄水を洗浄槽2に供給する。制御部は、洗浄ポンプ3に洗浄水を加圧させ、洗浄ノズル(回転ノズル7、固定ノズル8a、8b)に洗浄水を噴射させる。
In the cleaning process, the control unit operates the water supply valve to supply a predetermined amount of cleaning water to the cleaning tank 2. The control unit causes the cleaning pump 3 to pressurize the cleaning water, and causes the cleaning nozzles (rotary nozzle 7, fixed nozzles 8a, 8b) to spray the cleaning water.
洗浄水は、排水口9から残さいフィルタを通過して洗浄ポンプ3に吸い込まれ、洗浄ポンプ3により洗浄槽2内の所定の洗浄ノズルに供給されて、この洗浄ノズルから噴射される。この洗浄水は、食器を洗浄した後、再び排水口9に戻る。このような経路で洗浄水が循環する。この際、食器から洗い落された残さいなどは、洗浄水とともに残さいフィルタに流入する。残さいフィルタを通過できない大きさの残さいは、残さいフィルタに捕集される。
The cleaning water passes through the waste filter from the drain port 9, is sucked into the cleaning pump 3, is supplied by the cleaning pump 3 to a predetermined cleaning nozzle in the cleaning tank 2, and is sprayed from this cleaning nozzle. After washing the dishes, this washing water returns to the drain port 9 again. Washing water circulates through this route. At this time, the residue washed off from the dishes flows into the residue filter together with the washing water. Debris that is too large to pass through the debris filter is collected by the debris filter.
分水装置10は、各食器かご(上段食器かご4、中断食器かご5、および下段食器かご6の各々)に対応する洗浄ノズルに所定時間の噴射を行わせた後、順番に洗浄ノズルを切り替える。これにより、食器全体の洗浄が行われる。洗浄工程が終ると、制御部は、汚れを含む洗浄水を排出させて新たな洗浄水を供給させる。
The water separating device 10 causes the cleaning nozzles corresponding to each of the dish baskets (the upper dish basket 4, the suspended dish basket 5, and the lower dish basket 6) to spray water for a predetermined period of time, and then switches the cleaning nozzles in order. . As a result, the entire tableware is cleaned. When the cleaning process is finished, the control unit discharges the cleaning water containing dirt and supplies new cleaning water.
すすぎ工程において、制御部は、洗浄ポンプ3を運転させ、洗浄ノズルに再び洗浄水を噴射させて、洗剤および残さいなどの付着した被洗浄物のすすぎを行う。ここでも、洗浄工程と同様に、各洗浄ノズルに所定時間の噴射を行わせた後、順番に洗浄ノズルを切り替えることにより、食器全体のすすぎが行われる。
In the rinsing process, the control unit operates the cleaning pump 3 and causes the cleaning nozzle to spray cleaning water again, thereby rinsing the object to be cleaned such as detergent and residue. Here, as in the washing step, the entire tableware is rinsed by causing each washing nozzle to spray for a predetermined period of time and then switching the washing nozzles in order.
すすぎ工程において、制御部は、洗浄水を排出し、再び洗浄水を供給するというすすぎ動作を2~3回繰り返す。その後、制御部は洗浄水を排出させて、すすぎ工程を終了する。
In the rinsing step, the control unit repeats the rinsing operation two to three times, in which the washing water is discharged and the washing water is supplied again. Thereafter, the control unit discharges the washing water and completes the rinsing process.
その後、制御部は、被洗浄物に付着した水滴を蒸発させる乾燥工程を所定時間行う。乾燥工程が終了すると、一連の運転が完了する。
Thereafter, the control unit performs a drying process for a predetermined period of time to evaporate water droplets attached to the object to be cleaned. When the drying process is completed, the series of operations is completed.
次に、本実施の形態の特徴の一つである固定ノズル8a、8bにおけるシャワーヘッド11の構成および動作について、図4~図15Bを用いて説明する。
Next, the structure and operation of the shower head 11 with fixed nozzles 8a and 8b, which is one of the features of this embodiment, will be explained using FIGS. 4 to 15B.
図4は、シャワーヘッド11の中央部分におけるシャワーヘッド11の垂直断面図である。以下の図面において、シャワーヘッド11の向きを示すため、第1軸C1、第2軸C2、第3軸C3を含む直交座標系を用いる。図4に示すように、第1軸C1は、旋回室14の中心軸に沿った軸である。第2軸C2、第3軸C3はそれぞれ、吐出口13の長手方向、短手方向に沿った軸である(図8~図10参照)。
FIG. 4 is a vertical cross-sectional view of the shower head 11 at the central portion of the shower head 11. In the following drawings, an orthogonal coordinate system including a first axis C1, a second axis C2, and a third axis C3 is used to indicate the orientation of the shower head 11. As shown in FIG. 4, the first axis C1 is an axis along the central axis of the swirling chamber 14. The second axis C2 and the third axis C3 are axes along the longitudinal direction and the lateral direction of the discharge port 13, respectively (see FIGS. 8 to 10).
図5は、導水路21から流入口12を見たときのシャワーヘッド11の平面図である。図6は、旋回室14から吐出口13を見たときのシャワーヘッド11の平面図である。図7は、シャワーヘッド11の正面視における垂直断面図である。図8は、旋回室14内の球体17の可動域Dを示すシャワーヘッド11の平面図である。
FIG. 5 is a plan view of the shower head 11 when looking at the inlet 12 from the water conduit 21. FIG. 6 is a plan view of the shower head 11 when the discharge port 13 is viewed from the swirling chamber 14. FIG. 7 is a vertical sectional view of the shower head 11 when viewed from the front. FIG. 8 is a plan view of the shower head 11 showing the movable range D of the sphere 17 in the swirling chamber 14.
図9は、旋回室14内における球体17の可動域Dを示すシャワーヘッド11の正面視における垂直断面図である。図10は、シャワーヘッド11の、図9におけるX-X線に沿った側面視における垂直断面図である。
FIG. 9 is a vertical sectional view of the shower head 11 when viewed from the front, showing the range of motion D of the sphere 17 within the swirling chamber 14. FIG. 10 is a vertical sectional view of the shower head 11 taken along line XX in FIG. 9 when viewed from the side.
本実施の形態において、正面視とは、第3軸C3に沿って第3軸C3の正方向に見た場合を意味し、側面視とは、第2軸C2に沿って第2軸C2の負方向に見た場合を意味する。平面図とは、第1軸C1に沿って第1軸の正方向または負方向に見た場合の図面を意味する。
In this embodiment, a front view means a view along the third axis C3 in the positive direction of the third axis C3, and a side view means a view along the second axis C2 in the positive direction of the third axis C3. This means when viewed in the negative direction. A plan view means a drawing viewed along the first axis C1 in the positive or negative direction of the first axis.
図4~図7に示すように、シャワーヘッド11は、円筒状の旋回室14と、二つの流入口12と、吐出口13と、二つの通路15と、球体17と、ガイド溝部18と、を有する。
As shown in FIGS. 4 to 7, the shower head 11 includes a cylindrical swirling chamber 14, two inlets 12, an outlet 13, two passages 15, a sphere 17, a guide groove 18, has.
旋回室14は、平面視においてシャワーヘッド11の中央に配置される(図6参照)。吐出口13は、旋回室14の中心軸に沿った方向におけるシャワーヘッド11の一方の側(図4における下側)に設けられ、旋回室14の水を吐出する。吐出口13の中心軸は、旋回室14の中心軸と一致する(図8~図10参照)。二つの流入口12は、旋回室14の中心軸に沿った方向におけるシャワーヘッド11のもう一方の側(図4における上側)に設けられる。
The swirling chamber 14 is arranged at the center of the shower head 11 in plan view (see FIG. 6). The discharge port 13 is provided on one side (lower side in FIG. 4) of the shower head 11 in the direction along the central axis of the swirl chamber 14, and discharges water from the swirl chamber 14. The central axis of the discharge port 13 coincides with the central axis of the swirling chamber 14 (see FIGS. 8 to 10). The two inflow ports 12 are provided on the other side (upper side in FIG. 4) of the shower head 11 in the direction along the central axis of the swirling chamber 14.
二つの流入口12は、平面視において旋回室14の中心軸に関して点対称に配置される(図5および図6参照)。
The two inflow ports 12 are arranged symmetrically with respect to the central axis of the swirling chamber 14 in plan view (see FIGS. 5 and 6).
二つの通路15の各々は、二つの流入口12の対応する一方と旋回室14とを連通する(図7参照)。二つの通路15の各々と旋回室14の配置位置により、垂直断面図において、二つの通路15は、流入口12の上流側の間口から旋回室14側の間口に向かって傾斜するように形成される(図7参照)。一方、二つの通路15は、平面視において、旋回室14の側壁16に接するように形成される(図5参照)。
Each of the two passages 15 communicates a corresponding one of the two inflow ports 12 with the swirling chamber 14 (see FIG. 7). Due to the arrangement positions of each of the two passages 15 and the swirling chamber 14, the two passages 15 are formed to be inclined from the frontage on the upstream side of the inlet 12 toward the frontage on the swirling chamber 14 side in a vertical cross-sectional view. (See Figure 7). On the other hand, the two passages 15 are formed so as to be in contact with the side wall 16 of the swirling chamber 14 in plan view (see FIG. 5).
なお、旋回室14は、円筒形状(略円筒形状を含む)であれば、真円の円筒状でも楕円の円筒状でもよい。この構造により、洗浄水は、平面視で旋回室14の側壁16の面に沿って(図5参照)、正面視で斜め方向に(図7参照)、旋回室14に流入する。また、流入口12は楕円形状(略楕円形状を含む)であるが、本開示はこれに限定されない。
Note that the swirling chamber 14 may have a perfect circular cylindrical shape or an elliptical cylindrical shape as long as it has a cylindrical shape (including a substantially cylindrical shape). With this structure, the cleaning water flows into the swirling chamber 14 along the surface of the side wall 16 of the swirling chamber 14 in a plan view (see FIG. 5) and in an oblique direction (see FIG. 7) in a front view. Further, although the inlet 12 has an elliptical shape (including a substantially elliptical shape), the present disclosure is not limited thereto.
図4、図6および図7に示すように、球体17は、旋回室14の内部に配置される。ガイド溝部18は、旋回室14の吐出口13の側に設けられる。ガイド溝部18は、球体17が収まるように円弧状(略円弧状を含む(図10参照))の断面を有する。ガイド溝部18は、平面視において、球体17がその長手方向に摺動可能に形成される。ガイド溝部18は、平面視におけるガイド溝部18の中央部に、吐出口13に連通する開口を有する。
As shown in FIGS. 4, 6 and 7, the sphere 17 is placed inside the swirling chamber 14. The guide groove portion 18 is provided on the discharge port 13 side of the swirling chamber 14 . The guide groove portion 18 has an arcuate cross section (including a substantially arcuate shape (see FIG. 10)) so that the sphere 17 can be accommodated therein. The guide groove portion 18 is formed so that the sphere 17 can slide in its longitudinal direction when viewed from above. The guide groove 18 has an opening that communicates with the discharge port 13 at the center of the guide groove 18 in plan view.
本実施の形態において、球体17は、樹脂製、具体的にはポリオキシメチレン(Polyoxymethylene)製で、直径が6mmの球体である。図4に示すように、球体17の下端から球体17の直径の約30%の高さまでの球体17の部分がガイド溝部18内に収まる。
In this embodiment, the sphere 17 is made of resin, specifically polyoxymethylene, and has a diameter of 6 mm. As shown in FIG. 4, a portion of the sphere 17 from the lower end of the sphere 17 to a height of approximately 30% of the diameter of the sphere 17 fits within the guide groove portion 18.
しかしながら、本開示はこの例に限定されない。球体17の下端から球体17の直径の約20%~50%の高さまでの球体17の部分がガイド溝部18の内側に収まればよい。球体17の吐出口13の側の半分の部分がガイド溝部18の内側に収まると、ガイド溝部18は、球体17の半径高さ以下の位置で球体17を支持する。
However, the present disclosure is not limited to this example. It is sufficient that a portion of the sphere 17 from the lower end of the sphere 17 to a height of about 20% to 50% of the diameter of the sphere 17 fits inside the guide groove portion 18. When the half portion of the sphere 17 on the discharge port 13 side fits inside the guide groove 18, the guide groove 18 supports the sphere 17 at a position below the radial height of the sphere 17.
逆に言うと、球体17の上端から直径の約70%の高さまでの球体17の部分が、ガイド溝部18(の開口)から旋回室14の空間内に突出する。より詳しくは、球体17の上端から直径の約50%~80%までの球体17の部分がガイド溝部18(の開口)から旋回室14の空間内に突出してもよい。すなわち、球体17の流入口12の側の半分の部分が、ガイド溝部18(の開口)から旋回室14の空間内に突出してもよい。
In other words, a portion of the sphere 17 from the upper end of the sphere 17 to a height of about 70% of the diameter protrudes from (the opening of) the guide groove 18 into the space of the swirling chamber 14. More specifically, a portion of the sphere 17 ranging from about 50% to 80% of the diameter from the upper end of the sphere 17 may protrude from (the opening of) the guide groove 18 into the space of the swirling chamber 14. That is, a half portion of the sphere 17 on the inflow port 12 side may protrude into the space of the swirling chamber 14 from (the opening of) the guide groove portion 18 .
なお、球体17の下端とは、球体17の吐出口13に最も近い部分であり、第1軸C1に沿った方向における最も負側の球体17の部分を意味する。球体17の上端とは、球体17の吐出口13から最も遠い部分であり、第1軸C1に沿った方向における最も正側の球体17の部分を意味する。また、「球体17の一部分がガイド溝部18内に収まる」とは、球体17の一部分がガイド溝部18(の開口)から吐出口13の側に突出することを意味する。
Note that the lower end of the sphere 17 is the part of the sphere 17 closest to the discharge port 13, and means the part of the sphere 17 on the most negative side in the direction along the first axis C1. The upper end of the sphere 17 is the part of the sphere 17 farthest from the discharge port 13, and means the part of the sphere 17 on the most positive side in the direction along the first axis C1. Furthermore, "a portion of the sphere 17 fits within the guide groove 18" means that a portion of the sphere 17 protrudes from (the opening of) the guide groove 18 toward the discharge port 13 side.
ガイド溝部18は、第2の溝部19と、球体受け面20と、を有する。第2の溝部19は、ガイド溝部18(第1の溝部)の、吐出口13の側に形成される(図4参照)。ガイド溝部18において、球体受け面20は、ガイド溝部18の旋回室14側の開口間口と第2の溝部19との間に形成され、球体17と摺接する(図4および図6参照)。
The guide groove 18 has a second groove 19 and a spherical receiving surface 20. The second groove 19 is formed on the discharge port 13 side of the guide groove 18 (first groove) (see FIG. 4). In the guide groove 18, the sphere receiving surface 20 is formed between the opening of the guide groove 18 on the swirling chamber 14 side and the second groove 19, and makes sliding contact with the sphere 17 (see FIGS. 4 and 6).
図9に示すように、球体受け面20は、ガイド溝部18の開口縁の付近に形成されて球体17を支持する。球体受け面20と吐出口13との間に、第2の溝部19である溝が設けられる。第2の溝部19と球体17の表面との間に空間Cが形成される。
As shown in FIG. 9, the sphere receiving surface 20 is formed near the opening edge of the guide groove 18 to support the sphere 17. A groove, which is a second groove portion 19, is provided between the sphere receiving surface 20 and the discharge port 13. A space C is formed between the second groove portion 19 and the surface of the sphere 17.
このように、ガイド溝部18の吐出口13の側に第2の溝部19を設け、球体17とガイド溝部18の球体受け面20とが当接する部分の空間を狭くすることで、旋回室14に異物などが侵入しても、球体17と球体受け面20との間に異物が挟まる可能性を大幅に低減させることができる。このため、より安定的に球体17に往復運動させることができる。
In this way, the second groove 19 is provided on the side of the discharge port 13 of the guide groove 18, and by narrowing the space where the sphere 17 and the sphere receiving surface 20 of the guide groove 18 come into contact, the swirling chamber 14 is Even if foreign matter or the like enters, the possibility of the foreign matter being caught between the sphere 17 and the sphere receiving surface 20 can be significantly reduced. Therefore, the sphere 17 can be caused to reciprocate more stably.
図8に示す双方向の矢印は、ガイド溝部18の平面視における球体17の可動域Dを示す。図8に示すように、球体17の可動域Dに垂直な方向におけるガイド溝部18の開口縁の開口幅は、球体17の可動域Dの両端付近(B)より球体17の可動域Dの中央付近(A)の方が狭い。
The bidirectional arrows shown in FIG. 8 indicate the movable range D of the sphere 17 in a plan view of the guide groove portion 18. As shown in FIG. 8, the opening width of the opening edge of the guide groove 18 in the direction perpendicular to the range of motion D of the sphere 17 varies from near both ends (B) of the range of motion D of the sphere 17 to the center of the range of motion D of the sphere 17. Nearby (A) is narrower.
言わば、ガイド溝部18は、平面視でピーナッツ状の楕円形状を有する。ピーナッツ状の楕円形状とは、並べた二つの円と、それら二つの円の間をつなぐ滑らかな曲線とで形成される、ピーナッツの殻のような形状である。
In other words, the guide groove portion 18 has a peanut-like elliptical shape in plan view. The peanut-shaped oval shape is a peanut shell-like shape formed by two circles arranged side by side and a smooth curve connecting the two circles.
図9に示すように、球体17がガイド溝部18の長手方向の中心付近にあるとき、第1軸C1に沿った球体17の位置は、球体17がガイド溝部18の長手方向の両端に位置するときと比較して、第1軸C1の正方向に少し移動する。このように、球体17はガイド溝部18上を摺動することで、図9の矢印に示す軌道に沿った往復運動を行う。すなわち、ガイド溝部18は、球体17に、この軌道に沿った往復運動を行わせる。
As shown in FIG. 9, when the sphere 17 is located near the longitudinal center of the guide groove 18, the position of the sphere 17 along the first axis C1 is such that the sphere 17 is located at both ends of the guide groove 18 in the longitudinal direction. It moves a little in the positive direction of the first axis C1 compared to when. In this way, the sphere 17 slides on the guide groove 18, thereby reciprocating along the trajectory shown by the arrow in FIG. That is, the guide groove portion 18 causes the sphere 17 to perform reciprocating motion along this trajectory.
球体17の軌道は、旋回室14の中心軸に沿って吐出口13と反対側に湾曲した形状を有する。換言すると、球体17の軌道は、第1軸C1に沿って第1軸C1の正側に膨らんだ形状を有する。球体17による往復運動の軌道は、球体17による往復運動における可動域Dに相当する。
The orbit of the sphere 17 has a curved shape along the central axis of the swirling chamber 14 on the opposite side to the discharge port 13. In other words, the trajectory of the sphere 17 has a shape that bulges toward the positive side of the first axis C1 along the first axis C1. The trajectory of the reciprocating motion by the sphere 17 corresponds to the range of motion D in the reciprocating motion by the sphere 17.
なお、本実施の形態では、ガイド溝部18における球体17による往復運動の振幅が4mm程度に設定される。ガイド溝部18は、平面視における長手方向の中心軸が流入口12の通路15と平行(略平行を含む)に配置される(図5および図6参照)。
Note that in this embodiment, the amplitude of the reciprocating motion by the sphere 17 in the guide groove portion 18 is set to about 4 mm. The guide groove portion 18 is arranged so that its central axis in the longitudinal direction in plan view is parallel (including substantially parallel) to the passage 15 of the inlet 12 (see FIGS. 5 and 6).
吐出口13は、平面視において、ガイド溝部18の長手方向に平行な長径を有する楕円形状を有する。本実施の形態では、吐出口13は3mm程度の短径と、5~7mmの長径とを有する。吐出口13は、吐出口13の第2の溝部19との境界から吐出口13の開口間口までの間に、2mm強程度の長さの直線的な縁面を有する(図4参照)。
The discharge port 13 has an elliptical shape with a major axis parallel to the longitudinal direction of the guide groove portion 18 in plan view. In this embodiment, the discharge port 13 has a short axis of about 3 mm and a long axis of 5 to 7 mm. The discharge port 13 has a linear edge surface with a length of approximately 2 mm between the boundary with the second groove portion 19 and the opening frontage of the discharge port 13 (see FIG. 4).
すなわち、平面視において、吐出口13は、球体17による往復運動の軌道(図8に示す可動域D参照)にほぼ平行な長径を有する楕円形(略楕円形を含む)状の開口である。吐出口13は、図4に示すように、旋回室14の中心軸に平行(略平行を含む)な縁面を有する。
That is, in plan view, the discharge port 13 is an elliptical (including substantially elliptical) opening having a major axis substantially parallel to the trajectory of the reciprocating motion by the sphere 17 (see range of motion D shown in FIG. 8). As shown in FIG. 4, the discharge port 13 has an edge surface that is parallel (including substantially parallel) to the central axis of the swirling chamber 14.
図4および図9に示すように、旋回室14の流入口12の側の面は半球状に形成される。図10に示すように、球体17は、この半球状の旋回室14の面とガイド溝部18の開口縁とに接触する。この状態で、球体17の中心が、球体17とガイド溝部18の開口縁との接触点より少し旋回室14の中心側に位置するように、旋回室14の高さ寸法が設定される。旋回室14の高さ寸法とは、第1軸C1に沿った旋回室14の寸法である。
As shown in FIGS. 4 and 9, the surface of the swirling chamber 14 on the inlet 12 side is formed into a hemispherical shape. As shown in FIG. 10, the sphere 17 contacts the surface of the hemispherical swirling chamber 14 and the opening edge of the guide groove 18. As shown in FIG. In this state, the height of the whirling chamber 14 is set so that the center of the sphere 17 is located slightly closer to the center of the whirling chamber 14 than the point of contact between the sphere 17 and the opening edge of the guide groove 18. The height dimension of the swirling chamber 14 is the dimension of the swirling chamber 14 along the first axis C1.
旋回室14において、ガイド溝部18の開口縁と、ガイド溝部18に対向する、旋回室14の流入口12の側の面との間の空間距離P(最大距離)は、球体17の直径より小さく設定される。
In the swirling chamber 14, the spatial distance P (maximum distance) between the opening edge of the guide groove 18 and the surface of the swirling chamber 14 on the inlet 12 side that faces the guide groove 18 is smaller than the diameter of the sphere 17. Set.
図11Aは、旋回室14が水で満たされる前のシャワーヘッド11の正面視における垂直断面図である。図11Bは、旋回室14が水で満されたときのシャワーヘッド11の正面視における垂直断面図である。
FIG. 11A is a vertical sectional view of the shower head 11 when viewed from the front before the swirling chamber 14 is filled with water. FIG. 11B is a vertical sectional view of the shower head 11 when viewed from the front when the swirling chamber 14 is filled with water.
上記の構成において、洗浄ポンプ3が運転を開始すると、導水路21より流れ込んだ水がシャワーヘッド11の二つの流入口12より旋回室14に流入する。洗浄ポンプ3の運転前には、旋回室14内は水で満たされておらず、球体17は、旋回室14の流入口12が設けられた面に近接した状態である(図11A参照)。すなわち、球体17は、ガイド溝部18から離れた状態にある。
In the above configuration, when the cleaning pump 3 starts operating, water flowing from the water conduit 21 flows into the swirling chamber 14 from the two inlets 12 of the shower head 11. Before the cleaning pump 3 is operated, the swirling chamber 14 is not filled with water, and the sphere 17 is close to the surface of the swirling chamber 14 where the inlet 12 is provided (see FIG. 11A). That is, the sphere 17 is in a state away from the guide groove portion 18.
旋回室14内に水が流入し、旋回室14内が水で満たされると、球体17は、流入口12から吐出口13に向かう水の圧力により押されて、ガイド溝部18内に移動する(図11B参照)。
When water flows into the swirling chamber 14 and the swirling chamber 14 is filled with water, the sphere 17 is pushed by the pressure of the water from the inlet 12 toward the outlet 13 and moves into the guide groove 18 ( (see FIG. 11B).
このとき、球体17は、ガイド溝部18の長手方向の両端のいずれか、すなわち、球体17の可動域Dの両端のいずれかに近接する。
At this time, the spherical body 17 approaches either of the longitudinal ends of the guide groove portion 18, that is, either of the opposite ends of the movable range D of the spherical body 17.
図12A~図12Cの各々は、旋回室14内の旋回流と球体17の位置とを示す、第1軸C1の負方向に見たときのシャワーヘッド11の平面図である。図12A、図12Bおよび図12Cは、球体17の位置がそれぞれ右端、中央および左端の場合を示す。上述の通り、流入口12の通路15が円筒状の旋回室14の側壁16に対して接線方向に形成される。このため、流入口12から流入する水流は、側壁16の接線方向に旋回室14に流入する。その結果、図12A~図12Cに示すように、旋回室14内において旋回流が発生する。
Each of FIGS. 12A to 12C is a plan view of the shower head 11 when viewed in the negative direction of the first axis C1, showing the swirling flow in the swirling chamber 14 and the position of the sphere 17. 12A, 12B, and 12C show cases where the sphere 17 is located at the right end, center, and left end, respectively. As mentioned above, the passage 15 of the inlet 12 is formed tangentially to the side wall 16 of the cylindrical swirl chamber 14 . Therefore, the water flow flowing in from the inlet 12 flows into the swirling chamber 14 in the tangential direction of the side wall 16. As a result, a swirling flow is generated within the swirling chamber 14, as shown in FIGS. 12A to 12C.
このような旋回流が生じると、図12Aおよび図12Cに示すように、球体17が近接したガイド溝部18の長手方向の端部の付近では、球体17の外周と旋回室14の側壁16との間の空間が狭くなる。このため、この場所における圧力が高くなる。なお、ガイド溝部18の長手方向の端部は、球体17による往復運動の軌跡、すなわち球体17の可動域Dの端部である。
When such a swirling flow occurs, as shown in FIGS. 12A and 12C, in the vicinity of the longitudinal end of the guide groove 18 where the sphere 17 is close, the outer periphery of the sphere 17 and the side wall 16 of the swirling chamber 14 are connected. The space between becomes narrower. Therefore, the pressure at this location increases. Note that the longitudinal end of the guide groove portion 18 is the locus of the reciprocating motion of the sphere 17, that is, the end of the movable range D of the sphere 17.
図12Aおよび図12Cに示すように、球体17の可動域Dにおける球体17が近接した端部とは反対の端部付近では、球体17の外周と旋回室14の側壁16との間の空間が広くなる。このため、水流が吐出口13から噴射されるとともに、この場所の圧力は低くなる。
As shown in FIGS. 12A and 12C, the space between the outer periphery of the sphere 17 and the side wall 16 of the turning chamber 14 is small near the end opposite to the end where the sphere 17 is close in the movable range D of the sphere 17. It becomes wider. Therefore, a water stream is ejected from the discharge port 13, and the pressure at this location becomes low.
この圧力の相違により、図12A~図12Cに示すように、球体17は、球体17の可動域Dの右端に近接した位置から球体17の可動域Dの左端に近接した位置まで、ガイド溝部18の球体受け面20上を摺動する。
Due to this difference in pressure, as shown in FIGS. 12A to 12C, the sphere 17 moves from a position close to the right end of the range of motion D of the sphere 17 to a position close to the left end of the range of motion D of the sphere 17 in the guide groove portion 18. The ball slides on the spherical receiving surface 20 of the ball.
図12Cに示す状態では、図12Aに示す状態とは旋回室14内の圧力分布が逆転する。このため、球体17は、球体17の可動域Dの左端に近接した位置から球体17の可動域Dの右端に近接した位置まで移動する。このようにして、球体17は、自励振動によりガイド溝部18に沿った湾曲した軌道における往復運動を行う。
In the state shown in FIG. 12C, the pressure distribution within the swirling chamber 14 is reversed from the state shown in FIG. 12A. Therefore, the sphere 17 moves from a position close to the left end of the range of motion D of the sphere 17 to a position close to the right end of the range of motion D of the sphere 17 . In this way, the sphere 17 performs reciprocating motion along a curved trajectory along the guide groove 18 due to self-excited vibration.
ここで、例えば、ガイド溝部18の平面視における開口間口が、中心付近の凹みのない楕円形状である場合を想定する。すなわち、球体17が、正面視において図9の矢印に示すような湾曲した軌道ではなく、直線的な軌道における往復運動を行う場合を想定する。
Here, for example, it is assumed that the opening width of the guide groove portion 18 in plan view is an elliptical shape without a depression near the center. That is, a case is assumed in which the sphere 17 performs reciprocating motion on a straight trajectory instead of a curved trajectory as shown by the arrow in FIG. 9 when viewed from the front.
この場合、旋回室14内が水で満たされたときに、球体17が球体17の可動域Dの中心付近に留まる可能性がある。この場合、球体17の両側における旋回室14内の圧力分布が釣り合うことになる。その結果、球体17の往復運動は生じない。
In this case, when the inside of the swirling chamber 14 is filled with water, there is a possibility that the sphere 17 remains near the center of the movable range D of the sphere 17. In this case, the pressure distribution within the swirling chamber 14 on both sides of the sphere 17 will be balanced. As a result, no reciprocating movement of the sphere 17 occurs.
図13は、側面視におけるシャワーヘッド11の垂直断面図である。本実施の形態において平面視においてガイド溝部18の開口間口は、その中央付近が内側に凹んだ形状を有する。このため、図12A~図12Cおよび図13に示すように、球体17は、球体受け面20上を摺動しながら、第1軸C1および第2軸C2に沿って往復運動を行う。すなわち、第3軸C3に沿った方向への球体17の移動は規制される。その結果、往復運動時における振動音の発生が抑制される。
FIG. 13 is a vertical sectional view of the shower head 11 when viewed from the side. In this embodiment, the opening frontage of the guide groove portion 18 has a shape in which the vicinity of the center is recessed inward when viewed from above. Therefore, as shown in FIGS. 12A to 12C and FIG. 13, the sphere 17 performs reciprocating motion along the first axis C1 and the second axis C2 while sliding on the sphere receiving surface 20. That is, movement of the sphere 17 in the direction along the third axis C3 is restricted. As a result, generation of vibration noise during reciprocating motion is suppressed.
図14A~図14Cはそれぞれ、球体17が旋回室14の右端、中央、左端に位置するときの水の噴射方向を示すシャワーヘッド11の正面視における垂直断面図である。図14A~図14Cはそれぞれ、図12A~図12Cに示すシャワーヘッド11の平面図に対応するシャワーヘッド11の垂直断面図である。
14A to 14C are vertical cross-sectional views of the shower head 11 when viewed from the front, showing the water jetting directions when the sphere 17 is located at the right end, center, and left end of the swirling chamber 14, respectively. 14A to 14C are vertical cross-sectional views of the shower head 11 corresponding to the top views of the shower head 11 shown in FIGS. 12A to 12C, respectively.
上述の通り、球体17の可動域Dの一方の端部に球体17が近接する場合、球体17の可動域Dのもう一方の端部付近の吐出口13から水が噴射される。このとき、球体17の曲面に沿ったコアンダ効果により、図14Aに示すように、正面視において斜め方向に水が噴射される。このとき、平面視において、吐出口13の右側部分は球体17により塞がれる(図12A参照)。このため、吐出口13の右側部分において噴射流の吐出圧は上昇する。
As described above, when the sphere 17 approaches one end of the movable range D of the sphere 17, water is jetted from the discharge port 13 near the other end of the movable range D of the sphere 17. At this time, due to the Coanda effect along the curved surface of the sphere 17, water is jetted in an oblique direction when viewed from the front, as shown in FIG. 14A. At this time, the right side portion of the discharge port 13 is blocked by the sphere 17 in plan view (see FIG. 12A). Therefore, the discharge pressure of the jet flow increases at the right side of the discharge port 13.
圧力分布の相違によって、球体17がガイド溝部18内の中心付近まで移動したとき、図14Bに示すように、球体17はガイド溝部18の摺接面から旋回室14の側に押された状態となる。このため、球体17の両側に空間が生じる。こられの空間を経由して旋回室14の中心軸の方向(略中心軸の方向を含む)に水流が生じ、吐出口13により噴射される。
Due to the difference in pressure distribution, when the sphere 17 moves to near the center of the guide groove 18, the sphere 17 is pushed from the sliding surface of the guide groove 18 toward the turning chamber 14, as shown in FIG. 14B. Become. Therefore, a space is created on both sides of the sphere 17. A water flow is generated in the direction of the central axis (including substantially the direction of the central axis) of the swirling chamber 14 via these spaces, and is ejected from the discharge port 13 .
球体17が可動域Dのもう一方の端部に到達すると、先程と同様に、コアンダ効果により水流が斜め方向に噴出する。このとき、図14Cに示すように、噴射の向きは、先程の図14Aの場合とは反対方向である(図12Cに対応)。このように、球体17の自励振動により噴射方向が周期的に揺動するため、噴射流は扇状の範囲に一様に拡散する。
When the sphere 17 reaches the other end of the range of motion D, a water stream is ejected in an oblique direction due to the Coanda effect, as before. At this time, as shown in FIG. 14C, the direction of the injection is opposite to that in the case of FIG. 14A (corresponding to FIG. 12C). In this way, since the injection direction periodically swings due to the self-excited vibration of the sphere 17, the injection flow is uniformly diffused in a fan-shaped range.
本実施の形態では、吐出口13は平面視において、ガイド溝部18の長手方向に平行な長径を有する楕円形状を有する。このため、コアンダ効果により生じる噴射流の旋回室14の中心軸に対する角度を大きくすることができる。
In this embodiment, the discharge port 13 has an elliptical shape with a major axis parallel to the longitudinal direction of the guide groove portion 18 in plan view. Therefore, the angle of the jet flow generated by the Coanda effect with respect to the central axis of the swirling chamber 14 can be increased.
図15A、図15Bはそれぞれ、シャワーヘッド11の噴射流を示す平面図、正面図である。本実施の形態において、吐出口13の通路長は2mm強程度に設定される。吐出口13の通路長とは、吐出口13の中心軸に沿った吐出口13の長さである。このため、球体17の往復運動の方向(図15Aの横方向)に比べて往復運動に垂直な方向(図15Aの縦方向)の噴射流の拡がりが狭められる。これにより、噴射流の拡散密度を凡そ一様な分布にすることができる(図15Aおよび図15B参照)。
15A and 15B are a plan view and a front view, respectively, showing the jet stream of the shower head 11. In this embodiment, the passage length of the discharge port 13 is set to about 2 mm or more. The passage length of the discharge port 13 is the length of the discharge port 13 along the central axis of the discharge port 13. Therefore, the spread of the jet flow in the direction perpendicular to the reciprocating motion (vertical direction in FIG. 15A) is narrower than in the direction of the reciprocating motion of the sphere 17 (horizontal direction in FIG. 15A). Thereby, the diffusion density of the jet stream can be distributed approximately uniformly (see FIGS. 15A and 15B).
なお、発明者らは、吐出口13の通路長を1mm以下に設定すると、球体17の往復運動の方向に比べて往復運動に垂直な方向の噴射流の拡がりが拡大し、旋回室14の中心軸方向において、噴射流の分布が疎になることを確認した。
In addition, the inventors found that when the passage length of the discharge port 13 is set to 1 mm or less, the spread of the jet flow in the direction perpendicular to the reciprocating motion of the sphere 17 is expanded compared to the direction of the reciprocating motion of the sphere 17, and the center of the swirling chamber 14 is It was confirmed that the distribution of the jet flow becomes sparse in the axial direction.
以上の構成によれば、旋回室14内に流入した水流が、旋回室14の円筒の側壁16に沿った旋回流を形成する。この旋回流により、球体17の両側に掛かる圧力に相違が生じる。この圧力の相違が周期的に変化することで自励振動が生じる。
According to the above configuration, the water flow flowing into the swirling chamber 14 forms a swirling flow along the cylindrical side wall 16 of the swirling chamber 14. This swirling flow causes a difference in the pressure applied to both sides of the sphere 17. Self-excited vibration occurs when this difference in pressure changes periodically.
この自励振動による往復運動と、球体17の曲面を沿って水が流れるコアンダ効果とにより、低水量で高い噴射圧を維持しながら60°以上の広角に噴射流を拡散することができる。その結果、省スペースな構成を有する洗浄ノズルにより、食器かごに載置された食器全体に水を噴射することができる。
Due to the reciprocating motion caused by this self-excited vibration and the Coanda effect in which water flows along the curved surface of the sphere 17, the jet stream can be spread over a wide angle of 60° or more while maintaining a high jet pressure with a low amount of water. As a result, water can be sprayed onto the entire tableware placed in the tableware basket using the cleaning nozzle having a space-saving configuration.
洗浄ポンプ3が運転を停止すると、旋回室14内の水は排出され、球体17は自重により、ガイド溝部18から離れて旋回室14の流入口12の側に移動する。このため、洗浄ポンプ3の運転中に旋回室14内に異物が侵入して、異物が球体17と球体受け面20との間に挟まったとしても、次の洗浄ポンプ3の運転時には、旋回室14内が水で満たされる。
When the cleaning pump 3 stops operating, the water in the swirling chamber 14 is discharged, and the sphere 17 moves away from the guide groove 18 and toward the inlet 12 of the swirling chamber 14 due to its own weight. Therefore, even if a foreign object enters the swirling chamber 14 during operation of the cleaning pump 3 and is caught between the sphere 17 and the sphere receiving surface 20, when the cleaning pump 3 is operated next, the rotation chamber 14 is filled with water.
これにより、球体17がガイド溝部18内に収納されるまでに、異物が吐出口13から排出される。その結果、球体により安定した往復運動を行わせることができる。
As a result, foreign matter is discharged from the discharge port 13 before the sphere 17 is accommodated in the guide groove portion 18. As a result, the sphere can perform more stable reciprocating motion.
(実施の形態2)
以下、実施の形態2に係る洗浄ノズル、および、食器洗い機について、図16~図19を用いて説明する。なお、本実施の形態の食器洗い機1の主要な構成は、実施の形態1に記載された食器洗い機1の構成と同様であるため、詳細な説明は省略する。 (Embodiment 2)
A washing nozzle and a dishwasher according to Embodiment 2 will be described below with reference to FIGS. 16 to 19. Note that the main configuration of the dishwasher 1 according to the present embodiment is the same as the configuration of the dishwasher 1 described in the first embodiment, so a detailed explanation will be omitted.
以下、実施の形態2に係る洗浄ノズル、および、食器洗い機について、図16~図19を用いて説明する。なお、本実施の形態の食器洗い機1の主要な構成は、実施の形態1に記載された食器洗い機1の構成と同様であるため、詳細な説明は省略する。 (Embodiment 2)
A washing nozzle and a dishwasher according to Embodiment 2 will be described below with reference to FIGS. 16 to 19. Note that the main configuration of the dishwasher 1 according to the present embodiment is the same as the configuration of the dishwasher 1 described in the first embodiment, so a detailed explanation will be omitted.
図16は、回転ノズル7の斜視図である。図17は、回転ノズル7におけるアーム25およびシャワーヘッド22の、吐出口13の側を見たときの水平断面図である。図18は、回転ノズル7におけるアーム25およびシャワーヘッド22の、図17におけるXVIII-XVIII線に沿った垂直断面図である。図19は、回転ノズル7におけるアーム25およびシャワーヘッド22の、図17におけるXIV-XIV線に沿った垂直断面図である。
FIG. 16 is a perspective view of the rotating nozzle 7. FIG. 17 is a horizontal cross-sectional view of the arm 25 and shower head 22 of the rotary nozzle 7 when viewed from the discharge port 13 side. FIG. 18 is a vertical sectional view of the arm 25 and shower head 22 in the rotating nozzle 7, taken along the line XVIII-XVIII in FIG. FIG. 19 is a vertical sectional view of the arm 25 and shower head 22 in the rotating nozzle 7, taken along the line XIV-XIV in FIG.
図18では球体17が断面で示され、図19では流入口23と通路26とが断面で示される。すなわち、図19は、図18の場合より、図17において第3軸C3の正方向にずれた位置におけるアーム25とシャワーヘッド22との断面を示す。
In FIG. 18, the sphere 17 is shown in cross section, and in FIG. 19, the inlet 23 and the passage 26 are shown in cross section. That is, FIG. 19 shows a cross section of the arm 25 and the shower head 22 at a position shifted in the positive direction of the third axis C3 in FIG. 17 from the case of FIG. 18.
図16に示すように、回転ノズル7は、回転ノズル7の回転中心軸に沿って配置された軸部24と、回転ノズル7の回転中心軸に直交するアーム25とを備え、全体としてT字形状を有する。アーム25の上面には複数のシャワーヘッド22が配置される。複数のシャワーヘッド22の各々は、所定の角度に設定された第1軸C1を有する。回転ノズル7は、複数のシャワーヘッド22の各々からの噴射反力により回転中心軸を中心に回転する。
As shown in FIG. 16, the rotating nozzle 7 includes a shaft portion 24 disposed along the rotational center axis of the rotating nozzle 7, and an arm 25 perpendicular to the rotational center axis of the rotating nozzle 7, and has a T-shape as a whole. It has a shape. A plurality of shower heads 22 are arranged on the upper surface of the arm 25. Each of the plurality of shower heads 22 has a first axis C1 set at a predetermined angle. The rotating nozzle 7 rotates around the central axis of rotation due to the spray reaction force from each of the plurality of shower heads 22 .
図18に示すように、吐出口13は、円筒状の旋回室14の中心軸に沿った方向におけるシャワーヘッド22の一方の側(図18における上側)に設けられる。図17に示すように、旋回室14は、その円筒状の側壁16に設けられて、旋回室14と導水路27とを連通する二つの流入口23を有する。二つの流入口23は、平面視において、旋回室14の中心軸に関して点対称に設けられる。二つの流入口23の各々は、側壁16に接するように設けられた通路26を有する。
As shown in FIG. 18, the discharge port 13 is provided on one side (upper side in FIG. 18) of the shower head 22 in the direction along the central axis of the cylindrical swirling chamber 14. As shown in FIG. 17, the swirling chamber 14 has two inlets 23 provided in its cylindrical side wall 16 and communicating the swirling chamber 14 and a water conduit 27. The two inflow ports 23 are provided point-symmetrically with respect to the central axis of the swirling chamber 14 in plan view. Each of the two inlets 23 has a passage 26 provided in contact with the side wall 16 .
実施の形態1と同様に、シャワーヘッド22は、旋回室14の吐出口13の側に設けられ、平面視においてピーナッツ状の楕円形状を有するガイド溝部18を有する。ガイド溝部18は、球体17が摺動可能に形成され、その開口間口は吐出口13に連通する。
Similar to Embodiment 1, the shower head 22 is provided on the side of the discharge port 13 of the swirling chamber 14, and has a guide groove 18 having a peanut-shaped elliptical shape in plan view. The guide groove portion 18 is formed such that the sphere 17 can slide therein, and the opening thereof communicates with the discharge port 13 .
ガイド溝部18の内側の、吐出口13に連通する側に第2の溝部19が形成される。ガイド溝部18において、球体受け面20は、ガイド溝部18の旋回室14側の開口間口と第2の溝部19との間に形成され、球体17と摺接する。
A second groove 19 is formed inside the guide groove 18 on the side communicating with the discharge port 13. In the guide groove 18 , the sphere receiving surface 20 is formed between the opening of the guide groove 18 on the swirling chamber 14 side and the second groove 19 , and comes into sliding contact with the sphere 17 .
実施の形態1と同様に、図17に示すように、ガイド溝部18は、平面視においてピーナッツ状の楕円形状を有する。
Similarly to Embodiment 1, as shown in FIG. 17, the guide groove portion 18 has a peanut-like elliptical shape in plan view.
平面視において、吐出口13は、ガイド溝部18の長手方向に平行な長径を有する楕円形状を有する。
In plan view, the discharge port 13 has an elliptical shape with a major axis parallel to the longitudinal direction of the guide groove portion 18.
実施の形態1と同様に、旋回室14のガイド溝部18と反対側の面は、半球状に形成される(図17および図18参照)。球体17は、この半球状の旋回室14の面とガイド溝部18の開口縁とに接触する。この状態で、球体17の中心が、球体17とガイド溝部18の開口縁との接触点より少し旋回室14の中心側に位置するように、旋回室14の高さ寸法が設定される。
Similar to Embodiment 1, the surface of the swirling chamber 14 opposite to the guide groove portion 18 is formed in a hemispherical shape (see FIGS. 17 and 18). The sphere 17 contacts the surface of the hemispherical swirling chamber 14 and the opening edge of the guide groove 18 . In this state, the height of the whirling chamber 14 is set so that the center of the sphere 17 is located slightly closer to the center of the whirling chamber 14 than the point of contact between the sphere 17 and the opening edge of the guide groove 18.
シャワーヘッド22の旋回室14は、アーム25の導水路27の高さに収まるように構成される(図18参照)。旋回室14の中心軸の方向は、いくつかのシャワーヘッド22の第1軸C1と一致する(図16参照)。
The turning chamber 14 of the shower head 22 is configured to fit within the height of the water conduit 27 of the arm 25 (see FIG. 18). The direction of the central axis of the swirling chamber 14 coincides with the first axis C1 of some shower heads 22 (see FIG. 16).
旋回室14の高さ寸法を導水路27の高さ寸法より小さく設定することにより、シャワーヘッド22の旋回室14が、アーム25の導水路27の高さに収まるように構成することができる。
By setting the height of the swirl chamber 14 to be smaller than the height of the water conduit 27, the swirl chamber 14 of the shower head 22 can be configured to fit within the height of the water conduit 27 of the arm 25.
上記の構成において、導水路27、流入口23、および旋回室14が、アーム25の高さ寸法内に配置される。このため、回転ノズル7の厚み寸法は大きくならない。その結果、洗浄槽2の高さを大きくすることなく、大きな噴射範囲を有する回転ノズル7を構成することができる。
In the above configuration, the water conduit 27, the inlet 23, and the swirling chamber 14 are arranged within the height dimension of the arm 25. Therefore, the thickness of the rotating nozzle 7 does not increase. As a result, the rotating nozzle 7 having a large spray range can be configured without increasing the height of the cleaning tank 2.
上述の通り、一つのシャワーヘッド22から噴射される噴射流の、噴射方向は周期的に揺動する。このため、隣接する他のシャワーヘッド22の噴射流の拡散範囲と重なりが生じる場合においても、複数の噴射流が衝突することが少なくなるように、複数のシャワーヘッド22の各々の第1軸C1が設定される。
As described above, the jet direction of the jet flow jetted from one shower head 22 periodically fluctuates. For this reason, even if the diffusion range of the jet streams of other adjacent shower heads 22 overlaps, the first axis C1 of each of the plurality of shower heads 22 is arranged such that the collision of the plurality of jet streams is reduced. is set.
さらに、複数のシャワーヘッド22の各々において、球体17の材質および流入口23の開口面積の両方または一方を工夫することにより、球体17による往復運動の周期を調整することができる。複数のシャワーヘッド22において、球体17による往復運動の周期が互いに異なるように設定することで、隣接する二つの噴射流の干渉を抑制することができる。
Further, in each of the plurality of showerheads 22, the period of the reciprocating motion by the sphere 17 can be adjusted by adjusting the material of the sphere 17 and/or the opening area of the inlet 23. By setting the cycles of the reciprocating motion by the spheres 17 to be different from each other in the plurality of showerheads 22, interference between two adjacent jet streams can be suppressed.
以上のように、本開示にかかる洗浄ノズルは、食器洗い機および洗浄便座などに適用可能である。
As described above, the cleaning nozzle according to the present disclosure is applicable to dishwashers, cleaning toilet seats, and the like.
1 食器洗い機
1a 扉体
2 洗浄槽
3 洗浄ポンプ
4 上段食器かご
5 中段食器かご
6 下段食器かご
7 回転ノズル
8a、8b 固定ノズル
9 排水口
10 分水装置
11、22 シャワーヘッド
12、23 流入口
13 吐出口
14 旋回室
15、26 通路
16 側壁
17 球体
18 ガイド溝部
19 第2の溝部
20 球体受け面
21、27 導水路
24 軸部
25 アーム
101 上段食器かご
102a、102b 洗浄ノズル
103 下段食器かご
104 固定ノズル 1 Dishwasher 1a Door body 2 Washing tank 3 Washing pump 4 Upper dish basket 5 Middle dish basket 6Lower dish basket 7 Rotating nozzle 8a, 8b Fixed nozzle 9 Drain port 10 Water dividing device 11, 22 Shower head 12, 23 Inlet 13 Discharge port 14 Turning chamber 15, 26 Passage 16 Side wall 17 Sphere 18 Guide groove 19 Second groove 20 Sphere receiving surface 21, 27 Water conduit 24 Shaft 25 Arm 101 Upper tableware basket 102a, 102b Washing nozzle 103 Lower tableware basket 104 Fixed nozzle
1a 扉体
2 洗浄槽
3 洗浄ポンプ
4 上段食器かご
5 中段食器かご
6 下段食器かご
7 回転ノズル
8a、8b 固定ノズル
9 排水口
10 分水装置
11、22 シャワーヘッド
12、23 流入口
13 吐出口
14 旋回室
15、26 通路
16 側壁
17 球体
18 ガイド溝部
19 第2の溝部
20 球体受け面
21、27 導水路
24 軸部
25 アーム
101 上段食器かご
102a、102b 洗浄ノズル
103 下段食器かご
104 固定ノズル 1 Dishwasher 1a Door body 2 Washing tank 3 Washing pump 4 Upper dish basket 5 Middle dish basket 6
Claims (10)
- 加圧された洗浄水を噴射するシャワーヘッドを備えた洗浄ノズルであって、
前記シャワーヘッドは、
略円筒形状を有する側壁を有して旋回流を形成するように構成された旋回室と、
前記旋回室の前記側壁に沿って前記洗浄水を斜め方向に前記旋回室に流入させるように構成された流入口と、
前記旋回室の中心軸に沿った方向に位置する前記旋回室の二面の一方の面に設けられて前記洗浄水を吐出するように構成された吐出口と、
を有し、
前記旋回室は、球体と、ガイド溝部とを備え、
前記ガイド溝部は、前記球体の半径高さ以下の位置で前記球体を支持し、
前記ガイド溝部は、前記旋回流によって前記球体に往復運動を行わせるように構成された、洗浄ノズル。 A cleaning nozzle equipped with a shower head that sprays pressurized cleaning water,
The shower head is
a swirling chamber configured to have a side wall having a substantially cylindrical shape to form a swirling flow;
an inlet configured to cause the wash water to flow into the swirling chamber in an oblique direction along the side wall of the swirling chamber;
a discharge port configured to discharge the cleaning water and provided on one of two surfaces of the swirling chamber located in a direction along a central axis of the swirling chamber;
has
The swirling chamber includes a sphere and a guide groove,
The guide groove supports the spherical body at a position below the radial height of the spherical body,
The cleaning nozzle is configured such that the guide groove section causes the spherical body to reciprocate by the swirling flow. - 前記ガイド溝部は、前記球体に、前記旋回室の前記中心軸に沿って前記吐出口と反対側に湾曲した軌道に沿った往復運動を行わせるように構成された、請求項1に記載の洗浄ノズル。 The cleaning device according to claim 1, wherein the guide groove portion is configured to cause the sphere to perform reciprocating motion along a trajectory curved on the opposite side of the discharge port along the central axis of the swirling chamber. nozzle.
- 平面視において、前記球体の前記軌道に垂直な方向における前記ガイド溝部の開口縁の開口幅は、前記球体の前記軌道の両端付近より前記球体の前記軌道の中央付近の方が狭い、請求項2に記載の洗浄ノズル。 In a plan view, an opening width of an opening edge of the guide groove in a direction perpendicular to the trajectory of the sphere is narrower near the center of the trajectory of the sphere than near both ends of the trajectory of the sphere. Cleaning nozzle as described in.
- 前記吐出口は、平面視において、前記球体による前記往復運動の前記軌道に略平行な長径を有する略楕円形状の開口である、請求項2に記載の洗浄ノズル。 The cleaning nozzle according to claim 2, wherein the discharge port is a substantially elliptical opening having a major axis substantially parallel to the trajectory of the reciprocating motion by the spherical body in plan view.
- 前記吐出口は、前記旋回室の前記中心軸と略平行な縁面を有する、請求項1に記載の洗浄ノズル。 The cleaning nozzle according to claim 1, wherein the discharge port has an edge surface that is substantially parallel to the central axis of the swirling chamber.
- 前記ガイド溝部は、前記ガイド溝部の開口縁の付近に形成されて前記球体を支持する球体受け部を有し、
前記球体受け部と前記吐出口との間に溝が形成され、前記溝と前記球体の表面との間に空間が形成される、請求項1に記載の洗浄ノズル。 The guide groove has a spherical body receiving part that is formed near an opening edge of the guide groove and supports the spherical body,
The cleaning nozzle according to claim 1, wherein a groove is formed between the spherical body receiving portion and the discharge port, and a space is formed between the groove and the surface of the spherical body. - 前記旋回室において、前記ガイド溝部の開口縁と、前記旋回室の前記流入口の側の面との間の空間距離が、前記球体の直径より小さい、請求項1に記載の洗浄ノズル。 The cleaning nozzle according to claim 1, wherein in the swirling chamber, a spatial distance between an opening edge of the guide groove and a surface of the swirling chamber on the inlet side is smaller than a diameter of the sphere.
- 前記旋回室は、前記旋回室の前記側壁に設けられた前記流入口を有する、請求項1に記載の洗浄ノズル。 The cleaning nozzle according to claim 1, wherein the swirling chamber has the inlet provided in the side wall of the swirling chamber.
- 被洗浄物を収容するように構成された洗浄槽と、
前記被洗浄物に噴射される洗浄水を加圧するように構成された洗浄ポンプと、
請求項1~8のいずれか1項に記載の洗浄ノズルと、を備えた食器洗い機であって、
前記洗浄ノズルは一つまたは複数のシャワーヘッドを有し、前記一つまたは複数のシャワーヘッドの各々は前記シャワーヘッドである、食器洗い機。 a cleaning tank configured to accommodate an object to be cleaned;
a cleaning pump configured to pressurize cleaning water to be sprayed onto the object to be cleaned;
A dishwasher comprising the washing nozzle according to any one of claims 1 to 8,
The dishwasher, wherein the washing nozzle has one or more showerheads, and each of the one or more showerheads is the showerhead. - 前記洗浄ノズルは、導水路を有するアームと軸部とを備えて、前記シャワーヘッドからの噴射反力により回転するように構成された回転ノズルであり、
前記シャワーヘッドの前記旋回室は前記導水路の高さに収まる、請求項9に記載の食器洗い機。 The cleaning nozzle is a rotating nozzle that includes an arm having a water conduit and a shaft portion and is configured to rotate by a jet reaction force from the shower head,
10. A dishwasher as claimed in claim 9, wherein the swirl chamber of the showerhead fits at the level of the water conduit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-052695 | 2022-03-29 | ||
JP2022052695 | 2022-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023190488A1 true WO2023190488A1 (en) | 2023-10-05 |
Family
ID=88202536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/012453 WO2023190488A1 (en) | 2022-03-29 | 2023-03-28 | Washing nozzle and dishwasher using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023190488A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4924931B1 (en) * | 1970-09-16 | 1974-06-26 | ||
JPH03154663A (en) * | 1989-11-10 | 1991-07-02 | Kirin Brewery Co Ltd | Nozzle capable of revolving injected fluid |
JP2005296181A (en) * | 2004-04-08 | 2005-10-27 | Toto Ltd | Dishwasher |
CN106175635A (en) * | 2016-07-14 | 2016-12-07 | 芜湖广盈实业有限公司 | A kind of dish-washing machine spray thrower structure |
CN112914458A (en) * | 2019-12-06 | 2021-06-08 | 青岛海尔洗碗机有限公司 | Spraying guide part, spraying device and washing equipment |
-
2023
- 2023-03-28 WO PCT/JP2023/012453 patent/WO2023190488A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4924931B1 (en) * | 1970-09-16 | 1974-06-26 | ||
JPH03154663A (en) * | 1989-11-10 | 1991-07-02 | Kirin Brewery Co Ltd | Nozzle capable of revolving injected fluid |
JP2005296181A (en) * | 2004-04-08 | 2005-10-27 | Toto Ltd | Dishwasher |
CN106175635A (en) * | 2016-07-14 | 2016-12-07 | 芜湖广盈实业有限公司 | A kind of dish-washing machine spray thrower structure |
CN112914458A (en) * | 2019-12-06 | 2021-06-08 | 青岛海尔洗碗机有限公司 | Spraying guide part, spraying device and washing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2660030C2 (en) | Dishwasher containing at least one dishwasher spraying device | |
CN109640778B (en) | Dish washing machine | |
CN102482834A (en) | Drum type washing machine | |
JP3452955B2 (en) | Dishwasher spray arm swing device | |
WO2023190488A1 (en) | Washing nozzle and dishwasher using same | |
CN118843417A (en) | Cleaning nozzle and tableware cleaning machine using same | |
CN214804531U (en) | Spray arm assembly and dish washing machine | |
KR100232276B1 (en) | Dishwasher | |
JP3841089B2 (en) | Dishwasher | |
CN108523798B (en) | A shower nozzle, shower nozzle subassembly, waterway system and dish washer for dish washer | |
EP4454534A1 (en) | Dishwasher | |
EP4454535A1 (en) | Dishwasher | |
CN110840354B (en) | Spraying arm assembly for dish washing machine and dish washing machine | |
KR200144770Y1 (en) | Dishwasher with auxiliary nozzle | |
KR900007534Y1 (en) | A water-scattering device in dish washing machine | |
CN118434342A (en) | Dish-washing machine | |
KR930002168Y1 (en) | Water spraying device of rotation nozzle of a tableware cleaner | |
KR20230097824A (en) | Dish Washer | |
KR20230097823A (en) | Dish Washer | |
CN114711696A (en) | Spray arm assembly and dish washing machine | |
JPH04122351A (en) | Dish washer | |
CN118871022A (en) | Dish-washing machine | |
JPH07163506A (en) | Dish washer | |
KR20220125563A (en) | Dish Washer | |
KR200146594Y1 (en) | A dishwasher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23780497 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024512549 Country of ref document: JP |