WO2023190335A1 - Electrochemical device, and electrolyte solution for electrochemical device - Google Patents

Electrochemical device, and electrolyte solution for electrochemical device Download PDF

Info

Publication number
WO2023190335A1
WO2023190335A1 PCT/JP2023/012189 JP2023012189W WO2023190335A1 WO 2023190335 A1 WO2023190335 A1 WO 2023190335A1 JP 2023012189 W JP2023012189 W JP 2023012189W WO 2023190335 A1 WO2023190335 A1 WO 2023190335A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
salt compound
formula
lithium salt
electrochemical device
Prior art date
Application number
PCT/JP2023/012189
Other languages
French (fr)
Japanese (ja)
Inventor
馨 今野
洋介 池田
薫平 山田
恭章 川口
憲人 西村
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023190335A1 publication Critical patent/WO2023190335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an electrochemical device and an electrolyte for an electrochemical device.
  • the main purpose of the present disclosure is to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test.
  • the electrochemical device includes a positive electrode, a negative electrode, and an electrolyte.
  • the electrolytic solution contains a compound represented by the following formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent. do.
  • electrochemical devices tend to have excellent charge/discharge cycling characteristics.
  • the electrochemical device may be a nonaqueous electrolyte secondary battery or a capacitor.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
  • the electrolytic solution for an electrochemical device comprises a compound represented by the following formula (1), a first lithium salt compound, a second lithium salt compound in which the anion constituting the first lithium salt compound is different, and a non-containing lithium salt compound. Contains a water solvent. According to such an electrolytic solution for an electrochemical device, it is possible to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test. Further, in one embodiment, the electrolytic solution for an electrochemical device can improve the charge/discharge cycle characteristics of the electrochemical device. [In formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
  • R 1 and R 2 in formula (1) are hydrogen atoms.
  • X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
  • the first lithium salt compound is lithium hexafluorophosphate.
  • the second lithium salt compound is lithium difluorophosphate, lithium tetrafluoroborate, lithium fluorosulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(oxalate)boric acid.
  • the total content of the compound represented by formula (1) and the second lithium salt compound is 0.1 to 10% by mass based on the total amount of the electrolyte.
  • an electrolytic solution for an electrochemical device that can improve the charge/discharge cycle characteristics of the electrochemical device.
  • FIG. 1 is a perspective view showing one embodiment of a non-aqueous electrolyte secondary battery as an electrochemical device.
  • FIG. 2 is an exploded perspective view showing an electrode group of the non-aqueous electrolyte secondary battery shown in FIG.
  • FIG. 3 is a graph showing the number of cycles at which the discharge capacity retention rate becomes less than 90% in cycle tests of lithium ion secondary batteries in Examples and Comparative Examples.
  • FIG. 4 is a graph showing the measurement results of the resistance increase rate after cycle tests of lithium ion secondary batteries in Examples and Comparative Examples.
  • a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • the term “layer” includes a structure that is formed on the entire surface as well as a structure that is formed on a part of the layer when observed as a plan view.
  • the term “process” does not only refer to an independent process, but also refers to a process that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved. included.
  • each component and material exemplified herein may be used alone or in combination of two or more.
  • FIG. 1 is a perspective view showing one embodiment of a non-aqueous electrolyte secondary battery as an electrochemical device.
  • the electrochemical device is a nonaqueous electrolyte secondary battery.
  • a nonaqueous electrolyte secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and a separator, and a bag-shaped battery exterior body 3 that houses the electrode group 2.
  • a positive electrode current collector tab 4 and a negative electrode current collector tab 5 are provided on the positive electrode and the negative electrode, respectively.
  • the positive electrode current collector tab 4 and the negative electrode current collector tab 5 protrude from the inside of the battery exterior body 3 to the outside so that the positive electrode and the negative electrode, respectively, can be electrically connected to the outside of the non-aqueous electrolyte secondary battery 1.
  • the battery exterior body 3 is filled with an electrolytic solution (not shown).
  • the non-aqueous electrolyte secondary battery 1 may be a battery having a shape other than the so-called "laminate type" as described above (coin type, cylindrical type, laminated type, etc.).
  • the battery exterior body 3 may be, for example, a container formed of a laminate film.
  • the laminate film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, or stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, or stainless steel
  • a sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an electrode group of the non-aqueous electrolyte secondary battery shown in FIG. 1.
  • the electrode group 2 includes a positive electrode 6, a separator 7, and a negative electrode 8 in this order.
  • the positive electrode 6 and the negative electrode 8 are arranged such that the surfaces on the positive electrode mixture layer 10 side and the negative electrode mixture layer 12 side face the separator 7, respectively.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4 .
  • the positive electrode current collector 9 is made of, for example, aluminum, titanium, stainless steel, nickel, fired carbon, conductive polymer, conductive glass, or the like.
  • the positive electrode current collector 9 may be made of aluminum, copper, etc. whose surface is treated with carbon, nickel, titanium, silver, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. .
  • the thickness of the positive electrode current collector 9 is, for example, 1 to 50 ⁇ m in terms of electrode strength and energy density.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer 10 is, for example, 20 to 200 ⁇ m.
  • the positive electrode active material may be, for example, lithium oxide.
  • the positive electrode active material may be, for example, lithium phosphate.
  • lithium phosphates include lithium manganese phosphate (LiMnPO 4 ), lithium iron phosphate (LiFePO 4 ), lithium cobalt phosphate (LiCoPO 4 ), and lithium vanadium phosphate (Li 3 V 2 (PO 4 )). 3 ).
  • the content of the positive electrode active material may be 80% by mass or more, or 85% by mass or more, and 99% by mass or less, based on the total amount of the positive electrode mixture layer.
  • the conductive agent may be a carbon black such as acetylene black or Ketjen black, or a carbon material such as graphite, graphene, or carbon nanotubes.
  • the content of the conductive agent may be, for example, 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, and 50% by mass or less, 30% by mass, based on the total amount of the positive electrode mixture layer. or 15% by mass or less.
  • binder examples include resins such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), and fluorine.
  • resins such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • Rubbers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene/butadiene/styrene block copolymer or its hydrogenated product, EPDM (ethylene/propylene/diene terpolymer), styrene/ethylene/butadiene ⁇ Thermoplastic elastomers such as ethylene copolymers, styrene/isoprene/styrene block copolymers or their hydrogenated products; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymers, propylene.
  • Soft resins such as ⁇ -olefin copolymers; polyvinylidene fluoride (PVDF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene/ethylene copolymer, polytetrafluoroethylene/vinylidene fluoride copolymer
  • PVDF polyvinylidene fluoride
  • fluorine-containing resins such as; resins having a nitrile group-containing monomer as a monomer unit; and polymer compositions having ion conductivity for alkali metal ions (for example, lithium ions).
  • the content of the binder may be, for example, 0.1% by mass or more, 1% by mass or more, or 1.5% by mass or more, and 30% by mass or less, 20% by mass, based on the total amount of the positive electrode mixture layer. % or less, or 10% by mass or less.
  • the separator 7 there are no particular restrictions on the separator 7 as long as it electronically insulates the positive electrode 6 and negative electrode 8 while allowing ions to pass therethrough, and has resistance to oxidation on the positive electrode 6 side and reducibility on the negative electrode 8 side. Not done.
  • the material for such a separator 7 include resins, inorganic materials, and the like.
  • the separator 7 is preferably a porous sheet or nonwoven fabric made of polyolefin, such as polyethylene or polypropylene, from the viewpoint of being stable to the electrolytic solution and having excellent liquid retention properties.
  • the separator 7 may be, for example, a separator in which a fibrous or particulate inorganic substance is attached to a thin film-like base material such as a nonwoven fabric, a woven fabric, or a microporous film.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • a negative electrode current collector tab 5 is provided on the negative electrode current collector 11 .
  • the negative electrode current collector 11 is made of copper, stainless steel, nickel, aluminum, titanium, fired carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, or the like.
  • the negative electrode current collector 11 may be made of copper, aluminum, etc. whose surface is treated with carbon, nickel, titanium, silver, etc. for the purpose of improving adhesiveness, conductivity, and reduction resistance.
  • the thickness of the negative electrode current collector 11 is, for example, 1 to 50 ⁇ m in terms of electrode strength and energy density.
  • the negative electrode mixture layer 12 contains, for example, a negative electrode active material and a binder.
  • the negative electrode active material is not particularly limited as long as it is a material that can insert and release lithium ions.
  • Examples of negative electrode active materials include carbon materials, metal composite oxides, oxides or nitrides of Group 14 elements such as tin, germanium, and silicon, elemental lithium, lithium alloys such as lithium-aluminum alloys, Sn, Si, etc. Examples include metals that can form alloys with lithium.
  • the negative electrode active material is preferably at least one selected from the group consisting of carbon materials and metal composite oxides.
  • the negative electrode active material may be one of these materials or a mixture of two or more thereof.
  • the shape of the negative electrode active material may be, for example, particulate.
  • Carbon materials include amorphous carbon materials, natural graphite, composite carbon materials in which natural graphite is coated with an amorphous carbon material, and artificial graphite (resin raw materials such as epoxy resins and phenol resins, or petroleum, coal, etc.) (obtained by firing pitch-based raw materials obtained from).
  • the metal composite oxide preferably contains one or both of titanium and lithium, and more preferably contains lithium.
  • the negative electrode active material may further contain a material containing at least one element selected from the group consisting of silicon and tin.
  • the material containing at least one element selected from the group consisting of silicon and tin may be a simple substance of silicon or tin, or a compound containing at least one element selected from the group consisting of silicon and tin.
  • the compound may be an alloy containing at least one element selected from the group consisting of silicon and tin, for example, in addition to silicon and tin, nickel, copper, iron, cobalt, manganese, zinc, indium, and silver. , titanium, germanium, bismuth, antimony, and chromium.
  • the compound containing at least one element selected from the group consisting of silicon and tin may be an oxide, nitride, or carbide, and specifically, for example, silicon oxide such as SiO, SiO 2 , LiSiO, etc. silicon nitrides such as Si 3 N 4 and Si 2 N 2 O, silicon carbides such as SiC, and tin oxides such as SnO, SnO 2 and LiSnO.
  • the negative electrode mixture layer 12 preferably contains a carbon material, more preferably graphite, and still more preferably contains a carbon material as a negative electrode active material. It includes a mixture with a material containing at least one element selected from the group consisting of silicon and tin, and particularly preferably a mixture of graphite and silicon oxide.
  • the content of the material (silicon oxide) containing at least one element selected from the group consisting of silicon and tin in the mixture is 1% by mass or more, or 3% by mass or more, based on the total amount of the mixture. It may well be up to 30% by weight.
  • the content of the negative electrode active material may be 80% by mass or more, or 85% by mass or more, and 99% by mass or less, based on the total amount of the negative electrode mixture layer.
  • the binder and its content may be the same as the binder and its content in the positive electrode mixture layer described above.
  • the negative electrode mixture layer 12 may further contain a thickener to adjust the viscosity.
  • Thickeners are not particularly limited, and may include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, salts thereof, and the like.
  • the thickener may be one of these or a mixture of two or more thereof.
  • the content of the thickener may be 0.1% by mass or more, preferably 0.2% by mass or more, based on the total amount of the negative electrode mixture layer. , more preferably 0.5% by mass or more.
  • the content of the thickener may be 5% by mass or less, preferably 3% by mass, based on the total amount of the negative electrode mixture layer. % or less, more preferably 2% by mass or less.
  • the electrolytic solution (electrolytic solution for electrochemical devices) includes a compound represented by the following formula (1), a first lithium salt compound, and a second lithium salt compound having a different anion constituting the first lithium salt compound. and a non-aqueous solvent.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
  • R 1 and R 2 are preferably hydrogen atoms.
  • R 3 is preferably a hydrogen atom.
  • X may be, for example, a divalent hydrocarbon group, an alkylene group, or an alkylene group having 1 to 6 carbon atoms.
  • the alkylene group may be linear or branched.
  • the lower limit of the carbon number may be 2 or more.
  • the upper limit of the carbon number may be 5 or less or 4 or less.
  • the alkylene group represented by X may be a methylene group, an ethylene group, a propylene group, a butylene group, or a pentylene group, preferably an ethylene group.
  • X may be, for example, a divalent group in which a part of the divalent hydrocarbon group is substituted with a hetero atom.
  • a heteroatom may be, for example, an oxygen atom.
  • X may be, for example, a divalent group having an ether structure in which a part of the divalent hydrocarbon group is substituted with oxygen atoms.
  • X may be, for example, a divalent group represented by the following formula (2). -X 1 -O-X 2 - (2)
  • X 1 and X 2 each independently represent an alkylene group.
  • the alkylene group may be linear or branched.
  • the number of carbon atoms in the alkylene groups represented by X 1 and X 2 may be 1 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2, respectively.
  • the content of the compound represented by formula (1) is set at 0.001 mass based on the total amount of electrolyte solution, since this makes it possible to more fully suppress the rate of increase in resistance after a cycle test of an electrochemical device.
  • % or more 0.005 mass% or more, 0.01 mass% or more, 0.05 mass% or more, 0.1 mass% or more, 0.15 mass% or more, or 0.2 mass% or more, It may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.8% by mass or less, 0.6% by mass or less, or 0.5% by mass or less. .
  • the first lithium salt compound may be lithium hexafluorophosphate (LiPF 6 ) since it has better solubility in a solvent, charge and discharge characteristics of a secondary battery, output characteristics, charge and discharge cycle characteristics, and the like.
  • LiPF 6 lithium hexafluorophosphate
  • the concentration of the first lithium salt compound is 0.5 mol/L or more, more preferably 0.7 mol/L or more, and still more preferably 0.8 mol/L, based on the total amount of the nonaqueous solvent.
  • L or more preferably 1.5 mol/L or less, more preferably 1.3 mol/L or less, still more preferably 1.2 mol/L or less.
  • the second lithium salt compound is not particularly limited as long as the anion constituting the first lithium salt compound is different, but for example, lithium difluorophosphate (LiPO 2 F 2 ), lithium tetrafluoroborate (LiBF 4 ), lithium fluorosulfonate (LiSO 3 F), lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , LiTFSI) ), lithium bis(oxalate)borate (LiB(C 2 O 4 ) 2 , LiBOB), lithium difluorooxalate borate (LiBF 2 (C 2 O 4 ), LiDFOB), lithium tetrafluorooxalate phosphate (LiPF) 4 (C 2 O 4 ), LiTFOP), and lithium difluorobis(oxalate) phosphate (LiPF 2
  • the second lithium salt compound is lithium difluorophosphate (LiPO 2 F 2 ) or bis(fluorosulfonyl)imide because it is possible to more fully suppress the rate of increase in resistance after a cycle test of an electrochemical device. It may also be lithium (LiN(SO 2 F) 2 , LiFSI).
  • the content of the second lithium salt compound is 0.001% by mass or more based on the total amount of the electrolytic solution, since this makes it possible to more fully suppress the rate of increase in resistance after the cycle test of the electrochemical device. It may be 0.005% by mass or more, 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more, and 5% by mass The content may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.8% by mass or less, 0.6% by mass or less, or 0.5% by mass or less.
  • the total content of the compound represented by formula (1) and the second lithium salt compound is determined by the total amount of the electrolyte because it is possible to more sufficiently suppress the resistance increase rate after the cycle test of the electrochemical device. It may be 0.1 to 10% by mass based on .
  • the total content of the compound represented by formula (1) and the second lithium salt compound is 0.2% by mass or more, 0.3% by mass or more, or 0.4% by mass or more based on the total amount of the electrolyte solution. It may be 7% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or 1% by mass or less.
  • the ratio of the content of the compound represented by formula (1) to the total content of the compound represented by formula (1) and the second lithium salt compound can more fully suppress the resistance increase rate after the cycle test of the electrochemical device. , 0.05 or more, 0.1 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, or 0.4 or more, and 0.9 or less, 0.85 or less , 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, or 0.6 or less.
  • the content of the second lithium salt compound may be 0.05% or more and 20% or less in molar ratio with respect to the first lithium salt compound.
  • non-aqueous solvents examples include linear carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, and methyl butyl carbonate; cyclic carbonate compounds such as ethylene carbonate, propylene carbonate, and butylene carbonate; Chain carboxylic acid ester compounds such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate; cyclic carboxylic acid ester compounds such as ⁇ -butyllactone; chains such as dimethoxymethane, dimethoxyethane, diethoxyethane, etc.
  • linear carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, and methyl butyl carbonate
  • cyclic carbonate compounds such as
  • non-aqueous solvents may be used alone or in combination of two or more.
  • the non-aqueous solvent is preferably a mixture of two or more.
  • the electrolytic solution may further contain components other than the compound represented by formula (1), the first lithium salt compound, the second lithium salt compound, and the nonaqueous solvent.
  • other components include unsaturated cyclic carbonates, fluorine-containing cyclic carbonates, and compounds containing nitrogen atoms other than the compound represented by formula (1).
  • unsaturated cyclic carbonates examples include vinylene carbonate, methylvinylene carbonate, dimethylvinylene carbonate (4,5-dimethylvinylene carbonate), ethylvinylene carbonate (4,5-diethylvinylene carbonate), diethylvinylene carbonate, vinylethylene carbonate, etc. can be mentioned.
  • the unsaturated cyclic carbonate is preferably vinylene carbonate from the viewpoint of further improving the performance of the electrochemical device.
  • fluorine-containing cyclic carbonate examples include 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1, Examples include 2-trifluoroethylene carbonate and 1,1,2,2-tetrafluoroethylene carbonate.
  • the fluorine-containing cyclic carbonate is preferably 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC).
  • the compound containing a nitrogen atom other than the compound represented by formula (1) may be, for example, a nitrile compound such as succinonitrile.
  • the present inventors prepared a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent. It has been found that by using the electrolytic solution contained in the electrolyte in an electrochemical device, the rate of increase in resistance after a cycle test can be sufficiently suppressed. Although the reason for such an effect is not necessarily clear, the present inventors speculate as follows. That is, at the time of initial charging, the unsaturated carbon bond structure of the compound represented by formula (1) undergoes a reduction reaction on the negative electrode side before other additives or carbonate solvents, forming a film.
  • the first lithium salt compound, the second lithium salt compound, or a compound derived therefrom that remains without being reductively decomposed forms a film, and other additives, nonaqueous solvents, electrolyte salts, etc. It is presumed that this is because by suppressing the oxidative decomposition of the positive electrode active material, it is possible to suppress the decrease in ionic conductivity on the surface of the positive electrode active material or the increase in resistance due to the stabilization of the crystal structure.
  • an electrolytic solution containing a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound, and a nonaqueous solvent is used in an electrochemical device.
  • electrochemical devices tend to have excellent charge/discharge cycle characteristics.
  • the compound represented by formula (1) can reduce fluorine in the electrolyte. It is speculated that this is because by reducing the amount of acid (HF), side reactions due to elution of the positive electrode active material and formation of a film such as LiF on the negative electrode can be suppressed.
  • the method for manufacturing the non-aqueous electrolyte secondary battery 1 includes a first step of obtaining a positive electrode 6, a second step of obtaining a negative electrode 8, a third step of housing the electrode group 2 in a battery exterior body 3, and a fourth step of injecting the electrolyte into the battery exterior body 3.
  • the order of the first to fourth steps is arbitrary.
  • the material used for the positive electrode mixture layer 10 is dispersed in a dispersion medium using a kneader, a dispersion machine, etc. to obtain a slurry-like positive electrode mixture, and then this positive electrode mixture is processed by a doctor blade method.
  • the positive electrode 6 is obtained by coating the positive electrode current collector 9 by dipping, spraying, or the like, and then volatilizing the dispersion medium. After volatilizing the dispersion medium, a compression molding step using a roll press may be provided as necessary.
  • the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer with a multilayer structure by performing the steps described above from applying the positive electrode mixture to volatilizing the dispersion medium multiple times.
  • the dispersion medium may be water, 1-methyl-2-pyrrolidone (hereinafter sometimes referred to as "NMP"), or the like.
  • the negative electrode 8 is obtained in the same manner as the step of obtaining the positive electrode 6 in the first step described above.
  • the method for forming the negative electrode mixture layer 12 on the negative electrode current collector 11 is the same as the first method described above, except that the positive electrode current collector 9 and the positive electrode mixture layer 10 are changed to the negative electrode current collector 11 and the negative electrode mixture layer 12.
  • the method may be similar to the process described in .
  • a separator 7 is sandwiched between the produced positive electrode 6 and negative electrode 8 to form an electrode group 2.
  • this electrode group 2 is housed in a battery exterior body 3.
  • the electrolytic solution is injected into the battery exterior body 3.
  • the electrolytic solution can be prepared, for example, by first dissolving the electrolyte salt in a solvent and then dissolving the other materials.
  • the electrochemical device may be a capacitor.
  • the capacitor may include an electrode group made up of a positive electrode, a negative electrode, and a separator, and a bag-shaped battery exterior housing the electrode group. The details of each component in the capacitor may be the same as those of the non-aqueous electrolyte secondary battery 1.
  • Example 1 [Preparation of positive electrode] Nickel cobalt lithium manganate (92% by mass) as a positive electrode active material, acetylene black (AB) (4% by mass) as a conductive agent, and polyvinylidene fluoride (PVDF) (4% by mass) as a binder are sequentially added. Added and mixed. NMP as a dispersion medium was added to the obtained mixture and kneaded to prepare a slurry-like positive electrode mixture. A predetermined amount of this positive electrode mixture was applied evenly and homogeneously onto an aluminum foil having a thickness of 20 ⁇ m as a positive electrode current collector. Thereafter, the dispersion medium was volatilized, and the material was compacted by pressing to a density of 2.8 g/cm 3 to obtain a positive electrode.
  • AB acetylene black
  • PVDF polyvinylidene fluoride
  • SBR Styrene-butadiene rubber
  • this negative electrode mixture was applied evenly and homogeneously to a rolled copper foil having a thickness of 10 ⁇ m as a negative electrode current collector. After that, the dispersion medium was volatilized, and the material was compacted by pressing to a density of 1.6 g/cm 3 to obtain a negative electrode.
  • a positive electrode cut into a square of 13.5 cm 2 was sandwiched between polyethylene porous sheets (thickness 30 ⁇ m) serving as separators, and a negative electrode cut into a square of 14.3 cm 2 was further stacked to form an electrode group.
  • This electrode group was housed in a container (battery exterior body) formed of an aluminum laminate film (trade name: aluminum laminate film, manufactured by Dainippon Printing Co., Ltd.). Next, 0.25 mL of electrolyte solution was added into the container, and the container was thermally welded to produce a lithium ion secondary battery for evaluation.
  • the following formula (1 0.5% by mass of the compound A represented by formula (1) in which R 1 , R 2 , and R 3 are hydrogen atoms and X is an ethylene group, and the second 0.5% by mass of lithium difluorophosphate (LiPO 2 F 2 ) as a lithium salt compound, 1% by mass of vinylene carbonate, and 1% by mass of fluoroethylene carbonate (all based on the total amount of electrolyte solution) were added.
  • LiPO 2 F 2 lithium difluorophosphate
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.2% by mass of Compound A, based on the total amount of the electrolytic solution, was used.
  • Example 3 A lithium ion secondary battery was produced in the same manner as in Example 2, except that an electrolytic solution containing 0.2% by mass of lithium difluorophosphate (LiPO 2 F 2 ) based on the total amount of the electrolytic solution was used.
  • an electrolytic solution containing 0.2% by mass of lithium difluorophosphate (LiPO 2 F 2 ) based on the total amount of the electrolytic solution was used.
  • Example 4 A lithium ion secondary battery was produced in the same manner as in Example 3, except that an electrolytic solution containing 1% by mass of Compound A based on the total amount of the electrolytic solution was used.
  • Example 5 Compound B represented by the following formula (1Y) instead of compound A (represented by formula (1), where R 1 and R 2 are hydrogen atoms, R 3 is a methyl group, and X is an ethylene group)
  • a lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.5% by mass of 0.5% by mass, based on the total amount of the electrolytic solution, was added.
  • Example 6 An electrolytic solution was used in which lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , LiFSI) was added in an amount of 0.5% by mass based on the total amount of the electrolyte instead of lithium difluorophosphate (LiPO 2 F 2 ).
  • LiN(SO 2 F) 2 LiFSI
  • LiPO 2 F 2 lithium difluorophosphate
  • Example 1 A lithium ion secondary battery was produced in the same manner as in Example 1, except that Compound A and lithium difluorophosphate (LiPO 2 F 2 ) were not added to the electrolyte.
  • Comparative example 2 A lithium ion secondary battery was produced in the same manner as Comparative Example 1, except that 0.5% by mass of hexamethylene diisocyanate (HDI) was added based on the total amount of the electrolyte.
  • HDI hexamethylene diisocyanate
  • Example 3 A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.5% by mass of hexamethylene diisocyanate (HDI) based on the total amount of the electrolytic solution was used instead of Compound A.
  • HDI hexamethylene diisocyanate
  • each lithium ion battery was subjected to a high temperature cycle test to evaluate its charge and discharge cycle characteristics.
  • constant current charging was performed at a current value of 0.5 C to an upper limit voltage of 4.2 V in an environment of 45° C., and then constant voltage charging was performed at 4.2 V.
  • the charging termination condition was a current value of 0.05C.
  • constant current discharge was performed at 1.0 C to 2.7 V, and the discharge capacity was determined. This series of charging and discharging was repeated for 500 cycles, and the discharge capacity was measured every time the charging and discharging was performed.
  • the number of cycles (times) at which the value was less than % was determined.
  • FIG. 3 and Table 1 show the number of cycles at which the discharge capacity retention rate becomes less than 90% in a cycle test of a lithium ion secondary battery.
  • the lithium ion secondary battery of Comparative Example 2 to which an electrolytic solution containing HDI, which is a compound having an isocyanate group, which does not satisfy the requirements of formula (1), and HDI and LiPO 2 F 2 (second The lithium ion secondary battery of Comparative Example 3 in which an electrolyte containing a lithium salt compound) was applied had a lower resistance increase rate than the lithium ion secondary battery of Comparative Example 1, but the lithium ion secondary battery of Examples 1 to 6 The secondary battery had a greater effect of suppressing the rate of increase in resistance.
  • the lithium ion secondary batteries of Examples 1 to 6 had a greater number of cycles at which the discharge capacity retention rate became less than 90% than the lithium ion secondary batteries of Comparative Examples 2 and 3. From the above, it was confirmed that it is possible to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test.
  • the present inventors prepared a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent.
  • the effects of using the contained electrolytic solution in an electrochemical device to sufficiently suppress the rate of increase in resistance after a cycle test are speculated as follows. That is, at the time of initial charging, the unsaturated carbon bond structure of the compound represented by formula (1) undergoes a reduction reaction on the negative electrode side before other additives or carbonate solvents, forming a film. It is speculated that this is because a stable film is formed by the subsequent reaction of the isocyanate sites, and the reductive decomposition of other additives, non-aqueous solvents, electrolyte salts, etc.
  • the first lithium salt compound, the second lithium salt compound, or a compound derived therefrom that remains without being reductively decomposed forms a film, and other additives, nonaqueous solvents, electrolyte salts, etc. It is presumed that this is because by suppressing the oxidative decomposition of the positive electrode active material, it is possible to suppress the decrease in ionic conductivity on the surface of the positive electrode active material or the increase in resistance due to the stabilization of the crystal structure.
  • an electrolytic solution containing a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound, and a nonaqueous solvent is used in an electrochemical device.
  • electrochemical devices tend to have excellent charge/discharge cycle characteristics.
  • the compound represented by formula (1) can reduce fluorine in the electrolyte. It is speculated that this is because by reducing the amount of acid (HF), side reactions due to elution of the positive electrode active material and formation of a film such as LiF on the negative electrode can be suppressed.
  • SYMBOLS 1 Non-aqueous electrolyte secondary battery (electrochemical device), 2... Electrode group, 3... Battery exterior body, 4... Positive electrode current collector tab, 5... Negative electrode current collector tab, 6... Positive electrode, 7... Separator, 8... Negative electrode, 9... Positive electrode current collector, 10... Positive electrode mixture layer, 11... Negative electrode current collector, 12... Negative electrode mixture layer.

Abstract

Disclosed is an electrochemical device. The electrochemical device comprises a positive electrode, a negative electrode, and an electrolyte. The electrolyte contains: a compound represented by formula (1); a first lithium salt compound; a second lithium salt compound having a different anion than the anion constituting the first lithium salt compound; and a nonaqueous solvent. [In formula (1), R1, R2, and R3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.]

Description

電気化学デバイス及び電気化学デバイス用電解液Electrochemical devices and electrolytes for electrochemical devices
 本開示は、電気化学デバイス及び電気化学デバイス用電解液に関する。 The present disclosure relates to an electrochemical device and an electrolyte for an electrochemical device.
 近年、携帯型電子機器、電気自動車等の普及により、リチウムイオン二次電池に代表される非水電解液二次電池、キャパシタ等の高性能な電気化学デバイスが必要とされている。電気化学デバイスの性能を向上させる手段としては、例えば、電解液に所定の添加剤を添加する方法が検討されている(例えば、特許文献1)。 In recent years, with the spread of portable electronic devices, electric vehicles, etc., there is a need for high-performance electrochemical devices such as non-aqueous electrolyte secondary batteries, typified by lithium ion secondary batteries, and capacitors. As a means for improving the performance of electrochemical devices, for example, a method of adding a predetermined additive to an electrolytic solution has been studied (for example, Patent Document 1).
国際公開第2012/147502号International Publication No. 2012/147502
 しかしながら、従来の電気化学デバイスは、サイクル試験後の抵抗増加率が高く、未だ改善の余地がある。 However, conventional electrochemical devices have a high rate of increase in resistance after cycle tests, and there is still room for improvement.
 そこで、本開示は、電気化学デバイスのサイクル試験後の抵抗増加率を充分に抑制することを主な目的とする。 Therefore, the main purpose of the present disclosure is to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test.
 本発明者らの検討によると、電気化学デバイスにおいて、特定のイソシアネート化合物と、アニオンが異なる2種のリチウム塩化合物と、非水溶媒とを含有する電解液を用いることにより、電気化学デバイスのサイクル試験後の抵抗増加率が充分に抑制されることが見出された。 According to studies by the present inventors, by using an electrolytic solution containing a specific isocyanate compound, two types of lithium salt compounds with different anions, and a nonaqueous solvent in an electrochemical device, it is possible to cycle the electrochemical device. It was found that the rate of increase in resistance after the test was sufficiently suppressed.
 本開示の一側面は、電気化学デバイスに関する。当該電気化学デバイスは、正極と、負極と、電解液とを備える。電解液は、下記式(1)で表される化合物と、第1のリチウム塩化合物と、第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する。このような電気化学デバイスによれば、電気化学デバイスのサイクル試験後の抵抗増加率が充分に抑制される。一実施形態において、電気化学デバイスは、充放電サイクル特性に優れる傾向にある。電気化学デバイスは、非水電解液二次電池又はキャパシタであってよい。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R、R、及びRはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
One aspect of the present disclosure relates to electrochemical devices. The electrochemical device includes a positive electrode, a negative electrode, and an electrolyte. The electrolytic solution contains a compound represented by the following formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent. do. According to such an electrochemical device, the rate of increase in resistance after a cycle test of the electrochemical device is sufficiently suppressed. In one embodiment, electrochemical devices tend to have excellent charge/discharge cycling characteristics. The electrochemical device may be a nonaqueous electrolyte secondary battery or a capacitor.
Figure JPOXMLDOC01-appb-C000003
[In formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
 本開示の他の側面は、電気化学デバイス用電解液(以下、単に、「電解液」という場合がある。)に関する。当該電気化学デバイス用電解液は、下記式(1)で表される化合物と、第1のリチウム塩化合物と、第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する。このような電気化学デバイス用電解液によれば、電気化学デバイスのサイクル試験後の抵抗増加率を充分に抑制することが可能となる。また、一実施形態において、電気化学デバイス用電解液は、電気化学デバイスの充放電サイクル特性を向上させることが可能となる。
Figure JPOXMLDOC01-appb-C000004
[式(1)中、R、R、及びRはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
Another aspect of the present disclosure relates to an electrolytic solution for electrochemical devices (hereinafter sometimes simply referred to as "electrolytic solution"). The electrolytic solution for an electrochemical device comprises a compound represented by the following formula (1), a first lithium salt compound, a second lithium salt compound in which the anion constituting the first lithium salt compound is different, and a non-containing lithium salt compound. Contains a water solvent. According to such an electrolytic solution for an electrochemical device, it is possible to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test. Further, in one embodiment, the electrolytic solution for an electrochemical device can improve the charge/discharge cycle characteristics of the electrochemical device.
Figure JPOXMLDOC01-appb-C000004
[In formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
 上記の各側面における好ましい態様(A)~(E)を以下に示す。これらの好ましい態様は、複数組み合わせることができる。
(A)式(1)におけるR及びRは、水素原子である。
(B)式(1)におけるXは、炭素数1~6のアルキレン基である。
(C)第1のリチウム塩化合物は、ヘキサフルオロリン酸リチウムである。
(D)第2のリチウム塩化合物は、ジフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、フルオロスルホン酸リチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(オキサラート)ホウ酸リチウム、ジフルオロオキサラートホウ酸リチウム、テトラフルオロオキサラートリン酸リチウム、及びジフルオロビス(オキサラート)リン酸リチウムからなる群より選ばれる少なくとも1種である。
(E)式(1)で表される化合物及び第2のリチウム塩化合物の合計含有量は、電解液全量を基準として、0.1~10質量%である。
Preferred embodiments (A) to (E) in each of the above aspects are shown below. A plurality of these preferred embodiments can be combined.
(A) R 1 and R 2 in formula (1) are hydrogen atoms.
(B) X in formula (1) is an alkylene group having 1 to 6 carbon atoms.
(C) The first lithium salt compound is lithium hexafluorophosphate.
(D) The second lithium salt compound is lithium difluorophosphate, lithium tetrafluoroborate, lithium fluorosulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(oxalate)boric acid. It is at least one selected from the group consisting of lithium, lithium difluorooxalate borate, lithium tetrafluorooxalate phosphate, and lithium difluorobis(oxalate) phosphate.
(E) The total content of the compound represented by formula (1) and the second lithium salt compound is 0.1 to 10% by mass based on the total amount of the electrolyte.
 本開示によれば、電気化学デバイスのサイクル試験後の抵抗増加率を充分に抑制することが可能となる。また、本開示によれば、電気化学デバイスの充放電サイクル特性を向上させることが可能な電気化学デバイス用電解液が提供される。 According to the present disclosure, it is possible to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test. Further, according to the present disclosure, there is provided an electrolytic solution for an electrochemical device that can improve the charge/discharge cycle characteristics of the electrochemical device.
図1は、電気化学デバイスとしての非水電解液二次電池の一実施形態を示す斜視図である。FIG. 1 is a perspective view showing one embodiment of a non-aqueous electrolyte secondary battery as an electrochemical device. 図2は、図1に示す非水電解液二次電池の電極群を示す分解斜視図である。FIG. 2 is an exploded perspective view showing an electrode group of the non-aqueous electrolyte secondary battery shown in FIG. 図3は、実施例及び比較例におけるリチウムイオン二次電池のサイクル試験において、放電容量維持率が90%未満になるサイクル数を示すグラフである。FIG. 3 is a graph showing the number of cycles at which the discharge capacity retention rate becomes less than 90% in cycle tests of lithium ion secondary batteries in Examples and Comparative Examples. 図4は、実施例及び比較例におけるリチウムイオン二次電池のサイクル試験後の抵抗増加率の測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of the resistance increase rate after cycle tests of lithium ion secondary batteries in Examples and Comparative Examples.
 以下、図面を適宜参照しながら、本開示の実施形態について説明する。ただし、本開示は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with appropriate reference to the drawings. However, the present disclosure is not limited to the following embodiments.
 本開示における数値及びその範囲についても同様であり、本開示を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and their ranges in the present disclosure, and they do not limit the present disclosure. In this specification, a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described step by step in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good. Further, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。 In this specification, the term "layer" includes a structure that is formed on the entire surface as well as a structure that is formed on a part of the layer when observed as a plan view. In addition, in this specification, the term "process" does not only refer to an independent process, but also refers to a process that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved. included.
 本明細書に例示する各成分及び材料は、特に断らない限り、一種を単独で使用してもよく、二種以上を併用して使用してもよい。 Unless otherwise specified, each component and material exemplified herein may be used alone or in combination of two or more.
 図1は、電気化学デバイスとしての非水電解液二次電池の一実施形態を示す斜視図である。本実施形態において、電気化学デバイスは非水電解液二次電池である。図1に示すように、非水電解液二次電池1は、正極、負極、及びセパレータから構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が非水電解液二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。電池外装体3内には、電解液(図示せず)が充填されている。非水電解液二次電池1は、上述したようないわゆる「ラミネート型」以外の形状の電池(コイン型、円筒型、積層型等)であってもよい。 FIG. 1 is a perspective view showing one embodiment of a non-aqueous electrolyte secondary battery as an electrochemical device. In this embodiment, the electrochemical device is a nonaqueous electrolyte secondary battery. As shown in FIG. 1, a nonaqueous electrolyte secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and a separator, and a bag-shaped battery exterior body 3 that houses the electrode group 2. . A positive electrode current collector tab 4 and a negative electrode current collector tab 5 are provided on the positive electrode and the negative electrode, respectively. The positive electrode current collector tab 4 and the negative electrode current collector tab 5 protrude from the inside of the battery exterior body 3 to the outside so that the positive electrode and the negative electrode, respectively, can be electrically connected to the outside of the non-aqueous electrolyte secondary battery 1. . The battery exterior body 3 is filled with an electrolytic solution (not shown). The non-aqueous electrolyte secondary battery 1 may be a battery having a shape other than the so-called "laminate type" as described above (coin type, cylindrical type, laminated type, etc.).
 電池外装体3は、例えば、ラミネートフィルムで形成された容器であってよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery exterior body 3 may be, for example, a container formed of a laminate film. The laminate film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, or stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示す非水電解液二次電池の電極群を示す分解斜視図である。図2に示すように、電極群2は、正極6と、セパレータ7と、負極8とをこの順に備えている。正極6及び負極8は、正極合剤層10側及び負極合剤層12側の面がそれぞれセパレータ7と対向するように配置されている。 FIG. 2 is an exploded perspective view showing an electrode group of the non-aqueous electrolyte secondary battery shown in FIG. 1. As shown in FIG. 2, the electrode group 2 includes a positive electrode 6, a separator 7, and a negative electrode 8 in this order. The positive electrode 6 and the negative electrode 8 are arranged such that the surfaces on the positive electrode mixture layer 10 side and the negative electrode mixture layer 12 side face the separator 7, respectively.
 正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。 The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9. The positive electrode current collector 9 is provided with a positive electrode current collector tab 4 .
 正極集電体9は、例えば、アルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等で形成されている。正極集電体9は、接着性、導電性、及び耐酸化性の向上の目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。正極集電体9の厚さは、電極強度及びエネルギー密度の点から、例えば、1~50μmである。 The positive electrode current collector 9 is made of, for example, aluminum, titanium, stainless steel, nickel, fired carbon, conductive polymer, conductive glass, or the like. The positive electrode current collector 9 may be made of aluminum, copper, etc. whose surface is treated with carbon, nickel, titanium, silver, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. . The thickness of the positive electrode current collector 9 is, for example, 1 to 50 μm in terms of electrode strength and energy density.
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。正極合剤層10の厚さは、例えば、20~200μmである。 In one embodiment, the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder. The thickness of the positive electrode mixture layer 10 is, for example, 20 to 200 μm.
 正極活物質は、例えば、リチウム酸化物であってよい。リチウム酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y(各式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V、及びBからなる群より選ばれる少なくとも1種の元素を示す(ただし、Mは、各式中の他の元素と異なる元素である)。x=0~1.2、y=0~0.9、z=2.0~2.3である。)が挙げられる。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y1+y2)Coy1Mny2(ただし、x及びzは上述したものと同様であり、y1=0~0.9、y2=0~0.9であり、かつy1+y2=0~0.9である。)であってよく、例えば、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、又はLiNi0.8Co0.1Mn0.1であってもよい。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y3+y4)Coy3Aly4(ただし、x及びzは上述したものと同様であり、y3=0~0.9、y4=0~0.9であり、かつy3+y4=0~0.9である。)であってよく、例えば、LiNi0.8Co0.15Al0.05であってもよい。 The positive electrode active material may be, for example, lithium oxide. Examples of lithium oxides include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- y M y O z , Li x Mn 2 O 4 , Li x Mn 2-y M y O 4 (In each formula, M is Na, Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al , Cr, Pb, Sb, V, and B (provided that M is an element different from the other elements in each formula).x=0 to 1. 2, y=0 to 0.9, and z=2.0 to 2.3). The lithium oxide represented by Li x Ni 1-y M y O z is Li x Ni 1-(y1+y2) Co y1 Mn y2 O z (where x and z are the same as above, and y1= 0 to 0.9, y2=0 to 0.9, and y1+y2=0 to 0.9), for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , It may be LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , or LiNi 0.8 Co 0.1 Mn 0.1 O 2 . The lithium oxide represented by Li x Ni 1-y M y O z is Li x Ni 1-(y3+y4) Co y3 Al y4 O z (where x and z are the same as above, and y3= 0 to 0.9, y4=0 to 0.9, and y3+y4=0 to 0.9), for example, LiNi 0.8 Co 0.15 Al 0.05 O 2 There may be.
 正極活物質は、例えば、リチウムのリン酸塩であってもよい。リチウムのリン酸塩としては、例えば、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)、リン酸バナジウムリチウム(Li(PO)が挙げられる。 The positive electrode active material may be, for example, lithium phosphate. Examples of lithium phosphates include lithium manganese phosphate (LiMnPO 4 ), lithium iron phosphate (LiFePO 4 ), lithium cobalt phosphate (LiCoPO 4 ), and lithium vanadium phosphate (Li 3 V 2 (PO 4 )). 3 ).
 正極活物質の含有量は、正極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。 The content of the positive electrode active material may be 80% by mass or more, or 85% by mass or more, and 99% by mass or less, based on the total amount of the positive electrode mixture layer.
 導電剤は、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、グラフェン、カーボンナノチューブなどの炭素材料であってよい。導電剤の含有量は、正極合剤層全量を基準として、例えば、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、50質量%以下、30質量%以下、又は15質量%以下であってよい。 The conductive agent may be a carbon black such as acetylene black or Ketjen black, or a carbon material such as graphite, graphene, or carbon nanotubes. The content of the conductive agent may be, for example, 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, and 50% by mass or less, 30% by mass, based on the total amount of the positive electrode mixture layer. or 15% by mass or less.
 結着剤としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー;シンジオタクチック-1、2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素含有樹脂;ニトリル基含有モノマーをモノマー単位として有する樹脂;アルカリ金属イオン(例えば、リチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。 Examples of the binder include resins such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), and fluorine. Rubbers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene/butadiene/styrene block copolymer or its hydrogenated product, EPDM (ethylene/propylene/diene terpolymer), styrene/ethylene/butadiene・Thermoplastic elastomers such as ethylene copolymers, styrene/isoprene/styrene block copolymers or their hydrogenated products; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymers, propylene. Soft resins such as α-olefin copolymers; polyvinylidene fluoride (PVDF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene/ethylene copolymer, polytetrafluoroethylene/vinylidene fluoride copolymer Examples include fluorine-containing resins such as; resins having a nitrile group-containing monomer as a monomer unit; and polymer compositions having ion conductivity for alkali metal ions (for example, lithium ions).
 結着剤の含有量は、正極合剤層全量を基準として、例えば、0.1質量%以上、1質量%以上、又は1.5質量%以上であってよく、30質量%以下、20質量%以下、又は10質量%以下であってよい。 The content of the binder may be, for example, 0.1% by mass or more, 1% by mass or more, or 1.5% by mass or more, and 30% by mass or less, 20% by mass, based on the total amount of the positive electrode mixture layer. % or less, or 10% by mass or less.
 セパレータ7は、正極6及び負極8間を電子的には絶縁する一方でイオンを透過させ、かつ、正極6側における酸化性及び負極8側における還元性に対する耐性を備えるものであれば、特に制限されない。このようなセパレータ7の材料(材質)としては、樹脂、無機物等が挙げられる。 There are no particular restrictions on the separator 7 as long as it electronically insulates the positive electrode 6 and negative electrode 8 while allowing ions to pass therethrough, and has resistance to oxidation on the positive electrode 6 side and reducibility on the negative electrode 8 side. Not done. Examples of the material for such a separator 7 include resins, inorganic materials, and the like.
 樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が挙げられる。セパレータ7は、電解液に対して安定で、保液性に優れる観点から、好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィンで形成された多孔質シート又は不織布である。 Examples of the resin include olefin polymers, fluorine polymers, cellulose polymers, polyimides, and nylon. The separator 7 is preferably a porous sheet or nonwoven fabric made of polyolefin, such as polyethylene or polypropylene, from the viewpoint of being stable to the electrolytic solution and having excellent liquid retention properties.
 無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩などが挙げられる。セパレータ7は、例えば、不織布、織布、微多孔性フィルム等の薄膜状基材に、繊維状又は粒子状の無機物を付着させたセパレータであってよい。 Examples of inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate. The separator 7 may be, for example, a separator in which a fibrous or particulate inorganic substance is attached to a thin film-like base material such as a nonwoven fabric, a woven fabric, or a microporous film.
 負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。 The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11. A negative electrode current collector tab 5 is provided on the negative electrode current collector 11 .
 負極集電体11は、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム-カドミウム合金等で形成されている。負極集電体11は、接着性、導電性、及び耐還元性の向上の目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。負極集電体11の厚さは、電極強度及びエネルギー密度の点から、例えば、1~50μmである。 The negative electrode current collector 11 is made of copper, stainless steel, nickel, aluminum, titanium, fired carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, or the like. The negative electrode current collector 11 may be made of copper, aluminum, etc. whose surface is treated with carbon, nickel, titanium, silver, etc. for the purpose of improving adhesiveness, conductivity, and reduction resistance. . The thickness of the negative electrode current collector 11 is, for example, 1 to 50 μm in terms of electrode strength and energy density.
 負極合剤層12は、例えば、負極活物質と、結着剤とを含有する。 The negative electrode mixture layer 12 contains, for example, a negative electrode active material and a binder.
 負極活物質は、リチウムイオンを吸蔵及び放出可能な物質であれば特に制限されない。負極活物質としては、例えば、炭素材料、金属複合酸化物、錫、ゲルマニウム、ケイ素等の第14族元素の酸化物又は窒化物、リチウムの単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金を形成可能な金属などが挙げられる。負極活物質は、安全性の観点からは、好ましくは炭素材料及び金属複合酸化物からなる群より選択される少なくとも1種である。負極活物質は、これらの1種単独又は2種以上の混合物であってよい。負極活物質の形状は、例えば、粒子状であってよい。 The negative electrode active material is not particularly limited as long as it is a material that can insert and release lithium ions. Examples of negative electrode active materials include carbon materials, metal composite oxides, oxides or nitrides of Group 14 elements such as tin, germanium, and silicon, elemental lithium, lithium alloys such as lithium-aluminum alloys, Sn, Si, etc. Examples include metals that can form alloys with lithium. From the viewpoint of safety, the negative electrode active material is preferably at least one selected from the group consisting of carbon materials and metal composite oxides. The negative electrode active material may be one of these materials or a mixture of two or more thereof. The shape of the negative electrode active material may be, for example, particulate.
 炭素材料としては、非晶質炭素材料、天然黒鉛、天然黒鉛に非晶質炭素材料の被膜を形成した複合炭素材料、人造黒鉛(エポキシ樹脂、フェノール樹脂等の樹脂原料、又は、石油、石炭等から得られるピッチ系原料を焼成して得られるもの)などが挙げられる。金属複合酸化物は、高電流密度充放電特性の観点から、好ましくはチタン及びリチウムのいずれか一方又は両方を含み、より好ましくはリチウムを含む。 Carbon materials include amorphous carbon materials, natural graphite, composite carbon materials in which natural graphite is coated with an amorphous carbon material, and artificial graphite (resin raw materials such as epoxy resins and phenol resins, or petroleum, coal, etc.) (obtained by firing pitch-based raw materials obtained from). From the viewpoint of high current density charge/discharge characteristics, the metal composite oxide preferably contains one or both of titanium and lithium, and more preferably contains lithium.
 負極活物質には、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料が更に含まれていてもよい。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料は、ケイ素又はスズの単体、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物であってよい。当該化合物は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む合金であってよく、例えば、ケイ素及びスズの他に、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる少なくとも1種を含む合金である。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物は、酸化物、窒化物、又は炭化物であってもよく、具体的には、例えば、SiO、SiO、LiSiO等のケイ素酸化物、Si、SiO等のケイ素窒化物、SiC等のケイ素炭化物、SnO、SnO、LiSnO等のスズ酸化物などであってよい。 The negative electrode active material may further contain a material containing at least one element selected from the group consisting of silicon and tin. The material containing at least one element selected from the group consisting of silicon and tin may be a simple substance of silicon or tin, or a compound containing at least one element selected from the group consisting of silicon and tin. The compound may be an alloy containing at least one element selected from the group consisting of silicon and tin, for example, in addition to silicon and tin, nickel, copper, iron, cobalt, manganese, zinc, indium, and silver. , titanium, germanium, bismuth, antimony, and chromium. The compound containing at least one element selected from the group consisting of silicon and tin may be an oxide, nitride, or carbide, and specifically, for example, silicon oxide such as SiO, SiO 2 , LiSiO, etc. silicon nitrides such as Si 3 N 4 and Si 2 N 2 O, silicon carbides such as SiC, and tin oxides such as SnO, SnO 2 and LiSnO.
 負極合剤層12は、エネルギー密度等の電気化学デバイスの性能を更に向上させる観点から、負極活物質として、好ましくは炭素材料を含み、より好ましくは黒鉛を含み、更に好ましくは、炭素材料と、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料との混合物を含み、特に好ましくは、黒鉛とケイ素酸化物との混合物を含む。当該混合物におけるケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料(ケイ素酸化物)の含有量は、当該混合物全量を基準として、1質量%以上、又は3質量%以上であってよく、30質量%以下であってよい。 From the viewpoint of further improving the performance of the electrochemical device such as energy density, the negative electrode mixture layer 12 preferably contains a carbon material, more preferably graphite, and still more preferably contains a carbon material as a negative electrode active material. It includes a mixture with a material containing at least one element selected from the group consisting of silicon and tin, and particularly preferably a mixture of graphite and silicon oxide. The content of the material (silicon oxide) containing at least one element selected from the group consisting of silicon and tin in the mixture is 1% by mass or more, or 3% by mass or more, based on the total amount of the mixture. It may well be up to 30% by weight.
 負極活物質の含有量は、負極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。 The content of the negative electrode active material may be 80% by mass or more, or 85% by mass or more, and 99% by mass or less, based on the total amount of the negative electrode mixture layer.
 結着剤及びその含有量は、上述した正極合剤層における結着剤及びその含有量と同様であってよい。 The binder and its content may be the same as the binder and its content in the positive electrode mixture layer described above.
 負極合剤層12は、粘度を調節するために増粘剤を更に含有してもよい。増粘剤は、特に制限されないが、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等であってよい。増粘剤は、これらの1種単独又は2種以上の混合物であってよい。 The negative electrode mixture layer 12 may further contain a thickener to adjust the viscosity. Thickeners are not particularly limited, and may include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, salts thereof, and the like. The thickener may be one of these or a mixture of two or more thereof.
 負極合剤層12が増粘剤を含む場合、その含有量は特に制限されない。増粘剤の含有量は、負極合剤層の塗布性の観点からは、負極合剤層全量を基準として、0.1質量%以上であってよく、好ましくは0.2質量%以上であり、より好ましくは0.5質量%以上である。増粘剤の含有量は、電池容量の低下又は負極活物質間の抵抗の上昇を抑制する観点からは、負極合剤層全量を基準として、5質量%以下であってよく、好ましくは3質量%以下であり、より好ましくは2質量%以下である。 When the negative electrode mixture layer 12 contains a thickener, the content is not particularly limited. From the viewpoint of coating properties of the negative electrode mixture layer, the content of the thickener may be 0.1% by mass or more, preferably 0.2% by mass or more, based on the total amount of the negative electrode mixture layer. , more preferably 0.5% by mass or more. From the viewpoint of suppressing a decrease in battery capacity or an increase in resistance between negative electrode active materials, the content of the thickener may be 5% by mass or less, preferably 3% by mass, based on the total amount of the negative electrode mixture layer. % or less, more preferably 2% by mass or less.
 電解液(電気化学デバイス用電解液)は、下記式(1)で表される化合物と、第1のリチウム塩化合物と、第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する。 The electrolytic solution (electrolytic solution for electrochemical devices) includes a compound represented by the following formula (1), a first lithium salt compound, and a second lithium salt compound having a different anion constituting the first lithium salt compound. and a non-aqueous solvent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R、R、及びRはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。 In formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group.
 R及びRは、好ましくは水素原子である。Rは、好ましくは水素原子である。 R 1 and R 2 are preferably hydrogen atoms. R 3 is preferably a hydrogen atom.
 Xは、例えば、2価の炭化水素基であってよく、アルキレン基であってよく、炭素数1~6のアルキレン基であってよい。当該アルキレン基は、直鎖状であっても分岐状であってもよい。当該炭素数の下限値は、2以上であってもよい。当該炭素数の上限値は、5以下又は4以下であってもよい。Xで示されるアルキレン基は、メチレン基、エチレン基、プロピレン基、ブチレン基、又はペンチレン基であってよく、好ましくはエチレン基である。 X may be, for example, a divalent hydrocarbon group, an alkylene group, or an alkylene group having 1 to 6 carbon atoms. The alkylene group may be linear or branched. The lower limit of the carbon number may be 2 or more. The upper limit of the carbon number may be 5 or less or 4 or less. The alkylene group represented by X may be a methylene group, an ethylene group, a propylene group, a butylene group, or a pentylene group, preferably an ethylene group.
 Xは、例えば、2価の炭化水素基の一部がヘテロ原子で置換された2価の基であってもよい。ヘテロ原子は、例えば、酸素原子であってよい。Xは、例えば、2価の炭化水素基の一部が酸素原子で置換されたエーテル構造を有する2価の基であってよい。Xは、例えば、下記式(2)で表される2価の基であってよい。
 -X-O-X- (2)
X may be, for example, a divalent group in which a part of the divalent hydrocarbon group is substituted with a hetero atom. A heteroatom may be, for example, an oxygen atom. X may be, for example, a divalent group having an ether structure in which a part of the divalent hydrocarbon group is substituted with oxygen atoms. X may be, for example, a divalent group represented by the following formula (2).
-X 1 -O-X 2 - (2)
 式(2)中、X及びXは、それぞれ独立にアルキレン基を示す。当該アルキレン基は、直鎖状であっても分岐状であってもよい。X及びXで示されるアルキレン基の炭素数は、それぞれ独立に、1~6、1~5、1~4、1~3、又は1~2であってよい。 In formula (2), X 1 and X 2 each independently represent an alkylene group. The alkylene group may be linear or branched. The number of carbon atoms in the alkylene groups represented by X 1 and X 2 may be 1 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2, respectively.
 式(1)で表される化合物の含有量は、電気化学デバイスのサイクル試験後の抵抗増加率をより充分に抑制することが可能となることから、電解液全量を基準として、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は0.2質量%以上であってよく、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.8質量%以下、0.6質量%以下、又は0.5質量%以下であってよい。 The content of the compound represented by formula (1) is set at 0.001 mass based on the total amount of electrolyte solution, since this makes it possible to more fully suppress the rate of increase in resistance after a cycle test of an electrochemical device. % or more, 0.005 mass% or more, 0.01 mass% or more, 0.05 mass% or more, 0.1 mass% or more, 0.15 mass% or more, or 0.2 mass% or more, It may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.8% by mass or less, 0.6% by mass or less, or 0.5% by mass or less. .
 第1のリチウム塩化合物は、溶媒に対する溶解性、二次電池の充放電特性、出力特性、充放電サイクル特性等に更に優れることから、ヘキサフルオロリン酸リチウム(LiPF)であってよい。 The first lithium salt compound may be lithium hexafluorophosphate (LiPF 6 ) since it has better solubility in a solvent, charge and discharge characteristics of a secondary battery, output characteristics, charge and discharge cycle characteristics, and the like.
 第1のリチウム塩化合物の濃度は、充放電特性に優れる観点から、非水溶媒全量を基準として、0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、好ましくは1.5mol/L以下、より好ましくは1.3mol/L以下、更に好ましくは1.2mol/L以下である。 From the viewpoint of excellent charge/discharge characteristics, the concentration of the first lithium salt compound is 0.5 mol/L or more, more preferably 0.7 mol/L or more, and still more preferably 0.8 mol/L, based on the total amount of the nonaqueous solvent. L or more, preferably 1.5 mol/L or less, more preferably 1.3 mol/L or less, still more preferably 1.2 mol/L or less.
 第2のリチウム塩化合物は、第1のリチウム塩化合物を構成するアニオンが異なるものであれば特に制限されないが、例えば、ジフルオロリン酸リチウム(LiPO)、テトラフルオロホウ酸リチウム(LiBF)、フルオロスルホン酸リチウム(LiSOF)、ビス(フルオロスルホニル)イミドリチウム(LiN(SOF)、LiFSI)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(SOCF、LiTFSI)、ビス(オキサラート)ホウ酸リチウム(LiB(C、LiBOB)、ジフルオロオキサラートホウ酸リチウム(LiBF(C)、LiDFOB)、テトラフルオロオキサラートリン酸リチウム(LiPF(C)、LiTFOP)、及びジフルオロビス(オキサラート)リン酸リチウム(LiPF(C、LiDFBOP)からなる群より選ばれる少なくとも1種であってよい。第2のリチウム塩化合物は、電気化学デバイスのサイクル試験後の抵抗増加率をより充分に抑制することが可能となることから、ジフルオロリン酸リチウム(LiPO)又はビス(フルオロスルホニル)イミドリチウム(LiN(SOF)、LiFSI)であってもよい。 The second lithium salt compound is not particularly limited as long as the anion constituting the first lithium salt compound is different, but for example, lithium difluorophosphate (LiPO 2 F 2 ), lithium tetrafluoroborate (LiBF 4 ), lithium fluorosulfonate (LiSO 3 F), lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , LiTFSI) ), lithium bis(oxalate)borate (LiB(C 2 O 4 ) 2 , LiBOB), lithium difluorooxalate borate (LiBF 2 (C 2 O 4 ), LiDFOB), lithium tetrafluorooxalate phosphate (LiPF) 4 (C 2 O 4 ), LiTFOP), and lithium difluorobis(oxalate) phosphate (LiPF 2 (C 2 O 4 ) 2 , LiDFBOP). The second lithium salt compound is lithium difluorophosphate (LiPO 2 F 2 ) or bis(fluorosulfonyl)imide because it is possible to more fully suppress the rate of increase in resistance after a cycle test of an electrochemical device. It may also be lithium (LiN(SO 2 F) 2 , LiFSI).
 第2のリチウム塩化合物の含有量は、電気化学デバイスのサイクル試験後の抵抗増加率をより充分に抑制することが可能となることから、電解液全量を基準として、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は0.2質量%以上であってよく、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.8質量%以下、0.6質量%以下、又は0.5質量%以下であってよい。 The content of the second lithium salt compound is 0.001% by mass or more based on the total amount of the electrolytic solution, since this makes it possible to more fully suppress the rate of increase in resistance after the cycle test of the electrochemical device. It may be 0.005% by mass or more, 0.01% by mass or more, 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more, and 5% by mass The content may be 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.8% by mass or less, 0.6% by mass or less, or 0.5% by mass or less.
 式(1)で表される化合物及び第2のリチウム塩化合物の合計含有量は、電気化学デバイスのサイクル試験後の抵抗増加率をより充分に抑制することが可能となることから、電解液全量を基準として、0.1~10質量%であってよい。式(1)で表される化合物及び第2のリチウム塩化合物の合計含有量は、電解液全量を基準として、0.2質量%以上、0.3質量%以上、又は0.4質量%以上であってよく、7質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1.5質量%以下、又は1質量%以下であってよい。 The total content of the compound represented by formula (1) and the second lithium salt compound is determined by the total amount of the electrolyte because it is possible to more sufficiently suppress the resistance increase rate after the cycle test of the electrochemical device. It may be 0.1 to 10% by mass based on . The total content of the compound represented by formula (1) and the second lithium salt compound is 0.2% by mass or more, 0.3% by mass or more, or 0.4% by mass or more based on the total amount of the electrolyte solution. It may be 7% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or 1% by mass or less.
 式(1)で表される化合物及び第2のリチウム塩化合物の合計含有量に対する式(1)で表される化合物の含有量の比(式(1)で表される化合物の含有量/(式(1)で表される化合物及び第2のリチウム塩化合物の合計含有量))は、電気化学デバイスのサイクル試験後の抵抗増加率をより充分に抑制することが可能となることから、例えば、0.05以上、0.1以上、0.2以上、0.25以上、0.3以上、0.35以上、又は0.4以上であってよく、0.9以下、0.85以下、0.8以下、0.75以下、0.7以下、0.65以下、又は0.6以下であってよい。 The ratio of the content of the compound represented by formula (1) to the total content of the compound represented by formula (1) and the second lithium salt compound (content of the compound represented by formula (1)/( The total content of the compound represented by formula (1) and the second lithium salt compound)) can more fully suppress the resistance increase rate after the cycle test of the electrochemical device. , 0.05 or more, 0.1 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, or 0.4 or more, and 0.9 or less, 0.85 or less , 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, or 0.6 or less.
 第2のリチウム塩化合物の含有量は、第1のリチウム塩化合物に対して、モル比で、0.05%以上20%以下であってよい。 The content of the second lithium salt compound may be 0.05% or more and 20% or less in molar ratio with respect to the first lithium salt compound.
 非水溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート等の鎖状カーボネート化合物;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート化合物;酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等の鎖状カルボン酸エステル化合物;γ-ブチルラクトン等の環状カルボン酸エステル化合物;ジメトキシメタン、ジメトキシエタン、ジエトキシエタン等の鎖状エーテル化合物;テトラヒドロフラン、テトラヒドロピラン、ジオキソラン等の環状エーテル化合物;アセトニトリル等のニトリル化合物であってよい。非水溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。非水溶媒は、好ましくは2種以上の混合物である。 Examples of non-aqueous solvents include linear carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, and methyl butyl carbonate; cyclic carbonate compounds such as ethylene carbonate, propylene carbonate, and butylene carbonate; Chain carboxylic acid ester compounds such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate; cyclic carboxylic acid ester compounds such as γ-butyllactone; chains such as dimethoxymethane, dimethoxyethane, diethoxyethane, etc. cyclic ether compounds such as tetrahydrofuran, tetrahydropyran, and dioxolane; and nitrile compounds such as acetonitrile. The non-aqueous solvents may be used alone or in combination of two or more. The non-aqueous solvent is preferably a mixture of two or more.
 電解液は、式(1)で表される化合物、第1のリチウム塩化合物、第2のリチウム塩化合物、及び非水溶媒以外のその他の成分を更に含有していてもよい。その他の成分としては、例えば、不飽和環状カーボネート、フッ素含有環状カーボネート、式(1)で表される化合物以外の窒素原子を含有する化合物等が挙げられる。 The electrolytic solution may further contain components other than the compound represented by formula (1), the first lithium salt compound, the second lithium salt compound, and the nonaqueous solvent. Examples of other components include unsaturated cyclic carbonates, fluorine-containing cyclic carbonates, and compounds containing nitrogen atoms other than the compound represented by formula (1).
 不飽和環状カーボネートとしては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート(4,5-ジメチルビニレンカーボネート)、エチルビニレンカーボネート(4,5-ジエチルビニレンカーボネート)、ジエチルビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。不飽和環状カーボネートは、電気化学デバイスの性能を更に向上させることができる観点から、好ましくはビニレンカーボネートである。フッ素含有環状カーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1,1,2-トリフルオロエチレンカーボネート、1,1,2,2-テトラフルオロエチレンカーボネート等が挙げられる。フッ素含有環状カーボネートは、好ましくは、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)である。式(1)で表される化合物以外の窒素原子を含有する化合物は、例えば、スクシノニトリル等のニトリル化合物であってよい。 Examples of unsaturated cyclic carbonates include vinylene carbonate, methylvinylene carbonate, dimethylvinylene carbonate (4,5-dimethylvinylene carbonate), ethylvinylene carbonate (4,5-diethylvinylene carbonate), diethylvinylene carbonate, vinylethylene carbonate, etc. can be mentioned. The unsaturated cyclic carbonate is preferably vinylene carbonate from the viewpoint of further improving the performance of the electrochemical device. Examples of the fluorine-containing cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1, Examples include 2-trifluoroethylene carbonate and 1,1,2,2-tetrafluoroethylene carbonate. The fluorine-containing cyclic carbonate is preferably 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC). The compound containing a nitrogen atom other than the compound represented by formula (1) may be, for example, a nitrile compound such as succinonitrile.
 本発明者らは、式(1)で表される化合物と、第1のリチウム塩化合物と、第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する電解液を、電気化学デバイスに用いることによって、サイクル試験後の抵抗増加率が充分に抑制されることを見出した。このような効果が奏する理由は必ずしも明らかではないが、本発明者らは以下のように推察している。すなわち、初回充電時に、式(1)で表される化合物の不飽和炭素結合構造が、他の添加剤又はカーボネート溶媒よりも先に負極側で還元反応し、被膜を形成する。その後、イソシアネート部位が反応することによって安定な被膜が形成され、負極側で他の添加剤、非水溶媒、電解質塩等の還元分解を抑制できるためであると推察している。また、正極側では、還元分解されずに残存する第1のリチウム塩化合物、第2のリチウム塩化合物、あるいはそれら由来の化合物が被膜を形成し、他の添加剤、非水溶媒、電解質塩等の酸化分解を抑制することによって、正極活物質表面でのイオン伝導性低下又は結晶構造安定化による抵抗増加を抑制できるためであると推察している。 The present inventors prepared a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent. It has been found that by using the electrolytic solution contained in the electrolyte in an electrochemical device, the rate of increase in resistance after a cycle test can be sufficiently suppressed. Although the reason for such an effect is not necessarily clear, the present inventors speculate as follows. That is, at the time of initial charging, the unsaturated carbon bond structure of the compound represented by formula (1) undergoes a reduction reaction on the negative electrode side before other additives or carbonate solvents, forming a film. It is speculated that this is because a stable film is formed by the subsequent reaction of the isocyanate sites, and the reductive decomposition of other additives, non-aqueous solvents, electrolyte salts, etc. can be suppressed on the negative electrode side. In addition, on the positive electrode side, the first lithium salt compound, the second lithium salt compound, or a compound derived therefrom that remains without being reductively decomposed forms a film, and other additives, nonaqueous solvents, electrolyte salts, etc. It is presumed that this is because by suppressing the oxidative decomposition of the positive electrode active material, it is possible to suppress the decrease in ionic conductivity on the surface of the positive electrode active material or the increase in resistance due to the stabilization of the crystal structure.
 また、一実施形態において、式(1)で表される化合物と、第1のリチウム塩化合物と、第2のリチウム塩化合物と、非水溶媒とを含有する電解液を、電気化学デバイスに用いることによって、電気化学デバイスは、充放電サイクル特性に優れる傾向にある。このような効果を奏する理由は必ずしも明らかではないが、本発明者らは上記の正極及び負極上の安定な被膜の形成に加えて、式(1)で表される化合物による電解液中のフッ酸(HF)の低減によって、正極活物質の溶出及び負極上でのLiF等の被膜の形成による副反応を抑制できるためであると推察している。 In one embodiment, an electrolytic solution containing a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound, and a nonaqueous solvent is used in an electrochemical device. As a result, electrochemical devices tend to have excellent charge/discharge cycle characteristics. Although the reason for such an effect is not necessarily clear, the present inventors have found that in addition to forming stable films on the positive and negative electrodes, the compound represented by formula (1) can reduce fluorine in the electrolyte. It is speculated that this is because by reducing the amount of acid (HF), side reactions due to elution of the positive electrode active material and formation of a film such as LiF on the negative electrode can be suppressed.
 続いて、非水電解液二次電池1の製造方法を説明する。非水電解液二次電池1の製造方法は、正極6を得る第1の工程と、負極8を得る第2の工程と、電極群2を電池外装体3に収容する第3の工程と、電解液を電池外装体3に注液する第4の工程とを備える。第1~第4の工程の順序は任意である。 Next, a method for manufacturing the non-aqueous electrolyte secondary battery 1 will be explained. The method for manufacturing the non-aqueous electrolyte secondary battery 1 includes a first step of obtaining a positive electrode 6, a second step of obtaining a negative electrode 8, a third step of housing the electrode group 2 in a battery exterior body 3, and a fourth step of injecting the electrolyte into the battery exterior body 3. The order of the first to fourth steps is arbitrary.
 第1の工程では、正極合剤層10に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリー状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより正極6を得る。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。分散媒は、水、1-メチル-2-ピロリドン(以下、「NMP」という場合がある。)等であってよい。 In the first step, the material used for the positive electrode mixture layer 10 is dispersed in a dispersion medium using a kneader, a dispersion machine, etc. to obtain a slurry-like positive electrode mixture, and then this positive electrode mixture is processed by a doctor blade method. The positive electrode 6 is obtained by coating the positive electrode current collector 9 by dipping, spraying, or the like, and then volatilizing the dispersion medium. After volatilizing the dispersion medium, a compression molding step using a roll press may be provided as necessary. The positive electrode mixture layer 10 may be formed as a positive electrode mixture layer with a multilayer structure by performing the steps described above from applying the positive electrode mixture to volatilizing the dispersion medium multiple times. The dispersion medium may be water, 1-methyl-2-pyrrolidone (hereinafter sometimes referred to as "NMP"), or the like.
 第2の工程では、上述した第1の工程の正極6を得る工程と同様にして、負極8を得る。負極集電体11に負極合剤層12を形成する方法は、正極集電体9及び正極合剤層10を負極集電体11及び負極合剤層12に変更する以外は、上述した第1の工程と同様の方法であってよい。 In the second step, the negative electrode 8 is obtained in the same manner as the step of obtaining the positive electrode 6 in the first step described above. The method for forming the negative electrode mixture layer 12 on the negative electrode current collector 11 is the same as the first method described above, except that the positive electrode current collector 9 and the positive electrode mixture layer 10 are changed to the negative electrode current collector 11 and the negative electrode mixture layer 12. The method may be similar to the process described in .
 第3の工程では、作製した正極6及び負極8の間にセパレータ7を挟み、電極群2を形成する。次いで、この電極群2を電池外装体3に収容する。 In the third step, a separator 7 is sandwiched between the produced positive electrode 6 and negative electrode 8 to form an electrode group 2. Next, this electrode group 2 is housed in a battery exterior body 3.
 第4の工程では、電解液を電池外装体3に注入する。電解液は、例えば、電解質塩をはじめに溶媒に溶解させてから、その他の材料を溶解させることにより調製することができる。 In the fourth step, the electrolytic solution is injected into the battery exterior body 3. The electrolytic solution can be prepared, for example, by first dissolving the electrolyte salt in a solvent and then dissolving the other materials.
 他の実施形態として、電気化学デバイスはキャパシタであってもよい。キャパシタは、上述した非水電解液二次電池1と同様に、正極、負極、及びセパレータから構成される電極群と、電極群を収容する袋状の電池外装体とを備えていてよい。キャパシタにおける各構成要素の詳細は、非水電解液二次電池1と同様であってよい。 In other embodiments, the electrochemical device may be a capacitor. Like the non-aqueous electrolyte secondary battery 1 described above, the capacitor may include an electrode group made up of a positive electrode, a negative electrode, and a separator, and a bag-shaped battery exterior housing the electrode group. The details of each component in the capacitor may be the same as those of the non-aqueous electrolyte secondary battery 1.
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically explained with reference to Examples, but the present disclosure is not limited to these Examples.
(実施例1)
[正極の作製]
 正極活物質としてのニッケルコバルトマンガン酸リチウム(92質量%)に、導電剤としてアセチレンブラック(AB)(4質量%)と、結着剤としてポリフッ化ビニリデン(PVDF)(4質量%)とを順次添加し、混合した。得られた混合物に対し、分散媒としてのNMPを添加し、混練することによりスラリー状の正極合剤を調製した。この正極合剤を正極集電体としての厚さ20μmのアルミニウム箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度2.8g/cmまで圧密化して、正極を得た。
(Example 1)
[Preparation of positive electrode]
Nickel cobalt lithium manganate (92% by mass) as a positive electrode active material, acetylene black (AB) (4% by mass) as a conductive agent, and polyvinylidene fluoride (PVDF) (4% by mass) as a binder are sequentially added. Added and mixed. NMP as a dispersion medium was added to the obtained mixture and kneaded to prepare a slurry-like positive electrode mixture. A predetermined amount of this positive electrode mixture was applied evenly and homogeneously onto an aluminum foil having a thickness of 20 μm as a positive electrode current collector. Thereafter, the dispersion medium was volatilized, and the material was compacted by pressing to a density of 2.8 g/cm 3 to obtain a positive electrode.
[負極の作製]
 負極活物質として、黒鉛系活物質(人造黒鉛、平均粒径(D50);約23μm)及びシリコン系活物質(SiOx、平均粒径(D50);約10μm)を用いた。これらの活物質に、結着剤としてのスチレン-ブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロースとを添加した。これらの質量比については、黒鉛活物質:シリコン系活物質:結着剤:増粘剤=92:5:1.5:1.5とした。得られた混合物に対し、分散媒としての水を添加し、混練することによりスラリー状の負極合剤を調製した。この負極合剤を負極集電体としての厚さ10μmの圧延銅箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度1.6g/cmまで圧密化して、負極を得た。
[Preparation of negative electrode]
As negative electrode active materials, a graphite-based active material (artificial graphite, average particle diameter (D50); approximately 23 μm) and a silicon-based active material (SiOx, average particle diameter (D50); approximately 10 μm) were used. Styrene-butadiene rubber (SBR) as a binder and carboxymethyl cellulose as a thickener were added to these active materials. Regarding these mass ratios, graphite active material: silicon-based active material: binder: thickener = 92:5:1.5:1.5. Water as a dispersion medium was added to the obtained mixture, and the mixture was kneaded to prepare a slurry-like negative electrode mixture. A predetermined amount of this negative electrode mixture was applied evenly and homogeneously to a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. After that, the dispersion medium was volatilized, and the material was compacted by pressing to a density of 1.6 g/cm 3 to obtain a negative electrode.
[リチウムイオン二次電池の作製]
 13.5cmの四角形に切断した正極電極を、セパレータであるポリエチレン製多孔質シート(厚さ30μm)で挟み、更に14.3cmの四角形に切断した負極を重ね合わせて電極群を作製した。この電極群を、アルミニウム製のラミネートフィルム(商品名:アルミラミネートフィルム、大日本印刷株式会社製)で形成された容器(電池外装体)に収容した。次いで、容器の中に電解液を0.25mL添加し、容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。電解液としては、1mol/Lの第1のリチウム塩化合物としてのLiPFを含むエチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート=1/1/1(体積比)の混合溶液に、下記式(1X)で表される化合物A(R、R、及びRが水素原子であり、Xがエチレン基である、式(1)で表される化合物)を0.5質量%と、第2のリチウム塩化合物としてのジフルオロリン酸リチウム(LiPO)を0.5質量%と、ビニレンカーボネートを1質量%と、フルオロエチレンカーボネートを1質量%(いずれも電解液全量基準)とを添加したものを使用した。
[Fabrication of lithium ion secondary battery]
A positive electrode cut into a square of 13.5 cm 2 was sandwiched between polyethylene porous sheets (thickness 30 μm) serving as separators, and a negative electrode cut into a square of 14.3 cm 2 was further stacked to form an electrode group. This electrode group was housed in a container (battery exterior body) formed of an aluminum laminate film (trade name: aluminum laminate film, manufactured by Dainippon Printing Co., Ltd.). Next, 0.25 mL of electrolyte solution was added into the container, and the container was thermally welded to produce a lithium ion secondary battery for evaluation. As an electrolytic solution, the following formula (1 0.5% by mass of the compound A represented by formula (1) in which R 1 , R 2 , and R 3 are hydrogen atoms and X is an ethylene group, and the second 0.5% by mass of lithium difluorophosphate (LiPO 2 F 2 ) as a lithium salt compound, 1% by mass of vinylene carbonate, and 1% by mass of fluoroethylene carbonate (all based on the total amount of electrolyte solution) were added. I used something.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(実施例2)
 化合物Aを電解液全量基準で0.2質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.2% by mass of Compound A, based on the total amount of the electrolytic solution, was used.
(実施例3)
 ジフルオロリン酸リチウム(LiPO)を電解液全量基準で0.2質量%添加した電解液を用いたこと以外は、実施例2と同様にしてリチウムイオン二次電池を作製した。
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 2, except that an electrolytic solution containing 0.2% by mass of lithium difluorophosphate (LiPO 2 F 2 ) based on the total amount of the electrolytic solution was used.
(実施例4)
 化合物Aを電解液全量基準で1質量%添加した電解液を用いたこと以外は、実施例3と同様にしてリチウムイオン二次電池を作製した。
(Example 4)
A lithium ion secondary battery was produced in the same manner as in Example 3, except that an electrolytic solution containing 1% by mass of Compound A based on the total amount of the electrolytic solution was used.
(実施例5)
 化合物Aの代わりに下記式(1Y)で表される化合物B(R及びRが水素原子であり、Rがメチル基であり、Xがエチレン基である、式(1)で表される化合物)を、電解液全量基準で0.5質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 5)
Compound B represented by the following formula (1Y) instead of compound A (represented by formula (1), where R 1 and R 2 are hydrogen atoms, R 3 is a methyl group, and X is an ethylene group) A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.5% by mass of 0.5% by mass, based on the total amount of the electrolytic solution, was added.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(実施例6)
 ジフルオロリン酸リチウム(LiPO)の代わりにビス(フルオロスルホニル)イミドリチウム(LiN(SOF)、LiFSI)を、電解液全量基準で0.5質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 6)
An electrolytic solution was used in which lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , LiFSI) was added in an amount of 0.5% by mass based on the total amount of the electrolyte instead of lithium difluorophosphate (LiPO 2 F 2 ). A lithium ion secondary battery was produced in the same manner as in Example 1 except for the above.
(比較例1)
 電解液に化合物A及びジフルオロリン酸リチウム(LiPO)を添加しなかったこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1, except that Compound A and lithium difluorophosphate (LiPO 2 F 2 ) were not added to the electrolyte.
(比較例2)
 ヘキサメチレンジイソシアネート(HDI)を、電解液全量基準で0.5質量%添加したこと以外は、比較例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative example 2)
A lithium ion secondary battery was produced in the same manner as Comparative Example 1, except that 0.5% by mass of hexamethylene diisocyanate (HDI) was added based on the total amount of the electrolyte.
(比較例3)
 化合物Aの代わりにヘキサメチレンジイソシアネート(HDI)を、電解液全量基準で0.5質量%添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1, except that an electrolytic solution containing 0.5% by mass of hexamethylene diisocyanate (HDI) based on the total amount of the electrolytic solution was used instead of Compound A.
[充放電サイクル特性の評価]
(初回充放電)
 作製した各リチウムイオン二次電池について、以下に示す方法で初回充放電を実施した。まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.7Vの定電流放電を行った。この充放電サイクルを3回繰り返した(電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。)。
[Evaluation of charge/discharge cycle characteristics]
(Initial charge/discharge)
Each of the produced lithium ion secondary batteries was charged and discharged for the first time using the method shown below. First, constant current charging was performed at a current value of 0.1 C in an environment of 25° C. to an upper limit voltage of 4.2 V, and then constant voltage charging was performed at 4.2 V. The charging termination condition was a current value of 0.01C. Thereafter, constant current discharge was performed at a current value of 0.1C and a final voltage of 2.7V. This charge/discharge cycle was repeated three times ("C" used as the unit of current value means "current value (A)/battery capacity (Ah)").
(充放電サイクル特性の評価)
 初回充放電後に、各リチウムイオン電池について高温サイクル試験を行い、充放電サイクル特性を評価した。充電パターンとしては、45℃の環境下で、0.5Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.05Cとした。放電については、1.0Cで定電流放電を2.7Vまで行い、放電容量を求めた。この一連の充放電を500サイクル繰り返し、充放電の度に放電容量を測定した。1サイクル目の充放電の放電容量(Q1)に対する、各サイクルでの放電容量(Q2)の相対値(放電容量維持率(%)=Q2/Q1×100)を求め、放電容量維持率が90%未満になるサイクル数(回)を求めた。図3及び表1に、リチウムイオン二次電池のサイクル試験において、放電容量維持率が90%未満になるサイクル数を示す。
(Evaluation of charge/discharge cycle characteristics)
After the initial charge and discharge, each lithium ion battery was subjected to a high temperature cycle test to evaluate its charge and discharge cycle characteristics. As a charging pattern, constant current charging was performed at a current value of 0.5 C to an upper limit voltage of 4.2 V in an environment of 45° C., and then constant voltage charging was performed at 4.2 V. The charging termination condition was a current value of 0.05C. Regarding discharge, constant current discharge was performed at 1.0 C to 2.7 V, and the discharge capacity was determined. This series of charging and discharging was repeated for 500 cycles, and the discharge capacity was measured every time the charging and discharging was performed. The relative value of the discharge capacity (Q2) in each cycle with respect to the discharge capacity (Q1) of the first cycle of charging and discharging (discharge capacity retention rate (%) = Q2/Q1 × 100) is calculated, and the discharge capacity retention rate is 90 The number of cycles (times) at which the value was less than % was determined. FIG. 3 and Table 1 show the number of cycles at which the discharge capacity retention rate becomes less than 90% in a cycle test of a lithium ion secondary battery.
[抵抗増加率の算出]
(放電DCRの測定)
 作製した各リチウムイオン二次電池について、放電時の直流抵抗(放電DCR)を、以下のように測定した。まず、0.2Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.02Cとした。その後、0.2Cの電流値で終止電圧2.7Vの定電流放電を行い、このときの電流値をI0.2C、放電開始10秒後の電圧変化をΔV0.2Cとした。次に、0.2Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った(充電終止条件は、電流値0.02Cとした)。その後、0.5Cの電流値で終止電圧2.7Vの定電流放電を行い、このときの電流値をI0.5C、放電開始10秒後の電圧変化をΔV0.5Cとした。同様の充放電から1Cの電流値をI1C、放電開始10秒後の電圧変化ΔV1Cを評価した。その電流値―電圧変化の3点のプロット(I0.2C、ΔV0.2C)、(I0.5C、ΔV0.5C)、(I1C、ΔV1C)に最小二乗法を用いて一次近似直線を引き、その傾きを放電DCRの値とした。
[Calculation of resistance increase rate]
(Measurement of discharge DCR)
For each of the manufactured lithium ion secondary batteries, the direct current resistance during discharge (discharge DCR) was measured as follows. First, constant current charging at 0.2C was performed to an upper limit voltage of 4.2V, and then constant voltage charging was performed at 4.2V. The charging termination condition was a current value of 0.02C. Thereafter, constant current discharge was performed at a current value of 0.2C and a final voltage of 2.7V, and the current value at this time was defined as I 0.2C and the voltage change 10 seconds after the start of discharge was defined as ΔV 0.2C . Next, constant current charging at 0.2C was performed to an upper limit voltage of 4.2V, followed by constant voltage charging at 4.2V (the charging termination condition was a current value of 0.02C). Thereafter, constant current discharge was performed at a current value of 0.5C and a final voltage of 2.7V, and the current value at this time was defined as I 0.5C and the voltage change 10 seconds after the start of discharge was defined as ΔV 0.5C . From similar charging and discharging, the current value of 1C was evaluated as I 1C , and the voltage change ΔV 1C 10 seconds after the start of discharge was evaluated. The three-point plot of the current value vs. voltage change (I 0.2C , ΔV 0.2C ), (I 0.5C , ΔV 0.5C ), (I 1C , ΔV 1C ) is plotted using the least squares method. An approximate straight line was drawn, and its slope was taken as the value of discharge DCR.
(抵抗増加率の測定)
 上記のサイクル試験前の各リチウムイオン電池の放電DCR(R1)、及び、上記のサイクル試験後(45℃、500サイクル)に25℃の環境下に30分間静置した後測定した放電DCR(R2)を測定した。測定されたR1及びR2を用いて、以下の式から抵抗増加率を算出した。図4及び表1に、リチウムイオン二次電池のサイクル試験後の抵抗増加率の測定結果を示す。
 抵抗増加率(%)=R2/R1×100
(Measurement of resistance increase rate)
The discharge DCR (R1) of each lithium ion battery before the above cycle test, and the discharge DCR (R2) measured after the above cycle test (45 °C, 500 cycles) after leaving it for 30 minutes in a 25 °C environment. ) was measured. Using the measured R1 and R2, the resistance increase rate was calculated from the following formula. FIG. 4 and Table 1 show the measurement results of the resistance increase rate after the cycle test of the lithium ion secondary battery.
Resistance increase rate (%) = R2/R1 x 100
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図3及び図4並びに表1から、式(1)で表される化合物と、第1のリチウム塩化合物と、第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する電解液を適用した実施例1~6のリチウムイオン二次電池は、これらの化合物を含有しない電解液を適用した比較例1のリチウムイオン二次電池に比べて、抵抗増加率が低く、かつ放電容量維持率が90%未満になるサイクル数が大きかった。一方、式(1)の要件を満たさない、イソシアネート基を有する化合物であるHDIを含有する電解液を適用した比較例2のリチウムイオン二次電池、並びに、HDI及びLiPO(第2のリチウム塩化合物)を含有する電解液を適用した比較例3のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池よりも抵抗増加率が低かったが、実施例1~6のリチウムイオン二次電池の方が、抵抗増加率の抑制効果が大きかった。また、実施例1~6のリチウムイオン二次電池は、比較例2及び比較例3のリチウムイオン二次電池よりも放電容量維持率が90%未満になるサイクル数が大きいことが判明した。以上より、電気化学デバイスのサイクル試験後の抵抗増加率を充分に抑制することが可能となることが確認された。 From FIGS. 3 and 4 and Table 1, it can be seen that the compound represented by formula (1), the first lithium salt compound, the second lithium salt compound in which the anion constituting the first lithium salt compound is different, and the non- The lithium ion secondary batteries of Examples 1 to 6, in which electrolytes containing water solvents were applied, had increased resistance compared to the lithium ion secondary batteries of Comparative Example 1, in which electrolytes not containing these compounds were applied. The rate was low, and the number of cycles at which the discharge capacity retention rate became less than 90% was large. On the other hand, the lithium ion secondary battery of Comparative Example 2 to which an electrolytic solution containing HDI, which is a compound having an isocyanate group, which does not satisfy the requirements of formula (1), and HDI and LiPO 2 F 2 (second The lithium ion secondary battery of Comparative Example 3 in which an electrolyte containing a lithium salt compound) was applied had a lower resistance increase rate than the lithium ion secondary battery of Comparative Example 1, but the lithium ion secondary battery of Examples 1 to 6 The secondary battery had a greater effect of suppressing the rate of increase in resistance. Furthermore, it was found that the lithium ion secondary batteries of Examples 1 to 6 had a greater number of cycles at which the discharge capacity retention rate became less than 90% than the lithium ion secondary batteries of Comparative Examples 2 and 3. From the above, it was confirmed that it is possible to sufficiently suppress the rate of increase in resistance of an electrochemical device after a cycle test.
 本発明者らは、式(1)で表される化合物と、第1のリチウム塩化合物と、第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する電解液を、電気化学デバイスに用いることによって、サイクル試験後の抵抗増加率が充分に抑制される作用効果について、以下のように推察している。すなわち、初回充電時に、式(1)で表される化合物の不飽和炭素結合構造が、他の添加剤又はカーボネート溶媒よりも先に負極側で還元反応し、被膜を形成する。その後、イソシアネート部位が反応することによって安定な被膜が形成され、負極側で他の添加剤、非水溶媒、電解質塩等の還元分解を抑制できるためであると推察している。また、正極側では、還元分解されずに残存する第1のリチウム塩化合物、第2のリチウム塩化合物、あるいはそれら由来の化合物が被膜を形成し、他の添加剤、非水溶媒、電解質塩等の酸化分解を抑制することによって、正極活物質表面でのイオン伝導性低下又は結晶構造安定化による抵抗増加を抑制できるためであると推察している。 The present inventors prepared a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent. The effects of using the contained electrolytic solution in an electrochemical device to sufficiently suppress the rate of increase in resistance after a cycle test are speculated as follows. That is, at the time of initial charging, the unsaturated carbon bond structure of the compound represented by formula (1) undergoes a reduction reaction on the negative electrode side before other additives or carbonate solvents, forming a film. It is speculated that this is because a stable film is formed by the subsequent reaction of the isocyanate sites, and the reductive decomposition of other additives, non-aqueous solvents, electrolyte salts, etc. can be suppressed on the negative electrode side. In addition, on the positive electrode side, the first lithium salt compound, the second lithium salt compound, or a compound derived therefrom that remains without being reductively decomposed forms a film, and other additives, nonaqueous solvents, electrolyte salts, etc. It is presumed that this is because by suppressing the oxidative decomposition of the positive electrode active material, it is possible to suppress the decrease in ionic conductivity on the surface of the positive electrode active material or the increase in resistance due to the stabilization of the crystal structure.
 また、一実施形態において、式(1)で表される化合物と、第1のリチウム塩化合物と、第2のリチウム塩化合物と、非水溶媒とを含有する電解液を、電気化学デバイスに用いることによって、電気化学デバイスは、充放電サイクル特性に優れる傾向にある。このような効果を奏する理由は必ずしも明らかではないが、本発明者らは上記の正極及び負極上の安定な被膜の形成に加えて、式(1)で表される化合物による電解液中のフッ酸(HF)の低減によって、正極活物質の溶出及び負極上でのLiF等の被膜の形成による副反応を抑制できるためであると推察している。 In one embodiment, an electrolytic solution containing a compound represented by formula (1), a first lithium salt compound, a second lithium salt compound, and a nonaqueous solvent is used in an electrochemical device. As a result, electrochemical devices tend to have excellent charge/discharge cycle characteristics. Although the reason for such an effect is not necessarily clear, the present inventors have found that in addition to forming stable films on the positive and negative electrodes, the compound represented by formula (1) can reduce fluorine in the electrolyte. It is speculated that this is because by reducing the amount of acid (HF), side reactions due to elution of the positive electrode active material and formation of a film such as LiF on the negative electrode can be suppressed.
 1…非水電解液二次電池(電気化学デバイス)、2…電極群、3…電池外装体、4…正極集電タブ、5…負極集電タブ、6…正極、7…セパレータ、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層。 DESCRIPTION OF SYMBOLS 1... Non-aqueous electrolyte secondary battery (electrochemical device), 2... Electrode group, 3... Battery exterior body, 4... Positive electrode current collector tab, 5... Negative electrode current collector tab, 6... Positive electrode, 7... Separator, 8... Negative electrode, 9... Positive electrode current collector, 10... Positive electrode mixture layer, 11... Negative electrode current collector, 12... Negative electrode mixture layer.

Claims (13)

  1.  正極と、負極と、電解液とを備え、
     前記電解液が、下記式(1)で表される化合物と、第1のリチウム塩化合物と、前記第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する、
     電気化学デバイス。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、及びRはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
    Comprising a positive electrode, a negative electrode, and an electrolyte,
    The electrolytic solution includes a compound represented by the following formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent. containing,
    Electrochemical device.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
  2.  前記式(1)におけるR及びRが水素原子である、
     請求項1に記載の電気化学デバイス。
    R 1 and R 2 in the formula (1) are hydrogen atoms,
    The electrochemical device according to claim 1.
  3.  前記式(1)におけるXが炭素数1~6のアルキレン基である、
     請求項1又は2に記載の電気化学デバイス。
    X in the formula (1) is an alkylene group having 1 to 6 carbon atoms,
    The electrochemical device according to claim 1 or 2.
  4.  前記第1のリチウム塩化合物がヘキサフルオロリン酸リチウムである、
     請求項1~3のいずれか一項に記載の電気化学デバイス。
    the first lithium salt compound is lithium hexafluorophosphate;
    The electrochemical device according to any one of claims 1 to 3.
  5.  前記第2のリチウム塩化合物が、ジフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、フルオロスルホン酸リチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(オキサラート)ホウ酸リチウム、ジフルオロオキサラートホウ酸リチウム、テトラフルオロオキサラートリン酸リチウム、及びジフルオロビス(オキサラート)リン酸リチウムからなる群より選ばれる少なくとも1種である、
     請求項1~4のいずれか一項に記載の電気化学デバイス。
    The second lithium salt compound is lithium difluorophosphate, lithium tetrafluoroborate, lithium fluorosulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(oxalate)borate, At least one member selected from the group consisting of lithium difluorooxalate borate, lithium tetrafluorooxalate phosphate, and lithium difluorobis(oxalate) phosphate,
    The electrochemical device according to any one of claims 1 to 4.
  6.  前記式(1)で表される化合物及び前記第2のリチウム塩化合物の合計含有量が、電解液全量を基準として、0.1~10質量%である、
     請求項1~5のいずれか一項に記載の電気化学デバイス。
    The total content of the compound represented by the formula (1) and the second lithium salt compound is 0.1 to 10% by mass based on the total amount of the electrolyte,
    The electrochemical device according to any one of claims 1 to 5.
  7.  前記電気化学デバイスが非水電解液二次電池又はキャパシタである、
     請求項1~6のいずれか一項に記載の電気化学デバイス。
    the electrochemical device is a non-aqueous electrolyte secondary battery or a capacitor;
    The electrochemical device according to any one of claims 1 to 6.
  8.  下記式(1)で表される化合物と、第1のリチウム塩化合物と、前記第1のリチウム塩化合物を構成するアニオンが異なる第2のリチウム塩化合物と、非水溶媒とを含有する、
     電気化学デバイス用電解液。
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、R、R、及びRはそれぞれ独立に水素原子又はメチル基を示し、Xは2価の有機基を示す。]
    A compound represented by the following formula (1), a first lithium salt compound, a second lithium salt compound having a different anion constituting the first lithium salt compound, and a nonaqueous solvent.
    Electrolyte for electrochemical devices.
    Figure JPOXMLDOC01-appb-C000002
    [In formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group, and X represents a divalent organic group. ]
  9.  前記式(1)におけるR及びRが水素原子である、
     請求項8に記載の電気化学デバイス用電解液。
    R 1 and R 2 in the formula (1) are hydrogen atoms,
    The electrolytic solution for electrochemical devices according to claim 8.
  10.  前記式(1)におけるXが炭素数1~6のアルキレン基である、
     請求項8又は9に記載の電気化学デバイス用電解液。
    X in the formula (1) is an alkylene group having 1 to 6 carbon atoms,
    The electrolytic solution for electrochemical devices according to claim 8 or 9.
  11.  前記第1のリチウム塩化合物がヘキサフルオロリン酸リチウムである、
     請求項8~10のいずれか一項に記載の電気化学デバイス用電解液。
    the first lithium salt compound is lithium hexafluorophosphate;
    The electrolytic solution for electrochemical devices according to any one of claims 8 to 10.
  12.  前記第2のリチウム塩化合物が、ジフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、フルオロスルホン酸リチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(オキサラート)ホウ酸リチウム、ジフルオロオキサラートホウ酸リチウム、テトラフルオロオキサラートリン酸リチウム、及びジフルオロビス(オキサラート)リン酸リチウムからなる群より選ばれる少なくとも1種である、
     請求項8~11のいずれか一項に記載の電気化学デバイス用電解液。
    The second lithium salt compound is lithium difluorophosphate, lithium tetrafluoroborate, lithium fluorosulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(oxalate)borate, At least one member selected from the group consisting of lithium difluorooxalate borate, lithium tetrafluorooxalate phosphate, and lithium difluorobis(oxalate) phosphate,
    The electrolytic solution for electrochemical devices according to any one of claims 8 to 11.
  13.  前記式(1)で表される化合物及び前記第2のリチウム塩化合物の合計含有量が、電解液全量を基準として、0.1~10質量%である、
     請求項8~12のいずれか一項に記載の電気化学デバイス用電解液。
    The total content of the compound represented by the formula (1) and the second lithium salt compound is 0.1 to 10% by mass based on the total amount of the electrolyte,
    The electrolytic solution for electrochemical devices according to any one of claims 8 to 12.
PCT/JP2023/012189 2022-03-30 2023-03-27 Electrochemical device, and electrolyte solution for electrochemical device WO2023190335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055182 2022-03-30
JP2022055182A JP2023147598A (en) 2022-03-30 2022-03-30 Electrochemical device and electrolyte for electrochemical device

Publications (1)

Publication Number Publication Date
WO2023190335A1 true WO2023190335A1 (en) 2023-10-05

Family

ID=88202363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012189 WO2023190335A1 (en) 2022-03-30 2023-03-27 Electrochemical device, and electrolyte solution for electrochemical device

Country Status (2)

Country Link
JP (1) JP2023147598A (en)
WO (1) WO2023190335A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058224A1 (en) * 2011-10-17 2013-04-25 宇部興産株式会社 Non-aqueous electrolyte solution and electricity-storage device using same
WO2013099680A1 (en) * 2011-12-28 2013-07-04 宇部興産株式会社 Non-aqueous electrolyte and electrical storage device using same
WO2017061464A1 (en) * 2015-10-09 2017-04-13 宇部興産株式会社 Nonaqueous electrolyte solution and electricity storage device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058224A1 (en) * 2011-10-17 2013-04-25 宇部興産株式会社 Non-aqueous electrolyte solution and electricity-storage device using same
WO2013099680A1 (en) * 2011-12-28 2013-07-04 宇部興産株式会社 Non-aqueous electrolyte and electrical storage device using same
WO2017061464A1 (en) * 2015-10-09 2017-04-13 宇部興産株式会社 Nonaqueous electrolyte solution and electricity storage device using same

Also Published As

Publication number Publication date
JP2023147598A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2023190335A1 (en) Electrochemical device, and electrolyte solution for electrochemical device
WO2020116583A1 (en) Electrolyte and electrochemical device
WO2020116574A1 (en) Electrolyte solution and electrochemical device
CN110679030B (en) Electrolyte solution and electrochemical device
CN110710046B (en) Electrolyte solution and electrochemical device
WO2023190363A1 (en) Electrochemical device, and electrolyte for electrochemical device
WO2023008569A1 (en) Electrochemical device, electrolyte solution, and additive used for electrolyte solution
WO2020116578A1 (en) Electrolyte and electrochemical device
JP2020004542A (en) Negative electrode and electrochemical device
JP7415946B2 (en) Electrolytes and electrochemical devices
KR102576486B1 (en) Electrolytes and Electrochemical Devices
TWI825137B (en) Electrolytes and electrochemical devices
WO2020027004A1 (en) Electrolyte and electrochemical device
JP2024059181A (en) Electrochemical devices, electrolytes, and additives used in electrolytes
JP2024021236A (en) Electrolytes, electrochemical devices and additives for electrolytes
WO2018220799A1 (en) Electrolytic solution and electrochemical device
WO2018220795A1 (en) Electrolytic solution and electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780345

Country of ref document: EP

Kind code of ref document: A1